EP0031368A1 - Fluid borne particulate separator - Google Patents

Fluid borne particulate separator

Info

Publication number
EP0031368A1
EP0031368A1 EP80901450A EP80901450A EP0031368A1 EP 0031368 A1 EP0031368 A1 EP 0031368A1 EP 80901450 A EP80901450 A EP 80901450A EP 80901450 A EP80901450 A EP 80901450A EP 0031368 A1 EP0031368 A1 EP 0031368A1
Authority
EP
European Patent Office
Prior art keywords
air
separator
fluid
inlet
tube means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80901450A
Other languages
German (de)
French (fr)
Inventor
Wilfried P. Duske
Lowell C. Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0031368A1 publication Critical patent/EP0031368A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/10Venturi scrubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/40Combinations of devices covered by groups B01D45/00 and B01D47/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • This invention relates to a fluid moving apparatus and.particularly to a particulate separator of the concurrent flow type for removing of fluid-borne particles from the fluid.
  • a cyclone-type separator is one rather widely used separator for various industries and applications.
  • the particle laden air is introduced in a 5 tangential flow path to centrifugally force the particles to the outer periphery.
  • the relatively clean air is . drawn upwardly through the center and the separated par ⁇ ticles drop down through the bottom of the unit under force of gravity.
  • Such separators are generally relatively 0 inefficient because of the minimal time permitted for the accumulation and separation of dust particles and possible partial re-entrainment in the reverse flow.
  • Such separators are primarily useful in removal of relatively heavy particles.
  • scroll type separ ⁇ ator In dehydration of citrus pulp, cleaning 5 of boiler exhaust gases and the like, scroll type separ ⁇ ator has been suggested in which a pair of concentric cyl ⁇ inders are vertically mounted with a bottom inlet to the inner cylinder and a fan wheel mounted to the top end of the inner cylinder and within a closed end of the outer 0 cylinder.
  • the fan wheel draws the particle laden air through the cylinder, forces the air laterally into the annular passage between the inner and outer cylinder where the air flows in a counter flow to the inlet end of the cylinder, with the particle concentrated in 5 the outer peripherial layer within the outer cylinder.
  • An annular discharge opening is provided in alignment with such peripherial layer for separate removal of the particle laden air.
  • the present invention is particularly directed to an improvement in a concurrent flow separator having means to significantly improve the efficiency of the particulate separation.
  • the outer return passageway wall is specially formed of a successively reduced cross section front the starting portion of the concurrent flow passageway to the annular discharge or skimmer means.
  • the outer passage ⁇ way wall is preferably conically shaped to establish a continuous progressively reduced cross-section.
  • a plurality of annular skimmer openings can be provided for more effective removal of the particulate matter.
  • the annular skimmer opening may include a scroll drum for more effective directing the concentrated particle laden air into the discharge opening for the efficient and effective removal of concentrated particulate matter from the separator for appropriate disposal or further treatment.
  • the conical shape of the concurrent flow passageway serves to concentrate and hold the particu ⁇ late adjacent the periphery and thereby enhance the highly effective particle removal.
  • the outer cone- shaped surface is preferably formed with a smooth surface such as a polished surface to prevent particle entrapment or turbulence in the air stream.
  • the separator can be mounted with the cylinder axis in a horizontal position as well as a vertical position. Any other desired inter ⁇ mediate position can also be used as required by design convenience and the like. This particularly adapts the unit for use in connection with varied applications, for example, connected to the outlet of a cyclone separator, dropout box outlets of dehydration equip ⁇ ment or directly in other dust controlled systems.
  • the annular skimmer outlet and the main clean air outlet are separate assemblies and interconnected to each other and to the flow housing to permit annular orientation as required.
  • the annular skimmer can also be made of an adjustable diameter to accommodate varying load conditions.
  • the inlet portion of the inner cylinder includes a venturi throat section and a final flared portion with a suitable treating fluid supply member mounted at the center of venturi throat.
  • a suitable treating fluid supply member mounted at the center of venturi throat.
  • a nozzle may be provided at the venturi throat.
  • the high turbulance created in the throat section results in a high atomization of the scrubbing liquid with a resulting intimate .contact to the air borne particulate matter.
  • the venturi section will also tend to increase, the cross-sectional area of the concurrent flow at the discharge point thereby increasing the resident, time of the particles in the air path and increasing separation efficiencies.
  • the concurrent flow system can be further modified to provide for limited recirculation of the air adjacent the inlet end of the assembly.
  • the inlet cylinder may be formed with appro ⁇ priate openings to establish internal recirculation of a portion of the fluid which would otherwise discharge as a part of the relatively clean air.
  • the present invention provides an improved air moving device for simultaneously functioning as a particulate treating and separator.
  • FIG. 1 is a side elevational view of a separator constructed in accordance with the teaching of the present invention and applied to a boiler exhaust system;
  • Fig. 2 is a enlarged longitudinal section of the separator shown in Fig. 1;
  • Fig. 3 is a transverse section taken generally on line 3-3 of Fig. 1;
  • Fig. 4 is a transverse section taken generally on line 4-4 of Fig. 1; and Fig. 5 is a view similar to Fig. 2 showing an alternate embodiment of the invention.
  • a novel scroll-type particulate separator 1 is shown coupled to receive the exhaust gases 2 of a boiler 3 for cleaning of such gases of particulate matter 4 and discharging the clean air "5 into a boiler stack 6 for discharge into the atmosphere.
  • the exhaust gases 2 include particulate matter 4 which is separated from the main gas stream by the scroll- type separator 1 and passed to and through a suitable dust collector 7 for final separation of the particu- late from the exhaust air.
  • the particulate is then removed to an appropriate disposal site by any suitable means 8 while the clean carrier air is returned and mixed with the exhaust gases from the boiler, as shown by line 9.
  • the novel separator 1 includes an inner inlet cylinder 10 connected to the output of the boiler 3 and concentrically mounted within an outer cylinder 11.
  • a fan wheel unit 12 is mounted within the outer end of cylinder 11 adjacent the end of cylinder 10. The exhaust gases 2 are drawn into the separator 1 and pass the central passageway and then are turned 180 degrees to establish a counterflow through the return passageway immediately adjacent to the inlet duct.
  • a skimmer unit 13 is secured to cylinder 11 and receives the relatively concentrated particle laden gases 14 from the wall of cylinder 11. Unit 13 is connected by line 15 to the dust collector 7 for further separation and removal of the dust and return of the air to the inlet duct 10 via line 9.
  • a clean air discharge unit 16 is secured between unit 13 and inlet duct 10 to receive the relatively clean gases 17 and discharge them to stack 6.
  • the boiler, stack and dust collector may be of any suitable or known construction.
  • Various well known devices are available and no further description thereof is given other than as necessary to clearly understand the operation and structure.of the illustrated embodiment of the present invention.
  • separator 1 includes an outer cylindrical body 18 of a suitable sheet steel. Rectangular supporting frame structures 19 and 20 are interconnected in axially spaced relationship to the body 18 and define mounting posts for appropriate inter ⁇ connection and support of the separator to a suitable ground support or the like.
  • the inlet end of body 18 is flanged and the skimmer unit 13 includes a corres ⁇ ponding mounting flange, which is bolted thereto as by • equicircumferentially distributed bolt units 21.
  • the main air discharge unit 16 is similarly interconnected by equicircumferentially spaced bolt units 22 to the skimmer unit 13 and closes the end of the body 18.
  • the discharge unit 16 includes an annular discharge chamber 23 with inlet tube 10 secured as by weld 24 to the center of chamber 23.
  • the inlet tube 10 is a steel member which extends inwardly through the body
  • a dividing wall 25 is welded or otherwise secured to the end of tube 10 and extends radially outwardly, with the edge of wall 25 spaced from body 18 and return cylinder 11 to couple the fan chamber to the return passageway as at 26.
  • the end of centrifugal cylinder 10 at the wall 25 may be supported by one or more support elements 26a connected to cylinder 11.
  • the elements 26 are of such a profile and orientation as to result in minimum turbulence while providing sufficient support to the cylinder 10.
  • Suitable support elements 26a oriented generally in the direction of flow are shown in Fig. 2.
  • Similar vane-ty]e elements 26a may be provided for directing of the air to provide optimum tangential or spin direction to the air.
  • Such vane-type elements may be fixed, or adjustably mounted to permit positioning in " accordance to a particular air flow pattern.
  • the vane-type elements may also act as cut-off edges to remove the air from the opposing fan-blade edge.
  • The* fan unit 12 includes a fan wheel 28 rotatably mounted in the outer end of the body assembly immediately adjacent to the end wall 25 of inlet tube 10.
  • a drive motor 29 is mounted externally to the outer end of the body assembly and is coupled to drive the fan wheel 28.
  • the motor 29 may be an appropriate electric motor coupled.to the fan wheel shaft 30, which is shown as a suitable pull drive unit 31.
  • the fan wheel operates typically with a peripheral tip speed on the order of 10;000 to 20,000 feet per minute and imparts a similar tangential velocity to the dust particles. This, coupled with the further increase in tangential velocity due to the tapered outer cylinder 11, gives a significantly higher centrifugal force acting on the dust particles.
