WO1981000637A1 - Method of representing sound by colour - Google Patents

Method of representing sound by colour Download PDF

Info

Publication number
WO1981000637A1
WO1981000637A1 PCT/AU1980/000052 AU8000052W WO8100637A1 WO 1981000637 A1 WO1981000637 A1 WO 1981000637A1 AU 8000052 W AU8000052 W AU 8000052W WO 8100637 A1 WO8100637 A1 WO 8100637A1
Authority
WO
WIPO (PCT)
Prior art keywords
colour
notes
colours
represented
octaves
Prior art date
Application number
PCT/AU1980/000052
Other languages
French (fr)
Inventor
N Louez
Original Assignee
N Louez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Louez filed Critical N Louez
Priority to AU63926/80A priority Critical patent/AU6392680A/en
Publication of WO1981000637A1 publication Critical patent/WO1981000637A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G1/00Means for the representation of music

Definitions

  • This invention relates to visual methods of representing sound involving colour. Attempts have been made to translate sound into visual displays of changing colour patterns. In some cases a relationship has been established between sound waves and light waves. However the available apparatus has not been well received owing to the poor fidelity of visual representation of the sound. It is an object of this invention to provide a high fidelity representation of sound by colour.
  • the method of this invention consists in dividing the colour spectrum into twelve hues and correlating each of the twelve notes of the musical octave with each hue in such a way that degrees of consonance and dissonance between notes correlate with that between the corresponding colours with a high degree of fidelity.
  • a further refinement of this method is to represent ascending octaves of colours so correlated by ascending colour value so that the higher octaves are represented by pastel colours and the lower octaves by dark (i.e. low value) colours.
  • Yet a further refinement of the method is to represent sounds corresponding to the superposition of a number of notes by the admixture of the colours corresponding to those notes.
  • a refinement of the method when applied to a dynamic visual colour display is to represent an increase in intensity of the sound by an increase in the area of the colour of the display.
  • Figure 1 is a colour circle showing a preferred correlation between the natural spectral order and the cycle of 5ths of the musical octave.
  • Figure 2 is a colour circle showing another correlation between the natural spectral order and the cycle of 5ths of the musical octave.
  • Figure 3 is a keyboard showing the correlation of Figure 1.
  • Figure 4 is a keyboard . showing the correlation of Figure 2.
  • Figure 1 C is represented by a solid yellow, G by solid yellow and fifty percent magenta, D by solid yellow and solid magenta, A by fifty percent yellow and solid magenta, E by solid magenta, B by fifty percent cyan and solid magenta, F sharp, G flat by solid cyan and solid magenta, C sharp, D flat by solid cyan and fifty percent magenta, G sharp, A flat by solid cyan, D sharp, E flat by fifty percent yellow and solid cyan, A sharp, D flat by solid yellow and solid cyan, and F by solid yellow and fifty percent cyan.
  • Figure 2 C is represented by solid cyan and solid magenta and the other colours are correlated with the other notes in an order opposite to that of Figure 1.
  • the starting point of correlating the note C is quite arbitrary and the method encompasses all possible correlations between the order of notes shown, in both Figures 1 and 2, and the order of the hues of the natural colour spectrum.
  • FIGS 1 and 2 respectively, set out on keyboards. They also illustrate another aspect of the invention, viz. ascending octaves of colour are represented by ascending colour value.
  • the lower octaves on the left of the keyboards are marked with the colours of Figures 1 and 2 which are deep colours, while those on the right are marked with pastel colours which have had white added.
  • Three octaves only are shown in Figures 3 and 4 but the method can be applied to the whole piano keyboard so that the lowest octave is represented by extremely dark colours and the highest octave by extremely light colours.
  • a preferred application of the method resides in displaying sound on a dynamic visual display such as a colour television screen.
  • a dynamic visual display such as a colour television screen.
  • the intensity of different notes is indicated by the area of the screen occupied by the colour corresponding to those notes.
  • Various ways of achieving this result are feasible. Such as by:-
  • the method of this invention also has other applica- tions. It may be used in the teaching of musical instruments By afixing correlated colours to keys or positions on a guitar stock for example, and annotating the musical score in the same manner, students have an immediate visual guide to their playing which is not mediated by the naming of the musical notes. Although this method of teaching musical instruments is already known for quite arbitrary colour correlations, the unique correlations of the method of this invention are much more effective. This and other applications are possible which embody the basic method of this invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A visual method of representing sound by colour consisting of dividing the colour spectrum into twelve hues and correlating each of the twelve notes of the musical octave with each hue in such a way that degrees of consonance and dissonance between notes correlate with that between the corresponding colours with a high degree of fidelity. A further refinement of this method is to represent ascending octaves of colours so correlated by ascending colour value so that the higher octaves are represented by pastel colours and the lower octaves by dark (i.e. low value) colours. Yet a further refinement of the method is to represent sounds corresponding to the superposition of a number of notes by the admixture of the colours corresponding to those notes. A refinement of the method when applied to a dynamic visual colour display is to represent an increase in intensity of the sound by an increase in the area of the colour of the display.

