WO1981002570A1 - Rotating biological contactor material - Google Patents

Rotating biological contactor material Download PDF

Info

Publication number
WO1981002570A1
WO1981002570A1 PCT/SE1980/000070 SE8000070W WO8102570A1 WO 1981002570 A1 WO1981002570 A1 WO 1981002570A1 SE 8000070 W SE8000070 W SE 8000070W WO 8102570 A1 WO8102570 A1 WO 8102570A1
Authority
WO
WIPO (PCT)
Prior art keywords
embossings
grooves
grip
teeth
rows
Prior art date
Application number
PCT/SE1980/000070
Other languages
French (fr)
Inventor
L Hallen
Original Assignee
Nordiska Vattenprojekt Ab Nova
L Hallen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordiska Vattenprojekt Ab Nova, L Hallen filed Critical Nordiska Vattenprojekt Ab Nova
Priority to PCT/SE1980/000070 priority Critical patent/WO1981002570A1/en
Priority to EP80900511A priority patent/EP0054017A1/en
Priority to IT2021281A priority patent/IT1138716B/en
Publication of WO1981002570A1 publication Critical patent/WO1981002570A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/082Rotating biological contactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/101Arranged-type packing, e.g. stacks, arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • This invention relates to an improvment of Rotating Biological Contactors (RBC). These are used in the processing of waste water. During the slow rotation of the RBC, microorganisms are exposed t.o substrate when passing through the waste water and to oxygen when passing through the air. Also oxygen dissolved in the wastewater is utilized by the bacteria. Oxygen and substrate are both necessary for the growth of the microorganisms.
  • RBC Rotating Biological Contactors
  • segment or cupshaped sections of RBC material are arranged side-by-side around a shaft and the flow is essentially radial- circumferential. It is the object of the invention also in this case to provide an improved RBC mater-ial that is easy to handle and easily fabricated.
  • the desired impro ⁇ -'ement is in accordance with the invention accomplished by providing each bob or emossment with a toothlike protrusion and to arrange these emossments with their protrusions in straight rows between which are arranged corresponding rows of grooves or protrusions in which an adjacent protrusion or tooth of an embossment can grip in.
  • the RBC material When the RBC material is spiral wound it is preferably locked in its final position by the use of a periferal band or strip which is tightened so that constant pressure towards the shaft is created,maintained during the whole rotational cycle. In this way wearing of the RBC material due to alternating pressure and tension and hence during rotation is avoided.
  • a periferal band or strip which is tightened so that constant pressure towards the shaft is created,maintained during the whole rotational cycle. In this way wearing of the RBC material due to alternating pressure and tension and hence during rotation is avoided.
  • the RBC material can of course also be provided "with holes permitting a radial flow. It may further be noted that the easily access ible flow paths peripherily as well as longitudinally allow simple washing.
  • Fig. 1 is a plan view of the sheet material according to the invention and Fig. 2 and 3 respectively are cross-sections of the sheet seen laterally and longitudinally showing how the different layers grip into each other.
  • Fig. 1 from the sheet 1 bobs or embossings 2. are embossed in the sheet extending upwardly from the sheet. These embossings are in the shown embodiment more or less pyramidal but they may of course have any desired shape without leaving the scope of the invention.
  • teeth 3 are formed in the top of each embossing or pyramide 2 . These teeth are intended to grip into the over-laying sheet in its rows of grooves 4 extending longitudinally between rows of embossings 2. It is not necessary to have such rows of grooves between each row of embossings.
  • V. ' hen winding a RBC from the above described sheets prefer ably two sheets are used with their embossings turned outwardly in order never to close the space in between. Due to the many different grooves in the rows it is irrespectively of the radius of the sheet possible to have these grip into each other. As the grooves and teeth have corresponding lengths a longitudinal guidance or locking is also achieved.
  • the bobs can be formed to provide a larger distance between the sheets thus giving a lower specific surface in this area, as compared to the outer parts of the spiral.
  • the desired distance between sheets in the spiral can also be achieved by winding two alternate sheets with corrugation in angle to each other.
  • a furthe r advantage with the shown embodiment as well as other possible shapes is that the RBC need not be bulky on delivery as the sheet material can be delivered with one embossing totally filling an embossing in the next layer, that is each layer of sheet material does not add more than roughly the thickness of the sheet material in itself. This is, as can be easily understood, a great advantage from a transportation point of view, In some cases it might be preferred or advantageous to obtain a self-floating RBC, thus reducing the load on the bearings and minimizing the energy comsumption. In order to achieve this it is possible to insert strips of sheet material closing some of the embossings to closed spaces. In Fig. 1 such a strip is shown dotted and given the referance numeral 5.
  • the sheet 1 is prefabricated to take up this closing strip without affecting the overall dimensions. It is of course not necessary to put in such a closing strip over the entire spiral or filter body constituted by the sheet 1 but merely at intervals at different locations in the rotor in order to give the desired lifting effeet. Moreover those closing strips can either be simply put in place and held there by the winding or it is possible to weld or glue them in place.
  • the lifting force is preferably dimensioned so that the initial status of the biological rotor is that it is actually pressed down by it journaled axis and then as the slime grows finally is subjected to a force downwards. In this way an essentially simplified supporting structure for the biological rotor is achieved.
  • embossings or bobs may be given such shape as to trap air that is then released in the water bubbling away up through rotor.
  • One way of achieving this is to insert a closing strip provided with holes.
  • a further great advantage of the invented RBC material exists in the field of RBC:s with high specific surface, that is the relation between the surface of the material and the volume. This has a great impact on the optimizing of the process.
  • the relation between material surface and water volume is 200 m 2 / m 3 , which in the case of RBC materials with high specifie surface, > 100 - 200 m 2 / m 3 ( material surface/ growth mate rial, volume).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

