USRE46962E1 - Surgical forceps - Google Patents
Surgical forceps Download PDFInfo
- Publication number
- USRE46962E1 USRE46962E1 US15/693,698 US201715693698A USRE46962E US RE46962 E1 USRE46962 E1 US RE46962E1 US 201715693698 A US201715693698 A US 201715693698A US RE46962 E USRE46962 E US RE46962E
- Authority
- US
- United States
- Prior art keywords
- jaw
- housing
- gap distance
- forceps according
- members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
Definitions
- the present disclosure relates to a surgical forceps and, more particularly, to a surgical forceps including replaceable jaw members.
- a forceps is a plier-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue. Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels and certain vascular bundles. Typically, once a vessel is sealed, the surgeon has to accurately sever the vessel along the newly formed tissue seal. Accordingly, many vessel sealing instruments have been designed which incorporate a knife or blade member which effectively severs the tissue after forming a tissue seal.
- surgical instruments including forceps
- single-use instruments e.g., instruments that are discarded after a single use
- partially-reusable instruments e.g., instruments including both disposable portions and portions that are sterilizable for reuse
- completely reusable instruments e.g., instruments that are completely sterilizable for repeated use.
- those instruments (or components of instruments) that can be sterilized and reused help reduce the costs associated with the particular surgical procedure for which they are used.
- reusable surgical instruments are cost-effective, it is important that these instruments be capable of performing the same functions as their disposable counterparts and that any disposable components of these instruments be removable and replaceable with new components efficiently and easily.
- a forceps in accordance with one embodiment of the present disclosure, includes an end effector assembly having first and second jaw members.
- One (or both) of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween.
- One (or both) of the jaw members includes a jaw frame, a jaw housing, and an elastomeric ring member.
- the jaw housing is releasably engageable with the jaw frame.
- the elastomeric ring member is removably positionable about a distal end of the jaw housing.
- the elastomeric ring member is configured to define a gap distance between the first and second jaw members upon movement of the first and second jaw members to the approximated position.
- the gap distance is in the range of about 0.001 inches to about 0.006 inches.
- the jaw housing includes an electrically-conductive seal plate releasably engageable therewith.
- the seal plate may be adapted to connect to a source of electrosurgical energy for sealing tissue.
- the jaw housing may further include an insulating member releasably engageable therewith.
- the insulating member is configured to releasably retain the seal plate thereon.
- the jaw housing is slidably positionable about the seal plate, the insulating member, and the jaw frame to releasably secure the seal plate, the insulating member, and the jaw frame to one another.
- the insulating member is formed at least partially from a resiliently compressible material configured to be compressed upon slidable positioning of the jaw housing about the seal plate, the insulating member and the jaw frame to releasably secure the seal plate, the insulating member and the jaw frame to one another in a friction-fit engagement.
- the insulating member is configured to snap-fittingly engage the jaw housing upon slidable positioning of the jaw housing about the seal plate, the insulating member and the jaw frame to releasably secure the seal plate, the insulating member and the jaw frame to one another.
- the insulator includes a proximal stop feature configured to define a proximal gap distance between the first and second jaw members upon movement of the first and second jaw members to the approximated position.
- the elastomeric ring member defines a distal gap distance between the first and second jaw members upon movement of the first and second jaw members to the approximated position.
- the seal plate and the insulating member include longitudinally-extending channels defined therethrough.
- the longitudinally-extending channels defined within the seal plate and the insulating member are configured to permit reciprocation of a knife therethrough.
- a method of assembling a jaw member of a forceps is also provided in accordance with the present disclosure.
- the method includes releasably engaging a jaw housing to a jaw frame.
- the method further includes positioning an elastomeric ring member about the jaw housing toward a distal end thereof.
- the elastomeric ring member is configured to define a gap distance between the jaw member and an opposed jaw member of the forceps when the jaw members are moved to an approximated position.
- the gap distance is in the range of about 0.001 inches to about 0.006 inches.
- the jaw housing includes an electrically-conductive seal plate releasably engageable therewith.
- the seal plate may be adapted to connect to a source of electrosurgical energy for sealing tissue.
- the jaw housing may further include an insulating member releasably engageable therewith. The insulating member is configured to retain the seal plate thereon.
- releasably engaging the jaw housing to the jaw frame further includes positioning the insulating member about the jaw frame, positioning the seal plate about the insulating member, and slidably positioning the jaw housing about the seal plate, the insulating member, and the jaw frame to releasably secure the seal plate, the insulating member, and the jaw frame to one another.
- the insulating member is formed partially (or entirely) from a resiliently compressible material.
- the insulating member is configured to be compressed upon slidable positioning of the jaw housing about the seal plate, the insulating member and the jaw frame to thereby releasably secure the seal plate, the insulating member and the jaw frame to one another in a friction-fit engagement.
- the insulating member is configured to snap-fittingly engage the jaw housing upon slidable positioning of the jaw housing about the seal plate, the insulating member and the jaw frame to secure the seal plate, the insulating member and the jaw frame to one another.
- the method further includes disengaging the jaw housing from the jaw frame, releasably engaging a second jaw housing to the jaw frame, and positioning a second elastomeric ring member about the second jaw housing toward a distal end thereof.
- the second elastomeric ring member similar to the first elastomeric ring member, is configured to define a gap distance between the jaw member and the opposed jaw member of the forceps when the jaw members are moved to the approximated position.
- an end effector assembly in another embodiment of a forceps provided in accordance with the present disclosure, includes first and second jaw members.
- One (or both) of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween.
- One (or both) of the jaw members includes a jaw frame, a jaw housing and an elastomeric ring member.
- the ring member is removably positionable about a distal end of the jaw housing to releasably secure the jaw housing to the jaw frame.
- the elastomeric ring member is also configured to define a gap distance between the first and second jaw members upon movement of the first and second jaw members to the approximated position.
- the forceps may also include an insulating member and a seal plate.
- the insulating member, the jaw housing and/or the jaw frame may include a ring receiving feature defined therein and configured to retain the elastomeric ring member in position thereon.
- the forceps may otherwise be configured similarly to any of the other embodiments described above.
- the method includes positioning a jaw housing about a jaw frame and positioning an elastomeric ring member about the jaw housing to releasably secure the jaw housing to the jaw frame.
- the elastomeric ring member is also configured to define a gap distance between the jaw member and an opposed jaw member of the forceps when the jaw members are moved to an approximated position.
- the method may further include any of the features of any of the other embodiments discussed above.
- FIG. 1 is a front, perspective view of an endoscopic surgical forceps configured for use in accordance with the present disclosure
- FIG. 2 is a front, perspective view of an open surgical forceps configured for use in accordance with the present disclosure
- FIG. 3A is a side view of an end effector assembly configured for use with either of the forceps of FIGS. 1 and 2 wherein jaw members of the end effector assembly are shown in a spaced-apart position;
- FIG. 3B is a side view of the end effector assembly of FIG. 3A wherein the jaw members are shown in an approximated position;
- FIG. 4 is an exploded view of one of the jaw members of the end effector assembly of FIG. 3A ;
- FIG. 5 is a top view of the jaw member of FIG. 4 ;
- FIG. 6 is a longitudinal, cross-sectional view of the jaw member of FIG. 4 ;
- FIG. 7 is a transverse, cross-sectional view of the jaw member of FIG. 4 ;
- FIG. 8 is an exploded, perspective view of the other jaw member of the end effector assembly of FIG. 3A ;
- FIG. 9 is a top view of the jaw member of FIG. 8 ;
- FIG. 10 is a longitudinal, cross-sectional view of another embodiment of a jaw member of an end effector assembly configured for use with either of the forceps of FIGS. 1 and 2 ;
- FIG. 11 is a transverse, cross-sectional view of the jaw member of FIG. 10 .
- distal refers to the portion that is being described which is further from a user
- proximal refers to the portion that is being described which is closer to a user
- FIG. 1 depicts a forceps 10 for use in connection with endoscopic surgical procedures
- FIG. 2 depicts an open forceps 10 ′ contemplated for use in connection with traditional open surgical procedures.
- an endoscopic instrument e.g., forceps 10
- an open instrument e.g., forceps 10 ′
- an endoscopic instrument e.g., forceps 10
- an open instrument e.g., forceps 10 ′
- different electrical and mechanical connections and considerations apply to each particular type of instrument, however, the novel aspects with respect to the end effector assembly and its operating characteristics remain generally consistent with respect to both the open and endoscopic configurations.
- an endoscopic forceps 10 is provided defining a longitudinal axis “A-A” and including a housing 20 , a handle assembly 30 , a rotating assembly 70 , a trigger assembly 80 and an end effector assembly 100 .
- Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 100 and a proximal end 16 that mechanically engages housing 20 .
- Forceps 10 also includes electrosurgical cable 310 that connects forceps 10 to a generator (not shown) or other suitable power source, although forceps 10 may alternatively be configured as a battery powered instrument.
- Cable 310 includes a wire (or wires) 312 extending therethrough that has sufficient length to extend through shaft 12 in order to provide electrical energy to at least one of the jaw members 110 and 120 of end effector assembly 100 .
- handle assembly 30 includes fixed handle 50 and a moveable handle 40 .
- Fixed handle 50 is integrally associated with housing 20 and handle 40 is moveable relative to fixed handle 50 .
- Rotating assembly 70 is rotatable in either direction about a longitudinal axis “A-A” to rotate end effector 100 about longitudinal axis “A-A.”
- the housing 20 houses the internal working components of the forceps 10 .
- end effector assembly 100 is shown attached at a distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120 .
- Each of jaw members 110 and 120 includes an opposed electrically conductive tissue sealing surface 216 , 226 , respectively.
- End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is moveable about pivot 103 relative to shaft 12 and fixed jaw member 120 .
- end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and j aw member 120 are moveable about a pivot 103 relative to one another and to shaft 12 .
- a knife assembly (not shown) is disposed within shaft 12 and a knife channel ( FIG. 7 ) is defined within one or both jaw members 110 , 120 to permit reciprocation of a knife blade (not shown) therethrough.
- End effector assembly 100 will be described in greater detail hereinbelow.
- moveable handle 40 of handle assembly 30 is ultimately connected to a drive assembly (not shown) that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between a spaced-apart position ( FIG. 3A ) and an approximated position ( FIG. 3B ) to grasp tissue disposed between sealing surfaces 216 and 226 ( FIGS. 3A-3B ) of jaw members 110 , 120 , respectively.
- moveable handle 40 is initially spaced-apart from fixed handle 50 and, correspondingly, jaw members 110 , 120 are in the spaced-apart position.
- Moveable handle 40 is depressible from this initial position to a depressed position corresponding to the approximated position ( FIG. 3B ) of jaw members 110 , 120 .
- an open forceps 10 ′ including two elongated shafts 12 a and 12 b, each having a proximal end 16 a and 16 b, and a distal end 14 a and 14 b, respectively. Similar to forceps 10 ( FIG. 1 ), forceps 10 ′ is configured for use with end effector assembly 100 . More specifically, end effector assembly 100 is attached to distal ends 14 a and 14 b of shafts 12 a and 12 b, respectively. As mentioned above, end effector assembly 100 includes a pair of opposing jaw members 110 and 120 that are pivotably connected about a pivot 103 .
