WO1981002778A1 - System for removing the energy confined within a housing - Google Patents

System for removing the energy confined within a housing Download PDF

Info

Publication number
WO1981002778A1
WO1981002778A1 PCT/FR1981/000037 FR8100037W WO8102778A1 WO 1981002778 A1 WO1981002778 A1 WO 1981002778A1 FR 8100037 W FR8100037 W FR 8100037W WO 8102778 A1 WO8102778 A1 WO 8102778A1
Authority
WO
WIPO (PCT)
Prior art keywords
glazing
window
enclosure
radiation
energy
Prior art date
Application number
PCT/FR1981/000037
Other languages
French (fr)
Inventor
P Malifaud
Original Assignee
Opthra Soc Civ
P Malifaud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opthra Soc Civ, P Malifaud filed Critical Opthra Soc Civ
Publication of WO1981002778A1 publication Critical patent/WO1981002778A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to an installation making it possible to evacuate, by radiation, energy, in particular thermal energy, confined in a possibly insulated sealed enclosure.
  • the present invention relates to all cases where an energy, of whatever nature, confined in a sealed enclosure possibly isolated from the outside, can be transformed into radiant energy, either that it is thus transformed spontaneously, or '' it may be induced to do so by any known means.
  • An interesting particular case is that of heat, or thermal energy, confined for example in an atmosphere of controlled composition in a sealed oven. Heat is a totally disordered form of energy, not propagating in a vacuum but only. through the material bodies, by a transmission from near to close (conduction) or carried by a moving fluid (convection).
  • the present invention overcomes this difficulty and, for this purpose, relates to a method for exploiting and discharging energy, in particular thermal energy confined in a sealed enclosure, characterized in that this evacuation is carried out by radiation and that, preferably, this radiation is recovered with a view to re-use.
  • this Drocézier is also characterized in that one combines, in association with the enclosure, on the one hand at least one glazing which contributes to ensuring its sealing, which is able to withstand the internal conditions specific to the enclosure in activity in particular of temperature, pressure, corrosion and which is transparent for a set of wavelengths of the radiation including those evacuating energy, these functions being able to be assumed by several panes of glass successively taking turns to transmit the radiation evacuating energy, the resistance of each of these glazings then being adapted to the internal conditions specific to the enclosure such that they change as the evacuation takes place and on the other hand, at least one insulating wall removable which is placed opposite the glazing to prevent the evacuation of energy during the confinement period and which is removed at the time of evacuation.
  • the invention also relates to an installation for implementing the above process, characterized in that it comprises in combination an enclosure in which a window is provided, at least one glazing which must be placed against the window in a sealed manner and which is transparent to a set of wavelengths including those which correspond to radiation discharging energy and at least one insulating wall, either internal or external, movable between an active position in which it is placed as a fox of the glazing for fear oppose the passage of radiation and an inactive position in which it is spaced from the glazing to free the passage of radiation.
  • a thermal oven for example, there is a continuous exchange between heat and radiation, between thermal energy and radiant energy, the materials absorbing the radiation and transforming it into heat, then re-emitting radiation, and so on.
  • the method and the installations according to the invention break this continuous exchange by activating a set of panels transparent to the radiation produced in the oven when the time for cooling has arrived.
  • the single figure of the drawing represents, diagrammatically, in section, an enclosure according to the invention. It is assumed, beforehand, that the energy confined in the sealed enclosure is transformed, at least partially, into radiant energy, either spontaneously or by the intervention of any known means.
  • the energy spontaneously transforms into infrared radiation by an emission phenomenon, the distribution of the radiated energy in the various wavelengths d emission taking place as a function of temperature, according to Planck's law for the "black body” or "integral radiator” and according to a particular approximate law for each absorbent body. The higher the temperature, the shorter the emission wavelengths and vice versa.
  • the walls of which generally consist of absorbent refractory materials the infrared radiation emitted is continuously reabsorbed and then re-emitted, so that the energy is constantly changing from the heat form in the radiant form and vice versa.
  • the glazing 4-5 and the insulating wall 7 constitute a double door capable of masking and unmasking the window 3;
  • the interior walls 2a-2b of the enclosure 1 adjacent to that which comprises the window 3 are inclined at least partially with respect to the mean axis x normal to the plane of this window 3, forming with it acute angles;
  • the interior walls of the enclosure 2a-2b adjacent to those which comprises the window 3 are, at least in part, provided with grooves 12 whose direction is parallel to the mean axis normal to the plane of the window 3;
  • the glazing is made of silica; - the installation comprises at least two movable glazing 4 and 5 which can be individually placed opposite window 3 and removed in order to be there either together or separately:
  • the glazing 4 and 5 are separated by a space 6 in which can be established, by any known means, a vacuum maintaining the first glazing 4 applied against the periphery of the window 3, an elastic seal possibly being placed between this glazing 4 and this perimeter.
  • the insulating enclosure is removable and, in the inactive position, unmasks transparent glazing for the wavelengths of the radiation to be removed. It is no longer absorbed but transmitted to the outside as it is emitted by the enclosure. Tightness is however maintained by this glazing, the material of which is also chosen to withstand the conditions in dull specific to the enclosure activity, temperature, pressure, corrosive, etc ...
  • FIG. 1 a diagram is seen in vertical section of an installation according to the invention relating to a particular example of a thermal oven.
  • the enclosure 1 is surrounded by walls such as 2, insulating and more or less absorbent, in one of which is formed a window 3 here provided with two glazing 4 and 5 separated by a space 6, this window 3 being completely closed by a portion 7 of insulating wall during the duration of activity of the enclosure 1 (position shown in dotted lines).
  • the wall portion 7 is movable around an axis 8. When it is desired to cool the enclosure 1, it is placed in the erasing position as shown in solid lines. Thus, the windows 4 and 5 are unmasked, which are thus able to play their role of evacuation by optical transmission.
  • the first glazing 4 is applied in a sealed manner,
  • the first glazing 4 is applied in a sealed manner, from the inside, by its entire periphery against the window frame 3 forming a shoulder 9; it is slidably mounted parallel to its plane.
  • the temperature T 1 of the active furnace is assumed to be of the order of 1500 ° C or 1600 ° C
  • the temperature T 2 which it is desired to achieve is of the order of room temperature, for example 20 ° C.
  • the first glazing 4 is made of silica glass, a material which begins to soften only above 1700 ° C., and which is transparent for wavelengths ranging from 0.2 to 4, 5 ⁇ approximately.
  • This glazing 4 efficiently removes the radiation emitted by the enclosure 1 at 1500 ° or 1600 ° until it emits by cooling to 450 ° / 400 °.
  • a second glazing 5 consisting, for example, of silver chloride or cerargyrite. material which resists up to a temperature reaching 450 ° and which is transparent for wavelengths ranging from 0.4 to 15-20 ⁇ approximately.
  • Silver chloride cannot be polished, but can be molded in relatively large dimensions; it is not very fragile and of a relatively modest price.
  • This material can evacuate the radiation emitted by the enclosure 1 until its internal temperature reaches ambient temperature, for example of the order of 20 °.
  • this second glazing 5 can occupy its active position during the evacuation imparted to the first glazing 4 without interfering with it. This. It is applied from the outside by its entire circumference, in a sealed manner, against the shoulder 9 of the window frame 3. A vacuum as high as possible or a current air in depression is maintained in the insulation space 6, in order to help protect this second glazing 5 against temperature rises that it could not withstand, and also in order to perfect the seal of the enclosure 1 by pressing the first glazing 4 against the window frame 3.