Rotating biological contactor constituted by sheet layers (1) of for example plastic material which has been provided with numerous embossings (2) in order to keep a distance between the different layers (1) and in order to give an increased surface for the growth of microorganisms. In order to give a stiff and at the same time easily fabricated structure some or each of the embossings (2) are at their tops provided with protrading teeth (3) that can grip into corresponding grooves (4) in an adjacent layer. The layers can be identical and offset in order to allow the grooves (4) to be arranged in rows between the embossings (2).

Description

Rotating Biological Contactor Material
This invention relates to an improvment of Rotating Biological Contactors (RBC). These are used in the processing of waste water. During the slow rotation of the RBC, microorganisms are exposed t.o substrate when passing through the waste water and to oxygen when passing through the air. Also oxygen dissolved in the wastewater is utilized by the bacteria. Oxygen and substrate are both necessary for the growth of the microorganisms.
In order to minimize rotational resistance and at the same time allowing a low resistance axial flow through the rotor it is previously known for example from US patent 4115 268 to use spiral wound sheets with bobs or embossings therein resulting in a short distance between the sheets, those bobs or embossings leave flowpaths circumferentially as well as longitudinally through the RBC. As a result of this the described rotor will have no tendency to lift water and hence a rather small torque can turn the rotor.
In previous devices of this kind the different, layers of sheet are sp irally wound and welded as in the case of the US patent 4115 268 or glued, as in the case with the Swedish patent application 7801463-6, together to form the rotor. It is clear that this procedure of manufacturing a RBC due to the welding or glueing becomes somewhat less economical than desired. One object of the invention is to eliminate this set-back.
In other RBCs, for example in accordance with the US patent 3847-811, segment or cupshaped sections of RBC material are arranged side-by-side around a shaft and the flow is essentially radial- circumferential. It is the object of the invention also in this case to provide an improved RBC mater-ial that is easy to handle and easily fabricated. The desired improλ-'ement is in accordance with the invention accomplished by providing each bob or emossment with a toothlike protrusion and to arrange these emossments with their protrusions in straight rows between which are arranged corresponding rows of grooves or protrusions in which an adjacent protrusion or tooth of an embossment can grip in. From layer to layer a slight laterel off-set give the layers a steady grip in each other. By a suitable design of the teeth and grooves also lateral guiding or fixing is obtained. The number of grooves exceeds that of toothed embossings and the teeth can therefore always find a grip in a groove irrespectively of the lengthwise location, which will vary when a spiral is wound. As a result a RBC material is obtained which requires no glueing or welding and which consequently makes the RBC far cheaper than what is known from previous techniques.
When the RBC material is spiral wound it is preferably locked in its final position by the use of a periferal band or strip which is tightened so that constant pressure towards the shaft is created,maintained during the whole rotational cycle. In this way wearing of the RBC material due to alternating pressure and tension and hence during rotation is avoided. In some cases it may be desirable to have several spiralwound sections mounted on a common axle and in these cases tur binlike propellers may be arranged between the sections. The RBC material can of course also be provided "with holes permitting a radial flow. It may further be noted that the easily access ible flow paths peripherily as well as longitudinally allow simple washing.
An example of the invention is described below in connection with the drawings, in which Fig. 1 is a plan view of the sheet material according to the invention and Fig. 2 and 3 respectively are cross-sections of the sheet seen laterally and longitudinally showing how the different layers grip into each other.
As can be seen from Fig. 1 from the sheet 1 bobs or embossings 2. are embossed in the sheet extending upwardly from the sheet. These embossings are in the shown embodiment more or less pyramidal but they may of course have any desired shape without leaving the scope of the invention. In the top of each embossing or pyramide 2 teeth 3 are formed. These teeth are intended to grip into the over-laying sheet in its rows of grooves 4 extending longitudinally between rows of embossings 2. It is not necessary to have such rows of grooves between each row of embossings.
V.'hen winding a RBC from the above described sheets prefer ably two sheets are used with their embossings turned outwardly in order never to close the space in between. Due to the many different grooves in the rows it is irrespectively of the radius of the sheet possible to have these grip into each other. As the grooves and teeth have corresponding lengths a longitudinal guidance or locking is also achieved.
It is thus rather easy to wind up a complete RBC from one or two strips of the sheet material.
In order to improve aerobic conditions in the center of the spiral where the peripheral velocity is small, the bobs can be formed to provide a larger distance between the sheets thus giving a lower specific surface in this area, as compared to the outer parts of the spiral.
The desired distance between sheets in the spiral can also be achieved by winding two alternate sheets with corrugation in angle to each other.
A furthe r advantage with the shown embodiment as well as other possible shapes is that the RBC need not be bulky on delivery as the sheet material can be delivered with one embossing totally filling an embossing in the next layer, that is each layer of sheet material does not add more than roughly the thickness of the sheet material in itself. This is, as can be easily understood, a great advantage from a transportation point of view, In some cases it might be preferred or advantageous to obtain a self-floating RBC, thus reducing the load on the bearings and minimizing the energy comsumption. In order to achieve this it is possible to insert strips of sheet material closing some of the embossings to closed spaces. In Fig. 1 such a strip is shown dotted and given the referance numeral 5. The sheet 1 is prefabricated to take up this closing strip without affecting the overall dimensions. It is of course not necessary to put in such a closing strip over the entire spiral or filter body constituted by the sheet 1 but merely at intervals at different locations in the rotor in order to give the desired lifting effeet. Moreover those closing strips can either be simply put in place and held there by the winding or it is possible to weld or glue them in place. The lifting force is preferably dimensioned so that the initial status of the biological rotor is that it is actually pressed down by it journaled axis and then as the slime grows finally is subjected to a force downwards. In this way an essentially simplified supporting structure for the biological rotor is achieved. In order to have additional oxygen introduced in or brought in contact with the biological growth the embossings or bobs may be given such shape as to trap air that is then released in the water bubbling away up through rotor. One way of achieving this is to insert a closing strip provided with holes. A further great advantage of the invented RBC material exists in the field of RBC:s with high specific surface, that is the relation between the surface of the material and the volume. This has a great impact on the optimizing of the process. Preferably the relation between material surface and water volume is 200 m 2/ m3, which in the case of RBC materials with high specifie surface, > 100 - 200 m 2/ m3 ( material surface/ growth mate rial, volume).

