WO1982001742A1 - Supercharging method for piston internal combustion engines by means of pneumatic,symetric resonance oscillations - Google Patents

Supercharging method for piston internal combustion engines by means of pneumatic,symetric resonance oscillations Download PDF

Info

Publication number
WO1982001742A1
WO1982001742A1 PCT/CH1981/000128 CH8100128W WO8201742A1 WO 1982001742 A1 WO1982001742 A1 WO 1982001742A1 CH 8100128 W CH8100128 W CH 8100128W WO 8201742 A1 WO8201742 A1 WO 8201742A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
internal combustion
combustion engine
piston internal
volume
Prior art date
Application number
PCT/CH1981/000128
Other languages
German (de)
French (fr)
Inventor
Attila J Horvath
Original Assignee
Attila J Horvath
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Attila J Horvath filed Critical Attila J Horvath
Publication of WO1982001742A1 publication Critical patent/WO1982001742A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/008Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention brings about the technically feasible resonance charging of a piston internal combustion engine, from the cylinders of which a maximum of four groups are combined on the intake side, by a principle according to which the intake system designed according to the invention excites in push-pull resonance vibration and also of the cylinders in the intake stroke and of the fluctuating ones Flow through the turbocharger compressor is kept in vibration (in naturally aspirated engines, the excitation is of course only provided by the pistons in the suction cycle).
  • the first resonance volume 1 shows a 4-cylinder naturally aspirated engine 11 with a flywheel 12, with exhaust pipes 10 and with the intake manifolds 9, which open into the first resonance volume 1, which is connected to the second resonance volume 3 through the resonance line 2.
  • the second resonance volume stands through the resonance pipe 4 with the intake filter volume 7, which is provided with the fresh air suction line 8, in connection.
  • the resonance lines 2 and 4 can be bypassed by two large-area valves la, 3a controlled by supercharger pressure (pressure oil, solenoid) in order to compensate for the higher engine speeds in the resonance lines by the enlarged ones. Switch off compressor delivery flow caused pressure losses.
  • FIGS. 1, 2 and 3 can be replaced according to FIG. 4 by a pneumatic multi-mass oscillator, which has three pneumatic springs c 1 , c 3 , c 7 and just as many pneumatic masses m 2 , m 4-6 , m 8 can be characterized.
  • the pneumatic spring is defined by the quotient (resonance volume / sound velocity square) and the pneumatic mass (length / cross section). How these sizes are to be determined in a pneumatic system according to Fig. 3 can be found in the work of Dr. AJT Horvath: "The pumping process of compressors and centrifugal pumps as a non-linear vibration", Zurich 1976, Juris Verlag.
  • Compressor and a quotient under square root which has a pneumatic spring in the numerator and a pneuma in the denominator table mass, is formed (in formula: x. (c / m) 1 ⁇ 2, in
  • the HORVA'TH number must be one or less than one. If this requirement is met, the operation of the turbocharger compressor remains stable, even though the compressor flow feeds energy into the resonance oscillation to increase the pressure amplitude (i.e. the compressor delivery flow fluctuates in time with the resonance oscillation without getting into the dreaded pumping process).
  • the pneumatic spring necessary for calculating the HORVATH number becomes the resonance volume corrected by means of the vibration amplitudes men 3, from the pneumatic mass m 4-6 and from the above-mentioned average pressure-delivery flow characteristic slope, which is approximately the size of the turbocharger compressors on the market in the lower speed range.
  • the resonance charging of a turbocharged piston internal combustion engine is realized only by means of a pronounced resonance volume 1 and a resonance line in which the turbocharger compressor 5 sucks in fresh air from the air filter volume through a short line 6, the following applies: Piston engine should be effective, occurs as the first harmonic Fig.10 of the pneumatic vibrator shown in Fig.8.
  • the resonance line 2,4,5,6 behaves like a continuum, which according to Fig. 3 consists of a large number (in the limit: an infinite number) connected in series elemen taren spring c li and Kassenelemen th m li can be assembled and seated that be in the limit of infinite resonance.
  • the deflection distribution f,. the first resonance harmonic has a node K p, in which a pressure maximum occurs if the vibration energy appears in potential form.
  • this installation instruction for the turbocharger compressor ensures stable compressor operation without the risk of pumping in those intake systems in which volume 1 is a multiple of the connected stroke volumes of the piston internal combustion engine (application: large, turbocharged marine engines with large-area coolers incorporated in volume 1).
  • Fig.1 Piston engine with three distinct volumes in the intake system
  • Fig.2 Turbo-charged piston engine with three distinct volumes in the intake system
  • FIG. 3 Ansaugsystea a piston engine according to Fig.1 and 2.
  • ig. 4 Pneumatic oscillator formed from FIG. 3, FIGS. 5, 6, 7: Eigenmodes of the oscillator according to FIG. 4
  • FIG. 8 Intake system of a piston engine with two pronounced volumes and a resonance line with a vibration-technical continuum character (FIGS. 9, 10) It has not yet been discussed how the vibration behavior of the intake system shown in FIGS. 3 and 8 is influenced by the connection of the cylinder in the intake stroke. As is known, the displacement of a cylinder of the piston internal combustion engine with its intake pipe 9 forms a Helmholesonator, which has a well-definable natural frequency.
  • this Helmholtz resonator is now connected to the intake system shown in Fig. 3 or in Fig. 8, then it must be ensured by the appropriate choice of the intake pipe 9 that the newly created vibration natural fora of the overall intake system, in which the pneumatic masses 9 and 2 are in push-pull swing, can not be excited in the entire speed range of the piston internal combustion engine, otherwise the degree of filling of the cylinder deteriorates considerably and thus the efficiency of the piston internal combustion engine is reduced.
  • the pipelines mentioned in the patent specification can not only have a circular cross section. If the pipeline has an arbitrarily shaped cross-sectional area, the characteristic diameter is the size by means of which a circular cross-section of equal area can be formed.