- Each shaft 12 a and 12 b includes a handle 17 a and 17 b disposed at the proximal end 16 a and 16 b thereof.
- Each handle 17 a and 17 b defines a finger hole 18 a and 18 b therethrough for receiving a finger of the user.
- finger holes 18 a and 18 b facilitate movement of the shafts 12 a and 12 b relative to one another that, in turn, pivots jaw members 110 and 120 from an open position ( FIG. 3A ), wherein the jaw members 110 and 120 are disposed in spaced-apart relation relative to one another, to a closed position ( FIG. 3B ), wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.
- a ratchet 30 ′ may be included for selectively locking the jaw members 110 and 120 relative to one another at various positions during pivoting. It is envisioned that the ratchet 30 ′ may include graduations or other visual markings that enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 110 and 120 .
- one of the shafts e.g., shaft 12 b, includes a proximal shaft connector 19 which is designed to connect the forceps 10 ′ to a source of electrosurgical energy such as an electrosurgical generator (not shown).
- Proximal shaft connector 19 secures an electrosurgical cable 310 ′ to forceps 10 ′ such that the user may selectively apply electrosurgical energy to the electrically conductive sealing surfaces 216 and 226 of jaw members 110 and 120 , respectively, as needed.
- Forceps 10 ′ may further include a knife assembly (not shown) disposed within either of shafts 12 a, 12 b and a knife channel ( FIG. 7 ) defined within one or both jaw members 110 , 120 to permit reciprocation of a knife blade (not shown) therethrough.
- a knife assembly (not shown) disposed within either of shafts 12 a, 12 b and a knife channel ( FIG. 7 ) defined within one or both jaw members 110 , 120 to permit reciprocation of a knife blade (not shown) therethrough.
- end effector assembly 100 including jaw members 110 , 120 is configured for use with either forceps 10 or forceps 10 ′, discussed above, or any other suitable surgical instrument capable of pivoting jaw members 110 , 120 relative to one another between a spaced-apart position and an approximated position for grasping tissue therebetween.
- end effector assembly 100 will be described hereinbelow with reference to forceps 10 only.
- Jaw members 110 , 120 of end effector assembly 100 each include a disposable component 210 , 220 that is releasably engageable with a jaw frame 112 , 122 , respectively. Jaw frames 112 , 122 , in turn, are pivotably coupled to one another about pivot 103 .
- Disposable components 210 , 220 are removable from jaw frames 112 , 122 , respectively, and are replaceable with new disposable components 210 , 220 , e.g., disposable components 210 , 220 may be configured to be discarded and replaced after a single use (or a single procedure), while the remaining components of forceps 10 may be formed from a sterilizable material such that they may be sterilized, e.g., placed in an autoclave (not shown), after each procedure for repeat use in conjunction with subsequent sets of disposable components 210 , 220 , e.g., a second set of disposable components 210 , 220 . Alternatively, the remaining components of forceps 10 may likewise be disposable.
- disposable components 210 , 220 are advantageous in that the surgeon may select the disposable components 210 , 220 for use with forceps 10 that are best suited for the particular procedure to be performed, i.e., the surgeon may customize forceps 10 to the particular procedure to be performed by selecting a particular set of disposable components 210 , 220 , without requiring an entirely new surgical instrument. For example, the surgeon may select between a first set of disposable components 210 , 220 configured for a first surgical purpose and a second set of disposable components 210 , 220 configured for a second, different surgical purpose, depending on the surgical procedure to be performed.
- requiring only a new set, i.e., a second set, of disposable components 210 , 220 for each use, rather than an entire new surgical instrument helps reduce the equipment costs associated with performing a particular surgical procedure.
- the ability to interchangeably use different disposable components 210 , 220 e.g., first and second sets of disposable components 210 , 220 , allows a single instrument to be customizable for use in various different procedures, rather than requiring a different instrument for each different procedure.
- Disposable component 220 of jaw member 120 generally includes an outer jaw housing 222 , an insulator 224 , an electrically-conductive tissue sealing plate 226 , and a resiliently flexible ring 228 , e.g., an elastomeric O-ring 228 .
- jaw housing 222 is configured to mechanically engage insulator 224 , tissue sealing plate 226 and jaw frame 122 to one another, e.g., in slidable snap-fit engagement therewith, although other mechanisms (not shown) for releasably securing jaw housing 222 about insulator 224 , tissue sealing plate 226 and jaw frame 122 are contemplated.
- jaw housing 222 includes an elongated cavity 223 a defined therein for slidably receiving tissue sealing plate 226 , insulator 224 , and jaw frame 122 therethrough. Jaw housing 222 further includes an annular groove 223 b defined therein toward a distal end 223 c thereof for positioning of O-ring 228 thereon. The assembly of jaw member 120 will be described in greater detail below.
- insulator 224 is configured to electrically isolate tissue sealing plate 226 from the remaining components of jaw member 120 . Accordingly, insulator 224 is formed at least partially from an electrically-insulative material, e.g., silicon. Insulator 224 includes a base 225 a disposed at a proximal end thereof. Base 225 a includes a pair of laterally-extending, dovetail-shaped flanges 225 b configured to snap-fittingly engage elongated slots 223 d defined within jaw housing 222 to secure jaw housing 222 about insulator 224 , tissue sealing plate 226 and jaw frame 122 .
- an electrically-insulative material e.g., silicon.
- Insulator 224 includes a base 225 a disposed at a proximal end thereof.
- Base 225 a includes a pair of laterally-extending, dovetail-shaped flanges 225 b configured to snap-fittingly engage elongated slots 223 d defined within jaw housing 222 to
- base 225 a is configured to abut a proximal end 227 a of tissue sealing plate 226 on an upper side thereof and to abut proximal end 123 of jaw frame 122 on the lower side thereof such that, when jaw housing 222 is slid over and snap-fittingly engaged with insulator 224 , the components of jaw member 120 , e.g., jaw frame 122 , jaw housing 222 , insulator 224 and tissue sealing plate 226 , are maintained in substantially fixed relation relative to one another.
- Base 225 a may also be configured to set a gap distance “g” ( FIG. 3B ) between jaw members 110 , 120 at a proximal end 101 of end effector assembly 100 when jaw members 110 , 120 are moved to the approximated position, as will be described in greater detail below.
- Insulator 224 may alternatively, or additionally, be formed from a resiliently compressible material, e.g., silicon, that is compressed, e.g., from an initial state to a compressed state, upon insertion of insulator 224 into jaw housing 222 such that insulator 224 , tissue sealing plate 226 and jaw frame 122 are frictionally retained within jaw housing 222 , e.g., under the biasing force urging insulator 224 back toward the initial state.
- insulator 224 may include a blade slot 225 c defined therein for reciprocation of a knife blade (not shown) therethrough.
- tissue sealing plate 226 of disposable component 220 of jaw member 120 is configured for positioning about insulator 224 and for slidable insertion into jaw housing 222 . More specifically, tissue sealing plate 226 includes a lip 227 b extending from an outer periphery thereof that is configured to engage a track 225 d defined within insulator 224 to retain tissue sealing plate 226 and insulator 224 in substantially fixed relation relative to one another. Tissue sealing plate 226 further includes a post 227 c extending therefrom that is configured to electrically connect tissue sealing plate 226 to a source of electrosurgical energy (not shown), e.g., via wires 312 ( FIG. 1 ) disposed within electrosurgical cable 310 ( FIG. 1 ). A longitudinally-extending blade slot 227 d configured for alignment with blade slot 225 c defined within insulator 224 may also be provided to permit reciprocation of a knife blade (not shown) therethrough.
- O-ring 228 is configured for positioning about jaw housing 222 . More specifically, O-ring 228 is configured for positioning within annular groove 223 b formed within jaw housing 222 toward distal end 223 c thereof.
- O-ring 228 may be formed from any bio-compatible, resiliently flexible material, e.g., an elastomer. Further, although shown in the drawings as having an oval-shaped cross-sectional configuration, O-ring 228 may alternatively define a circular cross-sectional configuration, a polygonal cross-sectional configuration, or any other suitable cross-sectional configuration.
- Annular groove 223 b may define a complementary configuration relative to O-ring 228 , e.g., a semi-oval cross-sectional configuration, to facilitate positioning and retention of O-ring 228 within annular groove 223 b.
- O-ring 228 may also be configured to provide a gap distance “g” between jaw members 110 , 120 at a distal end 102 of end effector assembly 100 , in conjunction with, or in place of base 225 a of insulator 224 ( FIG. 4 ). Accordingly, the compressibility of O-ring 228 , in response to the closure force imparted thereto by jaw members 110 , 120 , determines, in part, the gap distance “g” between tissue sealing plates 216 , 226 of members 110 , 120 , respectively. For example, the more compressible the O-ring 228 , the smaller the gap distance “g” between sealing plates 216 , 226 of jaw members 110 , 120 , respectively.
- the compressibility of the O-ring 228 may depend on various factors including the thickness, or diameter of the O-ring 228 , the cross-sectional configuration of the O-ring, and/or the material(s) used to form the O-ring 228 .
- the user may select an O-ring 228 configured to set a specific gap distance “g,” or range of gap distances “g,” suitable for the particular procedure to be performed.
- Various different O-rings 228 e.g., a first O-ring having a first configuration and a second O-ring having a second, different configuration, may be provided such that a single surgical instrument, e.g., forceps 10 ( FIG.
- Gap ranges are contemplated in the range of about 0.001 inches to about 0.006 inches.
- Jaw member 110 includes a jaw frame 112 and a disposable component 210 including an outer jaw housing 212 , an insulator 214 , and a tissue sealing plate 216 .
- Jaw frame 112 is pivotably engageable with jaw frame 122 of jaw member 120 ( FIGS. 4-7 ), about pivot 103 ( FIGS. 3A-3B ), to permit jaw members 110 , 120 to move relative to one another between the spaced-apart position ( FIG. 3A ) and the approximated position ( FIG. 3B ).
- Insulator 214 is configured to retain tissue sealing plate 216 thereabout and includes a proximal base 215 for abutting tissue sealing plate 216 and jaw frame 112 .
- Proximal base 215 may also be configured, in conjunction with proximal base 225 a of insulator 224 of jaw member 120 , to set the gap distance “g” between tissue sealing plates 216 , 226 of jaw members 110 , 120 , respectively, at proximal end 101 of end effector assembly 100 (see FIG. 3B ).
- Jaw member 110 is configured similarly to jaw member 120 except that jaw member 110 does not include an O-ring disposed about jaw housing 212 .
- jaw member 110 may alternatively be configured to include an O-ring in place of, or in addition to O-ring 228 of jaw member 120 ( FIGS. 3A-3B ).
- tissue sealing plate 216 and insulator 214 of jaw member 110 may cooperate to define a blade channel 217 extending longitudinally therethrough such that, upon approximation of jaw members 110 , 120 , blade channel 217 and the blade channel of jaw member 120 , e.g., the blade channel formed from blade slots 225 c and 227 d, cooperate with one another to permit reciprocation of a knife blade (not shown).
- the blade channel may be defined completely within one of jaw members 110 , 120 , e.g., such that the other jaw member defines a continuous configuration without a blade channel defined therein, or the blade channel may be left out entirely.
- Jaw member 110 may otherwise be configured similarly to jaw member 120 and, thus, the description of such will not be repeated herein for purposes of brevity.
