USRE50204E1 - Perforating gun and detonator assembly - Google Patents

Perforating gun and detonator assembly Download PDF

Info

Publication number
USRE50204E1
USRE50204E1 US16/287,150 US201916287150A USRE50204E US RE50204 E1 USRE50204 E1 US RE50204E1 US 201916287150 A US201916287150 A US 201916287150A US RE50204 E USRE50204 E US RE50204E
Authority
US
United States
Prior art keywords
assembly
detonator
line
perforating gun
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/287,150
Inventor
Frank Haron Preiss
Thilo Scharf
Liam Mcnelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DynaEnergetics GmbH and Co KG
Original Assignee
DynaEnergetics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51211795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE50204(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DynaEnergetics GmbH and Co KG filed Critical DynaEnergetics GmbH and Co KG
Priority to US16/287,150 priority Critical patent/USRE50204E1/en
Assigned to DYNAENERGETICS GMBH & CO. KG reassignment DYNAENERGETICS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHARF, Thilo, MCNELIS, LIAM, PREISS, FRANK HARON
Assigned to DynaEnergetics Europe GmbH reassignment DynaEnergetics Europe GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DYNAENERGETICS GMBH & CO. KG
Application granted granted Critical
Publication of USRE50204E1 publication Critical patent/USRE50204E1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/12Primers; Detonators electric
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor

Definitions

  • Devices and methods for selective actuation of wellbore tools are generally described.
  • devices and methods for selective arming of a detonator assembly of a perforating gun assembly are generally described.
  • Hydrocarbons such as fossil fuels (e.g. oil) and natural gas
  • fossil fuels e.g. oil
  • natural gas Hydrocarbons
  • a perforating gun assembly or train or string of multiple perforating gun assemblies, are lowered into the wellbore, and positioned adjacent one or more hydrocarbon reservoirs in underground formations.
  • the perforating gun has explosive charges, typically shaped, hollow or projectile charges, which are ignited to create holes in the casing and to blast through the formation so that the hydrocarbons can flow through the casing.
  • a surface signal actuates an ignition of a fuse, which in turn initiates a detonating cord, which detonates the shaped charges to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string.
  • the surface signal typically travels from the surface along electrical wires that run from the surface to one or more detonators positioned within the perforating gun assembly.
  • Assembly of a perforating gun requires assembly of multiple parts, which typically include at least the following components: a housing or outer gun barrel within which is positioned an electrical wire for communicating from the surface to initiate ignition, a percussion initiator and/or a detonator, a detonating cord, one or more charges which are held in an inner tube, strip or carrying device and, where necessary, one or more boosters. Assembly typically includes threaded insertion of one component into another by screwing or twisting the components into place, optionally by use of a tandem adapter. Since the electrical wire must extend through much of the perforating gun assembly, it is easily twisted and crimped during assembly. In addition, when a wired detonator is used it must be manually connected to the electrical wire, which has lead to multiple problems.
  • the wires Due to the rotating assembly of parts, the wires can become torn, twisted and/or crimped/nicked, the wires may be inadvertently disconnected, or even mis-connected in error during assembly, not to mention the safety issues associated with physically and manually wiring live explosives.
  • the wired detonator 60 has typically been configured such that wires must be physically, manually connected upon configuration of the perforating gun assembly.
  • the wired detonator 60 typically has three (or more) wires, (although it is possible to have one or more wires whereby one wire could also be a contact (as described in greater detail below and as found, for instance, in a spring-contact detonator, commercially available from DynaEnergetics GmbH & Co. KG without the benefit of selectivity) and whereby a second connection would be through a shell or head of the detonator), which require manual, physical connection once the wired detonator is placed into the perforating gun assembly.
  • the wires typically include at least a signal-in wire 61 , a signal-out wire 62 and a ground wire 63 , while it is possible that only two wires are provided and the third or ground connection is made by connecting the third wire to the shell or head of the.
  • the wires extending along the perforating gun are matched to the wires of the detonator, and an inner metallic portion of one wire is twisted together with an inner metallic portion of the matched wire using an electrical connector cap or wire nut or a scotch-lock type connector.
  • the detonator assembly described herein does away with the wired connection by providing a wirelessly-connectable, selective detonator, more specifically, a detonator configured to be received within a detonator positioning assembly through a wireless connection—that is, without the need to attach wires to the detonator.
  • a wireless connection does not refer to a WiFi connection.
  • the detonator assembly described herein solves the problems associated with the wired detonator of the prior art in that it is simple to assemble and is almost impossible to falsely connect.
  • An embodiment provides a wirelessly-connectable selective detonator assembly configured for being electrically contactably received within a perforating gun assembly without using a wired electrical connection according to claim 1 .
  • Another embodiment provides a perforating gun assembly including the wirelessly-connectable selective detonator assembly and a detonator positioning assembly according to the independent assembly claim.
  • Another embodiment provides a method of assembling the perforating gun assembly according to the independent method claim.
  • FIG. 1 is a perspective view of a wired detonator according to the prior art
  • FIG. 2 is a cross-sectional side view of a wirelessly-connectable selective detonator assembly according to an aspect
  • FIG. 3 is a perspective view of the detonator assembly according to FIG. 1 ;
  • FIG. 4 is a partial cross-sectional side view a perforating gun assembly including the detonator assembly seated within a detonator positioning assembly according to an aspect
  • FIG. 5 is an exploded cross-sectional side view of FIG. 4 showing an electrically contactingly electrical connection without using a wired electrical connection according to an aspect
  • FIG. 6 is a perspective view of the detonator positioning assembly according to an aspect, showing an assembly as if a wired detonator were used.
  • a detonator assembly is provided that is capable of being positioned or placed into a perforating gun assembly with minimal effort, by means of placement/positioning within a detonator positioning assembly.
  • the detonator positioning assembly includes the detonator assembly positioned within the detonator positioning assembly, which is positioned within the perforating gun assembly.
  • the detonator assembly electrically contactably forms an electrical connection without the need of manually and physically connecting, cutting or crimping wires as required in a wired electrical connection. Rather, the detonator assembly described herein is a wirelessly-connectable selective detonator assembly.
  • the detonator assembly is particularly suited for use with a modular perforating gun assembly as described in a Canadian Patent Application No. 2,824,838 filed Aug. 26, 2013, entitled PERFORATION GUN COMPONENTS AND SYSTEM, (hereinafter “the Canadian Application”), which is incorporated herein by reference in its entirety.
  • the Canadian Application describes a modular-type perforating gun which means that at least some of the components are typically snapped, clicked, or plugged together, rather than screwed, twisted or rotated together as discussed above. That is, the modular perforating gun includes components that are fit together using studs or pins protruding from one component, that are frictionally fit into recessed areas or sockets in an adjoining component.
  • wireless means that the detonator assembly itself is not manually, physically connected within the perforating gun assembly as has been traditionally done with wired connections, but rather merely makes electrical contact through various components as described herein to form the electrical connections.
  • the signal is not being wirelessly transmitted, but is rather being relayed through electrical cables/wiring within the perforating gun assembly through the electrical contacts.
  • a wirelessly-connectable selective detonator assembly 10 is provided for use in a perforating gun assembly 40 .
  • the detonator assembly 10 includes a detonator shell 12 and a detonator head 18 and is configured for being electrically contactably received within a perforating gun assembly 40 without using a wired electrical connection, that is without connecting one or more wires directly to the detonator assembly 10 .
  • the detonator shell 12 is configured as a housing or casing, typically a metallic, which houses at least a detonator head plug 14 , a fuse head 15 , an electronic circuit board 16 and explosive components.
  • the fuse head 15 could be any device capable of converting an electric signal into an explosion.
  • the detonator shell 12 is shaped as a hollow cylinder.
  • the electronic circuit board 16 is connected to the fuse head 14 and is configured to allow for selective detonation of the detonator assembly 10 .
  • the electronic circuit board 16 is configured to wirelessly and selectively receive an ignition signal I, (typically a digital code uniquely configured for a specific detonator), to fire the perforating gun assembly 40 .
  • an ignition signal I typically a digital code uniquely configured for a specific detonator
  • the detonator assembly is configured to receive one or more specific digital sequence(s), which differs from a digital sequence that might be used to arm and/or detonate another detonator assembly in a different, adjacent perforating gun assembly, for instance, a train of perforating gun assemblies. So, detonation of the various assemblies does not necessarily have to occur in a specified sequence. Any specific assembly can be selectively detonated. In an embodiment, the detonation occurs in a down-up or bottom-up sequence.
  • the detonator head 18 extends from one end of the detonator shell 12 , and includes more than one electrical contacting component including an electrically contactable line-in portion 20 and an electrically contactable line-out portion 22 , according to an aspect.
  • the detonator assembly 10 may also include an electrically contactable ground portion 13 .
  • the detonator head 18 may be disk-shaped.
  • at least a portion of the detonator shell 12 is configured as the ground portion 13 .
  • the line-in portion 20 , the line-out portion 22 and the ground portion 13 are configured to replace the wired connection of the prior art wired detonator 60 and to complete the electrical connection merely by contact with other electrical contacting components.
  • the line-in portion 20 of the detonator assembly 10 replaces the signal-in wire 61 of the wired detonator 60
  • the line-out portion 22 replaces the signal-out wire 62
  • the ground portion 13 replaces the ground wire 63 .
  • the line-in portion 20 , the line-out portion 22 and the ground portion 13 of the detonator assembly 10 make an electrical connection by merely making contact with corresponding electrical contacting components (also as discussed in greater detail below). That is, the detonator assembly 10 is wirelessly connectable only by making and maintaining electrical contact of the electrical contacting components to replace the wired electrical connection and without using a wired electrical connection.
  • the detonator head 18 also includes an insulator 24 , which is positioned between the line-in portion 20 and the line-out portion 22 .
  • the insulator 24 functions to electrically isolate the line-in portion 20 from the line-out portion 22 . Insulation may also be positioned between other lines of the detonator head.
  • all of the contacts it is possible for all of the contacts to be configured as part of the detonator head 18 (not shown), as found, for instance, in a banana connector used in a headphone wire assembly in which the contacts are stacked longitudinally along a central axis of the connector, with the insulating portion situated between them.
  • a capacitor 17 is positioned or otherwise assembled as part of the electronic circuit board 16 .
  • the capacitor 17 is configured to be discharged to initiate the detonator assembly 10 upon receipt of a digital firing sequence via the ignition signal I, the ignition signal being electrically relayed directly through the line-in portion 20 and the line-out portion 22 of the detonator head 18 .
  • a first digital code is transmitted down-hole to and received by the electronic circuit board. Once it is confirmed that the first digital code is the correct code for that specific detonator assembly, an electronic gate is closed and the capacitor is charged. Then, as a safety feature, a second digital code is transmitted to and received by the electronic circuit board. The second digital code, which is also confirmed as the proper code for the particular detonator, closes a second gate, which in turn discharges the capacitor via the fuse head to initiate the detonation.
  • the detonator assembly 10 may be fluid disabled. “Fluid disabled” means that if the perforating gun has a leak and fluid enters the gun system then the detonator is disabled by the presence of the fluid and hence the explosive train is broken. This prevents a perforating gun from splitting open inside a well if it has a leak and plugging the wellbore, as the hardware would burst open.
  • the detonator assembly 10 is a selective fluid disabled electronic (SFDE) detonator assembly.
  • the detonator assembly 10 can be either an electric or an electronic detonator.
  • an electric detonator a direct wire from the surface is electrically contactingly connected to the detonator assembly and power is increased to directly initiate the fuse head.
  • an electronic detonator assembly circuitry of the electronic circuit board within the detonator assembly is used to initiate the fuse head.
  • the detonator assembly 10 may be immune, that is, will not unintentionally fire or be armed by stray current or voltage and/or radiofrequency (RF) signals to avoid inadvertent firing of the perforating gun.
  • the assembly is provided with means for ensuring immunity to high stray current or voltage and/or RF signals, such that the detonator assembly 10 is not initiated through random radio frequency signals, stray voltage or stray current.
  • the detonator assembly 10 is configured to avoid unintended initiation and would fail safe.
  • the detonator assembly 10 is configured to be electrically contactingly received within the detonator positioning assembly 30 , in which an embodiment is depicted in FIGS. 4 - 6 , which is seated or positioned within the perforating gun assembly 40 , without using the wired electrical connection.
  • the perforating gun assembly 40 is a modular assembly as discussed above.
  • the detonator positioning assembly 30 is also configured for electrically contactingly receiving the detonator assembly 10 without using the wired electrical connection.
  • a sleeve 31 extends from one end of the detonator positioning assembly 30 .
  • the detonator positioning assembly 30 includes a connecting portion 37 extending from the end opposite the sleeve 31 , which is useful in a modular assembly and that would have studs or recesses extending from or recessed into the connecting portion (not shown).
  • the sleeve 31 is configured to receive and hold in place, in at least a semi-fixed position, the detonator head 18 of the detonator assembly 10 .
  • “hold” means to enclose within bounds, to limit or hold back from movement or to keep in a certain position.
  • the detonator positioning assembly 30 includes a portion that extends from the sleeve 31 in which a wire-receiving hole 29 is provided for insertion of electrical wires extending along the length of the perforating gun assembly.
  • a wire-receiving hole 29 is provided for insertion of electrical wires extending along the length of the perforating gun assembly.
  • directional locking fins 34 engageable with corresponding complementarily-shaped structures 47 housed within the perforating gun housing 42 , upon a rotation of a top connector (not shown), to lock a position of the top connector along the length of the carrier 42 , as more fully described in the Canadian Application.
  • the detonator positioning assembly 30 is positioned within the perforating gun assembly 40 and functions to receive and hold in place the detonator assembly 10 according to an aspect.
  • the detonator positioning assembly 30 also functions to provide electrical contacting components for wirelessly-connectably electrically receiving the detonator assembly 10 as will be discussed in greater detail below.
  • the detonator positioning assembly 30 abuts and connects or snap-fits to grounding means, depicted herein as the gun body or barrel or carrier or housing 42 , for grounding the detonator assembly 10 .
  • a tandem seal adapter 44 is configured to seal inner components within the perforating gun housing 42 from the outside environment using sealing means.
  • the tandem seal adapter 44 seals adjacent perforating gun assemblies (not shown) from each other, along with a bulkhead assembly 46 .
  • the bulkhead assembly 46 functions to relay a line-in contact-initiating pin 38 for wirelessly electrically contacting the line-in portion 20 of the detonator head 18 .
  • the sleeve 31 includes a recessed portion 32 that includes an opening on one end and a base on the opposite end of the recessed portion.
  • the sleeve 31 also includes a bore 33 positioned at the base, more preferably in the center of the base of the recessed portion 32 .
  • the bore 33 extends within and along at least a portion of a length of the detonator positioning assembly 30 such that when the detonator assembly 10 is positioned within the sleeve 31 , the detonator shell 12 is positioned in the bore 33 .
  • the recessed portion 32 and the detonator head 18 are complementarily sized and shaped to receive and seat/be received and seated, respectively, in at least a semi-fixed position within the detonator positioning assembly 30 .
  • the sleeve 31 includes a line-out contact-receiving portion 36 configured for electrically contactingly engaging the line-out portion 22 of the detonator head 18 to form a first electrical connection.
  • the electrical connection is made only by contact with the line-out portion of the detonator head 18 . . . that is by merely physically touching.
  • a line-in contact-initiating pin 38 is provided and configured for electrically contactingly engaging the line-in portion 20 of the detonator head 18 to form a second electrical connection
  • the ground portion 13 is configured for electrically contactingly engaging an inner wall or surface of the gun carrier 42 , otherwise referred to as a ground contact-receiving portion 39 , to form a third electrical connection.
  • the connection is made, in this embodiment, via an integral ground connection in the detonator positioning assembly 30 and the locking fins 34 .
  • the detonator positioning assembly 30 and the locking fins 34 may be made from conductive material.
  • the first, second and third electrical connections are completed without using a wired electrical connection.
  • the line-out contact-receiving portion 36 is positioned at the base of the recessed portion 32 of the sleeve 31 .
  • the line-in contact-initiating pin 38 , the line-out contact-receiving portion 36 and the ground contact-receiving portion 39 , as well as the line-in portion 20 , the line-out portion 22 and the ground portion 13 are physically isolated from each other.
  • a through wire 35 extends between the line-out contact-receiving portion 36 of the perforating gun assembly 40 to an adjacent perforating gun assembly in a multiple gun arrangement or train.
  • a detonating cord 48 is positioned within the detonator positioning assembly 30 , adjacent to the bore 33 , such that at least a portion of the detonating cord 48 is in side-by-side contact with at least a portion of the detonator shell 12 at the end opposite the detonator head 18 .
  • the ignition signal I is received by the detonator assembly 10 , which ignites the detonating cord 48 , which in turn ignites each of the charge(s) 50 attached to the detonating cord.
  • Transmission of the signal I is conducted along the through wire 35 , without the need to manually connect the through wire 35 to the detonator assembly 10 , that is, without using a wired electrical connection, while the electrical contacts are completed upon placement of the detonator assembly 10 into the detonator positioning assembly 30 .
  • a method of assembling the perforating gun assembly 40 without using a wired electrical connection includes the steps of positioning the detonator positioning assembly 30 within the perforating gun assembly 40 and positioning a wirelessly-connectable selective electronic detonator assembly 10 within the detonator positioning assembly 30 .
  • the method includes assembling a modular perforating gun assembly and the method includes frictionally fitting or snap-fitting components together.
  • the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
  • the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

According to an aspect, a perforating gun assembly and a detonator assembly are provided. The detonator assembly includes at least a shell, and more than one electrically contactable component that is configured for being electrically contactably received by the perforating gun assembly without using a wired electrical connection, but rather forms the electrical connection merely by contact with at least one of the more than one electrically contactable components. According to an aspect, the detonator assembly includes a selective detonator assembly. A method of assembling the perforating gun assembly including the detonator assembly is also provided.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a Continuation Application of U.S. application Ser. No. 14/767,058 filed Aug. 11, 2015, and claims priority to PCT Application No. PCT/EP2014/065752 filed Jul. 22, 2014, which claims priority to German Patent Application No. 102013109227.6 filed Aug. 26, 2013, each of which is incorporated herein by reference in its entirety.
FIELD
Devices and methods for selective actuation of wellbore tools are generally described. In particular, devices and methods for selective arming of a detonator assembly of a perforating gun assembly are generally described.
BACKGROUND
Hydrocarbons, such as fossil fuels (e.g. oil) and natural gas, are extracted from underground wellbores extending deeply below the surface using complex machinery and explosive devices. Once the wellbore is established by placement of cases after drilling, a perforating gun assembly, or train or string of multiple perforating gun assemblies, are lowered into the wellbore, and positioned adjacent one or more hydrocarbon reservoirs in underground formations. The perforating gun has explosive charges, typically shaped, hollow or projectile charges, which are ignited to create holes in the casing and to blast through the formation so that the hydrocarbons can flow through the casing. Once the perforating gun(s) is properly positioned, a surface signal actuates an ignition of a fuse, which in turn initiates a detonating cord, which detonates the shaped charges to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string. The surface signal typically travels from the surface along electrical wires that run from the surface to one or more detonators positioned within the perforating gun assembly.
Assembly of a perforating gun requires assembly of multiple parts, which typically include at least the following components: a housing or outer gun barrel within which is positioned an electrical wire for communicating from the surface to initiate ignition, a percussion initiator and/or a detonator, a detonating cord, one or more charges which are held in an inner tube, strip or carrying device and, where necessary, one or more boosters. Assembly typically includes threaded insertion of one component into another by screwing or twisting the components into place, optionally by use of a tandem adapter. Since the electrical wire must extend through much of the perforating gun assembly, it is easily twisted and crimped during assembly. In addition, when a wired detonator is used it must be manually connected to the electrical wire, which has lead to multiple problems. Due to the rotating assembly of parts, the wires can become torn, twisted and/or crimped/nicked, the wires may be inadvertently disconnected, or even mis-connected in error during assembly, not to mention the safety issues associated with physically and manually wiring live explosives.
According to the prior art and as shown in FIG. 1 , the wired detonator 60 has typically been configured such that wires must be physically, manually connected upon configuration of the perforating gun assembly. As shown herein, the wired detonator 60 typically has three (or more) wires, (although it is possible to have one or more wires whereby one wire could also be a contact (as described in greater detail below and as found, for instance, in a spring-contact detonator, commercially available from DynaEnergetics GmbH & Co. KG without the benefit of selectivity) and whereby a second connection would be through a shell or head of the detonator), which require manual, physical connection once the wired detonator is placed into the perforating gun assembly. For detonators with a wired integrated switch for selective perforating, the wires typically include at least a signal-in wire 61, a signal-out wire 62 and a ground wire 63, while it is possible that only two wires are provided and the third or ground connection is made by connecting the third wire to the shell or head of the. In a typical manual, physical connection, the wires extending along the perforating gun are matched to the wires of the detonator, and an inner metallic portion of one wire is twisted together with an inner metallic portion of the matched wire using an electrical connector cap or wire nut or a scotch-lock type connector.
The detonator assembly described herein does away with the wired connection by providing a wirelessly-connectable, selective detonator, more specifically, a detonator configured to be received within a detonator positioning assembly through a wireless connection—that is, without the need to attach wires to the detonator. For the sake of clarity, the term “wireless” does not refer to a WiFi connection. The detonator assembly described herein solves the problems associated with the wired detonator of the prior art in that it is simple to assemble and is almost impossible to falsely connect.
BRIEF DESCRIPTION
An embodiment provides a wirelessly-connectable selective detonator assembly configured for being electrically contactably received within a perforating gun assembly without using a wired electrical connection according to claim 1.
Another embodiment provides a perforating gun assembly including the wirelessly-connectable selective detonator assembly and a detonator positioning assembly according to the independent assembly claim.
Another embodiment provides a method of assembling the perforating gun assembly according to the independent method claim.
BRIEF DESCRIPTION OF THE FIGURES
A more particular description briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
FIG. 1 is a perspective view of a wired detonator according to the prior art;
FIG. 2 is a cross-sectional side view of a wirelessly-connectable selective detonator assembly according to an aspect;
FIG. 3 is a perspective view of the detonator assembly according to FIG. 1 ;
FIG. 4 is a partial cross-sectional side view a perforating gun assembly including the detonator assembly seated within a detonator positioning assembly according to an aspect;
FIG. 5 is an exploded cross-sectional side view of FIG. 4 showing an electrically contactingly electrical connection without using a wired electrical connection according to an aspect; and
FIG. 6 is a perspective view of the detonator positioning assembly according to an aspect, showing an assembly as if a wired detonator were used.
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent like components throughout the figures and text. The various described features are not necessarily drawn to scale, but are drawn to emphasize specific features relevant to embodiments.
DETAILED DESCRIPTION
Reference will now be made in detail to embodiments. Each example is provided by way of explanation, and is not meant as a limitation and does not constitute a definition of all possible embodiments.
In an embodiment, a detonator assembly is provided that is capable of being positioned or placed into a perforating gun assembly with minimal effort, by means of placement/positioning within a detonator positioning assembly. In an embodiment, the detonator positioning assembly includes the detonator assembly positioned within the detonator positioning assembly, which is positioned within the perforating gun assembly. The detonator assembly electrically contactably forms an electrical connection without the need of manually and physically connecting, cutting or crimping wires as required in a wired electrical connection. Rather, the detonator assembly described herein is a wirelessly-connectable selective detonator assembly.
In an embodiment, the detonator assembly is particularly suited for use with a modular perforating gun assembly as described in a Canadian Patent Application No. 2,824,838 filed Aug. 26, 2013, entitled PERFORATION GUN COMPONENTS AND SYSTEM, (hereinafter “the Canadian Application”), which is incorporated herein by reference in its entirety. The Canadian Application describes a modular-type perforating gun which means that at least some of the components are typically snapped, clicked, or plugged together, rather than screwed, twisted or rotated together as discussed above. That is, the modular perforating gun includes components that are fit together using studs or pins protruding from one component, that are frictionally fit into recessed areas or sockets in an adjoining component.
As used herein, the term “wireless” means that the detonator assembly itself is not manually, physically connected within the perforating gun assembly as has been traditionally done with wired connections, but rather merely makes electrical contact through various components as described herein to form the electrical connections. Thus, the signal is not being wirelessly transmitted, but is rather being relayed through electrical cables/wiring within the perforating gun assembly through the electrical contacts.
Now referring to FIGS. 2 and 3 , according to an embodiment, a wirelessly-connectable selective detonator assembly 10 is provided for use in a perforating gun assembly 40. The detonator assembly 10 includes a detonator shell 12 and a detonator head 18 and is configured for being electrically contactably received within a perforating gun assembly 40 without using a wired electrical connection, that is without connecting one or more wires directly to the detonator assembly 10.
In an embodiment, the detonator shell 12 is configured as a housing or casing, typically a metallic, which houses at least a detonator head plug 14, a fuse head 15, an electronic circuit board 16 and explosive components. According to one aspect, the fuse head 15 could be any device capable of converting an electric signal into an explosion. In an embodiment shown in FIG. 2 , the detonator shell 12 is shaped as a hollow cylinder. The electronic circuit board 16 is connected to the fuse head 14 and is configured to allow for selective detonation of the detonator assembly 10. In an embodiment, the electronic circuit board 16 is configured to wirelessly and selectively receive an ignition signal I, (typically a digital code uniquely configured for a specific detonator), to fire the perforating gun assembly 40. By “selective” what is meant is that the detonator assembly is configured to receive one or more specific digital sequence(s), which differs from a digital sequence that might be used to arm and/or detonate another detonator assembly in a different, adjacent perforating gun assembly, for instance, a train of perforating gun assemblies. So, detonation of the various assemblies does not necessarily have to occur in a specified sequence. Any specific assembly can be selectively detonated. In an embodiment, the detonation occurs in a down-up or bottom-up sequence.
The detonator head 18 extends from one end of the detonator shell 12, and includes more than one electrical contacting component including an electrically contactable line-in portion 20 and an electrically contactable line-out portion 22, according to an aspect. According to one aspect, the detonator assembly 10 may also include an electrically contactable ground portion 13. In an embodiment, the detonator head 18 may be disk-shaped. In another embodiment, at least a portion of the detonator shell 12 is configured as the ground portion 13. The line-in portion 20, the line-out portion 22 and the ground portion 13 are configured to replace the wired connection of the prior art wired detonator 60 and to complete the electrical connection merely by contact with other electrical contacting components. In this way, the line-in portion 20 of the detonator assembly 10 replaces the signal-in wire 61 of the wired detonator 60, the line-out portion 22 replaces the signal-out wire 62 and the ground portion 13 replaces the ground wire 63. Thus, when placed into a detonator positioning assembly 30 (see FIG. 4 ) as discussed in greater detail below, the line-in portion 20, the line-out portion 22 and the ground portion 13 of the detonator assembly 10 make an electrical connection by merely making contact with corresponding electrical contacting components (also as discussed in greater detail below). That is, the detonator assembly 10 is wirelessly connectable only by making and maintaining electrical contact of the electrical contacting components to replace the wired electrical connection and without using a wired electrical connection.
The detonator head 18 also includes an insulator 24, which is positioned between the line-in portion 20 and the line-out portion 22. The insulator 24 functions to electrically isolate the line-in portion 20 from the line-out portion 22. Insulation may also be positioned between other lines of the detonator head. As discussed above and in an embodiment, it is possible for all of the contacts to be configured as part of the detonator head 18 (not shown), as found, for instance, in a banana connector used in a headphone wire assembly in which the contacts are stacked longitudinally along a central axis of the connector, with the insulating portion situated between them.
In an embodiment, a capacitor 17 is positioned or otherwise assembled as part of the electronic circuit board 16. The capacitor 17 is configured to be discharged to initiate the detonator assembly 10 upon receipt of a digital firing sequence via the ignition signal I, the ignition signal being electrically relayed directly through the line-in portion 20 and the line-out portion 22 of the detonator head 18. In a typical arrangement, a first digital code is transmitted down-hole to and received by the electronic circuit board. Once it is confirmed that the first digital code is the correct code for that specific detonator assembly, an electronic gate is closed and the capacitor is charged. Then, as a safety feature, a second digital code is transmitted to and received by the electronic circuit board. The second digital code, which is also confirmed as the proper code for the particular detonator, closes a second gate, which in turn discharges the capacitor via the fuse head to initiate the detonation.
In an embodiment, the detonator assembly 10 may be fluid disabled. “Fluid disabled” means that if the perforating gun has a leak and fluid enters the gun system then the detonator is disabled by the presence of the fluid and hence the explosive train is broken. This prevents a perforating gun from splitting open inside a well if it has a leak and plugging the wellbore, as the hardware would burst open. In an embodiment, the detonator assembly 10 is a selective fluid disabled electronic (SFDE) detonator assembly.
The detonator assembly 10 according to an aspect can be either an electric or an electronic detonator. In an electric detonator, a direct wire from the surface is electrically contactingly connected to the detonator assembly and power is increased to directly initiate the fuse head. In an electronic detonator assembly, circuitry of the electronic circuit board within the detonator assembly is used to initiate the fuse head.
In an embodiment, the detonator assembly 10 may be immune, that is, will not unintentionally fire or be armed by stray current or voltage and/or radiofrequency (RF) signals to avoid inadvertent firing of the perforating gun. Thus, in this embodiment, the assembly is provided with means for ensuring immunity to high stray current or voltage and/or RF signals, such that the detonator assembly 10 is not initiated through random radio frequency signals, stray voltage or stray current. In other words, the detonator assembly 10 is configured to avoid unintended initiation and would fail safe.
The detonator assembly 10 is configured to be electrically contactingly received within the detonator positioning assembly 30, in which an embodiment is depicted in FIGS. 4-6 , which is seated or positioned within the perforating gun assembly 40, without using the wired electrical connection. In an embodiment, the perforating gun assembly 40 is a modular assembly as discussed above. The detonator positioning assembly 30 is also configured for electrically contactingly receiving the detonator assembly 10 without using the wired electrical connection.
In an embodiment and as shown in FIG. 6 , a sleeve 31 extends from one end of the detonator positioning assembly 30. As shown herein, the detonator positioning assembly 30 includes a connecting portion 37 extending from the end opposite the sleeve 31, which is useful in a modular assembly and that would have studs or recesses extending from or recessed into the connecting portion (not shown). The sleeve 31 is configured to receive and hold in place, in at least a semi-fixed position, the detonator head 18 of the detonator assembly 10. As used herein, “hold” means to enclose within bounds, to limit or hold back from movement or to keep in a certain position. As shown herein, the detonator positioning assembly 30 includes a portion that extends from the sleeve 31 in which a wire-receiving hole 29 is provided for insertion of electrical wires extending along the length of the perforating gun assembly. With reference again to FIG. 6 , also shown are directional locking fins 34 engageable with corresponding complementarily-shaped structures 47 housed within the perforating gun housing 42, upon a rotation of a top connector (not shown), to lock a position of the top connector along the length of the carrier 42, as more fully described in the Canadian Application.
With particular reference to FIG. 4 , the detonator positioning assembly 30 is positioned within the perforating gun assembly 40 and functions to receive and hold in place the detonator assembly 10 according to an aspect. In addition, the detonator positioning assembly 30 also functions to provide electrical contacting components for wirelessly-connectably electrically receiving the detonator assembly 10 as will be discussed in greater detail below.
The detonator positioning assembly 30 abuts and connects or snap-fits to grounding means, depicted herein as the gun body or barrel or carrier or housing 42, for grounding the detonator assembly 10. A tandem seal adapter 44 is configured to seal inner components within the perforating gun housing 42 from the outside environment using sealing means. The tandem seal adapter 44 seals adjacent perforating gun assemblies (not shown) from each other, along with a bulkhead assembly 46.
The bulkhead assembly 46 functions to relay a line-in contact-initiating pin 38 for wirelessly electrically contacting the line-in portion 20 of the detonator head 18.
Turning again to the detonator positioning assembly 30, in a preferred embodiment, the sleeve 31 includes a recessed portion 32 that includes an opening on one end and a base on the opposite end of the recessed portion. Preferably, the sleeve 31 also includes a bore 33 positioned at the base, more preferably in the center of the base of the recessed portion 32. The bore 33 extends within and along at least a portion of a length of the detonator positioning assembly 30 such that when the detonator assembly 10 is positioned within the sleeve 31, the detonator shell 12 is positioned in the bore 33.
In an embodiment, the recessed portion 32 and the detonator head 18 are complementarily sized and shaped to receive and seat/be received and seated, respectively, in at least a semi-fixed position within the detonator positioning assembly 30.
In yet another embodiment, the sleeve 31 includes a line-out contact-receiving portion 36 configured for electrically contactingly engaging the line-out portion 22 of the detonator head 18 to form a first electrical connection. In other words, the electrical connection is made only by contact with the line-out portion of the detonator head 18 . . . that is by merely physically touching.
Preferably, a line-in contact-initiating pin 38 is provided and configured for electrically contactingly engaging the line-in portion 20 of the detonator head 18 to form a second electrical connection, and the ground portion 13 is configured for electrically contactingly engaging an inner wall or surface of the gun carrier 42, otherwise referred to as a ground contact-receiving portion 39, to form a third electrical connection. The connection is made, in this embodiment, via an integral ground connection in the detonator positioning assembly 30 and the locking fins 34. In an embodiment, the detonator positioning assembly 30 and the locking fins 34 may be made from conductive material. Thus, when the detonator assembly 10 is positioned within the detonator positioning assembly 30, the first, second and third electrical connections are completed without using a wired electrical connection. In an embodiment, the line-out contact-receiving portion 36 is positioned at the base of the recessed portion 32 of the sleeve 31.
In an embodiment, the line-in contact-initiating pin 38, the line-out contact-receiving portion 36 and the ground contact-receiving portion 39, as well as the line-in portion 20, the line-out portion 22 and the ground portion 13 are physically isolated from each other.
In an embodiment, a through wire 35 extends between the line-out contact-receiving portion 36 of the perforating gun assembly 40 to an adjacent perforating gun assembly in a multiple gun arrangement or train.
In an embodiment, a detonating cord 48 is positioned within the detonator positioning assembly 30, adjacent to the bore 33, such that at least a portion of the detonating cord 48 is in side-by-side contact with at least a portion of the detonator shell 12 at the end opposite the detonator head 18.
In operation and in an embodiment, the ignition signal I is received by the detonator assembly 10, which ignites the detonating cord 48, which in turn ignites each of the charge(s) 50 attached to the detonating cord. Transmission of the signal I is conducted along the through wire 35, without the need to manually connect the through wire 35 to the detonator assembly 10, that is, without using a wired electrical connection, while the electrical contacts are completed upon placement of the detonator assembly 10 into the detonator positioning assembly 30.
According to an aspect, a method of assembling the perforating gun assembly 40 without using a wired electrical connection is also provided. The method includes the steps of positioning the detonator positioning assembly 30 within the perforating gun assembly 40 and positioning a wirelessly-connectable selective electronic detonator assembly 10 within the detonator positioning assembly 30. In yet another embodiment, the method includes assembling a modular perforating gun assembly and the method includes frictionally fitting or snap-fitting components together.
The components and methods illustrated are not limited to the specific embodiments described herein, but rather, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that all such modifications and variations are included. Further, steps described in the method may be utilized independently and separately from other steps described herein.
While the device and method have been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the intended scope. In addition, many modifications may be made to adapt a particular situation or material to the teachings found herein without departing from the essential scope thereof.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, references to “one embodiment,” “an embodiment,” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Terms such as “first,” “second,” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.”
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the device and method, including the best mode, and also to enable any person of ordinary skill in the art to practice the device and method, including making and using any devices or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (32)