  • the fan wheel operates not only to draw the particle laden air inwardly through the inlet tube 10 but redirects such air laterally within the fan chamber and establishes the countercurrent flow within the fan chamber and establishes the countercurrent flow within the passageway between the inlet tube 10 and the outer wall.
  • the fan creates ''the necessary tangential velocity required concentration of the particulate in the outer air layer 14.
  • the outer wall is 9 conically shaped to establish a continuously decreasing diameter extending substantially from the opening 26 at the fan wheel chamber to the skimmer unit 13. In operation, the particle laden air 2 is drawn inwardly through theinlet tube 10 at relatively high velocity.
  • the fan wheel 28 imparts a radial motion to the particle, laden air and imparts a substantial tangential spin to the air and particles.
  • the air thus moves outwardly and is then redirected as a concurrent air flow through the outer passageway as a counterflow.
  • the flow continues through countercurrent flow passageway as spiral flow with the ocntinuing centrifugal force on particles concentrating the particles adjacent the outer conically shaped return wall 11.
  • the particle laden air is concentrated more and more adjacent such wall 11 as a result of the reduced cross section and as a result of the increased circumferential velocity duct to con- servation of angular momentam. This results in a relatively narrow or thin outer layer 14 at the time such air reaches the skimmer unit 13.
  • the skimmer unit 13 is a scrollOtype unit including a central discharge tube 32 in outwardly spaced relation to the inlet tube 10 and defining a common wall to the main air outlet unit 16.
  • the concentric common wall 32 divides the concurrent -, flowing air and the thin outer layer into skimmer unit 13, wile the relatively clean air 17 located inwardly of tube 32 continues to move through the inner passage ⁇ way to the main discharge outlet unit 16.
  • the leading edge of dividing wall 32 is shaped such, that minimum turbulence results during the separation of the air stream.
  • the dividing wall 32 may be further constructed or mounted to permit adjustment of the effective spacing from wall 11 to vary the thickness of layer 14 diverted into unit 13.
  • the wall 32 is shown as a two part member, havin ⁇ the outer serving portion slidably mounted on a fixed supporting portion. Suitable positive wall connecting means may be provided.
  • the outer conical housing unit 11 has been found to significantly improve the functioning of the separator and particularly adapts the separator to the effective particle separation while permitting the use of the device in a horizontal or any other orientation.
  • the outer body assembly 18 is a cylindrical member terminating in the opposite end in an appropriate circular flange 34.
  • the housing includes an inner flange 35 adjacent the skim ⁇ mer unit 13.
  • the conical wall 11 is secured to the inner edge of flange 35 as at 36, to form a smooth fluid tight connection.
  • the wall 11 extends axially therefrom with the opposite end feathered as at 37 and welded to the housing 18 to form a smooth inner wall 11.
  • the wall 11 is also formed with a smooth inner surface, and may advantageously be polished to minimize turbulence and reentrainment of dust particles into the air stream as the outer layer 14 moves axially into skimmer unit 13.
  • the illustrate skimmer unit 13 includes a scroll-shaped outer wall 34a spaced on a common axis with the dividing common wall 32. As shown most clearly in Fig. 4, a tangential discharge or outlet duct 38 of the skimmer 13 has a center line 39 extending tangentially of the discharge flow path from the annular skimmer discharge passageway.
  • the duct 38 includes an outer sidewall 40 tangential of the scroll-shaped wall 37 and an inner flared wall to define an increasing discharge cross section.
  • the sidewall of unit 13 projects over the housing, as shown in Fig. 4, and includes a flange 42 abutting the flange 34 of housing 18. The flanges 34 and 42 are bolted to each other, as at 21..
  • An end plate 43 extends inwardly and is welded to the dividing wall 32 to form a skimmer unit 13 as a subassembly, which is bolted in position to form a fluid-type connection to the discharge end of the conical wall 11 with an annular discharge opening 44 aligned with the outer particle l?rlen air layer 14.
  • The. main discharge unit 16 is similarly formed with an outer scroll-shaped wall 45 having a mounting flange 46 bolted in fixed relation to the outer mounting flange 47 of the common divider wall 32.
  • the wall 45 forms a continuation of the inner main flow passageway between the common wall 32 and the inner inlet tube 10.
  • a discharge duct 48 is secured to the sidewall
  • the outer end of the housing 18 is sealed • . by a suitable end wall 52 to define the fan chamber within which the fan wheel 12 is located.
  • the fan shaft 30 is rotatably supported within the end wall and pro ⁇ jects outwardly with the outer end coupled to the electric drive motor 29.
  • the fan wheel 12 is shown as a multiple bladed unit with each blade 54 having slanted edges 55 which extends outwardly therefrom with an increasing blade depth to a generally rectangular portion generally, p.ligned with the ' inlet tube end wall 25.
  • the end wall 52 is provided with a conical plate 55a to follow the slanted edge of fanwheel 12.
  • the outer blade edge aligned substantially with the outer edge of the counterflow opening 26. Rotation of the fan wheel results in the drawing of the particle -laden air into through the inlet chamber. As it moves into the fan, the fan blades impart a centrifugal tangential force to the air cuasing it to move outwardly through the
  • the moving efficiency may be improved by forming a plurality of angularly oriented bar-like members on the interior surface of the fan housing wall. Such member cooperates with the peripherial edges of the fan blades and function as cutoff edges to remove and properly direct the air into the reutrn passageway opening 26. Some or all of peripherial air may also be removed at this point by an appropriate means in the wall.
  • the conical wall 11 develops the concentrated particle laden air layer 14 as the air moves in a- tangential manner to the skimmer opening at the dividing wall 32.
  • the dividing wall 32 in essence severs the air stream diverting the particle laden air layer 14 into the skimmer discharge assembly while permitting the freeflow of the relatively clean air thorugh the passageway into the main outlet discharge unit.
  • theair may be discharged at the rate of 32,000 ACFM at a temperature of 525 degrees Fahrenheit. It is drawn... into the separator by the fan wheel with approximately.4,000 ACFM supplied at the inlet end and recirculated from the dust collector.
  • the separator 1 as previously noted is parti ⁇ cularly adapted to operation in any desired orientation and is therefore particularly adapted for use in a low profile dehydration system having a relatively, horizon ⁇ tal profile for example as disclosed in the copending application of the present inventors entitled
  • the equicircumferentially spaced connecting bolts permits the angular orientation of the main outlet unit 16 and the skimmer outlet unit 3 in anyone of the multiple positions while maintaining effective movement of the air.
  • the bolt openings were formed with a 15 degree spacing to permit corresponding angular orientation of each unit 13 and 16.
  • An inlet tube or duct 56 is formed as a venturi section.
  • the inlet tube 56 includes a generally constant diameter throat section 57 immediately adjacent to the air inlet connection.
  • the constant diameter section extends for approximatley 1/3 of the total distance of the inlet tube and then begins to gradually increase in diameter, as flared member 58, to the outermost end adjacent to the fan wheel chamber. The movement of the air thorugh the throat section will result in an acceleration of the air therethrough.
  • a water nozzle unit 59 is shown concentrically mounted within the throat section 57 and in slightly spaced relation to the discharge end of the throat section.
  • the nozzle unit 59 may be of any conventional atomizing type adapted to discharge a water spray 60 into an air flow as a relatively broken or fine mist.
  • the nozzle unit 59 is of course coupled thorugh a suitable conduit 61 to a suitable source of water. The water moves into the rapidly oving stream immediately adjacent to the discharge end of the throat section;.
  • the relatively high turbulance associated with the venturi action will result in further atomizzaion of the water and mixing with the air flow tofacilitate and enhance the scrubbing and moistening of the dust particles carried by the air stream.
  • the water introduced into the unit may be mixed with a suitable emulcifier to establish relatively uniform product at the discharge end of the unit.
  • a suitable emulcifier to establish relatively uniform product at the discharge end of the unit.
  • the several components in the flow passageway should of course be formed of a suitable corrosion resistant material or otherwise suitably treated to prevent adverse corrosion and the like.
  • the various components or elements can of course be formed " with replaceable wearplates where required.
  • the internal passageway may be provided with special deflecting plates and the like for improving or assisting in themotion of the particle laden air through the separator.
  • a suitable cooling means might also be applied if the relatively high temperature fluids are being treated.
  • a high temperature carrier fluid might be desired to dry incoming particles as the fluid passes through the separator.
  • Fig. 5 may otherwise be constructed as the previous embodiment with the modification of the inlet tube as described above.
  • the inlet duct may otherwise be constructed as the previous embodiment with the modification of the inlet tube as described above.
  • Suitable opening means may also be associated with the inlet duct means to establish a spiral flow within the inlet duct.
  • the concurrent flow system with a reverse or counterflow passageway construction may be modified to a straight concurrent flow through of in accordance with the broadest aspect of the invention by directly introducing the particulate laden fluid from the opposite end of a rotary fluid moving means which imparts the high tangential velocity to the fluid medium at the large entrance end of the outer confining* housing.
  • a plurality of separators may of course be connected in series, with a first main discharge connected as the inlet to a downstream separator, to increase the particle removal, further, where the volume is such tht a single separator cannot handle theair flow, a plurality of separators can of course be connected in parallel.