Abstract

The supercharging method by intake oscillation in piston engine is based on a symetric and pneumatic resonance oscillation of the suction circuit (fig. 7), wherein gas masses (2, 4) determine essentially the proper vibration of the oscillating system with a plurality of masses (fig. 4) comprised of the suction circuit, oscillating symetrically. In a supercharged engine with turbo blower, the symetric resonance oscillation which is the most efficient at low engine speed is generated both by the cylinder group during its suction stroke and by the oscillating flow of the turbo blower (5). Despite of the oscillating flow which is amplified by the rotor of the blower, the compression flow is not exposed to the so feared pumping, because the suction circuit is so arranged that the undimensioned Horvath number, which clearly defines the behaviour of the compression flow of the turbo blower in an unstationnary operation, is not higher than one.

Description

"VERFAHREN ZUR AUFLADUNG VON KOLBENBRENNKRAFTMASCHINE MITTELS "METHOD FOR CHARGING PISTON COMBUSTION ENGINE BY MEANS
PNEUMATISCHER GEGENTAKTRESONANZSCHWINGUNG"PNEUMATIC COUNTER-BEARING VIBRATION "
Es ist eine physikalische Tatsache, dass die Kolbenbrennkraftmaschine in dem unteren Drehzahlbereich -trotz Turboaufladung- nur eine schwache Leistung abgibt. Um Abhilfe zu scha-ffen, konstruiert man solche Lufteinlasssysteae, die in diesem Drehza-hlbereich eine Resonanzschwingung aufweisen, mittels deren eine vergrösserte Frischgasmenge in den ansaugenden Zylinder zugeleitet wird. Durch optimale Beimischung von Kraftstoff führt dies zur erhöhten Motorleistung. Die bis heute erfolgreich angewandten Ausführungen der Resonanzaufladung bestehen aus einer technischen Lösung, die in der österreichischen Patentschrift Nr. 330506 von 1975.09.15 formuliert ist (in Fachkreisen spricht man über das Cser-System), Diese technische Realisierung von Resonanzaufladung arbeitet mit zwei voneinander durch Resonanzrohre und einem Ausgleichsbehälter getrennter Zylindergruppe, zwischen denen in Takt der Saugperioden mehrere Zehntel bar (typisch: 3/10) zeitlich günstig liegende Druckspitzen des Frischluftstromes vor dem in Ansaugtakt stehenden Zylinder auftreten. Bei einer vierzylindrigen Kolbenbrennkraftmaschine ist dieses Resonanzaufladesystem technisch nicht realisierbar. Die in der englischen Patentschrift GB 2038942 A von 1980.07.30. formulierte Lösung für Vierzylindermotore bleibt nur ein Versuch, da ja der die fehlende Zylindergruppe ersetzende Blindresonator nicht erregt werden kann, was zu einer unbedeutenden Druckerhöhung im Ansaugsystem führt.It is a physical fact that the piston internal combustion engine in the lower speed range, despite turbocharging, delivers only a weak output. In order to remedy this, such air intake systems are constructed which have a resonance oscillation in this speed range, by means of which an increased quantity of fresh gas is fed into the intake cylinder. By optimally adding fuel, this leads to increased engine performance. The versions of resonance charging that have been successfully used to date consist of a technical solution, which is formulated in Austrian Patent No. 330506 from 1975.09.15 (experts speak about the Cser system). This technical implementation of resonance charging works with two of them Resonance pipes and an expansion tank in a separate cylinder group, between which several tenths of a bar (typically: 3/10) pressure peaks of the fresh air flow occur in front of the cylinder in the intake cycle in time with the suction periods. In a four-cylinder piston internal combustion engine, this resonance charging system is not technically feasible. The in the English patent GB 2038942 A from 1980.07.30. The formulated solution for four-cylinder engines is only an attempt, since the dummy resonator that replaces the missing cylinder group cannot be excited, which leads to an insignificant increase in pressure in the intake system.
Einen ganz neuartigen Weg zur Resonanzaufladung von Vierzylinder kolbenbrennkr.aftmaschinen beschreitet das in der schweizerischen Patentschrift (Gesuchsnurπraer: 10414/79 von 1979.11.22.,Erfinder: Dr. A.J.T. Horvath) dargelegte Verfahren, in welchem die für die Resonanzaufladung notwendige Energie des Turbolader entnommen wird. Der technischen Realisierung steht die Forderung im Weg, welche für die Grosse des Puffervolumens zwischen Turboladerverdichter und den ansaugenden Zylindern nur ca. 1 Zylindervolumen zulässt.A completely new way of resonance charging four-cylinder kolbenbrennkr.aftmaschinen follows the procedure described in the Swiss patent specification (application number: 10414/79 from 11/22/1979, inventor: Dr. AJT Horvath), in which the turbocharger's energy required for resonance charging is extracted. The technical implementation is hampered by the requirement that only about 1 cylinder volume is allowed for the size of the buffer volume between the turbocharger compressor and the intake cylinders.
