USRE45342E1 - Low power discharge lamp with high efficacy - Google Patents
Low power discharge lamp with high efficacy Download PDFInfo
- Publication number
- USRE45342E1 USRE45342E1 US14/026,505 US200814026505A USRE45342E US RE45342 E1 USRE45342 E1 US RE45342E1 US 200814026505 A US200814026505 A US 200814026505A US RE45342 E USRE45342 E US RE45342E
- Authority
- US
- United States
- Prior art keywords
- lamp according
- lamp
- discharge vessel
- discharge
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/34—Double-wall vessels or containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/33—Special shape of cross-section, e.g. for producing cool spot
Definitions
- the invention relates to a discharge lamp. More specifically, the invention relates to a high intensity discharge lamp with a discharge vessel and an outer bulb arranged around the discharge vessel.
- Discharge lamps specifically HID (high-intensity discharge) lamps are used for a large area of applications where energy efficiency and high light intensity are required. Especially in the automotive field, HID lamps are used as vehicle headlamps.
- a discharge lamp comprises two electrodes arranged at a distance within a discharge vessel. An arc discharge is generated between the electrodes. Different types of fillings within the discharge vessel are known, distinguishing mercury vapor, metal halide and other types of lamps.
- lamps for use in a vehicle head-light have an outer bulb which is arranged around the discharge vessel at a distance therefrom.
- a known type of such a lamp is designed for a nominal power of 35 W and achieves a high efficacy of 80-90 lm/W. After starting such a lamp, a run-up current of, for example, 2.7-3.2 A is necessary, and a run-up power of 75-80 W is used.
- the complete HID system comprising lamp, ballast and igniter must be able to operate as these values.
- US-A-2005/0248278 shows an example of an automotive head lighting discharge lamp with a power of 30 W.
- the lamp has a ceramic discharge vessel comprising the electrodes, which is surrounded by an outer bulb. The distance between the electrode tips is 5 mm.
- the discharge vessel has cylindrical shape with an internal diameter of 1.2 mm.
- the wall thickness of the discharge vessel is 0.4 mm.
- the discharge vessel comprises a filling which is free from mercury and comprises NaPrI and ZnI 2 as well as Xe with a filling pressure of 16 bar.
- the outer bulb is made of quartz glass and is arranged at a distance of 0.5 mm to the discharge vessel.
- the outer bulb is filled with N 2 with a filling pressure of 1.5 bar at room temperature.
- thermal design of the lamp needs to be adapted to the lower power.
- the “coldest spot”-temperature needs to be maintained at a high level to achieve good lamp efficacy.
- thermal load on a “hot spot” needs to be constrained in order to achieve good durability. This has led the inventors to propose a lamp with a relatively small discharge vessel, leading to reduced heat radiation, while still maintaining a sufficiently thick wall of the discharge vessel to not only withstand high internal pressure, but specifically to allow heat conduction from the hot upper side (“hot spot”) to the colder lower side.
- the discharge vessel is maintained with a substantial wall thickness of 1.4-2 mm, and preferably also a relatively small inner diameter from 2-2.7 mm.
- An outer bulb is arranged around the discharge vessel.
- the outer bulb is sealed and has a gas filling with a thermal conductivity ⁇ .
- the thermal conductivity ⁇ of the outer bulb filling is taken at 800° C.
- the geometry of the outer bulb (here specifically: the distance d 2 between the discharge vessel and the outer bulb) and the gas filling are chosen to achieve a certain, limited heat flow from the discharge vessel to the outside.
- the thermal conductivity ⁇ of the gas filling and the distance d 2 are chosen to obtain a desired heat transition coefficient ⁇ /d 2 calculated as the thermal conductivity ⁇ divided by the distance d 2 . According to the invention, this coefficient is below 150 W/(m 2 K).
- the distance d 2 is measured in cross-section of the lamp taken at a central position between the electrodes.
- the outer bulb therefore plays an important part in the thermal design of the lamp. While on one hand thermal radiation is limited by the limited size of the discharge vessel, heat conduction in radial direction of the lamp is further limited by the geometry and filling of the outer bulb. As will be explained in relation to the preferred embodiment, the amount of heat transported per time unit between the discharge vessel and the outer bulb, both at their constant operating temperature, is roughly proportional to the defined heat transition coefficient. Thus, by choosing the heat transition coefficient to be below 150 W/(m 2 K), cooling is limited, such that sufficient high coldest spot temperatures, and thus high efficacy are maintained. To achieve a desired, high enough coldest spot temperature the heat transition coefficient is preferably equal to or less than 130 W/(m 2 K), most preferably even lower ⁇ 100 W/(m 2 K). It is further preferred for the heat transition coefficient to be at least 10 W/(m 2 K), further preferred at least 15 W/(m 2 K).
- a lamp according to the invention is especially suited for a nominal power of 20-30 W.
- the filling of the discharge vessel is preferably free of mercury and may comprise one or more metal halides and a rare gas.
- the filling of the discharge vessel comprises one or more of the following: NaI, ScI 3 , ZnI 2 .
- the outer bulb is preferably made out of quartz glass and may be of any geometry, e.g. cylindrical, generally elliptical or other. It is preferred for the outer bulb to have an outer diameter of at most 10 mm.
- the outer bulb is sealed and has a gas filling at a pressure of 10 mbar to 1 bar, preferably below 1 bar, most preferably 50 mbar to 300 mbar.
- the gas filling may essentially consist (i.e. comprise more than 50%, preferably more than 90%) of one or more of the following: Xe, Ar, N 2 , O 2 .
- the distance d 2 between the outer bulb and the discharge vessel is preferably 0.1-1.4 mm, most preferably 0.3-0.8 mm.
- the filling gas, pressure and distance d 2 may only be chosen dependent on one another to achieve the desired heat transition coefficient.
- the discharge vessel is made from quartz glass.
- the distance between the electrodes is preferably 2.5-5.5 mm.
- the optical distance i.e. the distance as viewed from the outside, taking into account magnification of the discharge vessel wall acting as a lens
- the discharge vessel has a shape such that in a cross-section taken at the central position between the electrodes the wall of the discharge vessel is at least substantially circular.
- the discharge vessel when viewed in longitudinal section, has at least substantially elliptical outer shape and may have either elliptical or cylindrical inner shape.
- the wall thickness w 1 it is preferred for the wall thickness w 1 to be in the range from 1.55-1.85 mm.
- the discharge vessel when viewed in longitudinal section, has elliptical or cylindrical inner shape and concave outer shape, i.e. starting from the central position between the electrodes the outer diameter of the discharge vessel increases towards both sides.
- the wall thickness w 1 it is preferred for the wall thickness w 1 to be in the range from 1.4-2 mm.
- FIG. 1 shows a side view of a lamp according to a first embodiment of the invention
- FIG. 2 shows an enlarged view of the central portion of the lamp shown in FIG. 1 ;
- FIG. 2a shows a cross-sectional view along the line A in FIG. 2 ;
- FIG. 3 shows a side view of a lamp according to a second embodiment of the invention
- FIG. 4 shows a side view of a lamp according to a third embodiment of the invention.
- FIG. 5 shows an enlarged view of the central portion of the lamp shown in FIG. 4 ;
- FIG. 5a shows a cross-sectional view along the line A in FIG. 5 .
- FIG. 6 shows a side view of a lamp according to a fourth embodiment of the invention
- FIG. 7 shows a graph representing a heat transition coefficient ⁇ /d 2 for different fillings and distances d 2 .
- FIG. 8 shows a graph representing measured values of lumen output over time (run-up) for a lamp according to the invention.
- FIG. 1 shows a side view of a first embodiment 10 of a discharge lamp.
- the lamp comprises a socket 12 with two electrical contacts 14 which are internally connected to a burner 16 .
- the burner 16 is comprised of an outer bulb 18 of quartz glass surrounding a discharge vessel 20 .
- the discharge vessel 20 is also made of quartz glass and defines an inner discharge space 22 with projecting electrodes 24 .
- the glass material from the discharge vessel further extends in longitudinal direction of the lamp 10 to seal the electrical connections to the electrodes 24 which comprise a flat molybdenum foil 26 .
- the outer bulb 18 is arranged around the discharge vessel 20 at a distance, thus defining an outer bulb space 28 .
- the outer bulb space 28 is sealed.
- the discharge vessel 20 has an outer wall 30 arranged around the discharge space 22 .
- the discharge space 22 is of ellipsoid shape.
- the outer shape of the wall 30 is ellipsoid.
- the discharge vessel 20 is characterized by the electrode distance d, the inner diameter d 1 of the discharge vessel 20 , the wall thickness w 1 of the discharge vessel, the distance d 2 between the discharge vessel 20 and the outer bulb 18 and the wall thickness w 2 of the outer bulb 18 .
- the values d 1 , w 1 , d 2 , w 2 are measured in a central perpendicular plane of the discharge vessel 20 , as shown in FIG. 2a .
- the lamp 10 is operated, as conventional for a discharge lamp, by igniting an arc discharge between the electrodes 24 .
- Light generation is influenced by the filling comprised within the discharge space 22 , which is free of mercury and includes metal halides as well as a rare gas.
- the filling of the discharge space 22 comprises about 17 bar cold xenon pressure and as metal halides 36 wt % NaI, 24 wt % ScI 3 and 40 wt % ZnI 2 .
- the geometric design of the lamp 10 is chosen according to thermal considerations.
- the “coldest spot” temperature should be kept high to achieve high efficacy.
- the thickness of the wall 30 should be small enough to allow a quick run-up with limited run-up current, but should not be too small in order to still achieve good heat conduction from the “hot spot” in order to reduce thermal load.
- the inner diameter d 1 should not be too small in order to reduce excessive thermal load at the “hot spot”.
- the outer bulb 18 instead of a significant reduction of the thickness w 1 of the wall 30 .
- this has proven to also serve to maintain a good lamp lifetime.
- the outer bulb 18 is sealed and filled with a filling gas of reduced heat conductivity. Especially Argon and Xenon are preferred here, but O 2 or N 2 could be used as well.
- the outer bulb filling is provided at reduced pressure (measured in the cold state of the lamp at 20° C.).
- a suitable filling gas has to be made in connection with the geometric arrangement in order to achieve the desired heat conduction from discharge vessel 20 to outer bulb 18 via a suitable heat transition coefficient ⁇ /d 2 .
- the heat conduction to the outside may be roughly characterized by a heat transition coefficient ⁇ /d 2 , which is calculated as the thermal conductivity ⁇ of the outer bulb filling divided by the distance d 2 between the discharge vessel 20 and the outer bulb 18 .
- ⁇ dot over (q) ⁇ ⁇ grad ⁇
- ⁇ dot over (q) ⁇ the heat flux density, i.e. the amount of heat transported per time between discharge vessel and outer bulb.
- ⁇ is the thermal conductivity
- grad ⁇ is the temperature gradient, which here may roughly be calculated as the temperature difference between discharge vessel and outer bulb, divided by the distance:
- FIG. 7 shows the dependence of the heat transition coefficient ⁇ /d 2 on the distance d 2 for different outer bulb fillings. It is clearly visible how Argon, and especially Xenon (provided here at a reduced pressure of 200 mbar) have significantly lower heat conductivity than air, and that the heat transition coefficient ⁇ /d 2 is further reduced with increasing distance d 2 . The heat transition coefficient was found to differ more strongly with the gas composition, and less with the pressure, if it is in the range from about 10 mbar to about 1 bar.
- FIG. 3 shows a second embodiment of the invention.
- a lamp 110 according to the second embodiment comprises a discharge vessel 120 of different internal shape.
- the remaining parts of the lamp correspond to the lamp 10 according to the first embodiment.
- Like elements will be designated by like reference numerals, and will not be further described in detail.
- the discharge vessel 120 of the lamp 110 has external ellipsoid shape, identical to the discharge vessel 20 according to the first embodiment.
- the internal discharge space 22 is cylindrical. Both the length and diameter of the inner discharge space 22 however are as in the above first embodiment. It should be noted that the term “cylindrical” used here refers to the central, largest part of the discharge space 22 and does not exclude—as shown—conical end portions.
- the wall 130 surrounding the discharge space 22 is consequently of varying thickness, with the thickness being greatest at a position corresponding to the center between the electrodes 24 , and decreasing towards both sides.
- FIGS. 3-4a A lamp 110 according to the second embodiment again in large parts corresponds to the lamp 10 according to the above first and second embodiments. Like elements will be designated by like reference numerals and will not be further described in detail.
- the lamp 210 differs from the lamp 10 by the concave outer shape of the discharge vessel 120 .
- the inner discharge space 22 remains roughly ellipsoidal as in the first embodiment.
- the wall 230 surrounding the discharge space 22 has a varying wall thickness such that its outer shape is concave.
- geometrical parameters d 1 , w 1 , d 2 , w 2 are measured in a central plane of the discharge vessel 220 .
- FIG. 6 shows a fourth embodiment of the invention, which in large parts corresponds to the third embodiment according to FIG. 4-5a .
- like elements are designated by like reference numerals and will not be further described in detail.
- a lamp 310 has a discharge vessel 320 with a concave outer shape, but an inner discharge space 22 of cylindrical shape.
- the thickness of the wall 230 , 330 surrounding the discharge space 22 varies such that it is minimal in a position corresponding to the center between the electrodes 24 and increases towards both sides. This leads to a lens effect, such that the electrode distance d will appear to the outside smaller than it actually is.
- the real electrode distance may be, e.g. 4.8 mm in the third and in the forth embodiment. The possibility to thus increase the real electrode distance d but maintain the optical distance gives to the lamp designer a further degree of freedom. Since the operating voltage increases with the electrode distance, it is possible to obtain a higher voltage.
- This may be used to provide a lamp which is compatible with ECE R99 geometrically (optical distance 4.2 mm), but—as a mercury-free-lamp—fulfills the electric requirements of a D2 lamp (voltage more than 68 V).
- the first and second embodiment (elliptical outer shape) it is also possible to provide a larger electrode distance to obtain a lamp, which is not according to ECE R99, but may be operated with higher voltage.
- FIG. 8 shows measurement results of run-up tests, where a 25 W lamp according to the above example 1 was compared to a reference lamp (35 W lamp). The lumen output was measured and is shown in FIG. 8 over the time since ignition of the lamp. As is known for starting the lamps, in a first phase, the current is limited to a maximum value, and in a second phase, the power is controlled.
- the reference lamp reaches about 50% of the total lumen output after 4 seconds. But this requires a maximum run-up current of 3.2 A, resp. a maximum power of around 75 W.
- the 25 W lamp according to example 1 was first driven with a current limitation in the first phase of 1.1 A. Here, the results (less then 30% after 4 seconds) were not satisfactory. However, with a run-up current limitation of 1.5 A (maximum power about 50 W), the lamp according to example 1 shows a quite comparable behavior to the reference, whereas the run-up current is less then half and the maximum run-up power is reduced by about 30%.
- the lifetime performance within the first 1500 hours of operation for lamps according to the above embodiments corresponds to the reference (a 35 W lamp).
- the above embodiments provide lamps with good lifetime, good efficacy and good run-up behavior, which all correspond to the reference lamps, but at lower required run-up current and lower steady-state power.
Landscapes
- Discharge Lamps And Accessories Thereof (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Discharge Lamp (AREA)
Abstract
Description
| Efficacy | Coldest spot | |||
| Outer bulb filling | S-type | temperature (outside) | ||
| Air (1 bar) | 67 lm/W | 810° C. | ||
| Ar (100 mbar) | 79 lm/W | 840° C. | ||
| Xe (100 mbar) | 86 lm/W | 900° C. | ||
Thus, cooling is proportional to
| 25 W lamp |
| discharge vessel: | ellipsoid inner and outer shape | ||
| electrode distance d = | 4.2 mm optical | ||
| inner diameter d1 = | 2.2 mm | ||
| wall thickness w1 = | 1.65 mm | ||
| outer diameter = | 5.5 mm | ||
| outer bulb distance d2 = | 0.6 mm | ||
| outer bulb filling = | |
||
| 100 mbar ( λ = 0.014 | |||
| W/(m*K) at 800° C.) | |||
| heat transition coefficient λ/d2 = | 23.3 W/(m2K) at 800° C. | ||
| outer bulb wall thickness w2 = | 1 mm | ||
| 30 W lamp |
| discharge vessel: | ellipsoid inner and outer shape | ||
| electrode distance d = | 4.2 mm optical | ||
| inner diameter d1 = | 2.3 mm | ||
| wall thickness w1 = | 1.75 mm | ||
| outer diameter = | 5.8 mm | ||
| outer bulb distance d2 = | 0.45 mm | ||
| outer bulb filling = | |
||
| 100 mbar ( λ = 0.014 | |||
| W/(m*K) at 800° C.) | |||
| heat transition coefficient λ/d2 = | 31.1 W/(m2K) at 800° C. | ||
| outer bulb wall thickness w2 = | 1 mm | ||
| 25 W lamp |
| discharge vessel: | concave outer shape, | ||
| ellipitical inner shape | |||
| electrode distance d = | 4.2 mm optical | ||
| inner diameter d1 = | 2.2 mm | ||
| wall thickness w1 = | 1.5 mm | ||
| outer diameter = | 5.2 mm | ||
| outer bulb distance d2 = | 0.75 mm | ||
| outer bulb filling = | |
||
| 100 mbar ( λ = 0.045 | |||
| W/(m*K) at 800° C.) | |||
| heat transition coefficient λ/d2 = | 60 W/(m2K) at 800° C. | ||
| outer bulb wall thickness w2 = | 1 mm | ||
| 28 W lamp |
| discharge vessel: | concave outer shape, | ||
| elliptical inner shape | |||
| electrode distance d = | 4.2 mm optical | ||
| inner diameter d1 = | 2.2 mm | ||
| wall thickness w1 = | 1.7 mm | ||
| outer diameter = | 5.6 mm | ||
| outer bulb distance d2 = | 0.55 mm | ||
| outer bulb filling = | 50% Ar/50 |
||
| 100 mbar ( λ = 0.045 | |||
| W/(m*K) at 800° C.) | |||
| heat transition coefficient λ/d2 = | 45.5 W/(m2K) at 800° C. | ||
| outer bulb wall thickness w2 = | 1 mm | ||
| 30 W lamp |
| discharge vessel: | concave outer shape, | ||
| elliptical inner shape | |||
| electrode distance d = | 4.2 mm optical | ||
| inner diameter d1 = | 2.2 mm | ||
| wall thickness w1 = | 1.9 mm | ||
| outer diameter = | 6.0 mm | ||
| outer bulb distance d2 = | 0.35 mm | ||
| outer bulb filling = | 50% Ar/50 |
||
| 100 mbar ( λ = 0.025 | |||
| W/(m*K) at 800° C.) | |||
| heat transition coefficient λ/d2 = | 71.4 W/(m2K) at 800° C. | ||
| outer bulb wall thickness w2 = | 1 mm | ||
Claims (37)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/026,505 USRE45342E1 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07103946 | 2007-03-12 | ||
| EP07103946 | 2007-03-12 | ||
| US14/026,505 USRE45342E1 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
| PCT/IB2008/050832 WO2008110967A1 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
| US12/530,537 US8030847B2 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE45342E1 true USRE45342E1 (en) | 2015-01-20 |
Family
ID=39420285
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/026,505 Active 2028-09-23 USRE45342E1 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
| US12/530,537 Ceased US8030847B2 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/530,537 Ceased US8030847B2 (en) | 2007-03-12 | 2008-03-07 | Low power discharge lamp with high efficacy |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | USRE45342E1 (en) |
| EP (1) | EP2122662A1 (en) |
| JP (3) | JP5335701B2 (en) |
| CN (1) | CN101636816B (en) |
| WO (1) | WO2008110967A1 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102007567B (en) * | 2008-04-14 | 2013-06-19 | 皇家飞利浦电子股份有限公司 | High efficiency discharge lamp |
| EP2405464A4 (en) * | 2009-03-06 | 2014-09-17 | Harison Toshiba Lighting Corp | DISCHARGE LAMP FOR VEHICLE, DISCHARGE LAMP DEVICE FOR VEHICLE, DISCHARGE LAMP DEVICE FOR VEHICLE TYPE COMBINED WITH LIGHTING CIRCUIT, AND LIGHTING CIRCUIT |
| JP5428957B2 (en) * | 2009-05-13 | 2014-02-26 | 東芝ライテック株式会社 | Discharge lamp for vehicle and discharge lamp device for vehicle |
| EP2486584A2 (en) * | 2009-10-09 | 2012-08-15 | Koninklijke Philips Electronics N.V. | High efficiency lighting assembly with an ac-driven metal halide lamp |
| SE534212C2 (en) * | 2009-10-12 | 2011-06-07 | Auralight Int Ab | Metal halide lamp in which the arc tube has greater wall thickness in the end portions than in the center portion |
| DE102009052999A1 (en) * | 2009-11-12 | 2011-05-19 | Osram Gesellschaft mit beschränkter Haftung | High pressure discharge lamp |
| US9711342B2 (en) | 2010-05-26 | 2017-07-18 | Koninklijke Philips N.V. | Gas-discharge lamp |
| US8339044B2 (en) | 2010-12-28 | 2012-12-25 | General Electric Company | Mercury-free ceramic metal halide lamp with improved lumen run-up |
| EP2702605A2 (en) * | 2011-04-27 | 2014-03-05 | Koninklijke Philips N.V. | Discharge lamp with high color temperature |
| EP2725604A4 (en) | 2011-06-23 | 2014-11-12 | Toshiba Lighting & Technology | MERCURY FREE METAL HALIDE LAMP FOR VEHICLE AND HALIDE LAMP DEVICE |
| JP5888607B2 (en) * | 2012-09-10 | 2016-03-22 | 東芝ライテック株式会社 | Metal halide lamp |
Citations (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4161672A (en) | 1977-07-05 | 1979-07-17 | General Electric Company | High pressure metal vapor discharge lamps of improved efficacy |
| US4594529A (en) | 1982-12-01 | 1986-06-10 | U.S. Philips Corporation | Metal halide discharge lamp |
| US4622485A (en) | 1984-02-14 | 1986-11-11 | Hitachi, Ltd. | Discharge lamp with neon gas in outer tube |
| JPH05290804A (en) | 1992-04-07 | 1993-11-05 | Matsushita Electron Corp | Metal halide lamp for head lamp of automobile |
| US5359255A (en) * | 1991-07-25 | 1994-10-25 | Hamamatsu Photonics K.K. | Discharge tube having a double-tube type structure |
| US5736811A (en) | 1992-05-11 | 1998-04-07 | U.S. Philips Corporation | Capped high-pressure discharge lamp |
| EP0883160A1 (en) | 1997-06-06 | 1998-12-09 | Toshiba Lighting & Technology Corporation | Mercury-free metal halide discharge lamp, lighting device for such a lamp, and illuminating apparatus using such a lamp |
| EP1037257A2 (en) | 1999-03-11 | 2000-09-20 | Matsushita Electric Industrial Co., Ltd. | Mercury-free metal halide-lamp |
| EP1063681A2 (en) | 1999-06-25 | 2000-12-27 | Stanley Electric Co., Ltd. | Metal halide discharge lamps |
| EP1150337A1 (en) | 2000-04-28 | 2001-10-31 | Toshiba Lighting & Technology Corporation | Mercury-free metal halide lamp and a vehicle lighting apparatus using the lamp |
| DE10163584C1 (en) | 2001-11-26 | 2003-04-17 | Philips Corp Intellectual Pty | Production of a lamp tube comprises heating a hollow semi-finished tube up to its softening point, deforming the tube, hermetically surrounding the tube with a molding tool, and pressurizing the hollow interior of the tube with a gas |
| US20030117074A1 (en) * | 2001-12-21 | 2003-06-26 | Lapatovich Walter P. | Double jacketed high intensity discharge lamp |
| US6853140B2 (en) | 2002-04-04 | 2005-02-08 | Osram Sylvania Inc. | Mercury free discharge lamp with zinc iodide |
| US20050134182A1 (en) | 2003-12-22 | 2005-06-23 | Harison Toshiba Lighting Corp. | Metal halide lamp and metal halide lamp lighting device |
| US20050248278A1 (en) | 2002-09-06 | 2005-11-10 | Koninklijke Philips Electronics N.V. | Mercury free metal halide lamp |
| US20060049764A1 (en) | 2004-09-07 | 2006-03-09 | Florian Bedynek | High-pressure discharge lamp |
| US7098596B2 (en) * | 2002-11-22 | 2006-08-29 | Koito Manufacturing Co., Ltd. | Mercury-free arc tube for discharge lamp unit |
| US20060202627A1 (en) | 2005-03-09 | 2006-09-14 | General Electric Company | Ceramic arctubes for discharge lamps |
| US20060244384A1 (en) * | 2005-05-02 | 2006-11-02 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | Electric lamp having an outer bulb |
| JP2006344579A (en) | 2005-05-13 | 2006-12-21 | Harison Toshiba Lighting Corp | Double tube type metal halide lamp |
| WO2008007284A2 (en) | 2006-07-07 | 2008-01-17 | Koninklijke Philips Electronics N. V. | Gas-discharge lamp |
| WO2008007283A2 (en) | 2006-07-07 | 2008-01-17 | Philips Intellectual Property & Standards Gmbh | Gas-discharge lamp |
| US20090108756A1 (en) * | 2006-06-02 | 2009-04-30 | Osram Gesellschaft Mit Beschranker Haftung | Metal Halide Fill for an Electric High Pressure Discharge Lamp and Associated Lamp |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN85101257B (en) * | 1985-04-01 | 1988-03-16 | 株式会社日立制作所 | discharge lamp |
| JP2001357818A (en) * | 2000-06-13 | 2001-12-26 | Koito Mfg Co Ltd | Discharge lamp bulb and its manufacturing method |
| JP2004063158A (en) * | 2002-07-25 | 2004-02-26 | Koito Mfg Co Ltd | Discharge bulb |