Abstract

Un separateur de particules (1) du type a ecoulement concurrent comprend un cylindre interieur (10) monte concentriquement dans un cylindre exterieur conique (11) qui est ferme a l'extremite de retour exterieure. Une soufflante (12) est montee dans l'extremite de retour du cylindre exterieur (11) pour tirer de l'air a l'interieur au travers du cylindre interieur (10), pour donner une force centrifuge et un tourbillon tangentiel a l'air se deplacant vers l'exterieur puis vers l'arriere repassant par le cylindre conique exterieur (11). Le materiau particulaire dans le fluide se deplace vers l'exterieur vers la peripherie du cylindre exterieur (11) a cause des forces centrifuges. Le mouvement tourbillonnaire tangentiel imparti a l'air force ce dernier a se deplacer suivant une trajectoire de retour en spirale, le cylindre conique (11) formant une section decroissante. L'extremite de refoulement du cylindre conique (11) comprend une sortie principale de refoulement de l'air encerclant le cylindre d'admission (10) pour refouler l'air propre et un ecumeur annulaire exterieur (13) comprenant une paroi de separation interne (32) separant la couche externe d'air adjacente a l'ouverture annulaire du cylindre externe pour enlever separement le courant d'air particulaire adjacent a la peripherie du cylindre (11).A competitive flow type particle separator (1) has an inner cylinder (10) mounted concentrically in a tapered outer cylinder (11) which is closed at the outer return end. A blower (12) is mounted in the return end of the outer cylinder (11) to draw air inside through the inner cylinder (10), to impart centrifugal force and tangential vortex to the cylinder. air moving outwards then backwards passing through the outer conical cylinder (11). Particulate material in the fluid moves outward to the periphery of the outer cylinder (11) due to centrifugal forces. The tangential vortex movement imparted to the air forces the latter to move in a spiral return path, the conical cylinder (11) forming a decreasing section. The discharge end of the conical cylinder (11) includes a main air discharge outlet encircling the intake cylinder (10) for discharging clean air and an outer annular skimmer (13) comprising an internal partition wall (32) separating the outer layer of air adjacent to the annular opening of the outer cylinder to separately remove particulate air stream adjacent to the periphery of the cylinder (11).

Description

FLUID BORNE PARTICULATE SEPARATOR Background Of The Invention This invention relates to a fluid moving apparatus and.particularly to a particulate separator of the concurrent flow type for removing of fluid-borne particles from the fluid.
In many applications, there is a demand for the separation of particulate from a fluid such as particles from air. Various types of separators are Q available and various designs have been suggested for the purpose of particulate separation. A cyclone-type separator is one rather widely used separator for various industries and applications. In cyclone-type separators the particle laden air is introduced in a 5 tangential flow path to centrifugally force the particles to the outer periphery. The relatively clean air is . drawn upwardly through the center and the separated par¬ ticles drop down through the bottom of the unit under force of gravity. Such separators are generally relatively 0 inefficient because of the minimal time permitted for the accumulation and separation of dust particles and possible partial re-entrainment in the reverse flow. Such separators are primarily useful in removal of relatively heavy particles. In dehydration of citrus pulp, cleaning 5 of boiler exhaust gases and the like, scroll type separ¬ ator has been suggested in which a pair of concentric cyl¬ inders are vertically mounted with a bottom inlet to the inner cylinder and a fan wheel mounted to the top end of the inner cylinder and within a closed end of the outer 0 cylinder. The fan wheel draws the particle laden air through the cylinder, forces the air laterally into the annular passage between the inner and outer cylinder where the air flows in a counter flow to the inlet end of the cylinder, with the particle concentrated in 5 the outer peripherial layer within the outer cylinder. An annular discharge opening is provided in alignment with such peripherial layer for separate removal of the particle laden air. Although providing satis¬ factory particle removal, maximum particle separation has not been obtained and significant particulate remains in the main discharged air stream.
Summary Of The Present Invention The present invention is particularly directed to an improvement in a concurrent flow separator having means to significantly improve the efficiency of the particulate separation. Generally in accordance with the teaching of the present invention, the outer return passageway wall is specially formed of a successively reduced cross section front the starting portion of the concurrent flow passageway to the annular discharge or skimmer means. The outer passage¬ way wall is preferably conically shaped to establish a continuous progressively reduced cross-section. A plurality of annular skimmer openings can be provided for more effective removal of the particulate matter. The annular skimmer opening may include a scroll drum for more effective directing the concentrated particle laden air into the discharge opening for the efficient and effective removal of concentrated particulate matter from the separator for appropriate disposal or further treatment. The conical shape of the concurrent flow passageway serves to concentrate and hold the particu¬ late adjacent the periphery and thereby enhance the highly effective particle removal. The outer cone- shaped surface is preferably formed with a smooth surface such as a polished surface to prevent particle entrapment or turbulence in the air stream. A signi¬ ficant advantage which applicant has discovered is that the particulate separator constructed in accordance with the present invention may be employed in any
OM physical orientation. Thus the separator can be mounted with the cylinder axis in a horizontal position as well as a vertical position. Any other desired inter¬ mediate position can also be used as required by design convenience and the like. This particularly adapts the unit for use in connection with varied applications, for example, connected to the outlet of a cyclone separator, dropout box outlets of dehydration equip¬ ment or directly in other dust controlled systems. In accordance with a preferred construction and feature of the present invention, the annular skimmer outlet and the main clean air outlet are separate assemblies and interconnected to each other and to the flow housing to permit annular orientation as required. The annular skimmer can also be made of an adjustable diameter to accommodate varying load conditions.
In certain applications, treatment of the air borne particulate may be desired or required. In another embodiment of the invention, the inlet portion of the inner cylinder includes a venturi throat section and a final flared portion with a suitable treating fluid supply member mounted at the center of venturi throat. For example, for liquid scrubbing of the particle, a nozzle may be provided at the venturi throat. The high turbulance created in the throat section results in a high atomization of the scrubbing liquid with a resulting intimate .contact to the air borne particulate matter. The venturi section will also tend to increase, the cross-sectional area of the concurrent flow at the discharge point thereby increasing the resident, time of the particles in the air path and increasing separation efficiencies.
The concurrent flow system can be further modified to provide for limited recirculation of the air adjacent the inlet end of the assembly. For example, the inlet cylinder may be formed with appro¬ priate openings to establish internal recirculation of a portion of the fluid which would otherwise discharge as a part of the relatively clean air. The present invention provides an improved air moving device for simultaneously functioning as a particulate treating and separator.
Description Of The Drawing Figures The drawings "furnished herewith illustrate a preferred construction of the present invention in which the above advantages and features are clearly disclosed as well as others which will be readily understood from the following description. In the drawings: Fig. 1 is a side elevational view of a separator constructed in accordance with the teaching of the present invention and applied to a boiler exhaust system;
Fig. 2 is a enlarged longitudinal section of the separator shown in Fig. 1;
Fig. 3 is a transverse section taken generally on line 3-3 of Fig. 1;
Fig. 4 is a transverse section taken generally on line 4-4 of Fig. 1; and Fig. 5 is a view similar to Fig. 2 showing an alternate embodiment of the invention.
Description Of The Illustrated Embodiments Referring to the drawings and particularly to Fig. 1, a novel scroll-type particulate separator 1 is shown coupled to receive the exhaust gases 2 of a boiler 3 for cleaning of such gases of particulate matter 4 and discharging the clean air "5 into a boiler stack 6 for discharge into the atmosphere. Thus, the exhaust gases 2 include particulate matter 4 which is separated from the main gas stream by the scroll- type separator 1 and passed to and through a suitable dust collector 7 for final separation of the particu- late from the exhaust air. The particulate is then removed to an appropriate disposal site by any suitable means 8 while the clean carrier air is returned and mixed with the exhaust gases from the boiler, as shown by line 9. Generally, the novel separator 1 includes an inner inlet cylinder 10 connected to the output of the boiler 3 and concentrically mounted within an outer cylinder 11. A fan wheel unit 12 is mounted within the outer end of cylinder 11 adjacent the end of cylinder 10. The exhaust gases 2 are drawn into the separator 1 and pass the central passageway and then are turned 180 degrees to establish a counterflow through the return passageway immediately adjacent to the inlet duct. A skimmer unit 13 is secured to cylinder 11 and receives the relatively concentrated particle laden gases 14 from the wall of cylinder 11. Unit 13 is connected by line 15 to the dust collector 7 for further separation and removal of the dust and return of the air to the inlet duct 10 via line 9. A clean air discharge unit 16 is secured between unit 13 and inlet duct 10 to receive the relatively clean gases 17 and discharge them to stack 6.
The boiler, stack and dust collector may be of any suitable or known construction. Various well known devices are available and no further description thereof is given other than as necessary to clearly understand the operation and structure.of the illustrated embodiment of the present invention.
Referring to Fig. 2,' separator 1 includes an outer cylindrical body 18 of a suitable sheet steel. Rectangular supporting frame structures 19 and 20 are interconnected in axially spaced relationship to the body 18 and define mounting posts for appropriate inter¬ connection and support of the separator to a suitable ground support or the like. The inlet end of body 18 is flanged and the skimmer unit 13 includes a corres¬ ponding mounting flange, which is bolted thereto as by equicircumferentially distributed bolt units 21. The main air discharge unit 16 is similarly interconnected by equicircumferentially spaced bolt units 22 to the skimmer unit 13 and closes the end of the body 18. The discharge unit 16 includes an annular discharge chamber 23 with inlet tube 10 secured as by weld 24 to the center of chamber 23. The inlet tube 10 is a steel member which extends inwardly through the body
18 with the innermost end located inwardly of the opposite or outer end of the body 18 to define the fan chamber in the outer end of body 18. A dividing wall 25 is welded or otherwise secured to the end of tube 10 and extends radially outwardly, with the edge of wall 25 spaced from body 18 and return cylinder 11 to couple the fan chamber to the return passageway as at 26. The end of centrifugal cylinder 10 at the wall 25 may be supported by one or more support elements 26a connected to cylinder 11. The elements 26 are of such a profile and orientation as to result in minimum turbulence while providing sufficient support to the cylinder 10. Suitable support elements 26a oriented generally in the direction of flow are shown in Fig. 2. Similar vane-ty]e elements 26a may be provided for directing of the air to provide optimum tangential or spin direction to the air. Such vane-type elements may be fixed, or adjustably mounted to permit positioning in" accordance to a particular air flow pattern.
OMP The vane-type elements may also act as cut-off edges to remove the air from the opposing fan-blade edge.
The* fan unit 12 includes a fan wheel 28 rotatably mounted in the outer end of the body assembly immediately adjacent to the end wall 25 of inlet tube 10. A drive motor 29 is mounted externally to the outer end of the body assembly and is coupled to drive the fan wheel 28. The motor 29 may be an appropriate electric motor coupled.to the fan wheel shaft 30, which is shown as a suitable pull drive unit 31. The fan wheel operates typically with a peripheral tip speed on the order of 10;000 to 20,000 feet per minute and imparts a similar tangential velocity to the dust particles. This, coupled with the further increase in tangential velocity due to the tapered outer cylinder 11, gives a significantly higher centrifugal force acting on the dust particles. The fan wheel operates not only to draw the particle laden air inwardly through the inlet tube 10 but redirects such air laterally within the fan chamber and establishes the countercurrent flow within the fan chamber and establishes the countercurrent flow within the passageway between the inlet tube 10 and the outer wall. The fan creates ''the necessary tangential velocity required concentration of the particulate in the outer air layer 14. In accordance with the present invention, the outer wall is 9 conically shaped to establish a continuously decreasing diameter extending substantially from the opening 26 at the fan wheel chamber to the skimmer unit 13. In operation, the particle laden air 2 is drawn inwardly through theinlet tube 10 at relatively high velocity. The fan wheel 28 imparts a radial motion to the particle, laden air and imparts a substantial tangential spin to the air and particles. The air thus moves outwardly and is then redirected as a concurrent air flow through the outer passageway as a counterflow. As a result of the spinning motion applied to the air, the flow continues through countercurrent flow passageway as spiral flow with the ocntinuing centrifugal force on particles concentrating the particles adjacent the outer conically shaped return wall 11. The particle laden air is concentrated more and more adjacent such wall 11 as a result of the reduced cross section and as a result of the increased circumferential velocity duct to con- servation of angular momentam. This results in a relatively narrow or thin outer layer 14 at the time such air reaches the skimmer unit 13.
As shown in Fig. 2, the skimmer unit 13 is a scrollOtype unit including a central discharge tube 32 in outwardly spaced relation to the inlet tube 10 and defining a common wall to the main air outlet unit 16. The concentric common wall 32 divides the concurrent -, flowing air and the thin outer layer into skimmer unit 13, wile the relatively clean air 17 located inwardly of tube 32 continues to move through the inner passage¬ way to the main discharge outlet unit 16. The leading edge of dividing wall 32 is shaped such, that minimum turbulence results during the separation of the air stream. The dividing wall 32 may be further constructed or mounted to permit adjustment of the effective spacing from wall 11 to vary the thickness of layer 14 diverted into unit 13. The wall 32 is shown as a two part member, havinσ the outer serving portion slidably mounted on a fixed supporting portion. Suitable positive wall connecting means may be provided.
The outer conical housing unit 11 has been found to significantly improve the functioning of the separator and particularly adapts the separator to the effective particle separation while permitting the use of the device in a horizontal or any other orientation.
More particularly, as. shown in Figs. 2 - 4, the outer body assembly 18 is a cylindrical member terminating in the opposite end in an appropriate circular flange 34. The housing includes an inner flange 35 adjacent the skim¬ mer unit 13. The conical wall 11 is secured to the inner edge of flange 35 as at 36, to form a smooth fluid tight connection. The wall 11 extends axially therefrom with the opposite end feathered as at 37 and welded to the housing 18 to form a smooth inner wall 11. The wall 11 is also formed with a smooth inner surface, and may advantageously be polished to minimize turbulence and reentrainment of dust particles into the air stream as the outer layer 14 moves axially into skimmer unit 13.
The illustrate skimmer unit 13 includes a scroll-shaped outer wall 34a spaced on a common axis with the dividing common wall 32. As shown most clearly in Fig. 4, a tangential discharge or outlet duct 38 of the skimmer 13 has a center line 39 extending tangentially of the discharge flow path from the annular skimmer discharge passageway. The duct 38 includes an outer sidewall 40 tangential of the scroll-shaped wall 37 and an inner flared wall to define an increasing discharge cross section. The sidewall of unit 13 projects over the housing, as shown in Fig. 4, and includes a flange 42 abutting the flange 34 of housing 18. The flanges 34 and 42 are bolted to each other, as at 21.. An end plate 43 extends inwardly and is welded to the dividing wall 32 to form a skimmer unit 13 as a subassembly, which is bolted in position to form a fluid-type connection to the discharge end of the conical wall 11 with an annular discharge opening 44 aligned with the outer particle l?rlen air layer 14.
■The. main discharge unit 16 is similarly formed with an outer scroll-shaped wall 45 having a mounting flange 46 bolted in fixed relation to the outer mounting flange 47 of the common divider wall 32. The wall 45 forms a continuation of the inner main flow passageway between the common wall 32 and the inner inlet tube 10. A discharge duct 48 is secured to the sidewall
45 with a tangential discharge path in the same general manner as the skimmer discharge duct 38. The outer face plate 49 of the discharge outlet is sealed to the inlet tube 10 which projects outwardly slightly therefrom with a suitable mounting flange 50 for inter¬ connecting of tube 10 to the discharge duct 51 of the boiler 3.
The outer end of the housing 18 is sealed . by a suitable end wall 52 to define the fan chamber within which the fan wheel 12 is located. The fan shaft 30 is rotatably supported within the end wall and pro¬ jects outwardly with the outer end coupled to the electric drive motor 29. The fan wheel 12 is shown as a multiple bladed unit with each blade 54 having slanted edges 55 which extends outwardly therefrom with an increasing blade depth to a generally rectangular portion generally, p.ligned with the' inlet tube end wall 25. The end wall 52 is provided with a conical plate 55a to follow the slanted edge of fanwheel 12. The outer blade edge aligned substantially with the outer edge of the counterflow opening 26. Rotation of the fan wheel results in the drawing of the particle -laden air into through the inlet chamber. As it moves into the fan, the fan blades impart a centrifugal tangential force to the air cuasing it to move outwardly through the
pυS.£A(
O.fPI fan chamber to the opening through the fan chamber to the opening 26 and in the return flow path. The moving efficiency may be improved by forming a plurality of angularly oriented bar-like members on the interior surface of the fan housing wall. Such member cooperates with the peripherial edges of the fan blades and function as cutoff edges to remove and properly direct the air into the reutrn passageway opening 26. Some or all of peripherial air may also be removed at this point by an appropriate means in the wall.
The conical wall 11 develops the concentrated particle laden air layer 14 as the air moves in a- tangential manner to the skimmer opening at the dividing wall 32. The dividing wall 32 in essence severs the air stream diverting the particle laden air layer 14 into the skimmer discharge assembly while permitting the freeflow of the relatively clean air thorugh the passageway into the main outlet discharge unit. For example in a boiler application, theair may be discharged at the rate of 32,000 ACFM at a temperature of 525 degrees Fahrenheit. It is drawn... into the separator by the fan wheel with approximately.4,000 ACFM supplied at the inlet end and recirculated from the dust collector. Thus, approximately 36,000 ACFM flow flows through the separator, the 4,000 ACFM is separated by the skimmer and recirculated while the 32,000 ACFM clean exhaust is exhausted through the boiler stack. The separator 1 as previously noted is parti¬ cularly adapted to operation in any desired orientation and is therefore particularly adapted for use in a low profile dehydration system having a relatively, horizon¬ tal profile for example as disclosed in the copending application of the present inventors entitled
Dehydration Equipment" filed on even date herewith.
- vvιru The equicircumferentially spaced connecting bolts permits the angular orientation of the main outlet unit 16 and the skimmer outlet unit 3 in anyone of the multiple positions while maintaining effective movement of the air. Thus, in a practical construction the bolt openings were formed with a 15 degree spacing to permit corresponding angular orientation of each unit 13 and 16.
Although the illustrative embodiement of Figs. 1-4 satisfactory and effective separation of particles, certain installations may require modification of the particle laden air such as water scrubbing of the particles. A modification to the above embodiment to provide such function is shown in Fig. 5, and the changes are described below.
An inlet tube or duct 56 is formed as a venturi section. Thus the inlet tube 56 includes a generally constant diameter throat section 57 immediately adjacent to the air inlet connection. The constant diameter section extends for approximatley 1/3 of the total distance of the inlet tube and then begins to gradually increase in diameter, as flared member 58, to the outermost end adjacent to the fan wheel chamber. The movement of the air thorugh the throat section will result in an acceleration of the air therethrough.
When the air moves from the throat section 57 to the flared section58, the air expands in accordance with the expanding chamber by the increasing inlet tube cross section. A water nozzle unit 59 is shown concentrically mounted within the throat section 57 and in slightly spaced relation to the discharge end of the throat section. The nozzle unit 59 may be of any conventional atomizing type adapted to discharge a water spray 60 into an air flow as a relatively broken or fine mist. The nozzle unit 59 is of course coupled thorugh a suitable conduit 61 to a suitable source of water. The water moves into the rapidly oving stream immediately adjacent to the discharge end of the throat section;. The relatively high turbulance associated with the venturi action will result in further atomizzaion of the water and mixing with the air flow tofacilitate and enhance the scrubbing and moistening of the dust particles carried by the air stream.
The water introduced into the unit may be mixed with a suitable emulcifier to establish relatively uniform product at the discharge end of the unit. When employed with the water spraying modifier or the like, the several components in the flow passageway should of course be formed of a suitable corrosion resistant material or otherwise suitably treated to prevent adverse corrosion and the like. Although not illustrated the various components or elements can of course be formed "with replaceable wearplates where required. Further the internal passageway may be provided with special deflecting plates and the like for improving or assisting in themotion of the particle laden air through the separator.
A suitable cooling means might also be applied if the relatively high temperature fluids are being treated. Conversely, a high temperature carrier fluid might be desired to dry incoming particles as the fluid passes through the separator.
The structure of Fig. 5 may otherwise be constructed as the previous embodiment with the modification of the inlet tube as described above. Although not illustrated, the inlet duct
10 may be provided with suitable opening means to allow recirculation of a porition ofthe air or other gases and particles which may remain in the relatively clean air directed to the discharge unit 16 where the exceptional clean exhaust requirements are established, or conditions are such that a single pass cannot effectively clean the exhaust fluid. Suitable means may also be associated with the inlet duct means to establish a spiral flow within the inlet duct. The concurrent flow system with a reverse or counterflow passageway construction may be modified to a straight concurrent flow through of in accordance with the broadest aspect of the invention by directly introducing the particulate laden fluid from the opposite end of a rotary fluid moving means which imparts the high tangential velocity to the fluid medium at the large entrance end of the outer confining* housing. A plurality of separators may of course be connected in series, with a first main discharge connected as the inlet to a downstream separator, to increase the particle removal, further, where the volume is such tht a single separator cannot handle theair flow, a plurality of separators can of course be connected in parallel. These and similar modifications can be readily provided by those skilled in the art, consequently no further description is given thereof
'' ϊfOT _\
OMPI "~

