WO1982004373A1 - Low pressure mercury vapor discharge lamp unit - Google Patents

Low pressure mercury vapor discharge lamp unit Download PDF

Info

Publication number
WO1982004373A1
WO1982004373A1 PCT/JP1982/000206 JP8200206W WO8204373A1 WO 1982004373 A1 WO1982004373 A1 WO 1982004373A1 JP 8200206 W JP8200206 W JP 8200206W WO 8204373 A1 WO8204373 A1 WO 8204373A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge lamp
mercury vapor
low
frequency
vapor discharge
Prior art date
Application number
PCT/JP1982/000206
Other languages
French (fr)
Japanese (ja)
Inventor
Denki Kk Mitsubishi
Original Assignee
Kajiwara Toshiro
Anzai Yoshinori
Saikatsu Takeo
Kobayashi Goroku
Morimoto Shunichi
Yamazaki Hiroyoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8144181A external-priority patent/JPS57196497A/en
Priority claimed from JP11036981A external-priority patent/JPS5812251A/en
Application filed by Kajiwara Toshiro, Anzai Yoshinori, Saikatsu Takeo, Kobayashi Goroku, Morimoto Shunichi, Yamazaki Hiroyoshi filed Critical Kajiwara Toshiro
Priority to DE8282901620T priority Critical patent/DE3279197D1/en
Publication of WO1982004373A1 publication Critical patent/WO1982004373A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation

Definitions

  • the present invention relates to a low-pressure mercury vapor discharge lamp device that combines a low-pressure mercury vapor discharge lamp such as a fluorescent lamp and a lighting device for lighting the discharge lamp at a high frequency.
  • the high-frequency lighting devices with lighting frequency of about 15 KHZ to 50 KHz have become widespread. 4 Taking an example 0W run-flop, the these devices run-Bed sole efficiency compared to high frequency device, 1 2 to 1 3% approximately so may, as an efficiency of the entire device was about 20 to 25%.
  • de-menu can that Nono 'to Le be discharged by hand I 5 0%, Hg-N e (N e: l OT or Hg 2 in the discharge lamp r)
  • the standardized average radiant output of 533 is the minimum value of the standardized average electron temperature, Te ⁇ , the maximum value, and the current value a 4 A (32 KHz) near 32 KHz.
  • the present invention is based on the basic idea of investigating the mechanism of the improvement of the lamp efficiency during high-frequency lighting by the inventors. During the experiment, a pause is provided in the electric power E applied to the lamp. The mercury resonance radiant energy efficiency was greatly improved. This was based on a phenomenon that was not previously known. Therefore, a low-pressure mercury vapor discharge lamp was operated at high local waves of 1 KHz or more. The voltage applied between the electrodes when lit is more than 0L 5 X 1 ⁇ seconds, 15 X 10 0 ⁇ 3 ⁇ 4?
  • the object of the present invention is to provide a low-efficiency mercury vapor discharge lamp device with improved discharge lamp efficiency by providing the following rest periods.
  • the present invention in the applied electric EE between the electrodes when alternating current operation at high frequencies above 1 KHz low-pressure mercury vapor discharge lamp, ⁇ 5 X 1 ( ⁇ on 6 seconds or more, 1 5 X 1 0 seconds rest period to provide the and also, can and lit the discharge lamp in the above high stations wave 1 KHz, molar ratio ⁇ / ⁇ ⁇ 5 X 1 0 2 or more., ing below L 0 X 1 ( ⁇
  • the efficiency of the discharge lamp can be improved, and the efficiency of the entire device can be improved. It is intended to provide a gas discharge lamp device.
  • FIG. 1 is a cross-sectional view of the discharge lamp used in the experiment that led to the invention of the present application.
  • Fig. 2 is a diagram showing an experimental apparatus equipped with the discharge lamp shown in Fig. 1.
  • Fig. 3 is the principle of the present invention.
  • FIG. 4 is a characteristic diagram showing the relationship between the idle period and the relative luminous flux value in one embodiment of the present invention
  • FIG. 5 is a lighting frequency and relative luminous flux value in one embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between and FIG.
  • FIG. 7 is a diagram for explaining the rest period of the applied voltage in the present invention
  • FIG. 8 is a relationship between the rest period and the relative luminous flux value in another embodiment of the present invention
  • FIG. 9 is a characteristic diagram showing the relationship between the lighting frequency and the relative luminous flux value in another embodiment of the present invention.
  • Fig. 1 is a cross-sectional view showing the discharge lamp used in this basic experiment.
  • (1) is a quartz glass valve in which rare gas and mercury are contained.
  • Liquid-phase mercury (b) which is a vapor generator, is enclosed. Sealed at both ends of valve (1) via ( 2) is a stem)
  • (A) shows the discharge path formed between electrodes (22)
  • I the inner diameter of the pipe of the valve ⁇ , 30 °
  • L is the pipe length 1187 ⁇ defined by the outer end length of the valve ⁇ .
  • (4) is a low-power mercury vapor discharge lamp, 40 W radiated start type fluorescent lamp and the same specifications as those made of quartz glass coated with a fluorescent substance. A discharge lamp of valve ( ⁇ ) was used.
  • Figure 2 shows the experimental setup.
  • () is a 100 V commercial AC power supply
  • ) is a filament transformer energized by the power supply (5)
  • (7) the rectangular wave power source for supplying ⁇ electricity and a application period I ⁇ a rest period T 0 of the voltage to be described later) is scan I Tsu switch provided in the preheating circuit electrode)
  • (9) the discharge lamp ( 4 ) A variable resistance ballast that controls the discharge current.
  • a discharge lamp without a fluorescent substance is lit in the circuit as described above, and when the period T 0 is zero and when the period T 0 is provided, the discharge state is observed and observed under various conditions. Measurements were taken.
  • the switch (S) was closed only when the discharge lamp ( 4 ) was started, and was opened during measurement.
  • a 40W rapid-start type fluorescent lamp was used as the discharge lamp ( 4 ), with a constant frequency of 17KHZ and a constant current effective value.
  • the maximum of the light beam increases pause period T 0 to Let 's that seen in the figure at 7 ⁇ 8 S is seen, run-up of Ryo Le Gore-down sealed compared to the case that the rate of increase period T 0 is zero ( A large 3 ⁇ 4 value of about 7 was obtained in 4 ), and about 13 with a lamp containing mixed gas.
  • actual C is a lighting frequency of 5 ⁇ , approximately
  • the relative luminous flux values in the figure are those using a test ballast specified in JIS, and the luminous flux value when lit by a commercial AC power supply is 100%.
  • the power sale by be seen, seen the effect of providing the always quiescent period T 0 at the above lighting frequency 1 KHz, the number of lighting frequency is seen that it is a maximum that effective ⁇ is at 20 KHz vicinity.
  • the maximum value of the relative luminous flux varies depending on parameters such as the lighting frequency, the rest period, and the composition of the rare gas charged in the lamp. It was confirmed that a higher luminous flux value can be obtained with AC high-frequency lighting if the pause period is 0.5 to 15 S, compared to conventional commercial frequency lighting without a pause period.