  • the barometric depression or the air stream in depression in space 6 is eliminated, which helps to release the first glazing. 4 of its adhesion to the frame of the window 3, and this glazing 4 is made to slide in a sealed and insulating sheath 10 made projecting outside the enclosure until it is entirely outside the contour window 3.
  • the second glazing 5 is thus able to play the evacuation role which is assigned to it. It is kept, by any known means, applied only in a sealed manner against the shoulder 9 of the window frame 3. before removing the barometric depression in space 6.
  • the second glazing 5 can, in this same example, be made of any transparent optical material for a range of wavelengths including the passband of
  • cadmium sulfide or greenockite Cd S transparent from 0.5 to 15 ⁇ , resistant up to 900oc
  • potassium bromide KBr (0.25 to 35 ⁇ , 700 °), potassium iodide Kl (0.4 to 40 ⁇ , 700 °), cesium bromide Cs Br (0.2 to 50 ⁇ , 620 °), cesium ioaur Cs I (0.25 to 70 ⁇ , 600 °); if necessary, thallium bromoiodide or KRS-5, TIBr, Tll, which is transmitted from 0.5 to 40 ⁇ but whose melting point is very little above
  • the second glazing 5 is not the same with other materials that can be used for the second glazing 5, such as gallium arsenide GaAs (2 to 15 ⁇ , 1200 °), indium phosphide InP (2 to 13 ⁇ , 1000 °), ver err e sintered with zinc sulfide or Irtran-2 (2 to 13 ⁇ , 800 °) ...
  • the transmission band of these materials does not allow them to efficiently dissipate the energy rayonnahte only from around 500 ° to 400 °.
  • the second glazing 5 is removed during the first evacuation phase from 1500 ° / 1600 ° to 400 ° imparted to the first glazing 4.
  • the second glazing is pivoted about an axis 11 until 'at an erasing position (not shown in the drawing).
  • the second glazing 5 is brought back to the active position and it is kept applied in a sealed manner against the shoulder 9 of the window frame 3.
  • the internal temperature of the enclosure 1 has reached the lowest desired level, it is possible, if desired, to remove the second glazing 5 again, which has the effect of opening the window 3 to the open air.
  • the silica glass As for the material constituting the first glazing 4, the silica glass, common manufacturing material even in large dimensions, of relatively low price, resistant, it is optimal for the implementation of the invention in thermal ovens.
  • other materials can be used, for example: magnesium oxide sium or periclase, Mg 0 also existing in sintered material transmitting from 0.25 to 8.5 ⁇ , resistant up to 2,800 ° and allowing the radiating energy to be evacuated at least in the first phase by cooling the enclosure 1 to at 200 ° to 150 ° approximately; alumina or corundum Al 2 0 3 0.2 to 6 ⁇ , 2000 ° to 300/250 °); barium titanate Ba Ti 0 3 , which exists in the form of ceramic (0.5 to 7 ⁇ , 1600 ° to 250 °).
  • a third glazing in arsenic trisulphide glass (0.6 to 10 ⁇ ; 200 ° to 100 °), or in amorphous selenium (1 to 25 ⁇ ; 220 ° to 20 °), or a sintered glass with sulphide zinc or Irtran-2 (2 to 13 ⁇ ; 800 ° to 30 ° / 20 °).
  • a fourth glazing can be implemented, for example glass pentasêl ⁇ ni ure arsenic (2 to 18 ⁇ , 100 ° to 20 °).
  • the removable insulating wall portion 7, as well as the second transparent glazing 5, have been shown pivoting around horizontal axes 8 and 11, because this arrangement is the most convenient to represent in vertical section.
  • the axes of rotation can preferably be vertical and the removable insulating wall portion 7 as well as the second transparent glazing 5 can constitute the door of the oven itself, in the form of a double door opening and closing laterally as c is usually the case.
  • the interior walls such as 2a and 2b which are adjacent with respect to the wall which comprises the window 3 are inclined with respect to the mean axis x normal to this window by forming acute angles with the plane thereof.
  • the walls such as 2a and 2b are, at less in part, with grooves not shown but whose situation is shown in dotted lines at 12, dug in directions as close as possible to that of the average axis x of window 3; and these walls, with their grooves, as well as the wall 2c opposite the window are possibly with small reliefs and small hollows or a granular structure.
  • the interior surface of the enclosure 1 is either made up or coated with a substance having properties which are as close as possible to those of the "black body” or "integral radiator".
  • the installation comprises a screen capable of opposing, at least partially, the transmission of radiation through the window, this screen being mounted movable between an active position in which it can obscure the radiation. , and an erased position in which it is inoperative, in order to be able to modulate the evacuation of the radiation out of the enclosure.
  • the screen, or grid, or any other modulating optical system may be partially opaque and / or partially reflecting towards the interior of the enclosure 1 for the wavelengths of radiation emitted.
  • This screen (or grid) can be made mobile, for example by sliding in a housing provided in the sheath 10 or in the insulation space 6.
  • the screen (or grid) can occupy a variable part of the surface of window 3 and modulate the optical transmission by which the evacuation takes place, either to increase it or to decrease it progressively depending on whether at the start of its movement the screen (or grid) occupies the surface of window 3 or is, on the contrary erased.
  • the optical modulator system is made mobile or variable by any appropriate means between an active position and an inactive position in order to optically scale and modulate the evacuation of radiant energy.
  • the movable part 7 of the insulating wall sto ⁇ posing to the evacuation of radiation during the active phase of the enclosure 1, it can be made of the same materials as the fixed walls 2 of this enclosure 1.
  • optical spectral selection means can, on the other hand, allow transmission in the opposite direction, towards enclosure 1, in other bandwidths, of radiation picked up outside.
  • the installation according to this variant of the invention constitutes a thermal oven heated and then optically cooled by radiation.
  • the portion of removable insulating wall is, for example, in ordinary glass, suitable for the "greenhouse” effect, possibly coated with a selective reflective treatment in a thin layer of tin or indium oxide. It can also be made of any transparent optical material between 0.3 and 1.5 ⁇ and opposing transmission above about 1.5 ⁇ .
  • the glazing or the evacuating glazing system is one of those described above, with the proviso that they do not constitute an obstacle or a hindrance to the capture of solar radiation whose pass band is located on the ground between 0 , 3 and 1.5 ⁇ .
  • the silica glass chosen in many cases as the optimal material, is suitable in this respect since it transmits the radiation oe 0.2 to 4.5 ⁇
  • This sensor glazing is isolated from the evacuating glazing by a space in which a vacuum is produced as high as possible, or a current of air, or even a current of water or liquid whose bandwidth of spectral transmission is compatible, at least approximately, with the interval 0.3 - 1.5 ⁇ .
  • an installation according to the invention also provides an advantage.
  • the confined energy is evacuated slowly, as is the case in previously known installations, it is practically impossible to recover it; it diffuses almost imperceptibly.
  • the door of which cannot be opened the internal environment of the oven having to remain confined
  • the evacuated heat is lost.
  • the energy is evacuated quickly, as is the case in an installation according to the invention, it becomes possible to reuse it, all the more since this energy is evacuated in radiant form and that there are sensor-receptors for this form of energy, in the various wavelength ranges.
  • the radiated energy discharged is taken up by one of these sensors either directly or through an appropriate optical system.
  • the radiant energy discharged by the installation is directly taken up by a similar installation during its preliminary phase of activity during which its enclosure begins by storing energy.
  • the radiant energy discharged by an oven during its cooling according to the invention is directly taken up by another oven, cold, in which it is desired to store thermal energy.
  • the transparent glazing in front of the transparent glazing in dissipating the radiant energy from the oven during cooling, in a given wavelength band, and as close as possible to this glazing, there is the transparent glazing (or glazing system) of the cold transmitting oven radiation in an interval including the same band of wavelengths. This glazing then plays a sensor role, transmitting to the enclosure of the cold oven part of the radiant energy discharged from the hot oven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Method for removing by radiation an energy, particularly a thermal energy, confined within a sealed housing. A furnace (1) is provided with glazings (4-5) which are positionned in front of a window (3) and which are transparent to an assembly of radiation wavelengthes including those corresponding to the radiations discharging the energy. An insulating door (7) may be either closed for opposing to the radiation passage or opened for freeing the passage.

