WO1981000060A1 - Fluid borne particulate separator - Google Patents

Fluid borne particulate separator Download PDF

Info

Publication number
WO1981000060A1
WO1981000060A1 PCT/US1980/000893 US8000893W WO8100060A1 WO 1981000060 A1 WO1981000060 A1 WO 1981000060A1 US 8000893 W US8000893 W US 8000893W WO 8100060 A1 WO8100060 A1 WO 8100060A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
separator
inlet
fluid
particulate
Prior art date
Application number
PCT/US1980/000893
Other languages
English (en)
French (fr)
Inventor
W Duske
L Frank
Original Assignee
W Duske
L Frank
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W Duske, L Frank filed Critical W Duske
Priority to AU61277/80A priority Critical patent/AU6127780A/en
Publication of WO1981000060A1 publication Critical patent/WO1981000060A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/10Venturi scrubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/40Combinations of devices covered by groups B01D45/00 and B01D47/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • This invention relates to a fluid moving apparatus and.particularly to a particulate separator of the concurrent flow type for removing of fluid-borne particles from the fluid.
  • a cyclone-type separator is one rather widely used separator for various industries and applications.
  • the particle laden air is introduced in a 5 tangential flow path to centrifugally force the particles to the outer periphery.
  • the relatively clean air is . drawn upwardly through the center and the separated par ⁇ ticles drop down through the bottom of the unit under force of gravity.
  • Such separators are generally relatively 0 inefficient because of the minimal time permitted for the accumulation and separation of dust particles and possible partial re-entrainment in the reverse flow.
  • Such separators are primarily useful in removal of relatively heavy particles.
  • scroll type separ ⁇ ator In dehydration of citrus pulp, cleaning 5 of boiler exhaust gases and the like, scroll type separ ⁇ ator has been suggested in which a pair of concentric cyl ⁇ inders are vertically mounted with a bottom inlet to the inner cylinder and a fan wheel mounted to the top end of the inner cylinder and within a closed end of the outer 0 cylinder.
  • the fan wheel draws the particle laden air through the cylinder, forces the air laterally into the annular passage between the inner and outer cylinder where the air flows in a counter flow to the inlet end of the cylinder, with the particle concentrated in 5 the outer peripherial layer within the outer cylinder.
  • An annular discharge opening is provided in alignment with such peripherial layer for separate removal of the particle laden air.
  • the present invention is particularly directed to an improvement in a concurrent flow separator having means to significantly improve the efficiency of the particulate separation.
  • the outer return passageway wall is specially formed of a successively reduced cross section front the starting portion of the concurrent flow passageway to the annular discharge or skimmer means.
  • the outer passage ⁇ way wall is preferably conically shaped to establish a continuous progressively reduced cross-section.
  • a plurality of annular skimmer openings can be provided for more effective removal of the particulate matter.
  • the annular skimmer opening may include a scroll drum for more effective directing the concentrated particle laden air into the discharge opening for the efficient and effective removal of concentrated particulate matter from the separator for appropriate disposal or further treatment.
  • the conical shape of the concurrent flow passageway serves to concentrate and hold the particu ⁇ late adjacent the periphery and thereby enhance the highly effective particle removal.
  • the outer cone- shaped surface is preferably formed with a smooth surface such as a polished surface to prevent particle entrapment or turbulence in the air stream.
  • the separator can be mounted with the cylinder axis in a horizontal position as well as a vertical position. Any other desired inter ⁇ mediate position can also be used as required by design convenience and the like. This particularly adapts the unit for use in connection with varied applications, for example, connected to the outlet of a cyclone separator, dropout box outlets of dehydration equip ⁇ ment or directly in other dust controlled systems.