Claims

Various modes in carrying out the invention are contemplated as being within the scope of the following claims, particularly pointing out and distinctly claiming the subject matter which is regarded as the invention.We claim:
1. A particulate separator for removing of fluid born particulate from a fluid carrier, com¬ prising an outer confining housing, an inlet tube means mounted within the housing and adapted to receive
5. the particulate laden fluid carrier, means for establishing said particulate laden fluid medium flowing through said inlet tube means and redirecting the flow of said particulate laden fluid medium i a return flow passageway defined by said outer confining housing,
10 and extended in a reverse direction to the exterior of said inlet tube means, said outer confining housing converging from the return inlet means to an outlet means, said outlet means inlcudes a Reparation, wall means separating on inner radial portion of the
15 fluid from the outer radial portion of the fluid, first outlet means for discharging of the radially outer portion of the fluid stream, and second outlet means for discharging of the radially inner portionof the fluid stream.
2. The particulate separator of claim 1 wherein said inlet tube means inlcudes a venturi means to establish a turbulent flow of the fluid carrier and further including means to introduce a second medium into the inlet tube means for intimate commingling with theparticulateladen fluid medium.
3. The separator of claim 1 wherein said means imparts a high centrifugal spin to the particulate laden fluid medium as the lfuid medium flows from the -inlet tube means and into and thorugh the return passageway means whereby the particulate matter is concentrated within the radially outer portion of the air stream in said return passageway.
4. The separator of claim 1 wherein said outer confining wall includes an inner polished surface presented to said fluid medium to prevent particle entrapment and re-entrainment.
5. The separator of claim 1 wherein passageway means are provided between the inlet tube means and the return flow passageway means for internal recirculating of the fluid medium.
6. The separator of claim 1 including cooling means to cool the fluid medium.
7. The separator of claim 1 wherein said separation wall is located between said first and secorid outlet means to separate said fluid medium into said first and second discharge means, said separation wall being adjustable to adjust the relative thickness of the air layers.
8. The separator of claim 7 wherein said common wall is axially movable relative to said outer confining housing. "
9. The separator of claim 1 includes vane means between the inlet tube means and the outer confining housing means, said vane means being constructed and located to properly direct fluid medium into the outer confining housing.
10. The separator of claim 9-wherein said vane means are adjustably mounted to adjust the angular orientation.
11. A tangential scroll separator of the concurrent flow type, comprising an outer support housing, an inner tube means mounted within the housing and having a short inlet section and a relatively long flared section forming a venturi passageway through said inlet tube means, an outer tube means secured concentrically of said inner tube means and tapered in accordance with the fluid section, a partial wall means secured to the flared section and projecting toward the outer tube means and terminating in slightly spaced relation to the outer tube means to define an outer peripherial opening to said return passageway, a power driven fan wheel mounted adjacent said partial wall means and operable to draw particulate laden air through said inlet tube means and rledirect said air through said peripheral opening and outwardly through the return passageway means, a separation wall means located between the innerand outer tube means and projecting into the outer tube means to divide the air stream in said return passageway, a first skimmer outlet means secured to the outer tube means and said separation wall to discharge the outer portion of the air and an end discharge means secured to the inner tube means and the separation wall means to discharge the inner portion of the air.
12. The separator of claim 11 including means to introduce a second fluid medium into said throat section of said inner tube means to moisten the particulates in said air.
13. An air cleaning apparatus for separation of particulate from particulate laden air, comprising a horizontal support means, a tubular support housing mounted in said support means with a horizontal axis, an inner tube means mounted within the housing and having a short inlet section and a relatively long flared section forming a venturi passageway through said inlet tube means, an outer tube means secured concentrically of said inner tube means and tapered in accordance with the fluid section, a partial wall means secured to the flared section and projecting toward the outer tube means and terminating in slightly spaced relation to the outer tube means to define an outer peripherial opening to said return passageway, a power driven fan wheel mounted adjacent said partial wall means and operable to draw particulate laden air through said inlet tube means and redirect said air through said peripheral opening and outwardly through the return passageway means, a separation wall means located between the inner and outer tube means and projecting into the outer tube means to divide the air stream in said return passageway, a first skimmer outlet means secured to the outer tube means and said separation wall to discharge the outer portion of the air and an end discharge means secured to the inner tube means and the separation wall means to discharge the inner portion of the air, a dust collector having an input means coupled to said first outlet means, said duct collector including means to capture a portion of the air from the first outlet means and return said air to the inlet of inner tube means.
14. The apparatus of claim 13 wherein said inlet means inlcudes an input duct connected to a boiler exhaust staack, a bouiler draft control damper in said duct, said dust collector being connected down- stream of the damper, and said second outlet means being connected to an exhaust stack above said input __ duct connection to the stack mean. O
15.* A particulate separator for removing of fluid bone particulate from a fluid carrier, comprising anouter confining housing fan, an inlet end means and an outlet end of a substantially smaller area than inlet end means, rotary fluid moving means mounted to the inlet means with direction of the particulate laden fluid medium into the ihlet end of said outer confining housing with a tangential spiral motion with an increased velocity, said outer confining housing converging from the large inlet end to a small outlet end, outlet means coupled to said small outlet end including a separation wall means separating an inner radial portion of the air from the outer radial portion of the air,, first discharge means for discharging of the radially outer portion of the stream, and second discharge means for discharging of the radially inner portion of the stream.
fUR£-4^
OMPI
EP80901450A 1979-07-02 1981-01-26 Fluid borne particulate separator Withdrawn EP0031368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5397479A 1979-07-02 1979-07-02
US53974 1979-07-02