Description

SYSTEMED EVACUATION DE L'ENERGIE CONFINEE DANS UNE ENCEINTE. SYSTEMED EVACUATION OF THE ENERGY CONTAINED IN AN ENCLOSURE.
La présente invention concerne une installation permettant d'évacuer par voie de rayonnement de l 'énergie notamment thermique confinée dans une enceinte étanche éventuellement isolée.The present invention relates to an installation making it possible to evacuate, by radiation, energy, in particular thermal energy, confined in a possibly insulated sealed enclosure.
On sait que les diverses formes d'énergie peuvent se transformer les unes dans les autres, en particulier en énergie rayonnante, c'est-à-dire en énergie transportée par des ondes électromagnétiques. Cette sorte d'énergie se propage à la vitesse de la lumière, dans les corps transparents pour les longueurs d'onde qui la caractérisent (lumière, infrarouge, etc...) ou dans le vide. C'est une énergie ordonnée, orientée, se propageant en ligne droite, pouvant être réfléchie, éventuellement réfractée.We know that the various forms of energy can transform one into the other, in particular into radiant energy, that is to say into energy transported by electromagnetic waves. This kind of energy propagates at the speed of light, in transparent bodies for the wavelengths that characterize it (light, infrared, etc.) or in a vacuum. It is an ordered, oriented energy, propagating in a straight line, which can be reflected, possibly refracted.
La présente invention concerne tous les cas où une énergie, de quelque nature qu'elle soit, confinée dans une enceinte étanche éventuellement isolée de l 'extérieur, peut se transformer en énergie rayonnante, soit qu'elle se transforme ainsi spontanérrent, soit-qu'elle soit susceptible d'être induite à le faire par tout moyen connu. Un cas particulier intéressant est celui de la chaleur, ou énergie thermique, confinée par exemple en atmosphère de composition contrôlée dans un four étanche. La chaleur est une forme d'énergie totalement désordonnée, ne se propageant pas dans le vide mais seulement. à travers les corps matériels, par une transmission de proche en proche (conduction) ou emportée par un fluide en mouvement ( convecti on ). Lorsqu'on veut refroidir un four thermique sans qu'il soit possible d'en ouvrir la porte, ce qui est un cas courant, on attend en général qu'il refroidisse peu à peu par conduction eu fait que son cal ori f ugeage n'est pas parfait, ce qui nécessite un temps très long. On peut accélérer le processus par divers artifices, notamment en provoquant un courant de gaz de composition contrôlée à l 'intérieur de l 'enceinte, ce qui fait intevernir une évacuation par convection. Mais le temps de refroidissement reste généralement beaucoup plus long qu'on le souhai terait.The present invention relates to all cases where an energy, of whatever nature, confined in a sealed enclosure possibly isolated from the outside, can be transformed into radiant energy, either that it is thus transformed spontaneously, or '' it may be induced to do so by any known means. An interesting particular case is that of heat, or thermal energy, confined for example in an atmosphere of controlled composition in a sealed oven. Heat is a totally disordered form of energy, not propagating in a vacuum but only. through the material bodies, by a transmission from near to close (conduction) or carried by a moving fluid (convection). When we want to cool a thermal oven without it being possible to open the door, which is a common case, we generally expect it to cool gradually by conduction after its cal ori f ugeage n is not perfect, which requires a very long time. The process can be speeded up by various devices, in particular by causing a flow of gas of controlled composition inside the enclosure, which causes evacuation by convection. But the cooling time generally remains much longer than one would like.
La présente invention permet de surmonter cette difficulté et, à cette fin, a pour objet un procédé pour exploiter et évacuer de l'énergie notamment thermique confinée dans une enceinte étanche, caractérisé en ce que l'on opère cette évacuation par voie de rayonnement et que, de prëfëren ce, on récupère ce rayonnement en vue d'une réutilisation.The present invention overcomes this difficulty and, for this purpose, relates to a method for exploiting and discharging energy, in particular thermal energy confined in a sealed enclosure, characterized in that this evacuation is carried out by radiation and that, preferably, this radiation is recovered with a view to re-use.
Selon l'invention, ce Drocédé est également caractérisé en ce que l 'on combine, en association avec l'enceinte, d'une part au moins un vitrage qui contribue à assurer son étanchéité, qui est apte à résister aux conditions internes propres à l'enceinte en activité notamment de température, de pression, de corrosion et qui est transparent pour un ensemble de longueurs d'onde du rayonnement incluant celles évacuant l'énergie, ces fonctions pouvant être assumées par plu sieurs vitrages se relayant successivement pour transmettre les rayonnements évacuant l 'énergie, la résistance de chacun de ces vitrages étant alors adaptée aux conditions internes propres à l 'enceinte telles qu'elles se modifient au fur et à mesure de l 'évacuation et d'autre part, au moins une paroi isolante amovible que l 'on place en regard du vitrage pour empêcher l 'évacuation de l 'énergie pendant la période de confinement et que l'on retire au moment de l 'évacuation.According to the invention, this Drocédé is also characterized in that one combines, in association with the enclosure, on the one hand at least one glazing which contributes to ensuring its sealing, which is able to withstand the internal conditions specific to the enclosure in activity in particular of temperature, pressure, corrosion and which is transparent for a set of wavelengths of the radiation including those evacuating energy, these functions being able to be assumed by several panes of glass successively taking turns to transmit the radiation evacuating energy, the resistance of each of these glazings then being adapted to the internal conditions specific to the enclosure such that they change as the evacuation takes place and on the other hand, at least one insulating wall removable which is placed opposite the glazing to prevent the evacuation of energy during the confinement period and which is removed at the time of evacuation.
L'invention concerne aussi une installation pour la mise en oeuvre du procédé ci -dessus, caractérisée en ce qu'elle comprend en combinaison une enceinte dans laquelle une fenêtre est ménagée, au moins un vitrage qui doit être placé contre la fenêtre de manière étanche et qui est transparent à un ensemble de longueurs d'onde incluant celles qui correspondent aux rayonnements évacuant l 'énergie et du moins une paroi isolante soit interne, soit externe mobile entre une position active dans laquelle elle est placée en renard du vitrage peur s'opposer au passage du rayonnement et une position inactive dans laquelle elle est écartée du vitrage pour libérer le passage du rayonnement. Dans un four thermique, par exemple, il se produit un échange continuel entre chaleur et rayonnement, entre énergie thermique et énergie rayonnante, les matériaux absorbant le rayonnement et le tranformant en chaleur, puis réemettant du rayonnement, et ainsi de suite. Le procédé et les installations selon l'invention, dans cet exemple, rompent cet échange continuel en mettant en action un ensemble de panneaux transparents aux rayonnements produits dans le four lorsque le moment du refroidissement est arrivé. Les conditions dans lesquelles se présente le problème, notamment dans le cas de fours à températures tant soit peu élevée, le rend complexe, et il n'a pas été imaginé de solution valable dans cette voie jusqu'alors.The invention also relates to an installation for implementing the above process, characterized in that it comprises in combination an enclosure in which a window is provided, at least one glazing which must be placed against the window in a sealed manner and which is transparent to a set of wavelengths including those which correspond to radiation discharging energy and at least one insulating wall, either internal or external, movable between an active position in which it is placed as a fox of the glazing for fear oppose the passage of radiation and an inactive position in which it is spaced from the glazing to free the passage of radiation. In a thermal oven, for example, there is a continuous exchange between heat and radiation, between thermal energy and radiant energy, the materials absorbing the radiation and transforming it into heat, then re-emitting radiation, and so on. The method and the installations according to the invention, in this example, break this continuous exchange by activating a set of panels transparent to the radiation produced in the oven when the time for cooling has arrived. The conditions in which the problem presents itself, in particular in the case of ovens at any temperature, makes it complex, and no valid solution has been imagined in this way until now.
L'invention sera bien comprise par la description détaillée ci -après, faite en référence au dessin annexé. Bien entendu, la description et le dessin ne sont donnés qu'à titre d'exemple indicatif et non limitatif.The invention will be better understood from the detailed description below, made with reference to the accompanying drawing. Of course, the description and the drawing are given only by way of an indicative and nonlimiting example.
La figure unique du dessin représente, schématiquement, en coupe, une enceinte conforme à l 'invention. II est supposé, préalablement, que l'énergie confinée dans l 'enceinte étanche se transforme, au roins partiellement, en énergie rayonnante, soit spontanément, soit par l ' in tervention de tout moyen connu. Par exemple, dans le cas particulier, mentionné ci-dessus, d'un four thermique, l 'énergie se transforme spontanément en rayonnement infrarouge par un phénomène d'émission, la répartition de l 'énergie rayonnée dans les diverses longueurs d'onde d'émission se faisant en fonction de la température, selon la loi de Planck pour le "corps-noir" ou "radiateur intégral" et selon une loi approchée particulière pour chaque corps absorbant. Plus la température est élevée, plus les longueurs d'onde d'émission sont courtes et inversement. Dans l'enceinte du four, dont les parois sont constituées en général de matériaux réfractaires absorbants, le rayonnement infrarouge émis est continuellement réabsorbé puis réémis, en sorte que l 'énergie ne fait que se transformer sans cesse de la forme calorifique en la forme rayonnante et réciproquement.The single figure of the drawing represents, diagrammatically, in section, an enclosure according to the invention. It is assumed, beforehand, that the energy confined in the sealed enclosure is transformed, at least partially, into radiant energy, either spontaneously or by the intervention of any known means. For example, in the particular case, mentioned above, of a thermal oven, the energy spontaneously transforms into infrared radiation by an emission phenomenon, the distribution of the radiated energy in the various wavelengths d emission taking place as a function of temperature, according to Planck's law for the "black body" or "integral radiator" and according to a particular approximate law for each absorbent body. The higher the temperature, the shorter the emission wavelengths and vice versa. In the oven enclosure, the walls of which generally consist of absorbent refractory materials, the infrared radiation emitted is continuously reabsorbed and then re-emitted, so that the energy is constantly changing from the heat form in the radiant form and vice versa.