Description

METHOD OF REPRESENTING SOUND BY COLOUR
This invention relates to visual methods of representing sound involving colour. Attempts have been made to translate sound into visual displays of changing colour patterns. In some cases a relationship has been established between sound waves and light waves. However the available apparatus has not been well received owing to the poor fidelity of visual representation of the sound. It is an object of this invention to provide a high fidelity representation of sound by colour. In one form the method of this invention consists in dividing the colour spectrum into twelve hues and correlating each of the twelve notes of the musical octave with each hue in such a way that degrees of consonance and dissonance between notes correlate with that between the corresponding colours with a high degree of fidelity. A further refinement of this method is to represent ascending octaves of colours so correlated by ascending colour value so that the higher octaves are represented by pastel colours and the lower octaves by dark (i.e. low value) colours. Yet a further refinement of the method is to represent sounds corresponding to the superposition of a number of notes by the admixture of the colours corresponding to those notes. A refinement of the method when applied to a dynamic visual colour display is to represent an increase in intensity of the sound by an increase in the area of the colour of the display.
Following is an elaboration of the method with a reference to the accompanying diagrams in which: Figure 1 is a colour circle showing a preferred correlation between the natural spectral order and the cycle of 5ths of the musical octave. Figure 2 is a colour circle showing another correlation between the natural spectral order and the cycle of 5ths of the musical octave.
Figure 3 is a keyboard showing the correlation of Figure 1. Figure 4 is a keyboard. showing the correlation of Figure 2. In Figure 1 C is represented by a solid yellow, G by solid yellow and fifty percent magenta, D by solid yellow and solid magenta, A by fifty percent yellow and solid magenta, E by solid magenta, B by fifty percent cyan and solid magenta, F sharp, G flat by solid cyan and solid magenta, C sharp, D flat by solid cyan and fifty percent magenta, G sharp, A flat by solid cyan, D sharp, E flat by fifty percent yellow and solid cyan, A sharp, D flat by solid yellow and solid cyan, and F by solid yellow and fifty percent cyan. In Figure 2 C is represented by solid cyan and solid magenta and the other colours are correlated with the other notes in an order opposite to that of Figure 1. In fact the starting point of correlating the note C is quite arbitrary and the method encompasses all possible correlations between the order of notes shown, in both Figures 1 and 2, and the order of the hues of the natural colour spectrum.
Figures 3 and 4 show the correlated colours of
G:._PI IPO
^ τ\ Figures 1 and 2 respectively, set out on keyboards. They also illustrate another aspect of the invention, viz. ascending octaves of colour are represented by ascending colour value. The lower octaves on the left of the keyboards are marked with the colours of Figures 1 and 2 which are deep colours, while those on the right are marked with pastel colours which have had white added. Three octaves only are shown in Figures 3 and 4 but the method can be applied to the whole piano keyboard so that the lowest octave is represented by extremely dark colours and the highest octave by extremely light colours.
Whereas individual notes are represented by the particular colours shown, a number of notes sounded at the same time are represented by a mixture of those colours. A unique aspect of the method of the invention is that in nearly all cases the mixture of colours corresponding to consonant notes results in another pure colour whereas the mixture of colours corresponding to dissonant notes results in a murky or grey colour. Hence the colours represent the sounds with high fidelity which is not achieved in the various arbitrary correlations of sound and colour used previously.
A preferred application of the method resides in displaying sound on a dynamic visual display such as a colour television screen. Here the intensity of different notes is indicated by the area of the screen occupied by the colour corresponding to those notes. Various ways of achieving this result are feasible. Such as by:-
(a) A uni-directional vertical expansion of a horizontal bar upon a portion of the screen.
(b) A bi-directional vertical expansion of a horizontal bar.
(G) From a single point bi-directional both horizontal and vertical expansion.
(d) A plurality of expanding colour displays referred to in (a) to (c) above in individually assigned areas on the screen.
(e) Concentrically arranged areas assigned to respective hues having both vertical and horizontal expansion and capable of overlapping.
The method of this invention also has other applica- tions. It may be used in the teaching of musical instruments By afixing correlated colours to keys or positions on a guitar stock for example, and annotating the musical score in the same manner, students have an immediate visual guide to their playing which is not mediated by the naming of the musical notes. Although this method of teaching musical instruments is already known for quite arbitrary colour correlations, the unique correlations of the method of this invention are much more effective. This and other applications are possible which embody the basic method of this invention.
OMPI