Die vorliegende Erfindung bringt die technisch realisierbare Resonanzaufladung einer Kolbenbrsnnkraftmaschine, aus deren Zylindern saugseitig maximal Vierergruppen zusammengefaεst werden, durch ein Prinzip, nach welchem das nach der Erfindung gestaltete Ansaugsys- tem in Gegentaktresonanzschwingung erregt und ebenso von den in Ansaugtakt stehenden Zylindern wie auch von der fluktuierenden Durchströmung des Turboladerverdichters in Schwingung gehalten wird (bei Saugmotoren wird die Erregung selbstverständlich nur von den im Saugtakt stehenden Kolben geliefert).The present invention brings about the technically feasible resonance charging of a piston internal combustion engine, from the cylinders of which a maximum of four groups are combined on the intake side, by a principle according to which the intake system designed according to the invention excites in push-pull resonance vibration and also of the cylinders in the intake stroke and of the fluctuating ones Flow through the turbocharger compressor is kept in vibration (in naturally aspirated engines, the excitation is of course only provided by the pistons in the suction cycle).
Fig.1 stellt einen 4-zylindrigen Saugmotor 11 mit Schwungrad 12, mit Auspuffleitungen 10 und mit den Saugrohren 9. die in das erste Resonanzvolumen 1 münden, welches durch die Resonanzleitung 2 mit dem zweiten Resonanzvolumen 3 verbunden ist, dar. Das zweite Resonanzvolunen steht durch das Resonanzrohr 4 mit dem Ansaugfilter- volumen 7, das mit der Frischluftsaugleitung 8 versehen ist, in Verbindung.1 shows a 4-cylinder naturally aspirated engine 11 with a flywheel 12, with exhaust pipes 10 and with the intake manifolds 9, which open into the first resonance volume 1, which is connected to the second resonance volume 3 through the resonance line 2. The second resonance volume stands through the resonance pipe 4 with the intake filter volume 7, which is provided with the fresh air suction line 8, in connection.
In Fig.2. sieht man den gleichen Motor mit Turboaufladung. Die Auspuffgase werden mittels der Leitung 10 in die Turbine 13 des Turboladers 15 geleitet. Dieser heisse und unter Überdruck stehende Auspuffgasmassenstrom treibt die Turbine 13 an und tritt durch die Leitung 14 in das mit den hier nicht gezeichneten Schalldämpfern ausgestaltete Auspuffsystem ein. Das mit der Turbine auf gleicher Welle sitzende Verdichterrad 5 saugt durch die kurze Leitung 6 die Frischluft aus dem Ansaugfiltervolumen 7. Je nach in der Turbine zur Verfügung stehender Leistung liefe'rt der Verdichter einen bestimmten Frischluftmassenstrom mit Überdruck in die Resonanzleitung 4, aus welcher der unter Druck stehende Massenstrom durch das zweite Resonanzvolumen 3, die erste Resonanzleitung 2, das erste Resonanzvolumen 1 und durch das Saugrohr. 9 in den in Saugtakt stehenden Zylinder fliesst. Durch zwei grossflächige, mittels Laderdruck (Drucköl, Solenoid) gesteuerte Ventile la, 3a können die Resonanzleitungen 2 und 4 umgangen werden, um die bei höheren Motordrehzahlen in den Resonanzleitungen durch den vergrösserten. Verdichterlieferstrom verursachten Druckverluste auszuschalten.In Fig. 2. you can see the same engine with turbocharging. The exhaust gases are by means of line 10 in the turbine 13 of the Turbocharger 15 passed. This hot and pressurized exhaust gas mass flow drives the turbine 13 and enters through line 14 into the exhaust system designed with the silencers not shown here. The sedentary with the turbine on the same shaft compressor 5 sucked by the short line 6, the fresh air from the Ansaugfiltervolumen 7. Depending on standing in the turbine available power would run 'of the compressor rt a particular fresh air mass flow with overpressure in the resonant line 4, from which the pressurized mass flow through the second resonance volume 3, the first resonance line 2, the first resonance volume 1 and through the intake manifold. 9 flows into the cylinder in the suction stroke. The resonance lines 2 and 4 can be bypassed by two large-area valves la, 3a controlled by supercharger pressure (pressure oil, solenoid) in order to compensate for the higher engine speeds in the resonance lines by the enlarged ones. Switch off compressor delivery flow caused pressure losses.
Die in den Figuren 1, 2 und 3 skizzierten Ansaugsysteine können nach Fig.4 durch einen pneumatischen Mehrmassenschwinger ersetzt werden, der durch drei pneumatische Federn c1, c3, c7 und ebensoviele pneumatische Massen m2, m4-6 , m8 charakterisiert werden kann. Bekanntlich wird die pneumatische Feder durch den Quotient (Resonanzvolumen/Schallgeschwindigkeitsquadrat), die pneumatische Masse (Länge/Querschnitt) definiert. '.Vie diese Grossen in einem pneumatischen System, nach Fig.3 zu bestimmen sind, findet man in der Arbeit von Dr. A.J.T. Horvath: "Der Pumpvorgang von Verdichtern und Kreiselpumpen als nichtlineare Schwingung", Zürich 1976, Juris Verlag. Das in Fig.4 dargestellte pneumatische Schwingungssystets , welches das erfindungsgemässe Ansaugsystem eines turboaufgeladenen Motors repräsentiert , besitzt drei tiefere Eigenfrequenzen mit den typischen Schwingungseigenformen Fig. 5 , 6 , 7 . Nach vorliegender Erfindung wird die dritte , in Flg. 7 dargestellte Eigenform technisch ausgenützt , bei welcher die als konzentriert aufge fassten pneumatischen Massen m, und m4-6 in Gegentakt schwingen. Nur diese Schwingungsform in Gegentakt ermöglicht pro Schwingung eine zweimalige Energiezufuhr in den Schwinger teils von dem i m Ansaugtakt stehenden Kolben der Brennkraftmaschine , teils von dem Turboladerverdichter 5.The suction systems outlined in FIGS. 1, 2 and 3 can be replaced according to FIG. 4 by a pneumatic multi-mass oscillator, which has three pneumatic springs c 1 , c 3 , c 7 and just as many pneumatic masses m 2 , m 4-6 , m 8 can be characterized. As is known, the pneumatic spring is defined by the quotient (resonance volume / sound velocity square) and the pneumatic mass (length / cross section). How these sizes are to be determined in a pneumatic system according to Fig. 3 can be found in the work of Dr. AJT Horvath: "The pumping process of compressors and centrifugal pumps as a non-linear vibration", Zurich 1976, Juris Verlag. The pneumatic vibration system shown in FIG. 4, which represents the intake system of a turbocharged engine according to the invention, has three lower natural frequencies with the typical natural modes of vibration FIGS. 5, 6, 7. According to the present invention, the third, in Flg. 7 Eigenform shown technically exploited, in which the pneumatic masses m, and m 4-6 vibrate in push-pull. Only this type of oscillation in push-pull mode enables a double supply of energy to the oscillator per oscillation, partly from the piston of the internal combustion engine which is in the intake stroke and partly from the turbocharger compressor 5.
Der stabile Betrieb eines Turboladers in Verbindung mit einer Kolben σrennkraftmaschine , welche dem Turboladerverdichter wie ein Verbraucher mit periodischer Lieferstrom-entnahπe erscheint, ist schwer zu gewährleisten. Um diesen Schwierigkeiten aus dem Weg zu gehen, verwendet die Resonanzaufladung nach Cser ( vgl. die österreichische Patentschrift Nr. 330506) einen Ausgleichsbehälter, der den Turboladerverdichter von dem in Resonanz schwingenden pneumatischen System trennt. Die erste allgemeingültige mathematische Theorie zur Beschreibung der Stabilität eines in der Nähe der Pumpgrenze ausgelegten Turboladerverdichters aiit schwankender Entnahmequelle wurde von Dr. A.J.T. Horvath. aufgestellt. Nach dieser Theorie hängt das Verhalten des Turboladerverdichters von der Grosse der KORVATHschen Zahl ab (vgl . VDI-Berichte 361, VDI-Verlag GmbH, Düsseldorf 1980. , Seiten 23/31) . Die HORV ATHsche Zahl ist eine dimsnsionslose Grosse , welche aus einem Produkt der mittleren , im Einsattelungsgebiet gebildeten Druck- Lief erstromcharakteristiksteigung des Turbolader¬The stable operation of a turbocharger in conjunction with a piston internal combustion engine, which appears to the turbocharger compressor as a consumer with periodic supply current extraction, is difficult to guarantee. In order to avoid these difficulties, resonance charging according to Cser (cf. Austrian Patent No. 330506) uses an expansion tank that separates the turbocharger compressor from the pneumatic system that vibrates in resonance. The first general mathematical theory to describe the stability of a turbocharger compressor designed near the surge limit with a fluctuating extraction source was developed by Dr. A.J.T. Horvath. set up. According to this theory, the behavior of the turbocharger compressor depends on the size of the KORVATH number (cf. VDI reports 361, VDI-Verlag GmbH, Düsseldorf 1980., pages 23/31). The HORV ATH number is a dimensionless dimension, which results from a product of the mean pressure-flow characteristic gradient of the turbocharger formed in the area of the settlement
Verdichters und eines unter Suadratwurzel stehenden Quotienten , welcher im Zähler eine pneumatische Feder, im Nenner eine pneuma tische Masse aufweist, gebildet wird ( in Formel: x.(c/m)½ , inCompressor and a quotient under square root, which has a pneumatic spring in the numerator and a pneuma in the denominator table mass, is formed (in formula: x. (c / m) ½, in
Dimensionen: ((N/m2)/(kg/s)) ((m3/(m/s)2)/(m/m2))½ ). Um einen stabilen, den Pumpvorgang vermeidenden Betrieb eines Turboladerverdichters zu gewährleisten, muss die HORVA'THsche Zahl eins oder kleiner als eins sein. Ist diese Forderung erfüllt, so bleibt der Betrieb des Turboladerverdichters stabil, obwohl die Verdichterströmung Energie in die Resonanzschwingung zur Vergrösserung der Druckamplitude hineinspeist (d.h. der Verdichterlieferstrora schwankt in Takt der Resonanzschwingung, ohne dabei in den gefürchteten Pumpvorgang zu geraten).Dimensions: ((N / m 2 ) / (kg / s)) ((m 3 / (m / s) 2 ) / (m / m 2 )) ½). In order to ensure stable operation of a turbocharger compressor that avoids the pumping process, the HORVA'TH number must be one or less than one. If this requirement is met, the operation of the turbocharger compressor remains stable, even though the compressor flow feeds energy into the resonance oscillation to increase the pressure amplitude (i.e. the compressor delivery flow fluctuates in time with the resonance oscillation without getting into the dreaded pumping process).