  • OMPI In the figure, (5) is a 100 V AC power supply, (10 is a power switch, 01) is a full-wave rectifier, 02 is a smoothing capacitor, CL3 is a voltage dividing resistor, and a constant. E-diode, (is is switching leg
  • a power supply IC, fl5a) is a pair of IC output transistors, (1 is a pair of power amplification frequency transistors, and output transformer 7).
  • a push-pull circuit is formed at the same time.
  • the secondary winding of lance ⁇ , (17F) is a pair of filament windings, and 9 is a capacitor ballast.
  • IC 09 of the door run-g is te (I5 a) (15b) one the period in which respectively open and close: ⁇ DOO run-g is te (1) is opened Then, by setting the time until the other transistor (15b) closes to 8 S, the two windings of the trans- ⁇ are almost as shown in Fig. 3. The waveform shown in the figure was obtained, its frequency was about 20 and the idle period T. Was 8 ⁇ and the period ⁇ was 17 AS.
  • the argon-filled discharge lamp ( 4 ) had a commercial station wave; In comparison, the efficiency improvement of the lamp alone is about 16 and the efficiency improvement of the whole equipment is about 30 ⁇ , For the mixed gas-filled discharge lamp ( 4 ), the efficiency of the lamp alone was improved by about 20%, and the efficiency of the entire system was improved by about 33%, an unprecedentedly high value.
  • Electrodes (2) circuits to provide a rest period T 0 to a voltage applied between is known variously in other than those of Figure 6, consider suppression phenomenon or et of moving stripes, either it al It is presumed that this has the effect of improving the efficiency of the discharge lamp ( 4 ). However, suspension period ⁇ . If the ratio is less than 0.5 / ts, the efficiency improvement effect is low.
  • the rest period T May be unclear, but in the present invention, it is defined as follows.
  • Suruwachi electrode (2) peak value of the applied voltage between 'Vp 1 0 value or al falling Ri time of ⁇ and, of 1 0 in Nema rising with time t 2
  • the (t 0 + + t 2 ) is reduced to the idle period T 0
  • the time t 0 is the idle period T.
  • the applied power E that is, the number of lighting station waves
  • the power consumption decreased when the brightness was constant, that is, the efficiency increased.
  • the lighting frequency is selected in consideration of the switching characteristics and the like. Although the current high-frequency lighting technique seems to be preferably 10 to 60 in practice, if the high-frequency lighting technique advances, the pulse frequency is set to several 100 KHz and the lighting is performed. This is also practical enough It would be possible.
  • the mixed gas specific force of Kr and Ar as the noble gas; 1.0: 0.2 is used, and the water flow is the noble gas atomic temperature in the apparent positive column.
  • the temperature ⁇ is 40 C, the discharge lamp is filled with a rare gas so that the mole ratio ⁇ / ⁇ of the rare gas mole number X to the mercury vapor mole ratio 3.3 / ⁇ is 3.3 X 10
  • the experimental results are described.
  • FIG. 8 is the water stream of the discharge lamp 40 C, the current peak value (Hopo rectangular wave) 0.42 ⁇ , illuminates 20Kappaitazeta, mercury 2 53.7 ⁇ of the feeder and was change the pause period T 0 It shows a change in the absolute intensity of the resonance radiation.
  • Ru Tei and period ⁇ 0 is the door-out of the strength of the zero and 10 0%, this value is about 1 to 7% High physicians Ri by case lit by a commercial power supply is also Ru Nodea.
  • Period III as seen in the figure. However, the strength is maximum at 7 to 8 X 1 G— 6 seconds, and the improvement in strength is as high as 35%.
  • period ⁇ 0 is 15 X 1 ( ⁇ The intensity is lower than that when there is no rest period T 0 above 6 seconds.
  • the power supply voltage peak value is kept constant, the current peak value increases due to the provision of the period , 0 , and the moving fringes disappear or greatly decrease. Further it has the called mobile fringes be lowered at a constant value until the current peak value 0. 4 2 Alpha is increased to as if the period T 0 is zero o
  • Fig. 9 shows the change in the relative intensity of 253.7 ⁇ radiation when the lighting frequency was changed using the same discharge lamp as that used for the measurement in Fig. S.
  • the solid line in the figure is the idle period T at frequencies below 36 KHz. There about 7 X 10- 6 - constant, the can it was beyond 36 KHz 'period I ⁇ and T 0 is also a ratio of about 1 case of set to the with Nodea is, - the point chain line period T. Since There is also the case of zero, 0C, running water temperature 4 to also as a data under the matter conditions of the current Bee-click value 0. 4 2A.
  • This figure shows the radiation intensity when turned on by commercial power as 100%. The power sale by be seen, the lighting frequency is always observed effect ⁇ having a hibernation period T 0 Te odor than 1 KHz, the lighting frequency is maximum, the effect at 20 KHz near neighbor.
  • the reason for limiting the mole ratio X ⁇ ⁇ in the present invention is that when the type of the rare gas, the number of lighting station waves, and the pause period ⁇ 0 are determined, the mole ratio XZY and the apparent rare gas The generation and disappearance of the moving fringes occur at the boundary defined by the atomic temperature Tn.
  • the lamp ( 4 ) was turned on using the lighting device ( ⁇ ) by the circuit having the configuration shown in FIG. 6, and the lamp ( 4 ) was in a steady state. After that, the luminous flux value and the power were measured.
  • a rare gas mixture with a mixed mole ratio of 79 of Ar, Kr, and Ne was sealed in a valve with a pipe inner diameter of ⁇ 36 lightning and a pipe length L of 2354, and was lit with an effective current value of 0.8 A.
  • the filtrate 'molar ratio X / Y is Ri Do and 0.25 XI 0 3
  • efficiency of the run-up alone Ri Ah at about 15% efficiency of the instrumentation ⁇ bodies were Tsu der about 34%.
  • the above embodiment relates to a discharge lamp (4) having relatively high practicality.
  • the power is only a few examples of the effect of the present invention, and when the above experiment is taken into consideration, an appropriate pause period is considered.
  • the this cormorants have and the ⁇ 0 provided to improve the run-up efficiency, be said very Ru Oh and valid against a wide range of the discharge lamp (4).
  • the maximum value of the relative luminous flux value depends on the lighting frequency, the pause period, and the lamp.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Low pressure mercury vapor discharge lamp unit which is constructed to employ a high frequency inverter, have a quiescent time T0? in the range of 0.5 x 10?-6 to 10 x 10?-6, generate a rectangular high frequency AC voltage having a frequency of more than 1kHz, and supply a high frequency voltage to a low pressure vapor discharge lamp sealed with mercury and a rare gas selected so that the ratio X/Y of the molar number Y of the mercury vapor to the molar number X of the rare gas is in the range of 0.5 x 10?2 to 1.0 x 10?4. The moving moire of the lamp is suppressed so as to be reduced or eliminated, thereby largely improving the resonant radiation energy efficiency of the mercury.