What is claimed is:
1. A wireless detonator assembly configured for being electrically contactably received within a perforating gun assembly without using a wired electrical connection, comprising:
a shell configured for housing components of the detonator assembly;
more than one electrical contact component, wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete an electrical connection merely by contact;
an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and
means for selective detonation housed within the shell,
wherein the detonator assembly is configured for electrically contactably forming the electrical connection merely by the contact.
2. The wireless detonator assembly of claim 1, wherein the means for selective detonation further comprise an electronic circuit board and means for receiving an ignition signal.
3. The wireless detonator assembly of claim 2, further comprising a capacitor positioned on the electronic circuit board, the capacitor configured to be discharged to initiate the detonator assembly upon receipt of a digital firing sequence via an ignition signal, the ignition signal being electrically relayed directly through the line-in portion and the line-out portion.
4. The wireless detonator assembly of claim 2, further comprising means for ensuring immunity to stray current or voltage or radio frequency signals, such that the detonator assembly is not unintentionally armed or initiated.
5. A perforating gun assembly, comprising:
a wirelessly-connectable selective detonator assembly configured for being electrically contactably received within the perforating gun assembly without using a wired electrical connection, the detonator assembly comprising:
a shell configured for housing components of the detonator assembly;
more than one electrically contactable component, wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete an electrical connection merely by contact;
an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and
means for selective detonation of the detonator assembly,
wherein the means for selective detonation is housed within the shell, and the detonator assembly configured for electrically contactably forming the electrical connection merely by the contact and without the need of manually and physically connecting wires.
6. The perforating gun assembly of claim 5, wherein the means for selective detonation further comprise an electronic circuit board and means for receiving an ignition signal.
7. The perforating gun assembly of claim 6, further comprising a capacitor positioned on the electronic circuit board, the capacitor being configured to be discharged to initiate the detonator assembly upon receipt of a digital firing sequence via an ignition signal, and the ignition signal being electrically relayed directly through the line-in portion and the line-out portion.
8. The perforating gun assembly of claim 5, further comprising a detonating cord positioned within the perforating gun assembly such that at least a portion of the detonating cord is in contact with the detonator assembly.
9. The perforating gun assembly of claim 8, wherein the detonator assembly is configured for initiating the detonating cord without the detonating cord having to be attached to the detonator assembly.
10. The perforating gun assembly of claim 8, wherein the detonating cord is positioned in side-by-side contact with at least a portion of the shell.
11. The perforating gun assembly of claim 5, further comprising means for ensuring immunity to stray current or voltage or radio frequency signals, such that the detonator assembly is not unintentionally armed or initiated.
12. A method of assembling a perforating gun assembly without using a wired electrical connection, comprising:
positioning a wirelessly-connectable selective detonator assembly within the perforating gun assembly, wherein the detonator assembly comprises:
a shell configured for housing components of the detonator assembly;
more than one electrically contactable component, wherein at least one of the electrical contact components extends from the shell and further wherein the electrical contact component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace the wired electrical connection to complete a wireless electrical connection merely by contact;
an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and
means for selective detonation of the detonator assembly,
electrically contactingly connecting the detonator assembly such that the detonator assembly electrically contactably forms the wireless electrical connection merely by the contact and without the need of manually and physically connecting wires.
13. The method of assembling the perforating gun assembly of claim 12, further comprising:
positioning a detonator positioning assembly within the perforating gun assembly; and
positioning the wirelessly-connectable selective detonator assembly within the detonator positioning assembly.
14. The method of assembling the perforating gun assembly of claim 12, further comprising:
positioning a detonating cord within the perforating gun assembly such that at least a portion of the detonating cord is in contact with the detonator assembly.
15. The method of assembling the perforating gun assembly of claim 14, further comprising:
initiating the detonating cord without the detonating cord having to be attached to the detonator assembly.
16. A perforating gun, comprising:
a perforating gun housing;
a tandem seal adapter, wherein the perforating gun housing is connected at a first end to the tandem seal adapter and the tandem seal adapter is configured for sealing an interior of the perforating gun housing from an interior of an adjacent perforating gun housing and for being positioned between the interior of the perforating gun housing and the interior of the adjacent perforating gun housing;
a carrying device positioned within the perforating gun housing and configured for holding at least one shaped charge; and
a wirelessly-connectable selective detonator assembly contained entirely within the perforating gun housing and configured for being electrically contactably received within the perforating gun housing without using a wired electrical connection, the detonator assembly comprising:
a shell configured for housing components of the detonator assembly;
more than one electrically contactable component, wherein at least one of the electrically contactable components extends from the shell and further wherein the more than one electrically contactable component comprises an electrically contactable line-in portion, an electrically contactable line-out portion, and an electrically contactable ground portion, the ground portion in combination with the line-in portion and the line-out portion being configured to replace a wired electrical connection to complete an electrical connection within the perforating gun housing merely by contact;
an insulator positioned between the line-in portion and the line-out portion, wherein the insulator electrically isolates the line-in portion from the line-out portion; and
an electronic circuit board configured to allow for selective detonation of the detonator assembly,
wherein the electronic circuit board is housed within the shell, and the detonator assembly is configured for electrically contactably forming the electrical connection within the perforating gun housing merely by the contact and without the need of manually and physically connecting wires.
17. The perforating gun of claim 16, wherein the electronic circuit board is in electrical communication with the line-in portion.
18. The perforating gun of claim 17, further comprising a capacitor positioned on the electronic circuit board, the capacitor being configured to be discharged to initiate the detonator assembly upon receipt of an ignition signal, and the ignition signal being electrically relayed directly through the line-in portion and the line-out portion.
19. The perforating gun of claim 16, further comprising a detonating cord positioned within the perforating gun housing such that at least a portion of the detonating cord is in contact with the detonator assembly.
20. The perforating gun of claim 16, wherein the detonator assembly is configured for initiating a detonating cord positioned within the perforating gun housing without the detonating cord having to be attached to the detonator assembly.
21. The perforating gun of claim 19, wherein the detonating cord is positioned in side-by-side contact with at least a portion of the shell.
22. The perforating gun of claim 16, wherein the detonator assembly is configured for preventing initiation in response to stray current or voltage or radio frequency signals.
23. A wirelessly connectable detonator assembly and detonator positioning assembly for orienting the wirelessly connectable detonator assembly in a perforating gun, comprising:
the wirelessly connectable detonator assembly, wherein the wirelessly connectable detonator assembly comprises
a shell containing detonator components;
an electrically contactable line-in portion in electrical communication with the detonator components;
an electrically contactable line-out portion in electrical communication with the line-in portion; and,
an electrical ground connection; and,
the detonator positioning assembly, wherein the detonator positioning assembly is configured for receiving the wirelessly connectable detonator assembly in the perforating gun, and the detonator positioning assembly includes a contactable ground portion.
24. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 23, wherein the detonator components comprise an electronic circuit board, wherein the electronic circuit board is configured to initiate explosive components in response to receipt of an ignition signal.
25. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 24, wherein the shell and the detonator assembly positioner are positioned in a gun carrier, and the gun carrier is in electrical communication with the contactable ground portion.
26. The wirelessly connectable detonator assembly and detonator positioning assembly of claim 24, further wherein the detonator positioning assembly aligns the shell such that the explosive components are ballistically connected with a detonating cord.
27. An arrangement of wirelessly connectable perforating guns, comprising:
a first wirelessly connectable perforating gun comprising a first wirelessly connectable detonator assembly and a first detonator positioning assembly for receiving the first wirelessly connectable detonator assembly in the first wirelessly connectable perforating gun, wherein
the first wirelessly connectable detonator assembly includes
a first shell containing detonator components,
a first electrically contactable line-in portion in electrical communication with the detonator components in the first shell,
a first electrically contactable line-out portion in electrical communication with the first electrically contactable line-in portion, and
a first electrical ground connection, wherein
the first detonator positioning assembly receives the first wirelessly connectable detonator assembly in the first wirelessly connectable perforating gun, and the first detonator positioning assembly positioner includes a contactable ground portion configured for electrically contacting the first electrical ground connection of the first detonator assembly;
a second wirelessly connectable perforating gun comprising a second wirelessly connectable detonator assembly and a second detonator positioning assembly for receiving the second wirelessly connectable detonator assembly in the second wirelessly connectable perforating gun, wherein
the second wirelessly connectable detonator assembly includes
a second shell comprising detonator components,
a second electrically contactable line-in portion in electrical communication with the detonator components in the second shell, and
a second electrical ground connection,
wherein the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly is in electrical communication with the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly, and
the second detonator positioning assembly receives the second wirelessly connectable detonator assembly in the second wirelessly connectable perforating gun, and includes a contactable ground portion;
a seal adapter positioned between the first wirelessly connectable perforating gun and the second wireless connectable perforating gun; and
a line-in contact initiating pin positioned in the seal adapter, the line-in contact initiating pin in electrical contact with the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly without the use of a wired electrical connection, such that the line-in contact initiating pin relays an ignition signal from the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly to the second electrically contactable line-in portion of the second wirelessly connectable detonator assembly.
28. The arrangement of wirelessly connectable perforating guns of claim 27, wherein:
the detonator components of the first shell comprise a first electronic circuit board, wherein the first electronic circuit board is configured to selectively detonate a first explosive component in response to the ignition signal; and
the detonator components of the second shell comprise a second electronic circuit board, wherein the second electronic circuit board is configured to selectively detonate a second explosive component in response to receipt of the ignition signal.
29. The arrangement of wirelessly connectable perforating guns of claim 27, further comprising:
a through wire in electrical contact with the first electrically contactable line-out portion of the first wirelessly connectable detonator assembly and the second electrically connectable line-in portion of the second wirelessly connectable detonator assembly.
30. The arrangement of wirelessly connectable perforating guns of claim 29, wherein the through wire extends between the first electrically connectable line-out portion of the first wirelessly connectable detonator assembly and the line-in contact initiating pin.
31. The arrangement of wirelessly connectable perforating guns of claim 27, wherein the second shell defines a central axis and the line-in contact initiating pin contacts the second electrically connectable line-in portion of the second wirelessly connectable detonator assembly at a point on the central axis.
32. The arrangement of wirelessly connectable perforating guns of claim 27, wherein the first shell and the second shell are each shaped as a hollow cylinder.
US16/287,150 2013-08-26 2019-02-27 Perforating gun and detonator assembly Active USRE50204E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/287,150 USRE50204E1 (en) 2013-08-26 2019-02-27 Perforating gun and detonator assembly

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102013109227 2013-08-26
DE102013109227.6 2013-08-26
US14/767,058 US9605937B2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
PCT/EP2014/065752 WO2015028204A2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
US14/932,865 US9581422B2 (en) 2013-08-26 2015-11-04 Perforating gun and detonator assembly
US16/287,150 USRE50204E1 (en) 2013-08-26 2019-02-27 Perforating gun and detonator assembly

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2014/065752 Continuation WO2015028204A2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
US14/767,058 Continuation US9605937B2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
US14/932,865 Reissue US9581422B2 (en) 2013-08-26 2015-11-04 Perforating gun and detonator assembly

Publications (1)

Publication Number Publication Date
USRE50204E1 true USRE50204E1 (en) 2024-11-12

Family

ID=51211795

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/767,058 Active US9605937B2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
US14/932,865 Ceased US9581422B2 (en) 2013-08-26 2015-11-04 Perforating gun and detonator assembly
US16/287,150 Active USRE50204E1 (en) 2013-08-26 2019-02-27 Perforating gun and detonator assembly

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/767,058 Active US9605937B2 (en) 2013-08-26 2014-07-22 Perforating gun and detonator assembly
US14/932,865 Ceased US9581422B2 (en) 2013-08-26 2015-11-04 Perforating gun and detonator assembly

Country Status (6)

Country Link
US (3) US9605937B2 (en)
CN (2) CN105492721B (en)
AR (2) AR097424A1 (en)
CZ (1) CZ307065B6 (en)
RU (1) RU2662840C2 (en)
WO (1) WO2015028204A2 (en)

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421514B2 (en) 2013-05-03 2022-08-23 Schlumberger Technology Corporation Cohesively enhanced modular perforating gun
US9702680B2 (en) 2013-07-18 2017-07-11 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US12203350B2 (en) 2013-07-18 2025-01-21 DynaEnergetics Europe GmbH Detonator positioning device
CZ307065B6 (en) 2013-08-26 2017-12-27 Dynaenergetics Gmbh & Co. Kg A perforator assembly of boreholes and detonators
US10188990B2 (en) 2014-03-07 2019-01-29 Dynaenergetics Gmbh & Co. Kg Device and method for positioning a detonator within a perforating gun assembly
RU2710580C2 (en) * 2014-03-27 2019-12-27 Орика Интернэшнл Пте Лтд Apparatus, system and method
WO2015169667A2 (en) 2014-05-05 2015-11-12 Dynaenergetics Gmbh & Co. Kg Initiator head assembly
US10273788B2 (en) 2014-05-23 2019-04-30 Hunting Titan, Inc. Box by pin perforating gun system and methods
WO2015179787A1 (en) 2014-05-23 2015-11-26 Hunting Titan, Inc. Box by pin perforating gun system and methods
US9784549B2 (en) 2015-03-18 2017-10-10 Dynaenergetics Gmbh & Co. Kg Bulkhead assembly having a pivotable electric contact component and integrated ground apparatus
US11293736B2 (en) 2015-03-18 2022-04-05 DynaEnergetics Europe GmbH Electrical connector
BR112018007432A2 (en) * 2015-11-09 2018-11-06 Detnet South Africa Pty Ltd wireless detonator
EP3374595B1 (en) 2015-11-12 2020-08-19 Hunting Titan Inc. Contact plunger cartridge assembly
GB2570419B (en) 2016-09-26 2020-03-04 Guardian Global Tech Limited Downhole firing tool
US11255650B2 (en) 2016-11-17 2022-02-22 XConnect, LLC Detonation system having sealed explosive initiation assembly
US10914145B2 (en) 2019-04-01 2021-02-09 PerfX Wireline Services, LLC Bulkhead assembly for a tandem sub, and an improved tandem sub
CN106837264B (en) * 2017-01-17 2020-05-08 成都众智诚成石油科技有限公司 Downhole casing perforating gun control system and control method
US10731955B2 (en) * 2017-04-13 2020-08-04 Lawrence Livermore National Security, Llc Modular gradient-free shaped charge
WO2019135804A1 (en) 2018-01-05 2019-07-11 Geodynamics, Inc. Perforating gun system and method
US11280166B2 (en) 2018-01-23 2022-03-22 Geodynamics, Inc. Addressable switch assembly for wellbore systems and method
US11193358B2 (en) * 2018-01-31 2021-12-07 DynaEnergetics Europe GmbH Firing head assembly, well completion device with a firing head assembly and method of use
US10400558B1 (en) 2018-03-23 2019-09-03 Dynaenergetics Gmbh & Co. Kg Fluid-disabled detonator and method of use
US11377935B2 (en) 2018-03-26 2022-07-05 Schlumberger Technology Corporation Universal initiator and packaging
US11021923B2 (en) 2018-04-27 2021-06-01 DynaEnergetics Europe GmbH Detonation activated wireline release tool
CN108759594B (en) * 2018-05-31 2020-12-01 西安物华巨能爆破器材有限责任公司 Electronic detonator for oil-gas well
US10794159B2 (en) * 2018-05-31 2020-10-06 DynaEnergetics Europe GmbH Bottom-fire perforating drone
US10458213B1 (en) 2018-07-17 2019-10-29 Dynaenergetics Gmbh & Co. Kg Positioning device for shaped charges in a perforating gun module
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US12031417B2 (en) 2018-05-31 2024-07-09 DynaEnergetics Europe GmbH Untethered drone string for downhole oil and gas wellbore operations
US11591885B2 (en) 2018-05-31 2023-02-28 DynaEnergetics Europe GmbH Selective untethered drone string for downhole oil and gas wellbore operations
WO2020002983A1 (en) 2018-06-26 2020-01-02 Dynaenergetics Gmbh & Co. Kg Tethered drone for downhole oil and gas wellbore operations
WO2019229520A1 (en) 2018-05-31 2019-12-05 Dynaenergetics Gmbh & Co. Kg Selective untethered drone string for downhole oil and gas wellbore operations
WO2019229521A1 (en) 2018-05-31 2019-12-05 Dynaenergetics Gmbh & Co. Kg Systems and methods for marker inclusion in a wellbore
US10386168B1 (en) 2018-06-11 2019-08-20 Dynaenergetics Gmbh & Co. Kg Conductive detonating cord for perforating gun
CN108756833B (en) * 2018-07-16 2023-07-07 西安物华巨能爆破器材有限责任公司 Oil pipe transmission omnibearing precision control detonating system
USD921858S1 (en) 2019-02-11 2021-06-08 DynaEnergetics Europe GmbH Perforating gun and alignment assembly
US11808093B2 (en) * 2018-07-17 2023-11-07 DynaEnergetics Europe GmbH Oriented perforating system
US11339614B2 (en) 2020-03-31 2022-05-24 DynaEnergetics Europe GmbH Alignment sub and orienting sub adapter
USD903064S1 (en) 2020-03-31 2020-11-24 DynaEnergetics Europe GmbH Alignment sub
US11994008B2 (en) 2018-08-10 2024-05-28 Gr Energy Services Management, Lp Loaded perforating gun with plunging charge assembly and method of using same
US11078763B2 (en) 2018-08-10 2021-08-03 Gr Energy Services Management, Lp Downhole perforating tool with integrated detonation assembly and method of using same
US10858919B2 (en) 2018-08-10 2020-12-08 Gr Energy Services Management, Lp Quick-locking detonation assembly of a downhole perforating tool and method of using same
WO2020038848A1 (en) 2018-08-20 2020-02-27 DynaEnergetics Europe GmbH System and method to deploy and control autonomous devices
CN112639249A (en) 2018-09-17 2021-04-09 德力能欧洲有限公司 Perforating gun segment inspection tool
US10982513B2 (en) * 2019-02-08 2021-04-20 Schlumberger Technology Corporation Integrated loading tube
USD1019709S1 (en) 2019-02-11 2024-03-26 DynaEnergetics Europe GmbH Charge holder
USD1010758S1 (en) 2019-02-11 2024-01-09 DynaEnergetics Europe GmbH Gun body
USD1034879S1 (en) 2019-02-11 2024-07-09 DynaEnergetics Europe GmbH Gun body
US11867032B1 (en) 2021-06-04 2024-01-09 Swm International, Llc Downhole perforating gun system and methods of manufacture, assembly and use
US12291945B1 (en) 2019-03-05 2025-05-06 Swm International, Llc Downhole perforating gun system
US11078762B2 (en) 2019-03-05 2021-08-03 Swm International, Llc Downhole perforating gun tube and components
US10689955B1 (en) 2019-03-05 2020-06-23 SWM International Inc. Intelligent downhole perforating gun tube and components
US11268376B1 (en) 2019-03-27 2022-03-08 Acuity Technical Designs, LLC Downhole safety switch and communication protocol
WO2020204890A1 (en) * 2019-03-29 2020-10-08 Halliburton Energy Services, Inc. Sleeved gun connection
US11293737B2 (en) 2019-04-01 2022-04-05 XConnect, LLC Detonation system having sealed explosive initiation assembly
CN113646505A (en) * 2019-04-01 2021-11-12 德力能欧洲有限公司 Recyclable perforating gun assembly and components
US11156066B2 (en) 2019-04-01 2021-10-26 XConnect, LLC Perforating gun orienting system, and method of aligning shots in a perforating gun
US11255162B2 (en) 2019-04-01 2022-02-22 XConnect, LLC Bulkhead assembly for a tandem sub, and an improved tandem sub
US11906278B2 (en) 2019-04-01 2024-02-20 XConnect, LLC Bridged bulkheads for perforating gun assembly
US11402190B2 (en) 2019-08-22 2022-08-02 XConnect, LLC Detonation system having sealed explosive initiation assembly
US11913767B2 (en) 2019-05-09 2024-02-27 XConnect, LLC End plate for a perforating gun assembly
US11940261B2 (en) 2019-05-09 2024-03-26 XConnect, LLC Bulkhead for a perforating gun assembly
US11578549B2 (en) 2019-05-14 2023-02-14 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US12241326B2 (en) 2019-05-14 2025-03-04 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US11255147B2 (en) 2019-05-14 2022-02-22 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
US10927627B2 (en) 2019-05-14 2021-02-23 DynaEnergetics Europe GmbH Single use setting tool for actuating a tool in a wellbore
CN113994070B (en) 2019-05-16 2025-03-18 斯伦贝谢技术有限公司 Modular Perforating Tools
WO2020249744A2 (en) 2019-06-14 2020-12-17 DynaEnergetics Europe GmbH Perforating gun assembly with rotating shaped charge holder
CA3147161A1 (en) 2019-07-19 2021-01-28 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
EP4010559B1 (en) * 2019-08-06 2025-01-08 Hunting Titan, Inc. Modular gun system
US11559875B2 (en) 2019-08-22 2023-01-24 XConnect, LLC Socket driver, and method of connecting perforating guns
WO2021063920A1 (en) 2019-10-01 2021-04-08 DynaEnergetics Europe GmbH Shaped power charge with integrated igniter
CZ310188B6 (en) 2019-12-10 2024-11-06 DynaEnergetics Europe GmbH Assembly of an orientable piercing nozzle and its orientation method
US11480038B2 (en) 2019-12-17 2022-10-25 DynaEnergetics Europe GmbH Modular perforating gun system
US11486234B2 (en) 2020-01-24 2022-11-01 Halliburton Energy Services, Inc. Detonator module
US11091987B1 (en) 2020-03-13 2021-08-17 Cypress Holdings Ltd. Perforation gun system
US12084962B2 (en) 2020-03-16 2024-09-10 DynaEnergetics Europe GmbH Tandem seal adapter with integrated tracer material
USD1041608S1 (en) 2020-03-20 2024-09-10 DynaEnergetics Europe GmbH Outer connector
USD981345S1 (en) 2020-11-12 2023-03-21 DynaEnergetics Europe GmbH Shaped charge casing
WO2021191275A1 (en) 2020-03-24 2021-09-30 DynaEnergetics Europe GmbH Exposed alignable perforating gun assembly
US11988049B2 (en) 2020-03-31 2024-05-21 DynaEnergetics Europe GmbH Alignment sub and perforating gun assembly with alignment sub
US11619119B1 (en) 2020-04-10 2023-04-04 Integrated Solutions, Inc. Downhole gun tube extension
USD904475S1 (en) 2020-04-29 2020-12-08 DynaEnergetics Europe GmbH Tandem sub
USD908754S1 (en) 2020-04-30 2021-01-26 DynaEnergetics Europe GmbH Tandem sub
US11359468B2 (en) 2020-05-18 2022-06-14 Halliburton Energy Services, Inc. Outwardly threadless bulkhead for perforating gun
CN113685154A (en) * 2020-05-18 2021-11-23 哈里伯顿能源服务公司 Outward threadless baffle for perforating gun
USD1082866S1 (en) 2020-06-05 2025-07-08 XConnect, LLC Signal transmission pin
USD950611S1 (en) 2020-08-03 2022-05-03 XConnect, LLC Signal transmission pin perforating gun assembly
US11808116B2 (en) 2020-06-23 2023-11-07 Halliburton Energy Services, Inc. Connector for perforating gun system
CN115867717B (en) 2020-06-26 2024-04-02 狩猎巨人公司 Modular gun system
USD947253S1 (en) 2020-07-06 2022-03-29 XConnect, LLC Bulkhead for a perforating gun assembly
USD1043762S1 (en) 2020-08-03 2024-09-24 XConnect, LLC Switch housing for a perforating gun assembly
USD979611S1 (en) 2020-08-03 2023-02-28 XConnect, LLC Bridged mini-bulkheads
USD1016958S1 (en) 2020-09-11 2024-03-05 Schlumberger Technology Corporation Shaped charge frame
US12326069B2 (en) 2020-10-20 2025-06-10 DynaEnergetics Europe GmbH Perforating gun and alignment assembly
SE546026C2 (en) * 2020-10-22 2024-04-16 Luossavaara Kiirunavaara Ab Detonator support device and method of charging a blasthole
US11359467B2 (en) 2020-11-03 2022-06-14 Halliburton Energy Services, Inc. Rotating electrical connection for perforating systems
CA3201629A1 (en) 2020-11-13 2022-05-19 Schlumberger Canada Limited Oriented-perforation tool
CN116568905A (en) * 2020-11-13 2023-08-08 斯伦贝谢技术有限公司 Large shaped charge perforating tool
NO20230794A1 (en) 2020-12-21 2023-07-17 DynaEnergetics Europe GmbH Encapsulated shaped charge
WO2022148557A1 (en) 2021-01-08 2022-07-14 DynaEnergetics Europe GmbH Perforating gun assembly and components
US11499401B2 (en) 2021-02-04 2022-11-15 DynaEnergetics Europe GmbH Perforating gun assembly with performance optimized shaped charge load
WO2022167297A1 (en) 2021-02-04 2022-08-11 DynaEnergetics Europe GmbH Perforating gun assembly with performance optimized shaped charge load
US11761313B2 (en) 2021-02-11 2023-09-19 Geodynamics, Inc. One-click contact detonator for perforating gun system
US12366142B2 (en) 2021-03-03 2025-07-22 DynaEnergetics Europe GmbH Modular perforating gun system
WO2022184732A1 (en) 2021-03-03 2022-09-09 DynaEnergetics Europe GmbH Bulkhead and tandem seal adapter
US11732556B2 (en) 2021-03-03 2023-08-22 DynaEnergetics Europe GmbH Orienting perforation gun assembly
US11713625B2 (en) 2021-03-03 2023-08-01 DynaEnergetics Europe GmbH Bulkhead
CA3221720A1 (en) * 2021-06-04 2022-12-08 Hunting Titan, Inc. Perforating gun with timed self-sealing threads
CA3228711A1 (en) * 2021-08-12 2023-02-16 Schlumberger Canada Limited Pressure bulkhead
US12000267B2 (en) 2021-09-24 2024-06-04 DynaEnergetics Europe GmbH Communication and location system for an autonomous frack system
US12253339B2 (en) 2021-10-25 2025-03-18 DynaEnergetics Europe GmbH Adapter and shaped charge apparatus for optimized perforation jet
CA3236425A1 (en) 2021-10-25 2023-05-04 DynaEnergetics Europe GmbH Ballistically actuated wellbore tool
US12410690B2 (en) 2021-12-09 2025-09-09 XConnect, LLC Orienting perforating gun system, and method of orienting shots in a perforating gun assembly
US12312925B2 (en) 2021-12-22 2025-05-27 DynaEnergetics Europe GmbH Manually oriented internal shaped charge alignment system and method of use
US12297721B2 (en) 2021-12-23 2025-05-13 Axis Wireline Technologies, Llc Reusable perforation gun coupler system
US12139984B2 (en) 2022-04-15 2024-11-12 Dbk Industries, Llc Fixed-volume setting tool
US11753889B1 (en) 2022-07-13 2023-09-12 DynaEnergetics Europe GmbH Gas driven wireline release tool
WO2024013338A1 (en) 2022-07-13 2024-01-18 DynaEnergetics Europe GmbH Gas driven wireline release tool
US12276183B2 (en) 2022-08-03 2025-04-15 Probe Technology Services, Inc. Perforating-gun initiator circuit
US12352551B2 (en) 2022-09-23 2025-07-08 Halliburton Energy Services, Inc. Detonating cord depth locating feature
US12286867B2 (en) 2022-11-17 2025-04-29 Halliburton Energy Services, Inc. Self-shunting detonator for well perforating gun
US12287182B2 (en) 2022-12-12 2025-04-29 DynaEnergetics Europe GmbH Initiator head with circuit board
WO2024132219A1 (en) 2022-12-20 2024-06-27 DynaEnergetics Europe GmbH Setting tool for actuating a tool in a wellbore
US20240210151A1 (en) 2022-12-21 2024-06-27 Halliburton Energy Services, Inc. Detonator Assembly For A Perforating Gun Assembly
US20240209704A1 (en) * 2022-12-22 2024-06-27 Dbk Industries, Llc Direct-to-Gun Setting Tool
US12264561B2 (en) 2023-02-23 2025-04-01 Halliburton Energy Services, Inc. Perforating gun
US12366141B2 (en) 2023-08-01 2025-07-22 Halliburton Energy Services, Inc. Segmented gun components with integrated contacts
CN116950615A (en) * 2023-09-19 2023-10-27 成都若克石油技术开发有限公司 Internal blind hole cluster type perforating gun
US12312923B2 (en) 2023-09-27 2025-05-27 Halliburton Energy Services, Inc. Charge tube assembly

Citations (510)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US214754A (en) 1879-04-29 Improvement in gang-tacking machines
US2216359A (en) 1939-05-22 1940-10-01 Lane Wells Co Gun perforator for oil wells
US2228873A (en) 1939-08-30 1941-01-14 Du Pont Electric blasting initiator
US2264450A (en) 1939-04-15 1941-12-02 Standard Oil Dev Co Gun perforator
US2308004A (en) 1941-01-10 1943-01-12 Lane Wells Co Setting tool for bridging plugs
US2326406A (en) 1942-08-18 1943-08-10 Lane Wells Co Gun perforator
US2358466A (en) 1940-09-12 1944-09-19 Herbert C Otis Well tool
US2418486A (en) 1944-05-06 1947-04-08 James G Smylie Gun perforator
US2543814A (en) 1946-12-26 1951-03-06 Welex Jet Services Inc Means and method of tilting explosive charges in wells
US2598651A (en) 1946-07-01 1952-05-27 Thomas C Bannon Gun perforator
US2618343A (en) 1948-09-20 1952-11-18 Baker Oil Tools Inc Gas pressure operated well apparatus
US2637402A (en) 1948-11-27 1953-05-05 Baker Oil Tools Inc Pressure operated well apparatus
US2640547A (en) 1948-01-12 1953-06-02 Baker Oil Tools Inc Gas-operated well apparatus
US2649046A (en) 1947-05-01 1953-08-18 Du Pont Explosive package
US2655993A (en) 1948-01-22 1953-10-20 Thomas C Bannon Control device for gun perforators
US2681114A (en) 1950-11-25 1954-06-15 Baker Oil Tools Inc Well packer and setting apparatus
US2692023A (en) 1949-09-26 1954-10-19 Baker Oil Tools Inc Pressure operated subsurface well apparatus
US2695064A (en) 1949-08-01 1954-11-23 Baker Oil Tools Inc Well packer apparatus
US2696259A (en) 1953-01-19 1954-12-07 Haskell M Greene Apparatus for firing propellent charges in wells
US2708408A (en) 1949-11-14 1955-05-17 William G Sweetman Well perforating device
US2742856A (en) 1944-11-06 1956-04-24 Louis F Fieser Burster
US2761384A (en) 1951-02-26 1956-09-04 William G Sweetman Device for cutting a pipe inside of a well
US2766690A (en) 1951-11-29 1956-10-16 Borg Warner System for setting off explosive charges
US2785631A (en) 1950-10-05 1957-03-19 Borg Warner Shaped explosive-charge perforating apparatus
US2815816A (en) 1955-06-20 1957-12-10 Baker Oil Tools Inc Automatically relieved gas pressure well apparatus
US2873675A (en) 1953-06-17 1959-02-17 Borg Warner Method and apparatus for detonating explosive devices in bore holes
US2889775A (en) 1955-02-21 1959-06-09 Welex Inc Open hole perforator firing means
US2906339A (en) 1954-03-30 1959-09-29 Wilber H Griffin Method and apparatus for completing wells
US2946283A (en) 1955-09-02 1960-07-26 Borg Warner Method and apparatus for perforating wellbores and casings
US2979904A (en) 1959-04-27 1961-04-18 Aerojet General Co Booster device for operating well tools
US2996591A (en) 1959-02-13 1961-08-15 Russell W Fuller Detector for fires and excessive temperatures
US3024843A (en) 1957-07-22 1962-03-13 Aerojet General Co Setting tool-propellant operated
US3036636A (en) 1957-09-26 1962-05-29 Baker Oil Tools Inc Subsurface well bore apparatus and setting tool therefor
US3040659A (en) 1958-05-12 1962-06-26 Otis J Mcculleugh Well perforating device
US3055430A (en) 1958-06-09 1962-09-25 Baker Oil Tools Inc Well packer apparatus
US3076507A (en) 1958-05-16 1963-02-05 William G Sweetman Chemical cutting method and apparatus for use in wells
US3080005A (en) 1958-06-06 1963-03-05 Dresser Ind Sidewall sampler
US3094166A (en) 1960-07-25 1963-06-18 Ira J Mccullough Power tool
USRE25407E (en) 1963-06-25 Method and apparatus for detonating
US3128702A (en) 1959-05-15 1964-04-14 Jet Res Ct Inc Shaped charge perforating unit and well perforating apparatus employing the same
US3154632A (en) 1962-02-01 1964-10-27 O Z Electrical Mfg Co Inc Rigid conduit expansion joint grounded to require no external bonding jumper
US3158680A (en) 1962-02-01 1964-11-24 Gen Telephone & Electronies Co Telephone cable system
US3170400A (en) 1960-11-23 1965-02-23 Atlas Chem Ind Detonating means securing device
US3186485A (en) 1962-04-04 1965-06-01 Harrold D Owen Setting tool devices
USRE25846E (en) 1965-08-31 Well packer apparatus
US3209692A (en) 1964-10-05 1965-10-05 Avco Corp Explosion transfer device
US3211093A (en) 1962-08-10 1965-10-12 Mccullough Tool Company Expendible gun assembly for perforating wells
US3211222A (en) 1963-01-09 1965-10-12 Baker Oil Tools Inc Pressure actuated fishing apparatus
US3220480A (en) 1961-02-06 1965-11-30 Baker Oil Tools Inc Subsurface apparatus for operating well tools
US3233674A (en) 1963-07-22 1966-02-08 Baker Oil Tools Inc Subsurface well apparatus
US3244232A (en) 1963-04-15 1966-04-05 Baker Oil Tools Inc Pressure actuated pushing apparatus
US3246707A (en) 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Selective firing system
US3264989A (en) 1964-03-06 1966-08-09 Du Pont Ignition assembly resistant to actuation by radio frequency and electrostatic energies
US3264994A (en) 1963-07-22 1966-08-09 Baker Oil Tools Inc Subsurface well apparatus
US3298437A (en) 1964-08-19 1967-01-17 Martin B Conrad Actuator device for well tool
US3320884A (en) 1966-01-12 1967-05-23 James F Kowalick Pyrotechnic delay device for mild detonating cord
US3327792A (en) 1965-10-22 1967-06-27 Profitable Resources Inc Jet perforating gun
US3374735A (en) 1966-09-29 1968-03-26 Lawrence K. Moore Apparatus for locating collars and the like in well pipe
US3398803A (en) 1967-02-27 1968-08-27 Baker Oil Tools Inc Single trip apparatus and method for sequentially setting well packers and effecting operation of perforators in well bores
US3414071A (en) 1966-09-26 1968-12-03 Halliburton Co Oriented perforate test and cement squeeze apparatus
US3415321A (en) 1966-09-09 1968-12-10 Dresser Ind Shaped charge perforating apparatus and method
US3498376A (en) 1966-12-29 1970-03-03 Phillip S Sizer Well apparatus and setting tool
US3504723A (en) 1968-05-27 1970-04-07 Delron Fastener Division Rex C Floating nut insert
US3565188A (en) 1965-06-07 1971-02-23 Harrison Jet Guns Ltd Perforating means for sand control
US3621916A (en) 1969-10-08 1971-11-23 Shell Oil Co Spark-type casing perforator
US3630284A (en) 1970-04-02 1971-12-28 Amoco Prod Co Method for treatment of fluid-bearing formations
US3650212A (en) 1970-05-11 1972-03-21 Western Dynamics Inc Economical, tough, debris-free shaped charge device and perforating gun assembly employing same
US3659658A (en) 1970-09-28 1972-05-02 Schlumberger Technology Corp Well perforating apparatus
US3712376A (en) 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3762470A (en) 1971-04-26 1973-10-02 Tenneco Oil Co Inflatable packer device and method
US3859921A (en) 1971-07-15 1975-01-14 Allied Chem Detonator holder
US4003433A (en) 1974-11-06 1977-01-18 Mack Goins Method for cutting pipe
US4007790A (en) 1976-03-05 1977-02-15 Henning Jack A Back-off apparatus and method for retrieving pipe from wells
US4007796A (en) 1974-12-23 1977-02-15 Boop Gene T Explosively actuated well tool having improved disarmed configuration
US4034673A (en) 1976-02-23 1977-07-12 Calspan Corporation Armor penetration shaped-charge projectile
US4039239A (en) 1976-03-24 1977-08-02 Amp Incorporated Wire slot clip
US4058061A (en) 1966-06-17 1977-11-15 Aerojet-General Corporation Explosive device
US4064935A (en) 1976-09-13 1977-12-27 Kine-Tech Corporation Oil well stimulation apparatus
US4071096A (en) 1977-01-10 1978-01-31 Jet Research Center, Inc. Shaped charge well perforating apparatus
US4080898A (en) 1976-02-05 1978-03-28 Gieske Harry A Spiral wrapped shaped charge liners and munition utilizing same
US4084147A (en) 1977-05-31 1978-04-11 Emerson Electric Co. Normally open, thermal sensitive electrical switching device
US4085397A (en) 1977-05-31 1978-04-18 Emerson Electric Co. Electrical switching device for thermal and overvoltage protection
US4107453A (en) 1975-09-02 1978-08-15 Nitro Nobel Wires and two-part electrical coupling cover
US4132171A (en) 1974-11-04 1979-01-02 Pawlak Daniel E Apparatus for detonating an explosive charge
US4140188A (en) 1977-10-17 1979-02-20 Peadby Vann High density jet perforating casing gun
US4172421A (en) 1978-03-30 1979-10-30 Jet Research Center, Inc. Fluid desensitized safe/arm detonator assembly
US4182216A (en) 1978-03-02 1980-01-08 Textron, Inc. Collapsible threaded insert device for plastic workpieces
US4208966A (en) 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
US4216721A (en) 1972-12-22 1980-08-12 The United Stated Of America As Represented By The Secretary Of The Army Thermite penetrator device (U)
US4220087A (en) 1978-11-20 1980-09-02 Explosive Technology, Inc. Linear ignition fuse
US4250960A (en) 1977-04-18 1981-02-17 Weatherford/Dmc, Inc. Chemical cutting apparatus
US4261263A (en) 1979-06-18 1981-04-14 Special Devices, Inc. RF-insensitive squib
US4266613A (en) 1979-06-06 1981-05-12 Sie, Inc. Arming device and method
US4284235A (en) 1979-12-19 1981-08-18 Werner Diermayer Vent control arrangement for combustion apparatus
US4290486A (en) 1979-06-25 1981-09-22 Jet Research Center, Inc. Methods and apparatus for severing conduits
US4306628A (en) 1980-02-19 1981-12-22 Otis Engineering Corporation Safety switch for well tools
US4312273A (en) 1980-04-07 1982-01-26 Shaped Charge Specialist, Inc. Shaped charge mounting system
US4319526A (en) 1979-12-17 1982-03-16 Schlumberger Technology Corp. Explosive safe-arming system for perforating guns
US4345646A (en) 1978-02-13 1982-08-24 Gearhart Industries, Inc. Apparatus for chemical cutting
US4363529A (en) 1980-07-25 1982-12-14 Amp Incorporated Terminal having improved mounting means
GB2065750B (en) 1979-12-19 1983-06-02 Weatherford Dmc Chemical cutting apparatus
US4387773A (en) 1981-10-13 1983-06-14 Dresser Industries, Inc. Shaped charge well perforator
US4393946A (en) 1980-08-12 1983-07-19 Schlumberger Technology Corporation Well perforating apparatus
EP0088516A1 (en) 1982-03-01 1983-09-14 Ici Americas Inc. An electrically activated detonator assembly
US4429741A (en) 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
US4430939A (en) 1980-11-19 1984-02-14 Gordon Harrold Linear shaped charges
US4485741A (en) 1983-04-13 1984-12-04 Apache Powder Company Booster container with isolated and open cord tunnels
US4491185A (en) 1983-07-25 1985-01-01 Mcclure Gerald B Method and apparatus for perforating subsurface earth formations
US4512418A (en) 1983-07-21 1985-04-23 Halliburton Company Mechanically initiated tubing conveyed perforator system
US4523650A (en) 1983-12-12 1985-06-18 Dresser Industries, Inc. Explosive safe/arm system for oil well perforating guns
US4523649A (en) 1983-05-25 1985-06-18 Baker Oil Tools, Inc. Rotational alignment method and apparatus for tubing conveyed perforating guns
US4530396A (en) 1983-04-08 1985-07-23 Mohaupt Henry H Device for stimulating a subterranean formation
US4534423A (en) 1983-05-05 1985-08-13 Jet Research Center, Inc. Perforating gun carrier and method of making
US4541486A (en) 1981-04-03 1985-09-17 Baker Oil Tools, Inc. One trip perforating and gravel pack system
US4566544A (en) 1984-10-29 1986-01-28 Schlumberger Technology Corporation Firing system for tubing conveyed perforating gun
US4574892A (en) 1984-10-24 1986-03-11 Halliburton Company Tubing conveyed perforating gun electrical detonator
US4576233A (en) 1982-09-28 1986-03-18 Geo Vann, Inc. Differential pressure actuated vent assembly
US4583602A (en) 1983-06-03 1986-04-22 Dresser Industries, Inc. Shaped charge perforating device
US4598775A (en) 1982-06-07 1986-07-08 Geo. Vann, Inc. Perforating gun charge carrier improvements
US4609056A (en) 1983-12-01 1986-09-02 Halliburton Company Sidewall core gun
US4609057A (en) 1985-06-26 1986-09-02 Jet Research Center, Inc. Shaped charge carrier
US4617997A (en) 1985-08-26 1986-10-21 Mobil Oil Corporation Foam enhancement of controlled pulse fracturing
US4619320A (en) 1984-03-02 1986-10-28 Memory Metals, Inc. Subsurface well safety valve and control system
US4620591A (en) 1985-04-12 1986-11-04 Gearhart Industries, Inc. Chemical cutting apparatus having selective pressure bleed-off
US4621396A (en) 1985-06-26 1986-11-11 Jet Research Center, Inc. Manufacturing of shaped charge carriers
US4629001A (en) 1985-05-28 1986-12-16 Halliburton Company Tubing pressure operated initiator for perforating in a well borehole
US4640354A (en) 1983-12-08 1987-02-03 Schlumberger Technology Corporation Method for actuating a tool in a well at a given depth and tool allowing the method to be implemented
US4643097A (en) 1985-10-25 1987-02-17 Dresser Industries, Inc. Shaped charge perforating apparatus
US4650009A (en) 1985-08-06 1987-03-17 Dresser Industries, Inc. Apparatus and method for use in subsurface oil and gas well perforating device
US4657089A (en) 1985-06-11 1987-04-14 Baker Oil Tools, Inc. Method and apparatus for initiating subterranean well perforating gun firing from bottom to top
US4660910A (en) 1984-12-27 1987-04-28 Schlumberger Technology Corporation Apparatus for electrically interconnecting multi-sectional well tools
US4662450A (en) 1985-09-13 1987-05-05 Haugen David M Explosively set downhole apparatus
US4670729A (en) 1986-06-03 1987-06-02 Littelfuse, Inc. Electrical fuse
US4730793A (en) 1981-08-12 1988-03-15 E-Systems, Inc. Ordnance delivery system and method including remotely piloted or programmable aircraft with yaw-to-turn guidance system
US4744424A (en) 1986-08-21 1988-05-17 Schlumberger Well Services Shaped charge perforating apparatus
US4747201A (en) 1985-06-11 1988-05-31 Baker Oil Tools, Inc. Boosterless perforating gun
US4753170A (en) 1983-06-23 1988-06-28 Jet Research Center Polygonal detonating cord and method of charge initiation
US4762067A (en) 1987-11-13 1988-08-09 Halliburton Company Downhole perforating method and apparatus using secondary explosive detonators
US4766813A (en) 1986-12-29 1988-08-30 Olin Corporation Metal shaped charge liner with isotropic coating
US4769734A (en) 1984-08-30 1988-09-06 Dynamit Nobel Aktiengesellschaft Safety circuit for electric detonator element
US4776393A (en) 1987-02-06 1988-10-11 Dresser Industries, Inc. Perforating gun automatic release mechanism
US4790383A (en) 1987-10-01 1988-12-13 Conoco Inc. Method and apparatus for multi-zone casing perforation
US4796708A (en) 1988-03-07 1989-01-10 Baker Hughes Incorporated Electrically actuated safety valve for a subterranean well
US4798244A (en) 1987-07-16 1989-01-17 Trost Stephen A Tool and process for stimulating a subterranean formation
US4800815A (en) 1987-03-05 1989-01-31 Halliburton Company Shaped charge carrier
US4830120A (en) 1988-06-06 1989-05-16 Baker Hughes Incorporated Methods and apparatus for perforating a deviated casing in a subterranean well
US4840231A (en) 1988-04-22 1989-06-20 Baker Hughes Incorporated Method and apparatus for setting an inflatable packer
US4852647A (en) 1985-09-18 1989-08-01 Mohaupt Henry H Wire line hold down device
US4852494A (en) 1987-11-16 1989-08-01 Williams Robert A Explosively actuated switch
US4869171A (en) 1985-06-28 1989-09-26 D J Moorhouse And S T Deeley Detonator
US4884506A (en) 1986-11-06 1989-12-05 Electronic Warfare Associates, Inc. Remote detonation of explosive charges
US4889183A (en) 1988-07-14 1989-12-26 Halliburton Services Method and apparatus for retaining shaped charges
CA2021396A1 (en) 1989-07-20 1991-01-21 Stephen B. Murray Chemical initiation of detonation in fuel-air explosive clouds
EP0416915A2 (en) 1989-09-06 1991-03-13 Halliburton Company Time delay perforating apparatus for wells
US5006833A (en) 1989-07-25 1991-04-09 Cdf, Inc. Sewer line restriction alarm placed in clean out plug
CA2003166A1 (en) 1989-11-16 1991-05-16 Carl N. Guerreri Remote detonation of explosive charges
US5024270A (en) 1989-09-26 1991-06-18 John Bostick Well sealing device
US5027708A (en) * 1990-02-16 1991-07-02 Schlumberger Technology Corporation Safe arm system for a perforating apparatus having a transport mode an electric contact mode and an armed mode
US5038682A (en) 1988-07-26 1991-08-13 Plessey South Africa Limited Electronic device
US5052489A (en) 1990-06-15 1991-10-01 Carisella James V Apparatus for selectively actuating well tools
US5060573A (en) 1990-12-19 1991-10-29 Goex International, Inc. Detonator assembly
US5070788A (en) 1990-07-10 1991-12-10 J. V. Carisella Methods and apparatus for disarming and arming explosive detonators
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5090324A (en) 1988-09-07 1992-02-25 Rheinmetall Gmbh Warhead
US5090321A (en) 1985-06-28 1992-02-25 Ici Australia Ltd Detonator actuator
US5105742A (en) 1990-03-15 1992-04-21 Sumner Cyril R Fluid sensitive, polarity sensitive safety detonator
US5119729A (en) 1988-11-17 1992-06-09 Schweizerische Eidgenossenschaft Vertreten Durch Die Eidg. Munitionsfabrik Thun Der Gruppe Fur Rustungsdienste Process for producing a hollow charge with a metallic lining
EP0332287B1 (en) 1988-02-01 1992-07-29 Air Products And Chemicals, Inc. Method and apparatus for freezing products
US5155296A (en) 1992-03-18 1992-10-13 The United States Of America As Represented By The Secretary Of The Army Thermally enhanced warhead
US5159145A (en) 1991-08-27 1992-10-27 James V. Carisella Methods and apparatus for disarming and arming well bore explosive tools
US5159146A (en) 1991-09-04 1992-10-27 James V. Carisella Methods and apparatus for selectively arming well bore explosive tools
US5165489A (en) 1992-02-20 1992-11-24 Langston Thomas J Safety device to prevent premature firing of explosive well tools
US5204491A (en) 1990-11-27 1993-04-20 Thomson -- Brandt Armements Pyrotechnic detonator using coaxial connections
US5216197A (en) 1991-06-19 1993-06-01 Schlumberger Technology Corporation Explosive diode transfer system for a modular perforating apparatus
US5322019A (en) 1991-08-12 1994-06-21 Terra Tek Inc System for the initiation of downhole explosive and propellant systems
US5347929A (en) * 1993-09-01 1994-09-20 Schlumberger Technology Corporation Firing system for a perforating gun including an exploding foil initiator and an outer housing for conducting wireline current and EFI current
US5358418A (en) 1993-03-29 1994-10-25 Carmichael Alan L Wireline wet connect
US5366013A (en) 1992-03-26 1994-11-22 Schlumberger Technology Corporation Shock absorber for use in a wellbore including a frangible breakup element preventing shock absorption before shattering allowing shock absorption after shattering
US5392860A (en) 1993-03-15 1995-02-28 Baker Hughes Incorporated Heat activated safety fuse
US5392851A (en) 1994-06-14 1995-02-28 Western Atlas International, Inc. Wireline cable head for use in coiled tubing operations
US5436791A (en) 1993-09-29 1995-07-25 Raymond Engineering Inc. Perforating gun using an electrical safe arm device and a capacitor exploding foil initiator device
US5447202A (en) 1992-10-01 1995-09-05 Petroleum Engineering Services, Ltd. Setting tool and related method
US5456319A (en) 1994-07-29 1995-10-10 Atlantic Richfield Company Apparatus and method for blocking well perforations
EP0679859A2 (en) 1994-03-29 1995-11-02 Halliburton Company Electrical detonator
US5479860A (en) 1994-06-30 1996-01-02 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
US5503077A (en) 1994-03-29 1996-04-02 Halliburton Company Explosive detonation apparatus
US5511620A (en) 1992-01-29 1996-04-30 Baugh; John L. Straight Bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore
US5540154A (en) 1995-06-06 1996-07-30 Oea Aerospace, Inc. Non-pyrolizing linear ignition fuse
US5551520A (en) 1995-07-12 1996-09-03 Western Atlas International, Inc. Dual redundant detonating system for oil well perforators
US5551346A (en) 1995-10-17 1996-09-03 The United States Of America As Represented By The Secretary Of The Army Apparatus for dispersing a jet from a shaped charge liner via non-uniform liner mass
US5571986A (en) 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US5603384A (en) 1995-10-11 1997-02-18 Western Atlas International, Inc. Universal perforating gun firing head
WO1997021067A1 (en) 1995-12-06 1997-06-12 Orica Trading Pty Ltd Electronic explosives initiating device
US5648635A (en) 1995-08-22 1997-07-15 Lussier; Norman Gerald Expendalble charge case holder
RU2087693C1 (en) 1996-11-26 1997-08-20 Научно-техническое общество с ограниченной ответственностью "Волго-Уральский геоэкологический центр" Method of treating bottom-hole zone of well
US5671899A (en) 1996-02-26 1997-09-30 Lockheed Martin Corporation Airborne vehicle with wing extension and roll control
US5703319A (en) 1995-10-27 1997-12-30 The Ensign-Bickford Company Connector block for blast initiation systems
US5732869A (en) 1995-11-27 1998-03-31 Hilti Aktiengesellschaft Explosive powder charge operated setting tool
US5756926A (en) 1995-04-03 1998-05-26 Hughes Electronics EFI detonator initiation system and method
US5775426A (en) 1996-09-09 1998-07-07 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
US5785130A (en) 1995-10-02 1998-07-28 Owen Oil Tools, Inc. High density perforating gun system
US5803175A (en) 1996-04-17 1998-09-08 Myers, Jr.; William Desmond Perforating gun connection and method of connecting for live well deployment
US5816343A (en) 1997-04-25 1998-10-06 Sclumberger Technology Corporation Phased perforating guns
US5820402A (en) 1994-05-06 1998-10-13 The Whitaker Corporation Electrical terminal constructed to engage stacked conductors in an insulation displacement manner
US5837925A (en) 1995-12-13 1998-11-17 Western Atlas International, Inc. Shaped charge retainer system
US5859383A (en) 1996-09-18 1999-01-12 Davison; David K. Electrically activated, metal-fueled explosive device
US5992289A (en) 1998-02-17 1999-11-30 Halliburton Energy Services, Inc. Firing head with metered delay
USD418210S (en) 1998-09-01 1999-12-28 The Lamson & Sessions Co. Conduit fitting
US6006833A (en) 1998-01-20 1999-12-28 Halliburton Energy Services, Inc. Method for creating leak-tested perforating gun assemblies
US6012525A (en) 1997-11-26 2000-01-11 Halliburton Energy Services, Inc. Single-trip perforating gun assembly and method
WO2000020821A1 (en) 1998-10-06 2000-04-13 African Explosives Limited Shock tube initiator
US6082450A (en) 1996-09-09 2000-07-04 Marathon Oil Company Apparatus and method for stimulating a subterranean formation
US6112666A (en) 1994-10-06 2000-09-05 Orica Explosives Technology Pty. Ltd. Explosives booster and primer
US6164375A (en) 1999-05-11 2000-12-26 Carisella; James V. Apparatus and method for manipulating an auxiliary tool within a subterranean well
WO2001033029A2 (en) 1999-11-02 2001-05-10 Halliburton Energy Services, Inc. Sub sea bottom hole assembly change out system and method
US6263283B1 (en) 1998-08-04 2001-07-17 Marathon Oil Company Apparatus and method for generating seismic energy in subterranean formations
US6272782B1 (en) 1999-01-15 2001-08-14 Hilti Aktiengesellschaft Cartridge magazine displacement mechanism for an explosive powder charge-operated setting tool
WO2001059401A1 (en) 2000-02-11 2001-08-16 Inco Limited Remote wireless detonator system
EP0694157B1 (en) 1993-09-13 2001-08-22 Western Atlas International, Inc. Expendable ebw firing module for detonating perforating gun charges
US6295912B1 (en) 1999-05-20 2001-10-02 Halliburton Energy Services, Inc. Positive alignment insert (PAI) with imbedded explosive
US6298915B1 (en) 1999-09-13 2001-10-09 Halliburton Energy Services, Inc. Orienting system for modular guns
US6305287B1 (en) 1998-03-09 2001-10-23 Austin Powder Company Low-energy shock tube connector system
US6333699B1 (en) 1998-08-28 2001-12-25 Marathon Oil Company Method and apparatus for determining position in a pipe
US20020020320A1 (en) 2000-08-17 2002-02-21 Franck Lebaudy Electropyrotechnic igniter with two ignition heads and use in motor vehicle safety
US6349767B2 (en) 1998-05-13 2002-02-26 Halliburton Energy Services, Inc. Disconnect tool
US6354374B1 (en) 1996-11-20 2002-03-12 Schlumberger Technology Corp. Method of performing downhole functions
US6385031B1 (en) 1998-09-24 2002-05-07 Schlumberger Technology Corporation Switches for use in tools
US20020062991A1 (en) 1998-10-27 2002-05-30 Farrant Simon L. Communicating with a tool
US6408758B1 (en) 1999-11-05 2002-06-25 Livbag Snc Photoetched-filament pyrotechnic initiator protected against electrostatic discharges
US6412415B1 (en) 1999-11-04 2002-07-02 Schlumberger Technology Corp. Shock and vibration protection for tools containing explosive components
US6414905B1 (en) 1990-07-09 2002-07-02 Baker Hughes Incorporated Method and apparatus for communicating coded messages in a wellbore
US6412388B1 (en) 1999-10-19 2002-07-02 Lynn Frazier Safety arming device and method, for perforation guns and similar devices
US6419044B1 (en) 1999-04-20 2002-07-16 Schlumberger Technology Corporation Energy source for use in seismic acquisitions
US6418853B1 (en) 1999-02-18 2002-07-16 Livbag Snc Electropyrotechnic igniter with integrated electronics
US6435096B1 (en) 1995-08-04 2002-08-20 Rocktek Limited Method and apparatus for controlled small-charge blasting by decoupled explosive
US6439121B1 (en) 2000-06-08 2002-08-27 Halliburton Energy Services, Inc. Perforating charge carrier and method of assembly for same
US20020129940A1 (en) 2000-12-13 2002-09-19 Wenbo Yang High temperature explosives for downhole well applications
US6467415B2 (en) 2000-04-12 2002-10-22 Mccormick Selph, Inc. Linear ignition system
US6467387B1 (en) 2000-08-25 2002-10-22 Schlumberger Technology Corporation Apparatus and method for propelling a data sensing apparatus into a subsurface formation
US6474931B1 (en) 2000-06-23 2002-11-05 Vermeer Manufacturing Company Directional drilling machine with multiple pocket rod indexer
US6487973B1 (en) 2000-04-25 2002-12-03 Halliburton Energy Services, Inc. Method and apparatus for locking charges into a charge holder
US6497285B2 (en) 2001-03-21 2002-12-24 Halliburton Energy Services, Inc. Low debris shaped charge perforating apparatus and method for use of same
US20030001753A1 (en) 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for wireless transmission down a well
US20030000411A1 (en) * 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for detonating an explosive charge
US20030000703A1 (en) * 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for perforating a well
US6502736B2 (en) 2001-02-09 2003-01-07 Hilti Aktiengesellschaft Holder for a drive piston of a setting tool
RU2204706C1 (en) 2002-06-26 2003-05-20 Закрытое акционерное общество "Пермский инженерно-технический центр "Геофизика" Method of treatment of formation well zone and device for method embodiment
RU30160U1 (en) 2003-03-20 2003-06-20 Мовшович Эдуард Борисович Device for chemical ignition of gas-generating fuel during thermochemical processing of oil and gas wells
US6582251B1 (en) 2000-04-28 2003-06-24 Greene, Tweed Of Delaware, Inc. Hermetic electrical connector and method of making the same
US6618237B2 (en) 2001-06-06 2003-09-09 Senex Explosives, Inc. System for the initiation of rounds of individually delayed detonators
JP2003329399A (en) 2002-05-14 2003-11-19 Japan Steel Works Ltd:The Propellant igniter
US6651747B2 (en) 1999-07-07 2003-11-25 Schlumberger Technology Corporation Downhole anchoring tools conveyed by non-rigid carriers
US6659180B2 (en) 2000-08-11 2003-12-09 Exxonmobil Upstream Research Deepwater intervention system
GB2383236B (en) 2001-11-28 2004-01-07 Schlumberger Holdings Wireless communication system and method
RU2221141C1 (en) 2002-05-21 2004-01-10 Дыбленко Валерий Петрович Process of treatment of critical area of formation
US6675896B2 (en) 2001-03-08 2004-01-13 Halliburton Energy Services, Inc. Detonation transfer subassembly and method for use of same
US6702009B1 (en) 2002-07-30 2004-03-09 Diamondback Industries, Inc. Select-fire pressure relief subassembly for a chemical cutter
US6719061B2 (en) 2001-06-07 2004-04-13 Schlumberger Technology Corporation Apparatus and method for inserting and retrieving a tool string through well surface equipment
US6739265B1 (en) 1995-08-31 2004-05-25 The Ensign-Bickford Company Explosive device with assembled segments and related methods
US6742602B2 (en) 2001-08-29 2004-06-01 Computalog Limited Perforating gun firing head with vented block for holding detonator
US6752083B1 (en) 1998-09-24 2004-06-22 Schlumberger Technology Corporation Detonators for use with explosive devices
US6763883B2 (en) 1995-10-20 2004-07-20 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
US20040141279A1 (en) 2003-01-21 2004-07-22 Takata Corporation Initiator and gas generator
US6779605B2 (en) 2002-05-16 2004-08-24 Owen Oil Tools Lp Downhole tool deployment safety system and methods
US20040211862A1 (en) 2003-04-25 2004-10-28 Elam Daryl B. Unmanned aerial vehicle with integrated wing battery
CN2661919Y (en) 2003-11-13 2004-12-08 中国航天科技集团公司川南机械厂 Safety device for underground blasting
US6843317B2 (en) 2002-01-22 2005-01-18 Baker Hughes Incorporated System and method for autonomously performing a downhole well operation
US20050011390A1 (en) 2003-07-15 2005-01-20 Special Devices, Inc. ESD-resistant electronic detonator
US6851471B2 (en) 2003-05-02 2005-02-08 Halliburton Energy Services, Inc. Perforating gun
US6880637B2 (en) 2000-11-15 2005-04-19 Baker Hughes Incorporated Full bore automatic gun release module
US20050178282A1 (en) 2001-11-27 2005-08-18 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
US20050183610A1 (en) 2003-09-05 2005-08-25 Barton John A. High pressure exposed detonating cord detonator system
US20050186823A1 (en) 2004-02-24 2005-08-25 Ring John H. Hybrid glass-sealed electrical connectors
US20050194146A1 (en) 2004-03-04 2005-09-08 Barker James M. Perforating gun assembly and method for creating perforation cavities
US20050218260A1 (en) 2004-02-07 2005-10-06 Corder David A Air-launchable aircraft and method of use
US20050229805A1 (en) 2003-07-10 2005-10-20 Baker Hughes, Incorporated Connector for perforating gun tandem
US7013977B2 (en) 2003-06-11 2006-03-21 Halliburton Energy Services, Inc. Sealed connectors for automatic gun handling
US20060081374A1 (en) 2004-09-29 2006-04-20 Baker Hughes Incorporated Process for downhole heating
US7044230B2 (en) 2004-01-27 2006-05-16 Halliburton Energy Services, Inc. Method for removing a tool from a well
US7066280B2 (en) 1995-02-16 2006-06-27 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
US7086481B2 (en) 2002-10-11 2006-08-08 Weatherford/Lamb Wellbore isolation apparatus, and method for tripping pipe during underbalanced drilling
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7104323B2 (en) 2003-07-01 2006-09-12 Robert Bradley Cook Spiral tubular tool and method
US7107908B2 (en) 2003-07-15 2006-09-19 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
CN2821154Y (en) 2005-09-15 2006-09-27 西安聚和石油技术开发有限公司 Composite hole punching device for module type medicine box holding medicine
CN2823549Y (en) 2005-06-15 2006-10-04 王安仕 Chemical reaction pneumatic force deep penetration heat-deblocking device for oil-gas well
US7128162B2 (en) 2004-02-20 2006-10-31 Desmond Quinn Method and apparatus for positioning a sleeve down hole in a hydrocarbon producing well and pipelines
CN1284750C (en) 2003-11-15 2006-11-15 台州盛世环境工程有限公司 Pyrotechnic composition for thermal pipe cutter and process for making same
USD532947S1 (en) 2006-01-20 2006-11-28 Sal Muscarella Hose coupling device for a vacuum cleaner with releasable push button locks
US7168494B2 (en) 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
US7182625B2 (en) 2004-12-03 2007-02-27 Antaya Technologies Corporation Grounding connector
US7193527B2 (en) * 2002-12-10 2007-03-20 Intelliserv, Inc. Swivel assembly
US20070125540A1 (en) 2005-12-01 2007-06-07 Schlumberger Technology Corporation Monitoring an Explosive Device
US7228906B2 (en) 2003-11-08 2007-06-12 Marathon Oil Company Propellant ignition assembly and process
US7237626B2 (en) 2002-06-05 2007-07-03 Ryan Energy Technologies Tool module connector for use in directional drilling
US20070158071A1 (en) 2006-01-10 2007-07-12 Owen Oil Tools, Lp Apparatus and method for selective actuation of downhole tools
US7243722B2 (en) 2001-01-26 2007-07-17 E2Tech Limited Expander device
US7278491B2 (en) 2004-08-04 2007-10-09 Bruce David Scott Perforating gun connector
US7278482B2 (en) 2004-11-22 2007-10-09 Azar Ghassan R Anchor and method of using same
RU2312981C2 (en) 2005-11-28 2007-12-20 Равиль Фатыхович Гайсин Method for reservoir penetration and treatment
US20080047716A1 (en) 2006-08-22 2008-02-28 Mckee L Michael System and method for forming a coiled tubing connection
US7347278B2 (en) * 1998-10-27 2008-03-25 Schlumberger Technology Corporation Secure activation of a downhole device
US7347279B2 (en) 2004-02-06 2008-03-25 Schlumberger Technology Corporation Charge holder apparatus
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7357083B2 (en) 2002-03-28 2008-04-15 Toyota Jidosha Kabushiki Kaisha Initiator
US20080110612A1 (en) 2006-10-26 2008-05-15 Prinz Francois X Methods and apparatuses for electronic time delay and systems including same
US20080110632A1 (en) 2006-11-09 2008-05-15 Beall Clifford H Downhole lubricator valve
US20080134922A1 (en) 2006-12-06 2008-06-12 Grattan Antony F Thermally Activated Well Perforating Safety System
US20080149338A1 (en) 2006-12-21 2008-06-26 Schlumberger Technology Corporation Process For Assembling a Loading Tube
US20080173240A1 (en) 2007-01-24 2008-07-24 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
US20080173204A1 (en) 2006-08-24 2008-07-24 David Geoffrey Anderson Connector for detonator, corresponding booster assembly, and method of use
DE102007007498A1 (en) 2006-11-20 2008-08-21 Electrovac Ag Electrical bushing for making electrical connection between e.g. actuators, has electrical conductor passing via housing passage, which has orifice provided at housing outer surface section enclosed based on type of shell
US7428932B1 (en) 2007-06-20 2008-09-30 Petroquip Energy Services, Llp Completion system for a well
US7431075B2 (en) 2004-10-05 2008-10-07 Schlumberger Technology Corporation Propellant fracturing of wells
US7441601B2 (en) 2005-05-16 2008-10-28 Geodynamics, Inc. Perforation gun with integral debris trap apparatus and method of use
US20080264639A1 (en) 2001-04-27 2008-10-30 Schlumberger Technology Corporation Method and Apparatus for Orienting Perforating Devices
US7487827B2 (en) 2005-02-18 2009-02-10 Propellant Fracturing & Stimulation, Llc Propellant cartridge with restrictor plugs for fracturing wells
US7493945B2 (en) 2002-04-05 2009-02-24 Baker Hughes Incorporated Expandable packer with mounted exterior slips and seal
US20090050322A1 (en) 2007-08-20 2009-02-26 Baker Hughes Incorporated Wireless perforating gun initiation
US7510017B2 (en) 2006-11-09 2009-03-31 Halliburton Energy Services, Inc. Sealing and communicating in wells
CN101397890A (en) 2007-09-28 2009-04-01 普拉德研究及开发股份有限公司 Apparatus string for use in a wellbore
US7533722B2 (en) 2004-05-08 2009-05-19 Halliburton Energy Services, Inc. Surge chamber assembly and method for perforating in dynamic underbalanced conditions
US7540758B2 (en) 2006-12-21 2009-06-02 Kesse Ho Grounding blocks and methods for using them
US20090159285A1 (en) 2007-12-21 2009-06-25 Schlumberger Technology Corporation Downhole initiator
US7568429B2 (en) 2005-03-18 2009-08-04 Orica Explosives Technology Pty Ltd Wireless detonator assembly, and methods of blasting
US7604062B2 (en) 2004-09-03 2009-10-20 Baker Hughes Incorporated Electric pressure actuating tool and method
US20090272529A1 (en) 2008-04-30 2009-11-05 Halliburton Energy Services, Inc. System and Method for Selective Activation of Downhole Devices in a Tool String
US20090272519A1 (en) 2005-02-24 2009-11-05 Green David A Gas lift plunger assembly arrangement
US20090301723A1 (en) 2008-06-04 2009-12-10 Gray Kevin L Interface for deploying wireline tools with non-electric string
US20100000789A1 (en) 2005-03-01 2010-01-07 Owen Oil Tools Lp Novel Device And Methods for Firing Perforating Guns
US20100012774A1 (en) 2006-05-15 2010-01-21 Kazak Composites, Incorporated Powered unmanned aerial vehicle
US20100089643A1 (en) 2008-10-13 2010-04-15 Mirabel Vidal Exposed hollow carrier perforation gun and charge holder
US20100096131A1 (en) 2008-02-27 2010-04-22 Baker Hub Wiper Plug Perforating System
RU93521U1 (en) 2009-07-24 2010-04-27 Вячеслав Александрович Бондарь INTERMEDIATE DETONATOR
US20100107917A1 (en) 2006-09-27 2010-05-06 Montanuniversitat Leoben Explosive Cartridge And A Method Of Arranging An Explosive Cartridge In A Blast Hole
US7721650B2 (en) 2007-04-04 2010-05-25 Owen Oil Tools Lp Modular time delay for actuating wellbore devices and methods for using same
US7726396B2 (en) 2007-07-27 2010-06-01 Schlumberger Technology Corporation Field joint for a downhole tool
US7735578B2 (en) 2008-02-07 2010-06-15 Baker Hughes Incorporated Perforating system with shaped charge case having a modified boss
US20100163224A1 (en) 2008-01-04 2010-07-01 Intelligent Tools Ip, Llc Downhole Tool Delivery System
US7748457B2 (en) 2006-01-13 2010-07-06 Schlumberger Technology Corporation Injection of treatment materials into a geological formation surrounding a well bore
US7752971B2 (en) 2008-07-17 2010-07-13 Baker Hughes Incorporated Adapter for shaped charge casing
US7762172B2 (en) 2006-08-23 2010-07-27 Schlumberger Technology Corporation Wireless perforating gun
US7778006B2 (en) 2006-04-28 2010-08-17 Orica Explosives Technology Pty Ltd. Wireless electronic booster, and methods of blasting
US7775279B2 (en) 2007-12-17 2010-08-17 Schlumberger Technology Corporation Debris-free perforating apparatus and technique
US7779926B2 (en) 2006-12-05 2010-08-24 Weatherford/Lamb, Inc. Wellbore plug adapter kit and method of using thereof
US20100230104A1 (en) 2007-05-31 2010-09-16 Noelke Rolf-Dieter Method for completing a borehole
RU98047U1 (en) 2010-06-17 2010-09-27 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт по использованию энергии взрыва в геофизике" (ОАО "ВНИПИвзрывгеофизика") HEAT AND GAS GENERATOR FOR IMPROVEMENT OF FILTRATION OF THE LAYER IN ITS NEARBORING ZONE
US7810430B2 (en) 2004-11-02 2010-10-12 Orica Explosives Technology Pty Ltd Wireless detonator assemblies, corresponding blasting apparatuses, and methods of blasting
CN201620848U (en) 2009-11-27 2010-11-03 中国兵器工业第二一三研究所 Vertical well orientation multi-pulse increase-benefit perforating device
US20100286800A1 (en) 2007-01-06 2010-11-11 Lerche Nolan C Tractor communication/control and select fire perforating switch simulations
US20100307773A1 (en) 2008-01-24 2010-12-09 Tinnen Baard Martin Method and an apparatus for controlling a well barrier
RU100552U1 (en) 2010-08-17 2010-12-20 Общество с ограниченной ответственностью "Нефтекамский машиностроительный завод" (ООО "НКМЗ") HYDROMECHANICAL SHOOTING HEAD FOR CUMULATIVE PERFORATOR
US20110024116A1 (en) 2009-07-29 2011-02-03 Baker Hughes Incorporated Electric and Ballistic Connection Through A Field Joint
US20110042069A1 (en) 2008-08-20 2011-02-24 Jeffrey Roberts Bailey Coated sleeved oil and gas well production devices
US7896077B2 (en) 2007-09-27 2011-03-01 Schlumberger Technology Corporation Providing dynamic transient pressure conditions to improve perforation characteristics
US7901247B2 (en) 2009-06-10 2011-03-08 Kemlon Products & Development Co., Ltd. Electrical connectors and sensors for use in high temperature, high pressure oil and gas wells
US7905290B2 (en) 2004-10-06 2011-03-15 Judith Maria Schicks Device for the thermal stimulation of gas hydrate formations
CN201764910U (en) 2009-08-20 2011-03-16 北京维深数码科技有限公司 Wireless detonator assembly and explosion device
US7908970B1 (en) 2007-11-13 2011-03-22 Sandia Corporation Dual initiation strip charge apparatus and methods for making and implementing the same
US7929270B2 (en) 2005-01-24 2011-04-19 Orica Explosives Technology Pty Ltd Wireless detonator assemblies, and corresponding networks
US7934453B2 (en) 2005-06-02 2011-05-03 Global Tracking Solutions Pty Ltd Explosives initiator, and a system and method for tracking identifiable initiators
US7980874B2 (en) 2005-02-17 2011-07-19 Halliburton Energy Services, Inc. Connector including isolated conductive paths
US8028624B2 (en) 2007-02-02 2011-10-04 Mattson Inter Tool Gmbh Rock-blasting cartridge and blasting method
US8066083B2 (en) 2009-03-13 2011-11-29 Halliburton Energy Services, Inc. System and method for dynamically adjusting the center of gravity of a perforating apparatus
US8069789B2 (en) * 2004-03-18 2011-12-06 Orica Explosives Technology Pty Ltd Connector for electronic detonators
US20110301784A1 (en) 2009-08-26 2011-12-08 John Robert Oakley Helicopter
WO2011160099A1 (en) 2010-06-18 2011-12-22 Battelle Memorial Instiute Non-energetics based detonator
RU2439312C1 (en) 2010-06-17 2012-01-10 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт по использованию энергии взрыва в геофизике" (ОАО "ВНИПИвзрывгеофизика") Heat gas generator for improvement of formation filtration in its well bore zone
WO2012006357A2 (en) 2010-07-06 2012-01-12 Schlumberger Canada Limited Ballistic transfer delay device
US20120006217A1 (en) 2010-07-07 2012-01-12 Anderson Otis R Electronic blast control system for multiple downhole operations
US8136439B2 (en) 2001-09-10 2012-03-20 Bell William T Explosive well tool firing head
US8141639B2 (en) 2009-01-09 2012-03-27 Owen Oil Tools Lp Detonator for material-dispensing wellbore tools
US8141434B2 (en) 2009-12-21 2012-03-27 Tecom As Flow measuring apparatus
US8151882B2 (en) 2005-09-01 2012-04-10 Schlumberger Technology Corporation Technique and apparatus to deploy a perforating gun and sand screen in a well
US20120085538A1 (en) 2004-12-14 2012-04-12 Schlumberger Technology Corporation Method and apparatus for deploying and using self-locating title of the invention downhole devices
US20120094553A1 (en) 2009-06-12 2012-04-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd., Bus Bar and Connector
US8165714B2 (en) 2010-01-25 2012-04-24 Husky Injection Molding Systems Ltd. Controller for controlling combination of hot-runner system and mold assembly
US8182212B2 (en) 2006-09-29 2012-05-22 Hayward Industries, Inc. Pump housing coupling
US8181718B2 (en) 2007-12-17 2012-05-22 Halliburton Energy Services, Inc. Perforating gun gravitational orientation system
US8186425B2 (en) 2008-03-05 2012-05-29 Schlumberger Technology Corporation Sympathetic ignition closed packed propellant gas generator
US20120160483A1 (en) 2010-12-22 2012-06-28 Carisella James V Hybrid Dump Bailer and Method of Use
US8230946B2 (en) 2006-11-27 2012-07-31 Halliburton Energy Services, Inc. Apparatus and methods for sidewall percussion coring using a voltage activated igniter
WO2012106640A2 (en) 2011-02-03 2012-08-09 Baker Hughes Incorporated Connection cartridge for downhole string
US20120199031A1 (en) * 2011-02-03 2012-08-09 Baker Hughes Incorporated Device for verifying detonator connection
US8256337B2 (en) * 2008-03-07 2012-09-04 Baker Hughes Incorporated Modular initiator
US20120241169A1 (en) 2011-03-22 2012-09-27 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US20120242135A1 (en) 2009-09-29 2012-09-27 Orica Explosives Technology Pty Ltd, Method of underground rock blasting
US20120247769A1 (en) 2011-04-01 2012-10-04 Halliburton Energy Services, Inc. Selectable, internally oriented and/or integrally transportable explosive assemblies
US20120247771A1 (en) * 2011-03-29 2012-10-04 Francois Black Perforating gun and arming method
WO2012149584A1 (en) 2011-04-26 2012-11-01 Detnet South Africa (Pty) Ltd Detonator control device
US20120298361A1 (en) 2011-05-26 2012-11-29 Baker Hughes Incorporated Select-fire stackable gun system
US8322426B2 (en) 2010-04-28 2012-12-04 Halliburton Energy Services, Inc. Downhole actuator apparatus having a chemically activated trigger
US8336437B2 (en) 2009-07-01 2012-12-25 Halliburton Energy Services, Inc. Perforating gun assembly and method for controlling wellbore pressure regimes during perforating
US20130008639A1 (en) 2011-07-08 2013-01-10 Tassaroli S.A. Electromechanical assembly for connecting a series of perforating guns for oil and gas wells
CN102878877A (en) 2011-07-11 2013-01-16 新疆创安达电子科技发展有限公司 Electric fuse ignition device, electric detonator comprising electric fuse ignition device, electronic detonator comprising electric fuse ignition device, and manufacturing methods for electric detonator and electronic detonator
US20130043074A1 (en) 2011-07-22 2013-02-21 Tassaroli S.A. Electromechanical assembly for connecting a series of guns used in the perforation of wells
US8388374B2 (en) 2011-04-12 2013-03-05 Amphenol Corporation Coupling system for electrical connector assembly
US8395878B2 (en) 2006-04-28 2013-03-12 Orica Explosives Technology Pty Ltd Methods of controlling components of blasting apparatuses, blasting apparatuses, and components thereof
US20130062055A1 (en) 2010-05-26 2013-03-14 Randy C. Tolman Assembly and method for multi-zone fracture stimulation of a reservoir using autonomous tubular units
US8397741B2 (en) 2009-06-10 2013-03-19 Baker Hughes Incorporated Delay activated valve and method
US8413727B2 (en) 2009-05-20 2013-04-09 Bakers Hughes Incorporated Dissolvable downhole tool, method of making and using
US20130118342A1 (en) 2011-11-11 2013-05-16 Tassaroli S.A. Explosive carrier end plates for charge-carriers used in perforating guns
US8443915B2 (en) 2006-09-14 2013-05-21 Schlumberger Technology Corporation Through drillstring logging systems and methods
US8451137B2 (en) 2008-10-02 2013-05-28 Halliburton Energy Services, Inc. Actuating downhole devices in a wellbore
US8468944B2 (en) 2008-10-24 2013-06-25 Battelle Memorial Institute Electronic detonator system
US8474533B2 (en) 2010-12-07 2013-07-02 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
US20130199843A1 (en) 2012-02-07 2013-08-08 Baker Hughes Incorporated Interruptor sub, perforating gun having the same, and method of blocking ballistic transfer
USD689590S1 (en) 2012-03-09 2013-09-10 Sata Gmbh & Co. Kg Spray gun plug
US20130248174A1 (en) 2010-12-17 2013-09-26 Bruce A. Dale Autonomous Downhole Conveyance System
US20130256464A1 (en) 2010-06-29 2013-10-03 Pavel Belik Uav having hermetically sealed modularized compartments and fluid drain ports
US8561683B2 (en) 2010-09-22 2013-10-22 Owen Oil Tools, Lp Wellbore tubular cutter
US8576090B2 (en) 2008-01-07 2013-11-05 Hunting Titan, Ltd. Apparatus and methods for controlling and communicating with downwhole devices
US8596378B2 (en) 2010-12-01 2013-12-03 Halliburton Energy Services, Inc. Perforating safety system and assembly
US20140033939A1 (en) 2011-04-12 2014-02-06 Dynaenergetics Gmbh & Co. Kg Igniter with a multifunctional plug
US20140053750A1 (en) 2011-04-28 2014-02-27 Orica International Pte Ltd. Wireless detonators with state sensing, and their use
US20140060839A1 (en) 2012-09-06 2014-03-06 North Schlumberger Oilfield Technologies (Xi'an) Co., Ltd. Fracturing a well formation
US8678666B2 (en) 2007-11-30 2014-03-25 Adc Telecommunications, Inc. Hybrid fiber/copper connector system and method
WO2014046670A1 (en) 2012-09-21 2014-03-27 Halliburton Energy Services Wireless communication for downhole tool strings
US20140131035A1 (en) 2011-05-23 2014-05-15 Pavlin B. Entchev Safety System For Autonomous Downhole Tool
WO2014089194A1 (en) 2012-12-04 2014-06-12 Schlumberger Canada Limited Perforating gun with integrated initiator
US8752486B2 (en) 2009-12-09 2014-06-17 Robertson Intellectual Properties, LLC Non-explosive power source for actuating a subsurface tool
US20140166370A1 (en) 2012-12-19 2014-06-19 Halliburton Energy Services, Inc. Downhole Torque Limiting Assembly for Drill String
US8770271B2 (en) 2009-05-18 2014-07-08 Zeitecs B.V. Electric submersible pumping system for dewatering gas wells
US8807003B2 (en) 2009-07-01 2014-08-19 Halliburton Energy Services, Inc. Perforating gun assembly and method for controlling wellbore pressure regimes during perforating
CN103993861A (en) 2014-05-28 2014-08-20 大庆华翰邦石油装备制造有限公司 Device for achieving resistance decrement and centering in peripheral direction
USD712013S1 (en) 2012-08-27 2014-08-26 Nordson Corporation Wear sleeve
CN101691837B (en) 2009-09-11 2014-08-27 中国兵器工业第二一三研究所 Detonation energization explosion-propagating device for perforating gun string
US8833441B2 (en) 2009-05-18 2014-09-16 Zeitecs B.V. Cable suspended pumping system
US8863665B2 (en) 2012-01-11 2014-10-21 Alliant Techsystems Inc. Connectors for separable firing unit assemblies, separable firing unit assemblies, and related methods
US8869887B2 (en) 2011-07-06 2014-10-28 Tolteq Group, LLC System and method for coupling downhole tools
US20140318766A1 (en) 2013-04-15 2014-10-30 Halliburton Energy Services, Inc. Firing Head Actuator for a Well Perforating System and Method for Use of Same
WO2014178725A1 (en) 2013-05-03 2014-11-06 Ingineering As Setting tool and method of using same
US8881816B2 (en) 2011-04-29 2014-11-11 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8881836B2 (en) 2007-09-01 2014-11-11 Weatherford/Lamb, Inc. Packing element booster
CA2821506A1 (en) 2013-07-18 2015-01-18 Dave Parks Perforation gun components and system
CA2824838A1 (en) 2013-08-26 2015-02-26 David Parks Perforation gun components and system
US20150075783A1 (en) 2012-04-27 2015-03-19 Kobold Services Inc. Methods and electrically-actuated apparatus for wellbore operations
CN104499977A (en) 2014-12-31 2015-04-08 北方斯伦贝谢油田技术(西安)有限公司 Horizontal well bushing shaping repair method and device
US20150176386A1 (en) 2013-12-24 2015-06-25 Baker Hughes Incorporated Using a Combination of a Perforating Gun with an Inflatable to Complete Multiple Zones in a Single Trip
US9080405B2 (en) 2010-04-23 2015-07-14 James V. Carisella Wireline pressure setting tool and method of use
US20150226044A1 (en) 2014-02-12 2015-08-13 Owen Oil Tools Lp Perforating gun with eccentric rotatable charge tube
WO2015134719A1 (en) 2014-03-07 2015-09-11 Dynaenergetics Gmbh & Co. Kg Device and method for positioning a detonator within a perforating gun assembly
US9145764B2 (en) 2011-11-22 2015-09-29 International Strategic Alliance, Lc Pass-through bulkhead connection switch for a perforating gun
US9145763B1 (en) 2012-05-15 2015-09-29 Joseph A. Sites, Jr. Perforation gun with angled shaped charges
US9181790B2 (en) 2012-01-13 2015-11-10 Los Alamos National Security, Llc Detonation command and control
US9194219B1 (en) 2015-02-20 2015-11-24 Geodynamics, Inc. Wellbore gun perforating system and method
US20150356403A1 (en) 2014-06-06 2015-12-10 Quantico Energy Solutions Llc Synthetic logging for reservoir stimulation
US20160061572A1 (en) 2013-08-26 2016-03-03 Dynaenergetics Gmbh & Co. Kg Perforating gun and detonator assembly
US9284824B2 (en) 2011-04-21 2016-03-15 Halliburton Energy Services, Inc. Method and apparatus for expendable tubing-conveyed perforating gun
US20160084048A1 (en) 2013-05-03 2016-03-24 Schlumberger Technology Corporation Cohesively Enhanced Modular Perforating Gun
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US9328559B2 (en) 2010-10-30 2016-05-03 Marcus Schwarz Direct drill bit drive for tools on the basis of a heat engine
US9359863B2 (en) 2013-04-23 2016-06-07 Halliburton Energy Services, Inc. Downhole plug apparatus
WO2016100064A1 (en) 2014-12-17 2016-06-23 Wild Well Control, Inc. Perforation system for riserless abandonment operation
WO2016100269A1 (en) 2014-12-15 2016-06-23 Schlumberger Canada Limited Downhole expandable and contractable ring assembly
US20160186511A1 (en) 2014-10-23 2016-06-30 Hydrawell Inc. Expandable Plug Seat
US9383237B2 (en) 2011-08-04 2016-07-05 Cape Peninsula University Of Technology Fluid visualisation and characterisation system and method; a transducer
US20160202033A1 (en) 2013-08-26 2016-07-14 Dynaenergetics Gmbh & Co. Kg Ballistic transfer module
US20160281466A1 (en) 2014-05-12 2016-09-29 Halliburton Energy Services, Inc. Gravel pack-circulating sleeve with hydraulic lock
US9476272B2 (en) 2014-12-11 2016-10-25 Neo Products, LLC. Pressure setting tool and method of use
US9482069B2 (en) 2013-03-07 2016-11-01 Weatherford Technology Holdings, Llc Consumable downhole packer or plug
US9488024B2 (en) 2012-04-16 2016-11-08 Wild Well Control, Inc. Annulus cementing tool for subsea abandonment operation
US20170044865A1 (en) 2015-08-12 2017-02-16 Csi Technologies Llc Riserless abandonment operation using sealant and cement
US9587466B2 (en) 2014-09-16 2017-03-07 Wild Well Control, Inc. Cementing system for riserless abandonment operation
WO2017041772A1 (en) 2015-09-10 2017-03-16 Lemenovski Dmitri Anatoljevich Method for extracting hydrocarbons using exothermic gas generating chemical reactions fracturing the rock formation
US9598942B2 (en) 2015-08-19 2017-03-21 G&H Diversified Manufacturing Lp Igniter assembly for a setting tool
US9689240B2 (en) 2013-12-19 2017-06-27 Owen Oil Tools Lp Firing mechanism with time delay and metering system
US9695673B1 (en) 2012-11-28 2017-07-04 Oilfield Solutions and Design, LLC Down hole wash tool
US9702211B2 (en) 2012-01-30 2017-07-11 Altus Intervention As Method and an apparatus for retrieving a tubing from a well
US9709373B2 (en) 2013-01-08 2017-07-18 Nof Corporation Wireless detonation system, wireless detonation method, and detonator and explosive unit used in same
WO2017125745A1 (en) 2016-01-19 2017-07-27 Spex Engineering (Uk) Limited Tool with propellant sections
US9726005B2 (en) 2011-07-11 2017-08-08 Welltec A/S Positioning method and tool for determining the position of the tool in a casing downhole
US9771769B2 (en) 2014-04-28 2017-09-26 Owen Oil Tools Lp Devices and related methods for actuating wellbore tools with a pressurized gas
US20170276465A1 (en) 2013-07-18 2017-09-28 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
EP2310616B1 (en) 2008-06-23 2017-10-11 Sandvik Mining and Construction Oy Rock-drilling unit, drill bit changer, and method for changing drill bit
US20170298716A1 (en) 2016-03-09 2017-10-19 Taylor McConnell Apparatus for more effectively extracting energy resources from underground reservoirs and a method for manufacturing the same
RU2633904C1 (en) 2016-08-16 2017-10-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Sectional sand jet perforator
US20170314373A9 (en) 2014-05-23 2017-11-02 Hunting Titan, Inc. Box by Pin Perforating Gun System and Methods
US20170328134A1 (en) 2016-05-13 2017-11-16 Baker Hughes Incorporated System for Extended Use in High Temperature Wellbore
US9835006B2 (en) 2014-08-13 2017-12-05 Geodynamics, Inc. Wellbore plug isolation system and method
US9879501B2 (en) 2014-03-07 2018-01-30 Baker Hughes, A Ge Company, Llc Multizone retrieval system and method
US20180080300A1 (en) 2015-05-01 2018-03-22 Kinetic Pressure Control, Ltd. Blowout preventer
US20180080298A1 (en) 2015-04-02 2018-03-22 Hunting Titan, Inc. Opposing Piston Setting Tool
US20180094910A1 (en) 2015-04-02 2018-04-05 Hunting Titan, Inc. Snap-on Liner Retention Device
US20180106121A1 (en) 2015-03-11 2018-04-19 Hunting Titan, Inc. Setting Tool for Use in Subterranean Wells
US20180119529A1 (en) 2015-05-15 2018-05-03 Sergio F Goyeneche Apparatus for Electromechanically Connecting a Plurality of Guns for Well Perforation
US20180120066A1 (en) 2016-11-01 2018-05-03 Baker Hughes Incorporated System and method for altering a burn rate of a propellant
US20180148995A1 (en) 2016-01-27 2018-05-31 Halliburton Energy Services, Inc. Autonomous pressure control assembly with state-changing valve system
US9995115B2 (en) 2013-01-10 2018-06-12 Halliburton Energy Services, Inc. Boost assisted force balancing setting tool
US10018018B2 (en) 2014-05-13 2018-07-10 Baker Hughes, A Ge Company, Llc System and method for providing a resilient solid fuel source in a wellbore
WO2018136808A1 (en) 2017-01-19 2018-07-26 Hunting Titan, Inc. Compact setting tool
US10036236B1 (en) 2017-08-09 2018-07-31 Geodynamics, Inc. Setting tool igniter system and method
US20180231361A1 (en) 2015-09-16 2018-08-16 Orica International Pte Ltd Wireless initiation device
US10077626B2 (en) 2016-05-06 2018-09-18 Baker Hughes, A Ge Company, Llc Fracturing plug and method of fracturing a formation
US20180274356A1 (en) 2017-03-21 2018-09-27 Welltec A/S Downhole plug and abandonment system
WO2018213768A1 (en) 2017-05-19 2018-11-22 Hunting Titan, Inc. Piston rod
US10151181B2 (en) 2016-06-23 2018-12-11 Schlumberger Technology Corporation Selectable switch to set a downhole tool
US20180363424A1 (en) 2017-06-19 2018-12-20 Nuwave Industries Inc. Downhole welding process and tool therefore
US10167691B2 (en) 2017-03-29 2019-01-01 Baker Hughes, A Ge Company, Llc Downhole tools having controlled disintegration
US10190398B2 (en) 2013-06-28 2019-01-29 Schlumberger Technology Corporation Detonator structure and system
US20190106962A1 (en) 2017-10-06 2019-04-11 G&H Diversified Manufacturing Lp Systems and methods for sealing a wellbore
US20190162056A1 (en) 2016-05-02 2019-05-30 Hunting Titan, Inc. Pressure Activated Selective Perforating Switch Support
CN104481492B (en) 2014-12-02 2019-06-18 刘玉明 Heat source fracturing method and device based on electromagnetic heating excitation
US20190234188A1 (en) 2018-01-26 2019-08-01 Sergio F. Goyeneche Direct Connecting Gun Assemblies for Drilling Well Perforations
US10422195B2 (en) 2015-04-02 2019-09-24 Owen Oil Tools Lp Perforating gun
US10429938B2 (en) 2017-04-18 2019-10-01 International Business Machines Corporation Interpreting and generating input and output gestures
USD873373S1 (en) 2018-07-23 2020-01-21 Oso Perforating, Llc Perforating gun contact device
US20200063537A1 (en) 2017-05-19 2020-02-27 Hunting Titan, Inc. Pressure Bulkhead
EP3077612B1 (en) 2013-12-06 2020-05-13 Services Petroliers Schlumberger Propellant energy to operate subsea equipment
US10689955B1 (en) 2019-03-05 2020-06-23 SWM International Inc. Intelligent downhole perforating gun tube and components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813443A (en) * 2009-08-20 2010-08-25 北京维深数码科技有限公司 Wireless detonator component, explosive device and exploding method thereof

Patent Citations (575)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25407E (en) 1963-06-25 Method and apparatus for detonating
US214754A (en) 1879-04-29 Improvement in gang-tacking machines
USRE25846E (en) 1965-08-31 Well packer apparatus
US2264450A (en) 1939-04-15 1941-12-02 Standard Oil Dev Co Gun perforator
US2216359A (en) 1939-05-22 1940-10-01 Lane Wells Co Gun perforator for oil wells
US2228873A (en) 1939-08-30 1941-01-14 Du Pont Electric blasting initiator
US2358466A (en) 1940-09-12 1944-09-19 Herbert C Otis Well tool
US2308004A (en) 1941-01-10 1943-01-12 Lane Wells Co Setting tool for bridging plugs
US2326406A (en) 1942-08-18 1943-08-10 Lane Wells Co Gun perforator
US2418486A (en) 1944-05-06 1947-04-08 James G Smylie Gun perforator
US2742856A (en) 1944-11-06 1956-04-24 Louis F Fieser Burster
US2598651A (en) 1946-07-01 1952-05-27 Thomas C Bannon Gun perforator
US2543814A (en) 1946-12-26 1951-03-06 Welex Jet Services Inc Means and method of tilting explosive charges in wells
US2649046A (en) 1947-05-01 1953-08-18 Du Pont Explosive package
US2640547A (en) 1948-01-12 1953-06-02 Baker Oil Tools Inc Gas-operated well apparatus
US2655993A (en) 1948-01-22 1953-10-20 Thomas C Bannon Control device for gun perforators
US2618343A (en) 1948-09-20 1952-11-18 Baker Oil Tools Inc Gas pressure operated well apparatus
US2637402A (en) 1948-11-27 1953-05-05 Baker Oil Tools Inc Pressure operated well apparatus
US2695064A (en) 1949-08-01 1954-11-23 Baker Oil Tools Inc Well packer apparatus
US2692023A (en) 1949-09-26 1954-10-19 Baker Oil Tools Inc Pressure operated subsurface well apparatus
US2708408A (en) 1949-11-14 1955-05-17 William G Sweetman Well perforating device
US2785631A (en) 1950-10-05 1957-03-19 Borg Warner Shaped explosive-charge perforating apparatus
US2681114A (en) 1950-11-25 1954-06-15 Baker Oil Tools Inc Well packer and setting apparatus
US2761384A (en) 1951-02-26 1956-09-04 William G Sweetman Device for cutting a pipe inside of a well
US2766690A (en) 1951-11-29 1956-10-16 Borg Warner System for setting off explosive charges
US2696259A (en) 1953-01-19 1954-12-07 Haskell M Greene Apparatus for firing propellent charges in wells
US2873675A (en) 1953-06-17 1959-02-17 Borg Warner Method and apparatus for detonating explosive devices in bore holes
US2906339A (en) 1954-03-30 1959-09-29 Wilber H Griffin Method and apparatus for completing wells
US2889775A (en) 1955-02-21 1959-06-09 Welex Inc Open hole perforator firing means
US2815816A (en) 1955-06-20 1957-12-10 Baker Oil Tools Inc Automatically relieved gas pressure well apparatus
US2946283A (en) 1955-09-02 1960-07-26 Borg Warner Method and apparatus for perforating wellbores and casings
US3024843A (en) 1957-07-22 1962-03-13 Aerojet General Co Setting tool-propellant operated
US3036636A (en) 1957-09-26 1962-05-29 Baker Oil Tools Inc Subsurface well bore apparatus and setting tool therefor
US3040659A (en) 1958-05-12 1962-06-26 Otis J Mcculleugh Well perforating device
US3076507A (en) 1958-05-16 1963-02-05 William G Sweetman Chemical cutting method and apparatus for use in wells
US3080005A (en) 1958-06-06 1963-03-05 Dresser Ind Sidewall sampler
US3055430A (en) 1958-06-09 1962-09-25 Baker Oil Tools Inc Well packer apparatus
US2996591A (en) 1959-02-13 1961-08-15 Russell W Fuller Detector for fires and excessive temperatures
US2979904A (en) 1959-04-27 1961-04-18 Aerojet General Co Booster device for operating well tools
US3128702A (en) 1959-05-15 1964-04-14 Jet Res Ct Inc Shaped charge perforating unit and well perforating apparatus employing the same
US3094166A (en) 1960-07-25 1963-06-18 Ira J Mccullough Power tool
US3170400A (en) 1960-11-23 1965-02-23 Atlas Chem Ind Detonating means securing device
US3220480A (en) 1961-02-06 1965-11-30 Baker Oil Tools Inc Subsurface apparatus for operating well tools
US3158680A (en) 1962-02-01 1964-11-24 Gen Telephone & Electronies Co Telephone cable system
US3154632A (en) 1962-02-01 1964-10-27 O Z Electrical Mfg Co Inc Rigid conduit expansion joint grounded to require no external bonding jumper
US3186485A (en) 1962-04-04 1965-06-01 Harrold D Owen Setting tool devices
US3211093A (en) 1962-08-10 1965-10-12 Mccullough Tool Company Expendible gun assembly for perforating wells
US3211222A (en) 1963-01-09 1965-10-12 Baker Oil Tools Inc Pressure actuated fishing apparatus
US3244232A (en) 1963-04-15 1966-04-05 Baker Oil Tools Inc Pressure actuated pushing apparatus
US3233674A (en) 1963-07-22 1966-02-08 Baker Oil Tools Inc Subsurface well apparatus
US3264994A (en) 1963-07-22 1966-08-09 Baker Oil Tools Inc Subsurface well apparatus
US3246707A (en) 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Selective firing system
US3264989A (en) 1964-03-06 1966-08-09 Du Pont Ignition assembly resistant to actuation by radio frequency and electrostatic energies
US3298437A (en) 1964-08-19 1967-01-17 Martin B Conrad Actuator device for well tool
US3209692A (en) 1964-10-05 1965-10-05 Avco Corp Explosion transfer device
US3565188A (en) 1965-06-07 1971-02-23 Harrison Jet Guns Ltd Perforating means for sand control
US3327792A (en) 1965-10-22 1967-06-27 Profitable Resources Inc Jet perforating gun
US3320884A (en) 1966-01-12 1967-05-23 James F Kowalick Pyrotechnic delay device for mild detonating cord
US4058061A (en) 1966-06-17 1977-11-15 Aerojet-General Corporation Explosive device
US3415321A (en) 1966-09-09 1968-12-10 Dresser Ind Shaped charge perforating apparatus and method
US3414071A (en) 1966-09-26 1968-12-03 Halliburton Co Oriented perforate test and cement squeeze apparatus
US3374735A (en) 1966-09-29 1968-03-26 Lawrence K. Moore Apparatus for locating collars and the like in well pipe
US3498376A (en) 1966-12-29 1970-03-03 Phillip S Sizer Well apparatus and setting tool
US3398803A (en) 1967-02-27 1968-08-27 Baker Oil Tools Inc Single trip apparatus and method for sequentially setting well packers and effecting operation of perforators in well bores
US3504723A (en) 1968-05-27 1970-04-07 Delron Fastener Division Rex C Floating nut insert
US3621916A (en) 1969-10-08 1971-11-23 Shell Oil Co Spark-type casing perforator
US3630284A (en) 1970-04-02 1971-12-28 Amoco Prod Co Method for treatment of fluid-bearing formations
US3650212A (en) 1970-05-11 1972-03-21 Western Dynamics Inc Economical, tough, debris-free shaped charge device and perforating gun assembly employing same
US3659658A (en) 1970-09-28 1972-05-02 Schlumberger Technology Corp Well perforating apparatus
US3762470A (en) 1971-04-26 1973-10-02 Tenneco Oil Co Inflatable packer device and method
US3859921A (en) 1971-07-15 1975-01-14 Allied Chem Detonator holder
US3712376A (en) 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US4216721A (en) 1972-12-22 1980-08-12 The United Stated Of America As Represented By The Secretary Of The Army Thermite penetrator device (U)
US4132171A (en) 1974-11-04 1979-01-02 Pawlak Daniel E Apparatus for detonating an explosive charge
US4003433A (en) 1974-11-06 1977-01-18 Mack Goins Method for cutting pipe
US4007796A (en) 1974-12-23 1977-02-15 Boop Gene T Explosively actuated well tool having improved disarmed configuration
US4107453A (en) 1975-09-02 1978-08-15 Nitro Nobel Wires and two-part electrical coupling cover
US4080898A (en) 1976-02-05 1978-03-28 Gieske Harry A Spiral wrapped shaped charge liners and munition utilizing same
US4034673A (en) 1976-02-23 1977-07-12 Calspan Corporation Armor penetration shaped-charge projectile
US4007790A (en) 1976-03-05 1977-02-15 Henning Jack A Back-off apparatus and method for retrieving pipe from wells
US4039239A (en) 1976-03-24 1977-08-02 Amp Incorporated Wire slot clip
US4064935A (en) 1976-09-13 1977-12-27 Kine-Tech Corporation Oil well stimulation apparatus
US4071096A (en) 1977-01-10 1978-01-31 Jet Research Center, Inc. Shaped charge well perforating apparatus
US4250960A (en) 1977-04-18 1981-02-17 Weatherford/Dmc, Inc. Chemical cutting apparatus
US4084147A (en) 1977-05-31 1978-04-11 Emerson Electric Co. Normally open, thermal sensitive electrical switching device
US4085397A (en) 1977-05-31 1978-04-18 Emerson Electric Co. Electrical switching device for thermal and overvoltage protection
US4140188A (en) 1977-10-17 1979-02-20 Peadby Vann High density jet perforating casing gun
US4345646A (en) 1978-02-13 1982-08-24 Gearhart Industries, Inc. Apparatus for chemical cutting
US4208966A (en) 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
US4182216A (en) 1978-03-02 1980-01-08 Textron, Inc. Collapsible threaded insert device for plastic workpieces
US4172421A (en) 1978-03-30 1979-10-30 Jet Research Center, Inc. Fluid desensitized safe/arm detonator assembly
US4220087A (en) 1978-11-20 1980-09-02 Explosive Technology, Inc. Linear ignition fuse
US4266613A (en) 1979-06-06 1981-05-12 Sie, Inc. Arming device and method
US4261263A (en) 1979-06-18 1981-04-14 Special Devices, Inc. RF-insensitive squib
US4290486A (en) 1979-06-25 1981-09-22 Jet Research Center, Inc. Methods and apparatus for severing conduits
US4319526A (en) 1979-12-17 1982-03-16 Schlumberger Technology Corp. Explosive safe-arming system for perforating guns
US4284235A (en) 1979-12-19 1981-08-18 Werner Diermayer Vent control arrangement for combustion apparatus
GB2065750B (en) 1979-12-19 1983-06-02 Weatherford Dmc Chemical cutting apparatus
US4306628A (en) 1980-02-19 1981-12-22 Otis Engineering Corporation Safety switch for well tools
US4312273A (en) 1980-04-07 1982-01-26 Shaped Charge Specialist, Inc. Shaped charge mounting system
US4363529A (en) 1980-07-25 1982-12-14 Amp Incorporated Terminal having improved mounting means
US4496008A (en) 1980-08-12 1985-01-29 Schlumberger Technology Corporation Well perforating apparatus
US4393946A (en) 1980-08-12 1983-07-19 Schlumberger Technology Corporation Well perforating apparatus
US4430939A (en) 1980-11-19 1984-02-14 Gordon Harrold Linear shaped charges
US4541486A (en) 1981-04-03 1985-09-17 Baker Oil Tools, Inc. One trip perforating and gravel pack system
US4730793A (en) 1981-08-12 1988-03-15 E-Systems, Inc. Ordnance delivery system and method including remotely piloted or programmable aircraft with yaw-to-turn guidance system
US4429741A (en) 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
US4387773A (en) 1981-10-13 1983-06-14 Dresser Industries, Inc. Shaped charge well perforator
EP0088516A1 (en) 1982-03-01 1983-09-14 Ici Americas Inc. An electrically activated detonator assembly
US4598775A (en) 1982-06-07 1986-07-08 Geo. Vann, Inc. Perforating gun charge carrier improvements
US4576233A (en) 1982-09-28 1986-03-18 Geo Vann, Inc. Differential pressure actuated vent assembly
US4530396A (en) 1983-04-08 1985-07-23 Mohaupt Henry H Device for stimulating a subterranean formation
US4485741A (en) 1983-04-13 1984-12-04 Apache Powder Company Booster container with isolated and open cord tunnels
US4534423A (en) 1983-05-05 1985-08-13 Jet Research Center, Inc. Perforating gun carrier and method of making
US4523649A (en) 1983-05-25 1985-06-18 Baker Oil Tools, Inc. Rotational alignment method and apparatus for tubing conveyed perforating guns
US4583602A (en) 1983-06-03 1986-04-22 Dresser Industries, Inc. Shaped charge perforating device
US4753170A (en) 1983-06-23 1988-06-28 Jet Research Center Polygonal detonating cord and method of charge initiation
US4512418A (en) 1983-07-21 1985-04-23 Halliburton Company Mechanically initiated tubing conveyed perforator system
US4491185A (en) 1983-07-25 1985-01-01 Mcclure Gerald B Method and apparatus for perforating subsurface earth formations
US4609056A (en) 1983-12-01 1986-09-02 Halliburton Company Sidewall core gun
US4640354A (en) 1983-12-08 1987-02-03 Schlumberger Technology Corporation Method for actuating a tool in a well at a given depth and tool allowing the method to be implemented
US4523650A (en) 1983-12-12 1985-06-18 Dresser Industries, Inc. Explosive safe/arm system for oil well perforating guns
US4619320A (en) 1984-03-02 1986-10-28 Memory Metals, Inc. Subsurface well safety valve and control system
US4769734A (en) 1984-08-30 1988-09-06 Dynamit Nobel Aktiengesellschaft Safety circuit for electric detonator element
US4574892A (en) 1984-10-24 1986-03-11 Halliburton Company Tubing conveyed perforating gun electrical detonator
CN85107897A (en) 1984-10-29 1986-09-10 施产默格海外有限公司 The detonation system of the perforating gun carried by the tubing
EP0180520B1 (en) 1984-10-29 1991-05-02 Schlumberger Limited Firing system for tubing conveyed perforating gun
US4566544A (en) 1984-10-29 1986-01-28 Schlumberger Technology Corporation Firing system for tubing conveyed perforating gun
US4660910A (en) 1984-12-27 1987-04-28 Schlumberger Technology Corporation Apparatus for electrically interconnecting multi-sectional well tools
US4620591A (en) 1985-04-12 1986-11-04 Gearhart Industries, Inc. Chemical cutting apparatus having selective pressure bleed-off
US4629001A (en) 1985-05-28 1986-12-16 Halliburton Company Tubing pressure operated initiator for perforating in a well borehole
US4657089A (en) 1985-06-11 1987-04-14 Baker Oil Tools, Inc. Method and apparatus for initiating subterranean well perforating gun firing from bottom to top
US4747201A (en) 1985-06-11 1988-05-31 Baker Oil Tools, Inc. Boosterless perforating gun
US4621396A (en) 1985-06-26 1986-11-11 Jet Research Center, Inc. Manufacturing of shaped charge carriers
US4609057A (en) 1985-06-26 1986-09-02 Jet Research Center, Inc. Shaped charge carrier
US4869171A (en) 1985-06-28 1989-09-26 D J Moorhouse And S T Deeley Detonator
US5090321A (en) 1985-06-28 1992-02-25 Ici Australia Ltd Detonator actuator
US4650009A (en) 1985-08-06 1987-03-17 Dresser Industries, Inc. Apparatus and method for use in subsurface oil and gas well perforating device
US4617997A (en) 1985-08-26 1986-10-21 Mobil Oil Corporation Foam enhancement of controlled pulse fracturing
US4662450A (en) 1985-09-13 1987-05-05 Haugen David M Explosively set downhole apparatus
US4852647A (en) 1985-09-18 1989-08-01 Mohaupt Henry H Wire line hold down device
US4643097A (en) 1985-10-25 1987-02-17 Dresser Industries, Inc. Shaped charge perforating apparatus
US4670729A (en) 1986-06-03 1987-06-02 Littelfuse, Inc. Electrical fuse
US4744424A (en) 1986-08-21 1988-05-17 Schlumberger Well Services Shaped charge perforating apparatus
US4884506A (en) 1986-11-06 1989-12-05 Electronic Warfare Associates, Inc. Remote detonation of explosive charges
US4766813A (en) 1986-12-29 1988-08-30 Olin Corporation Metal shaped charge liner with isotropic coating
US4776393A (en) 1987-02-06 1988-10-11 Dresser Industries, Inc. Perforating gun automatic release mechanism
US4800815A (en) 1987-03-05 1989-01-31 Halliburton Company Shaped charge carrier
US4798244A (en) 1987-07-16 1989-01-17 Trost Stephen A Tool and process for stimulating a subterranean formation
US4790383A (en) 1987-10-01 1988-12-13 Conoco Inc. Method and apparatus for multi-zone casing perforation
US4762067A (en) 1987-11-13 1988-08-09 Halliburton Company Downhole perforating method and apparatus using secondary explosive detonators
US4852494A (en) 1987-11-16 1989-08-01 Williams Robert A Explosively actuated switch
EP0332287B1 (en) 1988-02-01 1992-07-29 Air Products And Chemicals, Inc. Method and apparatus for freezing products
US4796708A (en) 1988-03-07 1989-01-10 Baker Hughes Incorporated Electrically actuated safety valve for a subterranean well
US4840231A (en) 1988-04-22 1989-06-20 Baker Hughes Incorporated Method and apparatus for setting an inflatable packer
US4830120A (en) 1988-06-06 1989-05-16 Baker Hughes Incorporated Methods and apparatus for perforating a deviated casing in a subterranean well
US4889183A (en) 1988-07-14 1989-12-26 Halliburton Services Method and apparatus for retaining shaped charges
US5038682A (en) 1988-07-26 1991-08-13 Plessey South Africa Limited Electronic device
US5090324A (en) 1988-09-07 1992-02-25 Rheinmetall Gmbh Warhead
US5119729A (en) 1988-11-17 1992-06-09 Schweizerische Eidgenossenschaft Vertreten Durch Die Eidg. Munitionsfabrik Thun Der Gruppe Fur Rustungsdienste Process for producing a hollow charge with a metallic lining
CA2021396A1 (en) 1989-07-20 1991-01-21 Stephen B. Murray Chemical initiation of detonation in fuel-air explosive clouds
US5006833A (en) 1989-07-25 1991-04-09 Cdf, Inc. Sewer line restriction alarm placed in clean out plug
EP0416915A2 (en) 1989-09-06 1991-03-13 Halliburton Company Time delay perforating apparatus for wells
US5024270A (en) 1989-09-26 1991-06-18 John Bostick Well sealing device
CA2003166A1 (en) 1989-11-16 1991-05-16 Carl N. Guerreri Remote detonation of explosive charges
US5027708A (en) * 1990-02-16 1991-07-02 Schlumberger Technology Corporation Safe arm system for a perforating apparatus having a transport mode an electric contact mode and an armed mode
US5105742A (en) 1990-03-15 1992-04-21 Sumner Cyril R Fluid sensitive, polarity sensitive safety detonator
US5052489A (en) 1990-06-15 1991-10-01 Carisella James V Apparatus for selectively actuating well tools
US6414905B1 (en) 1990-07-09 2002-07-02 Baker Hughes Incorporated Method and apparatus for communicating coded messages in a wellbore
US5070788A (en) 1990-07-10 1991-12-10 J. V. Carisella Methods and apparatus for disarming and arming explosive detonators
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5204491A (en) 1990-11-27 1993-04-20 Thomson -- Brandt Armements Pyrotechnic detonator using coaxial connections
US5060573A (en) 1990-12-19 1991-10-29 Goex International, Inc. Detonator assembly
US5216197A (en) 1991-06-19 1993-06-01 Schlumberger Technology Corporation Explosive diode transfer system for a modular perforating apparatus
US5322019A (en) 1991-08-12 1994-06-21 Terra Tek Inc System for the initiation of downhole explosive and propellant systems
US5159145A (en) 1991-08-27 1992-10-27 James V. Carisella Methods and apparatus for disarming and arming well bore explosive tools
US5159146A (en) 1991-09-04 1992-10-27 James V. Carisella Methods and apparatus for selectively arming well bore explosive tools
US5511620A (en) 1992-01-29 1996-04-30 Baugh; John L. Straight Bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore
US5165489A (en) 1992-02-20 1992-11-24 Langston Thomas J Safety device to prevent premature firing of explosive well tools
US5155296A (en) 1992-03-18 1992-10-13 The United States Of America As Represented By The Secretary Of The Army Thermally enhanced warhead
US5366013A (en) 1992-03-26 1994-11-22 Schlumberger Technology Corporation Shock absorber for use in a wellbore including a frangible breakup element preventing shock absorption before shattering allowing shock absorption after shattering
US5447202A (en) 1992-10-01 1995-09-05 Petroleum Engineering Services, Ltd. Setting tool and related method
US5392860A (en) 1993-03-15 1995-02-28 Baker Hughes Incorporated Heat activated safety fuse
US5358418A (en) 1993-03-29 1994-10-25 Carmichael Alan L Wireline wet connect
US5347929A (en) * 1993-09-01 1994-09-20 Schlumberger Technology Corporation Firing system for a perforating gun including an exploding foil initiator and an outer housing for conducting wireline current and EFI current
EP0694157B1 (en) 1993-09-13 2001-08-22 Western Atlas International, Inc. Expendable ebw firing module for detonating perforating gun charges
US5436791A (en) 1993-09-29 1995-07-25 Raymond Engineering Inc. Perforating gun using an electrical safe arm device and a capacitor exploding foil initiator device
US5503077A (en) 1994-03-29 1996-04-02 Halliburton Company Explosive detonation apparatus
EP0679859A2 (en) 1994-03-29 1995-11-02 Halliburton Company Electrical detonator
US5820402A (en) 1994-05-06 1998-10-13 The Whitaker Corporation Electrical terminal constructed to engage stacked conductors in an insulation displacement manner
US5392851A (en) 1994-06-14 1995-02-28 Western Atlas International, Inc. Wireline cable head for use in coiled tubing operations
US5479860A (en) 1994-06-30 1996-01-02 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
US5456319A (en) 1994-07-29 1995-10-10 Atlantic Richfield Company Apparatus and method for blocking well perforations
US5571986A (en) 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US6112666A (en) 1994-10-06 2000-09-05 Orica Explosives Technology Pty. Ltd. Explosives booster and primer
US7066280B2 (en) 1995-02-16 2006-06-27 Baker Hughes Incorporated Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
US5756926A (en) 1995-04-03 1998-05-26 Hughes Electronics EFI detonator initiation system and method
US5540154A (en) 1995-06-06 1996-07-30 Oea Aerospace, Inc. Non-pyrolizing linear ignition fuse
US5551520A (en) 1995-07-12 1996-09-03 Western Atlas International, Inc. Dual redundant detonating system for oil well perforators
US6435096B1 (en) 1995-08-04 2002-08-20 Rocktek Limited Method and apparatus for controlled small-charge blasting by decoupled explosive
US5648635A (en) 1995-08-22 1997-07-15 Lussier; Norman Gerald Expendalble charge case holder
US6739265B1 (en) 1995-08-31 2004-05-25 The Ensign-Bickford Company Explosive device with assembled segments and related methods
US5785130A (en) 1995-10-02 1998-07-28 Owen Oil Tools, Inc. High density perforating gun system
US5603384A (en) 1995-10-11 1997-02-18 Western Atlas International, Inc. Universal perforating gun firing head
US5551346A (en) 1995-10-17 1996-09-03 The United States Of America As Represented By The Secretary Of The Army Apparatus for dispersing a jet from a shaped charge liner via non-uniform liner mass
US6763883B2 (en) 1995-10-20 2004-07-20 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
US5703319A (en) 1995-10-27 1997-12-30 The Ensign-Bickford Company Connector block for blast initiation systems
US5732869A (en) 1995-11-27 1998-03-31 Hilti Aktiengesellschaft Explosive powder charge operated setting tool
WO1997021067A1 (en) 1995-12-06 1997-06-12 Orica Trading Pty Ltd Electronic explosives initiating device
US6085659A (en) 1995-12-06 2000-07-11 Orica Explosives Technology Pty Ltd Electronic explosives initiating device
US5837925A (en) 1995-12-13 1998-11-17 Western Atlas International, Inc. Shaped charge retainer system
US5671899A (en) 1996-02-26 1997-09-30 Lockheed Martin Corporation Airborne vehicle with wing extension and roll control
US5803175A (en) 1996-04-17 1998-09-08 Myers, Jr.; William Desmond Perforating gun connection and method of connecting for live well deployment
US6082450A (en) 1996-09-09 2000-07-04 Marathon Oil Company Apparatus and method for stimulating a subterranean formation
US5775426A (en) 1996-09-09 1998-07-07 Marathon Oil Company Apparatus and method for perforating and stimulating a subterranean formation
US5859383A (en) 1996-09-18 1999-01-12 Davison; David K. Electrically activated, metal-fueled explosive device
US6354374B1 (en) 1996-11-20 2002-03-12 Schlumberger Technology Corp. Method of performing downhole functions
RU2087693C1 (en) 1996-11-26 1997-08-20 Научно-техническое общество с ограниченной ответственностью "Волго-Уральский геоэкологический центр" Method of treating bottom-hole zone of well
US5816343A (en) 1997-04-25 1998-10-06 Sclumberger Technology Corporation Phased perforating guns
US6012525A (en) 1997-11-26 2000-01-11 Halliburton Energy Services, Inc. Single-trip perforating gun assembly and method
US6006833A (en) 1998-01-20 1999-12-28 Halliburton Energy Services, Inc. Method for creating leak-tested perforating gun assemblies
US5992289A (en) 1998-02-17 1999-11-30 Halliburton Energy Services, Inc. Firing head with metered delay
US6305287B1 (en) 1998-03-09 2001-10-23 Austin Powder Company Low-energy shock tube connector system
US6349767B2 (en) 1998-05-13 2002-02-26 Halliburton Energy Services, Inc. Disconnect tool
US6263283B1 (en) 1998-08-04 2001-07-17 Marathon Oil Company Apparatus and method for generating seismic energy in subterranean formations
US6333699B1 (en) 1998-08-28 2001-12-25 Marathon Oil Company Method and apparatus for determining position in a pipe
USD418210S (en) 1998-09-01 1999-12-28 The Lamson & Sessions Co. Conduit fitting
US6386108B1 (en) 1998-09-24 2002-05-14 Schlumberger Technology Corp Initiation of explosive devices
US6385031B1 (en) 1998-09-24 2002-05-07 Schlumberger Technology Corporation Switches for use in tools
US6752083B1 (en) 1998-09-24 2004-06-22 Schlumberger Technology Corporation Detonators for use with explosive devices
WO2000020821A1 (en) 1998-10-06 2000-04-13 African Explosives Limited Shock tube initiator
US20020062991A1 (en) 1998-10-27 2002-05-30 Farrant Simon L. Communicating with a tool
US7347278B2 (en) * 1998-10-27 2008-03-25 Schlumberger Technology Corporation Secure activation of a downhole device
US6272782B1 (en) 1999-01-15 2001-08-14 Hilti Aktiengesellschaft Cartridge magazine displacement mechanism for an explosive powder charge-operated setting tool
US6418853B1 (en) 1999-02-18 2002-07-16 Livbag Snc Electropyrotechnic igniter with integrated electronics
US6419044B1 (en) 1999-04-20 2002-07-16 Schlumberger Technology Corporation Energy source for use in seismic acquisitions
US6164375A (en) 1999-05-11 2000-12-26 Carisella; James V. Apparatus and method for manipulating an auxiliary tool within a subterranean well
US6295912B1 (en) 1999-05-20 2001-10-02 Halliburton Energy Services, Inc. Positive alignment insert (PAI) with imbedded explosive
US6651747B2 (en) 1999-07-07 2003-11-25 Schlumberger Technology Corporation Downhole anchoring tools conveyed by non-rigid carriers
US6298915B1 (en) 1999-09-13 2001-10-09 Halliburton Energy Services, Inc. Orienting system for modular guns
US6412388B1 (en) 1999-10-19 2002-07-02 Lynn Frazier Safety arming device and method, for perforation guns and similar devices
WO2001033029A2 (en) 1999-11-02 2001-05-10 Halliburton Energy Services, Inc. Sub sea bottom hole assembly change out system and method
US6412415B1 (en) 1999-11-04 2002-07-02 Schlumberger Technology Corp. Shock and vibration protection for tools containing explosive components
US6408758B1 (en) 1999-11-05 2002-06-25 Livbag Snc Photoetched-filament pyrotechnic initiator protected against electrostatic discharges
WO2001059401A1 (en) 2000-02-11 2001-08-16 Inco Limited Remote wireless detonator system
US6467415B2 (en) 2000-04-12 2002-10-22 Mccormick Selph, Inc. Linear ignition system
US6487973B1 (en) 2000-04-25 2002-12-03 Halliburton Energy Services, Inc. Method and apparatus for locking charges into a charge holder
US6582251B1 (en) 2000-04-28 2003-06-24 Greene, Tweed Of Delaware, Inc. Hermetic electrical connector and method of making the same
US6439121B1 (en) 2000-06-08 2002-08-27 Halliburton Energy Services, Inc. Perforating charge carrier and method of assembly for same
US6474931B1 (en) 2000-06-23 2002-11-05 Vermeer Manufacturing Company Directional drilling machine with multiple pocket rod indexer
US6659180B2 (en) 2000-08-11 2003-12-09 Exxonmobil Upstream Research Deepwater intervention system
US20020020320A1 (en) 2000-08-17 2002-02-21 Franck Lebaudy Electropyrotechnic igniter with two ignition heads and use in motor vehicle safety
US6467387B1 (en) 2000-08-25 2002-10-22 Schlumberger Technology Corporation Apparatus and method for propelling a data sensing apparatus into a subsurface formation
US6880637B2 (en) 2000-11-15 2005-04-19 Baker Hughes Incorporated Full bore automatic gun release module
US20020129940A1 (en) 2000-12-13 2002-09-19 Wenbo Yang High temperature explosives for downhole well applications
US7243722B2 (en) 2001-01-26 2007-07-17 E2Tech Limited Expander device
US6502736B2 (en) 2001-02-09 2003-01-07 Hilti Aktiengesellschaft Holder for a drive piston of a setting tool
US6675896B2 (en) 2001-03-08 2004-01-13 Halliburton Energy Services, Inc. Detonation transfer subassembly and method for use of same
US6497285B2 (en) 2001-03-21 2002-12-24 Halliburton Energy Services, Inc. Low debris shaped charge perforating apparatus and method for use of same
US20080264639A1 (en) 2001-04-27 2008-10-30 Schlumberger Technology Corporation Method and Apparatus for Orienting Perforating Devices
US6618237B2 (en) 2001-06-06 2003-09-09 Senex Explosives, Inc. System for the initiation of rounds of individually delayed detonators
US6719061B2 (en) 2001-06-07 2004-04-13 Schlumberger Technology Corporation Apparatus and method for inserting and retrieving a tool string through well surface equipment
US20030000411A1 (en) * 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for detonating an explosive charge
US20030001753A1 (en) 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for wireless transmission down a well
US20030000703A1 (en) * 2001-06-29 2003-01-02 Cernocky Edward Paul Method and apparatus for perforating a well
US6918334B2 (en) 2001-08-29 2005-07-19 Kevin Trotechaud Perforating gun firing head with vented block for holding detonator
US6742602B2 (en) 2001-08-29 2004-06-01 Computalog Limited Perforating gun firing head with vented block for holding detonator
US8136439B2 (en) 2001-09-10 2012-03-20 Bell William T Explosive well tool firing head
US8091477B2 (en) 2001-11-27 2012-01-10 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
US8230788B2 (en) 2001-11-27 2012-07-31 Schlumberger Technology Corporation Method of fabrication and use of integrated detonators
US20050178282A1 (en) 2001-11-27 2005-08-18 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
GB2383236B (en) 2001-11-28 2004-01-07 Schlumberger Holdings Wireless communication system and method
US6843317B2 (en) 2002-01-22 2005-01-18 Baker Hughes Incorporated System and method for autonomously performing a downhole well operation
US7357083B2 (en) 2002-03-28 2008-04-15 Toyota Jidosha Kabushiki Kaisha Initiator
US7493945B2 (en) 2002-04-05 2009-02-24 Baker Hughes Incorporated Expandable packer with mounted exterior slips and seal
JP2003329399A (en) 2002-05-14 2003-11-19 Japan Steel Works Ltd:The Propellant igniter
US6779605B2 (en) 2002-05-16 2004-08-24 Owen Oil Tools Lp Downhole tool deployment safety system and methods
RU2221141C1 (en) 2002-05-21 2004-01-10 Дыбленко Валерий Петрович Process of treatment of critical area of formation
US7237626B2 (en) 2002-06-05 2007-07-03 Ryan Energy Technologies Tool module connector for use in directional drilling
RU2204706C1 (en) 2002-06-26 2003-05-20 Закрытое акционерное общество "Пермский инженерно-технический центр "Геофизика" Method of treatment of formation well zone and device for method embodiment
US6702009B1 (en) 2002-07-30 2004-03-09 Diamondback Industries, Inc. Select-fire pressure relief subassembly for a chemical cutter
US7086481B2 (en) 2002-10-11 2006-08-08 Weatherford/Lamb Wellbore isolation apparatus, and method for tripping pipe during underbalanced drilling
US7193527B2 (en) * 2002-12-10 2007-03-20 Intelliserv, Inc. Swivel assembly
US20040141279A1 (en) 2003-01-21 2004-07-22 Takata Corporation Initiator and gas generator
RU30160U1 (en) 2003-03-20 2003-06-20 Мовшович Эдуард Борисович Device for chemical ignition of gas-generating fuel during thermochemical processing of oil and gas wells
US20040211862A1 (en) 2003-04-25 2004-10-28 Elam Daryl B. Unmanned aerial vehicle with integrated wing battery
US6851471B2 (en) 2003-05-02 2005-02-08 Halliburton Energy Services, Inc. Perforating gun
US7013977B2 (en) 2003-06-11 2006-03-21 Halliburton Energy Services, Inc. Sealed connectors for automatic gun handling
US7104323B2 (en) 2003-07-01 2006-09-12 Robert Bradley Cook Spiral tubular tool and method
US20050229805A1 (en) 2003-07-10 2005-10-20 Baker Hughes, Incorporated Connector for perforating gun tandem
US7591212B2 (en) 2003-07-10 2009-09-22 Baker Hughes Incorporated Connector for perforating gun tandem
US7107908B2 (en) 2003-07-15 2006-09-19 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
US20050011390A1 (en) 2003-07-15 2005-01-20 Special Devices, Inc. ESD-resistant electronic detonator
US20050183610A1 (en) 2003-09-05 2005-08-25 Barton John A. High pressure exposed detonating cord detonator system
US7228906B2 (en) 2003-11-08 2007-06-12 Marathon Oil Company Propellant ignition assembly and process
CN2661919Y (en) 2003-11-13 2004-12-08 中国航天科技集团公司川南机械厂 Safety device for underground blasting
CN1284750C (en) 2003-11-15 2006-11-15 台州盛世环境工程有限公司 Pyrotechnic composition for thermal pipe cutter and process for making same
US7044230B2 (en) 2004-01-27 2006-05-16 Halliburton Energy Services, Inc. Method for removing a tool from a well
US7347279B2 (en) 2004-02-06 2008-03-25 Schlumberger Technology Corporation Charge holder apparatus
US20050218260A1 (en) 2004-02-07 2005-10-06 Corder David A Air-launchable aircraft and method of use
RU2295694C2 (en) 2004-02-19 2007-03-20 Шлюмбергер Холдингз Лимитед Combined detonators for use with blasting devices
US7128162B2 (en) 2004-02-20 2006-10-31 Desmond Quinn Method and apparatus for positioning a sleeve down hole in a hydrocarbon producing well and pipelines
US7364451B2 (en) 2004-02-24 2008-04-29 Ring John H Hybrid glass-sealed electrical connectors
US20050186823A1 (en) 2004-02-24 2005-08-25 Ring John H. Hybrid glass-sealed electrical connectors
US20050194146A1 (en) 2004-03-04 2005-09-08 Barker James M. Perforating gun assembly and method for creating perforation cavities
US7168494B2 (en) 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US8069789B2 (en) * 2004-03-18 2011-12-06 Orica Explosives Technology Pty Ltd Connector for electronic detonators
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7533722B2 (en) 2004-05-08 2009-05-19 Halliburton Energy Services, Inc. Surge chamber assembly and method for perforating in dynamic underbalanced conditions
US7278491B2 (en) 2004-08-04 2007-10-09 Bruce David Scott Perforating gun connector
US7604062B2 (en) 2004-09-03 2009-10-20 Baker Hughes Incorporated Electric pressure actuating tool and method
US20060081374A1 (en) 2004-09-29 2006-04-20 Baker Hughes Incorporated Process for downhole heating
US7431075B2 (en) 2004-10-05 2008-10-07 Schlumberger Technology Corporation Propellant fracturing of wells
US7905290B2 (en) 2004-10-06 2011-03-15 Judith Maria Schicks Device for the thermal stimulation of gas hydrate formations
US7810430B2 (en) 2004-11-02 2010-10-12 Orica Explosives Technology Pty Ltd Wireless detonator assemblies, corresponding blasting apparatuses, and methods of blasting
US7278482B2 (en) 2004-11-22 2007-10-09 Azar Ghassan R Anchor and method of using same
US7182625B2 (en) 2004-12-03 2007-02-27 Antaya Technologies Corporation Grounding connector
US20120085538A1 (en) 2004-12-14 2012-04-12 Schlumberger Technology Corporation Method and apparatus for deploying and using self-locating title of the invention downhole devices
US7929270B2 (en) 2005-01-24 2011-04-19 Orica Explosives Technology Pty Ltd Wireless detonator assemblies, and corresponding networks
US7980874B2 (en) 2005-02-17 2011-07-19 Halliburton Energy Services, Inc. Connector including isolated conductive paths
US7487827B2 (en) 2005-02-18 2009-02-10 Propellant Fracturing & Stimulation, Llc Propellant cartridge with restrictor plugs for fracturing wells
US20090272519A1 (en) 2005-02-24 2009-11-05 Green David A Gas lift plunger assembly arrangement
US20100000789A1 (en) 2005-03-01 2010-01-07 Owen Oil Tools Lp Novel Device And Methods for Firing Perforating Guns
US8079296B2 (en) 2005-03-01 2011-12-20 Owen Oil Tools Lp Device and methods for firing perforating guns
US7568429B2 (en) 2005-03-18 2009-08-04 Orica Explosives Technology Pty Ltd Wireless detonator assembly, and methods of blasting
US7441601B2 (en) 2005-05-16 2008-10-28 Geodynamics, Inc. Perforation gun with integral debris trap apparatus and method of use
US7934453B2 (en) 2005-06-02 2011-05-03 Global Tracking Solutions Pty Ltd Explosives initiator, and a system and method for tracking identifiable initiators
CN2823549Y (en) 2005-06-15 2006-10-04 王安仕 Chemical reaction pneumatic force deep penetration heat-deblocking device for oil-gas well
US8151882B2 (en) 2005-09-01 2012-04-10 Schlumberger Technology Corporation Technique and apparatus to deploy a perforating gun and sand screen in a well
CN2821154Y (en) 2005-09-15 2006-09-27 西安聚和石油技术开发有限公司 Composite hole punching device for module type medicine box holding medicine
RU2312981C2 (en) 2005-11-28 2007-12-20 Равиль Фатыхович Гайсин Method for reservoir penetration and treatment
US20070125540A1 (en) 2005-12-01 2007-06-07 Schlumberger Technology Corporation Monitoring an Explosive Device
US7565927B2 (en) 2005-12-01 2009-07-28 Schlumberger Technology Corporation Monitoring an explosive device
US7387162B2 (en) 2006-01-10 2008-06-17 Owen Oil Tools, Lp Apparatus and method for selective actuation of downhole tools
US20070158071A1 (en) 2006-01-10 2007-07-12 Owen Oil Tools, Lp Apparatus and method for selective actuation of downhole tools
US7748457B2 (en) 2006-01-13 2010-07-06 Schlumberger Technology Corporation Injection of treatment materials into a geological formation surrounding a well bore
USD532947S1 (en) 2006-01-20 2006-11-28 Sal Muscarella Hose coupling device for a vacuum cleaner with releasable push button locks
US7778006B2 (en) 2006-04-28 2010-08-17 Orica Explosives Technology Pty Ltd. Wireless electronic booster, and methods of blasting
US8395878B2 (en) 2006-04-28 2013-03-12 Orica Explosives Technology Pty Ltd Methods of controlling components of blasting apparatuses, blasting apparatuses, and components thereof
US20100012774A1 (en) 2006-05-15 2010-01-21 Kazak Composites, Incorporated Powered unmanned aerial vehicle
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US20080047716A1 (en) 2006-08-22 2008-02-28 Mckee L Michael System and method for forming a coiled tubing connection
US7762172B2 (en) 2006-08-23 2010-07-27 Schlumberger Technology Corporation Wireless perforating gun
US20080173204A1 (en) 2006-08-24 2008-07-24 David Geoffrey Anderson Connector for detonator, corresponding booster assembly, and method of use
US8443915B2 (en) 2006-09-14 2013-05-21 Schlumberger Technology Corporation Through drillstring logging systems and methods
US20100107917A1 (en) 2006-09-27 2010-05-06 Montanuniversitat Leoben Explosive Cartridge And A Method Of Arranging An Explosive Cartridge In A Blast Hole
US8182212B2 (en) 2006-09-29 2012-05-22 Hayward Industries, Inc. Pump housing coupling
US20080110612A1 (en) 2006-10-26 2008-05-15 Prinz Francois X Methods and apparatuses for electronic time delay and systems including same
US7510017B2 (en) 2006-11-09 2009-03-31 Halliburton Energy Services, Inc. Sealing and communicating in wells
US20080110632A1 (en) 2006-11-09 2008-05-15 Beall Clifford H Downhole lubricator valve
DE102007007498A1 (en) 2006-11-20 2008-08-21 Electrovac Ag Electrical bushing for making electrical connection between e.g. actuators, has electrical conductor passing via housing passage, which has orifice provided at housing outer surface section enclosed based on type of shell
US8230946B2 (en) 2006-11-27 2012-07-31 Halliburton Energy Services, Inc. Apparatus and methods for sidewall percussion coring using a voltage activated igniter
US7779926B2 (en) 2006-12-05 2010-08-24 Weatherford/Lamb, Inc. Wellbore plug adapter kit and method of using thereof
US20080134922A1 (en) 2006-12-06 2008-06-12 Grattan Antony F Thermally Activated Well Perforating Safety System
US20100252323A1 (en) 2006-12-21 2010-10-07 Schlumberger Technology Corporation Process for assembling a loading tube
US7762331B2 (en) 2006-12-21 2010-07-27 Schlumberger Technology Corporation Process for assembling a loading tube
CN101454635A (en) 2006-12-21 2009-06-10 普拉德研究及开发股份有限公司 Process for assembling a loading tube
RU2434122C2 (en) 2006-12-21 2011-11-20 Шлюмбергер Текнолоджи Б.В. Device of firing gun
US7540758B2 (en) 2006-12-21 2009-06-02 Kesse Ho Grounding blocks and methods for using them
US20080149338A1 (en) 2006-12-21 2008-06-26 Schlumberger Technology Corporation Process For Assembling a Loading Tube
US8689868B2 (en) 2007-01-06 2014-04-08 Hunting Titan, Inc. Tractor communication/control and select fire perforating switch simulations
US20100286800A1 (en) 2007-01-06 2010-11-11 Lerche Nolan C Tractor communication/control and select fire perforating switch simulations
US20080173240A1 (en) 2007-01-24 2008-07-24 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
US8028624B2 (en) 2007-02-02 2011-10-04 Mattson Inter Tool Gmbh Rock-blasting cartridge and blasting method
US7721650B2 (en) 2007-04-04 2010-05-25 Owen Oil Tools Lp Modular time delay for actuating wellbore devices and methods for using same
US20100230104A1 (en) 2007-05-31 2010-09-16 Noelke Rolf-Dieter Method for completing a borehole
US7428932B1 (en) 2007-06-20 2008-09-30 Petroquip Energy Services, Llp Completion system for a well
US7726396B2 (en) 2007-07-27 2010-06-01 Schlumberger Technology Corporation Field joint for a downhole tool
WO2009091422A3 (en) 2007-08-20 2010-03-04 Baker Hughes Incorporated Wireless perforating gun initiation
US8074737B2 (en) 2007-08-20 2011-12-13 Baker Hughes Incorporated Wireless perforating gun initiation
US20090050322A1 (en) 2007-08-20 2009-02-26 Baker Hughes Incorporated Wireless perforating gun initiation
WO2009091422A2 (en) 2007-08-20 2009-07-23 Baker Hughes Incorporated Wireless perforating gun initiation
US8881836B2 (en) 2007-09-01 2014-11-11 Weatherford/Lamb, Inc. Packing element booster
US7896077B2 (en) 2007-09-27 2011-03-01 Schlumberger Technology Corporation Providing dynamic transient pressure conditions to improve perforation characteristics
CN101397890A (en) 2007-09-28 2009-04-01 普拉德研究及开发股份有限公司 Apparatus string for use in a wellbore
US8157022B2 (en) 2007-09-28 2012-04-17 Schlumberger Technology Corporation Apparatus string for use in a wellbore
US7908970B1 (en) 2007-11-13 2011-03-22 Sandia Corporation Dual initiation strip charge apparatus and methods for making and implementing the same
US8678666B2 (en) 2007-11-30 2014-03-25 Adc Telecommunications, Inc. Hybrid fiber/copper connector system and method
US7775279B2 (en) 2007-12-17 2010-08-17 Schlumberger Technology Corporation Debris-free perforating apparatus and technique
US8181718B2 (en) 2007-12-17 2012-05-22 Halliburton Energy Services, Inc. Perforating gun gravitational orientation system
US8186259B2 (en) 2007-12-17 2012-05-29 Halliburton Energy Sevices, Inc. Perforating gun gravitational orientation system
US20090159285A1 (en) 2007-12-21 2009-06-25 Schlumberger Technology Corporation Downhole initiator
US20100163224A1 (en) 2008-01-04 2010-07-01 Intelligent Tools Ip, Llc Downhole Tool Delivery System
US8576090B2 (en) 2008-01-07 2013-11-05 Hunting Titan, Ltd. Apparatus and methods for controlling and communicating with downwhole devices
US8884778B2 (en) 2008-01-07 2014-11-11 Hunting Titan, Inc. Apparatus and methods for controlling and communicating with downhole devices
US20100307773A1 (en) 2008-01-24 2010-12-09 Tinnen Baard Martin Method and an apparatus for controlling a well barrier
US7735578B2 (en) 2008-02-07 2010-06-15 Baker Hughes Incorporated Perforating system with shaped charge case having a modified boss
US8127846B2 (en) 2008-02-27 2012-03-06 Baker Hughes Incorporated Wiper plug perforating system
US20100096131A1 (en) 2008-02-27 2010-04-22 Baker Hub Wiper Plug Perforating System
US8186425B2 (en) 2008-03-05 2012-05-29 Schlumberger Technology Corporation Sympathetic ignition closed packed propellant gas generator
US8256337B2 (en) * 2008-03-07 2012-09-04 Baker Hughes Incorporated Modular initiator
US20090272529A1 (en) 2008-04-30 2009-11-05 Halliburton Energy Services, Inc. System and Method for Selective Activation of Downhole Devices in a Tool String
US8469087B2 (en) 2008-06-04 2013-06-25 Weatherford/Lamb, Inc. Interface for deploying wireline tools with non-electric string
US20090301723A1 (en) 2008-06-04 2009-12-10 Gray Kevin L Interface for deploying wireline tools with non-electric string
EP2310616B1 (en) 2008-06-23 2017-10-11 Sandvik Mining and Construction Oy Rock-drilling unit, drill bit changer, and method for changing drill bit
US7752971B2 (en) 2008-07-17 2010-07-13 Baker Hughes Incorporated Adapter for shaped charge casing
US20110042069A1 (en) 2008-08-20 2011-02-24 Jeffrey Roberts Bailey Coated sleeved oil and gas well production devices
US8451137B2 (en) 2008-10-02 2013-05-28 Halliburton Energy Services, Inc. Actuating downhole devices in a wellbore
US20100089643A1 (en) 2008-10-13 2010-04-15 Mirabel Vidal Exposed hollow carrier perforation gun and charge holder
US7762351B2 (en) 2008-10-13 2010-07-27 Vidal Maribel Exposed hollow carrier perforation gun and charge holder
US8468944B2 (en) 2008-10-24 2013-06-25 Battelle Memorial Institute Electronic detonator system
US8746144B2 (en) 2008-10-24 2014-06-10 Battelle Memorial Institute Electronic detonator system
US8141639B2 (en) 2009-01-09 2012-03-27 Owen Oil Tools Lp Detonator for material-dispensing wellbore tools
US8066083B2 (en) 2009-03-13 2011-11-29 Halliburton Energy Services, Inc. System and method for dynamically adjusting the center of gravity of a perforating apparatus
US8833441B2 (en) 2009-05-18 2014-09-16 Zeitecs B.V. Cable suspended pumping system
US8770271B2 (en) 2009-05-18 2014-07-08 Zeitecs B.V. Electric submersible pumping system for dewatering gas wells
US8413727B2 (en) 2009-05-20 2013-04-09 Bakers Hughes Incorporated Dissolvable downhole tool, method of making and using
US8397741B2 (en) 2009-06-10 2013-03-19 Baker Hughes Incorporated Delay activated valve and method
US7901247B2 (en) 2009-06-10 2011-03-08 Kemlon Products & Development Co., Ltd. Electrical connectors and sensors for use in high temperature, high pressure oil and gas wells
US20120094553A1 (en) 2009-06-12 2012-04-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd., Bus Bar and Connector
US8807003B2 (en) 2009-07-01 2014-08-19 Halliburton Energy Services, Inc. Perforating gun assembly and method for controlling wellbore pressure regimes during perforating
US8336437B2 (en) 2009-07-01 2012-12-25 Halliburton Energy Services, Inc. Perforating gun assembly and method for controlling wellbore pressure regimes during perforating
RU93521U1 (en) 2009-07-24 2010-04-27 Вячеслав Александрович Бондарь INTERMEDIATE DETONATOR
US20110024116A1 (en) 2009-07-29 2011-02-03 Baker Hughes Incorporated Electric and Ballistic Connection Through A Field Joint
CN201764910U (en) 2009-08-20 2011-03-16 北京维深数码科技有限公司 Wireless detonator assembly and explosion device
US20110301784A1 (en) 2009-08-26 2011-12-08 John Robert Oakley Helicopter
CN101691837B (en) 2009-09-11 2014-08-27 中国兵器工业第二一三研究所 Detonation energization explosion-propagating device for perforating gun string
US20120242135A1 (en) 2009-09-29 2012-09-27 Orica Explosives Technology Pty Ltd, Method of underground rock blasting
CN201620848U (en) 2009-11-27 2010-11-03 中国兵器工业第二一三研究所 Vertical well orientation multi-pulse increase-benefit perforating device
US8752486B2 (en) 2009-12-09 2014-06-17 Robertson Intellectual Properties, LLC Non-explosive power source for actuating a subsurface tool
US8141434B2 (en) 2009-12-21 2012-03-27 Tecom As Flow measuring apparatus
US8165714B2 (en) 2010-01-25 2012-04-24 Husky Injection Molding Systems Ltd. Controller for controlling combination of hot-runner system and mold assembly
US9080405B2 (en) 2010-04-23 2015-07-14 James V. Carisella Wireline pressure setting tool and method of use
US8322426B2 (en) 2010-04-28 2012-12-04 Halliburton Energy Services, Inc. Downhole actuator apparatus having a chemically activated trigger
US20130062055A1 (en) 2010-05-26 2013-03-14 Randy C. Tolman Assembly and method for multi-zone fracture stimulation of a reservoir using autonomous tubular units
US9284819B2 (en) 2010-05-26 2016-03-15 Exxonmobil Upstream Research Company Assembly and method for multi-zone fracture stimulation of a reservoir using autonomous tubular units
RU2439312C1 (en) 2010-06-17 2012-01-10 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт по использованию энергии взрыва в геофизике" (ОАО "ВНИПИвзрывгеофизика") Heat gas generator for improvement of formation filtration in its well bore zone
RU98047U1 (en) 2010-06-17 2010-09-27 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт по использованию энергии взрыва в геофизике" (ОАО "ВНИПИвзрывгеофизика") HEAT AND GAS GENERATOR FOR IMPROVEMENT OF FILTRATION OF THE LAYER IN ITS NEARBORING ZONE
WO2011160099A1 (en) 2010-06-18 2011-12-22 Battelle Memorial Instiute Non-energetics based detonator
US9347755B2 (en) 2010-06-18 2016-05-24 Battelle Memorial Institute Non-energetics based detonator
US20150260496A1 (en) 2010-06-18 2015-09-17 Battelle Memorial Institute Non-energetics based detonator
US8661978B2 (en) 2010-06-18 2014-03-04 Battelle Memorial Institute Non-energetics based detonator
US20130256464A1 (en) 2010-06-29 2013-10-03 Pavel Belik Uav having hermetically sealed modularized compartments and fluid drain ports
WO2012006357A2 (en) 2010-07-06 2012-01-12 Schlumberger Canada Limited Ballistic transfer delay device
US20120006217A1 (en) 2010-07-07 2012-01-12 Anderson Otis R Electronic blast control system for multiple downhole operations
RU100552U1 (en) 2010-08-17 2010-12-20 Общество с ограниченной ответственностью "Нефтекамский машиностроительный завод" (ООО "НКМЗ") HYDROMECHANICAL SHOOTING HEAD FOR CUMULATIVE PERFORATOR
US8561683B2 (en) 2010-09-22 2013-10-22 Owen Oil Tools, Lp Wellbore tubular cutter
US9328559B2 (en) 2010-10-30 2016-05-03 Marcus Schwarz Direct drill bit drive for tools on the basis of a heat engine
US8596378B2 (en) 2010-12-01 2013-12-03 Halliburton Energy Services, Inc. Perforating safety system and assembly
US8474533B2 (en) 2010-12-07 2013-07-02 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
US20130248174A1 (en) 2010-12-17 2013-09-26 Bruce A. Dale Autonomous Downhole Conveyance System
US20120160483A1 (en) 2010-12-22 2012-06-28 Carisella James V Hybrid Dump Bailer and Method of Use
WO2012106640A2 (en) 2011-02-03 2012-08-09 Baker Hughes Incorporated Connection cartridge for downhole string
US20120199031A1 (en) * 2011-02-03 2012-08-09 Baker Hughes Incorporated Device for verifying detonator connection
US9080433B2 (en) 2011-02-03 2015-07-14 Baker Hughes Incorporated Connection cartridge for downhole string
US20120199352A1 (en) 2011-02-03 2012-08-09 Baker Hughes Incorporated Connection cartridge for downhole string
US8695506B2 (en) 2011-02-03 2014-04-15 Baker Hughes Incorporated Device for verifying detonator connection
WO2012106640A3 (en) 2011-02-03 2012-11-22 Baker Hughes Incorporated Connection cartridge for downhole string
US20120241169A1 (en) 2011-03-22 2012-09-27 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US9206675B2 (en) 2011-03-22 2015-12-08 Halliburton Energy Services, Inc Well tool assemblies with quick connectors and shock mitigating capabilities
US20120247771A1 (en) * 2011-03-29 2012-10-04 Francois Black Perforating gun and arming method
WO2012135101A2 (en) 2011-03-29 2012-10-04 Schlumberger Canada Limited Perforating gun and arming method
US20120247769A1 (en) 2011-04-01 2012-10-04 Halliburton Energy Services, Inc. Selectable, internally oriented and/or integrally transportable explosive assemblies
US9677363B2 (en) 2011-04-01 2017-06-13 Halliburton Energy Services, Inc. Selectable, internally oriented and/or integrally transportable explosive assemblies
US9689223B2 (en) 2011-04-01 2017-06-27 Halliburton Energy Services, Inc. Selectable, internally oriented and/or integrally transportable explosive assemblies
US8388374B2 (en) 2011-04-12 2013-03-05 Amphenol Corporation Coupling system for electrical connector assembly
US8960093B2 (en) 2011-04-12 2015-02-24 Dynaenergetics Gmbh & Co. Kg Igniter with a multifunctional plug
US20140033939A1 (en) 2011-04-12 2014-02-06 Dynaenergetics Gmbh & Co. Kg Igniter with a multifunctional plug
US9284824B2 (en) 2011-04-21 2016-03-15 Halliburton Energy Services, Inc. Method and apparatus for expendable tubing-conveyed perforating gun
WO2012149584A1 (en) 2011-04-26 2012-11-01 Detnet South Africa (Pty) Ltd Detonator control device
EP2702349B1 (en) 2011-04-28 2015-11-25 Orica International Pte Ltd Wireless detonators with state sensing, and their use
US20140053750A1 (en) 2011-04-28 2014-02-27 Orica International Pte Ltd. Wireless detonators with state sensing, and their use
US10267611B2 (en) 2011-04-28 2019-04-23 Orica International Pte Ltd. Wireless detonators with state sensing, and their use
US8881816B2 (en) 2011-04-29 2014-11-11 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US20140131035A1 (en) 2011-05-23 2014-05-15 Pavlin B. Entchev Safety System For Autonomous Downhole Tool
US10352144B2 (en) 2011-05-23 2019-07-16 Exxonmobil Upstream Research Company Safety system for autonomous downhole tool
US8960288B2 (en) 2011-05-26 2015-02-24 Baker Hughes Incorporated Select fire stackable gun system
US20120298361A1 (en) 2011-05-26 2012-11-29 Baker Hughes Incorporated Select-fire stackable gun system
US8869887B2 (en) 2011-07-06 2014-10-28 Tolteq Group, LLC System and method for coupling downhole tools
US20130008639A1 (en) 2011-07-08 2013-01-10 Tassaroli S.A. Electromechanical assembly for connecting a series of perforating guns for oil and gas wells
CN102878877A (en) 2011-07-11 2013-01-16 新疆创安达电子科技发展有限公司 Electric fuse ignition device, electric detonator comprising electric fuse ignition device, electronic detonator comprising electric fuse ignition device, and manufacturing methods for electric detonator and electronic detonator
US9726005B2 (en) 2011-07-11 2017-08-08 Welltec A/S Positioning method and tool for determining the position of the tool in a casing downhole
US20130043074A1 (en) 2011-07-22 2013-02-21 Tassaroli S.A. Electromechanical assembly for connecting a series of guns used in the perforation of wells
US8875787B2 (en) 2011-07-22 2014-11-04 Tassaroli S.A. Electromechanical assembly for connecting a series of guns used in the perforation of wells
US9383237B2 (en) 2011-08-04 2016-07-05 Cape Peninsula University Of Technology Fluid visualisation and characterisation system and method; a transducer
US20130118342A1 (en) 2011-11-11 2013-05-16 Tassaroli S.A. Explosive carrier end plates for charge-carriers used in perforating guns
US8943943B2 (en) 2011-11-11 2015-02-03 Tassaroli S.A. Explosive carrier end plates for charge-carriers used in perforating guns
US9145764B2 (en) 2011-11-22 2015-09-29 International Strategic Alliance, Lc Pass-through bulkhead connection switch for a perforating gun
US8863665B2 (en) 2012-01-11 2014-10-21 Alliant Techsystems Inc. Connectors for separable firing unit assemblies, separable firing unit assemblies, and related methods
US9181790B2 (en) 2012-01-13 2015-11-10 Los Alamos National Security, Llc Detonation command and control
US9702211B2 (en) 2012-01-30 2017-07-11 Altus Intervention As Method and an apparatus for retrieving a tubing from a well
US20130199843A1 (en) 2012-02-07 2013-08-08 Baker Hughes Incorporated Interruptor sub, perforating gun having the same, and method of blocking ballistic transfer
USD689590S1 (en) 2012-03-09 2013-09-10 Sata Gmbh & Co. Kg Spray gun plug
US9488024B2 (en) 2012-04-16 2016-11-08 Wild Well Control, Inc. Annulus cementing tool for subsea abandonment operation
US20150075783A1 (en) 2012-04-27 2015-03-19 Kobold Services Inc. Methods and electrically-actuated apparatus for wellbore operations
US20170268320A1 (en) 2012-04-27 2017-09-21 Kobold Corporation Methods and electrically-actuated apparatus for wellbore operations
US9145763B1 (en) 2012-05-15 2015-09-29 Joseph A. Sites, Jr. Perforation gun with angled shaped charges
USD712013S1 (en) 2012-08-27 2014-08-26 Nordson Corporation Wear sleeve
US20140060839A1 (en) 2012-09-06 2014-03-06 North Schlumberger Oilfield Technologies (Xi'an) Co., Ltd. Fracturing a well formation
US9523271B2 (en) 2012-09-21 2016-12-20 Halliburton Energy Services, Inc. Wireless communication for downhole tool strings
WO2014046670A1 (en) 2012-09-21 2014-03-27 Halliburton Energy Services Wireless communication for downhole tool strings
US9695673B1 (en) 2012-11-28 2017-07-04 Oilfield Solutions and Design, LLC Down hole wash tool
WO2014089194A1 (en) 2012-12-04 2014-06-12 Schlumberger Canada Limited Perforating gun with integrated initiator
US10077641B2 (en) 2012-12-04 2018-09-18 Schlumberger Technology Corporation Perforating gun with integrated initiator
US20150330192A1 (en) 2012-12-04 2015-11-19 Schlumberger Technology Corporation Perforating Gun With Integrated Initiator
US20140166370A1 (en) 2012-12-19 2014-06-19 Halliburton Energy Services, Inc. Downhole Torque Limiting Assembly for Drill String
US9709373B2 (en) 2013-01-08 2017-07-18 Nof Corporation Wireless detonation system, wireless detonation method, and detonator and explosive unit used in same
US9995115B2 (en) 2013-01-10 2018-06-12 Halliburton Energy Services, Inc. Boost assisted force balancing setting tool
US9482069B2 (en) 2013-03-07 2016-11-01 Weatherford Technology Holdings, Llc Consumable downhole packer or plug
US20140318766A1 (en) 2013-04-15 2014-10-30 Halliburton Energy Services, Inc. Firing Head Actuator for a Well Perforating System and Method for Use of Same
US9359863B2 (en) 2013-04-23 2016-06-07 Halliburton Energy Services, Inc. Downhole plug apparatus
US20160084048A1 (en) 2013-05-03 2016-03-24 Schlumberger Technology Corporation Cohesively Enhanced Modular Perforating Gun
WO2014178725A1 (en) 2013-05-03 2014-11-06 Ingineering As Setting tool and method of using same
US10190398B2 (en) 2013-06-28 2019-01-29 Schlumberger Technology Corporation Detonator structure and system
WO2015006869A1 (en) 2013-07-18 2015-01-22 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20170276465A1 (en) 2013-07-18 2017-09-28 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
RU2659934C2 (en) * 2013-07-18 2018-07-04 Динаэнергетикс Гмбх Унд Ко. Кг Perforation gun system and components
US20180202789A1 (en) 2013-07-18 2018-07-19 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US9494021B2 (en) 2013-07-18 2016-11-15 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20160168961A1 (en) 2013-07-18 2016-06-16 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20200199983A1 (en) 2013-07-18 2020-06-25 DynaEnergetics Europe GmbH Perforating gun system with electrical connection assemblies
CA2821506A1 (en) 2013-07-18 2015-01-18 Dave Parks Perforation gun components and system
US20190219375A1 (en) 2013-07-18 2019-07-18 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20190366272A1 (en) 2013-07-18 2019-12-05 Dynaenergetics Gmbh & Co. Kg Detonator positioning device
US10429161B2 (en) 2013-07-18 2019-10-01 Dynaenergetics Gmbh & Co. Kg Perforation gun components and systems
US20160061572A1 (en) 2013-08-26 2016-03-03 Dynaenergetics Gmbh & Co. Kg Perforating gun and detonator assembly
US20160202033A1 (en) 2013-08-26 2016-07-14 Dynaenergetics Gmbh & Co. Kg Ballistic transfer module
US9581422B2 (en) 2013-08-26 2017-02-28 Dynaenergetics Gmbh & Co. Kg Perforating gun and detonator assembly
US20170030693A1 (en) 2013-08-26 2017-02-02 Dynaenergetics Gmbh & Co. Kg Perforating gun and detonator assembly
US9605937B2 (en) 2013-08-26 2017-03-28 Dynaenergetics Gmbh & Co. Kg Perforating gun and detonator assembly
CA2824838A1 (en) 2013-08-26 2015-02-26 David Parks Perforation gun components and system
EP3077612B1 (en) 2013-12-06 2020-05-13 Services Petroliers Schlumberger Propellant energy to operate subsea equipment
US9689240B2 (en) 2013-12-19 2017-06-27 Owen Oil Tools Lp Firing mechanism with time delay and metering system
US20150176386A1 (en) 2013-12-24 2015-06-25 Baker Hughes Incorporated Using a Combination of a Perforating Gun with an Inflatable to Complete Multiple Zones in a Single Trip
US20150226044A1 (en) 2014-02-12 2015-08-13 Owen Oil Tools Lp Perforating gun with eccentric rotatable charge tube
WO2015134719A1 (en) 2014-03-07 2015-09-11 Dynaenergetics Gmbh & Co. Kg Device and method for positioning a detonator within a perforating gun assembly
US9879501B2 (en) 2014-03-07 2018-01-30 Baker Hughes, A Ge Company, Llc Multizone retrieval system and method
US9771769B2 (en) 2014-04-28 2017-09-26 Owen Oil Tools Lp Devices and related methods for actuating wellbore tools with a pressurized gas
US20160281466A1 (en) 2014-05-12 2016-09-29 Halliburton Energy Services, Inc. Gravel pack-circulating sleeve with hydraulic lock
US10018018B2 (en) 2014-05-13 2018-07-10 Baker Hughes, A Ge Company, Llc System and method for providing a resilient solid fuel source in a wellbore
US20170314373A9 (en) 2014-05-23 2017-11-02 Hunting Titan, Inc. Box by Pin Perforating Gun System and Methods
CN103993861A (en) 2014-05-28 2014-08-20 大庆华翰邦石油装备制造有限公司 Device for achieving resistance decrement and centering in peripheral direction
US20150356403A1 (en) 2014-06-06 2015-12-10 Quantico Energy Solutions Llc Synthetic logging for reservoir stimulation
US9835006B2 (en) 2014-08-13 2017-12-05 Geodynamics, Inc. Wellbore plug isolation system and method
US9587466B2 (en) 2014-09-16 2017-03-07 Wild Well Control, Inc. Cementing system for riserless abandonment operation
US20160186511A1 (en) 2014-10-23 2016-06-30 Hydrawell Inc. Expandable Plug Seat
CN104481492B (en) 2014-12-02 2019-06-18 刘玉明 Heat source fracturing method and device based on electromagnetic heating excitation
US9476272B2 (en) 2014-12-11 2016-10-25 Neo Products, LLC. Pressure setting tool and method of use
WO2016100269A1 (en) 2014-12-15 2016-06-23 Schlumberger Canada Limited Downhole expandable and contractable ring assembly
WO2016100064A1 (en) 2014-12-17 2016-06-23 Wild Well Control, Inc. Perforation system for riserless abandonment operation
CN104499977A (en) 2014-12-31 2015-04-08 北方斯伦贝谢油田技术(西安)有限公司 Horizontal well bushing shaping repair method and device
US9194219B1 (en) 2015-02-20 2015-11-24 Geodynamics, Inc. Wellbore gun perforating system and method
US10428595B2 (en) 2015-03-11 2019-10-01 Hunting Titan, Inc. Quick connect system for setting tool
US20180106121A1 (en) 2015-03-11 2018-04-19 Hunting Titan, Inc. Setting Tool for Use in Subterranean Wells
US20180094910A1 (en) 2015-04-02 2018-04-05 Hunting Titan, Inc. Snap-on Liner Retention Device
US20180080298A1 (en) 2015-04-02 2018-03-22 Hunting Titan, Inc. Opposing Piston Setting Tool
US10422195B2 (en) 2015-04-02 2019-09-24 Owen Oil Tools Lp Perforating gun
US20180080300A1 (en) 2015-05-01 2018-03-22 Kinetic Pressure Control, Ltd. Blowout preventer
US20180119529A1 (en) 2015-05-15 2018-05-03 Sergio F Goyeneche Apparatus for Electromechanically Connecting a Plurality of Guns for Well Perforation
US20170044865A1 (en) 2015-08-12 2017-02-16 Csi Technologies Llc Riserless abandonment operation using sealant and cement
US9598942B2 (en) 2015-08-19 2017-03-21 G&H Diversified Manufacturing Lp Igniter assembly for a setting tool
WO2017041772A1 (en) 2015-09-10 2017-03-16 Lemenovski Dmitri Anatoljevich Method for extracting hydrocarbons using exothermic gas generating chemical reactions fracturing the rock formation
US20180231361A1 (en) 2015-09-16 2018-08-16 Orica International Pte Ltd Wireless initiation device
WO2017125745A1 (en) 2016-01-19 2017-07-27 Spex Engineering (Uk) Limited Tool with propellant sections
US20180148995A1 (en) 2016-01-27 2018-05-31 Halliburton Energy Services, Inc. Autonomous pressure control assembly with state-changing valve system
US20170298716A1 (en) 2016-03-09 2017-10-19 Taylor McConnell Apparatus for more effectively extracting energy resources from underground reservoirs and a method for manufacturing the same
US20190162056A1 (en) 2016-05-02 2019-05-30 Hunting Titan, Inc. Pressure Activated Selective Perforating Switch Support
US10077626B2 (en) 2016-05-06 2018-09-18 Baker Hughes, A Ge Company, Llc Fracturing plug and method of fracturing a formation
US20170328134A1 (en) 2016-05-13 2017-11-16 Baker Hughes Incorporated System for Extended Use in High Temperature Wellbore
US10151181B2 (en) 2016-06-23 2018-12-11 Schlumberger Technology Corporation Selectable switch to set a downhole tool
RU2633904C1 (en) 2016-08-16 2017-10-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Sectional sand jet perforator
US20180120066A1 (en) 2016-11-01 2018-05-03 Baker Hughes Incorporated System and method for altering a burn rate of a propellant
WO2018136808A1 (en) 2017-01-19 2018-07-26 Hunting Titan, Inc. Compact setting tool
US20180274356A1 (en) 2017-03-21 2018-09-27 Welltec A/S Downhole plug and abandonment system
US10167691B2 (en) 2017-03-29 2019-01-01 Baker Hughes, A Ge Company, Llc Downhole tools having controlled disintegration
US10429938B2 (en) 2017-04-18 2019-10-01 International Business Machines Corporation Interpreting and generating input and output gestures
WO2018213768A1 (en) 2017-05-19 2018-11-22 Hunting Titan, Inc. Piston rod
US20200063537A1 (en) 2017-05-19 2020-02-27 Hunting Titan, Inc. Pressure Bulkhead
US20180363424A1 (en) 2017-06-19 2018-12-20 Nuwave Industries Inc. Downhole welding process and tool therefore
US10036236B1 (en) 2017-08-09 2018-07-31 Geodynamics, Inc. Setting tool igniter system and method
US20190106962A1 (en) 2017-10-06 2019-04-11 G&H Diversified Manufacturing Lp Systems and methods for sealing a wellbore
US20190234188A1 (en) 2018-01-26 2019-08-01 Sergio F. Goyeneche Direct Connecting Gun Assemblies for Drilling Well Perforations
USD873373S1 (en) 2018-07-23 2020-01-21 Oso Perforating, Llc Perforating gun contact device
US10689955B1 (en) 2019-03-05 2020-06-23 SWM International Inc. Intelligent downhole perforating gun tube and components