Selon d'autre caractéristiques de l'invention :According to other characteristics of the invention:
- le vitrage 4-5 et la paroi isolante 7 constituent une double porte susceptible de masquer et de démasquer la fenêtre 3 ;- the glazing 4-5 and the insulating wall 7 constitute a double door capable of masking and unmasking the window 3;
- les parois intérieures 2a-2b de l 'enceinte 1 adjacentes à celle qui comprend la fenêtre 3 sont inclinées au moins partiellement par rapport à l'axe moyen x normal au plan de cette fenêtre 3 en formant avec celui-ci des angles aigus;- The interior walls 2a-2b of the enclosure 1 adjacent to that which comprises the window 3 are inclined at least partially with respect to the mean axis x normal to the plane of this window 3, forming with it acute angles;
- les parois intérieurs de l 'enceinte 2a-2b adjacentes à celles qui comprend la fenêtre 3 sont, au moins en partie, dotées de sillons 12 dont la direction est parallèle à l'axe moyen normal au plan de la fenêtre 3 ;- The interior walls of the enclosure 2a-2b adjacent to those which comprises the window 3 are, at least in part, provided with grooves 12 whose direction is parallel to the mean axis normal to the plane of the window 3;
- le vitrage est en v e r r e de silice; - l'installation comprend au moins deux vitrage mobiles 4 et 5 susceptibles d'être individuellement placés en regard de la fenêtre 3 et retirés afin de s ' y trouver soit ensemble soit séparément:- the glazing is made of silica; - the installation comprises at least two movable glazing 4 and 5 which can be individually placed opposite window 3 and removed in order to be there either together or separately:
- le vitrage le plus proche de l 'enceinte 4 est appliqué de manière étanche contre le pourtour intérieur de la fenêtre 3 ;- the glazing closest to the enclosure 4 is applied in a sealed manner against the inner periphery of the window 3;
- les vitrages 4 et 5 sont séparés par un espace 6 dans lequel peut être établi, par tous moyen connus, un vide maintenant le premier vitrage 4 appliqué contre le pourtour de la fenêtre 3 , un joint élastique étant éventuellement placé entre ce vitrage 4 et ce pourtour.the glazing 4 and 5 are separated by a space 6 in which can be established, by any known means, a vacuum maintaining the first glazing 4 applied against the periphery of the window 3, an elastic seal possibly being placed between this glazing 4 and this perimeter.
C'est pour mettre un terme à l 'échange réciproque de la forme calorifique en la forme rayonnante et pour permettre une évacuation du rayonnement par voie de transmission optique que, selon une αes principales caractéristiques de l'invention, une partie au moins des parois isolantes de l 'encein te est amovible et, en position inactive, démasque un vitrage transparent pour les longueurs d'onde du rayonnement à évacuer. Celui-ci n'est alors plus absorbé mais transmis vers l 'extérieur au fur et à mesure de son émission par l 'enceinte. L'étanchéité est par contre maintenue par ce vitrage, dont le matériau est choisi en outre pour résister aux conditions in ternes propres à l 'enceinte en activité, de température, de pression, d'action corrosive, etc... Lorsqu'un seul ma¬ tériau ne peut assumer toutes ces fonctions (ce qui est souvent le cas), on met en oeuvre plusieurs vitrages qui se relaient en les écartant successivement pour assumer les fonctions d'étanchéité et d'évacuation des rayonnements dans des bandes de longueurs d'onde successives, en résistant chacun aux conditions internes telles qu'elles se modifient au fur et à mesure de l 'évacuation.It is to put an end to the reciprocal exchange of the calorific form in the radiating form and to allow the radiation to be removed by optical transmission that, according to one of the main characteristics of the invention, at least part of the walls The insulating enclosure is removable and, in the inactive position, unmasks transparent glazing for the wavelengths of the radiation to be removed. It is no longer absorbed but transmitted to the outside as it is emitted by the enclosure. Tightness is however maintained by this glazing, the material of which is also chosen to withstand the conditions in dull specific to the enclosure activity, temperature, pressure, corrosive, etc ... If only my ¬ terial can not assume all these functions (which is often the case), is implemented several glazings which take turns, spreading them successively to assume the functions of sealing and evacuation of the radiation in bands of successive wavelengths, each resisting the internal conditions such that they change as and when evacuation.
Dans le cas particulier d'un four thermique, il s'agit d'évacuer l 'énergie thermique pour refroidir le four depuis une température T^ jusαu'à une température T2- A la température T 1 , l 'enceinte rayonne dans une certaine bande de lon¬ gueurs d'onde, et, à la temoérature T 2 , plus basse, dans une autre bande de longueurs d'onde plus longues. Par exemple, pour T 1=700°C (soit 973°K), l 'émission de rayonnements infrarouges s'opère entre environ 1,5 μ et 10 μ , le maximum d'énergie rayonnante émise se situant vers 3 μ ; et pour T 2 = 200°C (soit 473 °K), l 'émission s'opère entre environ 2,5,u et 18 μ avec un maximum vers 6,5 μ .In the particular case of a thermal oven, it is a question of evacuating the thermal energy to cool the oven from a temperature T ^ jusαu 'to a temperature T2- At the temperature T 1 , the enclosure radiates in a certain band lon ¬ gueurs wave, and at the temoérature T 2, Lowest in another wavelength band longer. For example, for T 1 = 700 ° C (or 973 ° K), the emission of infrared radiation takes place between approximately 1.5 μ and 10 μ, the maximum radiant energy emitted being around 3 μ; and for T 2 = 200 ° C (ie 473 ° K), the emission takes place between approximately 2.5, u and 18 μ with a maximum towards 6.5 μ.
En se reportant au dessin, on voit un schéma en coupe verticale d'une installation selon l 'invention relative à un exemple particulier de four thermique. L'enceinte 1 est entourée de parois telles que 2, isolantes et plus ou moins absorbantes, dans l 'une desquelles est ménagée une fenêtre 3 dotée ici de deux vitrages 4 et 5 séparés par un espace 6, cette fenêtre 3 étant totalement obturée par une portion 7 de paroi isolante pendant la durée d'activité de l 'enceinte 1 (position représentée en traits pointillés).Referring to the drawing, a diagram is seen in vertical section of an installation according to the invention relating to a particular example of a thermal oven. The enclosure 1 is surrounded by walls such as 2, insulating and more or less absorbent, in one of which is formed a window 3 here provided with two glazing 4 and 5 separated by a space 6, this window 3 being completely closed by a portion 7 of insulating wall during the duration of activity of the enclosure 1 (position shown in dotted lines).
La portion de paroi 7, est mobile autour d'un axe 8. Quand on désire refroidir l 'enceinte 1, on la place en position d 'effacement telle que représentée en traits pleins. Ainsi, on démasque les vitrages 4 et 5 qui sont ainsi mis en mesure de jouer leur rôle d'évacuation par transmission optique .The wall portion 7 is movable around an axis 8. When it is desired to cool the enclosure 1, it is placed in the erasing position as shown in solid lines. Thus, the windows 4 and 5 are unmasked, which are thus able to play their role of evacuation by optical transmission.
Le premier vitrage 4 est appliqué de manière étanche, Le premier vitrage 4 est appliqué de manière étanche,de l'intérieur, par tout son pourtour contre le cadre de la fenêtre 3 formant un épaulement 9; il est monté coulissant parallèlement à son plan. Dans l'exemple représenté, la température T 1 du four en activité est supposée de l'ordre de 1500° C ou 1600° C, et la température T 2 à laquelle on désire parvenir est de l'ordre de la température ambiante, par exemple 20° C. Le premier vitrage 4 est en v e r re de silice, matériau qui ne commence à se ramollir qu'au dessus de 1700° C, et qui est transparent pour les longueurs d'onde allant de 0,2 à 4,5μ environ. Ce vitrage 4 évacue efficacement les rayonnements émis par l 'enceinte 1 à 1500º oυ 1600° jusqu'à ceux qu'elle émet en refroidissant v e rs 450°/400°. Pour refroidir l'enceinte 1 au-dessous de 400°, il est fait appel à un deuxième vitrage 5 constitué, par exemple, de chlorure d'argent ou cérargyrite. matériau qui résiste jusqu'à une température atteignant 450° et qui est transparent pour les longueurs d'onde allant de 0,4 à 15-20μ environ. Le chlorure d'argent ne peut pas, être poli mais peut être moulé en dimensions relativement grandes; il est peu fragile et d'un prix relativement modeste. Ce mat'ériau peut évacuer les rayonnements émis par l 'enceinte 1 jusqu'à ce que sa température interne rejoigne la température ambiante, par exemple de l 'ordre de 20°.The first glazing 4 is applied in a sealed manner, The first glazing 4 is applied in a sealed manner, from the inside, by its entire periphery against the window frame 3 forming a shoulder 9; it is slidably mounted parallel to its plane. In the example shown, the temperature T 1 of the active furnace is assumed to be of the order of 1500 ° C or 1600 ° C, and the temperature T 2 which it is desired to achieve is of the order of room temperature, for example 20 ° C. The first glazing 4 is made of silica glass, a material which begins to soften only above 1700 ° C., and which is transparent for wavelengths ranging from 0.2 to 4, 5μ approximately. This glazing 4 efficiently removes the radiation emitted by the enclosure 1 at 1500 ° or 1600 ° until it emits by cooling to 450 ° / 400 °. To cool the enclosure 1 below 400 °, use is made of a second glazing 5 consisting, for example, of silver chloride or cerargyrite. material which resists up to a temperature reaching 450 ° and which is transparent for wavelengths ranging from 0.4 to 15-20 μ approximately. Silver chloride cannot be polished, but can be molded in relatively large dimensions; it is not very fragile and of a relatively modest price. This material can evacuate the radiation emitted by the enclosure 1 until its internal temperature reaches ambient temperature, for example of the order of 20 °.