Description

. 明 細 書  . Specification
発明の名称  Title of invention
低圧水銀蒸気放電灯装置  Low pressure mercury vapor discharge lamp device
技術分野  Technical field
こ の発明は例えば螢光 ラ ン プの よ う る低圧水銀蒸気放 電灯と , こ の放電灯を高周波で点灯する点灯装置と を組 合せた低圧水銀蒸気放電灯装置に関する も のであ る。 背景技術  The present invention relates to a low-pressure mercury vapor discharge lamp device that combines a low-pressure mercury vapor discharge lamp such as a fluorescent lamp and a lighting device for lighting the discharge lamp at a high frequency. Background art
螢光 ラ ン プを高周波で点灯する と ラ ン プ効率が向上す る こ と は古 く か ら知 られてお り , 最近の エ ネル ギ事情か らの要請と , パ ワ ー ト ラ ン ジ ス タ の性能向上 と相俟って It has long been known that the efficiency of lamps can be improved by illuminating fluorescent lamps at high frequencies, and there have been requests from recent energy situations and power transformers. In conjunction with the improved performance of the
, 1 5KHZ 〜 50 KHz程度の点灯周波教の高周波点灯装置が 普及 しは じめている。 40Wラ ン プに例を取る と , これ ら の装置は高周波の装置に比し ラ ン ブ単独の効率向上は , 良い も ので 1 2 〜 1 3 % 程度 , 装置全体の効率向上と して は 2 0 〜 2 5 % 程度の も のであ った。 The high-frequency lighting devices with lighting frequency of about 15 KHZ to 50 KHz have become widespread. 4 Taking an example 0W run-flop, the these devices run-Bed sole efficiency compared to high frequency device, 1 2 to 1 3% approximately so may, as an efficiency of the entire device Was about 20 to 25%.
他方, 最近の文献に よ れば , 例えば J.Polman, et a£ : J.Phys D ; Appl . Phys. 5 P274― P276  On the other hand, according to recent literature, for example, J. Polman, et al: J. Phys D; Appl. Phys. 5 P274-P276
f a part of paper) (1972) に お いて , デ ュ ー テ ィ 5 0 %でノヽ' ル ス放電させた と き , Hg—N e ( N e : l O Tor r ) の放電灯では Hg 2 5 3 7 の規格化された平均放射出力 く 1 2 5 3 7 〉は, 規格化された平均電子温度く Te 〉 の極小値で , 極大値 を示し , 32 KHz 付近で電流値 a4 A ( i D C )の と き , 更に 10 増加する 旨報告されてお り , ま た B. M.MM/l EHH Het a£: Svetotek.4 P6—P8 81 ) において , Hg— A r混合ガスのバ ル ス変調低 Ε放電する場合 , Arの Εカカ 133〜470Pa , パ ノレ ス継続期間が 25〜 150 S , 脈流パ ル ス周波数 5〜 20 K , 20 W の昼光色瑩光灯と い う 条件では , 直流点灯 の場合に比べ, 発光効率が 20〜 30 % 増加する こ と が報 告されている。 fa part of paper) (to have you in 1972), de-menu can that Nono 'to Le be discharged by hand I 5 0%, Hg-N e (N e: l OT or Hg 2 in the discharge lamp r) The standardized average radiant output of 533 is the minimum value of the standardized average electron temperature, Te〉, the maximum value, and the current value a 4 A (32 KHz) near 32 KHz. i DC ), a further increase of 10 was reported, and BMMM / l EHH Heta £: In Svetotek.4 P6-P8 81), Hg- A case of bus ls e modulated low E discharge of r mixed gas, E Kaka 133~470P of Ar a, path Honoré scan duration is 25 ~ 150 S, Myakuryupa It has been reported that the luminous efficiency is increased by 20 to 30% under the condition of daylight color light with a frequency of 5 to 20 K and 20 W compared to the case of DC lighting.
発明の開示 Disclosure of the invention
本発明は, 発明者らに よ る高周波点灯時の ラ ン プ効率 の向上の機構を究明する基礎的 ¾実験の途上, ラ ン プ に 印加する電 Eに休止期間を設ける こ と に よ り 水銀の共鳴 放射エネ ル ギ効率が大巾に向上する と い う , 従来知られ ていなかっ た現象に基いて された も ので , 低圧水銀蒸 気放電灯を 1 KHz以上の高局波での交流点灯時に電極間に 印加する 電圧に , 0L 5 X 1 ^秒以上, 1 5 X 1 0~¾?以下の休 止期間を設ける こ と に よ り , 上記放電灯の効率が向上し た低 ffi水銀蒸気放電灯装置を提供する こ と を 目的 とする o  The present invention is based on the basic idea of investigating the mechanism of the improvement of the lamp efficiency during high-frequency lighting by the inventors. During the experiment, a pause is provided in the electric power E applied to the lamp. The mercury resonance radiant energy efficiency was greatly improved. This was based on a phenomenon that was not previously known. Therefore, a low-pressure mercury vapor discharge lamp was operated at high local waves of 1 KHz or more. The voltage applied between the electrodes when lit is more than 0L 5 X 1 ^ seconds, 15 X 10 0 ~ ¾? The object of the present invention is to provide a low-efficiency mercury vapor discharge lamp device with improved discharge lamp efficiency by providing the following rest periods.
本発明は , 低圧水銀蒸気放電灯の 1 KHz以上の高周波で の交流点灯時に電極間に印加する電 EEに , α 5 X 1 (Γ6秒以 上, 1 5 X 1 0 秒以下の休止期間を設ける と と も に , 上記 放電灯を 1 KHz以上の高局波で点灯したと き , モ ル比 Χ/Ύ α 5 X 1 02以上., L 0 X 1 (Γ以下にな る よ う に放電灯及び 点灯装置を構成する こ と に よ り , 放電灯の効率を 向上さ せる こ と がで き , 装置全佞の効率も 向上した低圧水銀蒸 気放電灯装置を提供する こ と を 目 的 と する。 The present invention, in the applied electric EE between the electrodes when alternating current operation at high frequencies above 1 KHz low-pressure mercury vapor discharge lamp, α 5 X 1 (Γ on 6 seconds or more, 1 5 X 1 0 seconds rest period to provide the and also, can and lit the discharge lamp in the above high stations wave 1 KHz, molar ratio Χ / Ύ α 5 X 1 0 2 or more., ing below L 0 X 1 (Γ By configuring the discharge lamp and the lighting device as described above, the efficiency of the discharge lamp can be improved, and the efficiency of the entire device can be improved. It is intended to provide a gas discharge lamp device.
図面の簡単る説明  BRIEF DESCRIPTION OF THE DRAWINGS
第 1 図は本願発明をなすに至った実験に用いた放電灯 の断面図 , 第 2 図は第 1 図に示した放電灯を備えた実験 装置を示す図 , 第 3 図は本願発明の原理を示す印加電 E 波形図 , 第 4 図は本願発明の一実施例における休止期間 と相対光束値と の関係を示す特性図 , 第 5 図は本願発明 の一実施例における点灯周波数と 相対光束値と の関係を 示す特性図 , 第 6 図は本発明を実施する に好適な具体的 Fig. 1 is a cross-sectional view of the discharge lamp used in the experiment that led to the invention of the present application. Fig. 2 is a diagram showing an experimental apparatus equipped with the discharge lamp shown in Fig. 1. Fig. 3 is the principle of the present invention. FIG. 4 is a characteristic diagram showing the relationship between the idle period and the relative luminous flux value in one embodiment of the present invention, and FIG. 5 is a lighting frequency and relative luminous flux value in one embodiment of the present invention. FIG. 6 is a characteristic diagram showing the relationship between and FIG.
¾回路構 の一例を示す図 , 第 7 図は本願発明における 印加電王の休止期間を説明するための図 , 第 8 図は本願 発明の他の実施例における休止期間と 相対光束値と の関 係を示す特性図 , 第 9 図は本願発明の他の実施例におけ る点灯周波数と相対光束値と の関係を示す特性図である 発明を実施するための最良の形態 図 A diagram showing an example of the circuit structure, FIG. 7 is a diagram for explaining the rest period of the applied voltage in the present invention, and FIG. 8 is a relationship between the rest period and the relative luminous flux value in another embodiment of the present invention. FIG. 9 is a characteristic diagram showing the relationship between the lighting frequency and the relative luminous flux value in another embodiment of the present invention.
本願発明の実施例の説明に先立ち , 先ず上述の現象を 発見する に至った基礎実験につ い て第 1 図〜第 3 図に基 づいて説明する。 お, 第 1 図〜第 3 図にお い て同一符 号は同一或いは相当部分を示している。  Prior to the description of the embodiment of the present invention, first, a basic experiment which led to the discovery of the above-described phenomenon will be described with reference to FIGS. The same reference numerals in Figs. 1 to 3 indicate the same or corresponding parts.