- tissue sealing plate 226 is positioned about insulator 224 such that lip 227 b of tissue sealing plate 226 is disposed within track 225 d of insulator 224 and such that proximal end 227 a of tissue sealing plate 226 abuts base 225 a of insulator 224 .
- post 227 c extends past insulator 224 on a distal end thereof, allowing post 227 c to be coupled to a source of electrosurgical energy (not shown) for energizing tissue sealing plate 226 .
- insulator 224 and tissue sealing plate 226 are positioned atop jaw frame 122 such that proximal end 123 of jaw frame 122 abuts base 225 a of insulator 224 . Accordingly, in this position, insulator 224 is inhibited from translating distally relative to jaw frame 122 and tissue sealing plate 226 , due to the abutting relation of base 225 a therewith.
- jaw housing 222 is slidably inserted over insulator 224 , tissue sealing plate 226 , and jaw frame 122 .
- insulator 224 , tissue sealing plate 226 , and jaw frame 122 and slid into elongated cavity 223 a defined within jaw housing 222 .
- insulator 224 , tissue sealing plate 226 , and jaw frame 122 are slid into elongated cavity 223 a until lateral flanges 225 b of insulator 224 snap into engagement with elongated slots 223 d defined within jaw housing 222 .
- An audible and/or tactile “snap,” or other feedback signal may be provided to alert the user that jaw housing 222 has been securely engaged about insulator 224 , tissue sealing plate 226 , and jaw frame 122 .
- blade channels 225 c, 227 d of insulator 224 and tissue sealing plate 226 are aligned with one another to form a continuous blade channel for reciprocation of a knife blade (not shown) therethrough.
- O-ring 228 may be slid over distal end 223 c of member 120 and into position within annular groove 223 b of jaw housing 222 to complete the assembly of jaw member 120 .
- the specific O-ring 228 chosen may depend on the desired gap distance “g” between tissue sealing plates 216 , 226 of jaw members 110 , 120 , respectively, which, in turn, may depend on the size and/or composition of tissue to be sealed, the particular procedure to be performed, and/or other anatomical considerations.
- jaw frame 122 and insulator 224 are disposed within jaw housing 222 , while tissue sealing plate 226 extends therefrom toward jaw member 110 ( FIGS. 3A-3B ).
- O-ring 228 as best shown in FIGS. 3A-B and 6 , likewise extends from jaw housing 222 toward jaw member 110 further than tissue sealing plate 226 , e.g., O-ring 228 extends beyond tissue sealing plate 226 .
- jaw frame 120 due to the various mechanical relationships between jaw frame 120 , disposable component 220 and the sub-components thereof, as discussed above, in the fully assembled condition, jaw frame 122 , jaw housing 222 , insulator 224 , tissue sealing plate 226 and O-ring 228 , are all retained in substantially fixed relation relative to one another.
- end effector assembly 100 begins to be described. Initially, disposable components 210 , 220 are assembled on jaw members 110 , 120 , respectively, as described above. Next, with jaw members 110 , 120 in the spaced-apart position ( FIG. 3A ), end effector assembly 100 is positioned such that tissue to be grasped, sealed and/or divided is disposed between tissue sealing plates 216 , 226 of jaw members 110 , 120 , respectively.
- jaw members 110 , 120 are moved to the approximated position to grasp tissue between tissue sealing plates 216 and 226 , e.g., via depressing moveable handle 40 of forceps 10 from the initial position to the depressed position relative to fixed handle 50 (see FIG. 1 ).
- O-ring 228 which is disposed about jaw member 120 , contacts jaw housing 212 of jaw member 110 towards distal end 102 of end effector assembly 100 to set the gap distance “g” between tissue sealing plates 216 , 226 of jaw members 110 , 120 , respectively.
- proximal bases 215 , 225 a of respective insulators 214 , 224 help maintain a uniform gap distance “g” between tissue sealing plates 216 , 226 along the lengths of tissue sealing plates 216 and 226 .
- insulators 214 , 224 of jaw members 110 , 120 may include a proximal base that helps set gap distance “g,” or neither of insulators 214 , 224 may include a proximal base, e.g., only O-ring 228 may be used to set the gap distance “g.”
- O-ring 228 is compressed between jaw housings 212 , 222 , of jaw members 110 , 120 , respectively.
- the closure force imparted by jaw members 110 , 120 and the specific configuration of O-ring 228 determines the amount of compression of O-ring 228 and, as a result, the gap distance “g” between tissue sealing plates 216 , 226 .
- proximal bases 215 , 225 a, of insulators 214 , 224 of jaw members 110 , 120 may also be configured to compress in response to the closure force imparted thereon by jaw members 110 , 120 to help define gap distance “g,” or may simply be configured to define a minimum gap distance “g,” thereby helping to ensure that tissue sealing plates 216 , 226 of jaw members 110 , 120 , respectively, do not contact one another in the approximated position of jaw members 110 , 120 .
- electrosurgical energy may be supplied to one (or both) of tissue sealing plates 216 , 226 and through tissue to effect a tissue seal.
- controlling the gap distance “g” between sealing plates 216 and 226 e.g., via O-ring 228 and/or proximal bases 215 , 225 a, helps to ensure that an effective tissue seal is achieved.
- the gap distance “g” between opposing sealing plates 216 and 226 during sealing ranges from about 0.001 inches to about 0.006 inches.
- the knife blade may then be advanced through the knife channels of jaw member 110 and/or jaw member 120 to cut tissue along the previously formed tissue seal. Thereafter, jaw members 110 , 120 may be returned to the spaced-apart position to release the sealed and divided tissue and end effector assembly 100 may be removed from the surgical site. Finally, disposable components 210 , 220 may be removed from the respective jaw frames 112 , 122 , e.g., with respect to disposable component 220 , via disengaging lateral flanges 225 b of insulator 224 from elongated slots 223 d of jaw housing 222 and similarly with respect to disposable component 210 , and discarded. After sterilization of forceps 10 , a second set of disposable components 210 , 220 (including a second O-ring 228 ) may be engaged thereon similarly as described above for performing subsequent procedures.
- Jaw member 1120 includes a jaw frame 1122 and a disposable component 1220 releasably engageable thereon, e.g., slidably positionable thereon.
- a complementary jaw member substantially similar to jaw member 1120 and configured to oppose jaw member 1120 is also provided, but will not be described herein to avoid unnecessary repetition.
- the jaw members cooperate to pivot between a spaced-apart position and an approximated position for grasping tissue therebetween.
- jaw member 1120 includes a jaw frame 1122 and a disposable component 1220 .
- Jaw frame 1122 is similar to jaw frame 122 of jaw member 120 and is configured to pivotably engage an opposed jaw member (not shown) such that the jaw members may be moved between a spaced-apart position and an approximated position for grasping tissue therebetween.
- jaw frame 1122 defines an elongated configuration and includes a divot 1123 formed on a bottom surface 1124 thereof toward a distal end 1125 thereof, the importance of which will be described hereinbelow.
- disposable component 1220 of jaw member 1120 includes a jaw housing 1222 , an insulator 1224 , a tissue sealing plate 1226 and an O-ring 1228 . Similar to disposable component 220 ( FIGS. 3A-5 ), jaw housing 1222 of disposable component 1220 is configured for slidable positioning about insulator 1224 , tissue sealing plate 1226 and jaw frame 1122 . More specifically, jaw housing 1222 includes an elongated cavity 1223 a defined therein for slidable receiving tissue sealing plate 1226 , insulator 1224 , and jaw frame 1122 therethrough.
- Jaw housing 1222 further includes an annular slot 1223 b defined therein toward a distal end 1223 c thereof for positioning of O-ring 1228 thereon.
- Annular slot 1223 b is configured to align with divot 1123 formed with jaw frame 1122 such that O-ring 1228 may be disposed within both annular slot 1223 c defined within jaw housing 1222 and divot 1123 defined within jaw frame 1122 to retain jaw housing 1222 and jaw frame 1122 in fixed relation relative to one another.
- Insulator 1224 is substantially similar to insulator 224 ( FIG. 4 ) and is configured to electrically isolate tissue sealing plate 1226 from the remaining components of disposable component 1220 .
- Insulator 1224 includes a base (not shown) and a body portion 1225 a extending distally therefrom.
- the base (not shown) is configured similarly to base 225 a of insulator 224 of disposable component 220 of jaw member 120 ( FIGS. 3A-4 ).
- the base (not shown) is configured to abut a proximal end 1227 a of tissue sealing plate 1226 on an upper side thereof and to abut proximal end 1126 of jaw frame 1122 on the lower side thereof.
- the base (not shown) may also be configured to set a gap distance “g” ( FIG. 3B ) between the jaw members similarly as described above with respect to end effector assembly 100 (see FIGS. 3A-7 ).
- insulator 1224 further includes an annular slot 1225 b defined therein toward a distal end 1225 c thereof and configured to align with annular slot 1223 b defined within jaw housing 1222 and divot 1123 defined within jaw frame 1122 .
- Annular slot 1225 b is configured to receive at least a portion of O-ring 1228 therein such that, as will be described in greater detail below, O-ring 1228 may be used to secure jaw housing 1222 , jaw frame 1122 , and insulator 1224 in fixed relation relative to one another.
- tissue sealing plate 1226 of disposable component 1220 is configured for positioning about insulator 1224 and for slidable insertion into jaw housing 1222 . More specifically, tissue sealing plate 1226 includes a lip 1227 b extending from an outer periphery thereof that is configured to engage a track 1225 d defined within insulator 1224 to retain tissue sealing plate 1226 and insulator 1224 in fixed position relative to one another. Tissue sealing plate 1226 further includes a post 1227 c extending therefrom that is configured to electrically connect tissue sealing plate 1226 to a source of electrosurgical energy (not shown), e.g., via wires 312 ( FIG. 1 ) disposed within electrosurgical cable 310 ( FIG. 1 ).
- a source of electrosurgical energy not shown
- O-ring 1228 is configured for positioning within annular slot 1223 b of housing 1222 , annular slot 1225 b formed within insulator 1224 , and divot 1123 formed within jaw frame 1122 such that, upon positioning of O-ring 1228 about jaw housing 1222 , insulator 1224 and jaw frame 1122 , O-ring retains jaw housing 1222 , insulator 1224 , jaw frame 1122 , and tissue sealing plate 1226 (which is retained in fixed position relative to insulator 1224 ) in substantially fixed relation relative to one another.
- O-ring 1228 defines the gap distance “g” ( FIG.
- O-ring 1228 performs two functions: to secure disposable component 1220 of jaw member 1120 and the sub-components thereof to jaw frame 1122 in fixed relation relative to one another, and to set the gap distance “g” ( FIG. 3B ) between the jaw members upon movement of the jaw members to an approximated position, as discussed above with regard to O-ring 228 of disposable component 220 of jaw member 120 .
- O-ring 1228 may otherwise be configured similarly to O-ring 228 (see FIGS. 3A-5 ).