Comme le chlorure d'argent peut évacuer, aussi, les rayonnements émis depuis la température T 1, de l'ordre de 1.500°, ce deuxième vitrage 5 peut occuper sa position active pendant l 'évacuation impartie au premier vitrage 4 sans gêner celle-ci. Il est appliqué de l 'extérieur par tout son pourtour, de manière étanche, contre l 'épaulement 9 du cadre de la fenêtre 3. Un vide aussi poussé qu'on le peut ou un courant d'air en dépression est maintenu dans l'espace d'isolation 6, afin de contribuer à protéger ce deuxième vitrage 5 contre des élévations de température qu'il ne pourrait supporter, et aussi afin de parfaire l'étanchêité de l'enceinte 1 en pressant le premier vitrage 4 contre le cadre de la fenêtre 3.As the silver chloride can evacuate, also, the radiations emitted since the temperature T 1 , of the order of 1,500 °, this second glazing 5 can occupy its active position during the evacuation imparted to the first glazing 4 without interfering with it. this. It is applied from the outside by its entire circumference, in a sealed manner, against the shoulder 9 of the window frame 3. A vacuum as high as possible or a current air in depression is maintained in the insulation space 6, in order to help protect this second glazing 5 against temperature rises that it could not withstand, and also in order to perfect the seal of the enclosure 1 by pressing the first glazing 4 against the window frame 3.
Lorsque la température interne de l'enceinte 1 s'abaisse jusqu'à 450°-400°, on supprime la dépression barométrique ou le courant d'air en dépression dans l'espace 6, ce qui aide à libérer le premier vitrage.4 de son adhérence au cadre de la fenêtre 3, et on fait coulisser ce vitrage 4 dans une gaine étanche et is'olante 10 ménagée en saillie à l'extérieur de l'enceinte jusqu'à ce qu'il se trouve entièrement hors du contour de la fenêtre 3. Le second vitrage 5 est ainsi mis en mesure de jouer le rôle d'évacuation qui lui est imparti. On le maintient, par tout moyen connu, appli que de manière étanche contre l 'épaulement 9 du cadre de la fenêtre 3. avant de supprimer la dépression barométrique dans l'espace 6.When the internal temperature of enclosure 1 drops to 450 ° -400 °, the barometric depression or the air stream in depression in space 6 is eliminated, which helps to release the first glazing. 4 of its adhesion to the frame of the window 3, and this glazing 4 is made to slide in a sealed and insulating sheath 10 made projecting outside the enclosure until it is entirely outside the contour window 3. The second glazing 5 is thus able to play the evacuation role which is assigned to it. It is kept, by any known means, applied only in a sealed manner against the shoulder 9 of the window frame 3. before removing the barometric depression in space 6.
Le second vitrage 5 peut, dans ce même exemple, être constitué de tout matériau optique transparent pour un intervalle de longueurs d'onde incluant le bande passante deThe second glazing 5 can, in this same example, be made of any transparent optical material for a range of wavelengths including the passband of
2 μ à 13 μ environ requise pour évacuer les rayonnements émis de 400° à 20°C, et capables de résister a des températures de l'ordre d'au moins 400°. Par exemple, le sulfure de cadmium ou greenockite Cd S (trancparent de 0,5 à 15μ , résistant jusqu'à 900ºc), le chlorure de sodium ou sel gemme N.a C12 μ to approximately 13 μ required to evacuate the radiation emitted from 400 ° to 20 ° C, and capable of withstanding temperatures of the order of at least 400 °. For example, cadmium sulfide or greenockite Cd S (transparent from 0.5 to 15μ, resistant up to 900ºc), sodium chloride or rock salt N.a C1
(0 ,2 à 16 μ, 800°), le chlorure de potassium ou sylvine K C1(0.2 to 16 μ, 800 °), potassium chloride or sylvine K C1
(0 ,2 à 25μ , 750°) le bromure de potassium KBr (0,25 à 35 μ , 700°), l'iodure de potassium Kl (0,4 à 40μ, 700°), le bromure de césium Cs Br (0,2 à 50μ , 620°), l'ioaure de césium Cs I (0,25 à 70 μ, 600°); à la rigueur, le bromoiodure de thallium ou KRS-5, TIBr, Tll, qui se transmet de 0,5 à 40 μ mais dont le point de fusion se situe très peu au-dessus de(0.2 to 25 μ, 750 °) potassium bromide KBr (0.25 to 35 μ, 700 °), potassium iodide Kl (0.4 to 40 μ, 700 °), cesium bromide Cs Br (0.2 to 50μ, 620 °), cesium ioaur Cs I (0.25 to 70 μ, 600 °); if necessary, thallium bromoiodide or KRS-5, TIBr, Tll, which is transmitted from 0.5 to 40 μ but whose melting point is very little above
400° (414,5º); ou encore, le fluorure de Baryum Ba F 2, dont le point de fusion est élevé (1280°) mais qui ne transmet que de 0,15 à 12 μ, ce qui permet de descendre vers 50°C400 ° (414.5º); or again, barium fluoride Ba F 2 , whose melting point is high (1280 °) but which does not transmit from 0.15 to 12 μ, which makes it possible to go down to around 50 ° C
Ces divers matériaux, dont la liste n'est nullement limitative, sont dans le même cas que le chlorure d'argent cité en exemple (non préférentiel) dans la description cidessus. Ce sont des matériaux ne résistant pas à la température T 1 de l'ordre de 1500/1600° fixée dans l 'exemple exposé, mais dont la bande de transmission spectrale, choisie pour évacuer les rayonnements produits de 400° à 20°, permet aussi l 'évacuation depuis 1500/1600°. Dans ce cas, le deuxième vitrage peut être maintenu dans sa position active pendant l 'évacuation impartie au premier vitrage, lequel protège le deuxième contre la température trop élevée du four. Il n'en va pas de même avec d'autres matériaux qu'on peut utiliser pour le deuxième vitrage 5, comme l 'arséniure de gallium GaAs (2 à 15 μ , 1200°), le phosphure d'indium InP (2 à 13μ , 1000°), le v err e fritte au sulfure de zinc ou Irtran-2 (2-à 13 μ , 800°)... La bande de transmission de ces matériaux ne leur permet d'évacuer efficacement l 'énergi e rayonnahte qu'à partir de 500° à 400° environ. Lorsqu'on les emploie, on retire le deuxième vitrage 5 pendant la première phase d'évacuation de 1500°/1600° à 400° impartie au premier vitrage 4. Par exemple, on fait pivoter le deuxième vitrage autour d'un axe 11 jusqu'à une position d'effacement (non représentée sur le dessin). A la fin de la première phase d'évacuation, on ramène le deuxième vitrage 5 en position active et on le maintient appliqué de mani ère étanche contre l 'épaul ement 9 du cadre de la fenêtre 3. Lorsque la température interne de l 'enceinte 1 a atteint le plus bas niveau souhaité, on peut, si on le désire, retirer de nouveau le deuxième vitrage 5, ce qui a pour effet d'ouvrir la fenêtre 3 à l'air libre.These various materials, the list of which is by no means exhaustive, are in the same case as the silver chloride cited as an example (not preferential) in the description above. These are materials which do not withstand the temperature T 1 of the order of 1500/1600 ° fixed in the example exposed, but whose spectral transmission band, chosen to evacuate the radiation produced from 400 ° to 20 °, allows also evacuation from 1500/1600 °. In this case, the second glazing can be kept in its active position during the evacuation imparted to the first glazing, which protects the second against the excessively high temperature of the oven. It is not the same with other materials that can be used for the second glazing 5, such as gallium arsenide GaAs (2 to 15 μ, 1200 °), indium phosphide InP (2 to 13μ, 1000 °), ver err e sintered with zinc sulfide or Irtran-2 (2 to 13 μ, 800 °) ... The transmission band of these materials does not allow them to efficiently dissipate the energy rayonnahte only from around 500 ° to 400 °. When they are used, the second glazing 5 is removed during the first evacuation phase from 1500 ° / 1600 ° to 400 ° imparted to the first glazing 4. For example, the second glazing is pivoted about an axis 11 until 'at an erasing position (not shown in the drawing). At the end of the first evacuation phase, the second glazing 5 is brought back to the active position and it is kept applied in a sealed manner against the shoulder 9 of the window frame 3. When the internal temperature of the enclosure 1 has reached the lowest desired level, it is possible, if desired, to remove the second glazing 5 again, which has the effect of opening the window 3 to the open air.
Quant au matériau constituant le premier vitrage 4, le v e r re de silice, matériau de fabrication courants même en grandes dimensions, de prix assez peu élevé, résistant, il est optimal pour la mise en oeuvre de l'invention dans les fours thermiques. On peut toutefois dans certains cas faire appel à d'autres matériaux, par exemple: l 'oxyde de magné sium ou périclase, Mg 0 existant aussi en matériau fritté transmettant de 0,25 à 8,5μ , résistant jusqu'à 2.800 ° et permettant d'évacuer l'énerqie rayonnante au moins dans la première phase en refroidissant l 'enceinte 1 jusqu'à 200° à 150° environ; l 'alumine ou corindon Al 203 0,2 à 6μ, 2000° à 300/250°); le titanate de baryum Ba Ti 03, qui existe sous forme de céramique (0,5 à 7μ , 1600° à 250°). Lorsque la température T 1 du four en activité est de l 'ordre de 1300° au plus, on utilise le fluorure de calcium ou fluorine Ca F2 (0,13 à 9/10μ , 1300° à 150°/100°). Pour une température T 1 de l 'ordre de 1100° au plus, le fluorure de cadmium Cd F2 (0,2 à 10μ , 1100° à 100°), avec alors la possibilité d'utiliser pour le deuxième vitrage 5 le v e r r e de pentaséléniure d'arsenic As2 Ses (2 à 18μ , 100° à 20°). Pour une température T 1 = 950° au plus, le fluorure de sodium ou villiaumite NaF (0.2 à 10 μ, 950° à 100°) avec possibilité de relais par le pentasél éniure d'arsenic. Pour une température T 1 = 850° au plus, le fluorure de lithium Li F (0,2 à 6 μ , 850° à 300°/250°). On peut aussi, selon l 'invention, mettre en oeuvre un seul matériau pour constituer le vitrage transparent évacuateur, dans tous les cas où la température T 1 du four en activité n'atteint pas la température de ramolissement ou de transformation de ce matériau et où la bande passante transmise inclut tous les rayonnements émis substantiellement entre la température T 1 et la température T 2 la plus basse qu'on veut atteindre. Tous les matériaux cités, de manière non limitative, dans la présente description, peuvent convenir dans les limites qui leur sont propres. On peut enfin, selon l'invention, mettre en oeuvre