Claims

The claims defining the invention are as follows:
1. A method of representing sound by colour in which the colour spectrum is divided into twelve hues each of which is correlated with each of the twelve notes of a musical octave in such a way that degrees of consonance and dissonance between notes correlate with that between corresponding colours, with a high degree of fidelity.
2. The method of claim 1 in which the natural spectral order of the twelve hues is correlated with the cycle of 5ths.
3. The method of claim 1 in which the notes of ascending octaves are represented by hues of ascending colour value and those of descending octaves are represented by descending colour value.
4. The method of claim 1 in which sounds corresponding to the superposition of a number of notes are represented by a mixture of the colours corresponding to those notes.
5. The method of claim 4 in which a mixture results from partitive mixing.
6. The method of claim 1 when applied to a dynamic visual colour display in which an increase in the intensity of the sound is represented by an increase in the area of the display.
7. The method of claim 7 when applied to a television screen in which the intensity of notes is represented by concentric areas of colour on the screen.
A method of representing sound by colour as herein described with reference to the accompanying diagrams
10
PCT/AU1980/000052 1979-08-27 1980-08-27 Method of representing sound by colour WO1981000637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU63926/80A AU6392680A (en) 1979-08-27 1980-08-27 Method of representing sound by colour

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPE021179 1979-08-27
AU211/79 1979-08-27

Publications (1)

Publication Number Publication Date
WO1981000637A1 true WO1981000637A1 (en) 1981-03-05

Family

ID=3768237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1980/000052 WO1981000637A1 (en) 1979-08-27 1980-08-27 Method of representing sound by colour

Country Status (2)