第 1 図は この基礎実験に用いた放電灯を示す断面図で , 同図にお い て (1) は石英ガ ラ ス製バ ル ブ で こ の バ ル ブ 内 には希ガ ス と水銀蒸気発生体である液相水銀(b)が封入さ れている 。 (2) は ス テ ム )を介してバ ル ブ (1)の両端に封止 さ れた予熱形電極 , (a)は電柽(2 2)間に形成された放電路Fig. 1 is a cross-sectional view showing the discharge lamp used in this basic experiment. In this figure, (1) is a quartz glass valve in which rare gas and mercury are contained. Liquid-phase mercury (b), which is a vapor generator, is enclosed. Sealed at both ends of valve (1) via ( 2) is a stem) (A) shows the discharge path formed between electrodes (22)
, はバ ル ブ ω の管内径で , 3 0 挪 , L はバ ル ブ ωの外端 長で定義し た管長 1 1 8 7 ^ であ る 。 (4)は低王水銀蒸気放 電灯 で , 4 0 W ラ ビ ジ ド ス タ ー ト 形けい光 ラ ン プ及びそれ と 同一仕様で , けい光物質を塗付し ¾ い石英ガ ラ ス製バ ル ブ (υ の放電灯を用いた。 , Is the inner diameter of the pipe of the valve ω, 30 °, and L is the pipe length 1187 ^ defined by the outer end length of the valve ω. (4) is a low-power mercury vapor discharge lamp, 40 W radiated start type fluorescent lamp and the same specifications as those made of quartz glass coated with a fluorescent substance. A discharge lamp of valve (υ) was used.
第 2 図は実験装置を示す図で , 同図において )は 1 0 0 V 商用交流電源 , )は電源(5)に よ り 付勢される フ ィ ラ メ ン ト ト ラ ン ス , (7)は後述する電圧の 印加期間 Ί\ と 休止期間 Τ0 と を 有する電 Εを供給する矩形波電源 , )は電極 )の予 熱回路に設けたス ィ ツ チ , (9)は放電灯(4)の放電電流を制 御す る可変抵抗安定器で.あ'る。 Figure 2 shows the experimental setup. In the figure,) is a 100 V commercial AC power supply,) is a filament transformer energized by the power supply (5), and (7) ) the rectangular wave power source for supplying Ε electricity and a application period I \ a rest period T 0 of the voltage to be described later) is scan I Tsu switch provided in the preheating circuit electrode), (9) the discharge lamp ( 4 ) A variable resistance ballast that controls the discharge current.
第 1 図〜第 2 図に示された構成において , 第 3 図に示 す よ う な電 EEの 印加期間 と 休止期間 Τ0と を有 し , 周波 数及び期間 , Τ0のデ ュ ーテ ィ サ イ ク ル の可変る電源に よ り 実験をお こ ¾ つた。 In the configuration shown in FIG. 1-FIG. 2, in Figure 3 have a the application period of the shown earthenware pots by to name electrostatic EE and rest period T 0, frequency and duration, T 0 De-menu Te The experiment was performed using a power supply with variable recycling.
上記の よ う 回路で先ずけい光物質の い放電灯を点 灯 し , 期間 T0が零の場合と期間 T0を設けた場合につ き , 種 々 な条件下でその放電状態の観察及び測定を お こ る つ た。 おス ィ ツ チ (S)は放電灯(4)の始動時にのみ閉 じ , 測 定中は開放し た。 First, a discharge lamp without a fluorescent substance is lit in the circuit as described above, and when the period T 0 is zero and when the period T 0 is provided, the discharge state is observed and observed under various conditions. Measurements were taken. The switch (S) was closed only when the discharge lamp ( 4 ) was started, and was opened during measurement.
お , 餐光灯(4)については管長 L は 1 1 8 7 皿 , 管内径 ø は主と し て 3 0 の も C を いたが , 少数の も のに 関 し ては 2 2 丽 か ら 3 6 〇 固に変化させた。 ま た封入 υκど A 希ガ スは各種の単体及び混合体を用い , それ らの封入量 も 大巾 に変'ィヒさせた。 ¾ 水銀(b)は 2 5 のほぼ一定量 を封入 した。 . You,餐光lamp (4) 1 1 8 7 dish is the pipe length L for, tube inner diameter ø is Lord and to 3 0 to but also had a C, is then related to a small number of even 2 2丽or et al. 3 6 〇 Changed firmly. Also enclosed υκDO A Noble gases were used in various simple and mixed forms, and their encapsulation amounts varied greatly. ¾ Mercury (b) encapsulated almost a constant amount of 25. .
これ らの試科を約 6 £ 分 の流水中に置 き , 第 2 図に示 す よ う に矩形波出 力電圧の高周波イ ンバ一 タ で, 抵抗バ ラ ス ト を用いて点灯 し , その放電電流, 点灯周波数, 及 び流水温度を変ィヒさせて , 放電の状態を観察する と と も に ,. 希ガ ス及び水銀の放射輝線強度を測定した。 その結 果陽光柱に移動縞が発生する と , 陽光柱での希ガ ス の発 光が顕著にる り , 一方水銀の発光 , 特に 2 5 3.7 丽 の共鳴 放射強度が大き く 低下する こ とが多数試料について見 ら れた。 こ の移動縞の癸生, 消滅は放電電流, 点灯周波数 , 流水温度等に依存す'る が, 特に l KHz以上の点灯周波数 に関しては一般 周波数が高い程移動縞が発生しに く い 傾向に ある こ と が判った。 しか し放電灯の入力電力 ( 電 流実効値と 電圧実効値との積 ) 当 り の共鳴放射の相対強 度は必ずし も 点灯周波数の上昇に泮っ て向上する と はい えな い結杲が得 られた。  These samples were placed in flowing water for about 6 £, and as shown in Fig. 2, they were lit using a high-frequency inverter with a square-wave output voltage using a resistance ballast. The discharge current, lighting frequency, and flowing water temperature were varied to observe the state of the discharge, and the emission lines of rare gases and mercury were measured. As a result, when moving fringes occur on the positive column, the emission of rare gas on the positive column becomes prominent, while the emission of mercury, especially the resonance radiation intensity of 253.7 丽, is greatly reduced. Was observed for many samples. The knitting and extinction of the moving fringes depends on the discharge current, lighting frequency, running water temperature, etc., but especially for lighting frequencies above l KHz, the higher the general frequency, the less the moving fringes tend to occur. I knew that there was. However, the relative intensity of the resonance radiation corresponding to the input power of the discharge lamp (the product of the effective value of the current and the effective value of the voltage) does not necessarily increase as the operating frequency increases. Obtained.
そ こで第 3 図に示した よ う に , 放電灯の点灯時に電極 は)(2)間に印加される電圧に休止期間 T0を設ける こ と に よ つて印加期間 を短 く する と , 上記の周波数を高めた と き と 同様に移動縞を抑制する こ と がで き , ま た単に周波 数を高めた場合 よ り も共鳴放射エ ネ ル ギ効率を向上させ る こ と ができ る のではな いか と考えた。 It to the cormorants by shown in FIG. 3 in this, the electrode during lighting of the discharge lamp) (2) by connexion applying period and this providing a pause period T 0 to a voltage applied between to tank, Moving fringes can be suppressed in the same manner as when the frequency is increased, and the resonance radiation energy efficiency can be improved as compared with the case where the frequency is simply increased. I thought it might be.
O P! 更に文献 ( Car 1 Kenty : Journal o f Appl i ed Physics 21OP! Further references (Car 1 Kenty: Journal of Applied Physics 21
(Dec) P1309—1318 ( 1950) ) に よ れば , 管内径 ø が 3 6 , 封入ア ル ゴ ン E 3.5Torr に る よ う 条件下で , 商用 周 波実効値 0.42 A で点灯 した場合 , 水銀の 25 3.7 mm 光量子 の実効寿命は 7.6— 7.2 S と る つ てい る ので , 点灯周波数According to (Dec) P1309-1318 (1950)), when the tube was lit at a commercial frequency effective value of 0.42 A under the condition that the pipe inner diameter ø was 36 and the sealed argon E was 3.5 Torr. the effective life of 25 3.7 mm photons mercury Ru 7 .6- 7.2 S preparative Ru One Tei, lighting frequency
20 KHz において , 電圧の休止期間 T0を約 7 ASに設定 し て 前記の実験と 同様の実験を こ な っ た。 At 20 KHz, the same experiment as above was performed with the voltage rest period T 0 set to about 7 AS.
上記の 実験の結杲, 種々 る 周波数 , 種 々 電流値にお いて , 短時間の休止期間 ¾を設ける こ と に よ り 移動縞が 抑制さ れ , 移動縞が低下或いは消滅する と , 253. 7 nmの 水銀の共鳴放射強度が増大す る こ と が判 った。  As a result of the above experiment, the movement fringes were suppressed by providing a short pause period ¾ at various frequencies and various current values, and the movement fringes were reduced or disappeared. It was found that the resonance emission intensity of 7 nm mercury increased.