trois vitrages ou davantage. Dans l 'exemple exposé plus haut du four thermique avec une température T 1 = 1500° à 1600° et une température T 2 = 20°, on peut mettre en oeuvre successivement : - un premier vitrage de v e r re de silice (0,2 à 4,5 μ, 1600° à 400° environ); - un deuxième vitrage en v e r r e à l 'oxyde de germanium ou VIR-3 (0,3 à 6μ , 450° à 300°/250°), ou en ve rre fritté au fluorure de madnesium ou Irtran-1 (1 à 7μ ; 1350° à 250°/200°);As for the material constituting the first glazing 4, the silica glass, common manufacturing material even in large dimensions, of relatively low price, resistant, it is optimal for the implementation of the invention in thermal ovens. However, in certain cases, other materials can be used, for example: magnesium oxide sium or periclase, Mg 0 also existing in sintered material transmitting from 0.25 to 8.5μ, resistant up to 2,800 ° and allowing the radiating energy to be evacuated at least in the first phase by cooling the enclosure 1 to at 200 ° to 150 ° approximately; alumina or corundum Al 2 0 3 0.2 to 6μ, 2000 ° to 300/250 °); barium titanate Ba Ti 0 3 , which exists in the form of ceramic (0.5 to 7μ, 1600 ° to 250 °). When the temperature T 1 of the active furnace is of the order of at most 1300 °, calcium fluoride or fluorite Ca F 2 is used (0.13 to 9 / 10μ, 1300 ° to 150 ° / 100 °). For a temperature T 1 of the order of 1100 ° at most, cadmium fluoride Cd F 2 (0.2 to 10μ, 1100 ° to 100 °), with the possibility of using glass for the second glazing 5 of arsenic pentaselenide As 2 Ses (2 to 18μ, 100 ° to 20 °). For a temperature T 1 = 950 ° at most, sodium fluoride or villiaumite NaF (0.2 to 10 μ, 950 ° to 100 °) with the possibility of relay by the pentasel arsenic eniide. For a temperature T 1 = 850 ° at most, lithium fluoride Li F (0.2 to 6 μ, 850 ° to 300 ° / 250 °). It is also possible, according to the invention, to use a single material to constitute the transparent evacuating glazing, in all cases where the temperature T 1 of the active furnace does not reach the softening or transformation temperature of this material and where the transmitted bandwidth includes all the radiations emitted substantially between the temperature T 1 and the lowest temperature T 2 which it is desired to reach. All the materials cited, without limitation, in the present description, may be suitable within the limits which are specific to them. Finally, according to the invention, it is possible to use three or more glazings. In the example described above of the thermal oven with a temperature T 1 = 1500 ° to 1600 ° and a temperature T 2 = 20 °, it is possible to use successively: - a first glazing of silica glass (0.2 at 4.5 μ, approximately 1600 ° to 400 °); - a second glazing in glass with germanium oxide or VIR-3 (0.3 to 6μ, 450 ° to 300 ° / 250 °), or in sintered glass with madnesium fluoride or Irtran-1 (1 to 7μ; 1350 ° to 250 ° / 200 °);
- un troisième vitrage en verre de trisulfure d 'arsenic (0,6 à 10μ ; 200° à 100°), ou en sélénium amorphe (1 à 25μ ; 220° à 20°), ou encore d'un verre fritte au sulfure de zinc ou Irtran-2 (2 à 13μ ; 800° à 30°/20°). Eventuel 1 ement, un quatrième vitrage peut être mis en oeuvre, par exemple en verre au pentasêl ëni ure d'arsenic (2 à 18 μ, 100° à20°).- a third glazing in arsenic trisulphide glass (0.6 to 10μ; 200 ° to 100 °), or in amorphous selenium (1 to 25μ; 220 ° to 20 °), or a sintered glass with sulphide zinc or Irtran-2 (2 to 13μ; 800 ° to 30 ° / 20 °). Optionally 1 ement, a fourth glazing can be implemented, for example glass pentasêl ëni ure arsenic (2 to 18 μ, 100 ° to 20 °).
On peut faciliter les raccordements entre les intervalles successifs des températures acceptables, en refroidissant extérieurement tel ou tel vitrage selon les cas. Les conditions d'effacement et de mise en action sont celles qui ont été décrites pour la combinaison de deux vitrages.It is possible to facilitate the connections between the successive intervals of the acceptable temperatures, by cooling externally such or such glazing according to the cases. The erasure and activation conditions are those which have been described for the combination of two panes.
Sur le dessin, la portion amovible de paroi isolante 7, ainsi que le deuxième vitrage transparent 5, ont été représentés pivotant autour d'axes horizontaux 8 et 11, parce que cette disposition est la plus commode à représenter en coupe verticale. Les axes de rotation peuvent.de préférence être verticaux et la portion amovible de paroi isolante 7 ainsi que le deuxième vitrage transparent 5 peuvent constituer la porte même du four, sous la forme d'une double porte s'ouvrant et se fermant latéralement comme c'est le cas habituellement. Afin de faciliter l 'évacuation des rayonnements émis dans l'enceinte 1, les parois intérieures telles que 2a et 2b qui sont adjacentes par rapport à la paroi qui comprend la fenêtre 3, sont inclinées par rapport à l 'axe moyen x normal à cette fenêtre en formant avec le plan de celle-ci des angles aigus. De cette manière, les rayonnements émis par ces parois sont, en moyenne, dirigés plus directement vers la fenêtre 3. En outre, pour favoriser encore l 'évacuation des rayonnements et augmenter la surface éraissive, les parois telles que 2aet 2b, sont, au moins en partie, dotées de sillons non représentés mais dont la situation est figurée en pointillé en 12, creusés selon des directions se rapprochant le plus possible de celle de l 'axe moyen x de la fenêtre 3; et ces parois, avec leurs sillons, ainsi que la paroi 2c opposée à la fenêtre sont éventuellement dotés de petits reliefs et de petits creux ou d'une structure granulaire.In the drawing, the removable insulating wall portion 7, as well as the second transparent glazing 5, have been shown pivoting around horizontal axes 8 and 11, because this arrangement is the most convenient to represent in vertical section. The axes of rotation can preferably be vertical and the removable insulating wall portion 7 as well as the second transparent glazing 5 can constitute the door of the oven itself, in the form of a double door opening and closing laterally as c is usually the case. In order to facilitate the evacuation of the radiation emitted in the enclosure 1, the interior walls such as 2a and 2b which are adjacent with respect to the wall which comprises the window 3, are inclined with respect to the mean axis x normal to this window by forming acute angles with the plane thereof. In this way, the radiations emitted by these walls are, on average, directed more directly towards the window 3. In addition, to further promote the evacuation of the radiations and increase the grating surface, the walls such as 2a and 2b, are, at less in part, with grooves not shown but whose situation is shown in dotted lines at 12, dug in directions as close as possible to that of the average axis x of window 3; and these walls, with their grooves, as well as the wall 2c opposite the window are possibly with small reliefs and small hollows or a granular structure.
Enfin, en vue de faciliter l'émission d'énergie rayonnante en fonction de la température du four, la surface intérieure de l 'enceinte 1 est soit constituée, soit revêtue d'une substance ayant des propriétés se rapprochant le plus possible de celles du "corps noir" ou "radiateur intégral".Finally, in order to facilitate the emission of radiant energy as a function of the temperature of the oven, the interior surface of the enclosure 1 is either made up or coated with a substance having properties which are as close as possible to those of the "black body" or "integral radiator".
Selon une caractéristique de l 'invention, l 'installation comprend un écran susceptible de s'opposer , au moins partiellement, à la transmission du rayonnement à travers la fenêtre, cet écran étant monté mobile entre une position active dans laquelle il peut occulter le rayonnement, et une position effacée dans laquelle il est inopérant, afin de pouvoir moduler l'évacuation du rayonnement hors de l 'enceinte. L'écran, ou grille, ou tout autre système optique modulateur (non représenté au dessin), peut être partiellement opaque et/ou partiellement réfléchissant vers l'intérieur de l'enceinte 1 pour les longueurs d'onde de rayonnement évacué. Cet écran (ou grille) peut être rendu mobile, par exemple par coulissement dans un logement prévu dans la gaine 10 ou dans l 'espace d'isolation 6.According to a characteristic of the invention, the installation comprises a screen capable of opposing, at least partially, the transmission of radiation through the window, this screen being mounted movable between an active position in which it can obscure the radiation. , and an erased position in which it is inoperative, in order to be able to modulate the evacuation of the radiation out of the enclosure. The screen, or grid, or any other modulating optical system (not shown in the drawing), may be partially opaque and / or partially reflecting towards the interior of the enclosure 1 for the wavelengths of radiation emitted. This screen (or grid) can be made mobile, for example by sliding in a housing provided in the sheath 10 or in the insulation space 6.
Ainsi l 'écran (ou grille) peut occuper une partie variable de la surface de la fenêtre 3 et moduler la transmission optique par laquelle s'opère l 'évacuation, soit pour l'augmenter soit pour la diminuer progressivement selon qu'au départ de son mouvement l 'écran (ou grille) occupe la surface de la fenêtre 3 ou se trouve, au contraire effacé. De manière plus générale, le système optique modulateur est rendu mobile ou variable par tout moyen approprié entre une position active et une position inactive afin de graduer et de moduler optiquement l 'évacuation de l'énergie rayonnante. Quant à la partie mobile 7 de la paroi isolante, stoρposant à l 'évacuation du rayonnement pendant la phase active de l'enceinte 1, elle peut être constituée des mêmes matériaux que les parois fixes 2 de cette enceinte 1. Elle peut aussi, selon une des caractéristiques de l 'invention, opérer son rôle de confinement par un moyen optique de sélection spectrale s'opposant à la transmission vers l'extérieur des rayonnements dans les bandes passantes correspondant à l'énergie émise, réémise ou produite dans l'enceinte 1. Ce moyen optique de sélection spectrale peut, par contre, permettre la transmission en sens inverse, vers l'enceinte 1, dans d'autres bandes passantes, de rayonnements cap tés à l'extérieur. C'est là une variante intéressante de l 'in vention, car l'installation assume alors une fonction de captation et de confinement lorsque la portion amovible 7 de paroi isolante obture la fenêtre 3 de l 'enceinte 1 et une fonction d'évacuation de l 'énergie confinée lorsque cette paroi isolante amovible 7 est effacée. Notamment, pour