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ophthalmology & Optometry (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/693,698 USRE46962E1 (en) | 2011-04-21 | 2017-09-01 | Surgical forceps |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/091,331 US8568408B2 (en) | 2011-04-21 | 2011-04-21 | Surgical forceps |
US14/064,702 US9119630B2 (en) | 2011-04-21 | 2013-10-28 | Surgical forceps |
US15/693,698 USRE46962E1 (en) | 2011-04-21 | 2017-09-01 | Surgical forceps |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/064,702 Reissue US9119630B2 (en) | 2011-04-21 | 2013-10-28 | Surgical forceps |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46962E1 true USRE46962E1 (en) | 2018-07-24 |
Family
ID=45992107
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/091,331 Active 2032-01-11 US8568408B2 (en) | 2011-04-21 | 2011-04-21 | Surgical forceps |
US14/064,702 Ceased US9119630B2 (en) | 2011-04-21 | 2013-10-28 | Surgical forceps |
US15/693,698 Expired - Fee Related USRE46962E1 (en) | 2011-04-21 | 2017-09-01 | Surgical forceps |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/091,331 Active 2032-01-11 US8568408B2 (en) | 2011-04-21 | 2011-04-21 | Surgical forceps |
US14/064,702 Ceased US9119630B2 (en) | 2011-04-21 | 2013-10-28 | Surgical forceps |
Country Status (3)
Country | Link |
---|---|
US (3) | US8568408B2 (en) |
EP (1) | EP2514381B1 (en) |
CN (1) | CN102755193B (en) |
Families Citing this family (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
WO2002080796A1 (en) | 2001-04-06 | 2002-10-17 | Sherwood Services Ag | Vessel sealer and divider with non-conductive stop members |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8430876B2 (en) | 2009-08-27 | 2013-04-30 | Tyco Healthcare Group Lp | Vessel sealer and divider with knife lockout |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8568408B2 (en) * | 2011-04-21 | 2013-10-29 | Covidien Lp | Surgical forceps |
US8939972B2 (en) | 2011-05-06 | 2015-01-27 | Covidien Lp | Surgical forceps |
US8685009B2 (en) | 2011-05-16 | 2014-04-01 | Covidien Lp | Thread-like knife for tissue cutting |
US8852185B2 (en) | 2011-05-19 | 2014-10-07 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US9615877B2 (en) | 2011-06-17 | 2017-04-11 | Covidien Lp | Tissue sealing forceps |
US9039732B2 (en) | 2011-07-11 | 2015-05-26 | Covidien Lp | Surgical forceps |
US8745840B2 (en) | 2011-07-11 | 2014-06-10 | Covidien Lp | Surgical forceps and method of manufacturing thereof |
US8852186B2 (en) | 2011-08-09 | 2014-10-07 | Covidien Lp | Microwave sensing for tissue sealing |
DE202011052418U1 (en) * | 2011-09-16 | 2012-02-14 | Aesculap Ag | Electrosurgical instrument |
US8845636B2 (en) | 2011-09-16 | 2014-09-30 | Covidien Lp | Seal plate with insulation displacement connection |
US8864795B2 (en) | 2011-10-03 | 2014-10-21 | Covidien Lp | Surgical forceps |
JP6234932B2 (en) | 2011-10-24 | 2017-11-22 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Medical instruments |
US8968309B2 (en) | 2011-11-10 | 2015-03-03 | Covidien Lp | Surgical forceps |
US8968310B2 (en) | 2011-11-30 | 2015-03-03 | Covidien Lp | Electrosurgical instrument with a knife blade lockout mechanism |
DE102012100040A1 (en) | 2012-01-04 | 2013-07-04 | Aesculap Ag | Electrosurgical instrument and jaw part for this |
US9113897B2 (en) | 2012-01-23 | 2015-08-25 | Covidien Lp | Partitioned surgical instrument |
US8968360B2 (en) | 2012-01-25 | 2015-03-03 | Covidien Lp | Surgical instrument with resilient driving member and related methods of use |
DE102012101257A1 (en) | 2012-02-16 | 2013-08-22 | Aesculap Ag | Electrosurgical instrument |
US8747434B2 (en) | 2012-02-20 | 2014-06-10 | Covidien Lp | Knife deployment mechanisms for surgical forceps |
US8887373B2 (en) | 2012-02-24 | 2014-11-18 | Covidien Lp | Vessel sealing instrument with reduced thermal spread and method of manufacture therefor |
US8961514B2 (en) | 2012-03-06 | 2015-02-24 | Covidien Lp | Articulating surgical apparatus |
USD743547S1 (en) * | 2012-03-08 | 2015-11-17 | Covidien Lp | Handle for laparoscopic device with distal rotation wheel |
USD748260S1 (en) * | 2012-03-08 | 2016-01-26 | Covidien Lp | Handle for laparoscopic device with integral rotation wheel |
USD744100S1 (en) | 2012-03-08 | 2015-11-24 | Covidien Lp | Handle for laparoscopic device |
US9375282B2 (en) | 2012-03-26 | 2016-06-28 | Covidien Lp | Light energy sealing, cutting and sensing surgical device |
US9265569B2 (en) | 2012-03-29 | 2016-02-23 | Covidien Lp | Method of manufacturing an electrosurgical forceps |
US9668807B2 (en) | 2012-05-01 | 2017-06-06 | Covidien Lp | Simplified spring load mechanism for delivering shaft force of a surgical instrument |
US8968311B2 (en) | 2012-05-01 | 2015-03-03 | Covidien Lp | Surgical instrument with stamped double-flag jaws and actuation mechanism |
US9820765B2 (en) | 2012-05-01 | 2017-11-21 | Covidien Lp | Surgical instrument with stamped double-flange jaws |
US9375258B2 (en) | 2012-05-08 | 2016-06-28 | Covidien Lp | Surgical forceps |
US9039731B2 (en) | 2012-05-08 | 2015-05-26 | Covidien Lp | Surgical forceps including blade safety mechanism |
US9681908B2 (en) | 2012-10-08 | 2017-06-20 | Covidien Lp | Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies |
US9265566B2 (en) | 2012-10-16 | 2016-02-23 | Covidien Lp | Surgical instrument |
US9375256B2 (en) | 2013-02-05 | 2016-06-28 | Covidien Lp | Electrosurgical forceps |
US9713491B2 (en) | 2013-02-19 | 2017-07-25 | Covidien Lp | Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument |
US10070916B2 (en) | 2013-03-11 | 2018-09-11 | Covidien Lp | Surgical instrument with system and method for springing open jaw members |
US9456863B2 (en) | 2013-03-11 | 2016-10-04 | Covidien Lp | Surgical instrument with switch activation control |
US9877775B2 (en) | 2013-03-12 | 2018-01-30 | Covidien Lp | Electrosurgical instrument with a knife blade stop |
JP6099231B2 (en) | 2013-08-07 | 2017-03-22 | コヴィディエン リミテッド パートナーシップ | Bipolar surgical instrument |
AU2013397838B2 (en) | 2013-08-07 | 2018-08-16 | Covidien Lp | Bipolar surgical instrument with tissue stop |
USD788302S1 (en) | 2013-10-01 | 2017-05-30 | Covidien Lp | Knife for endoscopic electrosurgical forceps |
US10231776B2 (en) | 2014-01-29 | 2019-03-19 | Covidien Lp | Tissue sealing instrument with tissue-dissecting electrode |
US10258404B2 (en) | 2014-04-24 | 2019-04-16 | Gyrus, ACMI, Inc. | Partially covered jaw electrodes |
US10660694B2 (en) | 2014-08-27 | 2020-05-26 | Covidien Lp | Vessel sealing instrument and switch assemblies thereof |
US9931158B2 (en) | 2014-09-17 | 2018-04-03 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987076B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Multi-function surgical instruments |
US10080605B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10039593B2 (en) | 2014-09-17 | 2018-08-07 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US9918785B2 (en) | 2014-09-17 | 2018-03-20 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10172612B2 (en) | 2015-01-21 | 2019-01-08 | Covidien Lp | Surgical instruments with force applier and methods of use |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
USD844139S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Monopolar assembly of a multi-function surgical instrument |
USD844138S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Handle assembly of a multi-function surgical instrument |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10111660B2 (en) * | 2015-12-03 | 2018-10-30 | Covidien Lp | Surgical stapler flexible distal tip |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10426543B2 (en) | 2016-01-23 | 2019-10-01 | Covidien Lp | Knife trigger for vessel sealer |
US10537381B2 (en) | 2016-02-26 | 2020-01-21 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10631887B2 (en) | 2016-08-15 | 2020-04-28 | Covidien Lp | Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US10813695B2 (en) | 2017-01-27 | 2020-10-27 | Covidien Lp | Reflectors for optical-based vessel sealing |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US10973567B2 (en) | 2017-05-12 | 2021-04-13 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
US11172980B2 (en) | 2017-05-12 | 2021-11-16 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
USD854684S1 (en) | 2017-06-08 | 2019-07-23 | Covidien Lp | Open vessel sealer with mechanical cutter |
USD854149S1 (en) | 2017-06-08 | 2019-07-16 | Covidien Lp | End effector for open vessel sealer |
USD843574S1 (en) | 2017-06-08 | 2019-03-19 | Covidien Lp | Knife for open vessel sealer |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US11154348B2 (en) | 2017-08-29 | 2021-10-26 | Covidien Lp | Surgical instruments and methods of assembling surgical instruments |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11241275B2 (en) | 2018-03-21 | 2022-02-08 | Covidien Lp | Energy-based surgical instrument having multiple operational configurations |
US11123132B2 (en) | 2018-04-09 | 2021-09-21 | Covidien Lp | Multi-function surgical instruments and assemblies therefor |
US10780544B2 (en) | 2018-04-24 | 2020-09-22 | Covidien Lp | Systems and methods facilitating reprocessing of surgical instruments |
US10828756B2 (en) | 2018-04-24 | 2020-11-10 | Covidien Lp | Disassembly methods facilitating reprocessing of multi-function surgical instruments |
US11471211B2 (en) | 2018-10-12 | 2022-10-18 | Covidien Lp | Electrosurgical forceps |
US11376062B2 (en) | 2018-10-12 | 2022-07-05 | Covidien Lp | Electrosurgical forceps |
US11350982B2 (en) | 2018-12-05 | 2022-06-07 | Covidien Lp | Electrosurgical forceps |
US11523861B2 (en) | 2019-03-22 | 2022-12-13 | Covidien Lp | Methods for manufacturing a jaw assembly for an electrosurgical forceps |
US11617612B2 (en) | 2020-03-16 | 2023-04-04 | Covidien Lp | Forceps with linear trigger mechanism |
US11779386B2 (en) * | 2020-04-16 | 2023-10-10 | Covidien Lp | Two-part seal plate for vessel sealer and method of manufacturing same |
US11660109B2 (en) | 2020-09-08 | 2023-05-30 | Covidien Lp | Cutting elements for surgical instruments such as for use in robotic surgical systems |
US11925406B2 (en) | 2020-09-14 | 2024-03-12 | Covidien Lp | End effector assemblies for surgical instruments |
US12048472B2 (en) * | 2021-02-01 | 2024-07-30 | Covidien Lp | Electrosurgical instruments, jaw members thereof, and methods of manufacturing |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
US20240050114A1 (en) * | 2022-08-09 | 2024-02-15 | Covidien Lp | Surgical instruments having replaceable seal plates |
Citations (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US776910A (en) | 1904-06-04 | 1904-12-06 | George I Hovey | Can-capping machine. |
US2723666A (en) * | 1954-08-12 | 1955-11-15 | Emanuel M Greenberg | Laminated mitten for surgical and obstetrical instruments |