Non-Patent Citations (504)

* Cited by examiner, † Cited by third party
Title
Albert, Larry et al.; New Perforating Switch Technology Advances Safety & Reliability for Horizontal Completions; Unconventional Resources Tech. Conference; Jul. 20-22, 2015; 7 pgs.
Amit Govil, Selective Perforation: A Game Changer in Perforating Technology—Case Study, presented at the 2012 European and West African Perforating Symposium, Schlumberger, Nov. 7-9. 2012, 14 pgs.
Austin Powder Company, A-140 F & Block, Detonator & Block Assembly, 2 pgs.
Babu et al., Programmable Electronic Delay Device for Detonator, Defence Science Journal, May 2013, 3 pages, vol. 63, No. 3, https://doaj.org/article/848a537b12ae4a8b835391bec9.
Baker Hughes, Long Gun Deployment Systems IPS-12-28, Presented at 2012 International Perforating Symposium, Apr. 26-28, 2011, 11 pages.
Baker Hughes; SurePerf Rapid Select-Fire System Perforate production zones in a single run; 2012; 2 pages.
Baumann et al.; Perforating Innovations—Shooting Holes in Performance Models; Oilfield Review, Autumn 2014, vol. 26, Issue No. 3 pp. 14-31; 18 pages.
Bear Manufacturing, LLC; Defendant Bear Manufacturing, LLC's Answer, Affirmative Defenses and Counterclaim in Response to Plaintiffs' Complaint for Civil Action No. 3:21-cv-00185-M; dated Mar. 22, 2021; 41 pages.
Bear Manufacturing, LLC; Defendant's Preliminary Invalidity Contentions; dated Aug. 4, 2021; 23 pages.
Brazilian Patent and Trademark Office; Search Report for BR Application No. BR112015033010-0; mailed May 5, 2020; (4 pages).
Brinsden, Mark; Declaration of Mark Brinsden; dated Sep. 30, 2021; 51 pages.
Buche & Associates, P.C.; Rule 501 Citation of Prior Art and Written "Claim Scope Statements" in U.S. Pat. No. 10,844,697; dated Mar. 3, 2021; 24 pages.
Burndy, Bulkhead Ground Connector, Mechanical Summary Sheet, The Grounding Superstore, Jul. 15, 2014, 1 page, https://www.burndy.com/docs/default-source/cutsheets/bulkhead-connect.
C&J Energy Services; Gamechanger Perforating System Description; 2018; 1 pages.
C&J Energy Services; Gamechanger Perforating System Press Release; 2018; 4 pages.
Canadian Intellectual Property Office; Notice of Allowance for CA Appl. No. 2,821,506; mailed Jul. 31, 2019; 1 page.
Canadian Intellectual Property Office; Notice of Allowance for CA Application No. 2,941,648; dated Feb. 2, 2022; 1 page.
Canadian Intellectual Property Office; Office Action for CA Appl. No. 2,821,506; mailed Mar. 21, 2019; 4 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 2,941,648; dated Mar. 15, 2021; 3 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 3,070,118; dated Mar. 16, 2021; 3 pages.
Canadian Intellectual Property Office; Office Action for CA Application No. 3,070,118; dated Nov. 17, 2021; 3 pages.
Corelab Owen Oil Tools; Expendable Perforating Guns Description; https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf; 2008; 7 pages.
Corelab, RF-Safe Green Detonator, Data Sheet, Jul. 26, 2017, 2 pages.
CT Corporation System; Proof of Service of the Complaint; dated May 1, 2020; 39 pages.
Dalia Abdallah et al., Casing Corrosion Measurement to Extend Asset Life, Dec. 31, 2013, 14 pgs., https://www.slb.com/-/media/files/oilfield-review/2-casing-corr-2-english.
Djresource, Replacing Signal and Ground Wire, May 1, 2007, 2 pages, http://www.djresource.eu/Topics/story/110/Technics-SL-Replacing-Signal-and-Ground-Wire/.
drillingmatters.org; Definition of "sub"; dated Aug. 25, 2018; 2 pages.
Dynaenergetics Europe GMBH, OSO Perforating, LLC, SWM International, LLC and Bear Manufacturing, LLC; Joint Claim Construction Statement for Northern District of Texas Civil Action Nos. 3:21-cv-00188, 3:21-cv-00192 and 3:21-cv-00185; dated Sep. 28, 2021; 29 pages.
Dynaenergetics Europe GMBH; Complaint and Demand for Jury Trial for Civil Action No. 4:21-cv-00280; dated Jan. 28, 2021; 55 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00072; dated Oct. 23, 2020; 108 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00080; dated Nov. 18, 2020; 119 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2021-00078; dated Aug. 19, 2021; 114 pages.
Dynaenergetics Europe GMBH; Plaintiff's Preliminary Infringement Contentions for Civil Action No. 6:21-cv-01110; dated Jul. 6, 2021; 6 pages.
Dynaenergetics Europe Gmbh; Principal and Response Brief of Cross-Appellant for United States Court of Appeals case No. 2020-2163, -2191; dated Jan. 11, 2021; 95 pages.
Dynaenergetics Europe GMBH; Reply Under 37 C.F.R. §1.111 Amendment Under 37 C.F.R. §1.121 for U.S. Appl. No. 16/585,790; dated Feb. 20, 2020; 18 pages.
Dynaenergetics Europe, GMBH; DynaEnergetics' Preliminary Claim Construction and Extrinsic Evidence for Civil Action No. 4:21-cv-00280; dated Aug. 4, 2021; 10 pages.
Dynaenergetics Europe, GMBH; Patent Owner's Preliminary Response for PGR No. 2021-00097; dated Oct. 29, 2021; 110 pages.
Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 1:20-cv-03665; dated Dec. 15, 2020; 8 pages.
Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 4:17-cv-03784; dated Dec. 14, 2017; 7 pages.
Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-cv-00069; dated Jan. 30, 2020; 9 pages.
Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-cv-01201; dated Dec. 30, 2020; 12 pages.
Dynaenergetics Europe; Complaint and Demand for Jury Trial, Civil Action No. 6:20-cv-1110; dated Dec. 4, 2020; 15 pages.
Dynaenergetics Europe; DynaEnergetics Celebrates Grand Opening of DynaStage Manufacturing and Assembly Facilities in Blum, Texas; dated Nov. 16, 2018; 3 pages.
Dynaenergetics Europe; DynaEnergetics exhibition and product briefing; 2013; 15 pages.
Dynaenergetics Europe; DynaStage Gun System; May 2014; 2 pages.
Dynaenergetics Europe; Exhibit B Invalidity Claim Chart for Civil Action No. 4:19-cv-01611; dated May 2, 2019; 52 pages.
Dynaenergetics Europe; Exhibit C Invalidity Claim Chart for Civil Action No. 4:17-cv-03784; dated Jul. 13, 2020; 114 pages.
Dynaenergetics Europe; Plaintiffs' Local Patent Rule 3-1 Infringement Contentions for Civil Action No. 4:19- cv-01611; dated May 25, 2018; 10 Pages.
Dynaenergetics Europe; Plaintiffs' Motion to Dismiss Defendants' Counterclaim and to strike Affirmative Defenses, Civil Action No. 4:17-cv-03784; dated Feb. 20, 2018; 9 pages.
Dynaenergetics Europe; Plaintiffs' Pending Motion For Reconsideration for Civil Action No. 4:17-cv-03784; dated Jan. 21, 2021; 4 pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Claim Constructions and Identification of Extrinsic Evidence Civil Action No. 4:17-cv-03784; dated Aug. 3, 2018; 9 pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Infringement Contentions, Civil Action No. 6:20-cv-00069-ADA; dated Apr. 22, 2020; 32 pages.
Dynaenergetics Europe; Plaintiffs' Reply in Support of Motion to Dismiss and Strike for Civil Action No. 6:20-cv-00069-ADA; dated Apr. 29, 2020; 15 pages.
Dynaenergetics Europe; Plaintiffs Response to Defendant Hunting Titan Ins' Inoperative First Amended Answer, Affirmative Defenses, and Counterclaims for Civil Action No. 6:20-cv-00069-ADA; dated May 13, 2020.
Dynaenergetics Europe; Plaintiffs' Response to Defendants' Answer to Second Amended Complaint Civil Action No. 6:20-cv-00069-ADA; dated May 26, 2020; 18 pages.
Dynaenergetics GMBH & Co. KG, Patent Owner's Motion to Amend, filed Dec. 6, 2018, 53 pgs.
Dynaenergetics GMBH & Co. KG, Patent Owner's Response to Hunting Titan's Petition for Inter Parties Review, filed Dec. 6, 2018, 73 pgs.
Dynaenergetics GmbH & Co. KG; Patent Owner's Precedential Opinion Panel Request for Case IPR2018-00600; Sep. 18, 2019, 2 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect System, information downloaded from website, Jul. 3, 2013, 2 pgs., http://www.dynaenergetics.com/.
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013 1 pg.
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013.
Dynaenergetics, Gun Assembly, Products Summary Sheet, May 7, 2004, 1 pg.
Dynaenergetics, Selection Perforating Switch, Product Information Sheet, May 27, 2011, 1 pg.
Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, 2 pgs.,http://www.dynaenergetics.com/.
Dynaenergetics, Selective Perforating Switch, information down-loaded from website, Jul. 3, 2013, http://www.dynaenergetics.com/.
Dynaenergetics; DynaStage Solution—Factory Assembled Performance-Assured Perforating Systems; 6 pages.
EP Patent Office—International Searching Authority, PCT Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752, mailed May 4, 2015, 12 pgs.
Eric H. Findlay, Jury Trial Demand in Civil Action No. 6:20-cv-00069-ADA, dated Apr. 22, 2020, 32 pages.
European Patent Office; International Search Report and Written Opinion for PCT Application No. PCT/EP2014/065752 mailed May 4, 2015; 12 pgs.
European Patent Office; Invitation to Correct Deficiencies noted in the Written Opinion for European App. No. 15721178.0; issued Dec. 13, 2016; 2 pages.
European Patent Office; Office Action for EP App. No. 15721178.0; issued Sep. 6, 2018; 5 pages.
Farinago, et al.; Long Gun Deployment Systems IPS-12-28; presented at International Perforating Symposium, Apr. 26-28, 2012; 11 pages.
Fayard, Alfredo; Declaration of Alfredo Fayard; dated Oct. 18, 2021; 13 pages.
Federal Institute of Industrial Property; Decision of Granting for RU Appl. No. 2016104882/03(007851); May 17, 2018; 15 pages (English translation 4 pages).
Federal Institute of Industrial Property; Decision on Granting a Patent for Invention Russian App. No 2016139136/03(062394); issued Nov. 8, 2018; 20 pages (Eng Translation 4 pages); Concise Statement of Relevance: Search Report at 17-18 of Russian-language document lists several ‘A’ references based on RU application claims.
Federal Institute of Industrial Property; Inquiry for RU App. No. 2016104882/03(007851); dated Feb. 1, 2018; 7 pages, English Translation 4 pages.
Federal Institute of Industrial Property; Inquiry for RU Application No. 2016110014/03(015803); issued Feb. 1, 2018; 6 pages (Eng. Translation 4 pages).
Fiip, Search Report dated Feb. 1, 2018, in English See Search Report for RU App. No. 2016104882/03, which is in the same family as PCT App. No. PCT/CA2014/050673, 4 pages.
Fiip, Search Report dated Feb. 1, 2018, in Russian: See Search Report for RU App. No. 2016104882/03, which is in the same family as PCT App. No. PCT/CA2014/050673, 7 pgs.
G&H Diversified Manufacturing, LP and Dynaenergetics Europe GMBH; Joint Claim Construction Statement for Civil Action No. 3:20-cv-00376; dated Jul. 8, 2021; 14 pages.
G&H Diversified Manufacturing, LP; Complaint for Declaratory Judgement for Civil Action No. 3:20-cv-00376; dated Dec. 14, 2020; 7 pages.
G&H Diversified Manufacturing, LP; Defendant G&H Diversified Manufacturing, LP's Answer to Counter—Claim Plaintiffs' Counter—Claims for Civil Action No. 3:20-cv-00376; dated Apr. 19, 2021; 13 pages.
G&H Diversified Manufacturing, LP; Defendant G&H Diversified Manufacturing, LP's Opening Claim Construction Brief; dated Oct. 18, 2021; 25 pages.
G&H Diversified Manufacturing, LP; Defendants' Preliminary Invalidity Contentions for Civil Action No. 3:20-cv-00376; dated May 6, 2021; 20 pages.
G&H Diversified Manufacturing, LP; Petitioner's Oral Argument Presentation for PGR No. PGR2021-00078; dated Jul. 26, 2022; 65 pages.
G&H Diversified Manufacturing, LP; Plaintiff and Counterclaim Defendant G&H Diversified Manufacturing, LP and Counterclaim Defendant Yellow Jacket Oil Tools, LLC's First Supplemental Proposed Constructions; dated Jun. 24, 2021; 7 pages.
G&H Diversified Manufacturing, LP; Plaintiff and Counterclaim Defendant G&H Diversified Manufacturing, LP and Counterclaim Defendant Yellow Jacket Oil Tools, LLC's Proposed Constructions; dated Jun. 10, 2021; 7 pages.
G&H Diversified Manufacturing, LP; Redated Petition for Post Grant Review for PGR2021-00078; dated May 10, 2021; 20 pages.
G&H Diversified Manufacturing, LP; Reply to Preliminary Response for PGR No. PGR2021-00078; dated Sep. 14, 2021; 18 pages.
GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. 1717516.7, dated Feb. 27, 2018, 6 pgs.
GB Intellectual Property Office, Combined Search and Examination Report for GB App. No. GB1700625.5, dated Jul. 7, 2017, 5 pages.
GB Intellectual Property Office, Office Action dated Feb. 27, 2018, See Office Action for App. No. GB 1717516.7, which is the same family as PCT App. No. PCT/CA2014/050673, 6 pg.
GB Intellectual Property Office, Search Report for App. No. GB 1700625.5, which is in the same family as U.S. Pat. No. 9,494,021, dated Jul. 7, 2017, 5 pgs.
GB Intellectual Property Office; Examination Report for GB Appl. No. 1717516.7; Apr. 13, 2018; 3 pages.
GB Intellectual Property Office; Notification of Grant for GB Appl. No. 1717516.7; Oct. 9, 2018; 2 pages.
GB Intellectual Property Office; Search Report for GB. Appl. No. 1700625.5; mailed Dec. 21, 2017; 5 pages.
German Patent Office, Office Action dated May 22, 2014, in German: See Office Action for German Patent Application No. 10 2013 109 227.6, which is in the same family as PCT Application No. PCT/EP2014/065752, 8 pgs.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit F U.S. Pat. No. 10,844,697 vs Boop 378; dated Aug. 30, 2021; 34 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit G U.S. Pat. No. 10,844,697 vs Bickford; dated Aug. 30, 2021; 7 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LC; Exhibit Q U.S. Pat. No. 10,844,697 vs Runkel; dated Aug. 30, 2021; 7 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit A U.S. Pat. No. 10,844,697 vs Castel; dated Aug. 30, 2021; 88 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit B U.S. Pat. No. 10,844,697 vs Goodman; dated Aug. 30, 2021; 36 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit C U.S. Pat. No. 10,844,697 vs Hromas; dated Aug. 30, 2021; 27 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit D U.S. Pat. No. 10,844,697 vs Boop 768; dated Aug. 30, 2021; 35 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit E U.S. Pat. No. 10,844,697 vs Boop 792; dated Aug. 30, 2021; 52 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit H U.S. Pat. No. 10,844,697 vs Black; dated Aug. 30, 2021; 33 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit I U.S. Pat. No. 10,844,697 vs Rogman; dated Aug. 30, 2021; 59 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit J U.S. Pat. No. 10,844,697 vs Burton; dated Aug. 30, 2021; 57 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit K U.S. Pat. No. 10,844,697 vs Borgfeld; dated Aug. 30, 2021; 36 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit L U.S. Pat. No. 10,844,697 vs Boop '383; dated Aug. 30, 2021; 24 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit M U.S. Pat. No. 10,844,697 vs Boop '992; dated Aug. 30, 2021; 14 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit N U.S. Pat. No. 10,844,697 vs Deere; dated Aug. 30, 2021; 14 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit O U.S. Pat. No. 10,844,697 vs Harrigan Provisional; dated Aug. 30, 2021; 26 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit P U.S. Pat. No. 10,844,697 vs Burke '251; dated Aug. 30, 2021; 7 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit R U.S. Pat. No. 10,844,697 vs Tassaroli; dated Aug. 30, 2021; 10 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit S U.S. Pat. No. 10,844,697 vs Harrigan '048; dated Aug. 30, 2021; 7 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit T U.S. Pat. No. 10,844,697 vs Select-Fire System; dated Aug. 30, 2021; 36 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit U U.S. Pat. No. 10,844,697 vs New Select—Fire System; dated Aug. 30, 2021; 37 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit V U.S. Pat. No. 10,844,697 vs EWAPS; dated Aug. 30, 2021; 17 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; Exhibit W U.S. Pat. No. 10,844,697 vs SafeJet System; dated Aug. 30, 2021; 17 pages.
GR Energy Operating GP LLC, GR Energy Services Management, LP and GR Energy Services, LLC; GR Energy's Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00085-ADA; dated Aug. 30, 2021; 18 pages.
GR Energy Services Operating Gp Llc, Gr Energy Services Management, LP and GR Energy Services, LLC; GR Energy's Opening Claim Construction Brief; dated Oct. 18, 2021; 23 pages.
Halliburton; Wireline and Perforating Advances in Perforating; dated Nov. 2012; 12 pages.
Heard, Preston; Declaration for PGR2021-00078; dated Aug. 19, 2021; 5 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Defendants' Opening Claim Construction Brief; dated Oct. 18, 2021; 27 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Defendants' Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00349-ADA; dated Aug. 30, 2021; 22 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A1 U.S. Pat. No. 5,155,293 to Barton vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 21 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A10 U.S. Publication No. 8,869,887 to Deere, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 10 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A11 U.S. Pat. No. 4,457,383 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 22 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A12 U.S. Patent Application Pub. No. 2012/0247771 to Black, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A13 U.S. Publication No. 2016/0084048 to Harrigan, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A14 U.S. Patent Application No. 2010/0065302 to Nesbitt vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 15 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A15 U.S. Pat. No. 3,173,992 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A16 U.S. Pat. No. 6,506,083 to Bickford, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A17 U.S. Pat. No. 8,387,533 to Runkel vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 16 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A18 U.S. Pat. No. 8,943,943 to Tassaroli vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 7 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A19 U.S. Pat. No. 7,762,331 to Goodman. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 28 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A2 U.S. Pat. No. 6,582,251 to Burke, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 15 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A20 U.S. Patent Application No. 2012/0199352 to Lanclos vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 24 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A21 "3.12-in Frac Gun" Publication and 3.12-in Frac Gun System, both by Schlumberger vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A22 "New Select-Fire System" Publication and Select-Fire System, both by BakerHughes vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A23 Amit Govil, "Selective Perforation: A Game Changer in Perforating Technology—Case Study," 2012 European and West African Perforating Symposium vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 17 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A24 Schlumberger SafeJet System vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A3 U.S. Pat. No. 7,901,247 to Ring vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 19 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A4 U.S. Pat. No. 9,145,764 to Burton, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 18 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A5 U.S. Pat. No. 9,175,553 to Mcann, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 26 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A6 U.S. Pat. No. 9,689,223 to Schacherer vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 8 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A7 International (PCT) Publication No. WO2014/089194 to Rogman, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 16 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A8 U.S. Patent Application Pub. No. 2008/0073081 to Frazier, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 33 pages.
Horizontal Wireline Services, LLC and Allied Wireline Services, LLC; Exhibit A9 U.S. Pat. No. 9,065,201 to Borgfeld, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 30, 2021; 14 pages.
Horizontal Wireline Services, Presentation of a completion method of shale demonstrated through an example of Marcellus Shale, Pennsylvania, USA, Presented at 2012 International Perforating Symposium (Apr. 26-28, 2012), 17 pages.
Hunting Titan Inc., Petition for Inter Parties Review of U.S. Pat. No. 9581422, filed Feb. 16, 2018, 93 pgs.
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,472,938; dated Aug. 12, 2020; 198 pages.
Hunting Titan Ltd,; Defendants' Answer and Counterclaims, Civil Action No. 4:19-cv-01611, consolidated to Civil Action No. 4:17-cv-03784; dated May 28, 2019; 21 pages.
Hunting Titan Ltd.; Defendants' Answer and Counterclaims, Civil Action No. 6:20-cv-00069; dated Mar. 17, 2020; 30 pages.
Hunting Titan Ltd.; Defendants' Answer to First Amended Complaint and Counterclaims, Civil Action No. 6:20- cv-00069; dated Apr. 6, 2020; 30 pages.
Hunting Titan Ltd.; Defendants' Answer to Second Amended Complaint and Counterclaims, Civil Action No. 6:20- cv-00069; dated May 12, 2020; 81 pages.
Hunting Titan Ltd.; Defendants Invalidity Contentions Pursuant to Patent Rule 3-3, Civil Action No. 4:17-cv-03784; dated Jul. 6, 2018; 29 pages.
Hunting Titan Ltd.; Defendants' Objections and Responses to Plaintiffs' First Set of Interrogatories, Civil Action No. 4:17-cv-03784; dated Jun. 11, 2018.
Hunting Titan Ltd.; Defendants' Opposition to Plaintiffs' Motion to Dismiss and Strike Defendants' Amended Counterclaim and Affirmative Defenses for Unenforceability due to Inequitable Conduct for Civil Action No. 4:17-cv-03784; dated Apr. 24, 2018; 8 pages.
Hunting Titan Ltd.; Petition for Inter Partes Review of U.S. Pat. No. 9,581,422 Case No. IPR2018-00600; dated Feb. 16, 2018; 93 pages.
Hunting Titan, Inc., U.S. Appl. No. 62/621,999 titled Cluster Gun System and filed Jan. 25, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as WO2019/148009, Aug. 1, 2019, 7 pages, WIPO.
Hunting Titan, Inc., U.S. Appl. No. 62/627,591 titled Cluster Gun System and filed Feb. 7, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as WO2019/148009, Aug. 1, 2019, 7 pages, WIPO.
Hunting Titan, Inc., U.S. Appl. No. 62/736,298 titled Starburst Cluster Gun and filed Sep. 25, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as International Publication No. WO2019/148009, Aug. 1, 2019, 34 pages, WIPO.
Hunting Titan, Inc.; Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 17 pages.
Hunting Titan, Inc.; Defendant Hunting Titan, Inc.'s Opposition to Plaintiff's Motion for Summary Judgement for Civil Action No. 4:20-cv-02123; dated Mar. 30, 2022; 37 pages.
Hunting Titan, Inc.; Defendant's Answer, Affirmative Defenses, and Counterclaims to Plaintiffs' Second Amended Complaint for Civil Action No. 4:20-cv-02123; dated Sep. 10, 2021; 77 pages.
Hunting Titan, Inc.; Defendant's Final Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Jan. 7, 2022; 54 pages.
Hunting Titan, Inc.; Defendant's Preliminary Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Aug. 6, 2021; 52 pages.
Hunting Titan, Inc.; Defendant's Responsive Claim Construction Brief for Civil Action No. 4:20-cv-02123; dated Oct. 1, 2021; 31 pages.
Hunting Titan, Inc.; Defendant's Supplemental Brief on Claim Construction; dated Nov. 5, 2021; 9 pages.
Hunting Titan, Inc.; Exhibit 1 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 64 pages.
Hunting Titan, Inc.; Exhibit 2 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 33 pages.
Hunting Titan, Inc.; Exhibit 3 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 24 pages.
Hunting Titan, Inc.; Exhibit 4 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 9 pages.
Hunting Titan, Inc.; Exhibit 5 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 5 pages.
Hunting Titan, Inc.; Exhibit 6 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 4 pages.
Hunting Titan, Inc.; Exhibit 7 to Defendant Hunting Titan, Inc.'s Opposed Motion for Leave to Amend Invalidity Contentions for Civil Action No. 4:20-cv-02123; dated Nov. 19, 2021; 6 pages.
Hunting Titan, Inc.; Exhibit A to Defendant's Preliminary Invalidity Contentions, Invalidity of U.S. Pat. No. 10,429,161; dated Aug. 6, 2021; 93 pages.
Hunting Titan, Inc.; Exhibit B to Defendant's Preliminary Invalidity Contentions, Invalidity of U.S. Pat. No. 10,472,938; dated Aug. 6, 2021; 165 pages.
Hunting Titan, Inc.; Exhibit C to Defendant's Final Invalidity Contentions, Invalidity of U.S. Patent No. 10,429, 161; dated Jan. 7, 2022; 3 pages.
Hunting Titan, Inc.; Exhibit D to Defendant's Final Invalidity Contentions, Invalidity of U.S. Pat. No. 10,472,938; dated Jan. 7, 2022; 6 pages.
Hunting Titan, Inc; Petitioner's Sur-Reply on Patent Owner's Motion to Amend for IPR No. 2018-00600; dated Apr. 11, 2019; 17 pages.
Hunting Titan, Wireline Top Fire Detonator Systems, Product Information Sheet, 1 pg.
Hunting Titan; ControlFire RF-Safe Assembly Gun Loading Manual; 33 pages.
Hunting Titan; ControlFire User Manual; 2014; 56 pages.
Hunting Titan; Electrical Cable Heads Brochure; http://www.hunting-intl.com/media/1967991/ElectricalCableHeads.pdf; 2014; 3 pages.
Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; Jul. 18, 2018; 2 bages; Concise Statement of Relevance: Examiner's objection of CZ application claims 1, 7, and 16 based on US Pub No. 20050194146 alone or in combination with WO Pub No. 2001059401.
Industrial Property Office, Czech Republic; Office Action for CZ App. No. PV 2017-675; Oct. 26, 2018; 2 pages.
Industrial Property Office, Czech Republic; Office Action; CZ App. No. PV 2017-675; Dec. 17, 2018; 2 pages.
INPI Argentina; Office Action for Application No. 20190101834; dated Aug. 22, 2022; 3 pages.
INPI Argentina; Office Action for Application No. 20190101835; dated Aug. 29, 2022; 3 pages.
Instituto Nacional De La Propiedad Industrial; Office Action for AR Appl. No. 20140102653; issued May 9, 2019 (1 page).
Intellectual Property India, Office Action of IN Application No. 201647004496, dated Jun. 7, 2019, 6 pgs.
Intellectual Property India; First Examination Report for IN Application No. 201947035642; dated Nov. 27, 2020; 5 pages.
International Search Report and Written Opinion of International App. No. PCT/EP2020/058241, mailed Aug. 10, 2020, which is in the same family as U.S. Appl. No. 16/542,890, 18 pgs.
International Search Report and Written Opinion of International Application No. PCT/US2015/018906, Jul. 10, 2015, 12 pgs.
International Search Report of International Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 3 pgs.
International Searching Authority, International Preliminary Report on Patentability for PCT App. No.PCT/EP2014/065752; Mar. 1, 2016, 10 pgs.
International Searching Authority; International Preliminary Report on Patentability for International Application No. PCT/IB2019/000526; dated Dec. 10, 2020; 10 pages.
International Searching Authority; International Preliminary Report on Patentability for International Application No. PCT/IB2019/000537; dated Dec. 10, 2020; 11 pages.
International Searching Authority; International Preliminary Report on Patentability for PCT Appl. No. PCT/CA2014/050673; issued Jan. 19, 2016; 5 pages.
International Searching Authority; International Preliminary Report on Patentability International Application No. PCT/EP2019/063966; dated Dec. 10, 2020; 7 pages.
International Searching Authority; International Search Report and Written Opinion for International Application No. PCT/US2020/032879; dated Aug. 20, 2020; 9 pages.
International Searching Authority; International Search Report and Written Opinion for PCT App. No. PCT/EP2015/059381; Nov. 23, 2015; 14 pages.
International Written Opinion of International Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 4 pgs.
IPR2018-00600, Exhibit 3001, Patent Owner's Precedential Opinion Panel Request Letter in regard to Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, dated Sep. 18, 2019, 2 pg.
Jet Research Center Inc., JRC Catalog, 36 pgs., www.jetresearch.com.
Jet Research Center Inc., Red RF Safe Detonators Brochure, 2008, 2 pgs., www.jetresearch.com.
Jet Research Centers, Capsule Gun Perforating Systems, Alvarado, Texas, 26 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/07_Cap_Gun.pdf.
Jim Gilliat/Kaled Gasmi, New Select-Fire System, Baker Hughes, Presentation—2013 Asia-Pacific Perforating Symposium, Apr. 29, 2013, 16 pgs., http://www.perforators.org/presentations.php.
Jim Gilliat/Khaled Gasmi, New Select-Fire System, Baker Hughes, Presentation—2013 Asia-Pacific Perforating Symposium, Apr. 29, 2013.
Logan, et al.; International Patent Application No. PCT/CA2013/050986; dated Dec. 18, 2013; 54 pages.
Markel, Dan; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 15, 2021; 21 pages.
McBride Michael; Declaration for IPR2021-00082; dated Oct. 20, 2020; 3 pages.
Meehan, Nathan; Declaration of D. Nathan Meehan, Ph.D, P.E; dated Oct. 18, 2021; 86 pages.
merriam-webster.com, Insulator Definition, https://www.merriam-webster.com/dictionary/insulator, Jan. 31, 2018, 4 pages.
New Oxford American Dictionary Third Edition; Definition of "end"; dated 2010; 3 pages.
Nextier Completion Solutions Inc.; Defendant NexTier Completion Solution Inc.'s Opening Claim Construction Brief; dated Oct. 18, 2021; 26 pages.
Nextier Completion Solutions Inc.; Defendant Nextier Completion Solutions Inc.'s First Amended Answer and Counterclaims to Plaintiffs' First Amended Complaint for Civil Action No. 6:20-CV-01201; dated Jun. 28, 2021; 17 pages.
Nextier Completion Solutions Inc.; Defendant's Preliminary Invalidity Contentions for Civil Action No. 6:20-cv-01201-ADA; dated Aug. 30, 2021; 21 pages.
Nextier Completion Solutions Inc.; Exhibit A-1 BakerHughes Select-Fire; dated Aug. 30, 2021; 33 pages.
Nextier Completion Solutions Inc.; Exhibit A-10 U.S. Pat. No. 7,762,331 to Goodman; dated Aug. 30, 2021; 4 pages.
Nextier Completion Solutions Inc.; Exhibit A-11 U.S. Patent Publication No. 2016/0084048 A1 to Harrigan et al.; dated Aug. 30, 2021; 4 pages.
Nextier Completion Solutions Inc.; Exhibit A-12 Provisional U.S. Appl. No. 61/819,196 to Harrigan et al.; dated Aug. 30, 2021; 26 pages.
Nextier Completion Solutions Inc.; Exhibit A-13 U.S. Pat. No. 9,874,083 to Logan; dated Aug. 30, 2021; 18 pages.
Nextier Completion Solutions Inc.; Exhibit A-14 New Select-Fire System; dated Aug. 30, 2021; 33 pages.
Nextier Completion Solutions Inc.; Exhibit A-15 U.S. Pat. No. 10,077,641 to Rogman; dated Aug. 30, 2021; 36 pages.
Nextier Completion Solutions Inc.; Exhibit A-16 Provisional U.S. Appl. No. 61/733,129 to Rogman; dated Aug. 30, 2021; 55 pages.
Nextier Completion Solutions Inc.; Exhibit A-17 U.S. Pat. No. 8,387,533 to Runkel; dated Aug. 30, 2021; 5 pages.
Nextier Completion Solutions Inc.; Exhibit A-18 Schlumberger SafeJet; dated Aug. 30, 2021; 13 pages.
Nextier Completion Solutions Inc.; Exhibit A-19 U.S. Pat. No. 7,226,303 to Shaikh; dated Aug. 30, 2021; 4 pages.
Nextier Completion Solutions Inc.; Exhibit A-2 U.S. Pat. No. 6,506,083 to Bickford et al.; dated Aug. 30, 2021; 3 pages.
Nextier Completion Solutions Inc.; Exhibit A-20 U.S. Pat. No. 8,943,943 to Carlos Jose Tassaroli; dated Aug. 30, 2021; 7 pages.
Nextier Completion Solutions Inc.; Exhibit A-3 U.S. Patent Pub. No. US 2012/0247771 A1 to Black et al.; dated Aug. 30, 2021; 30 pages.
Nextier Completion Solutions Inc.; Exhibit A-4 U.S. Pat. No. 4,457,383 to Gene T. Boop; dated Aug. 30, 2021; 22 pages.
Nextier Completion Solutions Inc.; Exhibit A-5 U.S. Pat. No. 3,173,229 to Gene T. Boop; dated Aug. 30, 2021; 12 pages.
Nextier Completion Solutions Inc.; Exhibit A-6 U.S. Pat. No. 9,065,201 to Borgfeld et al.; dated Aug. 30, 2021; 3 pages.
Nextier Completion Solutions Inc.; Exhibit A-7 U.S. Pat. No. 6,582,251 to Burke et al.; dated Aug. 30, 2021; 3 pages.
Nextier Completion Solutions Inc.; Exhibit A-8 U.S. Patent Publication No. 2013/0126237 A1 to Burton; dated Aug. 30, 2021; 3 pages.
Nextier Completion Solutions Inc.; Exhibit A-9 Selective perforation: A Game Changer in Peforating Technology- Case Study; dated Aug. 30, 2021; 13 pages.
Nextier Oilfield Solutions Inc; Petition for Inter Partes Review No. IPR2021-00082; dated Oct. 21, 2020; 111 pages.
Nexus Perforating LLC; Complaint and Demand for Jury Trial for Civil Case No. 4:20-cv-01539; dated Apr. 30, 2020; 11 pages.
Nexus Perforating LLC; Nexus Perforating LLC's Responsive Claim Construction Brief for Civil Action No. 4:21-cv-00280; dated Nov. 3, 2021; 31 pages.
Nexus Perforating LLC; Nexus Preliminary Claim Construction and Extrinsic Evidence for Civil Action No. 4:21-cv-00280; dated Aug. 4, 2021; 6 pages.
Nexus Perforating; Double Nexus Connect (Thunder Gun System) Description; Retrieved from the internet Jan. 27, 2021; 6 pages.
Norwegan Industrial Property Office, Office Action for NO U.S. Appl. No. 20/160,017, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jun. 15, 2017, 3 pgs.
Norwegan Industrial Property Office, Search Report for NO U.S. Appl. No. 20/160,017, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jun. 15, 2017, 2 pgs.
Norwegian Industrial Property Office; Notice of Allowance for NO Application No. 20171759; dated Apr. 23, 2021; 2 pages.
Norwegian Industrial Property Office; Office Action and Search Report for NO App. No. 20171759; Jan. 14, 2020; 6 pages.
Norwegian Industrial Property Office; Office Action for NO Appl. No. 20160017; mailed Dec. 4, 2017; 2 pages.
Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/171,759; mailed Oct. 30, 2020; 2 pages.
Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/180,507; dated Sep. 29, 2022; 2 pages.
Norwegian Industrial Property Office; Office Action for No. U.S. Appl. No. 20/210,799; dated Oct. 30, 2021; 2 pages.
Norwegian Industrial Property Office; Opinion for NO Appl. No. 20171759; mailed Apr. 5, 2019; 1 page.
Oilfield Glossary; Definition of Perforating Gun; dated Feb. 26, 2013; 2 pages.
oilgasglossary.com; Definition of "sub"; dated Nov. 20, 2008; 1 page.
Olsen, Steve; Declaration regarding the SafeJet System for PGR2021-00097; dated Jul. 16, 2021; 25 pages.
Oso Perforating, LLC; Defendant's Preliminary Invalidity Contentions for Civil Action No. 3:21-cv-00188-M; dated Aug. 4, 2021; 23 pages.
Oso Perforating, LLC; Exhibit A1 U.S. Patent No. 5, 155,293 to Barton vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 21 pages.
Oso Perforating, LLC; Exhibit A10 U.S. Pat. No. 8,869,887 to Deere, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 10 pages.
Oso Perforating, LLC; Exhibit A11 U.S. Pat. No. 4,457,383 to Boop. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 22 pages.
Oso Perforating, LLC; Exhibit A12 U.S. Publication No. 2012/0247771 to Black, et al. vs. Asserted Claims of U. S. Patent No. 10,844,697; dated Aug. 4, 2021; 26 pages.
Oso Perforating, LLC; Exhibit A13 U.S. Publication No. 2016/0084048 to Harrigan, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 14 pages.
Oso Perforating, LLC; Exhibit A14 U.S. Publication No. 2010/0065302 to Nesbitt vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 15 pages.
Oso Perforating, LLC; Exhibit A15 U.S. Pat. No. 3,173,992 to Boop vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.
Oso Perforating, LLC; Exhibit A16 U.S. Pat. No. 6,506,083 to Bickford, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.
Oso Perforating, LLC; Exhibit A17 U.S. Pat. No. 8,387,533 to Runkel vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 16 pages.
Oso Perforating, LLC; Exhibit A18 U.S. Pat. No. 8,943,943 to Tassaroli vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 7 pages.
Oso Perforating, LLC; Exhibit A19 U.S. Pat. No. 7,762,331 to Goodman vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 28 pages.
Oso Perforating, LLC; Exhibit A2 U.S. Pat. No. 6,582,251 to Burke, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 15 pages.
Oso Perforating, LLC; Exhibit A20 U.S. Publication No. 2012/01999352 to Lanclos vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 24 pages.
Oso Perforating, LLC; Exhibit A21 "3.12-in Frac Gun" Publication and 3.12-in Frac Gun System by Sclumberger vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.
Oso Perforating, LLC; Exhibit A23 Amit Govil, "Selective Perforation: A Game Changer in Perforating Technology—Case Study," 2012 European and West African Perforating Symposium ("EWAPS") vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 17 pages.
Oso Perforating, LLC; Exhibit A24 Schlumberger SafeJet System vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.
Oso Perforating, LLC; Exhibit A3 U.S. Pat. No. 7,901,247 to Ring vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 19 pages.
Oso Perforating, LLC; Exhibit A4 U.S. Pat. No. 9,145,764 to Burton, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 18 pages.
Oso Perforating, LLC; Exhibit A5 U.S. Pat. No. 9,175,553 to McCann, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 26 pages.
Oso Perforating, LLC; Exhibit A6 U.S. Pat. No. 9,689,223 to Schacherer, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 8 pages.
Oso Perforating, LLC; Exhibit A7 WO 2014/089194 to Rogman, et al vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 16 pages.
Oso Perforating, LLC; Exhibit A8 U.S. Publication No. 2008/0073081 to Frazier, et al. vs. Asserted Claims of U.S. Patent No. 10,844,697; dated Aug. 4, 2021; 33 pages.
Oso Perforating, LLC; Exhibit A9 U.S. Pat. No. 9,065,201 to Borgfeld, et al. vs. Asserted Claims of U.S. Pat. No. 10,844,697; dated Aug. 4, 2021; 14 pages.
Owen Oil Tools & Pacific Scientific; Side Block for Side Initiation, 1 pg.
Owen Oil Tools, E & B Select Fire Side Port, Tandem Sub, Apr. 2010, 2 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_eandbsystem-01.0-c.pdf.
Owen Oil Tools, Expendable Perforating Guns, Jul. 2008, 7 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf.
Owen Oil Tools, Recommended Practice for Oilfield Explosive Safety, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 6 pages.
Owen Oil Tools; CoreLab Safe Ignition System Owen Det Bodies; dated 2015; 12 pages.
Owens Oil Tools, E & B Select Fire Side Port Tandem Sub Assembly, 2009, 9 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/MAN-30-XXX-0002-96-R00.pdf.
Parrot, Robert; Declaration, PGR 2020-00080; dated Aug. 11, 2020; 400 pages.
Parrott, Robert; Declaration for IPR2021-00082; dated Oct. 20, 2020; 110 pages.
Patent Trial and Appeal Board; Decision Granting Patent Owner's Request for Rehearing and Motion to Amend for IPR2018-00600; dated Jul. 6, 2020; 27 pages.
Patent Trial and Appeals Board; Decision Granting Institution of Post Grant Review, PGR No. PGR2021-00097; dated Jan. 6, 2022; 92 pages.
PCT Search Report and Written Opinion, mailed May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752, 12 pgs.
PCT Search Report and Written Opinion, mailed May 4, 2015: See Search Report and Written opinion for PCT Application No. PCT/EP2014/065752.
Perfx Wireline Services, LLC; Defendant PerfX Wireline Services, LLC's Opening Claim Construction Brief; dated Oct. 18, 2021; 23 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Dynawell Gun System Exhibit A; dated Jul. 2, 2021; 42 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the LRI Gun System Exhibit B; dated Jul. 2, 2021; 33 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Owen Oil Tools System Exhibit C; dated Jul. 2, 2021; 64 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Select Fire System Exhibit D; dated Jul. 2, 2021; 49 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 10,077,641 Exhibit H; dated Jul. 2, 2021; 41 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 4,007,796 Exhibit F; dated Jul. 2, 2021; 40 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 5,042,594 Exhibit E; dated Jul. 2, 2021; 38 pages.
Perfx Wireline Services, LLC; Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 9,145,764 Exhibit G; dated Jul. 2, 2021; 58 pages.
Perfx Wireline Services, LLC; PerfX Wireline Services, LLC's Preliminary Invalidity Contentions for Civil Action No. 1:20-CV-03665; dated Jul. 2, 2021; 4 pages.
Perfx's Wireline Services, LLC; Exhibit A-1: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Dynawell Gun System; dated Aug. 30, 2021; 30 pages.
Perfx's Wireline Services, LLC; Exhibit A-2: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the LRI Gun System; dated Aug. 30, 2021; 29 pages.
Perfx's Wireline Services, LLC; Exhibit A-3: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Owen Dil Tools System; dated Aug. 30, 2021; 42 pages.
Perfx's Wireline Services, LLC; Exhibit A-4: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the Select Fire System; dated Aug. 30, 2021; 32 pages.
Perfx's Wireline Services, LLC; Exhibit A-5: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 5,042,594; dated Aug. 30, 2021; 27 pages.
Perfx's Wireline Services, LLC; Exhibit A-6: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 4,007,796; dated Aug. 30, 2021; 23 pages.
Perfx's Wireline Services, LLC; Exhibit A-7: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 9,145,764; dated Aug. 30, 2021; 36 pages.
Perfx's Wireline Services, LLC; Exhibit A-8: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of U.S. Pat. No. 10,077,6414; dated Aug. 30, 2021; 29 pages.
Perfx's Wireline Services, LLC; Exhibit A-9: Invalidity Chart for U.S. Pat. No. 10,844,697 in view of the SafeJet System; dated Aug. 30, 2021; 18 pages.
Perfx's Wireline Services, LLC; Exhibit B-1: Invalidity Chart for U.S. Pat. No. D. 904,475 in view of the Dynawell Tandem Sub; dated Aug. 30, 2021; 10 pages.
Perfx's Wireline Services, LLC; Exhibit B-2: Invalidity Chart for U.S. Pat. No. D. 904,475 in view of the LRI Tandem Subassembly; dated Aug. 30, 2021; 12 pages.
Perfx's Wireline Services, LLC; Exhibit B-3: Invalidity Chart for U.S. Patent No. D904,475 in view of the Owen Oil Tools Tandem Sub; dated Aug. 30, 2021; 10 pages.
Perfx's Wireline Services, LLC; Exhibit B-4: Invalidity Chart for U.S. Patent No. D904,475 in view of the XConnect Tandem Sub; dated Aug. 30, 2021; 1 page.
Perfx's Wireline Services, LLC; Exhibit B-5: Invalidity Chart for U.S. Patent No. D904,475 in view of the SafeJet Disposable Bulkhead; dated Aug. 30, 2021; 15 pages.
Perfx's Wireline Services, LLC; Exhibit B-6: Invalidity Chart for U.S. Patent No. D904,475 in view of Chinese Patent Application No. CN110424930A; dated Aug. 30, 2021; 9 pages.
Perfx's Wireline Services, LLC; Exhibit B-7: Invalidity Chart for U.S. Patent No. D904,475 in view of U.S. Patent Publication No. 2020/0308938; dated Aug. 30, 2021; 8 pages.
Perfx's Wireline Services, LLC; Xconnect, LLC's Preliminary Invalidity Contentions for Civil Action No. 6:21-cv-00371-ADA; dated Aug. 30, 2021; 7 pages.
Preiss Frank et al.; Lowering Total Cost of Operations Through Higher Perforating Efficiency while simultaneously enhancing safety; 26 pages.
Promperforator LLC, Perforating Systems Design and Manufacturing, 2014, 36 pgs., http://www.promperforator.ru/upload/file/katalog_eng_2014.pdf.
Robert Parrott, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Declaration regarding Patent Invalidity, dated Jun. 29, 2020, 146 pages.
Rodgers, John; Claim Construction Declaration for Civil Action No. 3:21-cv-00185; dated Sep. 28, 2021; 41 pages.
Rodgers, John; Claim Construction Declaration for Civil Action No. 3:21-cv-00188; dated Sep. 28, 2021; 42 pages.
Rodgers, John; Declaration for Civil Action No. 3:20-CV-00376; dated Jul. 8, 2021; 32 pages.
Rodgers, John; Declaration for Civil Action No. 3:21-cv-00192-M; dated May 27, 2021; 42 pages.
Rodgers, John; Declaration for PGR2020-00072; dated Oct. 23, 2020; 116 pages.
Rodgers, John; Declaration for PGR2020-00080; dated Nov. 18, 2020; 142 pages.
Rodgers, John; Declaration for PGR2021-00078; dated Aug. 19, 2021; 137 pages.
Rodgers, John; Declaration of John Rodgers, Ph.D for PGR Case No. PGR2021-00097; dated Oct. 28, 2021; 124 pages.
Rodgers, John; Videotaped Deposition of John Rodgers; dated Jul. 29, 2021; 49 pages.
Salt Warren et al.; New Perforating Gun System Increases Safety and Efficiency; dated Apr. 1, 2016; 11 pages.
Salt, et al.; New Perforating Gun System Increases Saftey and Efficiency; Journal of Petroleum Technology; dated Apr. 1, 2016; Weatherford; https://jpt.spe.org/new-perforating-gun-system-increases-safety-and-efficiency; 11 pages.
Scharf Thilo; Declaration for PGR2020-00080; dated Nov. 16, 2020; 16 pages.
Scharf, Thilo; Declaration for PGR2020-00072; dated Oct. 22, 2020; 13 pages.
Schlumberger, Combining and Customizing Technologies for Perforating Horizontal Wells in Algeria, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 20 pages.
Schlumberger; Field Test Database Print Out Showing uses of the SafeJet System; dated May 11, 2015; 10 pages.
Schlumberger; Lina Pradilla, Wireline Efficiency in Unconventional Plays—The Argentinean Experience, including excerpted image from slide 13; dated 2013; 16 pages http://www.perforators.org/wp-content/uploads/2015/10/SLAP_47_Wireline_Efficiency_Unconventional_Plays.pdf.
Schlumberger; Selective Perforation: A Game Changer in Perforating Technology—Case Study; issued 2012; 14 pages.
Sharma, Gaurav; Hunting Plc Is Not In A Race To The Bottom, Says Oilfield Services Firm's CEO; dated Sep. 10, 2019; retrieved on Nov. 18, 2020; 6 pages.
Shelby Sullivan; Declaration of Shelby Sullivan; dated Oct. 18, 2021; 9 pages.
SIPO, Office Action dated Jun. 27, 2018: See Office Action for CN App. No. 201580011132.7, which is in the same family as PCT App. No. PCT/US2015/18906, 9 pgs. & 5 pgs.
SIPO, Search Report dated Mar. 29, 2017, in Chinese: See Search Report for CN App. No. 201480040456.9, which is in the same family as PCT App. No. PCT/CA2014/050673, 12 & 3 pgs.
Smithson, Anthony; Declaration Declaration for IPR2021-00082; dated Oct. 16, 2020; 2 pages.
Smylie, New Safe and Secure Detonators for the Industry's consideration, Presented at Explosives Safety & Security Conference Marathon Oil Co, Houston, Feb. 23-24, 2005, 20 pages.
Spears & Associates; Global Wireline Market; dated Oct. 15, 2019; 143 pages.
State Intellectual Property Office People's Republic of China; First Office Action for Chinese App. No. 201811156092.7; issued Jun. 16, 2020; 6 pages (Eng Translation 8 pages).
State Intellectual Property Office, P.R. China; First Office Action for CN App. No. 201480047092.7; Issued on Apr. 24, 2017.
State Intellectual Property Office, P.R. China; First Office Action with full translation for CN App. No. 201480040456.9; issued Mar. 29, 2017; 12 pages (English translation 17 pages).
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for Chinese App. No. 201580011132.7; issued Apr. 3, 2019; 2 pages (Eng. Translation 2 pages).
State Intellectual Property Office, P.R. China; Notification to Grant Patent Right for CN App. No. 201480040456.9; Jun. 12, 2018; 2 pages (English translation 2 pages).
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480040456.9; Issued Nov. 29, 2017; 5 pages (English translation 1 page).
State Intellectual Property Office, P.R. China; Second Office Action for CN App. No. 201480047092.7; Issued Jan. 4, 2018; 3 pages.
Stifel; Why the Big Pause? Balancing Long-Term Value with Near-Term Headwinds. Initiating Coverage of Oilfield Svcs and Equipment; dated Sep. 10, 2018; 207 pages.
SWM International, LLC and Nextier Completion Solutions LLC; Petitioner's Preliminary Reply To Patent Owner's Preliminary Response for Case No. PGR2021-00097; dated Nov. 15, 2021; 11 pages.
SWM International, LLC and Nextier Oil Completion Solutions, LLC; Petition for Post Grant Review PGR No. 2021-00097; dated Jul. 20, 2021; 153 pages.
SWM International, LLC; Defendant's P.R. 3-3 and 3-4 Preliminary Invalidity Contentions; dated Aug. 4, 2021; 28 pages.
SWM International, LLC; Defendant's P.R. 4-1 Disclosure of Proposed Terms and Claim Elements for Construction for Civil Action No. 3:21-cv-00192-M; dated Aug. 24, 2021; 5 pages.
SWM International, LLC; Ex. A-1 Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System; dated Aug. 4, 2021; 15 pages.
SWM International, LLC; Ex. A-1A Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System in view of Backhus; dated Aug. 4, 2021; 4 pages.
SWM International, LLC; Ex. A-1B Invalidity of U.S. Pat. No. 10,844,697 Over the SafeJet System in view of Harrigan; dated Aug. 4, 2021; 3 pages.
SWM International, LLC; Ex. A-2 Invalidity of U.S. Pat. No. 10,844,697 Over Goodman; dated Aug. 4, 2021; 11 pages.
SWM International, LLC; Ex. A-2A Invalidity of U.S. Pat. No. 10,844,697 Over Goodman in view of Backhus; dated Aug. 4, 2021; 3 pages.
SWM International, LLC; Ex. A-2B Invalidity of U.S. Pat. No. 10,844,697 Over Goodman in view of Harrigan; dated Aug. 4, 2021; 3 pages.
SWM International, LLC; Ex. A-3 Invalidity of U.S. Pat. No. 10,844,697 Over Harrigan; dated Aug. 4, 2021; 13 pages.
SWM International, LLC; Ex. A-4 Invalidity of U.S. Pat. No. 10,844,697 Over Burton; dated Aug. 4, 2021; 11 pages.
SWM International, LLC; Ex. A-5 Invalidity of U.S. Pat. No. 10,844,697 Over Rogman; dated Aug. 4, 2021; 10 bages.
SWM International; Drawing of SafeJet System; dated Jul. 20, 2021; 1 page.
SWM International; Photographs of SafeJet System; dated Jul. 20, 2021; 9 pages.
Tolteq; iSeries MWD System; dated 2021; 9 pages.
Tom Smylie, New Safety Detonators for the Industry's consideration, presented at Explosives Safety & Security Conference, Feb. 23-24, 2005, 20 pages.
U.S. Patent Trial and Appeal Board, Final Written Decision, Case IPR2018-00600 re U.S. Pat. No. 9,581,422, entered Aug. 20, 2019, 31 pages.
U.S. Patent Trial and Appeal Board, Institution of Inter Partes Review, Case IPR2018-00600, issued on Aug. 21, 2018, 9 pgs.
UK Examination Report of United Kingdom Patent Application No. GB1600085.3, which is in the same family as U.S. Pat. 9,494,021, mailed Mar. 9, 2016, 1 pg.
UK Examination Report of United Kingdom Patent Application No. GB1600085.3, which is in the same family as U.S. Pat. No. 9,702,680 issued Jul. 11, 2017, mailed Mar. 9, 2016, 1 pg.
United States District Court for the Northern District of Texas Dallas Division; Memorandum Opinion and Order in Civil Action No. 3:21-cv-00188-M; Mar. 23, 2022; 35 pages (order is redacted to protect confidential information; redacted order has not yet been filed by the Court).
United States District Court for the Northern District of Texas Dallas Division; Memorandum Opinion and Order in Civil Action No. 3:21-cv-00192-M; Mar. 23, 2022; 34 pages (order is redacted to protect confidential information; redacted order has not yet been filed by the Court).
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Defendant's Answers, Counterclaims and Exhibits, dated May 28, 2019, 135 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiff's Complaint and Exhibits, dated May 2, 2019, 26 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiffs' Motion to Dismiss and Exhibits, dated Jun. 17, 2019, 63 pgs.
United States District Court for the Southern District of Texas; Joint Claim Construction Statement for Civil Action No. 3:20-cv-00376; dated Jul. 8, 2021; 14 pages.
United States District Court for the Southern District of Texas; Joint Claim Construction Statement for Civil Action No. 4:20-cv-02123; dated Aug. 27, 2021; 14 pages.
United States District Court for the Southern District of Texas; Memorandum Opinion and Order for Civil Action No. H-20-2123; dated Sep. 19, 2022; 115 pages.
United States District Court for the Western District of Texas; Order Granting in Part & Denying on Part Defendants' Motion to Dismiss for Improper Venue or to Transfer Venue Pursuant to 28 U.S.C. § 1404(a) for Civil Action No. 6:20-CV-01110-ADA; dated Aug. 5, 2021; 16 pages.
United States District Court Southern District of Texas Houston and Galveston Divisions; Seventh Supplemental Order; Sep. 17, 2020; 3 pages.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, DynaEnergetics GmbH & Co. KG's Patent Owner Preliminary Response, dated May 22, 2018, 47 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Order Granting Precedential Opinion Panel, Paper No. 46, dated Nov. 7, 2019, 4 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Decision, Granting Patent Owner's Request for Hearing and Granting Patent Owner's Motion to Amend, dated Jul. 6, 2020, 27 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Motion to Amend, dated Dec. 6, 2018, 53 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Opening Submission to Precedential Opinion Panel, dated Dec. 20, 2019, 21 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Request for Hearing, dated Sep. 18, 2019, 19 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Responsive Submission to Precedential Opinion Panel, dated Jan. 6, 2020, 16 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Sur-reply, dated Mar. 21, 2019, 28 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Additional Briefing to the Precedential Opinion Panel, dated Dec. 20, 2019, 23 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Opposition to Patent Owner's Motion to Amend, dated Mar. 7, 2019, 30 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply Briefing to the Precedential Opinion Panel, dated Jan. 6, 2020, 17 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply in Inter Partes Review of Patent No. 9,581,422, dated Mar. 7, 2019, 44 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Reply In Support of Patent Owner's Motion to Amend, dated Mar. 21, 2019, 15 pgs.
United States Patent and Trademark Office, Case PGR 2020-00072 for U.S. Patent No. 10,429, 161 B2, Petition for Post Grant Review of Claims 1-20 of U.S. Patent No. 10,429, 161 Under 35 U.S.C. §§ 321-28 and 37 C.F. R. §§42.200 Et Seq., dated Jun. 30, 2020, 109 pages.
United States Patent and Trademark Office, Non-Final Office Action of U.S. Appl. No. 16/585,790, dated Nov. 12, 2019, which cites U.S. Pat. No. 9,677,363 to Schacherer et al., 9 pgs.
United States Patent and Trademark Office, Notice of Allowance for U.S. Appl. No. 16/585,790, mailed Jun. 19, 2020, 16 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/117,228, dated May 31, 2018, 9 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/617,344, dated Jan. 23, 2019, 5 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/788,367, dated Oct. 22, 2018, 6 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,800, dated Dec. 27, 2019, 6 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,812, dated Dec. 27, 2019, 6 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 15/920,812, dated May 27, 2020, 5 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/026,431, dated Jul. 30, 2019, 10 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/359,540, dated Aug. 14, 2019, 9 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/359,540, dated May 3, 2019, 11 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/540,484, dated Oct. 4, 2019, 12 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 16/809,729, dated Jun. 19, 2020, 9 pgs.
United States Patent and Trademark Office, Office Action of U.S. Appl. No. 29/733,080, dated Jun. 26, 2020, 8 pgs.
United States Patent and Trademark Office, Provisional U.S. Appl. No. 61/733,129; filed Dec. 4, 2012; 10 pages.
United States Patent and Trademark Office, Provisional U.S. Appl. No. 61/819,196; filed May 3, 2013 ; 10 pages.
United States Patent and Trademark Office; Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 16/540,484; mailed on May 19, 2021; 3 pages.
United States Patent and Trademark Office; Decision Granting Institution of Post-Grant Review 35 U.S.C. §324 for PGR2021-00078; dated Nov. 1, 2021; 87 pages.
United States Patent and Trademark Office; Ex Parte Quayle Action for U.S. Appl. No. 16/809,729; dated Jun. 20, 2022; 4 pages.
United States Patent and Trademark Office; Ex Parte Quayle Action for U.S. Appl. No. 17/352,728; dated Jun. 20, 2022; 6 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/540,484; dated Apr. 27, 2022; 12 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/540,484; dated Feb. 19, 2021; 12 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 16/809,729; dated Nov. 18, 2021; 16 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 17/221,219; dated Aug. 24, 2021; 14 pages.
United States Patent and Trademark Office; Final Office Action for U.S. Appl. No. 17/352,728; dated Mar. 9, 2022; 9 pages.
United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/540,484; dated Mar. 30, 2020; 12 pgs.
United States Patent and Trademark Office; Final Office Action of U.S. Appl. No. 16/809,729, dated Nov. 3, 2020; 19 pages.
United States Patent and Trademark Office; Information Disclosure Statement for U.S. Appl. No. 16/293,508; dated Dec. 10, 2020; 7 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 15/920,812; dated Feb. 3, 2021; 5 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/540,484; dated Aug. 9, 2021; 12 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/809,729; dated Feb. 3, 2022; 6 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 16/809,729; dated Jun. 22, 2021; 15 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated Jan. 29, 2021; 11 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated May 6, 2022; 10 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Aug. 3, 2022; 8 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Jun. 17, 2021; 10 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/352,728; dated Oct. 25, 2021; 9 pages.
United States Patent and Trademark Office; Non-Final Office Action of U.S. Appl. No. 15/920,800; dated Dec. 9, 2020; 6 pages.
United States Patent and Trademark Office; Notice of Allowability for U.S. Appl. No. 14/908,788; dated Dec. 27, 2017; 5 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,800; dated July, 7 2020; 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812, mailed Aug. 18, 2020; 5 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 15/920,812; dated Aug. 4, 2021; 5 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/387,696; issued on Jan. 29, 2020; 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/585,790, mailed on Aug. 5, 2020; 15 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Jan. 26, 2021; 9 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 16/809,729; dated Sep. 21, 2022; 7 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated May 21, 2021; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/007,574; dated Sep. 26, 2022; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/221,219; dated Jan. 13, 2022; 11 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/352,728; dated Sep. 21, 2022; 8 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 29/733,080; Oct. 20, 2020; 9 pages.
United States Patent and Trademark Office; Notices of Allowabilty for U.S. Appl. No. 16/585,790; dated Jul. 31, 2020 and Mar. 18, 2020; Response to Office Action for U.S. Appl. No. 16/585,790; dated Nov. 12, 2019; 26 pages.
United States Patent and Trademark Office; Office Action and Response to Office Action for U.S. Appl. No. 16/585,790; dated Nov. 12, 2019 and Feb. 12, 2020; 21 pages.
United States Patent and Trademark Office; Office Action in Ex Parte Reexamination for U.S. Pat. No. 10,844,697; mailed Jan. 26, 2022; 10 pages.
United States Patent and Trademark Office; Office Action of U.S. Appl. No. 16/540,484, dated Aug. 20, 2020, 10 pgs.
United States Patent and Trademark Office; Order Granting Request for Ex Parte Reexamination; dated Nov. 1, 2021; 14 pages.
United States Patent and Trademark Office; Patent Assignment for U.S. Appl. No. 61/733,129; dated Jan. 25, 2013; 2 pages.
United States Patent and Trademark Office; Restriction Requirement for U.S. Appl. No. 17/007,574; dated Oct. 23, 2020; 6 pages.
United States Patent and Trademark Office; U.S. Provisional U.S. Appl. No. 61/739,592; dated Dec. 19, 2012; 65 pages.
United States Patent and Trial Appeal Board; Final Written Decision on IPR2018-00600; issued Aug. 20, 2019; 31 pages.
United States Patent and Trial Appeal Board; Final Written Decision on PGR2021-00078; issued Oct. 28, 2022; 139 pages.
United States Patent Trial and Appeal Board; Decision Denying Institution of Post-Grant Review; PGR No. 2020-00072; dated Jan. 19, 2021; 38 pages.
United States Patent Trial and Appeal Board; Institution Decision for PGR 2020-00080; dated Feb. 12, 2021; 15 pages.
United States Patent Trial and Appeal Board; Record of Oral Hearing held Feb. 18, 2020 for IPR dated 2018-00600; dated Feb. 18, 2020; 27 pages.
USPTO, U.S. Pat. No. 438305A, issued on Oct. 14, 1890 to T.A. Edison, 2 pages.
USPTO; Notice of Allowance for U.S. Appl. No. 14/904,788; mailed Jul. 6, 2016; 8 pages.
USPTO; Supplemental Notice of Allowability for U.S. Appl. No. 14/904,788; mailed Jul. 21, 2016; 2 pages.
Vigor Petroleum; Perforating Gun Accessories Product Description; https://www.vigordrilling.com/completion-tools/perforating-gun-accessories.html; 2021; 1 page.
Wetechnologies; Downhole Connectors, High Pressure HP / HT & Medium Pressure MP /MT; dated Apr. 3, 2016; http://wetechnologies.com/products/hp-ht-downhole/; 3 pages.
Williams, John; Declaration of Dr. John Williams; dated Oct. 18, 2021; 9 pages.
WIPO, International Search Report for International Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 3 pgs.
WIPO, Written Opinion of International Searching Authority for PCT Application No. PCT/CA2014/050673, mailed Oct. 9, 2014, 4 pgs.
Wooley, Gary R.; Declaration in Support of Petition for Post Grant Review of U.S. Pat. No. 10,844,697 for PGR2021-00097; dated Jul. 17, 2021; 90 pages.
Wooley, Gary; Declaration of Gary E. Wooley for Civil Action Nos. 6:20-cv-01110-ADA and 6:20-CV-01201-ADA; dated Oct. 18, 2021; 12 pages.
Wooley, Gary; Declaration of Gary R. Wooley for Civil Action No. 3:20-cv-00376; dated Jul. 8, 2021; 11 pages.
Wooley, Gary; Declaration of Gary R. Wooley for Civil Action No. 3:21-cv-00192-M; dated Aug. 17, 2021; 18 pages.
Wooley, Gary; Transcript of Gary Wooley for Civil Action No. 3:21-cv-00192-M; dated Sep. 2, 2021; 26 pages.
World Intellectual Property Office, Search Report for GB Patent App. No. GB1700625.5, which is in the same family as PCT App No. PCT/CA2014/050673, dated Jul. 7, 2017, 5 pages.
World Oil; DynaEnergetics expands DynaStage factory-assembled, well perforating systems; dated Mar. 14, 2017; 2 pages.
Yellow Jacket Oil Tools, LLC; Defendant Yellow Jacket Oil Tools, LLC's Answer to Plaintiffs' First Amended Complaint for Civil Action No. 6:20-cv-01110; dated Aug. 10, 2021; 13 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, Lp; Defendants' Preliminary Invalidity Contentions for Civil Action No. 6:20-cv-01110-ADA; dated Aug. 30, 2021; 21 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-1 BakerHughes Select-Fire; dated Aug. 30, 2021; 33 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-10 U.S. Patent No. 7.762,331 to Goodman; dated Aug. 30, 2021; 4 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-11 U.S. Patent Publication No. 2016 0084048 A1 to Harrigan et al.; dated Aug. 30, 2021; 4 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-12 U.S. Appl. No. 61/819,196 to Harrigan et al.; dated Aug. 30, 2021; 26 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-13 U.S. Pat. No. 9,874,083 to Logan; dated Aug. 30, 2021; 18 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-14 New Select-Fire System; dated Aug. 30, 2021; 33 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-15 U.S. Pat. No. 10,077,641 to Rogman; dated Aug. 30, 2021; 36 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-16 U.S. Provisional Application No. 61/733,129 to Rogman; dated Aug. 30, 2021; 55 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-17 U.S. Pat. No. 8,387,533 to Runkel; dated Aug. 30, 2021; 5 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-18 Schlumberger SafeJet; dated Aug. 30, 2021; 13 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-19 U.S. Pat. No. 7,226,303 to Shaikh; dated Aug. 30, 2021; 4 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-2 U.S. Pat. No. 6,506,083 to Bickford et al.; dated Aug. 30, 2021; 3 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-20 U.S. Pat. No. 3,943,943 to Carlos Jose Tassaroli; dated Aug. 30, 2021; 7 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-3 U.S. Patent Pub. No. US 2012/0247771 A1 to Black et al.; dated Aug. 30, 2021; 30 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-4 U.S. Pat. No. 4,457,383 to Gene T. Boop; dated Aug. 30, 2021; 22 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-5 U.S. Pat. No. 3,173,229 to Gene T. Boop; dated Aug. 30, 2021; 12 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-6 U.S. Pat. No. 9,065,201 to Borgfeld et al.; dated Aug. 30, 2021; 3 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-7 U.S. Pat. No. 6,582,251 to Burke et al.; dated Aug. 30, 2021; 3 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-8 U.S. Patent Publication No. 2013/0126237 A1 to Burton; dated Aug. 30, 2021; 3 pages.
Yellowjacket Oil Tools, LLC and G&H Diversified Manufacturing, LP; Exhibit A-9 Selective perforation: A Game Changer in Peforating Technology—Case Study; dated Aug. 30, 2021; 13 pages.