従っ て次に放電灯(4) と し て 40Wラ ピ ッ ド ス タ 一 ト 形け い光 ラ ン プを用い , 一定周波数 1 7KHZ , 一定電流実効値Therefore, a 40W rapid-start type fluorescent lamp was used as the discharge lamp ( 4 ), with a constant frequency of 17KHZ and a constant current effective value.
0.42 Aにおいて期間 T。を変化せしめて , 相対光束値を測 定し た。 その結果を示 したのが第 4 図 であ る。 同図にお いて実線 A は約 2.6 ΤΟΓΓの了 ル ゴ ン封入放電灯(4) , —点鎮 線 Β は約 2.2 Tor r の ア ル ゴ ン ( 35 % ) · ク リ ブ ト ン( 45%)Period T at 0.42 A. The relative luminous flux value was measured while varying. Figure 4 shows the results. Ryo Le Gore emissions sealed discharge lamp solid line A in have you in the drawing about 2. 6 Τ ΟΓΓ (4), - A Le Gore emissions of Ten鎮line Β about 2.2 Tor r (35%) · click Li Bed DOO (45%)
• ネ オ ン ( 20 %) 混合ガ ス封入放電灯(4)の デー タであ る 。 図 に見 られ る よ う 休止期間 T0が 7 〜 8 S で最大の光 束増加が見 られ , その増加率は期間 T0が零の場合に比し 了 ル ゴ ン封入の ラ ン プ (4) で約 7 , 混合ガ ス封入の ラ ン プで約 1 3 とい う 大 き ¾値が得 られた。 • Neon (20%) data from a mixed gas-filled discharge lamp ( 4 ). The maximum of the light beam increases pause period T 0 to Let 's that seen in the figure at 7 ~ 8 S is seen, run-up of Ryo Le Gore-down sealed compared to the case that the rate of increase period T 0 is zero ( A large ¾ value of about 7 was obtained in 4 ), and about 13 with a lamp containing mixed gas.
な お , 第 4 図 に い て , 実籙 C は点灯周波数 5ΚΗΖ, 約In addition, in Fig. 4 , actual C is a lighting frequency of 5ΚΗΖ, approximately
2.6 Torr ア ル ゴ ン封入ガス の場合を示 し , 一点鎖線 D は 点灯周波数 5 KHz 約 2.2 Tor rのア ル ゴ ン ( 35 %) , ク リ ブ ト ン ( 45% ) , ネ オ ン ( 20 %)の混合ガ ス封入の場合を示 して いる 。 . The case of 2.6 Torr argon-filled gas is shown. A Le Gore down the operating frequency 5 KHz to about 2.2 T or r (35%), click Li Bed tons (45%), which shows the case of a mixed gas enclosed value on (20%). .
更に点灯周波数に よ っ て上記光束増加がどの よ う に変 化するかを調べる実験をおこ ¾ つた。 この実験において は放電灯(4)と して前記混合ガス の も のを用い , 3 6 KHz 以 下では休止期間 T。が約 —定 , 36 KHzを越えたと き に は期間 Ί と 期間 T0と の比を約 1 : 1 に設定して , 電流実 効値 0.42 Α における光束値を測定した。 その結果を示し たのが第 5 図の実線で , 一点鎖線は電流実効値が同 じ 0.42 Αで休止期間 が い場合の相対光束値を示す。 ¾お同 図の相対光束値は J I Sに規定した試験用安定器を用.い , 商用交流電源で点灯した と き の光束値を 1 00 % と した も の である。 図に見られる よ う に , 点灯周波数 1 KHz以上に おい て常に休止期間 T0を設けた効果が見 られ, 点灯周波 数が 20 KHz 近傍でその効杲が最大である こ とが判る。 In addition, an experiment was conducted to examine how the increase in the luminous flux changes depending on the lighting frequency. In this experiment, the mixed gas was used as the discharge lamp ( 4 ), and the idle period T was 36 Hz or less. There about - constant, the ratio of the period Ί and duration T 0 to come to have exceeded the 36 KHz to about 1: set to 1, to measure the light flux value at the current rms value 0. 4 2 Alpha. As a result of the in solid line in Figure 5 shows a one-dot chain line shows the relative luminous flux value of If no rest period in current effective value is the same 0. 42 Alpha. ¾The relative luminous flux values in the figure are those using a test ballast specified in JIS, and the luminous flux value when lit by a commercial AC power supply is 100%. The power sale by be seen, seen the effect of providing the always quiescent period T 0 at the above lighting frequency 1 KHz, the number of lighting frequency is seen that it is a maximum that effective杲is at 20 KHz vicinity.
と ころで, 相対光束値の最大値は点灯周波数 , 休止期 間 , ラ ン プの封入希ガス の組成等の各バ ラ メ ー タ に よ り 変化するが, いずれにして も 1 K 以上の交流高周波点 灯で, 休止期間が 0.5〜 1 5 S であれば, 休止期間を設け い従来の商用周波数点灯の場合に比べ, 高い光束値が 得 られる こ と が確め られた。  At this point, the maximum value of the relative luminous flux varies depending on parameters such as the lighting frequency, the rest period, and the composition of the rare gas charged in the lamp. It was confirmed that a higher luminous flux value can be obtained with AC high-frequency lighting if the pause period is 0.5 to 15 S, compared to conventional commercial frequency lighting without a pause period.
こ こ で , こ の発明を実施する に好適な具体的回路構成 にっ き第 6 図に基いて説明する 。  Here, a specific circuit configuration suitable for carrying out the present invention will be described with reference to FIG.
OMPI 同図に いて(5)は 1 0 0 V 交流電源 , (10は電源ス ィ ツ チ , 01)は全波整流装置 , 02は平滑 コ ン デ ン サ , CL3は分圧抵 抗 , は定電 Eタ' ィ オ ー ド , (isは ス イ ツ チ ン グ レ ギ ユ レOMPI In the figure, (5) is a 100 V AC power supply, (10 is a power switch, 01) is a full-wave rectifier, 02 is a smoothing capacitor, CL3 is a voltage dividing resistor, and a constant. E-diode, (is is switching leg
— タ 用 I C , fl5a) は I C な3の一対の 出力用 ト ラ ン ジ ス タ , (1 は一対の電力増 巾周 ト ラ ン ジ ス タ で , 出力 ト ラ ン ス 7) と と も に プ ッ シ ュ プル回路を形成 し てい る。 ^は分 EE 抵抗 C13 , ト ラ ン ジ ス タ (15a)を介し て夫 々 の ト ラ ン ジ ス タ α の ベ ー ス に電流を供絵す る ベ ー ス抵抗 , (17S)は ト ラ ン ス ^ の 2 次巻線 , (17F)は一対の フ ィ ラ メ ン ト 巻線 , 9は コ ン デ ン サ安定器であ る。 — A power supply IC, fl5a) is a pair of IC output transistors, (1 is a pair of power amplification frequency transistors, and output transformer 7). A push-pull circuit is formed at the same time. ^ Is a base resistance that applies current to the base of each transistor α via the minute EE resistor C13 and the transistor (15a), and (17S) is a resistor. The secondary winding of lance ^, (17F) is a pair of filament windings, and 9 is a capacitor ballast.
こ の よ う 構成の も のに おいて , I C 09 の ト ラ ン ジ ス タ (I5a) (15b)が夫 々 開閉する 周期を 一:^の ト ラ ン ジ ス タ (1 )が開成 し てか ら他方の ト ラ ン ジス タ (15b)が閉成 する ま での時間を 8 Sに設定する こ と に よ り , ト ラ ン ス α の 2 巻線 にはほぼ第 3 図に示 した よ う る電 E波 形が得 られ , その 周波数は約 2 0 , 休止期間 T。は 8 με , 期間 ^は 1 7 AS であ っ た。 その よ う な 電圧で放電灯(4) を点灯 し , 放電電流実効値が 0.4 2 A に る よ う に安定器 9 を調整した と こ ろ , 定常点灯時に電極 (2) (2)間 に印加さ れ る 電 E波形はほほ三角波 と ¾ り , その休止期間 Τ。は約 7.5 S で あっ た。 その よ う な状態で放電灯(4)の光束値及 び入力電力を測定し た と こ ろ , 前記ア ル ゴ ン封入放電灯 (4)に関 し て は , 商用局波の も の ;て 比し ラ ン ブ単独の効率 向上は約 1 6 , 装置全侔の効率向上は約 3 0 ^ , ま た前記 ΟΜΡΙ 混合ガ ス封入放電灯(4)に関し ては , ラ ン プ単独の効率向 上は約 20 % , 装置全体の効率向上は約 3 3 %と , 従来にな い高い値が得 られた。 Oite to be good cormorant configuration of this, IC 09 of the door run-g is te (I5 a) (15b) one the period in which respectively open and close: ^ DOO run-g is te (1) is opened Then, by setting the time until the other transistor (15b) closes to 8 S, the two windings of the trans-α are almost as shown in Fig. 3. The waveform shown in the figure was obtained, its frequency was about 20 and the idle period T. Was 8 με and the period ^ was 17 AS. And lighting a discharge lamp (4) in its Yo I Do voltage, discharge current effective value this filtrate and was adjusted to 0.4 2 Let 's that the A Ni ballast 9, the electrode during steady lighting (2) (2) The E waveform applied during this period is almost a triangular wave, and its idle period Τ. Was about 7.5 S. When the luminous flux value and the input power of the discharge lamp (4) were measured in such a state, it was found that the argon-filled discharge lamp ( 4 ) had a commercial station wave; In comparison, the efficiency improvement of the lamp alone is about 16 and the efficiency improvement of the whole equipment is about 30 ^, For the mixed gas-filled discharge lamp ( 4 ), the efficiency of the lamp alone was improved by about 20%, and the efficiency of the entire system was improved by about 33%, an unprecedentedly high value.