US3503398A (en) * | 1965-09-10 | 1970-03-31 | American Hospital Supply Corp | Atraumatic clamp for vascular surgery |
US3503396A (en) * | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
US3653389A (en) * | 1970-01-19 | 1972-04-04 | Amp Inc | Disposable forceps |
US3746002A (en) * | 1971-04-29 | 1973-07-17 | J Haller | Atraumatic surgical clamp |
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
DE2514501A1 (en) | 1975-04-03 | 1976-10-21 | Karl Storz | Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece |
DE2627679A1 (en) | 1975-06-26 | 1977-01-13 | Marcel Lamidey | HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS |
USD249549S (en) | 1976-10-22 | 1978-09-19 | Aspen Laboratories, Inc. | Electrosurgical handle |
USD263020S (en) | 1980-01-22 | 1982-02-16 | Rau Iii David M | Retractable knife |
JPS61501068A (en) | 1984-01-30 | 1986-05-29 | ハルコフスキイ ナウチノ−イススレドワテルスキイ インスチチユ−ト オブスチエイ イ ネオトロジノイ ヒルルギイ | bipolar electrosurgical instrument |
DE3423356C2 (en) | 1984-06-25 | 1986-06-26 | Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen | Electrosurgical high frequency cutting instrument |
DE3612646A1 (en) | 1985-04-16 | 1987-04-30 | Ellman International | Electrosurgical handle piece for blades, needles and forceps |
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
USD295893S (en) | 1985-09-25 | 1988-05-24 | Acme United Corporation | Disposable surgical clamp |
USD295894S (en) | 1985-09-26 | 1988-05-24 | Acme United Corporation | Disposable surgical scissors |
USD298353S (en) | 1986-05-06 | 1988-11-01 | Vitalmetrics, Inc. | Handle for surgical instrument |
USD299413S (en) | 1985-07-17 | 1989-01-17 | The Stanley Works | Folding pocket saw handle |
JPS6424051A (en) | 1987-07-16 | 1989-01-26 | Meisho Koki Kk | Sheet glass having transparency pattern and its production |
US4821719A (en) | 1984-12-03 | 1989-04-18 | Fogarty Thomas J | Cohesive-adhesive atraumatic clamp |
JPH01147150A (en) | 1987-12-04 | 1989-06-08 | Hitachi Ltd | Variable venturi carburetor |
JPH055106A (en) | 1990-07-31 | 1993-01-14 | Matsushita Electric Works Ltd | Production of alloy sintered body |
JPH0540112A (en) | 1991-02-08 | 1993-02-19 | Tokico Ltd | Analyzing apparatus of component of sample liquid |
US5250072A (en) * | 1990-12-10 | 1993-10-05 | Jain Krishna M | Surgical clamp jaw cover |
USD343453S (en) | 1993-05-05 | 1994-01-18 | Laparomed Corporation | Handle for laparoscopic surgical instrument |
JPH06502328A (en) | 1990-10-17 | 1994-03-17 | ボストン サイエンティフィック コーポレイション | Surgical instruments and methods |
JPH06121797A (en) | 1992-02-27 | 1994-05-06 | United States Surgical Corp | Equipment and method for performing intracutaneous stapling of body tissue |
USD348930S (en) | 1991-10-11 | 1994-07-19 | Ethicon, Inc. | Endoscopic stapler |
USD349341S (en) | 1992-10-28 | 1994-08-02 | Microsurge, Inc. | Endoscopic grasper |
JPH06285078A (en) | 1993-04-05 | 1994-10-11 | Olympus Optical Co Ltd | Forceps |
JPH06343644A (en) | 1993-05-04 | 1994-12-20 | Gyrus Medical Ltd | Surgical peritoneoscope equipment |
JPH06511401A (en) | 1991-06-07 | 1994-12-22 | バイタル メディカル プロダクツ コーポレイション | Bipolar electrosurgical endoscopic instrument and its method of use |
USD354564S (en) | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
DE4303882C2 (en) | 1993-02-10 | 1995-02-09 | Kernforschungsz Karlsruhe | Combination instrument for separation and coagulation for minimally invasive surgery |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
DE4403252A1 (en) | 1994-02-03 | 1995-08-10 | Michael Hauser | Instrument shaft for min. invasive surgery |
JPH07265328A (en) | 1993-11-01 | 1995-10-17 | Gyrus Medical Ltd | Electrode assembly for electric surgery device and electric surgery device using it |
JPH0856955A (en) | 1994-06-29 | 1996-03-05 | Gyrus Medical Ltd | Electric surgical apparatus |
DE19515914C1 (en) | 1995-05-02 | 1996-07-25 | Aesculap Ag | Tong or scissor-shaped surgical instrument |
DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
US5551622A (en) * | 1994-07-13 | 1996-09-03 | Yoon; Inbae | Surgical stapler |
JPH08252263A (en) | 1994-12-21 | 1996-10-01 | Gyrus Medical Ltd | Electronic surgical incision apparatus and electronic surgical incision device using said apparatus |
US5569274A (en) | 1993-02-22 | 1996-10-29 | Heartport, Inc. | Endoscopic vascular clamping system and method |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
JPH08317934A (en) | 1995-04-12 | 1996-12-03 | Ethicon Endo Surgery Inc | Hemostatic device for electric surgery with adaptable electrode |
JPH0910223A (en) | 1995-06-23 | 1997-01-14 | Gyrus Medical Ltd | Generator and system for electric operation |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
JPH09122138A (en) | 1995-10-20 | 1997-05-13 | Ethicon Endo Surgery Inc | Apparatus for operation |
USD384413S (en) | 1994-10-07 | 1997-09-30 | United States Surgical Corporation | Endoscopic suturing instrument |
JPH1024051A (en) | 1995-09-20 | 1998-01-27 | Olympus Optical Co Ltd | Coagulation forceps with separating function |
DE19751106A1 (en) | 1996-11-27 | 1998-05-28 | Eastman Kodak Co | Laser printer with array of laser diodes |
JPH10155798A (en) | 1996-12-04 | 1998-06-16 | Asahi Optical Co Ltd | Hot biopsy clamp for endoscope |
USH1745H (en) | 1995-09-29 | 1998-08-04 | Paraschac; Joseph F. | Electrosurgical clamping device with insulation limited bipolar electrode |
USD402028S (en) | 1997-10-10 | 1998-12-01 | Invasatec, Inc. | Hand controller for medical system |
JPH1147150A (en) | 1997-08-06 | 1999-02-23 | Olympus Optical Co Ltd | Endoscopic surgery appliance |
JPH1170124A (en) | 1997-05-14 | 1999-03-16 | Ethicon Endo Surgery Inc | Improved electrosurgical hemostatic apparatus having anvil |
US5891142A (en) * | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
USD408018S (en) | 1996-03-12 | 1999-04-13 | Mcnaughton Patrick J | Switch guard |
DE19751108A1 (en) | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
JPH11169381A (en) | 1997-12-15 | 1999-06-29 | Olympus Optical Co Ltd | High frequency treating device |
JPH11192238A (en) | 1997-10-10 | 1999-07-21 | Ethicon Endo Surgery Inc | Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm |
JPH11244298A (en) | 1997-12-19 | 1999-09-14 | Gyrus Medical Ltd | Electric surgical instrument |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US6007552A (en) * | 1997-12-18 | 1999-12-28 | Minumys | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
USD424694S (en) | 1998-10-23 | 2000-05-09 | Sherwood Services Ag | Forceps |
USD425201S (en) | 1998-10-23 | 2000-05-16 | Sherwood Services Ag | Disposable electrode assembly |
WO2000036986A1 (en) | 1998-12-18 | 2000-06-29 | Karl Storz Gmbh & Co. Kg | Bipolar medical instrument |
US6099539A (en) * | 1998-07-27 | 2000-08-08 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
JP2000342599A (en) | 1999-05-21 | 2000-12-12 | Gyrus Medical Ltd | Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation |
JP2000350732A (en) | 1999-05-21 | 2000-12-19 | Gyrus Medical Ltd | Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery |
US6193732B1 (en) * | 1999-01-08 | 2001-02-27 | Cardiothoracic System | Surgical clips and apparatus and method for clip placement |
WO2001015614A1 (en) | 1999-08-27 | 2001-03-08 | Karl Storz Gmbh & Co. Kg | Bipolar medical instrument |
JP2001128990A (en) | 1999-05-28 | 2001-05-15 | Gyrus Medical Ltd | Electro surgical instrument and electrosurgical tool converter |
JP2001190564A (en) | 2000-01-12 | 2001-07-17 | Olympus Optical Co Ltd | Medical treatment instrument |
WO2001054604A1 (en) | 2000-01-25 | 2001-08-02 | Aesculap Ag & Co. Kg | Bipolar gripping device |
US20010016750A1 (en) * | 1995-04-03 | 2001-08-23 | William W. Malecki | Clamp assembly and method of use |
USD449886S1 (en) | 1998-10-23 | 2001-10-30 | Sherwood Services Ag | Forceps with disposable electrode |
EP1159926A2 (en) | 2000-06-03 | 2001-12-05 | Aesculap Ag | Scissor- or forceps-like surgical instrument |
USD453923S1 (en) | 2000-11-16 | 2002-02-26 | Carling Technologies, Inc. | Electrical rocker switch guard |
USD454951S1 (en) | 2001-02-27 | 2002-03-26 | Visionary Biomedical, Inc. | Steerable catheter |
US20020045909A1 (en) * | 2000-10-16 | 2002-04-18 | Olympus Optical Co., Ltd. | Physiological tissue clipping apparatus, clipping method and clip unit mounting method |
US6387112B1 (en) * | 1999-06-18 | 2002-05-14 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
USD457959S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
DE10045375C2 (en) | 2000-09-14 | 2002-10-24 | Aesculap Ag & Co Kg | Medical instrument |
USD465281S1 (en) | 1999-09-21 | 2002-11-05 | Karl Storz Gmbh & Co. Kg | Endoscopic medical instrument |
US20020173805A1 (en) * | 2001-02-06 | 2002-11-21 | Kiyotaka Matsuno | Clipping device |
USD466209S1 (en) | 2001-02-27 | 2002-11-26 | Visionary Biomedical, Inc. | Steerable catheter |
US20020177861A1 (en) * | 2001-05-23 | 2002-11-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Clip device of endoscope |
US6500176B1 (en) * | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US20030073987A1 (en) * | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US6579304B1 (en) * | 1997-02-03 | 2003-06-17 | Applied Medical Resources Corporation | Surgical clamp with improved traction |
JP2004517668A (en) | 2000-10-20 | 2004-06-17 | オーナックス・メディカル・インコーポレーテッド | Surgical suturing instrument and method of use |
USD493888S1 (en) | 2003-02-04 | 2004-08-03 | Sherwood Services Ag | Electrosurgical pencil with pistol grip |
JP2004528869A (en) | 2001-01-26 | 2004-09-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | Electrosurgical instruments for coagulation and cutting |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
USD502994S1 (en) | 2003-05-21 | 2005-03-15 | Blake, Iii Joseph W | Repeating multi-clip applier |
EP1532933A1 (en) | 2003-11-20 | 2005-05-25 | Sherwood Services AG | Electrically conductive/insulative over-shoe for tissue fusion |
US20050113826A1 (en) | 2002-10-04 | 2005-05-26 | Johnson Kristin D. | Vessel sealing instrument with electrical cutting mechanism |
USD509297S1 (en) | 2003-10-17 | 2005-09-06 | Tyco Healthcare Group, Lp | Surgical instrument |
WO2005110264A2 (en) | 2004-05-14 | 2005-11-24 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
US20060155274A1 (en) * | 2005-01-08 | 2006-07-13 | Boston Scientific Scimed, Inc. | Clamp based lesion formation apparatus with variable spacing structures |
USD525361S1 (en) | 2004-10-06 | 2006-07-18 | Sherwood Services Ag | Hemostat style elongated dissecting and dividing instrument |
US20060217709A1 (en) | 2003-05-01 | 2006-09-28 | Sherwood Services Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
USD533274S1 (en) | 2004-10-12 | 2006-12-05 | Allegiance Corporation | Handle for surgical suction-irrigation device |
USD533942S1 (en) | 2004-06-30 | 2006-12-19 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