Schwingt das in Fig.3 dargestellte pneumatische System mit der dritten Eigenform Fig.7 , so wird die zur Berechnung der HORVATHschen Zahl notwendige pneumatische Feder aus dem mittels der Schwingungsamplituden korrigierten Resonanzvolu
Figure imgf000009_0001
men 3, aus der pneumatischen Masse m4-6 und aus der erwähnten mittleren Druck- Lieferstromcharakteristiksteigung, die bei den marktüblichen Turboladerverdichtern in dem unteren Drehzahlbereich ca. die Grosse aufweist, gebildet.
Figure imgf000009_0002
Wird die Resonanzaufladung einer turboaufgeladenen Kolbenbrennkraftmaschine nur durch ein ausgeprägtes Resonanzvoluaen 1 und eine Resonanzleitung, in der der Turboladerverdichter 5 durch eine kurze Leitung 6 aus dem Luftfiltervolumen die Frischluft ansaugt, realisiert, so gilt folgendes: Die erfindungsgemässe Gegentaktresonanzschwingung, die in einem bestimmten Drehzahlbereich der turboaufgeladenen Kolbenbrennkraftmaschine wirksam sein soll, tritt als erste Oberschwingung Fig.10 des in Fig.8 dargestellten pneumatischen Schwingers auf. Hierbei verhält sich die Resonanzleitung 2,4,5,6 schwingungstechnisch wie ein Kontinuum, das nach Fig.3 aus sehr vielen (im Grenzfall: unendlich vielen) in Serie geschalteten elemen taren Feder- cl i und Kassenelemen ten m l i zusammengesetzt werden kann und welches im Grenzfall unendlich viele Resonanzschwingungen be sitzt . Die in Fig. .0 gezeichnete Ausschlagsverteiluπg f , . der ersten Resonanzoberschwingung besitzt einen Kno tenpunkt K p , in welchem ein Druckaaximum auf tritt , falls die Schwingungsenergie in potentieller Form erscheint . Um den erfindungsgemässen stabilen Be trieb des Turboladerverdichters zu sichern , ist es no twendig, den Verdichter 5 zwischen Luftfiltervolumen 7 und dem Bewegungskno tenpunkt Kp nach Fig. 10 einzubauen. Auf diese Weise erreicht man , dass der pneumatische Schwinger nach Fig. 8 einerseits von dem im Ansaugtakt stehenden Kolben des Verbrennungsmo tors andererseits von dem Turboladerverdichter 5 genügende Energie zur Auf rech terhaltαing der Resonanzschwingung beziehen kann. Ferner gewährleistet diese Einbauvorschrift des Turboladerverdichters einen stabilen Verdichterbetrieb ohne Pumpgefahr in solchen Ansaugsystemen , bei denen das Volumen 1 ein Mehrfaches der angeschlossenen Hubvolumina der Kolbenbrennkraftmaschine ausmacht ( Anwendungsfall: grosse , turboaufgeladene Schiffsmo toren mit in Volumen 1 inkorporierten, grossflächigen Kühlern ) .
If the pneumatic system shown in FIG. 3 vibrates with the third eigenmode of FIG. 7, the pneumatic spring necessary for calculating the HORVATH number becomes the resonance volume corrected by means of the vibration amplitudes
Figure imgf000009_0001
men 3, from the pneumatic mass m 4-6 and from the above-mentioned average pressure-delivery flow characteristic slope, which is approximately the size of the turbocharger compressors on the market in the lower speed range.
Figure imgf000009_0002
If the resonance charging of a turbocharged piston internal combustion engine is realized only by means of a pronounced resonance volume 1 and a resonance line in which the turbocharger compressor 5 sucks in fresh air from the air filter volume through a short line 6, the following applies: Piston engine should be effective, occurs as the first harmonic Fig.10 of the pneumatic vibrator shown in Fig.8. In terms of vibration, the resonance line 2,4,5,6 behaves like a continuum, which according to Fig. 3 consists of a large number (in the limit: an infinite number) connected in series elemen taren spring c li and Kassenelemen th m li can be assembled and seated that be in the limit of infinite resonance. The deflection distribution f,. the first resonance harmonic has a node K p, in which a pressure maximum occurs if the vibration energy appears in potential form. In order to ensure the stable operation of the turbocharger compressor according to the invention, it is necessary to install the compressor 5 between the air filter volume 7 and the movement node K p according to FIG. 10. In this way it is achieved that the pneumatic oscillator according to FIG. 8, on the one hand, can obtain sufficient energy from the piston of the combustion engine, which is in the intake stroke, on the other hand, from the turbocharger compressor 5 to maintain the resonance oscillation. Furthermore, this installation instruction for the turbocharger compressor ensures stable compressor operation without the risk of pumping in those intake systems in which volume 1 is a multiple of the connected stroke volumes of the piston internal combustion engine (application: large, turbocharged marine engines with large-area coolers incorporated in volume 1).
Fig.1 : Kolbenmotor mit drei ausgeprägten Volumina im Ansaugsystea Fig.2 : Turboaufgeladener Kolbenmotor mit drei ausgeprägten Volumina im AnsangsysteπFig.1: Piston engine with three distinct volumes in the intake system Fig.2: Turbo-charged piston engine with three distinct volumes in the intake system