  • the annular skimmer outlet and the main clean air outlet are separate assemblies and interconnected to each other and to the flow housing to permit annular orientation as required.
  • the annular skimmer can also be made of an adjustable diameter to accommodate varying load conditions.
  • the inlet portion of the inner cylinder includes a venturi throat section and a final flared portion with a suitable treating fluid supply member mounted at the center of venturi throat.
  • a suitable treating fluid supply member mounted at the center of venturi throat.
  • a nozzle may be provided at the venturi throat.
  • the high turbulance created in the throat section results in a high atomization of the scrubbing liquid with a resulting intimate .contact to the air borne particulate matter.
  • the venturi section will also tend to increase, the cross-sectional area of the concurrent flow at the discharge point thereby increasing the resident, time of the particles in the air path and increasing separation efficiencies.
  • the concurrent flow system can be further modified to provide for limited recirculation of the air adjacent the inlet end of the assembly.
  • the inlet cylinder may be formed with appro ⁇ priate openings to establish internal recirculation of a portion of the fluid which would otherwise discharge as a part of the relatively clean air.
  • the present invention provides an improved air moving device for simultaneously functioning as a particulate treating and separator.
  • FIG. 1 is a side elevational view of a separator constructed in accordance with the teaching of the present invention and applied to a boiler exhaust system;
  • Fig. 2 is a enlarged longitudinal section of the separator shown in Fig. 1;
  • Fig. 3 is a transverse section taken generally on line 3-3 of Fig. 1;
  • Fig. 4 is a transverse section taken generally on line 4-4 of Fig. 1; and Fig. 5 is a view similar to Fig. 2 showing an alternate embodiment of the invention.
  • a novel scroll-type particulate separator 1 is shown coupled to receive the exhaust gases 2 of a boiler 3 for cleaning of such gases of particulate matter 4 and discharging the clean air "5 into a boiler stack 6 for discharge into the atmosphere.
  • the exhaust gases 2 include particulate matter 4 which is separated from the main gas stream by the scroll- type separator 1 and passed to and through a suitable dust collector 7 for final separation of the particu- late from the exhaust air.
  • the particulate is then removed to an appropriate disposal site by any suitable means 8 while the clean carrier air is returned and mixed with the exhaust gases from the boiler, as shown by line 9.
  • the novel separator 1 includes an inner inlet cylinder 10 connected to the output of the boiler 3 and concentrically mounted within an outer cylinder 11.
  • a fan wheel unit 12 is mounted within the outer end of cylinder 11 adjacent the end of cylinder 10. The exhaust gases 2 are drawn into the separator 1 and pass the central passageway and then are turned 180 degrees to establish a counterflow through the return passageway immediately adjacent to the inlet duct.
  • a skimmer unit 13 is secured to cylinder 11 and receives the relatively concentrated particle laden gases 14 from the wall of cylinder 11. Unit 13 is connected by line 15 to the dust collector 7 for further separation and removal of the dust and return of the air to the inlet duct 10 via line 9.
  • a clean air discharge unit 16 is secured between unit 13 and inlet duct 10 to receive the relatively clean gases 17 and discharge them to stack 6.
  • the boiler, stack and dust collector may be of any suitable or known construction.
  • Various well known devices are available and no further description thereof is given other than as necessary to clearly understand the operation and structure.of the illustrated embodiment of the present invention.
  • separator 1 includes an outer cylindrical body 18 of a suitable sheet steel. Rectangular supporting frame structures 19 and 20 are interconnected in axially spaced relationship to the body 18 and define mounting posts for appropriate inter ⁇ connection and support of the separator to a suitable ground support or the like.
  • the inlet end of body 18 is flanged and the skimmer unit 13 includes a corres ⁇ ponding mounting flange, which is bolted thereto as by • equicircumferentially distributed bolt units 21.
  • the main air discharge unit 16 is similarly interconnected by equicircumferentially spaced bolt units 22 to the skimmer unit 13 and closes the end of the body 18.