USD535027S1 (en) | 2004-10-06 | 2007-01-09 | Sherwood Services Ag | Low profile vessel sealing and cutting mechanism |
USD538932S1 (en) | 2005-06-30 | 2007-03-20 | Medical Action Industries Inc. | Surgical needle holder |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD541938S1 (en) | 2004-04-09 | 2007-05-01 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
USD541611S1 (en) | 2006-01-26 | 2007-05-01 | Robert Bosch Gmbh | Cordless screwdriver |
USD545432S1 (en) | 2003-08-08 | 2007-06-26 | Olympus Corporation | Distal portion of hemostatic forceps for endoscope |
USD547154S1 (en) | 2006-09-08 | 2007-07-24 | Winsource Industries Limited | Rotary driving tool |
US20070173814A1 (en) | 2006-01-24 | 2007-07-26 | David Hixson | Vessel sealer and divider for large tissue structures |
DE202007009317U1 (en) | 2007-06-26 | 2007-08-30 | Aesculap Ag & Co. Kg | Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit |
DE202007009165U1 (en) | 2007-06-29 | 2007-08-30 | Kls Martin Gmbh + Co. Kg | Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator |
DE202007016233U1 (en) | 2007-11-20 | 2008-01-31 | Aesculap Ag & Co. Kg | Surgical forceps |
USD564662S1 (en) | 2004-10-13 | 2008-03-18 | Sherwood Services Ag | Hourglass-shaped knife for electrosurgical forceps |
USD567943S1 (en) | 2004-10-08 | 2008-04-29 | Sherwood Services Ag | Over-ratchet safety for a vessel sealing instrument |
USD575401S1 (en) | 2007-06-12 | 2008-08-19 | Tyco Healthcare Group Lp | Vessel sealer |
USD575395S1 (en) | 2007-02-15 | 2008-08-19 | Tyco Healthcare Group Lp | Hemostat style elongated dissecting and dividing instrument |
USD582038S1 (en) | 2004-10-13 | 2008-12-02 | Medtronic, Inc. | Transurethral needle ablation device |
DE19738457B4 (en) | 1997-09-03 | 2009-01-02 | Celon Ag Medical Instruments | Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current |
US20090125026A1 (en) * | 2007-11-13 | 2009-05-14 | Boston Scientific Scimed, Inc. | Apparatus system and method for coagulating and cutting tissue |
DE102008018406B3 (en) | 2008-04-10 | 2009-07-23 | Bowa-Electronic Gmbh & Co. Kg | Electrosurgical device |
CN201299462Y (en) | 2008-10-28 | 2009-09-02 | 宋洪海 | Multi-layer metal composite pot |
US20090275958A1 (en) * | 2003-03-17 | 2009-11-05 | Sumitomo Bakelite Company | Clip and clipping instrument for biological tissues |
US20100100122A1 (en) | 2008-10-20 | 2010-04-22 | Tyco Healthcare Group Lp | Method of Sealing Tissue Using Radiofrequency Energy |
USD617903S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector pointed tip |
USD617901S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector chamfered tip |
USD617900S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut bottom jaw |
USD617902S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut top jaw |
USD618798S1 (en) | 2009-05-13 | 2010-06-29 | Tyco Healthcare Group Lp | Vessel sealing jaw seal plate |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
USD627462S1 (en) | 2009-09-09 | 2010-11-16 | Tyco Healthcare Group Lp | Knife channel of a jaw device |
USD628289S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
USD628290S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
USD630324S1 (en) | 2009-08-05 | 2011-01-04 | Tyco Healthcare Group Lp | Dissecting surgical jaw |
US8092473B2 (en) * | 1997-02-03 | 2012-01-10 | Applied Medical Resources Corporation | Surgical clamp with improved traction |
US8568408B2 (en) * | 2011-04-21 | 2013-10-29 | Covidien Lp | Surgical forceps |
US20140128867A1 (en) * | 2011-07-11 | 2014-05-08 | Covidien Lp | Surgical forceps |
US20150250527A1 (en) * | 2011-07-11 | 2015-09-10 | Covidien Lp | Surgical forceps |
US9636169B2 (en) * | 2011-09-19 | 2017-05-02 | Covidien Lp | Electrosurgical instrument |
-
2011
- 2011-04-21 US US13/091,331 patent/US8568408B2/en active Active
-
2012
- 2012-04-20 EP EP12164917.2A patent/EP2514381B1/en not_active Ceased
- 2012-04-23 CN CN201210120932.0A patent/CN102755193B/en not_active Expired - Fee Related
-
2013
- 2013-10-28 US US14/064,702 patent/US9119630B2/en not_active Ceased
-
2017
- 2017-09-01 US US15/693,698 patent/USRE46962E1/en not_active Expired - Fee Related
Patent Citations (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US776910A (en) | 1904-06-04 | 1904-12-06 | George I Hovey | Can-capping machine. |
US2723666A (en) * | 1954-08-12 | 1955-11-15 | Emanuel M Greenberg | Laminated mitten for surgical and obstetrical instruments |
US3503398A (en) * | 1965-09-10 | 1970-03-31 | American Hospital Supply Corp | Atraumatic clamp for vascular surgery |
US3503396A (en) * | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
US3653389A (en) * | 1970-01-19 | 1972-04-04 | Amp Inc | Disposable forceps |
US3746002A (en) * | 1971-04-29 | 1973-07-17 | J Haller | Atraumatic surgical clamp |
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
DE2514501A1 (en) | 1975-04-03 | 1976-10-21 | Karl Storz | Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece |
DE2627679A1 (en) | 1975-06-26 | 1977-01-13 | Marcel Lamidey | HEMATISTIC HIGH FREQUENCY EXTRACTOR FORCEPS |
USD249549S (en) | 1976-10-22 | 1978-09-19 | Aspen Laboratories, Inc. | Electrosurgical handle |
USD263020S (en) | 1980-01-22 | 1982-02-16 | Rau Iii David M | Retractable knife |
JPS61501068A (en) | 1984-01-30 | 1986-05-29 | ハルコフスキイ ナウチノ−イススレドワテルスキイ インスチチユ−ト オブスチエイ イ ネオトロジノイ ヒルルギイ | bipolar electrosurgical instrument |
DE3423356C2 (en) | 1984-06-25 | 1986-06-26 | Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen | Electrosurgical high frequency cutting instrument |
US4821719A (en) | 1984-12-03 | 1989-04-18 | Fogarty Thomas J | Cohesive-adhesive atraumatic clamp |
DE3612646A1 (en) | 1985-04-16 | 1987-04-30 | Ellman International | Electrosurgical handle piece for blades, needles and forceps |
USD299413S (en) | 1985-07-17 | 1989-01-17 | The Stanley Works | Folding pocket saw handle |
USD295893S (en) | 1985-09-25 | 1988-05-24 | Acme United Corporation | Disposable surgical clamp |
USD295894S (en) | 1985-09-26 | 1988-05-24 | Acme United Corporation | Disposable surgical scissors |
USD298353S (en) | 1986-05-06 | 1988-11-01 | Vitalmetrics, Inc. | Handle for surgical instrument |
JPS6424051A (en) | 1987-07-16 | 1989-01-26 | Meisho Koki Kk | Sheet glass having transparency pattern and its production |
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
JPH01147150A (en) | 1987-12-04 | 1989-06-08 | Hitachi Ltd | Variable venturi carburetor |
JPH055106A (en) | 1990-07-31 | 1993-01-14 | Matsushita Electric Works Ltd | Production of alloy sintered body |
JPH06502328A (en) | 1990-10-17 | 1994-03-17 | ボストン サイエンティフィック コーポレイション | Surgical instruments and methods |
US5250072A (en) * | 1990-12-10 | 1993-10-05 | Jain Krishna M | Surgical clamp jaw cover |
JPH0540112A (en) | 1991-02-08 | 1993-02-19 | Tokico Ltd | Analyzing apparatus of component of sample liquid |
JPH06511401A (en) | 1991-06-07 | 1994-12-22 | バイタル メディカル プロダクツ コーポレイション | Bipolar electrosurgical endoscopic instrument and its method of use |
USD348930S (en) | 1991-10-11 | 1994-07-19 | Ethicon, Inc. | Endoscopic stapler |
JPH06121797A (en) | 1992-02-27 | 1994-05-06 | United States Surgical Corp | Equipment and method for performing intracutaneous stapling of body tissue |
USD349341S (en) | 1992-10-28 | 1994-08-02 | Microsurge, Inc. | Endoscopic grasper |
DE4303882C2 (en) | 1993-02-10 | 1995-02-09 | Kernforschungsz Karlsruhe | Combination instrument for separation and coagulation for minimally invasive surgery |
US5569274A (en) | 1993-02-22 | 1996-10-29 | Heartport, Inc. | Endoscopic vascular clamping system and method |
JPH06285078A (en) | 1993-04-05 | 1994-10-11 | Olympus Optical Co Ltd | Forceps |
JPH06343644A (en) | 1993-05-04 | 1994-12-20 | Gyrus Medical Ltd | Surgical peritoneoscope equipment |
USD343453S (en) | 1993-05-05 | 1994-01-18 | Laparomed Corporation | Handle for laparoscopic surgical instrument |
USD354564S (en) | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
JPH07265328A (en) | 1993-11-01 | 1995-10-17 | Gyrus Medical Ltd | Electrode assembly for electric surgery device and electric surgery device using it |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
DE4403252A1 (en) | 1994-02-03 | 1995-08-10 | Michael Hauser | Instrument shaft for min. invasive surgery |
JPH0856955A (en) | 1994-06-29 | 1996-03-05 | Gyrus Medical Ltd | Electric surgical apparatus |
US5551622A (en) * | 1994-07-13 | 1996-09-03 | Yoon; Inbae | Surgical stapler |
US5662260A (en) * | 1994-07-13 | 1997-09-02 | Yoon; Inbae | Surgical staple cartridge |
USD384413S (en) | 1994-10-07 | 1997-09-30 | United States Surgical Corporation | Endoscopic suturing instrument |
JPH08252263A (en) | 1994-12-21 | 1996-10-01 | Gyrus Medical Ltd | Electronic surgical incision apparatus and electronic surgical incision device using said apparatus |
DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
US6368340B2 (en) * | 1995-04-03 | 2002-04-09 | William W. Malecki | Clamp assembly and method of use |
US20010016750A1 (en) * | 1995-04-03 | 2001-08-23 | William W. Malecki | Clamp assembly and method of use |
JPH08317934A (en) | 1995-04-12 | 1996-12-03 | Ethicon Endo Surgery Inc | Hemostatic device for electric surgery with adaptable electrode |
DE19515914C1 (en) | 1995-05-02 | 1996-07-25 | Aesculap Ag | Tong or scissor-shaped surgical instrument |
JPH0910223A (en) | 1995-06-23 | 1997-01-14 | Gyrus Medical Ltd | Generator and system for electric operation |
JPH1024051A (en) | 1995-09-20 | 1998-01-27 | Olympus Optical Co Ltd | Coagulation forceps with separating function |
USH1745H (en) | 1995-09-29 | 1998-08-04 | Paraschac; Joseph F. | Electrosurgical clamping device with insulation limited bipolar electrode |
JPH09122138A (en) | 1995-10-20 | 1997-05-13 | Ethicon Endo Surgery Inc | Apparatus for operation |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
USD408018S (en) | 1996-03-12 | 1999-04-13 | Mcnaughton Patrick J | Switch guard |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
DE19751106A1 (en) | 1996-11-27 | 1998-05-28 | Eastman Kodak Co | Laser printer with array of laser diodes |
JPH10155798A (en) | 1996-12-04 | 1998-06-16 | Asahi Optical Co Ltd | Hot biopsy clamp for endoscope |
US5891142A (en) * | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
US6579304B1 (en) * | 1997-02-03 | 2003-06-17 | Applied Medical Resources Corporation | Surgical clamp with improved traction |
US8092473B2 (en) * | 1997-02-03 | 2012-01-10 | Applied Medical Resources Corporation | Surgical clamp with improved traction |
JPH1170124A (en) | 1997-05-14 | 1999-03-16 | Ethicon Endo Surgery Inc | Improved electrosurgical hemostatic apparatus having anvil |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
JP2000102545A (en) | 1997-06-18 | 2000-04-11 | Eggers & Associates Inc | Electric tweezers for surgery |