l 'exploitation de l 'énergie solaire rayonnante, l 'installation selon cette variante de l'invention constitue un four thermique chauffé puis refroidi optiquement par voie de rayonnement. La portion de paroi isolante amovible est, par exemple, en v e r re ordinaire, apte à l 'effet "de s e r r e ", éventuellement revêtu d'un traitement réfléchissant sélectif en couche mince d'oxyde d'étain ou d'indium. Elle peut aussi être constituée de tout matériau optique transparent entre 0,3 et 1,5 μ et s'opposant à la transmission au-dessus de 1,5μ environ. Le vitrage ou le système de vitrage évacuateur est un de ceux qui ont été décrits c idessus, sous la réserve qu'ils ne constituent pas un obstacle ou une gêne à la captation du rayonnement solaire dont la ban de passante se situe au sol entre 0,3 et 1,5 μ. Ceci est tout à fait impératif pour le vitrage assurant 1 ' étaπchéi té de la fenêtre 3 de l 'enceinte 1 en activité. Le v e r re de silice, choisi en bien des cas comme matériau optimal, convient à cet égard puisqu'il transmet les rayonnements oe 0,2 à 4,5 μPar contre, pour les autres éventuels vitrages évacuateurs venant en deuxième ou. en troisième position, on pourra les laisser devant la fen'être lorsαue leur bande de transmission spectrale inclut l'intervalle 0,3 à 1,5 μ , et on les écarte dans le cas contraire, en ne les plaçant en position active devant la fenêtre que lorsqu'ils ont à jouer, à leur tour, leur rôle évacuateur.Thus the screen (or grid) can occupy a variable part of the surface of window 3 and modulate the optical transmission by which the evacuation takes place, either to increase it or to decrease it progressively depending on whether at the start of its movement the screen (or grid) occupies the surface of window 3 or is, on the contrary erased. More generally, the optical modulator system is made mobile or variable by any appropriate means between an active position and an inactive position in order to optically scale and modulate the evacuation of radiant energy. As for the movable part 7 of the insulating wall, stoρposing to the evacuation of radiation during the active phase of the enclosure 1, it can be made of the same materials as the fixed walls 2 of this enclosure 1. It can also, according to one of the characteristics of the invention, operate its role of confinement by an optical means of spectral selection opposing the transmission towards the outside of the radiations in the passbands corresponding to the energy emitted, re-emitted or produced in enclosure 1. This optical spectral selection means can, on the other hand, allow transmission in the opposite direction, towards enclosure 1, in other bandwidths, of radiation picked up outside. This is an interesting variant of the invention, because the installation then assumes a capturing and confining function when the removable portion 7 of insulating wall closes the window 3 of the enclosure 1 and a discharge function of the energy confined when this removable insulating wall 7 is erased. In particular, for the exploitation of radiant solar energy, the installation according to this variant of the invention constitutes a thermal oven heated and then optically cooled by radiation. The portion of removable insulating wall is, for example, in ordinary glass, suitable for the "greenhouse" effect, possibly coated with a selective reflective treatment in a thin layer of tin or indium oxide. It can also be made of any transparent optical material between 0.3 and 1.5 μ and opposing transmission above about 1.5 μ. The glazing or the evacuating glazing system is one of those described above, with the proviso that they do not constitute an obstacle or a hindrance to the capture of solar radiation whose pass band is located on the ground between 0 , 3 and 1.5 μ. This is completely imperative for the glazing ensuring the etaπchéi t of the window 3 of the enclosure 1 in activity. The silica glass, chosen in many cases as the optimal material, is suitable in this respect since it transmits the radiation oe 0.2 to 4.5 μ On the other hand, for the other possible evacuating glazings coming in second or. in third position, we can leave them in front of the window when their spectral transmission band includes the interval 0.3 to 1.5 μ, and we discard them otherwise, by placing them in the active position in front of the window only when they have to play, in turn, their evacuating role.
Par ailleurs, il convient de protéger contre toute élévation de température dommageable le vitrage faisant fonction de portion de paroi isolante amovible, par exemple lorsqu'il est en verre ordinaire, éventuellement traité, ne résistant que jusqu'à une température de l'ordre de 550° C. On isole ce vitrage capteur du vitrage évacuateur par un espace dans lequel on produit un vide aussi poussé qu'on le peut, ou un courant d'air, voire un courant d'eau ou de liquide dont la bande passante de transmission spectrale est compatible, au moins approximativement, avec l 'intervalle 0,3 - 1,5 μ .Furthermore, it is advisable to protect against any damaging temperature rise the glazing acting as a portion of removable insulating wall, for example when it is made of ordinary glass, possibly treated, resistant only to a temperature of the order of 550 ° C. This sensor glazing is isolated from the evacuating glazing by a space in which a vacuum is produced as high as possible, or a current of air, or even a current of water or liquid whose bandwidth of spectral transmission is compatible, at least approximately, with the interval 0.3 - 1.5 μ.
Enfin, une installation selon l'invention apporte encore un avantage. En effet, lorsque l 'énergie confinée est évacuée lentement comme c'est le cas dans les installations connues jusqu'alors, il est pratiquement impossible de la récupérer ; elle se diffuse presque insensiblement . Notamment, lors du refroidissement lent d'un four thermique, dont il est exclu d'ouvrir la porte (le milieu interne du four devant demeurer confiné ), la chaleur évacuée est perdue. Au contraire, lorsque l'énergie est évacuée rapidement, comme c'est le cas dans une installation selon l 'invention, il devient possible de la réutiliser, d'autant plus que cette énergie est évacuée sous forme rayonnante et qu'il existe des capteurs-récepteurs pour cette forme d'énergie, dans les diverses gammes de longueurs d'onde. L'énergie rayonnante évacuée est reprise par un de ces capteurs soit directement, soit par l 'intermédiaire d'un système optique approprié. Une variante intéressante de récupération directe est la suivante : l 'énergie rayonnante évacuée par l'installation est directement reprise par une installation similaire lors de sa phase préliminaire d'activité pendant laquelle son enceinte commence par emmagasiner de l'énergie. Par exemple, dans le cas de fours thermiques, l'énergie rayonnante évacuée par un four lors de son refroidissement selon l 'invention est directement reprise par un autre four, froid, dans lequel on désire emmagasiner de l 'énergie thermique. A cet effet, en face du vitrage transparent en train d'évacuer l'énergie rayonnante du four en cours de refroidissement, dans une bande de longueurs d'onde donnée, et aussi près que possible de ce vitrage, on dispose le vitrage (ou le système de vitrages) transparent du four froid transmettant le rayonnement dans un intervalle incluant la même bande de longueurs, d'onde. Ce vitrage joue alors un rôle capteur, transmettant à l'enceinte du four froid une partie de l'énergie rayonnante évacuée du four chaud. Lorsque plusieurs vitrages transparents se relaient pour évacuer l'énergie rayonnante du four chaud, on veille, par un jeu adéquat de mises hors d'action et de mises en action des vitrages du four froid, à ce que la transmission ne soit pas entravée. On arrête l'opération lorsque les enceintes se sont mises dans l'équilibre optimal, en écartant l'une de l'autre les deux installations et en replaçant la paroi isolante amovible du four capteur en situation obturatrice de son système de vitrage transparent On réalise ainsi un pré-chauffage du four par une sorte de "bouche à bouche électromagnétique" permettant une récupération optique d'énergie. L'invention n'est pas limitée aux seuls modes de réalisation décrits et représenté mais en embrasse au contraire toutes les variantes.Finally, an installation according to the invention also provides an advantage. In fact, when the confined energy is evacuated slowly, as is the case in previously known installations, it is practically impossible to recover it; it diffuses almost imperceptibly. In particular, during the slow cooling of a thermal oven, the door of which cannot be opened (the internal environment of the oven having to remain confined), the evacuated heat is lost. On the contrary, when the energy is evacuated quickly, as is the case in an installation according to the invention, it becomes possible to reuse it, all the more since this energy is evacuated in radiant form and that there are sensor-receptors for this form of energy, in the various wavelength ranges. The radiated energy discharged is taken up by one of these sensors either directly or through an appropriate optical system. An interesting variant of direct recovery is as follows: the radiant energy discharged by the installation is directly taken up by a similar installation during its preliminary phase of activity during which its enclosure begins by storing energy. For example, in the case of thermal ovens, the radiant energy discharged by an oven during its cooling according to the invention is directly taken up by another oven, cold, in which it is desired to store thermal energy. For this purpose, in front of the transparent glazing in dissipating the radiant energy from the oven during cooling, in a given wavelength band, and as close as possible to this glazing, there is the transparent glazing (or glazing system) of the cold transmitting oven radiation in an interval including the same band of wavelengths. This glazing then plays a sensor role, transmitting to the enclosure of the cold oven part of the radiant energy discharged from the hot oven. When several transparent panes take turns to evacuate the radiant energy of the hot oven, care is taken, by an adequate set of deactivations and activations of the panes of the cold oven, that the transmission is not impeded. We stop the operation when the speakers are in optimal balance, moving the two installations away from each other and replacing the removable insulating wall of the sensor oven in the shutter position of its transparent glazing system. thus a preheating of the oven by a sort of "electromagnetic mouth to mouth" allowing an optical energy recovery. The invention is not limited to the single embodiments described and shown but on the contrary embraces all variants.
- -