Fig. 3 : Ansaugsystea eines Kolbenmo tors nach Fig.1 und 2. ig. 4 : Aus Fig. 3 gebildeter pneumatischer Schwinger Fig. 5 , 6 , 7: Eigenformen des Schwingers nach Fig. 4 Fig .8 : Ansaugsystem eines Kolbenmo tors mit zwei ausgeprägten Volumina und einer Resonanzleitung mit schwingungstechnischem Kontinuumscharakter ( Fig. 9, 10 ) Es wurde noch nicht erörtert, wie das Schwingungsverhalten des in Fig. 3 und Fig. 8 dargestellten Ansaugsystems durch die Zuschaltung des in Ansaugtakt stehenden Zylinders beeinflusst wird. Bekanntlich bildet der Hubraum eines Zylinders der Kolbenbrennkraf tmaschine mit seinem Ansaugrohr 9 einen Helmholtresonator, der eine gut definierbare Eigenfrequenz besitzt. Wird nun dieser Helmholtzresonator zu dem in Fig. 3 oder in Fig. 8 dargestellten Ansaugsystem geschaltet, dann muss durch die passende Wahl des Ansaugrohrs 9 dafür gesorgt werden, dass die neu entstandene Schwingungseigenfora des Gesamtansaugsystems, bei welcher die pneumatische Masse 9 und 2 in Gegentakt schwingen, in dem ganzen Drehzahlbereich der Kolbenbrennkraf tmaschine nicht erregt werden kann, da sonst der Füllungsgrad des Zylinders erheblich verschlechtert und damit der Wirkungsgrad der Kolbenbrennkraftmaschine herabgesetzt wird.Fig. 3: Ansaugsystea a piston engine according to Fig.1 and 2. ig. 4: Pneumatic oscillator formed from FIG. 3, FIGS. 5, 6, 7: Eigenmodes of the oscillator according to FIG. 4 FIG. 8: Intake system of a piston engine with two pronounced volumes and a resonance line with a vibration-technical continuum character (FIGS. 9, 10) It has not yet been discussed how the vibration behavior of the intake system shown in FIGS. 3 and 8 is influenced by the connection of the cylinder in the intake stroke. As is known, the displacement of a cylinder of the piston internal combustion engine with its intake pipe 9 forms a Helmholesonator, which has a well-definable natural frequency. If this Helmholtz resonator is now connected to the intake system shown in Fig. 3 or in Fig. 8, then it must be ensured by the appropriate choice of the intake pipe 9 that the newly created vibration natural fora of the overall intake system, in which the pneumatic masses 9 and 2 are in push-pull swing, can not be excited in the entire speed range of the piston internal combustion engine, otherwise the degree of filling of the cylinder deteriorates considerably and thus the efficiency of the piston internal combustion engine is reduced.
Ss ist noch zu bemerken, dass die in der Patentschrift erwähnten Rohrleitungen nicht nur Kreisquerschnitt aufweisen können. Hat die Rohrleitung eine beliebig geformte Querschnittsf lache, so gilt als kennzeichnender Durchmesser die Grosse, mittels derer ein flächengleicher Kreisquerschnitt gebildet werden kann. It should also be noted that the pipelines mentioned in the patent specification can not only have a circular cross section. If the pipeline has an arbitrarily shaped cross-sectional area, the characteristic diameter is the size by means of which a circular cross-section of equal area can be formed.
BEZEICHNUNGENNAMES
1 erstes Resonanzvσlumen1 first resonance volume
1a Bypassventil zum Kurzschliessen von 21a bypass valve for short-circuiting 2
2 erste Resonanzleitung2 first resonance line
3 zweites Resonanzvolumen3 second resonance volume
3a Bypassventil zum Kurzschliessen von 4 4 zweite Resonanzleitung3a bypass valve for short-circuiting 4 4 second resonance line
5 Turboladerverdichter5 turbocharger compressors
6 Ansaugleitung des Turboladerverdichters6 Intake line of the turbocharger compressor
7 Luftfiltervolumen7 air filter volume
8 Ansaugleitung des Luftfiltervolumens8 Intake pipe of the air filter volume
9 Ansaugrohr der Kolbenbrennkraftmaschine9 Intake pipe of the piston internal combustion engine
10 Auspuffrohr " "10 exhaust pipe ""
11 Kolbenbrennkraftmaschine11 piston internal combustion engine
12 Schwungrad der Kolbenbrennkraftmaschine12 Piston engine flywheel
13 Turbine des Turboladers13 Turbocharger turbine
14 Austritt aus der Turbine des Turboladers 15 Turbolader14 Exit from the turbine of the turbocharger 15 turbocharger
C pneumatische Feder (m 3/(m/s)2) Kp Bewegungsknotenpunkt eines Schwingers mit Kontinuumscharakter (die erste Harmonische hat einen Knotenpunkt)C pneumatic spring (m 3 / (m / s) 2 ) K p movement node of a transducer with a continuum character (the first harmonic has a node)
m pneumatische Masse (m/m2) ζ Ausschlag des Schwingers (die Ausschlagsverteilung ist typisch für die betreffende Eigenform) (a) ηθ mittlere, im Einsattelungsgebiet gebildete Druck- Lieferstromcharakteristiksteigung des Turboladerverdichters zur Bildung der KORVATHschen Zahl, (sm)-1
Figure imgf000012_0001
dimensionslose Kennzahl (=HORVATHsche Zahl) zur Beurteilung der Stabilität eines Turboladerverdichters
m pneumatic mass (m / m 2 ) ζ deflection of the vibrator (the deflection distribution is typical of the eigenmode concerned) (a) ηθ mean pressure and delivery flow characteristic gradient of the turbocharger compressor formed in the area where the turbocharger is built to form the KORVATH number, (sm) -1
Figure imgf000012_0001
dimensionless index (= HORVATH number) for assessing the stability of a turbocharger compressor