JPH1147150A (en) | 1997-08-06 | 1999-02-23 | Olympus Optical Co Ltd | Endoscopic surgery appliance |
DE19738457B4 (en) | 1997-09-03 | 2009-01-02 | Celon Ag Medical Instruments | Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current |
USD402028S (en) | 1997-10-10 | 1998-12-01 | Invasatec, Inc. | Hand controller for medical system |
JPH11192238A (en) | 1997-10-10 | 1999-07-21 | Ethicon Endo Surgery Inc | Ultrasonic forceps coagulation device improved of pivot-attaching of forceps arm |
DE19751108A1 (en) | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
JPH11169381A (en) | 1997-12-15 | 1999-06-29 | Olympus Optical Co Ltd | High frequency treating device |
US6312445B1 (en) * | 1997-12-18 | 2001-11-06 | Novare Surgical Systems, Inc. | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
US6007552A (en) * | 1997-12-18 | 1999-12-28 | Minumys | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
JPH11244298A (en) | 1997-12-19 | 1999-09-14 | Gyrus Medical Ltd | Electric surgical instrument |
US6206896B1 (en) * | 1998-07-27 | 2001-03-27 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
US6989017B2 (en) * | 1998-07-27 | 2006-01-24 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
US6099539A (en) * | 1998-07-27 | 2000-08-08 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
US6387106B1 (en) * | 1998-07-27 | 2002-05-14 | Thomas J. Fogarty, M.D. | Surgical clamp pad with interdigitating teeth |
USD449886S1 (en) | 1998-10-23 | 2001-10-30 | Sherwood Services Ag | Forceps with disposable electrode |
USD425201S (en) | 1998-10-23 | 2000-05-16 | Sherwood Services Ag | Disposable electrode assembly |
USD424694S (en) | 1998-10-23 | 2000-05-09 | Sherwood Services Ag | Forceps |
WO2000036986A1 (en) | 1998-12-18 | 2000-06-29 | Karl Storz Gmbh & Co. Kg | Bipolar medical instrument |
US6193732B1 (en) * | 1999-01-08 | 2001-02-27 | Cardiothoracic System | Surgical clips and apparatus and method for clip placement |
JP2000350732A (en) | 1999-05-21 | 2000-12-19 | Gyrus Medical Ltd | Electrosurgical system, generator for electrosurgery, and method for cutting or excising tissue by electrosurgery |
JP2000342599A (en) | 1999-05-21 | 2000-12-12 | Gyrus Medical Ltd | Generator for electrosurgical operation, electrosurgical operation system, method for operating this system and method for performing amputation and resection of tissue by electrosurgical operation |
JP2001128990A (en) | 1999-05-28 | 2001-05-15 | Gyrus Medical Ltd | Electro surgical instrument and electrosurgical tool converter |
US6387112B1 (en) * | 1999-06-18 | 2002-05-14 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
WO2001015614A1 (en) | 1999-08-27 | 2001-03-08 | Karl Storz Gmbh & Co. Kg | Bipolar medical instrument |
USD465281S1 (en) | 1999-09-21 | 2002-11-05 | Karl Storz Gmbh & Co. Kg | Endoscopic medical instrument |
JP2001190564A (en) | 2000-01-12 | 2001-07-17 | Olympus Optical Co Ltd | Medical treatment instrument |
WO2001054604A1 (en) | 2000-01-25 | 2001-08-02 | Aesculap Ag & Co. Kg | Bipolar gripping device |
EP1159926A2 (en) | 2000-06-03 | 2001-12-05 | Aesculap Ag | Scissor- or forceps-like surgical instrument |
DE10045375C2 (en) | 2000-09-14 | 2002-10-24 | Aesculap Ag & Co Kg | Medical instrument |
US20020045909A1 (en) * | 2000-10-16 | 2002-04-18 | Olympus Optical Co., Ltd. | Physiological tissue clipping apparatus, clipping method and clip unit mounting method |
JP2004517668A (en) | 2000-10-20 | 2004-06-17 | オーナックス・メディカル・インコーポレーテッド | Surgical suturing instrument and method of use |
US6500176B1 (en) * | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
USD453923S1 (en) | 2000-11-16 | 2002-02-26 | Carling Technologies, Inc. | Electrical rocker switch guard |
JP2004528869A (en) | 2001-01-26 | 2004-09-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | Electrosurgical instruments for coagulation and cutting |
US20020173805A1 (en) * | 2001-02-06 | 2002-11-21 | Kiyotaka Matsuno | Clipping device |
USD466209S1 (en) | 2001-02-27 | 2002-11-26 | Visionary Biomedical, Inc. | Steerable catheter |
USD454951S1 (en) | 2001-02-27 | 2002-03-26 | Visionary Biomedical, Inc. | Steerable catheter |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
USD457959S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer |
US20020177861A1 (en) * | 2001-05-23 | 2002-11-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Clip device of endoscope |
US20030073987A1 (en) * | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US20050113826A1 (en) | 2002-10-04 | 2005-05-26 | Johnson Kristin D. | Vessel sealing instrument with electrical cutting mechanism |
USD493888S1 (en) | 2003-02-04 | 2004-08-03 | Sherwood Services Ag | Electrosurgical pencil with pistol grip |
US20090275958A1 (en) * | 2003-03-17 | 2009-11-05 | Sumitomo Bakelite Company | Clip and clipping instrument for biological tissues |
US20060217709A1 (en) | 2003-05-01 | 2006-09-28 | Sherwood Services Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
USD502994S1 (en) | 2003-05-21 | 2005-03-15 | Blake, Iii Joseph W | Repeating multi-clip applier |
USD545432S1 (en) | 2003-08-08 | 2007-06-26 | Olympus Corporation | Distal portion of hemostatic forceps for endoscope |
USD509297S1 (en) | 2003-10-17 | 2005-09-06 | Tyco Healthcare Group, Lp | Surgical instrument |
US20050113828A1 (en) * | 2003-11-20 | 2005-05-26 | Chelsea Shields | Electrically conductive/insulative over-shoe for tissue fusion |
EP1532933A1 (en) | 2003-11-20 | 2005-05-25 | Sherwood Services AG | Electrically conductive/insulative over-shoe for tissue fusion |
USD541938S1 (en) | 2004-04-09 | 2007-05-01 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
WO2005110264A2 (en) | 2004-05-14 | 2005-11-24 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
DE102004026179B4 (en) | 2004-05-14 | 2009-01-22 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
USD533942S1 (en) | 2004-06-30 | 2006-12-19 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
USD525361S1 (en) | 2004-10-06 | 2006-07-18 | Sherwood Services Ag | Hemostat style elongated dissecting and dividing instrument |
USD535027S1 (en) | 2004-10-06 | 2007-01-09 | Sherwood Services Ag | Low profile vessel sealing and cutting mechanism |
USD567943S1 (en) | 2004-10-08 | 2008-04-29 | Sherwood Services Ag | Over-ratchet safety for a vessel sealing instrument |
USD533274S1 (en) | 2004-10-12 | 2006-12-05 | Allegiance Corporation | Handle for surgical suction-irrigation device |
USD564662S1 (en) | 2004-10-13 | 2008-03-18 | Sherwood Services Ag | Hourglass-shaped knife for electrosurgical forceps |
USD582038S1 (en) | 2004-10-13 | 2008-12-02 | Medtronic, Inc. | Transurethral needle ablation device |
US20060155274A1 (en) * | 2005-01-08 | 2006-07-13 | Boston Scientific Scimed, Inc. | Clamp based lesion formation apparatus with variable spacing structures |
USD538932S1 (en) | 2005-06-30 | 2007-03-20 | Medical Action Industries Inc. | Surgical needle holder |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US20070173814A1 (en) | 2006-01-24 | 2007-07-26 | David Hixson | Vessel sealer and divider for large tissue structures |
USD541611S1 (en) | 2006-01-26 | 2007-05-01 | Robert Bosch Gmbh | Cordless screwdriver |
USD547154S1 (en) | 2006-09-08 | 2007-07-24 | Winsource Industries Limited | Rotary driving tool |
USD575395S1 (en) | 2007-02-15 | 2008-08-19 | Tyco Healthcare Group Lp | Hemostat style elongated dissecting and dividing instrument |
USD575401S1 (en) | 2007-06-12 | 2008-08-19 | Tyco Healthcare Group Lp | Vessel sealer |
DE202007009317U1 (en) | 2007-06-26 | 2007-08-30 | Aesculap Ag & Co. Kg | Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit |
DE202007009165U1 (en) | 2007-06-29 | 2007-08-30 | Kls Martin Gmbh + Co. Kg | Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator |
US20090125026A1 (en) * | 2007-11-13 | 2009-05-14 | Boston Scientific Scimed, Inc. | Apparatus system and method for coagulating and cutting tissue |
DE202007016233U1 (en) | 2007-11-20 | 2008-01-31 | Aesculap Ag & Co. Kg | Surgical forceps |
DE102008018406B3 (en) | 2008-04-10 | 2009-07-23 | Bowa-Electronic Gmbh & Co. Kg | Electrosurgical device |
US20100100122A1 (en) | 2008-10-20 | 2010-04-22 | Tyco Healthcare Group Lp | Method of Sealing Tissue Using Radiofrequency Energy |
CN201299462Y (en) | 2008-10-28 | 2009-09-02 | 宋洪海 | Multi-layer metal composite pot |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
USD617903S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector pointed tip |
USD617900S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut bottom jaw |
USD617902S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut top jaw |
USD618798S1 (en) | 2009-05-13 | 2010-06-29 | Tyco Healthcare Group Lp | Vessel sealing jaw seal plate |
USD617901S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector chamfered tip |
USD630324S1 (en) | 2009-08-05 | 2011-01-04 | Tyco Healthcare Group Lp | Dissecting surgical jaw |
USD627462S1 (en) | 2009-09-09 | 2010-11-16 | Tyco Healthcare Group Lp | Knife channel of a jaw device |
USD628290S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
USD628289S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
US8568408B2 (en) * | 2011-04-21 | 2013-10-29 | Covidien Lp | Surgical forceps |
US20140128867A1 (en) * | 2011-07-11 | 2014-05-08 | Covidien Lp | Surgical forceps |
US20150250527A1 (en) * | 2011-07-11 | 2015-09-10 | Covidien Lp | Surgical forceps |
US9636169B2 (en) * | 2011-09-19 | 2017-05-02 | Covidien Lp | Electrosurgical instrument |
Non-Patent Citations (268)
Title |
---|
"Electrosurgery: A Historical Overview" Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. (6 pages). |
"Reducing Needlestick Injuries in the Operating Room" Sales/Product Literature 2001. (1 page). |
Barbara Levy, "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C.. (1 page). |
Benaron et al., "Optical Time-of-Flight and Absorbance Imaging of Biologic Media", Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Bergdahl et al. "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Burdette et al. "In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carbonell et al., "Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte,NC; Date: Aug. 2003. |
Carus et al., "Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery" Innovations That Work, Jun. 2002. |
Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure" Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Craig Johnson, "Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000. |
Crawford et al. "Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery" Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Crouch et al. "A Velocity-Dependent Model for Needle Insertion in Soft Tissue" MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
Dulemba et al. "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004. |
E. David Crawford "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000. |