Claims

REVENDICATIONS 1 - Procédé p^ur exploiter et évacuer de l 'énergie notammant thermioue confinée dans une enceinte étanche, caractérisé en ce que, l'on opère cette évacuation par voie de rayonnement et que, de préférence, on récupère ce rayonnement en vue d'une réutilisation. 2 - Procédé selon la revendication 1, caractérisé en ce que l'on combine en association avec l'enceinte, d'une part au moins un vitrage qui contribue à assurer son étanché ité, qui est apte à résister aux conditions internes propres à l 'enceinte en activité notamment de température, de pression, de corrosion et qui est transparent pour un ensemble de longueurs d'onde du rayonnement incluant celles évacuant l 'énergie, ces fonctions pouvant être assumées par plusieurs vitrages se relayant successivement pour transmettre les rayonnements évacuant l 'énergie, la résis tance de chacun de ces vitrages étant alors adaptée aux conditions internes propres à l 'enceinte telles qu'elles se modifie au fur et à mesure de l 'évacuation, et, d'autre part, au moins une paroi isolante amovible que l 'on place en regard du vitrage pour empêcher l 'évacuation de l 'éner gis pendant la période de confinement et que l 'on retire au moment ce l'évacuation. 3 - Installation, pour la mise en oeuvre du procédé selon l 'une quelconque des revendications 1 et 2 ci -dessus, caractérisée en ce qu'elle comprend en combinaison une enceinte (1) dans laquelle une fenêtre (3) est ménagée, au moins un vitrage (4-5) qui doit être placé contre la fenêtre (3) de manière étanche et qui est transparent à un ensemble de longueurs d'onde incluant celles qui correspondent aux rayonnements évacuant l 'énergie et au moins une paroi isolante (7) soit interne soit externe mobile entra une position active dans laquelle elle est placée en regard du vitrage (5) pour s'opposer au passage du rayonnement et une position inactive dans laquelle elle est écartée du vitrage (5) pour libérer le passage eu rayonnement. 4 - Installation selon la revendication 3, caractérisée en ce que le vitrage (4-5) et la paroi isolante (7) constituent une double porte susceptible de masquer et de démasquer la fenêtre (3). 5 - Installation selon la revendication 3, caractérisée en ce que les parois intérieures (2a-2b) de l'enceinte (1) adjacentes à celle qui comprend la fenêtre (3) sont inclinées au moins partiellement par rapport à l'axe moyen (x) normal au plan de cette fenêtre (3) en formant avec celui-ci des angles aigus.CLAIMS 1 - Process for exploiting and discharging energy, in particular thermally confined in a sealed enclosure, characterized in that, this evacuation is carried out by radiation and that, preferably, this radiation is recovered with a view to 'reuse. 2 - Method according to claim 1, characterized in that one combines in association with the enclosure, on the one hand at least one glazing which contributes to ensuring its tightness ity, which is able to withstand the internal conditions specific to the enclosure in activity in particular of temperature, pressure, corrosion and which is transparent for a whole of wavelengths of the radiation including those evacuating the energy, these functions being able to be assumed by several glazings taking turns successively to transmit the evacuating radiations the energy, the resistance of each of these glazings being then adapted to the internal conditions specific to the enclosure such that they change as the evacuation takes place, and, on the other hand, at least one wall removable insulation that is placed opposite the glazing to prevent the evacuation of the energy during the confinement period and that is removed at the time of this evacuation. 3 - Installation, for implementing the method according to any one of claims 1 and 2 above, characterized in that it comprises in combination an enclosure (1) in which a window (3) is provided, at at least one glazing (4-5) which must be placed against the window (3) in a leaktight manner and which is transparent to a set of wavelengths including those which correspond to radiation discharging energy and at least one insulating wall ( 7) either internal or external mobile entered an active position in which it is placed opposite the glazing (5) to oppose the passage of radiation and an inactive position in which it is spaced from the glazing (5) to free the passage eu radiation. 4 - Installation according to claim 3, characterized in that the glazing (4-5) and the insulating wall (7) constitute a double door capable of masking and unmasking the window (3). 5 - Installation according to claim 3, characterized in that the interior walls (2a-2b) of the enclosure (1) adjacent to that which comprises the window (3) are inclined at least partially relative to the mean axis ( x) normal to the plane of this window (3), forming acute angles with it.
6 - Installation selon la revendication 3, caractérisée en ce que les parois intérieures de l'enceinte (2a-2b) adjacentes à celle qui comprend la fenêtre (3) sont, au moins en par tie, dotées de sillons (12) dont la direction est parallèle à l'axe moyen normal au plan de la fenêtre (3).6 - Installation according to claim 3, characterized in that the interior walls of the enclosure (2a-2b) adjacent to that which comprises the window (3) are, at least in part, provided with grooves (12) whose direction is parallel to the normal axis normal to the plane of the window (3).
7 - Installation selon la revendication 3, caractérisée en ce que le vitrage (4) est en v e r re de silice.7 - Installation according to claim 3, characterized in that the glazing (4) is made of silica.
8 - Installation selon la reversai catîon 3, caractérisée en ce qu'elle comprend au moins deux vitrages mobiles (4-5) susceptibles d'être individuellement placés en regard de la fenêtre (3) et retirés afin de s'y trouver soit ensemble soit sé parement.8 - Installation according to the reverse catîon 3, characterized in that it comprises at least two movable glazings (4-5) capable of being individually placed opposite the window (3) and removed in order to be there either either separately.
9 - Installation selon la revendication 8, caractérisée en ce que le vitrage le plus proche de l'enceinte (4) est appliqué de manière étanche contre le pourtour intérieur de la fenêtre (3 ).9 - Installation according to claim 8, characterized in that the glazing closest to the enclosure (4) is applied in sealed manner against the inner periphery of the window (3).
10 - Installation selon la revendication 9, caractérisée en ce que les vitrages (4 et 5) sont séparés par un espace (6) dans lequel peut être établi, par tous moyens connus, un vide maintenant le premier vitraoe (4) appliqué contre le pourtour αe la fenêtre (3), u n joint élastique étant éventuellement placé entre ce vitrage (4) et ce pourtour10 - Installation according to claim 9, characterized in that the glazing (4 and 5) are separated by a space (6) in which can be established, by any known means, a vacuum maintaining the first stained glass (4) applied against the periphery of the window (3), an elastic seal possibly being placed between this glazing (4) and this periphery
11 - Installation selon la revendication 9 , caractérisée en ce que ledit vitrage (4) est monté coulissant parallèlement11 - Installation according to claim 9, characterized in that said glazing (4) is mounted to slide in parallel
12 - Installation selon l'une quelconque ces revendications 3 à 11 ci -dessus, caractérisée en ce qu'elle comprend au moins un écran susceptiole de s'opposer, au moins partiel lement a la transmission du rayonnement à travers la fenêtre (3), cet écran étant monté mobile entre u n e position active dans laquelle il peut occulter le rayonnement et une position effacée dans laquelle il est inopérant, afin de pouvoir moduler l 'évacuation du rayonnement hors dé l'enceinte (1) 12 - Installation according to any one of these claims 3 to 11 above, characterized in that it comprises at least one screen capable of opposing, at least partially the transmission of radiation through the window (3) , this screen being mounted movable between an active position in which it can obscure the radiation and a retracted position in which it is inoperative, in order to be able to modulate the discharge of the radiation outside the enclosure (1)
PCT/FR1981/000037 1980-03-14 1981-03-13 System for removing the energy confined within a housing WO1981002778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8005697A FR2478288A1 (en) 1980-03-14 1980-03-14 METHOD AND INSTALLATION FOR DISCHARGE OF RADIATION, IN PARTICULAR THERMAL ENERGY, BY RADIATION RADIATION IN A SEALED ENCLOSURE
FR8005697 1980-03-14

Publications (1)

Publication Number Publication Date
WO1981002778A1 true WO1981002778A1 (en) 1981-10-01

Family

ID=9239659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1981/000037 WO1981002778A1 (en) 1980-03-14 1981-03-13 System for removing the energy confined within a housing

Country Status (3)

Country Link
EP (1) EP0047282A1 (en)
FR (1) FR2478288A1 (en)
WO (1) WO1981002778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127791A1 (en) * 2019-12-26 2021-07-01 Synhelion Sa Receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR656887A (en) * 1928-07-02 1929-05-14 Fours Electr Soc Gen Des Self-closing sight glass and adjustable opening for ovens
GB699921A (en) * 1950-03-22 1953-11-18 Alois Vogt Improvements in or relating to cleaning observation windows in high vacuum chambers
GB1009657A (en) * 1962-11-07 1965-11-10 Heraeus Gmbh W C Inspection arrangement for vacuum installations
FR2321097A1 (en) * 1975-08-13 1977-03-11 Katz Solly IMPROVEMENT OF SOLAR ENERGY HEATING DEVICES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR656887A (en) * 1928-07-02 1929-05-14 Fours Electr Soc Gen Des Self-closing sight glass and adjustable opening for ovens
GB699921A (en) * 1950-03-22 1953-11-18 Alois Vogt Improvements in or relating to cleaning observation windows in high vacuum chambers
GB1009657A (en) * 1962-11-07 1965-11-10 Heraeus Gmbh W C Inspection arrangement for vacuum installations
FR2321097A1 (en) * 1975-08-13 1977-03-11 Katz Solly IMPROVEMENT OF SOLAR ENERGY HEATING DEVICES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127791A1 (en) * 2019-12-26 2021-07-01 Synhelion Sa Receiver

Also Published As

Publication number Publication date
EP0047282A1 (en) 1982-03-17
FR2478288A1 (en) 1981-09-18

Similar Documents

Publication Publication Date Title
JP4664562B2 (en) Thermal storage building elements for buildings
FR2988466A1 (en) SOLAR ENERGY SENSOR TRANSPARENT
EP0624051A1 (en) Microwave oven in particular for rapid heating at high temperatures
EP2539644A1 (en) High-yield thermal solar panel
FR2501839A1 (en) Window shutter incorporating solar panel - has protective insulating cover on rear face of panel hinged to window frame
EP2354713A1 (en) Thermal solar system for heating a habitable space.
WO1981002778A1 (en) System for removing the energy confined within a housing
EP3287998B1 (en) Glazing provided with a breakage sensor
EP1109986A1 (en) Glazing with variable absorbing power
FR2478281A1 (en) Solar oven with selective radiation absorption - has internal shield preventing escape of internally reflected radiation
WO2011120981A1 (en) Device for controlling the temperature of a tube having a radiating collector
FR2517811A1 (en) Window shutter with solar panel - has fluid-filled accumulator behind absorber to discharge heat during night
CH629562A5 (en) Enclosure delimited by one or more walls, at least part of which transmits light rays
CA1153259A (en) Frost detecting device for the protection of solar collectors
FR3047022A1 (en) BUILDING ENVELOPE ELEMENT COMPRISING PHASE CHANGE MATERIAL, AND CORRESPONDING BUILDING
EP1376026A2 (en) Fixed or mobile device of closure for openings in buildings, capable of capturing solar energy
FR2523201A1 (en) Venetian blind for building - comprises pivoting hollow strips containing material which stores energy as latent heat of fusion
FR2477212A1 (en) ASSEMBLY FOR WINDOW
FR2610982A1 (en) Device for protecting an opening formed in a building wall
EP2354712A1 (en) Thermal solar collector, thermal solar system including such a thermal solar collector and method for heating a habitable space.
FR2511130A1 (en) Solar energy trap with intermediate array of short glass tubes - to retain infrared radiation emitted internally
EP4163570A1 (en) Overheat-preventing heat-sensitive glazing for planar thermal solar collector
FR2590658A1 (en) Device for collecting the heat of the sun and an enclosure equipped with such a device
EP2388387A1 (en) Skylight for top lighting with solar protection
WO2013087664A1 (en) Device for thermal insulation and temperature control

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP US

AL Designated countries for regional patents

Designated state(s): AT CH DE GB LU NL SE