Claims

PATENTANSPRUCHE PATENT CLAIMS
1. Verfahren zur Aufladung von Kolbenbrennkraftmaschine mittels pneumatischer Gegentaktresonanzschwihgung, dadurch gekennzeichnet, dass das mehrere pneumatische Eigenfrequenzen besitzende Ansaugsystem, welches einer Gruppe von höchstens vier Zylindern, deren Saugperioden sich gegenseitig entweder nicht oder nur geringfügig überdecken, angeschlossen ist, durch das periodische Ansaugen, der Brennkraftmaschinenzylinder bei einer gewünschten Motordrehzahl in solcher Eigenschwingungsform angeregt wird, bei welcher die die Eigenschwingungsform hauptsächlich bestimmenden pneumatischen Massen (2,4) in Gegentaktschwingung (Fig.7 ) stehen und auf diese Weise die Resonanzschwingung des An saugsy stems teils von den ansaugenden Motorzylindern, teils vom Turboladerverdichter (5) angefacht wird.1. Method for charging the piston internal combustion engine by means of pneumatic push-pull resonance vibration, characterized in that the intake system, which has a plurality of pneumatic natural frequencies, and which is connected to a group of at most four cylinders, the intake periods of which either do not or only slightly overlap one another, by means of the periodic intake, which Internal combustion engine cylinders are excited at a desired engine speed in such a natural vibration form, in which the pneumatic masses (2,4), which mainly determine the natural vibration form, are in push-pull vibration (FIG. 7) and in this way the resonance vibration of the suction system, partly from the intake motor cylinders, partly is fanned by the turbocharger compressor (5).
2. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Ansaugsystem neben dem Aπsaugfiltervolumen (7) noch aus zwei ausgeprägten Resonanzvoluαina (1,3) Gestehen, welche miteinander durch die Resonanzleitung (2) und mit dem Ansaugfiltervolumen (7) durch die Resonanzleitung (4) verbunden sind.2. Supercharging of the piston internal combustion engine according to claim 1, characterized in that the suction system in addition to the suction filter volume (7) still consists of two distinct resonance volumes (1,3), which are connected to each other through the resonance line (2) and with the suction filter volume (7) through the Resonance line (4) are connected.
3. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass das Ansaugsystea (Fig.8) neben dem Ansaugfiltervolumen (7) nur noch aus einem ausgeprägten Resonanzvolumen (1) und einer Resonanzleitung (2,4) besteht und dass die Gegentaktresonanzschwingung dieses Ansaugsystems mit einer Eigenschwingungsform identisch ist, bei welcher in der Resonanzleitung (2,4) ein 3ewegungsknotenτ3unkt liegt (Fig.10). 3. Supercharging of the piston internal combustion engine according to claim 2, characterized in that the intake system (Fig. 8) in addition to the intake filter volume (7) consists only of a pronounced resonance volume (1) and a resonance line (2,4) and that the push-pull resonance vibration of this intake system is identical to a mode of natural vibration, in which there is a 3-way node in the resonance line (2,4) (Fig. 10).
4. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass das Ansaugsytem zusätzlich einen Abgasturboladerverdichter (5) enthält, dessen Saugseite durch eine kurze Leitung (6) mit dem Ansaugfiltervolumen (7) und die Druckseite mit der Resonanzleitung (if) verbunden ist.4. Charging of the piston internal combustion engine according to claim 2, characterized in that the intake system additionally contains an exhaust gas turbocharger compressor (5), the suction side of which is connected by a short line (6) to the intake filter volume (7) and the pressure side to the resonance line (if).
5. Aufladung von Kolbenbrennkraftmaschine nach Anspruch if, dadurch gekennzeichnet, dass die Resonanzleitungen (2,4) oberhalb einer bestimmten Motordrehzahl durch Öffnung grossflächiger, durch Laderdruck gesteuerter Ventile (1a,3a) kurzgeschlossen werden.5. Supercharging of the piston internal combustion engine according to claim if, characterized in that the resonance lines (2,4) are short-circuited above a certain engine speed by opening large-area valves (1a, 3a) controlled by supercharger pressure.
6. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 3, dadurch gekennzeichnet, dass ein Abgasturboladerverdichter (5) in die Resonanzleitung (2,4) zwischen Bewegungsknotenpunkt (Kp Fig.10) und Ansaugfiltervolumen (7) eingebaut wird.6. Supercharging of the piston internal combustion engine according to claim 3, characterized in that an exhaust gas turbocharger compressor (5) is installed in the resonance line (2, 4) between the movement node (K p, Fig. 10) and the intake filter volume (7).
7. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 6, dadurch gekennzeichnet, dass die Resonanzleitung (2,4) durch ein Ventil nach Art von Anspruch 5 kurzgeschlossen wird.7. supercharging of the piston internal combustion engine according to claim 6, characterized in that the resonance line (2,4) is short-circuited by a valve according to the type of claim 5.
8. Aufladung von Kolbenbrennkraftmaschine nach Anspruch if, dadurch gekennzeichnet, dass die Resonanzleitungen (2,if) auf die Resonanzvolumina (1,3) spiralenförmig aufgewickelt sind.8. Supercharging of the piston internal combustion engine according to claim if, characterized in that the resonance lines (2, if) are wound in a spiral shape on the resonance volumes (1,3).
9. Aufladung von Kolbenbrennkraftmaschine nach Anspruch if, dadurch gekennzeichnet, dass das Resonanzvolumen (3) als Frischluftzwischenkühler ausgebildet wird. 9. supercharging of the piston internal combustion engine according to claim if, characterized in that the resonance volume (3) is designed as a fresh air intercooler.
10. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass das Resonanzvolumen (1) und das Resonanzvolumen (3) eine gemeinsame Trennwand aufweisen.10. Supercharging of the piston internal combustion engine according to claim 4, characterized in that the resonance volume (1) and the resonance volume (3) have a common partition.
11. Aufladung von Kolbenbrennkraftmaschine mit mindestens einer Einrichtung zur Durchführung des Verfahrens nach Anspruch 1, wobei, den gruppenweise zusammengefassten, höchstens vier Zylindern je ein Ladeverdichter zugeordnet ist, dadurch gekennzeichnet, dass die Resonanzvolumina (1,3) von mindestens dem eineinhalbfachen Inhalt eines einzelnen, der Gruppe angeschlossenen Zylinders ausgeführt sind, dass die Resonanzleitungslängen (2,4) grösser als das Fünffache der Resonanzleitungsinnendurchmesser sind, dass die Resonanzleitungsinnendurchmesser grösser als das Einzehntelfache der aus dem Hubvolumen eines einzelnen Zylinders durch Ziehung der dritten Wurzel gebildeten Referenzlänge, jedoch kleiner als das Anderthalbfache der Referenzlänge sind. 11. Charging of the piston internal combustion engine with at least one device for carrying out the method according to claim 1, wherein, in groups, a maximum of four cylinders each is assigned a charge compressor, characterized in that the resonance volumes (1,3) of at least one and a half times the content of an individual , the group of connected cylinders are designed so that the resonance line lengths (2.4) are greater than five times the inner diameter of the resonance line, that the inner diameter of the resonance line is greater than ten times the reference length formed from the stroke volume of a single cylinder by drawing the third root, but less than that Are one and a half times the reference length.
12. Aufladung von Kolbenbrennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass das Volumen (3) nur als Frischluftzwischenkühler ausgebildet ist und die Resonanzleitungen (2,if) aus einem Leitungsstück, welches das Volumen (3) bypasst, angefertigt sind. 12. Supercharging of the piston internal combustion engine according to claim 5, characterized in that the volume (3) is designed only as a fresh air intercooler and the resonance lines (2, if) are made from a line piece which bypasses the volume (3).
PCT/CH1981/000128 1980-11-21 1981-11-18 Supercharging method for piston internal combustion engines by means of pneumatic,symetric resonance oscillations WO1982001742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8606/80A CH659854A5 (en) 1980-11-21 1980-11-21 METHOD AND EQUIPMENT FOR CHARGING PISTON ENGINE ENGINE.
CH8606/80801121 1980-11-21

Publications (1)

Publication Number Publication Date
WO1982001742A1 true WO1982001742A1 (en) 1982-05-27

Family

ID=4342549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1981/000128 WO1982001742A1 (en) 1980-11-21 1981-11-18 Supercharging method for piston internal combustion engines by means of pneumatic,symetric resonance oscillations

Country Status (3)

Country Link
EP (1) EP0064998A1 (en)
CH (1) CH659854A5 (en)
WO (1) WO1982001742A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167794A1 (en) * 1984-07-03 1986-01-15 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Air intake device for a multicylinder internal-combustion engine
EP0265960A2 (en) * 1986-10-30 1988-05-04 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0278117A2 (en) * 1987-02-12 1988-08-17 Autoipari Kutato és Fejlesztö Vállalat Piston internal-combustion engine with an increased volumetric efficiency due to fresh gas resonant oscillations
EP0288039A2 (en) * 1987-04-21 1988-10-26 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0490104A1 (en) * 1990-12-14 1992-06-17 Mercedes-Benz Ag Method of controlling the air admission for an internal combustion engine
US6622486B2 (en) * 2000-11-08 2003-09-23 Wartsila Technology Oy Ab Arrangement for and method of feeding air in a piston engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932738A1 (en) * 1989-09-30 1991-04-11 Porsche Ag AIR INTAKE SYSTEM OF AN INTERNAL COMBUSTION ENGINE
DE19932284A1 (en) * 1999-07-10 2001-01-11 Bayerische Motoren Werke Ag Intake system for multi-cylinder IC engines has cylinder intake pipes connected to intermediate pipe, for direct feed of ambient air intake into second air collection chamber
FR2818700B1 (en) * 2000-12-22 2003-08-15 Renault AIR INTAKE CIRCUIT
DE10205975A1 (en) * 2002-02-14 2003-08-21 Mann & Hummel Filter Intake system for an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935155A1 (en) * 1968-07-10 1970-02-12 Csepeli Autogyar Method and device for improving turbocharging
FR2378183A1 (en) * 1977-01-20 1978-08-18 Chrysler France IC engine air intake system - has Helmholtz resonator with adjustable vane in neck for varying natural frequency
DE2950667A1 (en) * 1979-11-22 1981-06-04 BBC AG Brown, Boveri & Cie., Baden, Aargau Turbocharged IC engine dynamic additional charging - uses peripheral pressure pulses, generated in buffer chamber between compressor and engine cylinders by suction strokes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935155A1 (en) * 1968-07-10 1970-02-12 Csepeli Autogyar Method and device for improving turbocharging
FR2378183A1 (en) * 1977-01-20 1978-08-18 Chrysler France IC engine air intake system - has Helmholtz resonator with adjustable vane in neck for varying natural frequency
DE2950667A1 (en) * 1979-11-22 1981-06-04 BBC AG Brown, Boveri & Cie., Baden, Aargau Turbocharged IC engine dynamic additional charging - uses peripheral pressure pulses, generated in buffer chamber between compressor and engine cylinders by suction strokes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Automotive Engineering, Vol. 87, No. 12, December 1979, New York (US), "Tuning Diesel Induction System Improves Performance", see pages 57-59 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167794A1 (en) * 1984-07-03 1986-01-15 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Air intake device for a multicylinder internal-combustion engine
EP0265960A2 (en) * 1986-10-30 1988-05-04 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0265960A3 (en) * 1986-10-30 1989-04-12 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0278117A2 (en) * 1987-02-12 1988-08-17 Autoipari Kutato és Fejlesztö Vállalat Piston internal-combustion engine with an increased volumetric efficiency due to fresh gas resonant oscillations
EP0278117A3 (en) * 1987-02-12 1989-08-16 Autoipari Kutato Es Fejleszto Vallalat Piston internal-combustion engine with an increased volumetric efficiency by virtue of live gas resonance chugging
EP0288039A2 (en) * 1987-04-21 1988-10-26 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0288039A3 (en) * 1987-04-21 1989-04-12 Mazda Motor Corporation Intake system for multiple-cylinder engine
EP0490104A1 (en) * 1990-12-14 1992-06-17 Mercedes-Benz Ag Method of controlling the air admission for an internal combustion engine
US6622486B2 (en) * 2000-11-08 2003-09-23 Wartsila Technology Oy Ab Arrangement for and method of feeding air in a piston engine

Also Published As

Publication number Publication date
CH659854A5 (en) 1987-02-27
EP0064998A1 (en) 1982-11-24

Similar Documents

Publication Publication Date Title
DE2245732C2 (en) Piston internal combustion engine with exhaust gas turbocharging
DE2927405A1 (en) SUCTION PIPE WITH RESONANT EFFECT FOR PISTON COMBUSTION ENGINES
DE2949790C2 (en) Internal combustion engine
DE60018609T2 (en) Piston engine with balancing and charging
DE2529171A1 (en) MULTIPLE TURBOCHARGER ARRANGEMENT
DE1935155C3 (en) Internal combustion engine utilizing the vibrations of the fresh gases in the inlet line
WO1982001742A1 (en) Supercharging method for piston internal combustion engines by means of pneumatic,symetric resonance oscillations
DE102013209340A1 (en) INTEGRATED INTAKE MANIFOLD AND COMPRESSOR
DE1957036A1 (en) Performance-enhancing and sound-absorbing muffler for two-stroke internal combustion engines
DE2543073A1 (en) COMBUSTION ENGINE WITH CHARGER
DE2621638A1 (en) FRESH GAS PIPE SYSTEM FOR SIX CYLINDER ENGINE WITH TURBO CHARGING
DE60121185T2 (en) TWO-STROKE CYCLE FOR INTERNAL COMBUSTION ENGINES
DE102007014447A1 (en) Turbocharged petrol engine i.e. six-cylinder flat engine, has intake system formed as variable ram tube intake system or variable resonance intake system with resonances minimized over range i.e. high speed range of engine with full load
DE212012000031U1 (en) Bit turbocharger arrangement for a large internal combustion engine
DE4141159C1 (en) Two-stage supercharging for IC engine - involves two separate turbocharger units with compressors in series and turbines in parallel.
DE3236811A1 (en) Pivoted-cylinder engine
US2126860A (en) Scavenging means for internal combustion engines
DE842238C (en) Single-stage piston air compressor combined with a two-stroke internal combustion engine
DE1451903A1 (en) Exhaust gas turbocharger arrangement on internal combustion engines
DE2452219A1 (en) Exhaust gas supercharge system - uses exhaust gas kinetic energy to draw air along the air intake pipe
DE871983C (en) Method for operating supercharged two-stroke internal combustion engines with a flushing and charging fan driven by an exhaust gas turbine
DE2950667A1 (en) Turbocharged IC engine dynamic additional charging - uses peripheral pressure pulses, generated in buffer chamber between compressor and engine cylinders by suction strokes
DE2441354A1 (en) Diesel engine with two stage turbo charger - in which each stage has an outlet gas turbine and a turbo charger
DE749361C (en) Internal combustion engine with two or more exhaust gas turbochargers and an additional purge air blower
DE855639C (en) Mixture-compressing internal combustion engine with supercharging and external ignition

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP SU US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB LU NL SE

CR1 Correction of entry in section i