Publications (1)

Publication Number Publication Date
EP0031368A1 true EP0031368A1 (en) 1981-07-08

Family

ID=21987852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80901450A Withdrawn EP0031368A1 (en) 1979-07-02 1981-01-26 Fluid borne particulate separator

Country Status (4)

Country Link
EP (1) EP0031368A1 (en)
JP (1) JPS56500999A (en)
CA (1) CA1171000A (en)
WO (1) WO1981000060A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1251171B (en) * 1991-08-09 1995-05-04 Gennaro Pieralisi FUME EXTRACTION EQUIPMENT WITH CENTRIFUGAL WET COMBINATION OF DUST
CL2010000035A1 (en) * 2010-01-19 2014-07-11 Masteridea S A Artificial photosynthesis system that neutralizes harmful elements from any type of combustion comprising a main chamber and a secondary chamber joined together by a tube; artificial photosynthesis process.
CN109847656A (en) * 2019-04-12 2019-06-07 辽宁加宝石化设备有限公司 Gas-solid short contact separator, gas-solid short contact system and application method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289474A (en) * 1937-05-18 1942-07-14 American Blower Corp Apparatus for dust collection
US2806551A (en) * 1951-10-16 1957-09-17 Oswald X Heinrich Centrifugal dust collector with laminar gas flow
US2976949A (en) * 1956-10-08 1961-03-28 J L Murphy Inc Apparatus for cleaning and purifying gaseous products of combustion
SE305111B (en) * 1965-05-28 1968-10-14 Svenska Flaektfabriken Ab
DE2116997C3 (en) * 1971-04-07 1975-10-23 Hans 5060 Bensberg Frank Device for separating solid or liquid particles from air or other gases
JPS4894951A (en) * 1972-03-16 1973-12-06
DE2353111C3 (en) * 1973-10-23 1981-06-11 Kraftwerk Union AG, 4330 Mülheim Device for separating water from steam-water mixtures
SU467195A1 (en) * 1973-11-29 1975-04-15 Всесоюзный Научно-Исследовательский Инстиитут Транспортнного Строительства Hydro cyclone pump installation
US3884656A (en) * 1974-06-28 1975-05-20 Clifford T Deane Recirculating air cleaner
JPS54144387A (en) * 1978-05-02 1979-11-10 Kanto Denka Kogyo Kk Manufacture of 55fluorouracil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8100060A1 *

Also Published As

Publication number Publication date
CA1171000A (en) 1984-07-17
JPS56500999A (en) 1981-07-23
WO1981000060A1 (en) 1981-01-22

Similar Documents

Publication Publication Date Title
US6802881B2 (en) Rotating wave dust separator
US4468234A (en) Centrifugal separator
US4357152A (en) Fluid borne particulate separator
US4198290A (en) Dust separating equipment
EP2393600B1 (en) A plant for separating oil from a gas mixture, and a method for separating oil from a gas mixture
US3973937A (en) Engine air precleaner
US9446342B2 (en) Cyclone induced sweeping flow separator
JP3832852B2 (en) Device for separating solid or liquid particles from a gas stream
US6328527B1 (en) Prandtl layer turbine
US3710554A (en) Wet collector
US2687780A (en) Gas cleaning apparatus
US20120187032A1 (en) Low energy centrifugal liquid-solid separator system
US2709500A (en) Centrifugal air separator for removal of particles
US4362540A (en) Apparatus for removing dust particles from an air stream
US6183641B1 (en) Prandtl layer turbine
US4624688A (en) Device for the purification of gases
US4015958A (en) Wet centrifugal separator for gas
US2126481A (en) Dust separator
US20040035093A1 (en) Vacuum cleaner
EP0031368A1 (en) Fluid borne particulate separator
US6224325B1 (en) Prandtl layer turbine
US3969093A (en) Cyclonic gas scrubbing system
US20030167741A1 (en) Combined toroidal and cylindrical vortex dust separator
US3054244A (en) Gas-material separator
RU2260470C1 (en) Vortex-type dust collector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19810706