  • the discharge unit 16 includes an annular discharge chamber 23 with inlet tube 10 secured as by weld 24 to the center of chamber 23.
  • the inlet tube 10 is a steel member which extends inwardly through the body
  • a dividing wall 25 is welded or otherwise secured to the end of tube 10 and extends radially outwardly, with the edge of wall 25 spaced from body 18 and return cylinder 11 to couple the fan chamber to the return passageway as at 26.
  • the end of centrifugal cylinder 10 at the wall 25 may be supported by one or more support elements 26a connected to cylinder 11.
  • the elements 26 are of such a profile and orientation as to result in minimum turbulence while providing sufficient support to the cylinder 10.
  • Suitable support elements 26a oriented generally in the direction of flow are shown in Fig. 2.
  • Similar vane-ty]e elements 26a may be provided for directing of the air to provide optimum tangential or spin direction to the air.
  • Such vane-type elements may be fixed, or adjustably mounted to permit positioning in " accordance to a particular air flow pattern.
  • the vane-type elements may also act as cut-off edges to remove the air from the opposing fan-blade edge.
  • The* fan unit 12 includes a fan wheel 28 rotatably mounted in the outer end of the body assembly immediately adjacent to the end wall 25 of inlet tube 10.
  • a drive motor 29 is mounted externally to the outer end of the body assembly and is coupled to drive the fan wheel 28.
  • the motor 29 may be an appropriate electric motor coupled.to the fan wheel shaft 30, which is shown as a suitable pull drive unit 31.
  • the fan wheel operates typically with a peripheral tip speed on the order of 10;000 to 20,000 feet per minute and imparts a similar tangential velocity to the dust particles. This, coupled with the further increase in tangential velocity due to the tapered outer cylinder 11, gives a significantly higher centrifugal force acting on the dust particles.
  • the fan wheel operates not only to draw the particle laden air inwardly through the inlet tube 10 but redirects such air laterally within the fan chamber and establishes the countercurrent flow within the fan chamber and establishes the countercurrent flow within the passageway between the inlet tube 10 and the outer wall.
  • the fan creates ''the necessary tangential velocity required concentration of the particulate in the outer air layer 14.
  • the outer wall is 9 conically shaped to establish a continuously decreasing diameter extending substantially from the opening 26 at the fan wheel chamber to the skimmer unit 13. In operation, the particle laden air 2 is drawn inwardly through theinlet tube 10 at relatively high velocity.
  • the fan wheel 28 imparts a radial motion to the particle, laden air and imparts a substantial tangential spin to the air and particles.
  • the air thus moves outwardly and is then redirected as a concurrent air flow through the outer passageway as a counterflow.
  • the flow continues through countercurrent flow passageway as spiral flow with the ocntinuing centrifugal force on particles concentrating the particles adjacent the outer conically shaped return wall 11.
  • the particle laden air is concentrated more and more adjacent such wall 11 as a result of the reduced cross section and as a result of the increased circumferential velocity duct to con- servation of angular momentam. This results in a relatively narrow or thin outer layer 14 at the time such air reaches the skimmer unit 13.
  • the skimmer unit 13 is a scrollOtype unit including a central discharge tube 32 in outwardly spaced relation to the inlet tube 10 and defining a common wall to the main air outlet unit 16.
  • the concentric common wall 32 divides the concurrent -, flowing air and the thin outer layer into skimmer unit 13, wile the relatively clean air 17 located inwardly of tube 32 continues to move through the inner passage ⁇ way to the main discharge outlet unit 16.
  • the leading edge of dividing wall 32 is shaped such, that minimum turbulence results during the separation of the air stream.
  • the dividing wall 32 may be further constructed or mounted to permit adjustment of the effective spacing from wall 11 to vary the thickness of layer 14 diverted into unit 13.
  • the wall 32 is shown as a two part member, havin ⁇ the outer serving portion slidably mounted on a fixed supporting portion. Suitable positive wall connecting means may be provided.
  • the outer conical housing unit 11 has been found to significantly improve the functioning of the separator and particularly adapts the separator to the effective particle separation while permitting the use of the device in a horizontal or any other orientation.
  • the outer body assembly 18 is a cylindrical member terminating in the opposite end in an appropriate circular flange 34.
  • the housing includes an inner flange 35 adjacent the skim ⁇ mer unit 13.
  • the conical wall 11 is secured to the inner edge of flange 35 as at 36, to form a smooth fluid tight connection.
  • the wall 11 extends axially therefrom with the opposite end feathered as at 37 and welded to the housing 18 to form a smooth inner wall 11.
  • the wall 11 is also formed with a smooth inner surface, and may advantageously be polished to minimize turbulence and reentrainment of dust particles into the air stream as the outer layer 14 moves axially into skimmer unit 13.
  • the illustrate skimmer unit 13 includes a scroll-shaped outer wall 34a spaced on a common axis with the dividing common wall 32. As shown most clearly in Fig. 4, a tangential discharge or outlet duct 38 of the skimmer 13 has a center line 39 extending tangentially of the discharge flow path from the annular skimmer discharge passageway.
  • the duct 38 includes an outer sidewall 40 tangential of the scroll-shaped wall 37 and an inner flared wall to define an increasing discharge cross section.
  • the sidewall of unit 13 projects over the housing, as shown in Fig. 4, and includes a flange 42 abutting the flange 34 of housing 18. The flanges 34 and 42 are bolted to each other, as at 21..
  • An end plate 43 extends inwardly and is welded to the dividing wall 32 to form a skimmer unit 13 as a subassembly, which is bolted in position to form a fluid-type connection to the discharge end of the conical wall 11 with an annular discharge opening 44 aligned with the outer particle l?rlen air layer 14.
  • The. main discharge unit 16 is similarly formed with an outer scroll-shaped wall 45 having a mounting flange 46 bolted in fixed relation to the outer mounting flange 47 of the common divider wall 32.
  • the wall 45 forms a continuation of the inner main flow passageway between the common wall 32 and the inner inlet tube 10.
  • a discharge duct 48 is secured to the sidewall
  • the outer end of the housing 18 is sealed • . by a suitable end wall 52 to define the fan chamber within which the fan wheel 12 is located.
  • the fan shaft 30 is rotatably supported within the end wall and pro ⁇ jects outwardly with the outer end coupled to the electric drive motor 29.
  • the fan wheel 12 is shown as a multiple bladed unit with each blade 54 having slanted edges 55 which extends outwardly therefrom with an increasing blade depth to a generally rectangular portion generally, p.ligned with the ' inlet tube end wall 25.
  • the end wall 52 is provided with a conical plate 55a to follow the slanted edge of fanwheel 12.
  • the outer blade edge aligned substantially with the outer edge of the counterflow opening 26. Rotation of the fan wheel results in the drawing of the particle -laden air into through the inlet chamber. As it moves into the fan, the fan blades impart a centrifugal tangential force to the air cuasing it to move outwardly through the
  • the moving efficiency may be improved by forming a plurality of angularly oriented bar-like members on the interior surface of the fan housing wall. Such member cooperates with the peripherial edges of the fan blades and function as cutoff edges to remove and properly direct the air into the reutrn passageway opening 26. Some or all of peripherial air may also be removed at this point by an appropriate means in the wall.
  • the conical wall 11 develops the concentrated particle laden air layer 14 as the air moves in a- tangential manner to the skimmer opening at the dividing wall 32.
  • the dividing wall 32 in essence severs the air stream diverting the particle laden air layer 14 into the skimmer discharge assembly while permitting the freeflow of the relatively clean air thorugh the passageway into the main outlet discharge unit.
  • theair may be discharged at the rate of 32,000 ACFM at a temperature of 525 degrees Fahrenheit. It is drawn... into the separator by the fan wheel with approximately.4,000 ACFM supplied at the inlet end and recirculated from the dust collector.
  • the separator 1 as previously noted is parti ⁇ cularly adapted to operation in any desired orientation and is therefore particularly adapted for use in a low profile dehydration system having a relatively, horizon ⁇ tal profile for example as disclosed in the copending application of the present inventors entitled
  • the equicircumferentially spaced connecting bolts permits the angular orientation of the main outlet unit 16 and the skimmer outlet unit 3 in anyone of the multiple positions while maintaining effective movement of the air.
  • the bolt openings were formed with a 15 degree spacing to permit corresponding angular orientation of each unit 13 and 16.
  • An inlet tube or duct 56 is formed as a venturi section.
  • the inlet tube 56 includes a generally constant diameter throat section 57 immediately adjacent to the air inlet connection.
  • the constant diameter section extends for approximatley 1/3 of the total distance of the inlet tube and then begins to gradually increase in diameter, as flared member 58, to the outermost end adjacent to the fan wheel chamber. The movement of the air thorugh the throat section will result in an acceleration of the air therethrough.
  • a water nozzle unit 59 is shown concentrically mounted within the throat section 57 and in slightly spaced relation to the discharge end of the throat section.
  • the nozzle unit 59 may be of any conventional atomizing type adapted to discharge a water spray 60 into an air flow as a relatively broken or fine mist.
  • the nozzle unit 59 is of course coupled thorugh a suitable conduit 61 to a suitable source of water. The water moves into the rapidly oving stream immediately adjacent to the discharge end of the throat section;.
  • the relatively high turbulance associated with the venturi action will result in further atomizzaion of the water and mixing with the air flow tofacilitate and enhance the scrubbing and moistening of the dust particles carried by the air stream.
  • the water introduced into the unit may be mixed with a suitable emulcifier to establish relatively uniform product at the discharge end of the unit.
  • a suitable emulcifier to establish relatively uniform product at the discharge end of the unit.
  • the several components in the flow passageway should of course be formed of a suitable corrosion resistant material or otherwise suitably treated to prevent adverse corrosion and the like.
  • the various components or elements can of course be formed " with replaceable wearplates where required.
  • the internal passageway may be provided with special deflecting plates and the like for improving or assisting in themotion of the particle laden air through the separator.
  • a suitable cooling means might also be applied if the relatively high temperature fluids are being treated.
  • a high temperature carrier fluid might be desired to dry incoming particles as the fluid passes through the separator.
  • Fig. 5 may otherwise be constructed as the previous embodiment with the modification of the inlet tube as described above.
  • the inlet duct may otherwise be constructed as the previous embodiment with the modification of the inlet tube as described above.
  • Suitable opening means may also be associated with the inlet duct means to establish a spiral flow within the inlet duct.
  • the concurrent flow system with a reverse or counterflow passageway construction may be modified to a straight concurrent flow through of in accordance with the broadest aspect of the invention by directly introducing the particulate laden fluid from the opposite end of a rotary fluid moving means which imparts the high tangential velocity to the fluid medium at the large entrance end of the outer confining* housing.
  • a plurality of separators may of course be connected in series, with a first main discharge connected as the inlet to a downstream separator, to increase the particle removal, further, where the volume is such tht a single separator cannot handle theair flow, a plurality of separators can of course be connected in parallel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)
  • Separation Of Particles Using Liquids (AREA)
PCT/US1980/000893 1979-07-02 1980-07-02 Fluid borne particulate separator WO1981000060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61277/80A AU6127780A (en) 1979-07-02 1980-07-02 Fluid borne particulate separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5397479A 1979-07-02 1979-07-02
US53974 1979-07-02

Publications (1)

Publication Number Publication Date
WO1981000060A1 true WO1981000060A1 (en) 1981-01-22

Family

ID=21987852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1980/000893 WO1981000060A1 (en) 1979-07-02 1980-07-02 Fluid borne particulate separator

Country Status (4)

Country Link
EP (1) EP0031368A1 (enrdf_load_stackoverflow)
JP (1) JPS56500999A (enrdf_load_stackoverflow)
CA (1) CA1171000A (enrdf_load_stackoverflow)
WO (1) WO1981000060A1 (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528483A1 (en) * 1991-08-09 1993-02-24 Nuova M.A.I.P., Macchine Agricole Industriali Pieralisi S.P.A. Smoke exhausting device with wet centrifugal dust extraction
CN109847656A (zh) * 2019-04-12 2019-06-07 辽宁加宝石化设备有限公司 气固短接触分离装置、气固短接触系统及应用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2010000035A1 (es) * 2010-01-19 2014-07-11 Masteridea S A Sistema de fotosintesis artificial que neutraliza elementos nocivos provenientes de cualquier tipo de combustion que comprende una camara principal y una camara secundaria unidas entre si por un tubo; proceso de fotosintesis artificial.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289474A (en) * 1937-05-18 1942-07-14 American Blower Corp Apparatus for dust collection
US2806551A (en) * 1951-10-16 1957-09-17 Oswald X Heinrich Centrifugal dust collector with laminar gas flow
US2976949A (en) * 1956-10-08 1961-03-28 J L Murphy Inc Apparatus for cleaning and purifying gaseous products of combustion
US3426509A (en) * 1965-05-28 1969-02-11 Svenska Flaektfabriken Ab Cyclonic separator
DE2116997A1 (en) * 1971-04-07 1972-10-19 Frank H Compact gas scrubber - having liq atomising coupled to fan blower for gas flow
SU467195A1 (ru) * 1973-11-29 1975-04-15 Всесоюзный Научно-Исследовательский Инстиитут Транспортнного Строительства Гидроциклонна насосна установка
US3884656A (en) * 1974-06-28 1975-05-20 Clifford T Deane Recirculating air cleaner
US3964884A (en) * 1973-10-23 1976-06-22 Kraftwerk Union Aktiengesellschaft Means and method for separation of water from steam-water mixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894951A (enrdf_load_stackoverflow) * 1972-03-16 1973-12-06
JPS54144387A (en) * 1978-05-02 1979-11-10 Kanto Denka Kogyo Kk Manufacture of 55fluorouracil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289474A (en) * 1937-05-18 1942-07-14 American Blower Corp Apparatus for dust collection
US2806551A (en) * 1951-10-16 1957-09-17 Oswald X Heinrich Centrifugal dust collector with laminar gas flow
US2976949A (en) * 1956-10-08 1961-03-28 J L Murphy Inc Apparatus for cleaning and purifying gaseous products of combustion
US3426509A (en) * 1965-05-28 1969-02-11 Svenska Flaektfabriken Ab Cyclonic separator
DE2116997A1 (en) * 1971-04-07 1972-10-19 Frank H Compact gas scrubber - having liq atomising coupled to fan blower for gas flow
US3964884A (en) * 1973-10-23 1976-06-22 Kraftwerk Union Aktiengesellschaft Means and method for separation of water from steam-water mixture
SU467195A1 (ru) * 1973-11-29 1975-04-15 Всесоюзный Научно-Исследовательский Инстиитут Транспортнного Строительства Гидроциклонна насосна установка
US3884656A (en) * 1974-06-28 1975-05-20 Clifford T Deane Recirculating air cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528483A1 (en) * 1991-08-09 1993-02-24 Nuova M.A.I.P., Macchine Agricole Industriali Pieralisi S.P.A. Smoke exhausting device with wet centrifugal dust extraction
CN109847656A (zh) * 2019-04-12 2019-06-07 辽宁加宝石化设备有限公司 气固短接触分离装置、气固短接触系统及应用方法
CN109847656B (zh) * 2019-04-12 2024-05-14 辽宁加宝石化设备有限公司 气固短接触分离装置、气固短接触系统及应用方法

Also Published As

Publication number Publication date
EP0031368A1 (en) 1981-07-08
CA1171000A (en) 1984-07-17
JPS56500999A (enrdf_load_stackoverflow) 1981-07-23

Similar Documents

Publication Publication Date Title
US6802881B2 (en) Rotating wave dust separator
US4357152A (en) Fluid borne particulate separator
US4468234A (en) Centrifugal separator
EP2393600B1 (en) A plant for separating oil from a gas mixture, and a method for separating oil from a gas mixture
US6328527B1 (en) Prandtl layer turbine
US4198290A (en) Dust separating equipment
US6183641B1 (en) Prandtl layer turbine
US4238210A (en) Particle-removal apparatus
US3885931A (en) Vortex forming apparatus and method
US6174127B1 (en) Prandtl layer turbine
US6224325B1 (en) Prandtl layer turbine
US3710554A (en) Wet collector
CN1324271A (zh) 旋流分离装置
US6261052B1 (en) Prandtl layer turbine
US6238177B1 (en) Prandtl layer turbine
US2709500A (en) Centrifugal air separator for removal of particles
JP2022518869A (ja) 低エネルギーマルチフロースプリッタ技術を用いて粒子含有流体を清浄にするフィルタ媒体不要な装置および方法
US4362540A (en) Apparatus for removing dust particles from an air stream
CA2258416A1 (en) Vacuum cleaner
US4624688A (en) Device for the purification of gases
US2126481A (en) Dust separator
US20030167741A1 (en) Combined toroidal and cylindrical vortex dust separator
US20040035093A1 (en) Vacuum cleaner
WO1981000060A1 (en) Fluid borne particulate separator
RU2030699C1 (ru) Установка для сушки дисперсных материалов

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU DE GB JP

Kind code of ref document: A1

Designated state(s): AU DE GB JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR

Designated state(s): FR