Claims

C l a i m s
1. A Rotating Biological Contactor material constituted by sheets with embossings (2) thereon giving a distance between adjacent sheet layers (1), c har ac t e r i z e d in that at least some embossings (2) are provided with protrusions (3) that can grip into grooves (4) arranged in the adjacent sheet layer in rows.
2. Material according to claim 1, c h ar a c t e r i z e d in that the protrusions (3) are teeth and that the grooves (4) have corresponding lengths giving lateral as well as longitudinal guidance or locking and that there are more grooves (4) than teeth (3) , in order always to allow the .teeth (3) on the embossings (2) to grip into a groove (4) even when the sheets are spiral wound and the radius and thus the distance between the embossings change.
3. Material according to claim 1 or 2, c h a r a c t e r i z e d i n that the embossings (2) in the sheet material with their protrusions are turned outwardly whereas the grooves (43 are turned inwardly and that between rows of embossings (2) are arranged rows of grooves (4) so that with an offset between layer (1) identically formed layers may grip into each other.
4. Material according to one of claim 1-3, c h ar a c t e r i z e d i n that strips (4) of sheet material are inserted covering or closing the interior space in some of the embossings (2) giving airfilled spaces that can keep a rotor floating.
5. Material according to one of claim 1-4, c h ara c t er i z e di n that perforated strips are inserted between the layers enabling transportion of air down in the waste water, then to be released as the angle of the material changes.
6. Rotating Biological Contractor incorporating the material of one of claims 1-5, c har a c t e r i z e d in that the material is spiral wound of one or two spiral wound sheets that are offset from layer to layer, and that the material is locked into position by the use of an outer periferal strip which is tightened in order to create a constante pressure towards the shaft.
7. Process of material according to claim 1 or 2, c h ar a c t e r i z e d i n that the material makes possible the manufacturing of for instance RBC with high specific surface (75-250 m2/m3 preferably
150-200 ra / m 3 with oxygenation and removal of sludge without clogging
PCT/SE1980/000070 1980-03-10 1980-03-10 Rotating biological contactor material WO1981002570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/SE1980/000070 WO1981002570A1 (en) 1980-03-10 1980-03-10 Rotating biological contactor material
EP80900511A EP0054017A1 (en) 1980-03-10 1980-03-10 Rotating biological contactor material
IT2021281A IT1138716B (en) 1980-03-10 1981-03-09 MATERIAL FOR ROTATING BIOLOGICAL REACTORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOSE80/00070 1980-03-10
PCT/SE1980/000070 WO1981002570A1 (en) 1980-03-10 1980-03-10 Rotating biological contactor material