Also Published As

Publication number Publication date
CZ307065B6 (en) 2017-12-27
US9605937B2 (en) 2017-03-28
CN109372475B (en) 2021-05-18
CN105492721B (en) 2018-10-02
US9581422B2 (en) 2017-02-28
RU2662840C2 (en) 2018-07-31
CN109372475A (en) 2019-02-22
US20170030693A1 (en) 2017-02-02
CN105492721A (en) 2016-04-13
CZ2016130A3 (en) 2016-04-20
WO2015028204A2 (en) 2015-03-05
AR115658A2 (en) 2021-02-10
US20160061572A1 (en) 2016-03-03
WO2015028204A3 (en) 2015-06-18
RU2016110014A (en) 2017-10-03
AR097424A1 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
USRE50204E1 (en) Perforating gun and detonator assembly
US11648513B2 (en) Detonator positioning device
US11549343B2 (en) Initiator head assembly
US12203350B2 (en) Detonator positioning device
RU2710342C2 (en) Assembly of detonator head, having rotary electric contact component
US10858920B2 (en) In-line adapter for a perforating gun
WO2022184654A1 (en) Modular perforating gun system
US12366142B2 (en) Modular perforating gun system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DYNAENERGETICS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PREISS, FRANK HARON;SCHARF, THILO;MCNELIS, LIAM;SIGNING DATES FROM 20151111 TO 20151124;REEL/FRAME:048473/0796

AS Assignment

Owner name: DYNAENERGETICS EUROPE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DYNAENERGETICS GMBH & CO. KG;REEL/FRAME:051968/0906

Effective date: 20191220

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY