USRE46749E1 - Method for controlling a non-volatile semiconductor memory device - Google Patents

Method for controlling a non-volatile semiconductor memory device Download PDF

Info

Publication number
USRE46749E1
USRE46749E1 US13/852,792 US201313852792A USRE46749E US RE46749 E1 USRE46749 E1 US RE46749E1 US 201313852792 A US201313852792 A US 201313852792A US RE46749 E USRE46749 E US RE46749E
Authority
US
United States
Prior art keywords
voltage
memory cell
read
cell
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/852,792
Inventor
Koji Hosono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40454280&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE46749(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US13/852,792 priority Critical patent/USRE46749E1/en
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Priority to US15/848,772 priority patent/USRE48244E1/en
Publication of USRE46749E1 publication Critical patent/USRE46749E1/en
Application granted granted Critical
Priority to US17/004,584 priority patent/USRE50025E1/en
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION CHANGE OF NAME AND ADDRESS Assignors: K.K. PANGEA
Assigned to KIOXIA CORPORATION reassignment KIOXIA CORPORATION CHANGE OF NAME AND ADDRESS Assignors: TOSHIBA MEMORY CORPORATION
Assigned to K.K. PANGEA reassignment K.K. PANGEA MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TOSHIBA MEMORY CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/565Multilevel memory comprising elements in triple well structure

Definitions

  • This invention relates to a non-volatile semiconductor memory device with a floating gate type memory cell of a floating gate type, and specifically relates to a method of controlling read/write of a NAND-type flash memory.
  • a currently manufactured NAND-type flash memory has floating gate type of memory cells, wherein write and erase of which operations are performed with electron-injection and electron-releasing of at the respective floating gates (FGs). Controlling By controlling the electron injection quantity in a floating gate, it is able possible to set multiple threshold voltage states (i.e., data states). In practice, it has been achieved such a NAND-type flash memory that stores four level data (i.e., stores two bits per cell).
  • a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series including includes a read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a selected voltage while unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
  • a first read pass voltage is applied to unselected memory cells except an adjacent and unselected memory cell disposed adjacent to the selected memory cell, the adjacent and unselected memory cell being completed in completing data write later than the selected memory cell, and a second read pass voltage higher than the first read pass voltage is applied to the adjacent and unselected memory cell in the read procedure.
  • a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series including includes a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and a normal read procedure is performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
  • a first read pass voltage is applied to unselected memory cells except two adjacent and unselected memory cells disposed adjacent to the selected memory cell; a second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to as the selected memory cell; and a third read pass voltage lower than the first read pass voltage is applied to the other cell, which is written later than the selected memory cell, and
  • the first read pass voltage is applied to the unselected memory cells except the two adjacent and unselected memory cells; the second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to as the selected memory cell; and a fourth read pass voltage is applied to the other cell, which has been written later than the selected memory cell, the level of the fourth read pass voltage being selected in level in accordance with the cell's threshold shift amount.
  • a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series including includes a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and a normal read procedure is performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
  • a first read pass voltage is applied to unselected memory cells except adjacent and unselected memory cells adjacent to the selected memory cell; a second read pass voltage lower than the first read pass voltage is applied to one of the adjacent and unselected memory cells, which is written later than the selected memory cell, and
  • the first read pass voltage is applied to the unselected memory cells except the adjacent and unselected memory cells disposed adjacent to the selected memory cell; a third read pass voltage is applied to one of the adjacent and unselected memory cells, which has been written later than the selected memory cell, the level of the third read voltage being selected in level in accordance with the cell's threshold shift amount, the maximum vale value of which is higher than the first read pass voltage.
  • FIG. 1 shows a configuration of a NAND-type flash memory in accordance with an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the data write order in the cell array in the flash memory.
  • FIG. 3 shows the sense unit of the flash memory.
  • FIG. 4 shows the 4-level data threshold distribution of the flash memory.
  • FIG. 5 shows the conventional bias relationship in the NAND string at a write-verify time and a normal read time.
  • FIG. 6 shows the cell threshold distribution at a normal upper page write-verify time.
  • FIG. 7 shows the cell threshold distribution at a normal read time.
  • FIG. 8 shows the capacitive coupling state in the sectional view of the NAND string.
  • FIG. 9 shows the bias relationship in the NAND string at a write-verify time and a normal read time in the first mode of this embodiment.
  • FIG. 10 shows the threshold distribution at the upper page write-verify time in the first mode with reference to FIG. 6 .
  • FIG. 11 shows the threshold distribution at the normal read time in the first mode with reference to FIG. 7 .
  • FIG. 12 shows read operation waveforms in the first mode.
  • FIG. 13 shows the bias relationship in the NAND string at a write-verify time and a normal read time in the second mode of this embodiment.
  • FIG. 14 shows the threshold distribution at the upper page write-verify time in the second mode with reference to FIG. 6 .
  • FIG. 15 shows the threshold distribution at the normal read time in the second mode with reference to FIG. 7 .
  • FIG. 16 shows the threshold distribution at the upper page write-verify time in the third mode with reference to FIG. 6 .
  • FIG. 17 shows the threshold distribution at the normal read time in the third mode in case written data in the adjacent and unselected cell is A- or C-level with reference to FIG. 7 .
  • FIG. 18 shows the threshold distribution at the normal read time in the third mode in case written data in the adjacent and unselected cell is E- or B-level with reference to FIG. 7 .
  • FIG. 19 is a diagram for explaining the correction read operation in the third mode.
  • FIG. 20 is a diagram for explaining the data processing the correction read operation in the third mode.
  • FIG. 21 shows another embodiment applied to a digital still camera.
  • FIG. 22 shows the internal configuration of the digital still camera.
  • FIGS. 23A to 23J show other electric devices to which the embodiment is applied.
  • FIG. 1 shows the whole configuration of a NAND-type flash memory in accordance with an embodiment.
  • NAND cell unit (i.e., NAND string) 100 which is a basic unit of the NAND-type flash memory, has plural memory cells MC 0 -MC 31 connected in series and two select gate transistors SG 1 and SG 2 disposed at the both ends.
  • NAND cell unit 100 One end of NAND cell unit 100 is coupled to bit line BL via the select gate transistor SG 1 ; and the other end is coupled to common source line CELSRC via the select gate transistor SG 2 .
  • One memory cell has N-type source and drain diffusion layers formed on a P-well formed on a silicon substrate, and a stacked gate structure with a floating gate and a control gate stacked above the channel region defined by the source and drain layers. Changing By changing the charge amount held in the floating gate by a write or erase operation, the threshold voltage of the cell is changed, so that one bit per cell or multiple bits per cell will be stored.
  • Control gates of the memory cells MC 0 -MC 31 in the NAND cell unit 100 are coupled to different word lines WL 0 -WL 31 , respectively; and gates of the select gate transistors SG 1 and SG 2 are coupled to select gate lines SGD and SGS, respectively.
  • a set of NAND cell units 100 which shares word lines WL 0 -WL 31 and select gate lines SGD and SGS, constitutes a block 101 serving as a data erase unit.
  • a block 101 serving as a data erase unit.
  • plural blocks are arranged in the bit line direction.
  • a data load command is input via input/output circuit 1 to be latched in command register 2 ; then a write destination address is input via input/output circuit (I/O buffer) 1 to be latched in address register 3 ; write data is input via input/output circuit 1 to be loaded in sense amplifier circuit (serving as write circuit) 30 ; and a write executing command is input via input/output circuit 1 to be latched in command register 2 .
  • the write operation will start automatically in the chip.
  • sequence control circuit 4 starts to execute.
  • This sequence control circuit 4 executes the following controls: voltage controlling necessary for data writing; timing controlling of write pulse applications and verify-reading operations; and repeat-controlling of the write pulse applications and verify-read operations until a desirable write operation is completed.
  • High voltage generation circuit 5 generates under the condition of the sequence control circuit 4 write voltage Vpgm, write pass voltage Vpass, read pass voltage Vread and other high voltages (boosted voltages) necessary for row-signal driving circuit 20 , page buffer control circuit 6 and the like.
  • Row-signal driving circuit 20 has: CG decoder/drivers 24 , the number of which is equal to that of word lines in a NAND cell unit; SGD driver 22 for controlling the drain side select gate line SGD; SGS driver 23 for controlling the source side select gate line SGS; and VRDEC driver 21 for outputting boosted supply voltage VRDEC used in the block decoder.
  • These drivers 21 - 24 are shared by plural blocks 101 in the memory cell array 102 .
  • NAND-type flash memory It is required of for the NAND-type flash memory to be used use plural voltages applied to plural word lines in a selected NAND cell unit. Therefore, page addresses used for selecting word lines in the NAND cell unit in the row address will be input to the respective CG decoder/drivers 24 .
  • Row decoder 10 Disposed at the word line end of each block in the memory cell array 102 is a narrow sensed row decoder 10 , which has a block selecting function.
  • Row decoder 10 has block decoder 11 for receiving the block address sent from address register 3 and decoding it, and transferring transistor array 12 , the common gate of which is driven by the outputs of block decoder 11 , for transferring voltages necessary for write, erase and read to the word lines and the select gate lines.
  • Block decoder 11 includes a level shift circuit for outputting a required voltage to the common gate TG of the transistor array 12 .
  • OneFirst ends of the transfer transistor array 12 are coupled to the respective drivers 21 - 24 while the other second ends are coupled to word lines and select gate lines in the memory cell array 102 .
  • Vpgm write voltage
  • Vt threshold voltage of the transfer transistor 12
  • FN tunneling current is used for writing and erasing cells.
  • a page length which is defined as a collectively processing unit in a write mode or read mode, will be set to be as large as 2 kByte or 4 kByte.
  • Sense amplifier circuit (i.e., page buffer) 30 includes sense amps 31 with the same number as the page length.
  • Column decoder 7 decodes, for example at a write data loading time, column address sent from address register 3 , and couples the input/output circuit 1 to selected sense amps PB, thereby making causing write data for the respective column addresses to be loaded in the sense amplifier circuit 30 .
  • read data stored in a lump in the sense amplifier circuit 30 are output to input/output circuit 1 as sequentially selected in accordance with a column address.
  • FIG. 2 shows such an example that an even numbered bit line BLe and the adjacent odd numbered bit line BLo shares share a sense amp PB.
  • the even numbered bit line BLe or the odd numbered bit line BLo is selected in accordance with selecting signals BLSe and BLSo to be coupled to sense amp PB.
  • unselected bit lines serve as shield lines, so that the interference between adjacent bit lines will be suppressed.
  • BLCRL is a certain voltage to be applied to unselected bit lines.
  • Vss is applied to unselected bit lines via transistors driven by BIASe and BIASo.
  • memory cells selected by a word line and all even-numbered bit lines constitute a page (even page) to be read or written simultaneously while memory cells selected by a word line and all odd-numbered bit lines constitute another page (odd page) to be read or written simultaneously.
  • FIG. 3 shows the detailed example of the sense amp (PB) 31 .
  • Latch circuit L 1 is selectively coupled to data lines IO and IOB by column select signal CSL output from the column decoder, and coupled to sense node TDC via transfer transistor 32 c.
  • latch L 1 serves as a cache in the page buffer, or serves as data storage circuit used for achieving multi-level data storage such as 2-bit per cell.
  • Another latch circuit L 2 is coupled to the sense node TDC via transfer transistor 33 , and coupled to operational circuit 34 via transfer transistor 34 a.
  • the operational circuit 34 including transistors 34 a, 34 b and 34 c may execute some operations for the sense node TDC in accordance with the potential of gate node DDC of transistor 34 b. For example, setting drain voltage VPRE of transistor 34 b at 0V when DDC is “H”, and turning on transistor 34 c, the potential of node TDC will be changed in accordance with data at DDC.
  • Transistor 35 is a bit line precharging transistor.
  • Transistor 37 is one used for coupling a bit line to the sense node TDC. This transistor 37 serves for amplifying a small bit line amplitude in accordance with gate voltage control thereof at a read time, and serves for coupling the latch circuit to the bit line at a write time.
  • Transistors 38 a and 38 b are high breakdown voltage ones transistors, which serve for not only shutting generating an erase voltage of about 20V to be applied to bit lines but also selecting the even and odd bit lines BLe and BLo.
  • FIG. 4 is a diagram for explaining the principle of writing four-level data (two-bits per cell data) in this embodiment.
  • Four-level data are referred to as level “E”, level “A”, level “B” and level “C” in order from the lower side of the cell's threshold voltage.
  • Level “E” is a negative threshold voltage state obtained by a collective block erase. It is shown in FIG. 4 shows a data bit assignment example of assigning the lower page (LP) bit and upper page (UP) bit to the respective data levels.
  • level “E” In the lower page (LP) write (or program), cells of level “E” are selectively set up to have a medium level “LM”, that is set between levels “A” and “B”. After the LP write, the upper page (UP) write is performed. In the upper page write, level “A” write from level “E” and level “B” or “C” write from level “LM” are performed simultaneously.
  • the lower limit values of the threshold voltages of levels “LM”, “A”, “B” and “C” are defined by verifying voltages VLv, Vav, Vbv and Vcv, respectively, used at the respective write-verify times.
  • L and U designate the lower page (LP) and upper page (UP), respectively while numerals shown at the side of L/U designate the write order.
  • the lower page, L: of word line WL 0 on the even numbered bit line BLe side is written; then, the lower page, L: , of word line WL 0 on the odd numbered bit line BLo side is written.
  • the lower page, L: of word line WL 1 on the even numbered bit line BLe side is written; and then, the lower page, L: , of word line WL 0 on the odd numbered bit line BLo side is written.
  • the upper page, U: of word line WL 0 on the even numbered bit line BLe side is written; and then, the upper page, L: , of word line WL 0 on the odd numbered bit line BLo side is written.
  • the threshold change of the adjacent cell of the noticed cell after writing it will be suppressed to be about a half (i.e., E ⁇ A, LM ⁇ C) in comparison with the change from E level to C level, and resulting in that the interference effect of cells is reduced in half.
  • FIG. 5 shows a bias relationship in the NAND string at a write-verify read time or a normal read time. To explain the problem briefly, here is shown an example of the NAND string, in which eight memory cells MC 0 -MC 7 are used.
  • the selected word line WL 2 is applied with select voltage Vsel while unselected word lines WL 0 - 1 and WL 3 - 7 (i.e., unselected memory cells) are applied with read pass voltage Vread that is necessary to turn on cells without regard to cell data.
  • the select voltage Vsel is either one selected from verify voltages VLv, Vav, Vbv and Vcv, which are selected in accordance with write levels, at a write-verify time, or either one selected from read voltages Var, Vbr and Vcr set between the respective data levels at a normal read time.
  • FIG. 6 shows the memory cells' situations in the range of word lines WLn-WLn+2 at a write-verify time after the upper page writing of A level into a cell selected on word line WLn.
  • memory cells on data write for the word lines WLn- 1 and WLn- 2 have been completed in data write to be set at either one of E to C levels.
  • the memory cell on the word line WLn+1 is set in the lower page write state (LM level) or the E level state in accordance with the write order explained with reference to FIG. 2 .
  • the memory cell on the adjacent word line WLn+2 is set in the E level state (i.e., erase state).
  • unselected word lines WLn ⁇ 1 and WLn+1 disposed adjacent to the selected word line WLn are different in condition from the remaining unselected word lines with respect to the interference effect between adjacent cells. That is, each of the remaining word lines and the selected word lines is sandwiched by word lines with Vread applied. By contrast, with respect to word lines WLn ⁇ 1 and WLn+1, one of word lines adjacent to them are is set at Vread while the other are is set at Vav.
  • the memory cells on the unselected word lines WLn ⁇ 1 and WLn+1, one of the two adjacent word lines of each of which is low in potential, have an apparently higher threshold state than those on the remaining unselected word lines because of a large interference of adjacent cells. This will be explained with reference to FIG. 8 .
  • FIG. 8 shows capacitive coupling situations of the floating gate FGn of a memory cell MCn in a NAND string, which affect the floating gate potential. That is, FGn is coupled to the control gate (i.e., word line WLn) stacked thereabove via capacitance C 2 , and coupled to the channel via capacitance C 1 . Basically, floating gate potential control and channel potential control are achieved by the capacitance coupling ratio of these capacitances C 1 and C 2 .
  • the floating gate FGn of the noticed cell is strongly coupled to adjacent floating gates and adjacent word lines with capacitances C 3 and C 4 , respectively.
  • a first capacitive coupling effect in which the potential of FGn+1 is reduced from word line WLn via the floating gate FGn+1 (i.e., via capacitance C 2 and C 3 )
  • a second capacitive coupling effect in which the potential of FGn+1 is reduced from word line WLn directly, are overlapped, so that the floating gate FGn+1 is not sufficiently increased in potential with Vread.
  • the memory cell under a an unselected word line adjacent to the selected word line becomes apparently high in threshold.
  • the memory cell set at LM level under the unselected word line WLn+1 has apparently appears to have distribution “c 3 ” shown by a dash line while the memory cell set at C level under the word line WLn ⁇ 1 has apparently appears to have distribution “b 3 ” shown by a dash line.
  • FIG. 7 shows cell threshold states in the range of word lines WLn ⁇ 2 to WLn+2 when the cell data (A level) of the word line WLn is read after writing all memory cells.
  • all memory cells have threshold distributions shifted in the positive direction (shown by dotted lines) from the predetermined threshold states (shown by solid lines) due to the interference of adjacent cells.
  • C-level cell under the word line WLn ⁇ 1 becomes to have distribution “b 3 ” shown by dash line as similar to that in the case shown in FIG. 6 when the read voltage of the word line WLn is set at about A level.
  • C-level cell under the word line WLn+1 appears to have distribution “c 3 ” as shown by a dash line due to the interference of cells under the selected word line WLn with the read voltage applied.
  • the threshold voltage change of the A level cell under the selected word line WLn will be explained as follows: in reception of the result the case that distributions “c 1 ” to “c 3 ” of LM levels of cells under the word line WLn+1 shown in FIG. 6 are shifted to distributions “c 1 ” to “c 3 ” of C level cells under the word line WLn+1 shown in FIG. 7 , data distribution “a 1 ” shown by a solid line is shifted to distribution “a 2 ” shown by a dotted line due to the interference between floating gates FG. In addition to this, the cell threshold distribution of the unselected word line WLn+1 becomes apparently appears to have distribution “c 3 ”.
  • back pattern noise The effect of expanding the post-write data threshold distributions due to the on-margins of unselected cells against the read pass voltage is referred to as a “back pattern noise”.
  • the back pattern noise appears large. That is, the nearer to the cell source line, the larger the back pattern noise appears.
  • the interference between cells becomes large due to the cell miniaturization, it becomes difficult to ignore the interference even if it is due to one cell, and the interference influence appears as a result of the reduction of on-margin.
  • the read pass voltage Vread is set at about 5.5V
  • the upper limit of the distribution “c 2 ” is set at about 4V.
  • the difference between the distributions “c 2 ” and “c 3 ” is about 0.3V, so that the back pattern noise due to the unselected cells adjacent to the selected cell is not problematic.
  • the difference between distributions “c 2 ” and “c 3 ”, i.e., the threshold voltage difference becomes about 0.6V.
  • the back pattern noise becomes more apparent remarkably.
  • FIG. 9 shows a word line voltage applying state set in a NAND string at a write-verify time and a normal read time in a first read/write (R/W) scheme in accordance with this embodiment in comparison with that shown in FIG. 5 .
  • FIG. 10 shows cells' threshold states of word lines adjacent to a selected word line WLn at the upper page write-verify time of the selected word line WLn
  • FIG. 11 shows the cell's threshold state of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 6 and 7 , respectively.
  • a an unselected word line WLn+1 adjacent to the selected word line WLn on the bit line side is applied with read pass voltage Vread 2 higher than the read pass voltage Vread applied to the remaining unselected word lines at the write-verify time and the read time.
  • Vread 2 is an adjusted voltage such as to be able to that can cancel the apparent threshold increase of the unselected cell under the adjacent and unselected word line WLn+1 due to the read voltage of the selected word line WLn. If Vread 2 ⁇ Vread is too large, in a an unselected word line, the both adjacent word lines of which are applied with Vread, the on-margin against Vread is reduced, and resulting in that the back pattern noise due to word lines WLn+2 ⁇ WLm becomes large. Therefore, it is desired to set Vread 2 at such a level that is able to suppress the influence in the memory cells under word line WLn+1.
  • FIG. 12 shows operation waveforms at the write-verify time and the read time.
  • Select voltage Vsel applied to the selected word line WLn is either one of verify voltages VLv, Vav, Vbv and Vcv at the write-verify time, and either one of read voltages Var, Vbr and Vcr at the read time.
  • Applied to the adjacent and unselected word line WLn+1 on the bit line side of the selected word line WLn is a pass voltage Vread 2 higher than Vread applied to the remaining unselected word lines.
  • select voltage Vsel is applied to the selected word line WLn;
  • Vread 2 is applied to the adjacent and unselected word line WLn+1;
  • Vread is applied to the remaining unselected word lines;
  • Vsg is applied to the select gate line SGD for turning on the select gate transistor.
  • the bit lines are precharged for data reading.
  • bit lines BLe when even numbered bit lines BLe are subjected to data read, these are set at “H”, and Vpre+Vt is applied to BLCLAMP, so that the even numbered bit lines, BLe, are precharged. Odd numbered bit lines, BLo, are set as Vss, and serve as shield lines.
  • stop the bit line precharge operation is stopped at timing r 1 , and raise simultaneously the select gate line SGS on the source line side is raised to turn on the select gate transistor SG 2 , thereby discharging the bit lines in accordance with data of selected cells. If the threshold voltage of a selected cell is lower than the select voltage (i.e., data “1”), the bit line is discharged, while if not so (i.e., data “0”), the bit line is not discharged.
  • sense node TDC Prior to data sensing, sense node TDC is precharged at timing r 2 . Then, clamping transistor is turned on at timing r 3 , thereby coupling the bit line to the sense node TDC. Assuming that the sense level is Vsen set between “0” and “1”, BLCLAMP is applied with Vsen+Vt, which is able to can turn on transistor 37 when bit line level is Vsen. Since bit line capacitance is sufficiently larger than the capacitance of the sense node TDC, the bit line potential change with a small amplitude will be amplified at the sense node TDC.
  • the threshold shift amount from “a 2 ” to “a 3 ” of the selected cell becomes less.
  • this effect becomes remarkable in a generation, the significant when a write design rule of which is 56 nm or less.
  • FIG. 13 shows a word line voltage applying state set in a NAND string at a write-verify time and a read time in a second read/write (R/W) scheme in accordance with this embodiment in comparison with those shown in FIGS. 5 and 9 .
  • FIG. 14 shows cells' threshold states of word lines adjacent to a selected word line WLn at the upper page write-verify time of the selected word line WLn
  • FIG. 15 shows the cell's threshold state of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 6, 10 and 7, 11 , respectively.
  • This second R/W scheme is different from the first R/W scheme in the following fact: in this second R/W scheme, as shown in FIG. 13 , not only the adjacent and unselected word line WLn+1 on the bit line side of the selected word line WLn but also the adjacent and unselected word line WLn ⁇ 1 on the source line side of the selected word line WLn are applied with read pass voltage Vread 2 higher than Vread applied to the remaining unselected word lines.
  • Vread 2 is an adjusted voltage such as to be able to that can cancel the apparent threshold increase of the unselected cell under the adjacent and unselected word lines WLn+1 and WLn ⁇ 1 due to the read voltage of the selected word line WLn. If Vread 2 ⁇ Vread is too large, in a an unselected word line, the both adjacent word lines of which are applied with Vread, the on-margin against Vread is reduced, and resulting in that the back pattern noise due to word lines WLn+2 ⁇ WLm becomes becoming large. Therefore, it is desired to set Vread 2 at such a level that is able to suppress the influence interference in the memory cells under word line WLn+1.
  • FIG. 16 shows cells' threshold states of word lines adjacent to a selected word line WLn at an upper page write-verify time of the selected word line WLn in comparison with those shown in FIGS. 6, 10 and 14 .
  • FIGS. 17 and 18 show the cell's threshold states of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 7, 11 and 15 , respectively.
  • FIG. 17 is a case that A- or C-level has been written into a cell on the unselected word line WLn+1 (i.e., such a case that the threshold shift amount due to the upper page writing is large); and FIG. 18 is another case that E- or B-level has been written into the cell on the unselected word line WLn+1 (i.e., such a case that the threshold shift amount due to the upper page writing is small).
  • the cell under the adjacent and unselected word line WLn+1 on the bit line side is set in at LM level at this stage, so that it may be obtained a sufficiently low on-resistance with Vread 3 lower than Vread can be obtained. Therefore, it is permitted to use such the pass voltage Vread 3 .
  • the adjacent and unselected word line WLn+1 on the bit line side is applied with such a read pass voltage that is changed in accordance with cell data as follows.
  • Data read for the word line WLn is performed with two cycles with conditions shown in FIGS. 17 and 18 , and it will be judged judgment for each bit line is made as follows: in case the reference data held in the sense amplifier/data latch is “1”, data read with the condition of FIG. 17 is selected to be effective, while if the reference data is “0”, data read with the condition of FIG. 18 is selected to be effective.
  • FIG. 19 shows the word line voltages at two read cycles, Read 1 and Read 2 , and how cells cell 1 ⁇ cell 3 are corrected and read with respect to data level A and B to be distinguished by the lower page read with read voltage Vbr.
  • the dotted lines of data A-level and B-level designate that these appear to be higher in threshold due to the interference between cells.
  • “cell 1 ” is a memory cell to be read as an on-cell, which is not influenced by the interference between cells.
  • “cell 2 ” is a memory cell, the threshold voltage of which is shifted due to the interference between cells, and it is corrected in the read operation to be read as an on-cell (cell on the lower side).
  • “cell 3 ” is a memory cell, the with a threshold voltage of which is higher than those of “cell 1 ” and “cell 2 ”.
  • the selected voltage Vsel applied to the selected word line WLn is the verifying voltage while pass voltage Vread 3 ( ⁇ Vread) is applied to the unselected word line WLn+1.
  • read operation Read 1 the selected voltage applied to the selected word line WLn is set at Vbr, that is used for distinguishing A-level from B-level, and pass voltage Vread 3 ( ⁇ Vread) is applied to the unselected word line WLn+1.
  • the selected word line WLn is applied with the same read voltage Vbr while the unselected word line WLn+1 is applied with pass voltage Vread.
  • the threshold voltage of the selected cell appears to be increased due to the interference between floating gates FG. Therefore, in the read operation Read 2 , the pass voltage of the word line WLn+1 is set at Vread 2 higher than Vread 3 , so that the interference effect will be cancelled.
  • the read pass voltage applied to the adjacent and unselected word line WLn+1 is selected in accordance with the data written state in the unselected cell, thereby canceling the interference between cells.
  • the operation principle will be explained in detail below.
  • the interference effect between cells described here is defined as follows: when writing an adjacent cell after writing a noticed selected noted cell, FG potential of the adjacent cell is reduced to be lower than that of the selected cell, thereby resulting in that FG potential of the noticed selected cell also is reduced due to capacitive coupling, and the threshold voltage of the noticed selected cell appears to be high. This is an interference effect obtained via the coupling capacitance C 3 shown in FIG. 8 .
  • a setting example of pass voltage Vread 2 is as follows. Since, as shown in the calculation example, the threshold voltage of the adjacent cell appears to be shifted with an order of 0.3V or 0.6V, keeping constant the difference between Vread 2 and Vread 3 , Vread 2 should be set at a voltage higher than Vread by 0.3V or 0.6V.
  • FIG. 20 shows a data processing example, in which the data threshold is corrected and read reading is executed in accordance with the above-described principle, with steps, Step 1 ⁇ Step 5 , and the data changes at the respective nodes.
  • data corresponding to three cell states (cell 1 , cell 2 , cell 3 ) are expressed by the form of (L, L, H).
  • Step 1 prior to the read operation of the selected word line WLn, data read for correcting data is performed for word line WLn+1, and read data is latched at node PDC.
  • Step 2 Read 1 shown in FIG. 19 is performed, the bit line potential affected with cell data is temporally held at node TDC.
  • the bit line potential at Step 2 is shown as LHH. This designates the following situations: threshold of “cell 1 ” is lower than Vbr, and the bit line is discharged to be low (L); threshold of “cell 2 ” is higher than Vbr, and the bit line becomes high (H); and threshold of “cell 3 ” is higher than Vbr, and the bit line becomes high (H).
  • Step 4 this being which is a read step, Read 2 , shown in FIG. 19 , the bit line potential is stored in node TDC. At this time, pass voltage of the adjacent and unselected word line WLn+1 is set at Vread 2 . Therefore, as shown in FIG. 19 , the threshold voltages of cell 1 ⁇ cell 3 appear to be lowered. The amounts of the threshold reduction correspond to the interference effects between cells to be cancelled.
  • Latched data of (cell 1 , cell 2 , cell 3 ) at node TDC are (L, L, H).
  • Step 5 data previously latched at node PDC is transferred to node DDC, and an addition operation of data at node TDC and data at node DDC is performed at node TDC.
  • Vdd+Vtn Vtn is threshold voltage of an NMOS transistor
  • VPRE is raised up to Vdd from 0V.
  • data read with threshold correction may be performed for the respective bit lines, i.e., for the respective selected cells, which are coupled to a selected word line to be simultaneously read.
  • the sense amplifier configuration and the operational function are not limited to those shown in FIG. 3 , and may be achieved with other circuit configurations. What is shown in this embodiment is: sensed data in a case where unselected word line WLn+1 is low and in another case where WLn+1 is high may be selected for each bit in a continuous read operation.
  • the read pass voltage of the adjacent and unselected word line at a write-verify time is set to be lower than the read pass voltage, Vread, applied to the remaining unselected word lines.
  • the read pass voltage applied to the unselected word line WLn+1 at a read time for the selected word line WLn is optimized in accordance with which the level is of cell data in E, A, B and C levels.
  • the read pass voltage applied to the unselected word line WLn ⁇ 1 is set to be Vread 2 , higher than Vread. According to the explanation for the first R/W scheme, it is not necessary to set the unselected word line WLn ⁇ 1 at Vread 2 . Using Vread in place of Vread 2 , it will be expected the same operation and effect as described above can be realized.
  • the operation control example has been explained for a four-level data storage scheme (i.e., 2 bits/cell).
  • this invention is in a method for controlling a an unselected word line disposed adjacent to a selected word line, and is not limited to the four-level storage scheme. That is, this invention may be adapted to other memory devices of a binary data storage scheme (1 bit/cell), an eight-level storage scheme (3 bits/cell) and other multi-level data storage schemes.
  • an electric card using the non-volatile semiconductor memory devices according to the above-described embodiment of the present invention and an electric device using the card will be described bellow below.
  • FIG. 21 shows an electric card according to this embodiment and an arrangement of an electric device using this card.
  • This electric device is a digital still camera 1001 as an example of a portable electric devices device.
  • the electric card is a memory card 61 used as a recording medium of the digital still camera 1001 .
  • the memory card 61 incorporates an IC package PK 1 in which the non-volatile semiconductor memory device or the memory system according to the above-described embodiments is integrated or encapsulated.
  • the case of the digital still camera 1001 accommodates a card slot 1002 and a circuit board (not shown) connected to this card slot 1002 .
  • the memory card 61 is detachably inserted in the card slot 1002 of the digital still camera 1001 . When inserted in the slot 1002 , the memory card 61 is electrically connected to electric circuits of the circuit board.
  • this electric card is a non-contact type IC card, it is electrically connected to the electric circuits on the circuit board by radio signals when inserted in or approached to the card slot 1002 .
  • FIG. 22 shows a basic arrangement of the digital still camera.
  • Light from an object is converged by a lens 1003 and input to an image pickup device 1004 .
  • the image pickup device 1004 is, for example, a CMOS sensor and photoelectrically converts the input light to output, for example, an analog signal.
  • This analog signal is amplified by an analog amplifier (AMP), and converted into a digital signal by an A/D converter (A/D).
  • AMP analog amplifier
  • A/D converter A/D converter
  • the converted signal is input to a camera signal processing circuit 1005 where the signal is subjected to automatic exposure control (AE), automatic white balance control (AWB), color separation, and the like, and converted into a luminance signal and color difference signals.
  • AE automatic exposure control
  • AVB automatic white balance control
  • color separation and the like
  • the output signal from the camera processing circuit 1005 is input to a video signal processing circuit 1006 and converted into a video signal.
  • the system of the video signal is, e.g., NTSC (National Television System Committee).
  • the video signal is input to a display 1008 attached to the digital still camera 1001 via a display signal processing circuit 1007 .
  • the display 1008 is, e.g., a liquid crystal monitor.
  • the video signal is supplied to a video output terminal 1010 via a video driver 1009 .
  • An image picked up by the digital still camera 1001 can be output to an image apparatus such as a television set via the video output terminal 1010 . This allows the pickup image to be displayed on an image apparatus other than the display 1008 .
  • a microcomputer 1011 controls the image pickup device 1004 , analog amplifier (AMP), A/D converter (A/D), and camera signal processing circuit 1005 .
  • an operator presses an operation button such as a shutter button 1012 .
  • the microcomputer 1011 controls a memory controller 1013 to write the output signal from the camera signal processing circuit 1005 into a video memory 1014 as a flame frame image.
  • the flame frame image written in the video memory 1014 is compressed on the basis of a predetermined compression format by a compressing/stretching circuit 1015 .
  • the compressed image is recorded, via a card interface 1016 , on the memory card 61 inserted in the card slot.
  • an image recorded on the memory card 61 is read out via the card interface 1016 , stretched decompressed by the compressing/stretching decompressing circuit 1015 , and written into the video memory 1014 .
  • the written image is input to the video signal processing circuit 1006 and displayed on the display 1008 or another image apparatus in the same manner as when image is monitored.
  • the card slot 1002 mounted on the circuit board 1000 are the card slot 1002 , image pickup device 1004 , analog amplifier (AMP), A/D converter (A/D), camera signal processing circuit 1005 , video signal processing circuit 1006 , display signal processing circuit 1007 , video driver 1009 , microcomputer 1011 , memory controller 1013 , video memory 1014 , compressing/stretching circuit 1015 , and card interface 1016 .
  • AMP analog amplifier
  • A/D converter A/D converter
  • the card slot 1002 need not be mounted on the circuit board 1000 , and can also be connected to the circuit board 1000 by a connector cable or the like.
  • a power circuit 1017 is also mounted on the circuit board 1000 .
  • the power circuit 1017 receives power from an external power source or battery and generates an internal power source voltage used inside the digital still camera 1001 .
  • a DC-DC converter can be used as the power circuit 1017 .
  • the internal power source voltage is supplied to the respective circuits described above, and to a strobe 1018 and the display 1008 .
  • the electric card according to this embodiment can be used in portable electric devices such as the digital still camera explained above.
  • the electric card can also be used in various apparatus such as shown in FIGS. 23A to 23J , as well as in portable electric devices. That is, the electric card can also be used in a video camera shown in FIG. 23A , a television set shown in FIG. 23B , an audio apparatus shown in FIG. 23C , a game apparatus shown in FIG. 23D , an electric musical instrument shown in FIG. 23E , a cell phone shown in FIG. 23F , a personal computer shown in FIG. 23G , a personal digital assistant (PDA) shown in FIG. 23H , a voice recorder shown in FIG. 23I , and a PC card shown in FIG. 23J .
  • PDA personal digital assistant

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A non-volatile semiconductor memory device has a NAND string, in which multiple memory cells are connected in series. A read procedure is performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a selected voltage while unselected memory cells are driven to be turned on without regard to cell data thereof. In the read procedure, a first read pass voltage is applied to unselected memory cells except an adjacent and unselected memory cell disposed adjacent to the selected memory cell, the adjacent and unselected memory cell being completed in data write later than the selected memory cell, and a second read pass voltage higher than the first read pass voltage is applied to the adjacent and unselected memory cell.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is based on and claims the benefit of priority from the prior Japanese Patent Application No. 2007-239089, filed on Sep. 14, 2007, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a non-volatile semiconductor memory device with a floating gate type memory cell of a floating gate type, and specifically relates to a method of controlling read/write of a NAND-type flash memory.
2. Description of the Related Art
A currently manufactured NAND-type flash memory has floating gate type of memory cells, wherein write and erase of which operations are performed with electron-injection and electron-releasing of at the respective floating gates (FGs). Controlling By controlling the electron injection quantity in a floating gate, it is able possible to set multiple threshold voltage states (i.e., data states). In practice, it has been achieved such a NAND-type flash memory that stores four level data (i.e., stores two bits per cell).
What becomes problematic whenProblems occur as the NAND-type flash memory is more highly integrated and stores more data bits per cell is; creating an interference noise between floating gates. This interference effect is defined as follows: assuming that a memory cell Cell_A is written, and then adjacent memory cell Cell_B is written, FG potential of Cell_A is influenced by the change of FG potential of Cell_B to be changed, so that the threshold distribution appears to be widened.
There has been proposed a write control scheme preferable for making lessening the interference between memory cells less (refer to, for example, JP-A-2005-243205). In this write control scheme, it is not used such an upper page write mode that brings straight increases the lowermost level of four levels to the uppermost level is not used. As a result, the interference noise between cells will be reduced. Additionally, in the write control scheme, word lines are basically selected in order from the source line side, and word line selecting orders of the lower page write and the upper page write are suitably combined so as to reduce the influence interference between cells.
However, as the highly higher integration of the NAND-type flash memories progresses, there is possibility that it becomes more difficult to avoid the interference noise between adjacent cells.
SUMMARY OF THE INVENTION
According to an aspect of the present invention, there is provided a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, including includes a read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a selected voltage while unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
a first read pass voltage is applied to unselected memory cells except an adjacent and unselected memory cell disposed adjacent to the selected memory cell, the adjacent and unselected memory cell being completed in completing data write later than the selected memory cell, and a second read pass voltage higher than the first read pass voltage is applied to the adjacent and unselected memory cell in the read procedure.
According to another aspect of the present invention, there is provided a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, including includes a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and a normal read procedure is performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
in the write-verifying procedure, a first read pass voltage is applied to unselected memory cells except two adjacent and unselected memory cells disposed adjacent to the selected memory cell; a second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to as the selected memory cell; and a third read pass voltage lower than the first read pass voltage is applied to the other cell, which is written later than the selected memory cell, and
in the normal read procedure, the first read pass voltage is applied to the unselected memory cells except the two adjacent and unselected memory cells; the second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to as the selected memory cell; and a fourth read pass voltage is applied to the other cell, which has been written later than the selected memory cell, the level of the fourth read pass voltage being selected in level in accordance with the cell's threshold shift amount.
According to still another aspect of the present invention, there is provided a method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, including includes a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and a normal read procedure is performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
in the write-verifying procedure, a first read pass voltage is applied to unselected memory cells except adjacent and unselected memory cells adjacent to the selected memory cell; a second read pass voltage lower than the first read pass voltage is applied to one of the adjacent and unselected memory cells, which is written later than the selected memory cell, and
in the normal read procedure, the first read pass voltage is applied to the unselected memory cells except the adjacent and unselected memory cells disposed adjacent to the selected memory cell; a third read pass voltage is applied to one of the adjacent and unselected memory cells, which has been written later than the selected memory cell, the level of the third read voltage being selected in level in accordance with the cell's threshold shift amount, the maximum vale value of which is higher than the first read pass voltage.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a configuration of a NAND-type flash memory in accordance with an embodiment of the present invention.
FIG. 2 is a diagram for explaining the data write order in the cell array in the flash memory.
FIG. 3 shows the sense unit of the flash memory.
FIG. 4 shows the 4-level data threshold distribution of the flash memory.
FIG. 5 shows the conventional bias relationship in the NAND string at a write-verify time and a normal read time.
FIG. 6 shows the cell threshold distribution at a normal upper page write-verify time.
FIG. 7 shows the cell threshold distribution at a normal read time.
FIG. 8 shows the capacitive coupling state in the sectional view of the NAND string.
FIG. 9 shows the bias relationship in the NAND string at a write-verify time and a normal read time in the first mode of this embodiment.
FIG. 10 shows the threshold distribution at the upper page write-verify time in the first mode with reference to FIG. 6.
FIG. 11 shows the threshold distribution at the normal read time in the first mode with reference to FIG. 7.
FIG. 12 shows read operation waveforms in the first mode.
FIG. 13 shows the bias relationship in the NAND string at a write-verify time and a normal read time in the second mode of this embodiment.
FIG. 14 shows the threshold distribution at the upper page write-verify time in the second mode with reference to FIG. 6.
FIG. 15 shows the threshold distribution at the normal read time in the second mode with reference to FIG. 7.
FIG. 16 shows the threshold distribution at the upper page write-verify time in the third mode with reference to FIG. 6.
FIG. 17 shows the threshold distribution at the normal read time in the third mode in case written data in the adjacent and unselected cell is A- or C-level with reference to FIG. 7.
FIG. 18 shows the threshold distribution at the normal read time in the third mode in case written data in the adjacent and unselected cell is E- or B-level with reference to FIG. 7.
FIG. 19 is a diagram for explaining the correction read operation in the third mode.
FIG. 20 is a diagram for explaining the data processing the correction read operation in the third mode.
FIG. 21 shows another embodiment applied to a digital still camera.
FIG. 22 shows the internal configuration of the digital still camera.
FIGS. 23A to 23J show other electric devices to which the embodiment is applied.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Illustrative embodiments of this invention will be explained with reference to the accompanying drawings below.
Basic Configuration and Basic Write-control Scheme
FIG. 1 shows the whole configuration of a NAND-type flash memory in accordance with an embodiment. NAND cell unit (i.e., NAND string) 100, which is a basic unit of the NAND-type flash memory, has plural memory cells MC0-MC31 connected in series and two select gate transistors SG1 and SG2 disposed at the both ends.
One end of NAND cell unit 100 is coupled to bit line BL via the select gate transistor SG1; and the other end is coupled to common source line CELSRC via the select gate transistor SG2.
One memory cell has N-type source and drain diffusion layers formed on a P-well formed on a silicon substrate, and a stacked gate structure with a floating gate and a control gate stacked above the channel region defined by the source and drain layers. Changing By changing the charge amount held in the floating gate by a write or erase operation, the threshold voltage of the cell is changed, so that one bit per cell or multiple bits per cell will be stored.
Control gates of the memory cells MC0-MC31 in the NAND cell unit 100 are coupled to different word lines WL0-WL31, respectively; and gates of the select gate transistors SG1 and SG2 are coupled to select gate lines SGD and SGS, respectively.
A set of NAND cell units 100, which shares word lines WL0-WL31 and select gate lines SGD and SGS, constitutes a block 101 serving as a data erase unit. Usually, as shown in the drawing, plural blocks are arranged in the bit line direction.
The various operations of the NAND-type flash memory are achieved together with command inputs. For example, in a write mode, a data load command is input via input/output circuit 1 to be latched in command register 2; then a write destination address is input via input/output circuit (I/O buffer) 1 to be latched in address register 3; write data is input via input/output circuit 1 to be loaded in sense amplifier circuit (serving as write circuit) 30; and a write executing command is input via input/output circuit 1 to be latched in command register 2. As a result, the write operation will start automatically in the chip.
That is, by the write executing command being input, sequence control circuit 4 starts to execute. This sequence control circuit 4 executes the following controls: voltage controlling necessary for data writing; timing controlling of write pulse applications and verify-reading operations; and repeat-controlling of the write pulse applications and verify-read operations until a desirable write operation is completed.
High voltage generation circuit 5 generates under the condition of the sequence control circuit 4 write voltage Vpgm, write pass voltage Vpass, read pass voltage Vread and other high voltages (boosted voltages) necessary for row-signal driving circuit 20, page buffer control circuit 6 and the like.
Row-signal driving circuit 20 has: CG decoder/drivers 24, the number of which is equal to that of word lines in a NAND cell unit; SGD driver 22 for controlling the drain side select gate line SGD; SGS driver 23 for controlling the source side select gate line SGS; and VRDEC driver 21 for outputting boosted supply voltage VRDEC used in the block decoder. These drivers 21-24 are shared by plural blocks 101 in the memory cell array 102.
It is required of for the NAND-type flash memory to be used use plural voltages applied to plural word lines in a selected NAND cell unit. Therefore, page addresses used for selecting word lines in the NAND cell unit in the row address will be input to the respective CG decoder/drivers 24.
Disposed at the word line end of each block in the memory cell array 102 is a narrow sensed row decoder 10, which has a block selecting function. Row decoder 10 has block decoder 11 for receiving the block address sent from address register 3 and decoding it, and transferring transistor array 12, the common gate of which is driven by the outputs of block decoder 11, for transferring voltages necessary for write, erase and read to the word lines and the select gate lines. Block decoder 11 includes a level shift circuit for outputting a required voltage to the common gate TG of the transistor array 12.
OneFirst ends of the transfer transistor array 12 are coupled to the respective drivers 21-24 while the other second ends are coupled to word lines and select gate lines in the memory cell array 102. For example, at a write pulse application time, it is in need of applying a write voltage Vpgm (about 20V) is needed to be applied to a selected word line. At this time, applied to the common gate TG is Vpgm+Vt (Vt; threshold voltage of the transfer transistor 12), which is supplied from VRDEC driver 21.
In the NAND-type flash memory, FN tunneling current is used for writing and erasing cells. Specifically in the writing mode, a lot of memory cells may be written simultaneously because a necessary current for shifting cell's threshold is very small as different, which differs from a NOR-type flash memory. Therefore, a page length, which is defined as a collectively processing unit in a write mode or read mode, will be set to be as large as 2 kByte or 4 kByte. Sense amplifier circuit (i.e., page buffer) 30 includes sense amps 31 with the same number as the page length.
Column decoder 7 decodes, for example at a write data loading time, column address sent from address register 3, and couples the input/output circuit 1 to selected sense amps PB, thereby making causing write data for the respective column addresses to be loaded in the sense amplifier circuit 30. In a read mode, read data stored in a lump in the sense amplifier circuit 30 are output to input/output circuit 1 as sequentially selected in accordance with a column address.
FIG. 2 shows such an example that an even numbered bit line BLe and the adjacent odd numbered bit line BLo shares share a sense amp PB. At a write time or a read time, the even numbered bit line BLe or the odd numbered bit line BLo is selected in accordance with selecting signals BLSe and BLSo to be coupled to sense amp PB. At this time, unselected bit lines serve as shield lines, so that the interference between adjacent bit lines will be suppressed. BLCRL is a certain voltage to be applied to unselected bit lines. To shield selected bit lines in a read operation or write-verify operation, for example, Vss is applied to unselected bit lines via transistors driven by BIASe and BIASo.
In case of this sense amplifier scheme, memory cells selected by a word line and all even-numbered bit lines constitute a page (even page) to be read or written simultaneously while memory cells selected by a word line and all odd-numbered bit lines constitute another page (odd page) to be read or written simultaneously.
FIG. 3 shows the detailed example of the sense amp (PB) 31. Latch circuit L1 is selectively coupled to data lines IO and IOB by column select signal CSL output from the column decoder, and coupled to sense node TDC via transfer transistor 32c. In this example, latch L1 serves as a cache in the page buffer, or serves as data storage circuit used for achieving multi-level data storage such as 2-bit per cell.
Another latch circuit L2 is coupled to the sense node TDC via transfer transistor 33, and coupled to operational circuit 34 via transfer transistor 34a. The operational circuit 34 including transistors 34a, 34b and 34c may execute some operations for the sense node TDC in accordance with the potential of gate node DDC of transistor 34b. For example, setting drain voltage VPRE of transistor 34b at 0V when DDC is “H”, and turning on transistor 34c, the potential of node TDC will be changed in accordance with data at DDC.
Transistor 35 is a bit line precharging transistor. Transistor 37 is one used for coupling a bit line to the sense node TDC. This transistor 37 serves for amplifying a small bit line amplitude in accordance with gate voltage control thereof at a read time, and serves for coupling the latch circuit to the bit line at a write time.
Transistors 38a and 38b are high breakdown voltage ones transistors, which serve for not only shutting generating an erase voltage of about 20V to be applied to bit lines but also selecting the even and odd bit lines BLe and BLo.
FIG. 4 is a diagram for explaining the principle of writing four-level data (two-bits per cell data) in this embodiment. Four-level data are referred to as level “E”, level “A”, level “B” and level “C” in order from the lower side of the cell's threshold voltage. Level “E” is a negative threshold voltage state obtained by a collective block erase. It is shown in FIG. 4 shows a data bit assignment example of assigning the lower page (LP) bit and upper page (UP) bit to the respective data levels.
In the lower page (LP) write (or program), cells of level “E” are selectively set up to have a medium level “LM”, that is set between levels “A” and “B”. After the LP write, the upper page (UP) write is performed. In the upper page write, level “A” write from level “E” and level “B” or “C” write from level “LM” are performed simultaneously.
The lower limit values of the threshold voltages of levels “LM”, “A”, “B” and “C” are defined by verifying voltages VLv, Vav, Vbv and Vcv, respectively, used at the respective write-verify times.
The basic data write order (word line selection order) in this embodiment is shown in FIG. 2. Here, “L” and “U” designate the lower page (LP) and upper page (UP), respectively while numerals shown at the side of L/U designate the write order.
That is, assuming that cells in the NAND string are written in order from the source line side, first, the lower page, L:
Figure USRE046749-20180306-P00001
, of word line WL0 on the even numbered bit line BLe side is written; then, the lower page, L:
Figure USRE046749-20180306-P00002
, of word line WL0 on the odd numbered bit line BLo side is written. Following it that, the lower page, L:
Figure USRE046749-20180306-P00003
, of word line WL1 on the even numbered bit line BLe side is written; and then, the lower page, L:
Figure USRE046749-20180306-P00004
, of word line WL0 on the odd numbered bit line BLo side is written. Next, the upper page, U:
Figure USRE046749-20180306-P00005
, of word line WL0 on the even numbered bit line BLe side is written; and then, the upper page, L:
Figure USRE046749-20180306-P00006
, of word line WL0 on the odd numbered bit line BLo side is written.
Successively, go going to word line WL2, and the lower page, L:
Figure USRE046749-20180306-P00007
, on the even numbered bit line BLe side is written; and then, the lower page, L:
Figure USRE046749-20180306-P00008
, of word line WL2 on the odd numbered bit line BLo side is written. Following it that, go going back to word line WL1, and the upper page, U:
Figure USRE046749-20180306-P00009
, on BLe is written; and then the upper page, U:
Figure USRE046749-20180306-P00010
, of the word line WL1 on the odd bit line BLo side is written. Hereinafter, the same write operation will be repeated.
DataWith data writing in accordance with the above-described order, it becomes possible to prevent the adjacent cell from being written into C level from E level after having decided a noticed cell's threshold at either one of A to C levels. The threshold change of the adjacent cell of the noticed cell after writing it will be suppressed to be about a half (i.e., E→A, LM→C) in comparison with the change from E level to C level, and resulting in that the interference effect of cells is reduced in half.
Subject to be Solved
Although the basic configuration and basic write control scheme have been explained above, there are remained problems remain to be solved, which will be explained in detail below.
FIG. 5 shows a bias relationship in the NAND string at a write-verify read time or a normal read time. To explain the problem briefly, here is shown an example of the NAND string, in which eight memory cells MC0-MC7 are used.
When memory cell MC2 is selected, the selected word line WL2 is applied with select voltage Vsel while unselected word lines WL0-1 and WL3-7 (i.e., unselected memory cells) are applied with read pass voltage Vread that is necessary to turn on cells without regard to cell data. The select voltage Vsel is either one selected from verify voltages VLv, Vav, Vbv and Vcv, which are selected in accordance with write levels, at a write-verify time, or either one selected from read voltages Var, Vbr and Vcr set between the respective data levels at a normal read time.
FIG. 6 shows the memory cells' situations in the range of word lines WLn-WLn+2 at a write-verify time after the upper page writing of A level into a cell selected on word line WLn. When upper page write is performed for a memory cell on the word line WLn, memory cells on data write for the word lines WLn-1 and WLn-2 have been completed in data write to be set at either one of E to C levels. The memory cell on the word line WLn+1 is set in the lower page write state (LM level) or the E level state in accordance with the write order explained with reference to FIG. 2. The memory cell on the adjacent word line WLn+2 is set in the E level state (i.e., erase state).
Notice here the C level of the memory cell on the word line WLn−1, which has already been written. The cell threshold distribution becomes “b1” shown by a solid line when there is not influenced by the no influence of interference between floating gates, while it becomes “b2” shown by a dotted line when there is influenced by it influence of interference. With respect to word line WLn+1, distribution “c1” shown by a solid line is obtained without the interference while distribution “c2” shown by a dotted line is obtained with the interference.
Note here that unselected word lines WLn−1 and WLn+1 disposed adjacent to the selected word line WLn are different in condition from the remaining unselected word lines with respect to the interference effect between adjacent cells. That is, each of the remaining word lines and the selected word lines is sandwiched by word lines with Vread applied. By contrast, with respect to word lines WLn−1 and WLn+1, one of word lines adjacent to them are is set at Vread while the other are is set at Vav.
As a result, the memory cells on the unselected word lines WLn−1 and WLn+1, one of the two adjacent word lines of each of which is low in potential, have an apparently higher threshold state than those on the remaining unselected word lines because of a large interference of adjacent cells. This will be explained with reference to FIG. 8.
FIG. 8 shows capacitive coupling situations of the floating gate FGn of a memory cell MCn in a NAND string, which affect the floating gate potential. That is, FGn is coupled to the control gate (i.e., word line WLn) stacked thereabove via capacitance C2, and coupled to the channel via capacitance C1. Basically, floating gate potential control and channel potential control are achieved by the capacitance coupling ratio of these capacitances C1 and C2.
On the other hand, as the cell size is shrunk, the floating gate FGn of the noticed cell is strongly coupled to adjacent floating gates and adjacent word lines with capacitances C3 and C4, respectively.
Under the capacitive coupling situations, when word line WLn+1 is applied with the read pass voltage Vread and word line WLn is applied with a read voltage lower than the read pass voltage, the floating gate FGn+1 under the word line WLn+1 becomes lower in potential than the case where FGn+1 is directly controlled by the word line WLn+1 with Vread applied. The reason is as follows: a first capacitive coupling effect, in which the potential of FGn+1 is reduced from word line WLn via the floating gate FGn+1 (i.e., via capacitance C2 and C3), and a second capacitive coupling effect, in which the potential of FGn+1 is reduced from word line WLn directly, are overlapped, so that the floating gate FGn+1 is not sufficiently increased in potential with Vread.
Explaining that in other words, the memory cell under a an unselected word line adjacent to the selected word line becomes apparently high in threshold. As shown in FIG. 6, the memory cell set at LM level under the unselected word line WLn+1 has apparently appears to have distribution “c3” shown by a dash line while the memory cell set at C level under the word line WLn−1 has apparently appears to have distribution “b3” shown by a dash line.
As a result, as shown in FIG. 6, the relationship between on-margin dVon_2a against Vread of a cell under the unselected word line WLn−1 and on-margin dVon_1a of another cell under the unselected word line WLn−1 becomes as follows: dVon_1a>dVon_2a.
Next, FIG. 7 shows cell threshold states in the range of word lines WLn−2 to WLn+2 when the cell data (A level) of the word line WLn is read after writing all memory cells. Here is shown that all memory cells have threshold distributions shifted in the positive direction (shown by dotted lines) from the predetermined threshold states (shown by solid lines) due to the interference of adjacent cells.
It will be guessed thatHere we consider the C-level cell under the word line WLn−1 becomes to have distribution “b3” shown by dash line as similar to that in the case shown in FIG. 6 when the read voltage of the word line WLn is set at about A level. By contrast, C-level cell under the word line WLn+1 appears to have distribution “c3” as shown by a dash line due to the interference of cells under the selected word line WLn with the read voltage applied.
The threshold voltage change of the A level cell under the selected word line WLn will be explained as follows: in reception of the result the case that distributions “c1” to “c3” of LM levels of cells under the word line WLn+1 shown in FIG. 6 are shifted to distributions “c1” to “c3” of C level cells under the word line WLn+1 shown in FIG. 7, data distribution “a1” shown by a solid line is shifted to distribution “a2” shown by a dotted line due to the interference between floating gates FG. In addition to this, the cell threshold distribution of the unselected word line WLn+1 becomes apparently appears to have distribution “c3”. Assuming that the increase of the on-resistance influences the cell current Icell of the memory cell at the cell threshold setting time, the distribution of the cell to be written into the A level under the word line WLn will be further shifted in the positive direction as shown by “a3”.
The effect of expanding the post-write data threshold distributions due to the on-margins of unselected cells against the read pass voltage is referred to as a “back pattern noise”. In general, in such a cell that is easily written in a NAND string, the back pattern noise appears large. That is, the nearer to the cell source line, the larger the back pattern noise appears. However, when the interference between cells becomes large due to the cell miniaturization, it becomes difficult to ignore the interference even if it is due to one cell, and the interference influence appears as a result of the reduction of on-margin.
The above-described influence on the threshold voltage of the adjacent cell due to the selected word line will be explained together with a detailed numerous example examples with reference to the coupling capacitances shown in FIG. 8. Assuming that the select voltage of the selected word line is Vsel, and unselected word line voltage is Vread, the apparent threshold voltage shift ΔVt of a memory cell under the adjacent and unselected word line due to the word line voltage difference ΔVwl(=Vread−Vsel) will be expressed by the following expression Exp. 1.
ΔVt={(C4+C3·Cr)/C2}ΔVwl   [Exp. 1]
where, Cr=C2/Call (Call is the total capacitance value of FGn).
By use of the following numerous example of: (C4+C3·Cr)/C2=0.066; and ΔVwl=4.5v (Vread=5.5V, Vsel=1V) as used in the conventional NAND-type flash memory, ΔVt=0.3V is obtained. In other words, the difference between threshold distributions “c2” and “c3” in FIG. 7 becomes 0.3V.
Next, by use of the following numerous example of: (C4+C3·Cr)/C2=0.13; and ΔVwl=4.5v as obtained in case the interference between cells becomes large due to the cell miniaturization, ΔVt=0.59V is obtained. In other words, the difference between threshold distributions “c2” and “c3” in FIG. 7 becomes 0.59V. “c2” is the upper limit of the threshold distribution of unselected cells apart from the selected cell by a distance of two cells or more. As the interference between cells becomes larger, as shown by the distribution “c3”, the upper limit of the threshold voltage distribution of the adjacent and unselected cells becomes higher.
Conventionally, the read pass voltage Vread is set at about 5.5V, and the upper limit of the distribution “c2” is set at about 4V. In the NAND-type flash memory belonging to a generation, in which the design rule is larger than 56 nm, the difference between the distributions “c2” and “c3” is about 0.3V, so that the back pattern noise due to the unselected cells adjacent to the selected cell is not problematic. However, in such a generation that the design rule is 56 nm or less, as explained in the calculation example, the difference between distributions “c2” and “c3”, i.e., the threshold voltage difference, becomes about 0.6V. As a result, when estimating the device with the same read pass voltage and the upper limit of the threshold voltage, the back pattern noise becomes more apparent remarkably.
The condition of that the above-described effect starts to be apparent as the back pattern noise is in results from the fact that the difference between the read pass voltage and the upper limit of the distribution “c3”, i.e., on-margin dVon_3a of the unselected cell as shown in FIG. 7, is about 1V or less. This fact has been obtained as by an experimental result.
First R/W Scheme in the Embodiment
FIG. 9 shows a word line voltage applying state set in a NAND string at a write-verify time and a normal read time in a first read/write (R/W) scheme in accordance with this embodiment in comparison with that shown in FIG. 5. FIG. 10 shows cells' threshold states of word lines adjacent to a selected word line WLn at the upper page write-verify time of the selected word line WLn, and FIG. 11 shows the cell's threshold state of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 6 and 7, respectively.
As shown in these FIGS. 9, 10 and 11, a an unselected word line WLn+1 adjacent to the selected word line WLn on the bit line side (i.e., on the side of a cell to be written later than the selected cell) is applied with read pass voltage Vread2 higher than the read pass voltage Vread applied to the remaining unselected word lines at the write-verify time and the read time.
Vread2 is an adjusted voltage such as to be able to that can cancel the apparent threshold increase of the unselected cell under the adjacent and unselected word line WLn+1 due to the read voltage of the selected word line WLn. If Vread2−Vread is too large, in a an unselected word line, the both adjacent word lines of which are applied with Vread, the on-margin against Vread is reduced, and resulting in that the back pattern noise due to word lines WLn+2˜WLm becomes large. Therefore, it is desired to set Vread2 at such a level that is able to suppress the influence in the memory cells under word line WLn+1.
FIG. 12 shows operation waveforms at the write-verify time and the read time. Select voltage Vsel applied to the selected word line WLn is either one of verify voltages VLv, Vav, Vbv and Vcv at the write-verify time, and either one of read voltages Var, Vbr and Vcr at the read time.
Applied to the adjacent and unselected word line WLn+1 on the bit line side of the selected word line WLn is a pass voltage Vread2 higher than Vread applied to the remaining unselected word lines. As a result, the increase of the back pattern noise due to the selected word line voltage will be suppressed.
The operation will be explained below in accordance with the sense unit configuration shown in FIG. 3. At timing r0, select voltage Vsel is applied to the selected word line WLn; Vread2 is applied to the adjacent and unselected word line WLn+1; Vread is applied to the remaining unselected word lines; and Vsg is applied to the select gate line SGD for turning on the select gate transistor. At the same time, the bit lines are precharged for data reading.
For example, when even numbered bit lines BLe are subjected to data read, these are set at “H”, and Vpre+Vt is applied to BLCLAMP, so that the even numbered bit lines, BLe, are precharged. Odd numbered bit lines, BLo, are set as Vss, and serve as shield lines.
After the word lines and bit lines have been set at certain levels, respectively, stop the bit line precharge operation is stopped at timing r1, and raise simultaneously the select gate line SGS on the source line side is raised to turn on the select gate transistor SG2, thereby discharging the bit lines in accordance with data of selected cells. If the threshold voltage of a selected cell is lower than the select voltage (i.e., data “1”), the bit line is discharged, while if not so (i.e., data “0”), the bit line is not discharged.
Prior to data sensing, sense node TDC is precharged at timing r2. Then, clamping transistor is turned on at timing r3, thereby coupling the bit line to the sense node TDC. Assuming that the sense level is Vsen set between “0” and “1”, BLCLAMP is applied with Vsen+Vt, which is able to can turn on transistor 37 when bit line level is Vsen. Since bit line capacitance is sufficiently larger than the capacitance of the sense node TDC, the bit line potential change with a small amplitude will be amplified at the sense node TDC.
Although, after timing r4, the write-verify operation and the normal read operation has have a slight difference, data at the sense node after sensing, or data after certain operational processing at the sense node TDC, is stored in latch L1. Finally, after discharging word lines and bit lines at timing r5, the write-verify operation or the normal read operation ends.
IntroducingBy introducing the above-described read pass voltage Vread2, the on-resistance increase of the cell under the unselected word line WLn+1 is suppressed, and the threshold voltage shift of the selected cell under the selected word line is suppressed. Explaining that in detail, as explained with reference to FIG. 7, if the on-resistance of the cells under the unselected word line is increased, the cell threshold to be written to A-level will be shifted in the positive direction as shown by distribution “a3”.
By contrast, according to this embodiment, as shown in FIG. 11, the threshold shift amount from “a2” to “a3” of the selected cell becomes less. As explained in the above-described analyzing results, this effect becomes remarkable in a generation, the significant when a write design rule of which is 56 nm or less.
Second R/W Scheme in the Embodiment
FIG. 13 shows a word line voltage applying state set in a NAND string at a write-verify time and a read time in a second read/write (R/W) scheme in accordance with this embodiment in comparison with those shown in FIGS. 5 and 9. FIG. 14 shows cells' threshold states of word lines adjacent to a selected word line WLn at the upper page write-verify time of the selected word line WLn, and FIG. 15 shows the cell's threshold state of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 6, 10 and 7, 11, respectively.
This second R/W scheme is different from the first R/W scheme in the following fact: in this second R/W scheme, as shown in FIG. 13, not only the adjacent and unselected word line WLn+1 on the bit line side of the selected word line WLn but also the adjacent and unselected word line WLn−1 on the source line side of the selected word line WLn are applied with read pass voltage Vread2 higher than Vread applied to the remaining unselected word lines.
Vread2 is an adjusted voltage such as to be able to that can cancel the apparent threshold increase of the unselected cell under the adjacent and unselected word lines WLn+1 and WLn−1 due to the read voltage of the selected word line WLn. If Vread2−Vread is too large, in a an unselected word line, the both adjacent word lines of which are applied with Vread, the on-margin against Vread is reduced, and resulting in that the back pattern noise due to word lines WLn+2˜WLm becomes becoming large. Therefore, it is desired to set Vread2 at such a level that is able to suppress the influence interference in the memory cells under word line WLn+1.
According to this second R/W scheme, in addition to the effect obtained in the first R/W scheme, it will be provided the following effect that the of reduction of cell current Icell of the whole NAND string due to the reduction of on-margin of the cell under the word line WLn−1 is suppressed is realized.
Third R/W Scheme in the Embodiment
FIG. 16 shows cells' threshold states of word lines adjacent to a selected word line WLn at an upper page write-verify time of the selected word line WLn in comparison with those shown in FIGS. 6, 10 and 14. FIGS. 17 and 18 show the cell's threshold states of the selected word line WLn at a read time after writing all cells in comparison with those shown in FIGS. 7, 11 and 15, respectively.
Note here that FIG. 17 is a case that A- or C-level has been written into a cell on the unselected word line WLn+1 (i.e., such a case that the threshold shift amount due to the upper page writing is large); and FIG. 18 is another case that E- or B-level has been written into the cell on the unselected word line WLn+1 (i.e., such a case that the threshold shift amount due to the upper page writing is small).
As differentDifferently from the second R/W scheme, applied to the adjacent and unselected word line WLn+1 on the bit line side is read pass voltage Vread3 lower than Vread applied to the remaining word lines. As similar Similarly to the second R/W scheme, applied to the adjacent and unselected word line WLn−1 on the source line side is read pass voltage Vread2 higher than Vread applied to the remaining word lines.
The cell under the adjacent and unselected word line WLn+1 on the bit line side is set in at LM level at this stage, so that it may be obtained a sufficiently low on-resistance with Vread3 lower than Vread can be obtained. Therefore, it is permitted to use such the pass voltage Vread3. The With the adjacent and unselected word line WNn−1 on the source line side being applied with Vread2, it becomes possible to secure a large on-margin dVon_1c in case of C-level cell.
By contrast, in the normal read operation for the selected word line WLn after having written all cells, the adjacent and unselected word line WLn+1 on the bit line side is applied with such a read pass voltage that is changed in accordance with cell data as follows.
That is, in case the cell data of word line WLn+1 is A- or C-level, as shown in FIG. 17, read pass voltage Vread2 higher than that of the verify time is used. As a result, it becomes possible to secure a large on-margin dVon_2c even if the data of the cell on the word line WLn+1 is C-level.
In case the cell data of word line WLn+1 is E- or B-level with a small threshold shift amount, as shown in FIG. 18, the same read pass voltage Vread3 as that of the verify time is used. As a result, it becomes possible to secure a large on-margin for the cell on the word line WLn+1.
To make establish the read condition for the selected word line after all data have been written different in accordance with the write data in the adjacent and unselected word line WLn+1, it is required to refer to the data of the word line WLn+1 when word line WLn is selected. For this purpose, perform data read of word line WLn+1 is performed prior to data read of word line WLn, and store the data is stored in the sense amplifier/data latch. For example, cell data of word line WLn+1 is A- or C-level, reference data “0” is latched while cell data is E- or B-level, reference data “1” is latched.
Data read for the word line WLn is performed with two cycles with conditions shown in FIGS. 17 and 18, and it will be judged judgment for each bit line is made as follows: in case the reference data held in the sense amplifier/data latch is “1”, data read with the condition of FIG. 17 is selected to be effective, while if the reference data is “0”, data read with the condition of FIG. 18 is selected to be effective.
The correcting read operation in this embodiment in accordance with the adjacent cell's data will be explained in detail with reference to FIGS. 19 and 20.
FIG. 19 shows the word line voltages at two read cycles, Read1 and Read2, and how cells cell1˜cell3 are corrected and read with respect to data level A and B to be distinguished by the lower page read with read voltage Vbr. The dotted lines of data A-level and B-level designate that these appear to be higher in threshold due to the interference between cells.
“cell1” is a memory cell to be read as an on-cell, which is not influenced by the interference between cells. “cell2” is a memory cell, the threshold voltage of which is shifted due to the interference between cells, and it is corrected in the read operation to be read as an on-cell (cell on the lower side). “cell3” is a memory cell, the with a threshold voltage of which is higher than those of “cell1” and “cell2”.
In the write-verify operation, the selected voltage Vsel applied to the selected word line WLn is the verifying voltage while pass voltage Vread3 (<Vread) is applied to the unselected word line WLn+1.
In this embodiment, prior to starting the read operation for the selected word line WLn, data of the unselected word line WLn+1 is read and stored. This operation is performed automatically by the controller when word line WLn is selected in the read operation. In this read operation of the unselected word line WLn+1, in case E-level or B-level is judged, “H” is set at node PDC while A-level or C-level is judged, “L” is set at the node PDC. The As the sense unit has a certain number of data nodes and an arithmetic processing function, the above-described data read may be easily performed. The detailed explanation is omitted.
Next, the read operation for the selected word line WLn will be explained as follows: in the lower page read operation, as shown in FIG. 19, read operation Read1 and read operation Read2 are successively performed. In the read operation Read1, the selected voltage applied to the selected word line WLn is set at Vbr, that is used for distinguishing A-level from B-level, and pass voltage Vread3 (<Vread) is applied to the unselected word line WLn+1. In the read operation Read2, the selected word line WLn is applied with the same read voltage Vbr while the unselected word line WLn+1 is applied with pass voltage Vread.
In the case of threshold distributions and data bit assignment shown in FIG. 4, it is able to judge the lower page (LP) data can be judged only with the read operation with the read voltage Vbr applied to the selected word line WLn.
In case the adjacent cell's data on the word line WLn+1 is E- or B-level, the interference from the adjacent cell to the selected cell is small, the threshold voltage of the selected cell on the word line WLn is hardly changed from the write-verified state. Therefore, in case the adjacent cell is in this state, data will be obtained in the read operation Read1 with the pass voltage of word line WLn+1 set at Vread3, that is the same as one at the write-verify time.
By contrast, in case the adjacent cell's data on the word line WLn+1 is A- or C-level, the threshold voltage of the selected cell appears to be increased due to the interference between floating gates FG. Therefore, in the read operation Read2, the pass voltage of the word line WLn+1 is set at Vread2 higher than Vread3, so that the interference effect will be cancelled.
It has already been provided theThe idea for canceling the interference effect of the floating gate type of memory cells with selection of the read condition of the selected cell has been raised (e.g., refer to U.S. Pat. No. 5,867,429, or JP-A-2004-32866). However, this idea is for adjusting the read condition of the selected cell itself influenced by the interference effect between floating gates, and the variations of the interference effects within the memory cells are not considered.
By contrast, in this embodiment, the read pass voltage applied to the adjacent and unselected word line WLn+1 is selected in accordance with the data written state in the unselected cell, thereby canceling the interference between cells. The operation principle will be explained in detail below.
The interference effect between cells described here is defined as follows: when writing an adjacent cell after writing a noticed selected noted cell, FG potential of the adjacent cell is reduced to be lower than that of the selected cell, thereby resulting in that FG potential of the noticed selected cell also is reduced due to capacitive coupling, and the threshold voltage of the noticed selected cell appears to be high. This is an interference effect obtained via the coupling capacitance C3 shown in FIG. 8.
Therefore, in case the adjacent cell is written, it is desired to restore the FG potential of the adjacent cell in accordance with the written level into the same state as that obtained when the noticed selected cell is written. However, when the adjacent word line is changed in potential to achieve this, such interference will be obtained that the noticed selected cell is directly influenced from the adjacent word line via coupling capacitance C4 shown in FIG. 8.
In this embodiment, in consideration of the both of an interference function based on the serial-connected capacitance, C2+C3, of the adjacent cells and another interference function based on the coupling capacitance C4, the read operation is corrected. As a result, it becomes possible to strongly reduce the variations. This point will be explained in detail below.
When the adjacent and unselected word line WLn+1 is changed in potential by ΔVwl, the threshold voltage change ΔVt is obtained as expressed in the following expression Exp. 2 obtained by transforming the above-described Exp. 1.
ΔVwl={C2/(C4+C3·Cr)}ΔVt   [Exp. 2]
In Exp. 2, ΔVt is the threshold voltage change amount due to the interference effect. Rewriting it into another threshold shift amount ΔVt_swing due to data writing in the adjacent and unselected cell, the following Exp. 3 is obtained.
ΔVwl={C2/(C4+C3·Cr)}ΔVt_swing   [Exp. 3]
A detailed numerous example is as follows. Assuming that the coefficient of ΔVt_swing is defined as: C3·Cr/(C4+C3·Cr)=0.41; and assuming that ΔVt_swing is about 3V as defined by the cell data change from E-level to A-level, ΔVwl=1.24V is obtained.
As explained above, by increasing the potential of word line WLn+1 by 1.24V, it becomes possible to cancel the interference effect due to the threshold shift amount, 3V, of the adjacent cell.
Further, to make the influence of the back pattern noise on the word line WLn+1 due to the selected word line WLn, as explained with reference to FIG. 7, less, the interference effect between FGs will be cancelled by use of the potential difference between Vread2 and Vread3. Additionally, the relationship of Vread2>vread suppresses the influence of that the back pattern noise increases increasing between adjacent cells due to the selected word line voltage.
A setting example of pass voltage Vread2 is as follows. Since, as shown in the calculation example, the threshold voltage of the adjacent cell appears to be shifted with an order of 0.3V or 0.6V, keeping constant the difference between Vread2 and Vread3, Vread2 should be set at a voltage higher than Vread by 0.3V or 0.6V.
FIG. 20 shows a data processing example, in which the data threshold is corrected and read reading is executed in accordance with the above-described principle, with steps, Step1˜Step5, and the data changes at the respective nodes. In FIG. 20, data corresponding to three cell states (cell1, cell2, cell3) are expressed by the form of (L, L, H).
At Step1, prior to the read operation of the selected word line WLn, data read for correcting data is performed for word line WLn+1, and read data is latched at node PDC. At Step2, Read1 shown in FIG. 19 is performed, the bit line potential affected with cell data is temporally held at node TDC. The bit line potential at Step2 is shown as LHH. This designates the following situations: threshold of “cell1” is lower than Vbr, and the bit line is discharged to be low (L); threshold of “cell2” is higher than Vbr, and the bit line becomes high (H); and threshold of “cell3” is higher than Vbr, and the bit line becomes high (H).
At Step3, data at node PDC is transferred to node DDC, and the product of data at TDC by inverted data at DDC is obtained. This is achieved in the operation circuit 34 in the sense amplifier shown in FIG. 3 in such a way that VPRE is set to be 0V, and transistor 34 is turned on by REG=“H”.
That is, if DDC=“H”, TDC is discharged to be “L”. If DDC=“1”, TDC is not discharged, and keeps the last data level as it is. This operation result is transferred to and held at node PDC.
At Step4, this being which is a read step, Read2, shown in FIG. 19, the bit line potential is stored in node TDC. At this time, pass voltage of the adjacent and unselected word line WLn+1 is set at Vread2. Therefore, as shown in FIG. 19, the threshold voltages of cell1˜cell3 appear to be lowered. The amounts of the threshold reduction correspond to the interference effects between cells to be cancelled.
Therefore, the threshold of “cell2” in Read1 and that of “cell1” in Read2 become substantially equal to each other. Latched data of (cell1, cell2, cell3) at node TDC are (L, L, H).
Next, at Step5, data previously latched at node PDC is transferred to node DDC, and an addition operation of data at node TDC and data at node DDC is performed at node TDC. Explaining that in detail, in the operation circuit 34 in FIG. 3, Vdd+Vtn (Vtn is threshold voltage of an NMOS transistor) is applied to REG; and VPRE is raised up to Vdd from 0V.
As a result, if DDC=“H”, TDC is forced to be “H” due to a bootstrap operation. If DDC=“L”, the last TDC data will be kept as it is. The operation result at TDC is transferred to node PDC, and latched as the lower page data.
Therefore, according to this operation, in case “L” is initially stored at node PDC in the sense amplifier, finally latched data at the node PDC is read data in Read1, while in case “H” is initially stored at node PDC, read data in Read2 is finally latched at the node PDC.
As described above, data read with threshold correction may be performed for the respective bit lines, i.e., for the respective selected cells, which are coupled to a selected word line to be simultaneously read.
The sense amplifier configuration and the operational function are not limited to those shown in FIG. 3, and may be achieved with other circuit configurations. What is shown in this embodiment is: sensed data in a case where unselected word line WLn+1 is low and in another case where WLn+1 is high may be selected for each bit in a continuous read operation.
As another embodying mode in this embodiment, it is possible to correct the interference effect between cells at multiple steps, i.e., two or more steps. This is can, for example, be achieved by disposing another operational circuit between node N1 (PDC) and TDC in the sense amplifier shown in FIG. 3. Further, by disposing one or more latch circuits in addition to latches L1 and L2, additional operational functions will be achieved.
Fourth R/W Scheme in the Embodiment
So far, it has been explained such a case has been explained that the write order is selected to make the interference between adjacent cells as small as possible. By contrast, in case word lines are selected in order from the source line side, and the lower page write and the upper page write are completed for each selected word line, each cell's threshold will be shifted due to the interference between adjacent cells after writing.
However, in the above-described case, by precisely controlling the read pass voltage applied to the unselected word lines WLn+1 disposed adjacent to the selected word line WLn on the bit line side in accordance with cell data, the influence of the interference between cells will be reduced.
In detail, as similar to the third R/W scheme explained above, the read pass voltage of the adjacent and unselected word line at a write-verify time is set to be lower than the read pass voltage, Vread, applied to the remaining unselected word lines. After data writing for WLn+1,the read pass voltage applied to the unselected word line WLn+1 at a read time for the selected word line WLn is optimized in accordance with which the level is of cell data in E, A, B and C levels.
As a result, the influence of the interference between cells will be reduced.
In the third R/W scheme, the read pass voltage applied to the unselected word line WLn−1 is set to be Vread2, higher than Vread. According to the explanation for the first R/W scheme, it is not necessary to set the unselected word line WLn−1 at Vread2. Using Vread in place of Vread2, it will be expected the same operation and effect as described above can be realized.
In the above-described embodiment, the operation control example has been explained for a four-level data storage scheme (i.e., 2 bits/cell). However, this invention is in a method for controlling a an unselected word line disposed adjacent to a selected word line, and is not limited to the four-level storage scheme. That is, this invention may be adapted to other memory devices of a binary data storage scheme (1 bit/cell), an eight-level storage scheme (3 bits/cell) and other multi-level data storage schemes.
Application Devices
As an embodiment, an electric card using the non-volatile semiconductor memory devices according to the above-described embodiment of the present invention and an electric device using the card will be described bellow below.
FIG. 21 shows an electric card according to this embodiment and an arrangement of an electric device using this card. This electric device is a digital still camera 1001 as an example of a portable electric devices device. The electric card is a memory card 61 used as a recording medium of the digital still camera 1001. The memory card 61 incorporates an IC package PK1 in which the non-volatile semiconductor memory device or the memory system according to the above-described embodiments is integrated or encapsulated.
The case of the digital still camera 1001 accommodates a card slot 1002 and a circuit board (not shown) connected to this card slot 1002. The memory card 61 is detachably inserted in the card slot 1002 of the digital still camera 1001. When inserted in the slot 1002, the memory card 61 is electrically connected to electric circuits of the circuit board.
If this electric card is a non-contact type IC card, it is electrically connected to the electric circuits on the circuit board by radio signals when inserted in or approached to the card slot 1002.
FIG. 22 shows a basic arrangement of the digital still camera. Light from an object is converged by a lens 1003 and input to an image pickup device 1004. The image pickup device 1004 is, for example, a CMOS sensor and photoelectrically converts the input light to output, for example, an analog signal. This analog signal is amplified by an analog amplifier (AMP), and converted into a digital signal by an A/D converter (A/D). The converted signal is input to a camera signal processing circuit 1005 where the signal is subjected to automatic exposure control (AE), automatic white balance control (AWB), color separation, and the like, and converted into a luminance signal and color difference signals.
To monitor the image, the output signal from the camera processing circuit 1005 is input to a video signal processing circuit 1006 and converted into a video signal. The system of the video signal is, e.g., NTSC (National Television System Committee). The video signal is input to a display 1008 attached to the digital still camera 1001 via a display signal processing circuit 1007. The display 1008 is, e.g., a liquid crystal monitor.
The video signal is supplied to a video output terminal 1010 via a video driver 1009. An image picked up by the digital still camera 1001 can be output to an image apparatus such as a television set via the video output terminal 1010. This allows the pickup image to be displayed on an image apparatus other than the display 1008. A microcomputer 1011 controls the image pickup device 1004, analog amplifier (AMP), A/D converter (A/D), and camera signal processing circuit 1005.
To capture an image, an operator presses an operation button such as a shutter button 1012. In response to this, the microcomputer 1011 controls a memory controller 1013 to write the output signal from the camera signal processing circuit 1005 into a video memory 1014 as a flame frame image. The flame frame image written in the video memory 1014 is compressed on the basis of a predetermined compression format by a compressing/stretching circuit 1015. The compressed image is recorded, via a card interface 1016, on the memory card 61 inserted in the card slot.
To reproduce a recorded image, an image recorded on the memory card 61 is read out via the card interface 1016, stretched decompressed by the compressing/stretching decompressing circuit 1015, and written into the video memory 1014. The written image is input to the video signal processing circuit 1006 and displayed on the display 1008 or another image apparatus in the same manner as when image is monitored.
In this arrangement, mounted on the circuit board 1000 are the card slot 1002, image pickup device 1004, analog amplifier (AMP), A/D converter (A/D), camera signal processing circuit 1005, video signal processing circuit 1006, display signal processing circuit 1007, video driver 1009, microcomputer 1011, memory controller 1013, video memory 1014, compressing/stretching circuit 1015, and card interface 1016.
The card slot 1002 need not be mounted on the circuit board 1000, and can also be connected to the circuit board 1000 by a connector cable or the like.
A power circuit 1017 is also mounted on the circuit board 1000. The power circuit 1017 receives power from an external power source or battery and generates an internal power source voltage used inside the digital still camera 1001. For example, a DC-DC converter can be used as the power circuit 1017. The internal power source voltage is supplied to the respective circuits described above, and to a strobe 1018 and the display 1008.
As described above, the electric card according to this embodiment can be used in portable electric devices such as the digital still camera explained above. However, the electric card can also be used in various apparatus such as shown in FIGS. 23A to 23J, as well as in portable electric devices. That is, the electric card can also be used in a video camera shown in FIG. 23A, a television set shown in FIG. 23B, an audio apparatus shown in FIG. 23C, a game apparatus shown in FIG. 23D, an electric musical instrument shown in FIG. 23E, a cell phone shown in FIG. 23F, a personal computer shown in FIG. 23G, a personal digital assistant (PDA) shown in FIG. 23H, a voice recorder shown in FIG. 23I, and a PC card shown in FIG. 23J.
This invention is not limited to the above-described embodiments. It will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit, scope, and teaching of the invention.

Claims (38)

What is claimed is:
1. A method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, comprising:
a read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a selected voltage while unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
a first read pass voltage and a second read pass voltage higher than the first read pass voltage are generated by a voltage generation circuit, and wherein
the first read pass voltage generated by the voltage generation circuit is applied to unselected memory cells except adjacent and unselected memory cells disposed adjacent to the selected memory cell, and the second read pass voltage generated by the voltage generation circuit is applied to at least one of the adjacent and unselected memory cells in the read procedure.
2. The method according to claim 1, wherein
the second read pass voltage is applied to the adjacent and unselected memory cell being completed in data write later than the selected memory cell.
3. The method according to claim 1, wherein
the read procedure is a normal read procedure for reading data of the selected memory cell after data writing.
4. The method according to claim 1, wherein
the read procedure is a write-verify read procedure for verify-reading data of the selected memory cell in a data write mode.
5. The method according to claim 3, wherein
in the normal read procedure, the second read pass voltage is applied to one cell in two adjacent and unselected memory cells disposed adjacent to the selected memory cell, the one cell having been written previously to the selected memory cell; and a third pass voltage is applied to the other cell in the two adjacent and unselected memory cells, the other cell having been written later than the selected memory cell, the third read pass voltage being selected in level in accordance with the cell's threshold shift amount.
6. The method according to claim 5, wherein
the third read pass voltage is set to be lower than the first read pass voltage in case the cell's threshold shift amount is less than a certain level while the third read pass voltage is set to be equal to the second read pass voltage in case the cell's threshold shift amount is greater than the certain level.
7. The method according to claim 5, wherein
the normal read procedure includes:
a first read operation performed for reading data of the other cell previously to reading data of the selected memory cell when it is selected; and
a second read operation performed for reading data of the selected memory cell on the condition that the third read pass voltage is selected in level with reference to the read data of the first read operation.
8. The method according to claim 1, wherein
the memory cell stores four-level data defined by data level E, A, B and C (where, E<A<B<C), data level E being defined as an erase state with a negative cell threshold while data levels A, B and C are defined as write states with positive cell threshold voltages, and
a data write procedure includes: a lower page write mode for selectively writing the memory cells with data level E to have a medium level LM set between data level A and B; and an upper page write mode for selectively writing the memory cells with data level E and data level LM to have data level A and data level B or C, respectively, and
in the data write procedure, the memory cells in the NAND string are selected from a source line side in such an order that a first memory cell is written in a lower page write mode; a second memory cell adjacent to the first memory cell disposed adjacent to the first memory cell on a bit line side is written in the successive lower page write mode; and then the first memory cell is written in an upper page write mode.
9. A method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, comprising:
a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and
a normal read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
in the write-verifying procedure, a first read pass voltage is applied to unselected memory cells except two adjacent and unselected memory cells disposed adjacent to the selected memory cell; a second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to the selected memory cell; and a third read pass voltage lower than the first read pass voltage is applied to the other cell, which is written later than the selected memory cell, and
in the normal read procedure, the first read pass voltage is applied to the unselected memory cells except the two adjacent and unselected memory cells; the second read pass voltage higher than the first read pass voltage is applied to one cell of the two adjacent and unselected memory cells, the one cell having been written previously to the selected memory cell; and a fourth read pass voltage is applied to the other cell, which has been written later than the selected memory cell, the fourth read pass voltage being selected in level in accordance with the cell's threshold shift amount.
10. The method according to claim 9, wherein
the fourth read pass voltage is set to be lower than the first read pass voltage in case the cell's threshold shift amount is less than a certain level while the fourth read pass voltage is set to be equal to the second read pass voltage in case the cell's threshold shift amount is greater than the certain level.
11. The method according to claim 10, wherein
the normal read procedure includes:
a first read operation performed for reading data of the other cell previously to reading data of the selected memory cell when it is selected; and
a second read operation performed for reading data of the selected memory cell on the condition that the fourth read pass voltage is selected in level with reference to the read data of the first read operation.
12. The method according to claim 9, wherein
the memory cell stores four-level data defined by data level E, A, B and C (where, E<A<B<C), data level E being defined as an erase state with a negative cell threshold while data levels A, B and C are defined as write states with positive cell threshold voltages, and
a data write procedure includes: a lower page write mode for selectively writing the memory cells with data level E to have a medium level LM set between data level A and B; and an upper page write mode for selectively writing the memory cells with data level E and data level LM to have data level A and data level B or C, respectively, and
in the data write procedure, the memory cells in the NAND string are selected from a source line side in such an order that a first memory cell is written in a lower page write mode; a second memory cell adjacent to the first memory cell disposed adjacent to the first memory cell on a bit line side is written in a successive lower page write mode; and then the first memory cell is written in an upper page write mode.
13. A method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, comprising:
a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and
a normal read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
in the write-verifying procedure, a first read pass voltage is applied to unselected memory cells except adjacent and unselected memory cells adjacent to the selected memory cell; a second read pass voltage lower than the first read pass voltage is applied to one of the adjacent and unselected memory cells, which is written later than the selected memory cell, and
in the normal read procedure, the first read pass voltage is applied to the unselected memory cells except the adjacent and unselected memory cells disposed adjacent to the selected memory cell; a third read pass voltage is applied to one of the adjacent and unselected memory cells, which has been written later than the selected memory cell, the third read voltage being selected in level in accordance with the cell's threshold shift amount, the maximum vale of which is higher than the first read pass voltage.
14. The method according to claim 13, wherein
the memory cell stores four-level data defined by data level E, A, B and C (where, E<A<B<C), data level E being defined as an erase state with a negative cell threshold while data levels A, B and C are defined as write states with positive cell threshold voltages, and
a data write procedure includes: a lower page write mode for selectively writing the memory cells with data level E to have a medium level LM set between data level A and B; and an upper page write mode for selectively writing the memory cells with data level E and data level LM to have data level A and data level B or C, respectively, and
in the data write procedure, the memory cells in the NAND string are selected from a source line side in such an order that a first memory cell is written in a lower page write mode; a second memory cell adjacent to the first memory cell disposed adjacent to the first memory cell on a bit line side is written in a successive lower page write mode; and then the first memory cell is written in an upper page write mode.
15. A method for controlling a non-volatile semiconductor memory device having a NAND string, in which multiple memory cells are connected in series, comprising:
a write-verifying procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a write-verifying voltage and unselected memory cells are driven to be turned on without regard to cell data thereof; and
a normal read procedure performed for a selected memory cell in the NAND string on the condition that the selected memory cell is applied with a read voltage and unselected memory cells are driven to be turned on without regard to cell data thereof, wherein
in the write-verifying procedure, a first read pass voltage is applied to unselected memory cells except adjacent and unselected memory cells adjacent to the selected memory cell; a second read pass voltage lower than the first read pass voltage is applied to one of the adjacent and unselected memory cells, which is written later than the selected memory cell, and
in the normal read procedure, the first read pass voltage is applied to the unselected memory cells except the adjacent and unselected memory cells disposed adjacent to the selected memory cell; a third read pass voltage is applied to one of the adjacent and unselected memory cells, which has been written later than the selected memory cell, the third read voltage being selected in level in accordance with the cell data, the maximum value of which is higher than the first read pass voltage.
16. The method according to claim 15, wherein
the memory cell stores multi-level data defined as a cell threshold voltage, and
in a data write procedure, the memory cells in the NAND strings are selected in order from a source line side, and the multi-level data writing are completed for each selected memory cell.
17. A method for controlling a non-volatile semiconductor memory device including a NAND string, in which multiple memory cells are connected in series, comprising:
a read procedure performed for a selected memory cell in the NAND string on the condition that a selected voltage is applied to a selected word line and unselected voltages are applied to unselected word lines, the selected word line being connected to the selected memory cell, the unselected word lines being connected to unselected memory cells and including first unselected word lines and second unselected word lines, the first unselected word lines being adjacent to the selected word line, the second unselected word lines including an unselected word line disposed adjacent to one of the first unselected word lines, the unselected voltages including a first voltage and a second voltage, the second voltage being higher than the first voltage, both the first voltage and the second voltage being generated by a voltage generation circuit, and
wherein the first voltage generated by the voltage generation circuit is applied to the second unselected word lines, and the second voltage generated by the voltage generation circuit is applied to one of the first unselected word lines.
18. The method according to claim 17, wherein
the multiple memory cells include a first memory cell and a second memory cell, the first memory cell being disposed adjacent to the second memory cell, the first and second memory cell being capable of holding four-level data defined by data level E, A, B and C (where, E<A<B<C), and
a write procedure including a lower page write mode and an upper page write mode is executed, the lower page write mode including a first lower page write mode and a second lower page write mode, the first lower page write mode being executed to the first memory cell, the second lower page write mode being executed to the second memory cell after the first lower page write mode, the upper page write mode being executed to the first memory cell after the second lower page write mode.
19. The method according to claim 18, wherein
the read procedure is a normal read procedure for reading data of the selected memory cell after data writing.
20. The method according to claim 18, wherein
the read procedure is a write-verify read procedure for verify-reading data of the selected memory cell in the lower page write mode or the upper page write mode.
21. The method according to claim 17, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
22. The method according to claim 18, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
23. A method for controlling a non-volatile semiconductor memory device including a NAND string, in which first to n-th memory cells (n is a natural number and is equal to or more than 2) are connected in series, first to n-th word lines being electrically connected to the first to n-th memory cells, comprising:
a read procedure performed for k-th memory cell (k is a natural number and range of k is from 3 to n−2) in the NAND string on the condition that a selected voltage is applied to the k-th word line, a first voltage is applied to both (k−1)-th word line and (k+1)-th word line, and a second voltage is applied to both (k−2)-th word line and (k+2)-th word line, the first voltage being higher than the second voltage, both the first voltage and the second voltage being generated by a voltage generation circuit.
24. The method according to claim 23, wherein
the first to n-th memory cells being capable of holding four-level data defined by data level E, A, B and C (where, E<A<B<C), and
a write procedure including a lower page write mode and an upper page write mode is executed, the lower page write mode including a first lower page write mode and a second lower page write mode, the first lower page write mode being executed to the k-th memory cell, the second lower page write mode being executed to (k+1)-th memory cell after the first lower page write mode, the upper page write mode being executed to the k-th memory cell after the second lower page write mode.
25. The method according to claim 23, wherein
the read procedure is a normal read procedure for reading data of the k-th memory cell after data writing.
26. The method according to claim 23, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
27. The method according to claim 24, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
28. A non-volatile semiconductor memory device comprising:
a NAND string including first to n-th memory cells (n is a natural number and is equal to or more than 2), the first to n-th memory cells being connected in series,
first to n-th word lines electrically connected to the first to n-th memory cells,
a controller configured to apply a selected voltage to a k-th word line(k is a natural number and range of k is from 3 to n−2), apply a first voltage to both (k−1)-th word line and (k+1)-th word line, and apply a second voltage to both (k−2)-th word line and (k+2)-th word line in a read procedure, the first voltage being higher than the second voltage, both the first voltage and the second voltage being generated by a voltage generation circuit.
29. The non-volatile semiconductor memory device according to claim 28, wherein
the first to n-th memory cells are capable of holding four-level data defined by data level E, A, B and C (where, E<A<B<C).
30. The non-volatile semiconductor memory device according to claim 28, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
31. A non-volatile semiconductor memory device comprising:
a NAND string including first to n-th memory cells (n is a natural number and is equal to or more than 2), the first to n-th memory cells being connected in series,
first to n-th word lines electrically connected to the first to n-th memory cells,
a voltage generation circuit configured to generate a selected voltage, a first voltage, and a second voltage, wherein
the selected voltage is applied to the k-th word line(k is a natural number and range of k is from 3 to n−2), the first voltage is applied to both (k−1)-th word line and (k+1)-th word line, and the second voltage is applied to both (k−2)-th word line and (k+2)-th word line when a read procedure is executed, the first voltage being higher than the second voltage.
32. The non-volatile semiconductor memory device according to claim 31, wherein
the first to n-th memory cells are capable of holding four-level data defined by data level E, A, B and C (where, E<A<B<C).
33. The non-volatile semiconductor memory device according to claim 31, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
34. The method according to claim 17, wherein
the second unselected word lines include an unselected word line disposed adjacent to the other of the first unselected word lines.
35. A method for controlling a non-volatile semiconductor memory device including a NAND string, in which multiple memory cells are connected in series, comprising:
a read procedure performed for a selected memory cell in the NAND string on the condition that a selected voltage is applied to a selected word line and unselected voltages are applied to unselected word lines, the selected word line being connected to the selected memory cell, the unselected word lines being connected to unselected memory cells, the unselected voltages including a first voltage and a second voltage, the second voltage being higher than the first voltage, both the first voltage and the second voltage being generated by a voltage generation circuit, and
wherein the first voltage generated by the voltage generation circuit is applied to the unselected word lines except adjacent and unselected word lines disposed adjacent to the selected word line, and the second voltage generated by the voltage generation circuit is applied to at least one of the adjacent and unselected word lines,
wherein the multiple memory cells include a first memory cell and a second memory cell, the first memory cell being disposed adjacent to the second memory cell, the first and second memory cell being capable of holding four-level data defined by data level E, A, B and C (where, E<A<B<C), and
wherein a write procedure including a lower page write mode and an upper page write mode is executed, the lower page write mode including a first lower page write mode and a second lower page write mode, the first lower page write mode being executed to the first memory cell, the second lower page write mode being executed to the second memory cell after the first lower page write mode, the upper page write mode being executed to the first memory cell after the second lower page write mode.
36. The method according to claim 35, wherein
the read procedure is a normal read procedure for reading data of the selected memory cell after data writing.
37. The method according to claim 35, wherein
the read procedure is a write-verify read procedure for verify-reading data of the selected memory cell in the lower page write mode or the upper page write mode.
38. The method according to claim 35, wherein
the NAND string includes a first transistor and a second transistor, the first transistor being connected to a bit line, the second transistor being connected to a source line,
a third voltage is applied to a gate of the first transistor in the read procedure,
a fourth voltage is applied to a gate of the second transistor in the read procedure, and
the fourth voltage is applied to the gate of the second transistor after applying the first voltage, the second voltage, and the third voltage.
US13/852,792 2007-09-14 2013-03-28 Method for controlling a non-volatile semiconductor memory device Active 2028-10-03 USRE46749E1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/852,792 USRE46749E1 (en) 2007-09-14 2013-03-28 Method for controlling a non-volatile semiconductor memory device
US15/848,772 USRE48244E1 (en) 2007-09-14 2017-12-20 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell
US17/004,584 USRE50025E1 (en) 2007-09-14 2020-08-27 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-239089 2007-09-14
JP2007239089A JP4510060B2 (en) 2007-09-14 2007-09-14 Read / write control method for nonvolatile semiconductor memory device
US12/209,486 US7916547B2 (en) 2007-09-14 2008-09-12 Method for controlling a non-volatile semiconductor memory device
US13/852,792 USRE46749E1 (en) 2007-09-14 2013-03-28 Method for controlling a non-volatile semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/209,486 Reissue US7916547B2 (en) 2007-09-14 2008-09-12 Method for controlling a non-volatile semiconductor memory device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/209,486 Continuation US7916547B2 (en) 2007-09-14 2008-09-12 Method for controlling a non-volatile semiconductor memory device
US15/848,772 Continuation USRE48244E1 (en) 2007-09-14 2017-12-20 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell

Publications (1)

Publication Number Publication Date
USRE46749E1 true USRE46749E1 (en) 2018-03-06

Family

ID=40454280

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/209,486 Ceased US7916547B2 (en) 2007-09-14 2008-09-12 Method for controlling a non-volatile semiconductor memory device
US13/852,792 Active 2028-10-03 USRE46749E1 (en) 2007-09-14 2013-03-28 Method for controlling a non-volatile semiconductor memory device
US15/848,772 Active 2028-10-03 USRE48244E1 (en) 2007-09-14 2017-12-20 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell
US17/004,584 Active 2028-10-03 USRE50025E1 (en) 2007-09-14 2020-08-27 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/209,486 Ceased US7916547B2 (en) 2007-09-14 2008-09-12 Method for controlling a non-volatile semiconductor memory device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/848,772 Active 2028-10-03 USRE48244E1 (en) 2007-09-14 2017-12-20 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell
US17/004,584 Active 2028-10-03 USRE50025E1 (en) 2007-09-14 2020-08-27 Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell

Country Status (4)

Country Link
US (4) US7916547B2 (en)
JP (1) JP4510060B2 (en)
KR (1) KR100976004B1 (en)
TW (10) TWI832532B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342023B2 (en) 2020-05-19 2022-05-24 Yangzte Memory Technologies., Ltd. 3D NAND flash and operation method thereof

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894269B2 (en) * 2006-07-20 2011-02-22 Sandisk Corporation Nonvolatile memory and method for compensating during programming for perturbing charges of neighboring cells
US7652929B2 (en) * 2007-09-17 2010-01-26 Sandisk Corporation Non-volatile memory and method for biasing adjacent word line for verify during programming
JP2009193631A (en) * 2008-02-14 2009-08-27 Toshiba Corp Nonvolatile semiconductor memory device
JP2010123210A (en) * 2008-11-20 2010-06-03 Toshiba Corp Semiconductor memory device
US8094495B2 (en) * 2008-11-25 2012-01-10 Samsung Electronics Co., Ltd. Nonvolatile memory device
JP2010129125A (en) * 2008-11-27 2010-06-10 Toshiba Corp Multivalue nonvolatile semiconductor memory
TWI393142B (en) * 2008-12-29 2013-04-11 Macronix Int Co Ltd Memory device and control method of memory device
KR101005184B1 (en) * 2009-02-26 2011-01-04 주식회사 하이닉스반도체 Non volatile memory device and operating method using thereof
JP2010218637A (en) * 2009-03-17 2010-09-30 Toshiba Corp Semiconductor storage and method of controlling the same
US7898864B2 (en) * 2009-06-24 2011-03-01 Sandisk Corporation Read operation for memory with compensation for coupling based on write-erase cycles
JP2011054249A (en) 2009-09-02 2011-03-17 Toshiba Corp Semiconductor memory device
JP4913191B2 (en) * 2009-09-25 2012-04-11 株式会社東芝 Nonvolatile semiconductor memory device
US8214700B2 (en) * 2009-10-28 2012-07-03 Sandisk Technologies Inc. Non-volatile memory and method with post-write read and adaptive re-write to manage errors
US8634240B2 (en) 2009-10-28 2014-01-21 SanDisk Technologies, Inc. Non-volatile memory and method with accelerated post-write read to manage errors
US8423866B2 (en) * 2009-10-28 2013-04-16 SanDisk Technologies, Inc. Non-volatile memory and method with post-write read and adaptive re-write to manage errors
JP5349256B2 (en) 2009-11-06 2013-11-20 株式会社東芝 Memory system
US8144516B2 (en) * 2009-12-03 2012-03-27 Micron Technology, Inc. Dynamic pass voltage for sense operation in a memory device
KR101081311B1 (en) * 2009-12-07 2011-11-08 주식회사 하이닉스반도체 Nonvolatile memory device and method of operating the same
JP5268882B2 (en) * 2009-12-28 2013-08-21 株式会社東芝 Nonvolatile semiconductor memory device
KR20110096414A (en) * 2010-02-22 2011-08-30 삼성전자주식회사 Nonvolatile memory device and read method thereof
JP2011204299A (en) * 2010-03-24 2011-10-13 Toshiba Corp Nonvolatile semiconductor memory
KR101692451B1 (en) 2010-05-24 2017-01-04 삼성전자주식회사 Memory Semiconductor Device And Method Of Operating The Same
KR101682660B1 (en) 2010-06-28 2016-12-06 삼성전자주식회사 Nonvolatile memory device, reading method thereof and memory system including the same
US8531888B2 (en) 2010-07-07 2013-09-10 Marvell World Trade Ltd. Determining optimal reference voltages for progressive reads in flash memory systems
US8305807B2 (en) 2010-07-09 2012-11-06 Sandisk Technologies Inc. Detection of broken word-lines in memory arrays
US8514630B2 (en) 2010-07-09 2013-08-20 Sandisk Technologies Inc. Detection of word-line leakage in memory arrays: current based approach
KR101605911B1 (en) * 2010-07-09 2016-03-23 에스케이하이닉스 주식회사 Non-volatile memory device and method for erasing of the same
US8432732B2 (en) 2010-07-09 2013-04-30 Sandisk Technologies Inc. Detection of word-line leakage in memory arrays
JP2012069192A (en) 2010-09-22 2012-04-05 Toshiba Corp Memory system
KR101124333B1 (en) * 2010-09-30 2012-03-16 주식회사 하이닉스반도체 Non volatile memory device capable of reducing consumption of current and method of driving the same
KR101784973B1 (en) 2010-11-11 2017-10-13 삼성전자주식회사 Method for provideing operation voltage in memory device and memory controller
JP2012123856A (en) 2010-12-06 2012-06-28 Toshiba Corp Nonvolatile semiconductor memory device
JP5595901B2 (en) 2010-12-28 2014-09-24 株式会社東芝 Nonvolatile semiconductor memory device
JP2012150857A (en) 2011-01-17 2012-08-09 Toshiba Corp Power circuit
JP2012155798A (en) 2011-01-27 2012-08-16 Toshiba Corp Nonvolatile semiconductor memory device
US8472266B2 (en) * 2011-03-31 2013-06-25 Sandisk Technologies Inc. Reducing neighbor read disturb
JP5404685B2 (en) 2011-04-06 2014-02-05 株式会社東芝 Nonvolatile semiconductor memory device
US8379454B2 (en) 2011-05-05 2013-02-19 Sandisk Technologies Inc. Detection of broken word-lines in memory arrays
JP2013012267A (en) 2011-06-29 2013-01-17 Toshiba Corp Nonvolatile semiconductor memory device
US8750042B2 (en) 2011-07-28 2014-06-10 Sandisk Technologies Inc. Combined simultaneous sensing of multiple wordlines in a post-write read (PWR) and detection of NAND failures
US8726104B2 (en) 2011-07-28 2014-05-13 Sandisk Technologies Inc. Non-volatile memory and method with accelerated post-write read using combined verification of multiple pages
US8775901B2 (en) 2011-07-28 2014-07-08 SanDisk Technologies, Inc. Data recovery for defective word lines during programming of non-volatile memory arrays
KR101809222B1 (en) * 2011-11-23 2017-12-19 에스케이하이닉스 주식회사 Reading method of non-volatile memory device
JP2013114701A (en) * 2011-11-25 2013-06-10 Toshiba Corp Semiconductor memory
US8913437B2 (en) * 2011-12-15 2014-12-16 Marvell World Trade Ltd. Inter-cell interference cancellation
JP2013164888A (en) 2012-02-10 2013-08-22 Toshiba Corp Semiconductor storage device
WO2013132532A1 (en) 2012-03-06 2013-09-12 Hitachi, Ltd. Semiconductor storage device having nonvolatile semiconductor memory
JP6088751B2 (en) * 2012-06-07 2017-03-01 株式会社東芝 Semiconductor memory
JP2014026695A (en) * 2012-07-26 2014-02-06 Toshiba Corp Nonvolatile semiconductor memory device
US9081664B2 (en) * 2012-08-10 2015-07-14 Kabushiki Kaisha Toshiba Memory system capable of preventing data destruction
JP2014063555A (en) * 2012-09-24 2014-04-10 Toshiba Corp Nonvolatile semiconductor memory device and control method of the same
US8861269B2 (en) 2013-03-05 2014-10-14 Sandisk Technologies Inc. Internal data load for non-volatile storage
WO2015004714A1 (en) * 2013-07-08 2015-01-15 株式会社 東芝 Semiconductor storage device
TWI573148B (en) 2013-08-02 2017-03-01 東芝股份有限公司 A controller, a memory system, and a memory device
JP5931822B2 (en) 2013-09-09 2016-06-08 株式会社東芝 Nonvolatile semiconductor memory device
JPWO2015037159A1 (en) 2013-09-13 2017-03-02 株式会社東芝 Semiconductor memory device and memory system
US9552251B2 (en) * 2014-04-22 2017-01-24 Sandisk Technologies Llc Neighboring word line program disturb countermeasure for charge-trapping memory
US9373409B2 (en) * 2014-07-08 2016-06-21 Macronix International Co., Ltd. Systems and methods for reduced program disturb for 3D NAND flash
JP2016054017A (en) 2014-09-04 2016-04-14 株式会社東芝 Semiconductor memory device
TWI552155B (en) * 2014-09-23 2016-10-01 旺宏電子股份有限公司 Sensing method for a flash memory and memory device therewith
US9847135B2 (en) 2015-01-30 2017-12-19 Toshiba Memory Corporation Memory device and method of reading data
US9449700B2 (en) * 2015-02-13 2016-09-20 Sandisk Technologies Llc Boundary word line search and open block read methods with reduced read disturb
TWI550612B (en) * 2015-03-23 2016-09-21 群聯電子股份有限公司 Data programming method, memory storage device and memory controlling circuit unit
US9613691B2 (en) * 2015-03-27 2017-04-04 Intel Corporation Apparatus and method for drift cancellation in a memory
CN106158024B (en) * 2015-03-30 2019-08-06 群联电子股份有限公司 Data programing method, memory storage apparatus and memorizer control circuit unit
US9875811B2 (en) 2016-01-13 2018-01-23 Macronix International Co., Ltd. Method and device for reading a memory
TWI621125B (en) * 2016-01-26 2018-04-11 旺宏電子股份有限公司 Method and device for reading a memory
KR102504294B1 (en) * 2016-03-25 2023-02-28 삼성전자 주식회사 memory device, memory system and read/verify operation method of the same
KR102533016B1 (en) * 2016-07-28 2023-05-17 에스케이하이닉스 주식회사 Memory device and operating method thereof
JP2018041518A (en) 2016-09-06 2018-03-15 東芝メモリ株式会社 Memory device
CN110610942B (en) * 2018-06-15 2023-07-28 硅存储技术公司 Method and apparatus for reducing coupling between word lines and control gate lines in a flash memory system
US10885986B2 (en) 2019-02-15 2021-01-05 Macronix International Co., Ltd. Low noise bit line circuits
JP2021131919A (en) * 2020-02-20 2021-09-09 キオクシア株式会社 Semiconductor storage device and reading method thereof
JP2022035525A (en) * 2020-08-21 2022-03-04 キオクシア株式会社 Adjusting method of operation conditions of semiconductor storage device
CN112466368B (en) * 2020-11-26 2021-09-24 长江存储科技有限责任公司 Three-dimensional memory and control method thereof
KR20230010770A (en) 2020-11-26 2023-01-19 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3D memory and its control method
CN112614530B (en) * 2021-01-04 2022-04-01 长江存储科技有限责任公司 Three-dimensional memory and control method thereof
CN115579039A (en) * 2021-01-28 2023-01-06 长江存储科技有限责任公司 Three-dimensional memory and control method thereof
JP2022146645A (en) 2021-03-22 2022-10-05 キオクシア株式会社 Semiconductor device, memory system, and semiconductor storage device
US11693587B2 (en) * 2021-08-17 2023-07-04 Micron Technology, Inc. System driven pass-through voltage adjustment to improve read disturb in memory devices
US11790994B2 (en) * 2021-09-22 2023-10-17 Western Digital Technologies, Inc. Non-volatile memory with reverse state program
JP2023141363A (en) 2022-03-23 2023-10-05 キオクシア株式会社 semiconductor storage device

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139092A (en) 1995-11-14 1997-05-27 Toshiba Corp Nonvolatile semiconductor storage device
US20020034100A1 (en) * 1999-08-06 2002-03-21 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2002133888A (en) 2000-10-31 2002-05-10 Toshiba Corp Non-volatile semiconductor memory
JP2002358792A (en) 2001-03-29 2002-12-13 Toshiba Corp Semiconductor storage device
US6643188B2 (en) 2001-12-27 2003-11-04 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device adapted to store a multi-valued data in a single memory cell
JP2005243205A (en) 2004-01-30 2005-09-08 Toshiba Corp Semiconductor memory device
JP2005285185A (en) 2004-03-29 2005-10-13 Toshiba Corp Semiconductor storage device
US20060028870A1 (en) * 2004-08-04 2006-02-09 Micron Technology, Inc. Nand string wordline delay reduction
US7009881B2 (en) * 2004-05-17 2006-03-07 Kabushiki Kaisha Toshiba Semiconductor memory device
US7170785B2 (en) * 2004-09-09 2007-01-30 Macronix International Co., Ltd. Method and apparatus for operating a string of charge trapping memory cells
JP2007080307A (en) 2005-09-09 2007-03-29 Toshiba Corp Nonvolatile semiconductor storage device
US20070140011A1 (en) * 2005-12-16 2007-06-21 Teruhiko Kamei Reading non-volatile storage with efficient setup
US7272043B2 (en) * 2004-12-27 2007-09-18 Macronix International Co., Ltd. Operation methods for a non-volatile memory cell in an array
US20070247908A1 (en) * 2006-04-19 2007-10-25 Micron Techonology, Inc. Read operation for NAND memory
WO2007143398A2 (en) 2006-06-01 2007-12-13 Sandisk Corporation Verify operation for non-volatile storage using different voltages
US7310272B1 (en) * 2006-06-02 2007-12-18 Sandisk Corporation System for performing data pattern sensitivity compensation using different voltage
US20080049508A1 (en) * 2006-08-24 2008-02-28 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory, its read method and a memory card
US7369437B2 (en) * 2005-12-16 2008-05-06 Sandisk Corporation System for reading non-volatile storage with efficient setup
US7440327B1 (en) * 2007-04-25 2008-10-21 Sandisk Corporation Non-volatile storage with reduced power consumption during read operations
US7508715B2 (en) * 2007-07-03 2009-03-24 Sandisk Corporation Coarse/fine program verification in non-volatile memory using different reference levels for improved sensing
US20090086542A1 (en) * 2007-09-28 2009-04-02 Dana Lee High Voltage Generation and Control in Source-Side Injection Programming of Non-Volatile Memory
US7561472B2 (en) * 2006-09-11 2009-07-14 Micron Technology, Inc. NAND architecture memory with voltage sensing
US7606070B2 (en) * 2006-12-29 2009-10-20 Sandisk Corporation Systems for margined neighbor reading for non-volatile memory read operations including coupling compensation
US7606079B2 (en) * 2007-04-25 2009-10-20 Sandisk Corporation Reducing power consumption during read operations in non-volatile storage
US7619931B2 (en) * 2007-06-26 2009-11-17 Micron Technology, Inc. Program-verify method with different read and verify pass-through voltages
US8208309B2 (en) 2009-09-02 2012-06-26 Kabushiki Kaisha Toshiba Semiconductor memory device and method of operating the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254651A (en) * 1994-03-16 1995-10-03 Toshiba Corp Semiconductor integrated circuit device
US5726934A (en) * 1996-04-09 1998-03-10 Information Storage Devices, Inc. Method and apparatus for analog reading values stored in floating gate structures
US5835414A (en) * 1996-06-14 1998-11-10 Macronix International Co., Ltd. Page mode program, program verify, read and erase verify for floating gate memory device with low current page buffer
US5805499A (en) * 1997-02-28 1998-09-08 Advanced Micro Devices, Inc. Channel hot-carrier page write for NAND applications
JP3866460B2 (en) * 1998-11-26 2007-01-10 株式会社東芝 Nonvolatile semiconductor memory device
JP3540640B2 (en) * 1998-12-22 2004-07-07 株式会社東芝 Nonvolatile semiconductor memory device
US6175523B1 (en) * 1999-10-25 2001-01-16 Advanced Micro Devices, Inc Precharging mechanism and method for NAND-based flash memory devices
KR100459228B1 (en) * 2002-01-26 2004-12-03 주식회사 하이닉스반도체 Ferroelectric Random Access Memory Device and method for driving the same
KR100535651B1 (en) * 2003-06-30 2005-12-08 주식회사 하이닉스반도체 Method for reading a flash memory cell and a flash memory equipment of NAND and NOR type
US6914823B2 (en) * 2003-07-29 2005-07-05 Sandisk Corporation Detecting over programmed memory after further programming
US7023739B2 (en) * 2003-12-05 2006-04-04 Matrix Semiconductor, Inc. NAND memory array incorporating multiple write pulse programming of individual memory cells and method for operation of same
US7372730B2 (en) * 2004-01-26 2008-05-13 Sandisk Corporation Method of reading NAND memory to compensate for coupling between storage elements
US7177977B2 (en) * 2004-03-19 2007-02-13 Sandisk Corporation Operating non-volatile memory without read disturb limitations
KR100559714B1 (en) * 2004-04-19 2006-03-10 주식회사 하이닉스반도체 NAND flash memory device and method of programming the same
KR100632942B1 (en) * 2004-05-17 2006-10-12 삼성전자주식회사 Program method of non-volatile memory device
US7212435B2 (en) * 2004-06-30 2007-05-01 Micron Technology, Inc. Minimizing adjacent wordline disturb in a memory device
KR100598107B1 (en) * 2004-09-21 2006-07-07 삼성전자주식회사 Non-volatile memory devices and methods for forming the same
KR100648277B1 (en) * 2004-12-30 2006-11-23 삼성전자주식회사 Flash memory device capable of reducing program time
US7187585B2 (en) * 2005-04-05 2007-03-06 Sandisk Corporation Read operation for non-volatile storage that includes compensation for coupling
KR100697284B1 (en) * 2005-05-02 2007-03-20 삼성전자주식회사 Flash memory device and programming method thereof
JP4728726B2 (en) * 2005-07-25 2011-07-20 株式会社東芝 Semiconductor memory device
JP4891580B2 (en) * 2005-08-31 2012-03-07 株式会社東芝 Nonvolatile semiconductor memory device
EP1974383B1 (en) * 2005-12-27 2016-10-19 SanDisk Technologies LLC Method of reading a flash memory device comprising a booster plate
US7436733B2 (en) * 2006-03-03 2008-10-14 Sandisk Corporation System for performing read operation on non-volatile storage with compensation for coupling
US7391650B2 (en) 2006-06-16 2008-06-24 Sandisk Corporation Method for operating non-volatile memory using temperature compensation of voltages of unselected word lines and select gates

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139092A (en) 1995-11-14 1997-05-27 Toshiba Corp Nonvolatile semiconductor storage device
US20020034100A1 (en) * 1999-08-06 2002-03-21 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2002133888A (en) 2000-10-31 2002-05-10 Toshiba Corp Non-volatile semiconductor memory
JP2002358792A (en) 2001-03-29 2002-12-13 Toshiba Corp Semiconductor storage device
US6643188B2 (en) 2001-12-27 2003-11-04 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device adapted to store a multi-valued data in a single memory cell
US7376009B2 (en) 2004-01-30 2008-05-20 Kabushiki Kaisha Toshiba Semiconductor memory device which stores plural data in a cell
JP2005243205A (en) 2004-01-30 2005-09-08 Toshiba Corp Semiconductor memory device
US7245528B2 (en) 2004-01-30 2007-07-17 Kabushiki Kaisha Toshiba Semiconductor memory device which stores plural data in a cell
JP2005285185A (en) 2004-03-29 2005-10-13 Toshiba Corp Semiconductor storage device
US7180787B2 (en) * 2004-03-29 2007-02-20 Kabushiki Kaisha Toshiba Semiconductor memory device
US7009881B2 (en) * 2004-05-17 2006-03-07 Kabushiki Kaisha Toshiba Semiconductor memory device
US20060028870A1 (en) * 2004-08-04 2006-02-09 Micron Technology, Inc. Nand string wordline delay reduction
US7170785B2 (en) * 2004-09-09 2007-01-30 Macronix International Co., Ltd. Method and apparatus for operating a string of charge trapping memory cells
US7272043B2 (en) * 2004-12-27 2007-09-18 Macronix International Co., Ltd. Operation methods for a non-volatile memory cell in an array
JP2007080307A (en) 2005-09-09 2007-03-29 Toshiba Corp Nonvolatile semiconductor storage device
US7369437B2 (en) * 2005-12-16 2008-05-06 Sandisk Corporation System for reading non-volatile storage with efficient setup
US20070140011A1 (en) * 2005-12-16 2007-06-21 Teruhiko Kamei Reading non-volatile storage with efficient setup
US20070247908A1 (en) * 2006-04-19 2007-10-25 Micron Techonology, Inc. Read operation for NAND memory
WO2007143398A2 (en) 2006-06-01 2007-12-13 Sandisk Corporation Verify operation for non-volatile storage using different voltages
JP2009539203A (en) 2006-06-01 2009-11-12 サンディスク コーポレイション Verification operation for non-volatile storage devices using different voltages
US7310272B1 (en) * 2006-06-02 2007-12-18 Sandisk Corporation System for performing data pattern sensitivity compensation using different voltage
US20080049508A1 (en) * 2006-08-24 2008-02-28 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory, its read method and a memory card
US7561472B2 (en) * 2006-09-11 2009-07-14 Micron Technology, Inc. NAND architecture memory with voltage sensing
US7606070B2 (en) * 2006-12-29 2009-10-20 Sandisk Corporation Systems for margined neighbor reading for non-volatile memory read operations including coupling compensation
US7606079B2 (en) * 2007-04-25 2009-10-20 Sandisk Corporation Reducing power consumption during read operations in non-volatile storage
US7440327B1 (en) * 2007-04-25 2008-10-21 Sandisk Corporation Non-volatile storage with reduced power consumption during read operations
US7619931B2 (en) * 2007-06-26 2009-11-17 Micron Technology, Inc. Program-verify method with different read and verify pass-through voltages
US7508715B2 (en) * 2007-07-03 2009-03-24 Sandisk Corporation Coarse/fine program verification in non-volatile memory using different reference levels for improved sensing
US20090086542A1 (en) * 2007-09-28 2009-04-02 Dana Lee High Voltage Generation and Control in Source-Side Injection Programming of Non-Volatile Memory
US8208309B2 (en) 2009-09-02 2012-06-26 Kabushiki Kaisha Toshiba Semiconductor memory device and method of operating the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Combined Taiwanese Office Action and Search Report issued on Apr. 11, 2016 in Patent Application No. 104118049 (with partial English language and English language translation of categories of cited documents).
U.S. Appl. No. 12/868,196, filed Aug. 25, 2010, Fujimura.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342023B2 (en) 2020-05-19 2022-05-24 Yangzte Memory Technologies., Ltd. 3D NAND flash and operation method thereof
TWI791155B (en) * 2020-05-19 2023-02-01 大陸商長江存儲科技有限責任公司 3d nand flash and operation method thereof
US11727990B2 (en) 2020-05-19 2023-08-15 Yangtze Memory Technologies Co., Ltd. 3D NAND flash and operation method thereof

Also Published As

Publication number Publication date
JP2009070501A (en) 2009-04-02
TW200929255A (en) 2009-07-01
TW201603046A (en) 2016-01-16
USRE48244E1 (en) 2020-10-06
USRE50025E1 (en) 2024-06-25
TW201814699A (en) 2018-04-16
KR20090028483A (en) 2009-03-18
US7916547B2 (en) 2011-03-29
TWI832532B (en) 2024-02-11
TWI567753B (en) 2017-01-21
TW201721641A (en) 2017-06-16
TW202141482A (en) 2021-11-01
TW202103160A (en) 2021-01-16
TW201346931A (en) 2013-11-16
TWI636463B (en) 2018-09-21
KR100976004B1 (en) 2010-08-17
TWI496160B (en) 2015-08-11
US20090073763A1 (en) 2009-03-19
TW201917727A (en) 2019-05-01
TWI786744B (en) 2022-12-11
TW202309895A (en) 2023-03-01
TWI698886B (en) 2020-07-11
JP4510060B2 (en) 2010-07-21
TWI738375B (en) 2021-09-01
TWI605467B (en) 2017-11-11
TW202418277A (en) 2024-05-01
TWI407450B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
USRE50025E1 (en) Non-volatile semiconductor memory device including application of different voltages to memory cells based on their proximity to a selected memory cell
US8194461B2 (en) Semiconductor memory device having dummy cells in NAND strings applied with an additional program voltage after erasure and prior to data programming
US8023327B2 (en) Non-volatile semiconductor memory device
US7630251B2 (en) Semiconductor memory device and method for erasing the same
US7180787B2 (en) Semiconductor memory device
US6967874B2 (en) Non-volatile semiconductor memory device and electric device with the same
US7974130B2 (en) Semiconductor memory device and method for erasing the same
US7259992B2 (en) Semiconductor memory device with a memory cell array formed on a semiconductor substrate
US7333371B2 (en) Non-volatile semiconductor memory device
JP3913704B2 (en) Nonvolatile semiconductor memory device and electronic device using the same
US20060215450A1 (en) Semiconductor memory device
US8203883B2 (en) Semiconductor memory device and method of programming the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043541/0381

Effective date: 20170630

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

CC Certificate of correction
AS Assignment

Owner name: K.K. PANGEA, JAPAN

Free format text: MERGER;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055659/0471

Effective date: 20180801

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:K.K. PANGEA;REEL/FRAME:055669/0401

Effective date: 20180801

Owner name: KIOXIA CORPORATION, JAPAN

Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055669/0001

Effective date: 20191001

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12