Country Link
EP (1) EP0034611A1 (en)
WO (1) WO1981000637A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041667A1 (en) * 1995-06-08 1996-12-27 Claus Hvass Method and apparatus for conversion of sound signals into light
WO2001078058A2 (en) * 2000-04-06 2001-10-18 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
US6686529B2 (en) * 1999-08-18 2004-02-03 Harmonicolor System Co., Ltd. Method and apparatus for selecting harmonic color using harmonics, and method and apparatus for converting sound to color or color to sound
US7228190B2 (en) 2000-06-21 2007-06-05 Color Kinetics Incorporated Method and apparatus for controlling a lighting system in response to an audio input
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
CN103284729A (en) * 2012-02-28 2013-09-11 理音株式会社 Sonometer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1432552A (en) * 1917-06-08 1922-10-17 Hector Alexander Burnett Production of color music and other luminous effects and apparatus therefor
US1432553A (en) * 1916-06-20 1922-10-17 Hector Alexander Burnett Production of color music and other luminous effects and apparatus therefor
DE397587C (en) * 1924-07-01 Frau Louise Artus Perrelet Keyboard instrument with color music
GB222006A (en) * 1923-12-04 1924-09-25 Narciso Desirello Apparatus for obtaining the music of colours
FR590288A (en) * 1924-08-06 1925-06-13 Keyed instrument for the reproduction of music in color
US1577854A (en) * 1921-12-22 1926-03-23 Arthur C Vinageras Chromopiano
AU281026A (en) * 1926-07-15 1927-07-02 Burnett Hector Alexander Improvements in producing colour: music and other, spectacular luminous effects
FR788335A (en) * 1936-03-28 1935-10-08 Instrumental toy system, with accessories, for creating games and color music
US2221143A (en) * 1938-12-05 1940-11-12 Boris M Lang System and apparatus for piano instruction
US2236638A (en) * 1939-03-03 1941-04-01 William H Adams Block keyboard for musical instruction
US2807183A (en) * 1954-10-01 1957-09-24 Theresa Q Ney Portable device for teaching music
DE1109030B (en) * 1958-07-24 1961-06-15 Michel Combastet Method and device for converting tones into colors
GB1184697A (en) * 1966-03-19 1970-03-18 Hugh Elliot Cameron Audio-Visual Apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE397587C (en) * 1924-07-01 Frau Louise Artus Perrelet Keyboard instrument with color music
US1432553A (en) * 1916-06-20 1922-10-17 Hector Alexander Burnett Production of color music and other luminous effects and apparatus therefor
US1432552A (en) * 1917-06-08 1922-10-17 Hector Alexander Burnett Production of color music and other luminous effects and apparatus therefor
US1577854A (en) * 1921-12-22 1926-03-23 Arthur C Vinageras Chromopiano
GB222006A (en) * 1923-12-04 1924-09-25 Narciso Desirello Apparatus for obtaining the music of colours
FR590288A (en) * 1924-08-06 1925-06-13 Keyed instrument for the reproduction of music in color
AU281026A (en) * 1926-07-15 1927-07-02 Burnett Hector Alexander Improvements in producing colour: music and other, spectacular luminous effects
FR788335A (en) * 1936-03-28 1935-10-08 Instrumental toy system, with accessories, for creating games and color music
AU407537A (en) * 1937-09-21 1938-10-06 Burnett Hector Alexander Improvements relating to colour effects
US2221143A (en) * 1938-12-05 1940-11-12 Boris M Lang System and apparatus for piano instruction
US2236638A (en) * 1939-03-03 1941-04-01 William H Adams Block keyboard for musical instruction
AU1471044A (en) * 1944-05-29 1946-11-14 Jack Harold Hartley Wyndham Polychromatic means forthe visualization of music
US2807183A (en) * 1954-10-01 1957-09-24 Theresa Q Ney Portable device for teaching music
DE1109030B (en) * 1958-07-24 1961-06-15 Michel Combastet Method and device for converting tones into colors
GB1184697A (en) * 1966-03-19 1970-03-18 Hugh Elliot Cameron Audio-Visual Apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041667A1 (en) * 1995-06-08 1996-12-27 Claus Hvass Method and apparatus for conversion of sound signals into light
US6686529B2 (en) * 1999-08-18 2004-02-03 Harmonicolor System Co., Ltd. Method and apparatus for selecting harmonic color using harmonics, and method and apparatus for converting sound to color or color to sound
GB2369978B (en) * 1999-08-18 2004-06-09 Harmonicolor System Co Ltd Method and apparatus for selecting harmonic color
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
WO2001078058A2 (en) * 2000-04-06 2001-10-18 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
WO2001078058A3 (en) * 2000-04-06 2002-04-11 Rainbow Music Corp System for playing music having multi-colored musical notation and instruments
US6831220B2 (en) 2000-04-06 2004-12-14 Rainbow Music Corporation System for playing music having multi-colored musical notation and instruments
US7228190B2 (en) 2000-06-21 2007-06-05 Color Kinetics Incorporated Method and apparatus for controlling a lighting system in response to an audio input
CN103284729A (en) * 2012-02-28 2013-09-11 理音株式会社 Sonometer

Also Published As

Publication number Publication date
EP0034611A1 (en) 1981-09-02

Similar Documents

Publication Publication Date Title
US6791568B2 (en) Electronic color display instrument and method
US6881887B2 (en) Teaching method and guides to teach piano
KR20070102967A (en) Musical tone signal generationg apparatus
US7705229B2 (en) Method, apparatus and programs for teaching and composing music
WO1981000637A1 (en) Method of representing sound by colour
US5288234A (en) Device for composing and decomposing chords and scales
Ligon Connecting chords with linear harmony
US20050268773A1 (en) Apparatus and method for pitch training
JPH07507881A (en) music aids
Robison READING CONTEMPORARY CHORAL LITERATURE: AN ANALYTICAL STUDY OF SELECTED CONTEMPORARY CHORAL COMPOSITIONS WITH RECOMMENDATIONS FOR THE IMPROVEMENTOF CHORAL READING SKILLS
Friedland Building walking bass lines
Calebaugh Color in Music: An Analysis of Joan Tower’s Purple Works for Viola
Martínez et al. The role of repetition in aural identification of harmonic sequences
US7554025B2 (en) Visual chord keyboard instructional method
WO1995004345A1 (en) An improved keyboard design and music notation
McLean Composition with sound and light
RU2075785C1 (en) Method for development of musical hearing and device which implements said method
Cellini Some Analytical Consideration on Indonesian Metal Music
RU2151425C1 (en) Musical notation for multiple-stage scale systems using five-line staves for keyboard musical instruments
Gott The Crown of Ariadne (1978): R. Murray Schafer's Method in the Manuscripts
Rosenhouse et al. From Music to Mathematics: Exploring the Connections. By Gareth E. Roberts
Li Applications of multimedia in solfeggio teaching
Cuddy Musical Rules and Pitch Judgement
Bernier-Robert by Amélie Bernier-Robert
Morris et al. A different drum: Percussion ensembles in general music

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR GB JP US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR LU NL SE