| DE102004043636A1 (en) * | 2004-09-07 | 2006-03-09 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines |
| JP2006302780A (en) * | 2005-04-22 | 2006-11-02 | Harison Toshiba Lighting Corp | Automotive discharge lamp |
| JP4618793B2 (en) * | 2005-05-31 | 2011-01-26 | 株式会社小糸製作所 | Mercury-free arc tube for discharge bulb |
| US7786673B2 (en) * | 2005-09-14 | 2010-08-31 | General Electric Company | Gas-filled shroud to provide cooler arctube |
-
2008
- 2008-03-07 US US14/026,505 patent/USRE45342E1/en active Active
- 2008-03-07 CN CN2008800081707A patent/CN101636816B/en active Active
- 2008-03-07 EP EP08719597A patent/EP2122662A1/en not_active Ceased
- 2008-03-07 JP JP2009553248A patent/JP5335701B2/en active Active
- 2008-03-07 WO PCT/IB2008/050832 patent/WO2008110967A1/en active Application Filing
- 2008-03-07 US US12/530,537 patent/US8030847B2/en not_active Ceased
-
2013
- 2013-05-31 JP JP2013115485A patent/JP5486114B2/en active Active
- 2013-09-24 JP JP2013196375A patent/JP2014038856A/en not_active Withdrawn
Patent Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4161672A (en) | 1977-07-05 | 1979-07-17 | General Electric Company | High pressure metal vapor discharge lamps of improved efficacy |
| US4594529A (en) | 1982-12-01 | 1986-06-10 | U.S. Philips Corporation | Metal halide discharge lamp |
| US4622485A (en) | 1984-02-14 | 1986-11-11 | Hitachi, Ltd. | Discharge lamp with neon gas in outer tube |
| US5359255A (en) * | 1991-07-25 | 1994-10-25 | Hamamatsu Photonics K.K. | Discharge tube having a double-tube type structure |
| JPH05290804A (en) | 1992-04-07 | 1993-11-05 | Matsushita Electron Corp | Metal halide lamp for head lamp of automobile |
| US5736811A (en) | 1992-05-11 | 1998-04-07 | U.S. Philips Corporation | Capped high-pressure discharge lamp |
| EP0883160A1 (en) | 1997-06-06 | 1998-12-09 | Toshiba Lighting & Technology Corporation | Mercury-free metal halide discharge lamp, lighting device for such a lamp, and illuminating apparatus using such a lamp |
| EP1037257A2 (en) | 1999-03-11 | 2000-09-20 | Matsushita Electric Industrial Co., Ltd. | Mercury-free metal halide-lamp |
| US6724145B1 (en) | 1999-06-25 | 2004-04-20 | Stanley Electric Co., Ltd. | Discharge lamp |
| EP1063681A2 (en) | 1999-06-25 | 2000-12-27 | Stanley Electric Co., Ltd. | Metal halide discharge lamps |
| EP1150337A1 (en) | 2000-04-28 | 2001-10-31 | Toshiba Lighting & Technology Corporation | Mercury-free metal halide lamp and a vehicle lighting apparatus using the lamp |
| DE10163584C1 (en) | 2001-11-26 | 2003-04-17 | Philips Corp Intellectual Pty | Production of a lamp tube comprises heating a hollow semi-finished tube up to its softening point, deforming the tube, hermetically surrounding the tube with a molding tool, and pressurizing the hollow interior of the tube with a gas |
| US20030117074A1 (en) * | 2001-12-21 | 2003-06-26 | Lapatovich Walter P. | Double jacketed high intensity discharge lamp |
| US6853140B2 (en) | 2002-04-04 | 2005-02-08 | Osram Sylvania Inc. | Mercury free discharge lamp with zinc iodide |
| US20050248278A1 (en) | 2002-09-06 | 2005-11-10 | Koninklijke Philips Electronics N.V. | Mercury free metal halide lamp |
| US7098596B2 (en) * | 2002-11-22 | 2006-08-29 | Koito Manufacturing Co., Ltd. | Mercury-free arc tube for discharge lamp unit |
| US20050134182A1 (en) | 2003-12-22 | 2005-06-23 | Harison Toshiba Lighting Corp. | Metal halide lamp and metal halide lamp lighting device |
| US20060049764A1 (en) | 2004-09-07 | 2006-03-09 | Florian Bedynek | High-pressure discharge lamp |
| US20060202627A1 (en) | 2005-03-09 | 2006-09-14 | General Electric Company | Ceramic arctubes for discharge lamps |
| US20060244384A1 (en) * | 2005-05-02 | 2006-11-02 | Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh | Electric lamp having an outer bulb |
| JP2006344579A (en) | 2005-05-13 | 2006-12-21 | Harison Toshiba Lighting Corp | Double tube type metal halide lamp |
| US20090108756A1 (en) * | 2006-06-02 | 2009-04-30 | Osram Gesellschaft Mit Beschranker Haftung | Metal Halide Fill for an Electric High Pressure Discharge Lamp and Associated Lamp |
| WO2008007284A2 (en) | 2006-07-07 | 2008-01-17 | Koninklijke Philips Electronics N. V. | Gas-discharge lamp |
| WO2008007283A2 (en) | 2006-07-07 | 2008-01-17 | Philips Intellectual Property & Standards Gmbh | Gas-discharge lamp |
Non-Patent Citations (3)
| Title |
|---|
| David R. Lide, Ed: "Thermal Conductivity of Gases"; CRC Handbook of Chemistry and Physics, 88th Edition, vol. 88, 2008, pp. 6-184-6-185. |
| Kestin et al: "Equilibrium and Transport Propterties of the Noble Gases and Their Mixtures At Low Density"; Journal of Physical and Chemical Reference Data, vol. 13, No. 1, 1984, pp. 229-303. |
| Uribe et al: "Thermal Conductivity of Nine Polyatomic Gases At Low Density"; Journal of Physical and Chemical Reference Data, vol. 19, No. 0.5, 1990, pp. 1123-1136. |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2013191580A (en) | 2013-09-26 |
| JP5486114B2 (en) | 2014-05-07 |
| JP2014038856A (en) | 2014-02-27 |
| US20100141138A1 (en) | 2010-06-10 |
| WO2008110967A1 (en) | 2008-09-18 |
| US8030847B2 (en) | 2011-10-04 |
| JP5335701B2 (en) | 2013-11-06 |
| CN101636816B (en) | 2011-09-14 |
| JP2010521771A (en) | 2010-06-24 |
| EP2122662A1 (en) | 2009-11-25 |
| CN101636816A (en) | 2010-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE45342E1 (en) | Low power discharge lamp with high efficacy | |
| US6215254B1 (en) | High-voltage discharge lamp, high-voltage discharge lamp device, and lighting device | |
| US6707252B2 (en) | Metal halide lamp | |
| JP5138091B2 (en) | High efficiency discharge lamp | |
| JP6010111B2 (en) | Discharge lamp with high color temperature | |
| JP5816244B2 (en) | Discharge lamp with improved discharge vessel | |
| KR20100014239A (en) | Discharge lamp with high color temperature | |
| US6744206B2 (en) | Metal halide lamp with reduced change in color temperature | |
| JP4431174B2 (en) | High pressure gas discharge lamp | |
| EP1903598A2 (en) | High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus. | |
| JP2004171833A (en) | High pressure discharge lamp, high pressure discharge lamp lighting device and lighting device | |
| JP2001345071A (en) | High pressure discharge lamp and lighting equipment | |
| JP2000090882A (en) | High pressure discharge lamp and lighting equipment | |
| JP2000156201A (en) | High pressure discharge lamp device and lighting device | |
| JP4289430B2 (en) | Metal halide lamp and lighting device using it | |
| JP2005135597A (en) | Metal halide lamp and lighting device using it |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:LUMILEDS LLC;REEL/FRAME:043108/0001 Effective date: 20170630 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: SECURITY INTEREST;ASSIGNOR:LUMILEDS LLC;REEL/FRAME:043108/0001 Effective date: 20170630 |
|
| AS | Assignment |
Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS Free format text: CHANGE OF NAME;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N V;REEL/FRAME:046772/0611 Effective date: 20170428 |
|
| AS | Assignment |
Owner name: LUMILEDS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS N.V.;REEL/FRAME:048150/0603 Effective date: 20170428 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: SOUND POINT AGENCY LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:LUMILEDS LLC;LUMILEDS HOLDING B.V.;REEL/FRAME:062299/0338 Effective date: 20221230 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: LUMILEDS HOLDING B.V., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOUND POINT AGENCY LLC;REEL/FRAME:070046/0001 Effective date: 20240731 Owner name: LUMILEDS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOUND POINT AGENCY LLC;REEL/FRAME:070046/0001 Effective date: 20240731 |