電極(2) )間に印加される 電圧に休止期間 T0を設ける回 路は第 6 図の も の以外に も 種々 知られているが, 移動縞 の抑制現象か ら考え , それ らの何れ も が放電灯(4)の効率 を向上させる効杲があ る こ と が推定される。 ただし休止 期間 Τ。が 0.5 /ts 未満の も のにおいては効率の向上効果は 低い。 Electrodes (2)) circuits to provide a rest period T 0 to a voltage applied between is known variously in other than those of Figure 6, consider suppression phenomenon or et of moving stripes, either it al It is presumed that this has the effect of improving the efficiency of the discharge lamp ( 4 ). However, suspension period Τ. If the ratio is less than 0.5 / ts, the efficiency improvement effect is low.
ま た装置に よ っては例えば第 7 図に示した よ う に , 休 止期間 T。が不明確る場合があるが本発明にお い ては下記 の よ う に定義する。 するわち電極 )(2)間に印加さ れる電 圧の ピー ク値 'Vpの 1 0 値か らの立下 り 時間 ^と , の 1 0 値ま での立上 り 時間 t2と の和 ( + t2 )と , 零電'圧 時間 t0と の間に 5 ( + t2 )≥ t0¾ る関係が成立する と き は ( t0 + + t2 )を休止期間 T0と し , 零電圧時間 t0が上記 関係 よ り 長い場合は時間 t0を休止期間 T。とする。 Also, depending on the device, for example, as shown in Fig. 7, the rest period T. May be unclear, but in the present invention, it is defined as follows. Suruwachi electrode) (2) peak value of the applied voltage between 'Vp 1 0 value or al falling Ri time of ^ and, of 1 0 in Nema rising with time t 2 When a relationship of 5 (+ t 2 ) ≥ t 0成立 holds between the sum (+ t 2 ) and the zero voltage time t 0 , the (t 0 + + t 2 ) is reduced to the idle period T 0 If the zero voltage time t 0 is longer than the above relationship, the time t 0 is the idle period T. And
と こ ろで, 印加電 Eつま り 点灯局波数が増加する につ れて , 明るさが一定の場合消費電力が減少, つま り 効率 が増大する傾向が確認されたが, 点灯回路側での ス ィ ッ チ ン グ特性等を考慮し て点灯周波数は選定される 。 現在 の高周波点灯の技 では実用上は 1 0〜 6 0 好ま し い と 思われるが , 将耒高周波点灯技荷が進歩すれば, バ ル ス周波数を数 1 0 0 KHz と して, 点灯する こ と も充分実用上 可能で あろ う 。 At this point, it was confirmed that as the applied power E, that is, the number of lighting station waves, increased, the power consumption decreased when the brightness was constant, that is, the efficiency increased. The lighting frequency is selected in consideration of the switching characteristics and the like. Although the current high-frequency lighting technique seems to be preferably 10 to 60 in practice, if the high-frequency lighting technique advances, the pulse frequency is set to several 100 KHz and the lighting is performed. This is also practical enough It would be possible.
なお , 脈流高局波点灯 した場合には , 水鈸の蒸気がバ ル ブの陰極側に偏 り , その放電灯の 明 さ が不均一にな り ま た放電灯の寿命が短 く る る傾向があ る が , 交流点灯の 場合は , その よ う おそれは全 く ¾ い。  In addition, when the pulsating high-frequency wave is lit, the vapor of water is biased toward the cathode of the valve, the brightness of the discharge lamp becomes uneven, and the life of the discharge lamp is shortened. However, in the case of AC lighting, such a possibility is completely low.
次に本願発明の他の実施例につ き 以下に説明する 。  Next, another embodiment of the present invention will be described below.
す ¾わち , 希ガス と し て Krと Arと の混合モ ル比力; 1.0 : 0.2 で あ る も の を用い , 見掛上の陽光柱内の希ガ ス原 子温度で あ る水流温度 Τηが 40 C の と き , 希ガス の モ ル 数 X と 水銀蒸気の モ ル教 Υ と のモ ル比 Χ/Υが 3.3 X 1 0 に る よ う に希ガス を封入した放電灯についての実験結果 につ いて説 明する。  In other words, the mixed gas specific force of Kr and Ar as the noble gas; 1.0: 0.2 is used, and the water flow is the noble gas atomic temperature in the apparent positive column. When the temperature Τη is 40 C, the discharge lamp is filled with a rare gas so that the mole ratio Χ / Υ of the rare gas mole number X to the mercury vapor mole ratio 3.3 / Υ is 3.3 X 10 The experimental results are described.
お上記モ ル比 X Ζ Υ は希ガス の 4· 0 C における封入 Ε 力 と , 40 C におけ る水銀蒸気 Ε力 と の比か ら近似的に求 めた量で あ る 。 Families the molar ratio X Zeta Upsilon is enclosed Ε force at 4 · 0 C for noble gases, Ru Oh ratio or al approximately determined meth amount of mercury vapor Ε force that put in 40 C.
第 8 図 は上記放電灯を 40 Cの水流中で , 電流 ピー ク 値 ( ほぽ矩形波 ) 0.42Α, 20ΚΗΖで点灯し , 休止期間 Τ0を変 化させた と き の 2 53.7舰 の水銀共鳴放射の稆対強度の変 化を示 し た も のであ る 。 こ の図は期間 Τ0が零の と き の強 度を 10 0 % と し てい る が , こ の値は商用電源で点灯 した 場合 よ り 約 1 7 %高 い も のであ る 。 図 に 見 られる よ う に , 期間 Τ。が 7〜 8 X 1 G—6秒で強度は最大 と ¾ り , 稆対強度の 向上は 3 5 %に も 達する 。 ま た期間 Τ0が 1 5 X 1 (Γ6秒以上で は強度は休止期間 T0が い場合 よ り も 低 く る 。 ¾お期 I 間 T0が零の と き には陽光柱には相当激し い移動縞が存在 するが, 期間 Τ0が 0.5〜 1 5 X 10~¾?の範囲においては , 電 源電圧 ピーク値を一定とする と期間 Τ0を設ける こ と に よ り 電流 ピ ー ク値が増加し , 移動縞が消失するか大巾に低 下する。 更に電流 ピ ー ク値を 0.4 2Α の一定値ま で低下さ せて も移動縞は期間 Τ0が零の場合程に増加する こ と は い o In FIG. 8 is the water stream of the discharge lamp 40 C, the current peak value (Hopo rectangular wave) 0.42Α, illuminates 20Kappaitazeta, mercury 2 53.7舰of the feeder and was change the pause period T 0 It shows a change in the absolute intensity of the resonance radiation. Although This figure Ru Tei and period Τ 0 is the door-out of the strength of the zero and 10 0%, this value is about 1 to 7% High physicians Ri by case lit by a commercial power supply is also Ru Nodea. Period III, as seen in the figure. However, the strength is maximum at 7 to 8 X 1 G— 6 seconds, and the improvement in strength is as high as 35%. In addition, the period Τ 0 is 15 X 1 (Γ The intensity is lower than that when there is no rest period T 0 above 6 seconds. ¾ Period I Between T 0 is Suruga there is a movement stripes have equivalent intensity in the positive column in-out door of zero, period Τ 0 is 0.5~ 1 5 X 10 ~ ¾? In the range above, if the power supply voltage peak value is kept constant, the current peak value increases due to the provision of the period , 0 , and the moving fringes disappear or greatly decrease. Further it has the called mobile fringes be lowered at a constant value until the current peak value 0. 4 2 Alpha is increased to as if the period T 0 is zero o
第 9 図は第 S 図の測定に用いた放電灯と 同一の放電灯 を用いて , 点灯周波数を変化させたと き の 253.7丽 放射 の相対強度の変化を示 した ものである 。 図の実線は36 KHz 以下の周波数におい ては休止期間 T。が約 7 X 10— 6 —定, 36 KHz を越え'た と き には期間 Ί\と Τ0との比を約 1 に設定 し た 合の も のであ り , —点鎖線は期間 T。が零の場合の も ので , と も に流水温度 40C , 電流 ビー ク値 0.42Aの条 件下のデー タである。 この図は商用電源で点灯した 場合の放射強度を 100 % と して示した も のである。 図に 見 られる よ う に , 点灯周波数が 1 KHz以上におい て常に休 止期間 T0を設けた効杲が見 られ, 点灯周波数が 20 KHz 近 傍でその効果が最大である。 Fig. 9 shows the change in the relative intensity of 253.7 放射 radiation when the lighting frequency was changed using the same discharge lamp as that used for the measurement in Fig. S. The solid line in the figure is the idle period T at frequencies below 36 KHz. There about 7 X 10- 6 - constant, the can it was beyond 36 KHz 'period I \ and T 0 is also a ratio of about 1 case of set to the with Nodea is, - the point chain line period T. Since There is also the case of zero, 0C, running water temperature 4 to also as a data under the matter conditions of the current Bee-click value 0. 4 2A. This figure shows the radiation intensity when turned on by commercial power as 100%. The power sale by be seen, the lighting frequency is always observed effect杲having a hibernation period T 0 Te odor than 1 KHz, the lighting frequency is maximum, the effect at 20 KHz near neighbor.
¾お水銀の蒸気圧に対しては流水温度 40 Cは無風状態 の空気 25 にほぼ対応する と考え られる。  (4) It is considered that the running water temperature of 40 C almost corresponds to the air 25 in a windless state for the vapor pressure of mercury.
希ガス と し て - 6 , 1" , , 6の各阜体, 電 実効値 0·2 And a rare gas - 6, 1 ", each of 6阜体, electrostatic rms 0 - 2
〜 2A, 流水温度 5〜 60じ , 点灯時のモ ル比 X / Y が 0.5 X 1 (Γ〜; L.0 X 1 04の範囲の種 々 放電灯について , 上記放電 ~ 2A, Ji flowing water temperature 5-60, lit the molar ratio X / Y is 0.5 X 1 (Γ~; for the species' s discharge lamp L.0 range of X 1 0 4, the discharge
ΟΜΡ! 灯 と 同様に期間 T0を設ける効杲が認め られた。 ΟΜΡ! In the same way as the lamp, the effect of setting the period T 0 was recognized.
お , こ の発明でモ ル比 X Ζ Υ を限定 したのは , 希 ガ ス の種類 , 点灯局波数 , 及び休止期間 Τ0を決め る と , モ ル 比 X Z Y と 見掛上の希 ガ ス 原子温度 Tnと で定ま る境界 線を境に し て移動縞の発生 , 消铰がお こ な われる こ と よ る も ので あ る 。 , この実 例について も , 第 6 図 に示 した構成の 回路に よ り 上記点灯装置(Α)を用 いて ラ ン プ(4)を 点灯 し , ラ ン プ. (4)が定常 ^態に な った後に光束値 及び電力 の測定を こ ¾ つ た。 The reason for limiting the mole ratio X Ζ で in the present invention is that when the type of the rare gas, the number of lighting station waves, and the pause period Τ 0 are determined, the mole ratio XZY and the apparent rare gas The generation and disappearance of the moving fringes occur at the boundary defined by the atomic temperature Tn. In this example, too, the lamp ( 4 ) was turned on using the lighting device (Α) by the circuit having the configuration shown in FIG. 6, and the lamp ( 4 ) was in a steady state. After that, the luminous flux value and the power were measured.
前記 Ar封入の管内径 が 30 の 40W の放電灯(4)を上 記条件下で , 電流実効値 0.4 2 A で点灯する と モ ル比 XZY ( 希ガ ス 原子温度は管中央部温度, 水銀蒸気圧は最冷部 温度に対応す る も の と し て求めた。 ) は 0.64 X 10 と り , 商用周波で点灯した場合に比し , ラ ン プ単独の効率 向上は約 16%, 装置全 ^の効車向上は約 30 と , 従来 The discharge lamp of 40W of tube inner diameter of Ar encapsulation 30 (4) above Symbol conditions and current effective value 0.4 2 when illuminated A molar ratio XZY (rare gas scan atoms temperature tube central portion temperature , And the mercury vapor pressure was determined to correspond to the temperature of the coldest part.) Is 0.64 × 10, which is about 16% improvement in the efficiency of the lamp alone compared to when operating at commercial frequency. , The efficiency of the equipment was improved by about 30
¾ い高い値:^得 られた。  ¾ High value: ^ obtained.
次にバ ル ブ寸 &は上記実旆例 と 同様の も の で Krと ΑΓと の混合モ ル比が 1.0 : 0-2 の放電灯(4)を上記 と 同様 条件 で点灯 した と こ ろ , 混合希ガ ス と 水銀蒸気 と のモ ル比 X Then the mixing molar ratio of the Kr and Alpha gamma alve dimensions & Similar to be the in and the actual旆例1.0: This discharge lamp 0-2 (4) lit under the same conditions as above , The molar ratio of the mixed rare gas to mercury vapor X
Ζ Υ は 0.4 X 103 と り , ラ ン プ単独の効率向上は約 19 ^ , 装置全体の効率向上は約 32^で あ っ た。 Ζ Υ is Ri and 0. 4 X 10 3, efficiency improvement of the run-up alone is about 19 ^, improve the efficiency of the entire device was Tsu Oh about 32 ^.
管内径 が 23 mで , 管長 L が 1 187丽 の Kr阜体封入の 放電灯(4)を上記実 ^ ^ と 同様 ¾条件で点灯した と こ ろ , モ ル比 X Z Y は 0.7 X 10 と り ン プ単狨の効率向上 When a discharge lamp ( 4 ) with a tube inner diameter of 23 m and a tube length L of 1187 mm and filled with a Kr-Fu body was lit under the same conditions as in the above ^^, the molar ratio XZY was 0.7 X 10 Improve pump efficiency
,^¾\}Kヒ A \, ^ ¾ \} Khi A A \
, は約 20 %で あ り , 装置全体の効率向上は約 33 %で あ っ た ま た この Kr単体封入の放電灯(4) を電流実効値 0.23 A で 点灯 し た と こ ろ , モ ル比 X / Y は 0.17 X 10 と ¾ り , ラ ン プ単独の効率向上は約 22 %装置全体の効率向上は約 34 で あ っ た 。 , Was about 20%, and the efficiency improvement of the entire device was about 33%. When the discharge lamp ( 4 ) with Kr alone was lit at an effective current value of 0.23 A, the mole ratio X / Y was 0.17 X 10, and the efficiency improvement of the lamp alone was about 22%, and the efficiency improvement of the whole equipment was about 34.
Ar, Kr, Ne の混合モ ル比が 7 9 の希 ガ ス混合体を , 管内径 ø 力 36雷 , 管長 L カ 2354 の バ ル ブに封入し , 電流実効値 0.8 Aで点灯した と こ ろ ' モ ル比 X / Yは 0.25 X I 03とな り , ラ ン プ単独の効率向上は約 15%で あ り , 装 置全体の効率向上は約 34%であ っ た。 A rare gas mixture with a mixed mole ratio of 79 of Ar, Kr, and Ne was sealed in a valve with a pipe inner diameter of ø36 lightning and a pipe length L of 2354, and was lit with an effective current value of 0.8 A. the filtrate 'molar ratio X / Y is Ri Do and 0.25 XI 0 3, efficiency of the run-up alone Ri Ah at about 15% efficiency of the instrumentation置全bodies were Tsu der about 34%.
ま た — e, Ar の混合モ ル比が 7 3 の希ガス混合体を , 管内径 ø が 36霞 , 管長 L が 2354 のバ ル ブに封入 し , 液相水銀(b)の 代 り に , 電極 2)近傍に In- H?了マ ル ガ ム を 配置 した放電灯(4)を電流実効值 2 A で点灯 し た。 その と き の水銀蒸.気圧は 4.5 X 10"3Torr で , モ ル比 Χ ,Υ は 0.56 X I 03と な り , ラ ン プ単独の効率向上は 14 , 装置全体の 効率向上は約 3 6 で あ っ た 。 Also - e, the mixing molar ratio of 7 3 of the rare gas mixture of A r, tube inner diameter ø 36 Haze, tube length L is enclosed in alve of 2354, Ri progeny of liquid mercury (b) In addition, a discharge lamp (4) with an In-H-finished gal- gum placed near the electrode 2 ) was lit at an effective current of 2 A. In If this happens mercury vapor. Atm 4.5 X 10 "3 Torr, molar ratio chi, Upsilon is Ri Do and 0.56 XI 0 3, run-up alone efficiency is 14, device increase overall efficiency of about 3 It was 6.
上記実施例は比較的実用性の高い放電灯(4)に関する も の で , こ の発明の効杲の数例 を示すに過 ぎる い力 , 前記 実験を勘案す る と き , 適正な 休止期間 Τ0を設け て ラ ン プ 効率の 向上 を計る と い う こ と は , 非常 に広範囲の放電灯 (4)に対 し て有効で あ る と いえ る。 この実 ¾例の場合 も , 相対光束値の最大值は点灯周波数 , 休止期間 , ラ ン プの The above embodiment relates to a discharge lamp (4) having relatively high practicality. The power is only a few examples of the effect of the present invention, and when the above experiment is taken into consideration, an appropriate pause period is considered. the this cormorants have and the Τ 0 provided to improve the run-up efficiency, be said very Ru Oh and valid against a wide range of the discharge lamp (4). Also in this example, the maximum value of the relative luminous flux value depends on the lighting frequency, the pause period, and the lamp.
O PI 封入 ガス の組成等に よ り 変化する が, 1 K Hz以上で点灯しO PI Lights at 1 KHz or more, although it varies depending on the composition of the filled gas.
, 休止期間を 0.5〜 1 5 A S と する と , 休止期間 を設け な い 従来の商用周波数点灯の場合に比べ , 招対光束値が増大 す る こ と が確め られた。 However, it was confirmed that when the pause period was set to 0.5 to 15 AS, the luminous flux value increased compared to the conventional commercial frequency lighting without the pause period.

Claims

• 請 求 の 範 囲 • The scope of the claims
1. 電極間に放電路を形成する低圧水銀蒸気放電灯及び こ の放電灯を 1 KHz 以上の周波数で交流点灯する点灯 装置を備えた も の に いて , 上記放電灯の点灯時に上 記電極間に印加する電圧が, 0.5 X 1 0 秒以上 ,1 5 X 1 0, 秒以下の休'止期間を有する よ う に上記点灯装置を構成 し た こ と を特徵とする低圧水銀蒸気放電灯装置。 1. A low-pressure mercury vapor discharge lamp that forms a discharge path between the electrodes and a lighting device that turns on the discharge lamp at a frequency of 1 KHz or more with alternating current. A low-pressure mercury vapor discharge lamp device characterized in that the lighting device is configured so that the voltage applied to the lighting device has a rest period of 0.5 X 10 seconds or more and 15 X 10 seconds or less. .
2. 放電灯の電極間に印加する電圧は矩形波である こ と を特徵と する請求範固第 1 項記載の低圧水銀蒸気放電 灯装置。 2. The low-pressure mercury vapor discharge lamp device according to claim 1, wherein the voltage applied between the electrodes of the discharge lamp is a rectangular wave.
点灯装置は , 放電灯を 1 ΚΉζ 以上, 1 0 OK 以下の 周波数で点灯する こ と を特徴 とする.請求の範囲第 2 項 に記載の低圧水銀蒸気放電灯装置。  3. The low-pressure mercury vapor discharge lamp device according to claim 2, wherein the lighting device lights the discharge lamp at a frequency of 1 mm or more and 10 OK or less.
4. 点灯装置は , 放電 ^を 1 5KHZ 以上, 5 0 KHz 以下の周 波数で点灯する こ と を特徵と する請求の範囲第 3 項に 記載の低圧水銀蒸気放電灯装置。 4. The low-pressure mercury vapor discharge lamp device according to claim 3, wherein the lighting device lights the discharge ^ at a frequency of 15 KHz to 50 KHz.
5 希ガス と水銀蒸気癸生体と を封入し , 電極間に放電 路を形成する低圧水祭蒸気放電灯, 及び こ の放電灯を 1 KHz以上の周波数で交流点灯する点灯装置を備えた も のにおいて , 上記放電灯の点灯時に上記電極間に印加 する電圧が, 0.5 X 1 ( 6秒以上 , 1 5 X 1 ( 5秒以下の休止 期間を有する よ う に上記点灯装置を構成する どと も に , 上記放電灯が定常 ^態に った と き , 上記放電灯内 の水銀蒸気のモ ル数 Y に対する上記希ガスの モ ル数 X 5 A lamp equipped with a low-pressure water vapor discharge lamp that forms a discharge path between the electrodes by enclosing a rare gas and a mercury vapor core, and a lighting device that lights this discharge lamp with AC at a frequency of 1 KHz or more. in, the voltage applied between the electrodes at the time of lighting of the discharge lamp, 0. 5 X 1 (6 seconds, etc. constituting the lighting device in earthenware pots by having a pause period of 1 5 X 1 (5 seconds or less At the same time, when the discharge lamp is in a steady state, the number of moles of the rare gas with respect to the number of moles of mercury vapor in the discharge lamp, X
OMR OMR
W1PO の 比 Xノ Y が 0.5 X 1 02 以上 , 1 .0 X 1 04 以下に ¾ る よ う に上記放電灯及び上記点灯装置を構成し た こ と を特徵 と する低圧水銀蒸気放電灯装置。 W1PO Ratio X Roh Y is 0.5 X 1 0 2 or more, 1 .0 X 1 0 4 the discharge lamp Ni Let 's Ru ¾ below and a low-pressure mercury vapor discharge lamp device according to Toku徵that you have configured the lighting device .
a 放電灯の電極間に 印加する 電 Eは矩形波で ある こ と を特徵 と する請求範囲第 5 項に記載の低王水銀蒸気放 電灯装置。  a The low mercury vapor discharge lamp device according to claim 5, wherein the electric power E applied between the electrodes of the discharge lamp is a rectangular wave.
? 点灯装置は , 放電灯を l O K 以上 , I O O KHZ 以下の 周波数で点灯す る こ と を特徵 と する請求の範囲第 6 項 に記載の低 E水銀蒸気放電灯装置。  ? 7. The low-E mercury vapor discharge lamp device according to claim 6, wherein the lighting device lights the discharge lamp at a frequency of not less than lOK and not more than IOOKHZ.
a 点灯装置は , 放電灯を 1 5 K HZ 以上 , 5 0 KHz 以下の周 波数で点灯する こ と を特徵 と する 請求の範通第 7 項に 記載の低 E水銀蒸気放電灯装置。 ·  a The low-E mercury vapor discharge lamp device according to claim 7, wherein the lighting device lights the discharge lamp at a frequency of 15 KHz or more and 50 KHz or less. ·
a 希ガスが, Ne, A r, Kr, Xe の何れかの単体で ある こ と を特徵と する特許請求の範囲第 5 項る い し第 8 項のい ずれかに記载の低 E水銀蒸気放電灯装置。 a noble gas, N e, A r, Kr , either that it is a unitary Shi had scope fifth Koru claims to Toku徵paragraph 8 of have Zurekani SL载low E of Xe Mercury vapor discharge lamp device.
ια 希ガス が 2 種以上の希ガスの混合体で ある こ と を特 徵 と する特許請求の範囲第 5 項な い し第 8 項のいずれ かに記載の低 Ε水銀蒸気放電灯装置。 10. The low-mercury vapor discharge lamp device according to claim 5, wherein the rare gas is a mixture of two or more rare gases.
11. 水銀蒸気発生体が了マ ル ガ ム である こ と を特徵と す る特許請求の範 S第 1 0 項 に記 載の低圧水銀蒸気放電 灯装置。  11. The low-pressure mercury vapor discharge lamp device described in claim S10, wherein the mercury vapor generator is a multi-gamut.
12. 低 水钱蒸気放電灯の放電電流実効値が Q.2 A以上 , 2 Α以下であ る こ と を特漦と す る特許請求の範囲第 1 0 項に記載の低圧水銀蒸気放電灯装置。  12. The low-pressure mercury vapor discharge lamp according to claim 10, wherein the effective discharge current of the low-water vapor discharge lamp is not less than Q.2 A and not more than 20 mm. apparatus.
O PI O PI
、 WIPO 補正さ.れた請求の範囲 , WIPO Amended claims
国際事務局によ り 1981年 1Ό月 26曰 (26. 10. 82) 受理)  According to the International Bureau, January 26, 1981, accepted (26. 10. 82)
(1) 希ガ ス と 水銀蒸気発生体 と を封.入 し, 電極間に放電 路を形成する低圧水銀蒸気放電灯, 及び こ の放電灯を 1 KHz 以上の周波数で点灯する 点灯装置を備えた も の において, 上記希ガ ス を, Kr 単体と Xe単体と の少 く と も 何れか一方, ま たは Kr と Xe との少 く と も 何れか 一方を含む混合希ガ ス と し, 上記放電灯の点灯時に上 記電極間に印加する 電圧が, 0.5 10- 5 秒以上, 15 X 10- 6秒以下の休止期間を有する と と も に, 放電電流実 効値が 0.2 A 以上, 2 A以下に る よ う に上記点灯装 置を構成'し, かつ上記放電灯の管内径 D 籠が 23 ≤D < 35 の範囲に'あ , 上記放電灯の定常点灯時の水銀蒸気 のモ ル数 γ と .上記希ガスのモ ル数 X と の比 X Z Y を,(1) Equipped with a low-pressure mercury vapor discharge lamp that encloses a rare gas and a mercury vapor generator and forms a discharge path between the electrodes, and a lighting device that lights this discharge lamp at a frequency of 1 KHz or more. In the above, the above-mentioned rare gas is a mixed rare gas containing at least one of Kr and Xe alone, or at least one of Kr and Xe, voltage applied between the upper Symbol electrode during lighting of the discharge lamp, 0.5 10-5 seconds or more, to also to have a rest period of 15 X 10 6 seconds or less, the discharge current the effective value 0.2 a As described above, the lighting device is configured so as to be 2 A or less, and the inner diameter D cage of the discharge lamp is within the range of 23 ≤ D <35. The ratio XZY between the number of moles γ and the number of moles X of the rare gas is
0.5 X 102 ^ /Ύ≤ 1.0 X 104 の範囲に設定 した こ と を特徵 と する低圧水銀蒸気放電灯装置。 A low-pressure mercury vapor discharge lamp device characterized in that it is set in the range of 0.5 X 10 2 ^ / Ύ ≤ 1.0 X 10 4 .
(2) 水銀蒸気発生'体がア マ ル ガ ム である こ と 特徵 と す る特許請求の範囲第(1)項記載の低圧水銀蒸気放電灯装  (2) The low-pressure mercury vapor discharge lamp device according to claim (1), wherein the mercury vapor generating body is an amalgam.
PCT/JP1982/000206 1981-05-28 1982-05-28 Low pressure mercury vapor discharge lamp unit WO1982004373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8282901620T DE3279197D1 (en) 1981-05-28 1982-05-28 Low pressure mercury vapor discharge lamp unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8144181A JPS57196497A (en) 1981-05-28 1981-05-28 Low pressure mercury vapor discharge lamp firing device
JP81/81441 1981-05-28
JP11036981A JPS5812251A (en) 1981-07-15 1981-07-15 Low pressure mercury vapor discharge lamp unit
JP81/110369810715 1981-07-15

Publications (1)

Publication Number Publication Date
WO1982004373A1 true WO1982004373A1 (en) 1982-12-09

Family

ID=26422465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000206 WO1982004373A1 (en) 1981-05-28 1982-05-28 Low pressure mercury vapor discharge lamp unit

Country Status (3)

Country Link
EP (1) EP0079969B1 (en)
DE (1) DE3279197D1 (en)
WO (1) WO1982004373A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8205026A (en) * 1982-12-29 1984-07-16 Philips Nv APPARATUS EQUIPPED WITH A METAL VAPOR DISCHARGE PIPE EQUIPPED WITH AT LEAST TWO INTERNAL ELECTRODES.
FI100759B (en) * 1989-12-29 1998-02-13 Zumtobel Ag Method and ballast device for attenuating fluorescent lamps
JPH09504902A (en) * 1993-11-03 1997-05-13 サイエンス アプリケーションズ インターナショナル コーポレイション High efficiency UV backlight system for backlighting of electronic display devices
US6400097B1 (en) * 2001-10-18 2002-06-04 General Electric Company Low wattage fluorescent lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4744978A (en) * 1971-05-08 1972-12-23
JPS4962372U (en) * 1972-09-06 1974-05-31
JPS49103278U (en) * 1972-12-25 1974-09-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4744978A (en) * 1971-05-08 1972-12-23
JPS4962372U (en) * 1972-09-06 1974-05-31
JPS49103278U (en) * 1972-12-25 1974-09-05

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shomei Gakkai-hen "Shomei Handbook" 20. May. 1978 (20.05.78) Ohm-Sha, p.160, Left column, Line 28 to p. 161, Left column, Line 8 *

Also Published As

Publication number Publication date
EP0079969A4 (en) 1984-11-07
EP0079969A1 (en) 1983-06-01
DE3279197D1 (en) 1988-12-08
EP0079969B1 (en) 1988-11-02

Similar Documents

Publication Publication Date Title
US4399391A (en) Circuit for starting and operating fluorescent lamps
KR100399243B1 (en) Discharge lamp and device for operating it
US2265323A (en) Gas and metal vapor discharge tube and means for preventing flicker therein
EP0131965B1 (en) Low-pressure mercury vapor discharge lamp
WO1982004373A1 (en) Low pressure mercury vapor discharge lamp unit
US4048539A (en) Apparatus for starting high pressure gaseous discharge lamps
JPH0794150A (en) Rare gas discharge lamp and display device using the lamp
JPH0529085A (en) Rare gas discharge lamp device
KR960013126A (en) High frequency lighting device using rare gas discharge lamp
US4647819A (en) Metal vapor lamp starting and operating apparatus
JPH08130096A (en) Discharge lamp lighting apparatus
JPS6329789B2 (en)
JPS58135563A (en) Low pressure mercury vapor dischare lamp device
Kaiser Influence of frequency and current waveform on low-pressure sodium lamp operation
JP3198519B2 (en) UV irradiation device
JPS59114747A (en) Low pressure mercury vapor electric-discharge lamp device
JPS6151799A (en) Method of starting high pressure sodium lamp
US2459567A (en) Positive column lamp
JPH0393196A (en) Rare gas discharge fluorescent lamp device
JPS6023996A (en) Low pressure mercury vapor discharge lamp unit
JPH01159960A (en) Rare gas discharge lamp device
JPS59146148A (en) Low pressure mercury vapor discharge lamp
JPH06283137A (en) Pulse lighting type rare gas discharge lamp device
JPH04303448A (en) Ultraviolet ray irradiating device
JPH1050251A (en) Fluorescent lamp, fluorescent lamp device, and lighting system

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE GB NL

WWE Wipo information: entry into national phase

Ref document number: 1982901620

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1982901620

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1982901620

Country of ref document: EP