E. David Crawford "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000. |
European Search Report from corresponding Application EP 12 16 4917 dated Jan. 25, 2013. |
European Search Report from corresponding Application EP 12 16 4917 mailed Jan. 25, 2013. |
Heniford et al. "Initial Research and Clinical Results with an Electrochemical Bipolar Vessel Sealer" Oct. 1999. |
Heniford et al. "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2000) 15:799-801. (4 pages). |
Herman et al., "Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report"; Innovations That Work, Feb. 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011. |
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010. |
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010. |
Int'l Search Report EP 10 160870.1 dated Aug. 9, 2010. |
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010. |
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010. |
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010. |
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010. |
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010. |
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011. |
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011. |
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011. |
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011. |
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011. |
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011. |
Int'l Search Report EP 10 189206.5 dated Mar. 17, 2011. |
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011. |
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011. |
Int'l Search Report EP 11 152220.7 dated May 19, 2011. |
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011. |
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003. |
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Jarrett et al., "Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000. |
Johnson et al. "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature; Jan. 2004. |
Johnson et al. "Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy" American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Joseph Ortenberg "LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002. |
Kennedy et al. "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878. |
Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
Levy et al. "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
Levy et al. "Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy" Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Levy et al., "Update on Hysterectomy—New Technologies and Techniques" OBG Management, Feb. 2003. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
McLellan et al. "Vessel Sealing for Hemostasis During Gynecologic Surgery" Sales/Product Literature 1999. |
McLellan et al. "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
Michael Choti, "Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument"; Innovations That Work, Jun. 2003. |
Muller et al., "Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System" Innovations That Work, Sep. 1999. |
Olsson et al. "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. "Randomized clinical trial of Ligasure versus open haemorrhoidectomy" British Journal of Surgery 2002, 89, 154-157. |
Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Peterson et al. "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001). |
Rothenberg et al. "Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Sampayan et al, "Multilayer Ultra-High Gradient Insulator Technology" Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Sayfan et al. "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Sigel et al. "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Strasberg et al. "A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery" Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Strasberg et al., "Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Tinkcler L.F., "Combined Diathermy and Suction Forceps", Feb. 6, 1967, British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz, abandoned. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich, abandoned. |
U.S. Appl. No. 12/692,414, filed Jan. 22, 2010, Peter M. Mueller. |
U.S. Appl. No. 12/696,592, filed Jan. 29, 2010, Jennifer S. Harper. |
U.S. Appl. No. 12/696,857, filed Jan. 29, 2010, Edward M. Chojin. |
U.S. Appl. No. 12/700,856, filed Feb. 5, 2010, James E. Krapohl. |
U.S. Appl. No. 12/719,407, filed Mar. 8, 2010, Arlen J. Reschke. |
U.S. Appl. No. 12/728,994, filed Mar. 22, 2010, Edward M. Chojin. |
U.S. Appl. No. 12/748,028, filed Mar. 26, 2010, Jessica E.C. Olson. |
U.S. Appl. No. 12/757,340, filed Apr. 9, 2010, Carine Hoarau. |
U.S. Appl. No. 12/758,524, filed Apr. 12, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/759,551, filed Apr. 13, 2010, Glenn A. Homer. |
U.S. Appl. No. 12/769,444, filed Apr. 28, 2010, Glenn A. Norner. |
U.S. Appl. No. 12/770,369, filed Apr. 29, 2010, Glenn A. Homer. |
U.S. Appl. No. 12/770,380, filed Apr. 29, 2010, Glenn A. Homer, abandoned. |
U.S. Appl. No. 12/770,387, filed Apr. 29, 2010, Glenn A. Homer. |
U.S. Appl. No. 12/773,526, filed May 4, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/773,644, filed May 4, 2010, Thomas J. Gerhardt. |
U.S. Appl. No. 12/786,589, filed May 25, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/791,112, filed Jun. 1, 2010, David M. Garrison. |
U.S. Appl. No. 12/792,001, filed Jun. 2, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/792,008, filed Jun. 2, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/792,019, filed Jun. 2, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/792,038, filed Jun. 2, 2010, Glenn A. Homer. |
U.S. Appl. No. 12/792,051, filed Jun. 2, 2010, David M. Garrison. |
U.S. Appl. No. 12/792,068, filed Jun. 2, 2010, Glenn A. Homer. |
U.S. Appl. No. 12/792,097, filed Jun. 2, 2010, Duane E. Kerr. |
U.S. Appl. No. 12/792,262, filed Jun. 2, 2010, Jeffrey M. Roy. |
U.S. Appl. No. 12/792,299, filed Jun. 2, 2010, Jeffrey M. Roy. |
U.S. Appl. No. 12/792,330, filed Jun. 2, 2010, David M. Garrison. |
U.S. Appl. No. 12/821,253, filed Jun. 23, 2010, Edward M. Chojin. |
U.S. Appl. No. 12/822,024, filed Jun. 23, 2010, Peter M. Mueller. |
U.S. Appl. No. 12/832,772, filed Jul. 8, 2010, Gary M. Couture. |
U.S. Appl. No. 12/843,384, filed Jul. 26, 2010, David M. Garrison. |
U.S. Appl. No. 12/845,203, filed Jul. 28, 2010, Gary M. Couture. |
U.S. Appl. No. 12/853,896, filed Aug. 10, 2010, William H. Nau, Jr. |
U.S. Appl. No. 12/859,896, filed Aug. 20, 2010, Peter M. Mueller. |
U.S. Appl. No. 12/861,198, filed Aug. 23, 2010, James A. Gilbert. |
U.S. Appl. No. 12/861,209, filed Aug. 23, 2010, William H. Nau, Jr. |
U.S. Appl. No. 12/876,668, filed Sep. 7, 2010, Sara E. Anderson. |
U.S. Appl. No. 12/876,680, filed Sep. 7, 2010, Peter M. Mueller. |
U.S. Appl. No. 12/876,705, filed Sep. 7, 2010, Kristin D. Johnson. |
U.S. Appl. No. 12/876,731, filed Sep. 7, 2010, Kristin D. Johnson. |
U.S. Appl. No. 12/877,199, filed Sep. 8, 2010, Arlen J. Reschke, abandoned. |
U.S. Appl. No. 12/877,482, filed Sep. 8, 2010, Gary M. Couture. |
U.S. Appl. No. 12/895,020, filed Sep. 30, 2010, Jeffrey M. Roy. |
U.S. Appl. No. 12/896,100, filed Oct. 1, 2010, Ryan Artale. |
U.S. Appl. No. 12/897,346, filed Oct. 4, 2010, Ryan Artale. |
U.S. Appl. No. 12/906,672, filed Oct. 18, 2010, Kathy E. Rooks. |
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr. |
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig, abandoned. |
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig. |
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison. |
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero. |
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp. |
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV. |
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey, abandoned. |
U.S. Appl. No. 13/006,538, filed Jan. 14, 2011, John W. Twomey. |
U.S. Appl. No. 13/029,390, filed Feb. 17, 2011, Michael C. Moses. |
U.S. Appl. No. 13/030,231, filed Feb. 18, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Homer. |
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld. |
U.S. Appl. No. 13/075,847, filed Mar. 30, 2011, Gary M. Couture. |
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison. |
U.S. Appl. No. 13/083,962, filed Apr. 11, 2011, Michael C. Moses. |
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart. |
U.S. Appl. No. 13/089,779, filed Apr. 19, 2011, Yevgeniy Fedotov. |
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend. |
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey. |
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada. |
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey. |
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin. |
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison. |
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey. |
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell. |
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead. |
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov. |
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims. |
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings. |
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey. |
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV. |
W. Scott Helton, "LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery"; Sales/Product Literature 1999. |
Also Published As
Publication number | Publication date |
---|---|
EP2514381A3 (en) | 2013-03-06 |
US20140052128A1 (en) | 2014-02-20 |
CN102755193A (en) | 2012-10-31 |
US20120271346A1 (en) | 2012-10-25 |
EP2514381A2 (en) | 2012-10-24 |
US8568408B2 (en) | 2013-10-29 |
US9119630B2 (en) | 2015-09-01 |
EP2514381B1 (en) | 2014-06-11 |
CN102755193B (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46962E1 (en) | Surgical forceps | |
US10575865B2 (en) | Surgical forceps | |
US10524874B2 (en) | Surgical forceps | |
US11523862B2 (en) | Surgical forceps | |
US9265571B2 (en) | Surgical forceps | |
US9888958B2 (en) | Surgical forceps | |
US9668806B2 (en) | Surgical forceps including a removable stop member | |
US9770253B2 (en) | Surgical forceps | |
US8968307B2 (en) | Surgical forceps | |
US20120265241A1 (en) | Surgical Forceps and Method of Manufacturing Thereof | |
CA2347014C (en) | Open vessel sealing forceps with disposable electrodes | |
AU2015203543B2 (en) | Surgical forceps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.) |
|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOWNSEND, JEFFREY R.;SIMS, GRANT T.;COLLINGS, CHASE;SIGNING DATES FROM 20110407 TO 20110420;REEL/FRAME:044690/0663 Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:045110/0947 Effective date: 20120928 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |