WO1982004510A1 - Enabling circuitry for logic circuits - Google Patents

Enabling circuitry for logic circuits Download PDF

Info

Publication number
WO1982004510A1
WO1982004510A1 PCT/US1982/000598 US8200598W WO8204510A1 WO 1982004510 A1 WO1982004510 A1 WO 1982004510A1 US 8200598 W US8200598 W US 8200598W WO 8204510 A1 WO8204510 A1 WO 8204510A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
input
transistor
output
gate
Prior art date
Application number
PCT/US1982/000598
Other languages
English (en)
French (fr)
Inventor
Inc Motorola
Edward Derzawiec
Wade H Nelson
Cleon Petty
Original Assignee
Inc Motorola
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inc Motorola filed Critical Inc Motorola
Publication of WO1982004510A1 publication Critical patent/WO1982004510A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching

Definitions

  • This invention relates generally to enabling circuitry for logic circuits and, more particularly, to enabling circuitry for transistor-transistor logic (TTL) circuitry which utilizes the clock signal directly rather than after inversion to reduce the enabling delay without an associated power penalty.
  • TTL transistor-transistor logic
  • Logic circuits such as data latches, flip-flops, shift registers, memories, etc. may require that an enabling signal be applied thereto in order to render the logic circuit operational.
  • an enabling signal For example, the ALS377 hex data latch manufactured by Motorola Inc. requires the presence of such a signal.
  • Prior art enabling circuitry requires that an external clock signal (CK) propagate through three gates before the required enabling signal is produced. Thus, the enabling of the particular logic circuit involved is delayed by the propagation delay of the three gates. If the clock signal could be used directly rather than requiring inversion in the first of the three gates, there could be a significant improvement in enabling time.
  • a logic circuit having at least first and second inputs and capable of assuming first and second stable states at an output node thereof when said output node is coupled to a load, said first and second stable states corresponding to logical high and logical low voltages, said output node exhibiting said logical high voltage only when said first input is coupled to said logical high voltage and said second input is coupled to said logical low voltage, comprising: first buffer means having an input coupled to said first input and responsive to the voltage thereon; first transistor means having base, emitter and collector terminals, said base coupled to an output of said first buffer means for controlling said first transistor means, said collector adapted to be coupled to a first source of supply voltage, and said emitter coupled to said output node, said first transistor means for supplying current to said output node only when said first input is coupled to said logical high voltage; second buffer means coupled to said second input; and second
  • CM According to a further aspect of the invention there is a circuit for generating an internal enabling signal from an external clock signal and an external enabling signal each capable of assuming high and low logic states, comprising: a first logic gate having a first input coupled to receive said external clock signal and a second input coupled to receive said internal enabling signal for generating a logical high output when said external clock signal is a logical high and said internal enabling signal is a logical low; and second logic means having a first input coupled to the output of said first logic gate and a second input coupled to receive said external enabling signal for generating said internal enabling signal.
  • FIG. 1 is a logic diagram of enabling circuitry in accordance with the prior art
  • FIG. 2 is a logic diagram of enabling circuitry in accordance with the present invention
  • FIG. 3 is a partial logic, partial schematic diagram of the inventive enabling circuitry.
  • FIG. 1 is a block diagram of circuitry for enabling a logic circuit 8 in accordance with the prior art.
  • logic circuit 8 may take a variety of forms; i.e., shift registers, data latches, memories, etc.
  • two inputs are provided to logic circuit 8.
  • the first occurring on line 10 is the inverted clock signal C which is produced at the output of inverter 2.
  • the second input appears on line 12 and is the actual enable signal (ENABLE) produced by the enabling circuitry and appearing at the output of NOR gate 4.
  • the clock signal CK is applied to the input of an inverter 2 the output of which is coupled to an input of NOR gate 6.
  • the actual enable signal (ENABLE) is applied to a second input of NOR gate 6 whose output is applied to a first input of NOR gate 4.
  • An external enable signal (EN) is applied to a second input of NOR gate 4.
  • the external enable signal EN is assumed to be in a low logic state initially.
  • the clock signal CK goes low at the input of inverter 2
  • a logical high is applied to a first input of NOR gate 6. Since a NOR gate exhibits a high output only if both inputs are low, the output of NOR gate 6 ,will be low. Since the external enable signal EN is also low, a logical high will be produced at the output of NOR gate 4 to enable logic circuit 8.
  • FIG. 2 is a logic diagram of the inventive enabling circuitry.
  • the clock signal CK is still applied to an input of inverter 2 the output of which (CK) is applied to logic circuit 8.
  • the external enable signal EN is still applied to a first input of NOR gate 4 the output of which represents the actual logic circuit enable signal (ENABLE) on line 12.
  • the significant differences are that the clock signal CK is applied directly to a first input of AB gate.
  • the second input of gate 16 is coupled via line 14 to the output of NOR gate
  • FIG. 1 the output of NOR gate 6 takes the form A B if signals A and B are supplied to the first and second inputs thereof. Therefore, the actual output of NOR gate 6 in FIG. 1 is CK ENABLE.
  • the output of gate 16 in FIGURE 2 takes the form AB " if A is applied to the non-inverting input and. B is applied to the inverting input. Thus, the actual output of AB gate 16 is CK ENABLE. Since the outputs of NOR gate 6 in FIG.
  • FIG. 3 illustrates the details of AB " gate 16 of FIG. 2. It includes PNP transistor 18, Schottky transistors 20 and 22, diode 24, Schottky diodes 26 and 28 and resistors 30, 32 and 34. The base of transistor 18 and the cathode of diode 26 are directly coupled to the clock signal CK. The collector of transistor 18 and the cathode of diode 24 are coupled to ground. The emitter of
  • O transistor 18 is coupled to a source of supply voltage V ⁇ C via resistor 30 and to the base of transistor 20.
  • the collector of transistor 20 is coupled to the source of supply voltage V QQ via resistor 32, and the emitter of transistor 20 is coupled to the collector of transistor 22, to the anode of diode 26, and to the second input of NOR gate 4.
  • the emitter of transistor 22 is coupled to the anode of diode 24.
  • the base of transistor 22 is coupled to the source of supply voltage V QQ via resistor 34 and to the anode of diode 28.
  • Schottky diode 26 provides a discharge path for the parasitic capacitance associated with the base-emitter junction of transistor 20 when the clock signal CK is low.
  • the AB function (CK ENABLE) actually appears at node 36. That is, when the clock signal (CK) is high, transistor 18 remains off and transistor 20 is turned on. Current then flows from V QQ through resistor 32 into node 36. If ENABLE is low, current flows from V cc through resistor 34 and through diode 28. Base drive is not supplied to transistor 22 maintaining it off. Since transistor 22 is off, it sinks no current from node 36 and therefore the voltage at node 36 rises to a logical high level. All other combinations of CK and ENABLE will result in a logical zero at node 36. That is, it has already been shown that when the clock signal CK is high, current flows into node 36.
  • transistors and/or diodes could be add ⁇ d to increase the number of asserted or inverted inputs to the gate to expand its functionality.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
PCT/US1982/000598 1981-06-19 1982-05-06 Enabling circuitry for logic circuits WO1982004510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/275,530 US4398103A (en) 1981-06-19 1981-06-19 Enabling circuitry for logic circuits
US275530810619 1981-06-19

Publications (1)

Publication Number Publication Date
WO1982004510A1 true WO1982004510A1 (en) 1982-12-23

Family

ID=23052704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1982/000598 WO1982004510A1 (en) 1981-06-19 1982-05-06 Enabling circuitry for logic circuits

Country Status (4)

Country Link
US (1) US4398103A (de)
EP (1) EP0082851A4 (de)
JP (1) JPS58500965A (de)
WO (1) WO1982004510A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627085A (en) * 1984-06-29 1986-12-02 Applied Micro Circuits Corporation Flip-flop control circuit
US5117443A (en) * 1989-11-13 1992-05-26 Lucid, Inc. (Formerly Portable Computer) Method and apparatus for operating at fractional speeds in synchronous systems
US5051623A (en) * 1990-06-16 1991-09-24 National Semiconductor Corporation TTL tristate circuit for output pulldown transistor
DE4339159C1 (de) * 1993-11-16 1995-04-27 Siemens Ag Schaltungsanordnung zur synchronen Takterzeugung wenigstens zweier Taktsignale

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600604A (en) * 1968-12-03 1971-08-17 Westinghouse Electric Corp Failsafe logic gates
US3716728A (en) * 1970-10-12 1973-02-13 Bell Telephone Labor Inc Minimum delay data transfer arrangement
US4199731A (en) * 1977-12-16 1980-04-22 Harris Corporation Reversable electrically alterable amplifier configurations
US4319148A (en) * 1979-12-28 1982-03-09 International Business Machines Corp. High speed 3-way exclusive OR logic circuit
US4322640A (en) * 1978-11-25 1982-03-30 Fujitsu Limited Three-state output circuit
US4334157A (en) * 1980-02-22 1982-06-08 Fairchild Camera And Instrument Corp. Data latch with enable signal gating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600604A (en) * 1968-12-03 1971-08-17 Westinghouse Electric Corp Failsafe logic gates
US3716728A (en) * 1970-10-12 1973-02-13 Bell Telephone Labor Inc Minimum delay data transfer arrangement
US4199731A (en) * 1977-12-16 1980-04-22 Harris Corporation Reversable electrically alterable amplifier configurations
US4322640A (en) * 1978-11-25 1982-03-30 Fujitsu Limited Three-state output circuit
US4319148A (en) * 1979-12-28 1982-03-09 International Business Machines Corp. High speed 3-way exclusive OR logic circuit
US4334157A (en) * 1980-02-22 1982-06-08 Fairchild Camera And Instrument Corp. Data latch with enable signal gating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MILLMAN and TAUB, 'Pulse Digital, and Switching Waveforms', published 1965, by McGRAW-HILL Inc., (USA), see pages 328-329 and the Boolean Identity Equation (9-30). *
See also references of EP0082851A4 *

Also Published As

Publication number Publication date
EP0082851A1 (de) 1983-07-06
EP0082851A4 (de) 1984-10-29
JPH023328B2 (de) 1990-01-23
JPS58500965A (ja) 1983-06-09
US4398103A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
US4628216A (en) Merging of logic function circuits to ECL latch or flip-flop circuit
US4333020A (en) MOS Latch circuit
US5148061A (en) ECL to CMOS translation and latch logic circuit
US4649293A (en) Clocked comparator
US5079452A (en) High speed ECL latch with clock enable
US4948991A (en) Load controlled ECL transient driver
US3766406A (en) Ecl-to-ttl converter
JPS63193720A (ja) 論理回路
US5789945A (en) Method and circuit for improving metastable resolving time in low-power multi-state devices
US3430070A (en) Flip-flop circuit
US4112314A (en) Logical current switch
US4622475A (en) Data storage element having input and output ports isolated from regenerative circuit
US3339089A (en) Electrical circuit
US3617776A (en) Master slave flip-flop
EP0119929B1 (de) TTL Ausgangsstufe
US3778640A (en) Signal voltage level translating circuit
US4398103A (en) Enabling circuitry for logic circuits
US4517475A (en) Master-slave flip-flop arrangement with slave section having a faster output transistion and a greater resistance to output degradation
US4274017A (en) Cascode polarity hold latch having integrated set/reset capability
EP0471390A2 (de) Frequenzteilerschaltung
US4607175A (en) Non-inverting high speed low level gate to Schottky transistor-transistor logic translator
US4542309A (en) Phase splitter with integrated latch circuit
US3310686A (en) Flip flip circuits utilizing set-reset dominate techniques
US4277698A (en) Delay type flip-flop
US3558931A (en) Flip-flop circuit particularly for integration

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP

AL Designated countries for regional patents

Designated state(s): DE GB

WWE Wipo information: entry into national phase

Ref document number: 1982901819

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1982901819

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1982901819

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1982901819

Country of ref document: EP