Publications (1)

Publication Number Publication Date
WO1981002570A1 true WO1981002570A1 (en) 1981-09-17

Family

ID=20339889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1980/000070 WO1981002570A1 (en) 1980-03-10 1980-03-10 Rotating biological contactor material

Country Status (3)

Country Link
EP (1) EP0054017A1 (en)
IT (1) IT1138716B (en)
WO (1) WO1981002570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118535A (en) * 1982-04-20 1983-11-02 Crane Co Contactor media
DE3216210A1 (en) * 1982-04-30 1983-11-10 Crane Co., 10022 New York, N.Y. Apparatus for the biological purification of waste water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441140A (en) * 1965-07-29 1967-07-31 Mecana S A Schmerikon Schmerik Plant for the mechanical-biological treatment of wastewater
SE353301B (en) * 1970-10-14 1973-01-29 N Ahlgren
DE2443053A1 (en) * 1974-09-09 1976-03-25 Hoechst Ag Trickle body element for waste water purification - consisting of packing with several layers of perforated plastic film
DE2554757A1 (en) * 1974-12-12 1976-07-01 Asahi Engineering SUBMERSIBLE BODY FOR BIOLOGICAL SEWAGE TREATMENT
JPS51148972A (en) * 1975-06-16 1976-12-21 Nippon Mizushiyori Kk Unit module for contact oxidization
DE2806415A1 (en) * 1977-02-16 1978-08-17 Sekisui Chemical Co Ltd DEVICE FOR TREATMENT OF WASTE WATER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441140A (en) * 1965-07-29 1967-07-31 Mecana S A Schmerikon Schmerik Plant for the mechanical-biological treatment of wastewater
SE353301B (en) * 1970-10-14 1973-01-29 N Ahlgren
DE2443053A1 (en) * 1974-09-09 1976-03-25 Hoechst Ag Trickle body element for waste water purification - consisting of packing with several layers of perforated plastic film
DE2554757A1 (en) * 1974-12-12 1976-07-01 Asahi Engineering SUBMERSIBLE BODY FOR BIOLOGICAL SEWAGE TREATMENT
JPS51148972A (en) * 1975-06-16 1976-12-21 Nippon Mizushiyori Kk Unit module for contact oxidization
DE2806415A1 (en) * 1977-02-16 1978-08-17 Sekisui Chemical Co Ltd DEVICE FOR TREATMENT OF WASTE WATER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, abstract of JP 51-148972, published 1976-12-21 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118535A (en) * 1982-04-20 1983-11-02 Crane Co Contactor media
DE3216210A1 (en) * 1982-04-30 1983-11-10 Crane Co., 10022 New York, N.Y. Apparatus for the biological purification of waste water

Also Published As

Publication number Publication date
EP0054017A1 (en) 1982-06-23
IT1138716B (en) 1986-09-17
IT8120212A0 (en) 1981-03-09

Similar Documents

Publication Publication Date Title
US5779886A (en) Media for filtration
US3886074A (en) Air driven rotating biological contactor apparatus
US3827559A (en) Extended surface rotating biological contactor
US6632357B1 (en) Reverse osmosis (“RO”) membrane system incorporating function of flow channel spacer
US4540491A (en) Method of and apparatus for the mechanical-biological treatment of sewage
US4268385A (en) Centrifugal rotating disc assembly for biological waste water treatment apparatus
US4468326A (en) Process in microbiological purification and a device and materials therefor
US4137172A (en) Rotating biological contactor
CA1090017A (en) Waste water treatment rotor
CA1329281C (en) Miniturized modular rotating biological contactor system
WO1981002570A1 (en) Rotating biological contactor material
US4532035A (en) Rotating biological contactor for the biological purification of waste water
US3997443A (en) Apparatus for biological treatment of waste water
FI89156C (en) BIOMASSAROTOR
FR2573700B1 (en) HUB BODY FOR BICYCLE WHEEL DRIVE OR THE LIKE, AND MANUFACTURING METHOD THEREOF
EP0198451A1 (en) Hollow element for biological waste water treatment
US4245949A (en) Archimedean screw pumps
JPS6411359B2 (en)
JPH0135270Y2 (en)
SU929488A1 (en) Vehicle auger-type propelling gear
US5131890A (en) Reduced friction spool bearing and method of making same
JPS6341640B2 (en)
JPS55167089A (en) Biological waste water purifier
WO1981003325A1 (en) Method and device for biological processing of waste water
SU882952A1 (en) Immersed biofilter

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP SU US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB LU NL SE