USRE43846E1 - Bonding structures for containers and method of bonding same - Google Patents

Bonding structures for containers and method of bonding same Download PDF

Info

Publication number
USRE43846E1
USRE43846E1 US13/506,237 US201213506237A USRE43846E US RE43846 E1 USRE43846 E1 US RE43846E1 US 201213506237 A US201213506237 A US 201213506237A US RE43846 E USRE43846 E US RE43846E
Authority
US
United States
Prior art keywords
container
backing member
impeller shell
bonding
backing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/506,237
Inventor
Akihiko Sano
Yoshitaka Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to US13/506,237 priority Critical patent/USRE43846E1/en
Application granted granted Critical
Publication of USRE43846E1 publication Critical patent/USRE43846E1/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/126Workpiece support, i.e. backing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H41/28Details with respect to manufacture, e.g. blade attachment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H2041/243Connections between pump shell and cover shell of the turbine

Definitions

  • the present disclosure relates to a bonding structure for containers and a method of bonding same.
  • An impeller shell and a converter cover of a conventional torque converter are typically assembled using an arc welding operation.
  • one problem that usually occurs is sputters that are generated during the operation. More specifically, the sputters may sneak through a gap of a fitting portion disposed between the impeller shell and the converter cover. Thus, the sputters may inadvertently penetrate into the torque converter and turn into metallic granular substances. As such, the metallic granular substances may become prevalent in the ATF (Automatic Transmission Fluid), thereby requiring a high-performance filter with a fine mesh to filter out same.
  • ATF Automatic Transmission Fluid
  • Japanese Laid-Open Patent Publication No. 2004-286105 discloses a method of assembling a torque converter using a friction stir welding operation. Specifically, the fitting portion of an impeller shell and a converter cover is faced toward a stir rod (tool) to implement the above operation, wherein the stir rod transitions along an axial direction of the torque converter. The stir rod is then inserted into the fitting portion to thereby bond them together without generating any sputters.
  • the bonding portions of the impeller shell and the converter cover are formed in a planar shape. By doing so, the stress at the bonding portion caused by an inner pressure of the torque converter can be avoided.
  • a spacing portion for forming a planar surface is formed at a lower surface side of the bonding portion (see cavity 13 shown in FIG. 3 of Japanese Laid-Open Patent Publication No. 2004-286105).
  • a bonding structure for a container member is disclosed.
  • the container member has an opening and a covering member for covering the opening.
  • the container member and covering member are abutted with each other and bonded by a friction stir welding operation.
  • the bonding structure for the container and covering members comprises a bonding portion and a backing member.
  • the bonding portion of the container member and the covering member is formed by inserting a friction stir welding tool into an abutting portion of the container member and the covering member.
  • the backing member is provided for obstructing a plastic flow of materials for the container member and the covering member when the friction stir welding operation is performed.
  • the backing member is disposed adjacent to the bonding portion, at a side of the abutting portion that is opposite to an inserting side of the friction stir welding tool.
  • a method is also disclosed.
  • FIG. 1 is a partial sectional view illustrating a main portion of a torque converter.
  • FIGS. 2A to 2D are partial sectional views illustrating a method of assembling a torque converter in accordance with a first embodiment of the present disclosure.
  • FIGS. 3A to 3D are partial sectional views illustrating a method of assembling a torque converter in accordance with a second embodiment of the present disclosure.
  • FIG. 4 is a partial sectional view illustrating a bonding structure for a torque converter case in accordance with a third embodiment of the present disclosure.
  • FIG. 5A is a partial sectional view illustrating a process of fixing a backing member to an impeller shell in accordance with a fourth embodiment of the present disclosure.
  • FIG. 5B is a partial sectional view illustrating a method of bonding a torque converter case in accordance with the fourth embodiment of the present disclosure.
  • FIGS. 6A to 6D are partial sectional views illustrating a method of assembling a torque converter in accordance with a fifth embodiment of the present disclosure.
  • FIG. 7 is a partial sectional view illustrating a method of assembling a torque converter in accordance with a sixth embodiment of the present disclosure.
  • FIG. 8A is a partial sectional view of a first comparative example.
  • FIG. 8B is a partial sectional view of a second comparative example.
  • FIG. 8C is a partial sectional view illustrating a problem associated with the second comparative example.
  • FIG. 1 is a partial sectional view illustrating a main portion of a torque converter 100 constructed in accordance with a first embodiment of the present invention.
  • the torque converter 100 has a torque converter case 101 (a container).
  • the torque converter case 101 is formed by abutting a converter cover 2 (a covering member) with an impeller shell 1 (a container member) and bonding an abutting surface using a friction stir welding (FSW) operation.
  • the converter cover 2 has a disk-like shape.
  • the torque converter case 101 supports a stator 3 , a turbine runner 4 , a lock-up clutch 5 , etc.
  • the impeller shell 1 has a curved cross-sectional shape, the end of which is opened to accommodate the turbine runner 4 .
  • the converter cover 2 By fitting the converter cover 2 covering an opening 1 j into the opening end of the impeller shell 1 , the impeller shell 1 and the converter cover 2 can be abutted with each other.
  • a friction stir welding tool into the abutting portion of the impeller shell 1 and the converter cover 2 , the impeller shell 1 and the converter cover 2 are friction stir welded using a bonding portion 8 formed at the abutting portion.
  • a plurality of wings 6 a is formed at an inner surface of the impeller shell 1 .
  • the wings 6 a and the impeller shell 1 collectively comprise an impeller 6 . Further, the impeller 6 and the turbine runner 4 are disposed opposite to each other.
  • a shoulder portion 1 b is formed on an outer portion along a diametric direction of an outer surface, or outer periphery, 1 a of the impeller shell 1 .
  • the shoulder portion 1 b is subject to a load applied on the impeller shell 1 when the friction stir welding operation is performed.
  • the shoulder portion 1 b contacts a jig shown in FIG. 1 and is subjected to a pressure load from a stir rod (tool) 7 in the friction stir welding equipment.
  • the shoulder portion 1 b further supports the torque converter 100 .
  • a rib 1 c may be formed between the shoulder portion 1 b and the bonding portion 8 so as to ensure the axial strength and the rigidity of the impeller shell 1 .
  • the bonding portion 8 is formed over an entire periphery of the impeller shell 1 and the converter cover 2 , the bonding portion 8 is preferably provided only at the major points of the shoulder portion 1 b and the rib 1 c.
  • Aluminum alloy having a relatively low softening temperature is preferably used as a material for the impeller shell 1 and the converter cover 2 .
  • the softening temperature is a temperature wherein the material is softened by frictional heat during the friction stir welding operation.
  • other types of materials capable of being friction stir welded may be used to form the impeller shell 1 and the converter cover 2 (e.g., including, but not limited to, magnesium alloy, titanium, titanium alloy, copper, copper alloy, mild steel, etc.).
  • an annular backing member 12 is provided as a bank member for obstructing the plastic flow of materials for the impeller shell 1 and the converter cover 2 during the friction stir welding operation.
  • the backing member 12 is disposed along the bonding portion 8 at a side opposite to an inserting side of the stir rod 7 .
  • a material having a softening temperature higher than that of the material used for the impeller shell is used a material for the backing member.
  • an iron-based material having a softening temperature higher than that of an aluminum alloy is used as the material for the backing member.
  • the rotation speed and the pressing force (against a material to be bonded) of the stir rod 7 are set to predetermined values, wherein the frictional heat generated from friction with the impeller shell 1 and the converter cover 2 (materials to be bonded) does not exceed the softening temperature of the backing member 12 .
  • the backing member 12 is not softened when the friction stir welding operation is performed. Accordingly, the plastic flow of the materials for the impeller shell 1 and the converter cover 2 can be effectively obstructed by the backing member 12 .
  • FIGS. 2A to 2D are partial sectional views illustrating a method of assembling the torque converter of a first embodiment. Specifically, FIG. 2A shows a process of fitting the converter cover 2 after installing the backing member 12 at the impeller shell 1 . FIG. 2B shows a process of inserting a tool 7 into the impeller shell 1 and the converter cover 2 . Further, FIG. 2C shows a process for the friction stir welding operation. FIG. 2D shows a state when the bonding operation is completed. Each stage will now be described in further detail.
  • a flange portion 1 d is formed in the impeller shell 1 .
  • the flange portion 1 d extends from an outer periphery 1 a of the impeller shell 1 to an outside of a diametric direction.
  • an annular abutting portion 1 g which is abutted to the converter case 2 during the friction stir welding operation, is extended toward an axial direction of the impeller shell 1 .
  • An inner peripheral surface of the abutting portion 1 g is a generally cylindrical abutting portion 1 e, which is coaxial with the rotation axis of the torque converter.
  • an outer peripheral end in a diametric direction of the converter cover 2 is a flange-like abutting portion 2 g, which is abutted to the abutting portion 1 g of the impeller shell 1 during the friction stir welding operation.
  • An outer surface in a diametric direction of the abutting portion 2 g is a generally cylindrical abutting portion 2 a formed coaxially with an axis of the torque converter 100 .
  • a generally annular groove 11 b is formed in the flange portion 1 d of the impeller shell 1 .
  • An outer side portion, which is in a diametric direction of the backing member 12 is inserted into the groove 11 b.
  • the groove 11 b and a space, which is connected to the groove 11 b between the impeller shell 1 and the converter cover 2 collectively constitute a spacing portion 11 for receiving the backing member 12 .
  • a bottom surface 11 a of the groove 11 b is disposed more at an outer periphery side than the abutting surfaces 1 e and 2 a in a diametric direction of the torque converter 100 .
  • the abutting surfaces 1 e and 2 a are placed on the backing member 12 when fitting the converter cover 2 into the impeller shell 1 while inserting the backing member 12 into the groove 11 b.
  • the backing member 12 is divided into a plurality of parts so as to be insertable into the annular spacing portion 11 .
  • the backing member 12 is divided into three or more parts.
  • a surface of the backing member 12 which is at a side of the bonding portion 8 (see FIG. 2C ), is configured to be a substantially flat surface 12 a.
  • the plastic flow of the materials for the impeller shell 1 and the converter cover 2 may be obstructed by the substantially flat surface 12 a during the friction stir welding operation.
  • a surface of the backing member 12 at an opposite side is configured to be a substantially flat surface 12 b, which contacts and becomes supported by the impeller shell 1 .
  • annular convex portion 2 c which extends in a direction generally parallel to the abutting surfaces 1 e and 2 a, is formed at a wall surface 2 b of the converter cover 2 .
  • the wall surface 2 b of the converter cover 2 is generally orthogonal to the abutting surfaces 1 e and 2 a and forms the spacing portion 11 .
  • the convex portion 2 c inhibits the movement of the backing member 12 to an inner side in the diametric direction and prevents the backing member 12 from escaping the groove 11 b.
  • a divided backing member 12 is inserted into the groove 11 b of the impeller shell 1 .
  • the converter cover 2 is then fitted into the impeller shell 1 from a rotational axis direction of the torque converter.
  • the converter cover 2 is fitted into the impeller shell 1 to thereby effect the positioning of the backing member 12 by the convex portion 2 c formed in the converter cover 2 .
  • the abutting surfaces 1 e and 2 a are abutted with each other, wherein a tip end 7 a of the stir rod 7 is pressed into the abutting surfaces 1 e and 2 a from the top.
  • the stir rod 7 is pressed to the abutting portions 1 g and 2 g with a predetermined load while being rotated at a predetermined rotation speed.
  • the friction stir welding operation for bonding the abutting portions 1 g and 2 g is initiated.
  • the friction stir welding operation first loads the shoulder portion 1 b of the impeller shell 1 (into which the converter cover 2 is fitted) on the jig 10 when the converter cover 2 is allowed to be an upper side.
  • the friction stir welding operation is then performed by moving the stir rod 7 towards the abutting portions 1 g and 2 g from the top of the abutting portions 1 g and 2 g.
  • a frictional heat is generated between the tip end 7 a and the abutting portions 1 g and 2 g by contacting them together.
  • the materials for the impeller shell 1 and the converter cover 2 are softened by frictional heat, for example. As shown in FIG. 2C , the tip end 7 a of the stir rod 7 is pressed into the softened materials to a predetermined depth.
  • a depth of the friction stir welding operation is set by contacting the shoulder portion 7 b of the stir rod 7 to an end face P of an outer side of the abutting portions 1 g and 2 g.
  • a distance from a tip face of the tip end 7 a to the shoulder portion 7 b is set to be a bonding depth.
  • the bonding depth is set such that the bonding portion 8 , which is formed by the friction stir welding operation, reaches the backing member 12 . Since the backing member 12 is disposed at a side opposite to the inserting side of the stir rod 7 , the plastically flowing materials are obstructed by the generally flat surface 12 a of the backing member 12 when the friction stir welding operation is performed.
  • FIGS. 8A-8C are each a partial sectional view illustrating a bonding state of the friction stir welding operation. Specifically, FIG. 8A is a partial sectional view illustrating a first comparative example, whereas FIG. 8B is a partial sectional view illustrating a second comparative example. Further, FIG. 8C is a partial sectional view illustrating a problem associated with the second comparative example.
  • a backing member is not used, unlike the first embodiment.
  • an impeller shell 71 and a converter cover 72 are bonded by a bonding portion 78 .
  • the bonding portion 78 is cut off when abutting the surface of the impeller shell 71 and the converter cover 72 . In such a case, the cut-off portion becomes a stress concentration region C in the bonding portion 78 due to an application of pressure when using the torque converter.
  • the bonding portion 8 is not cut off when abutting the surfaces between the workpieces as in the first comparative example. Therefore, it is possible to eliminate the stress concentration region C in the bonding portion 78 due to an application of pressure within the case when using the torque converter. Further, as shown in FIG. 8B , a spacing portion O for forming a planar surface is formed at a lower side of a bonding portion 88 to avoid the stress concentration in the bonding portion 88 of an impeller shell 81 and a converter cover 82 .
  • the generally flat surface 12 b at a side opposite to the bonding portion 8 of the backing member 12 is supported by the impeller shell 1 .
  • the impeller shell 1 is supported so as to effectively carry out the friction stir welding operation by using the backing member 12 .
  • the impeller shell 1 has the groove 11 b into which the backing member 12 is inserted.
  • the converter cover 2 has the generally convex shaped portion 2 c for inhibiting the backing member 12 from escaping the groove 11 b. To this end, a displacement of the backing member 12 is effectively prevented by the groove 11 b and the convex portion 2 c when the friction stir welding operation is conducted. In addition, the plastic flow of the materials can be effectively prevented by the backing member 12 .
  • FIGS. 3A to 3D are partial sectional views illustrating a method of assembling a torque converter in accordance with a second embodiment of the present disclosure.
  • the convex portion 2 c is formed in the converter cover 2 of the first embodiment.
  • a convex portion 2 d that is extended further than the convex portion 2 c is formed instead of the convex portion 2 c.
  • a concave portion 13 (into which the tip end of the convex portion 2 d is fitted) is formed in the impeller shell 1 .
  • the convex portion 2 d regulates the position of the backing member 12 .
  • the height of the convex portion 2 d is set to be at least slightly greater than the thickness of the backing member 12 .
  • the converter cover 2 is fitted into the impeller shell 1 as in the first embodiment.
  • the tip end of the convex portion 2 d is fitted into the concave portion 13 .
  • a spacing portion 11 for receiving the backing member 12 is formed from a space for receiving the turbine runner 4 , etc., by the convex portion 2 d.
  • the friction stir welding operation is performed as in the first preferred embodiment. Further, the bonding operation for the impeller shell 1 and the converter cover 2 is also performed.
  • the convex portion 2 d and the concave portion 13 are formed to fit with each other when abutting the impeller shell 1 and the converter cover 2 . Therefore, even when an inner pressure of the torque converter increases, it is possible to prevent the inner pressure from being applied to the bonding portion 8 due to the fit between the convex portion 2 d and concave portion 13 .
  • FIG. 4 is a partial sectional view illustrating a bonding structure for the torque converter case in accordance with a third embodiment of the present disclosure.
  • This embodiment differs from the previous embodiments in terms of the construction of the torque converter.
  • the backing member 12 is formed as a separate member in the previous embodiments.
  • the backing member 18 is integrally formed with the impeller shell 1 via a cast-in operation when casting the impeller shell 1 .
  • the backing member 18 is made from an iron-based material, while the impeller shell 1 is formed by an aluminum casting operation.
  • the converter cover 2 is fit into the impeller shell 1 in which the backing member 12 is cast-in. Further, the impeller shell 1 and the converter cover 2 are bonded by the friction stir welding operation as in the previous preferred embodiments.
  • FIGS. 5A and 5B are partial sectional views illustrating a bonding structure for the torque converter case in accordance with a fourth embodiment of the present disclosure. Specifically, FIG. 5A is a partial sectional view illustrating a method of forming the impeller shell 1 in the bonding structure, whereas FIG. 5B is a partial sectional view illustrating a method of bonding.
  • the backing member 19 (as a separate member) is fixed to the impeller shell 1 by a plastic forming operation.
  • the shape of the flange portion 1 d of the impeller shell 1 is configured such that the backing member 19 (which in the embodiment shown, has a generally annular shape) may be installed from the axial direction.
  • the flange portion 1 d is deformed to cover the backing member 19 by the plastic working of forging so that the backing member 19 is fixed and an abutting portion 1 g is formed.
  • it is not necessary to divide the backing member 19 unlike the first embodiment.
  • FIGS. 6A to 6D are partial sectional views illustrating a method of assembling a torque converter in accordance with a fifth embodiment of the present disclosure.
  • the convex portions 2 c and 2 d are formed in the converter cover 2 so as to perform the positioning of the backing member 12 .
  • a component of the lock-up clutch 5 is used to performing the positioning of the backing member 12 .
  • the converter cover 2 of the torque converter has a flanged hat shape.
  • a hat-shaped sliding contact member 14 is installed along an inner side surface of the converter cover 2 .
  • One end 14 c of a flange portion 14 a which is an outer portion in the diametric direction of the sliding contact member 14 , faces an inner side surface of the backing member 12 in the diametric direction and regulates the position of the backing member 12 .
  • the end 14 c of the flange portion 14 a prevents the backing member 12 from escaping the groove 11 .
  • a bottom portion 14 b of the sliding contact member 14 contacts a bottom portion 2 x of the converter cover 2 .
  • a frictional material 16 of a lock-up piston 15 constructing the lock-up clutch 5 slidingly contacts an opposite surface 14 e of the bottom surface 14 d, which contacts the bottom portion 2 x of the converter cover 2 at a top surface 2 y thereof (see FIG. 6D ).
  • the flange portion 14 a may be dimensioned so as to extend into the groove 11 such that the end 14 c of the flange portion 14 c of the sliding contact member 14 serves as the backing member.
  • a flange portion 2 i which protrudes outward in the diametric direction from an outer periphery 2 h, is formed in the converter cover 2 .
  • an annular abutting portion 2 j which is abutted to the impeller shell 1 during the friction stir welding operation, is formed.
  • a surface at an inner peripheral side of the abutting portion 2 j is a generally cylindrical abutting surface 2 k coaxial with the rotational axis of the torque converter.
  • a generally outer peripheral end in a diametric direction of the impeller shell 1 is a flange-like abutting portion 1 h abutted to the abutting portion 2 j of the converter cover 2 when the friction stir welding operation is performed.
  • An outer surface in a diametric direction of the abutting portion 1 h is a generally cylindrical abutting surface 1 i formed coaxially with an axis of the torque converter 100 .
  • the annular groove 11 b is formed in the flange portion 2 i of the converter cover 2 , wherein an outer portion in a diametric direction of the backing member 12 is inserted into the groove 11 b.
  • the bottom surface 11 a of the groove 11 b is disposed at a more outer peripheral side than the abutting surfaces 2 k and 1 i in a diametric direction of the torque converter 100 .
  • the abutting surfaces 2 k and 1 i are placed on the backing member 12 when the impeller shell 1 is fitted into converter cover 2 , and the backing member 12 is inserted into the groove 11 b.
  • the backing member 12 is divided into three or more parts so as to be insertable into the annular spacing portion 11 .
  • the surface of the backing member 12 at the bonding portion 8 side (see FIG. 6C ) is formed as the generally flat surface 12 a. Further, the plastic flow of the materials for the impeller shell 1 and the converter cover 2 is obstructed by the generally flat surface 12 a during the friction stir welding operation.
  • a surface of the backing member 12 at an opposite side is configured to be a generally flat surface 12 b. The generally flat surface 12 b contacts and is supported by the converter cover 2 .
  • a method of assembling the torque converter which is described above, is explained below.
  • the backing member 12 and the sliding contact member 14 are installed at the converter cover 2 in the order introduced.
  • the impeller shell 1 is then fitted into the converter cover 2 , as shown in FIG. 6A .
  • the peripheral rotation of the sliding contact member 14 between a bottom portion 2 x of the converter cover 2 and a bottom portion 14 b of the sliding contact member 14 is preferably regulated. It may also be desirable to provide an optional fitting portion for regulating an axial movement of the sliding contact member 14 .
  • the fitting portion may be formed such that a concave portion 17 is formed on the surface 2 y contacted to the sliding contact member 14 of the bottom portion 2 x of the converter cover 2 .
  • a convex portion 14 f that generally corresponds to the concave portion 17 is formed on the bottom surface 14 d of the sliding contact member 14 . The convex portion 14 f is fitted into the concave portion 17 .
  • the material of the converter cover 2 when the frictional material 16 of the lock-up piston 15 slidingly contacts the converter cover 2 , the material of the converter cover 2 must be an iron-based material, thereby increasing the weight of the converter cover 2 .
  • the iron-based sliding contact member 14 which comprises the sliding contact portion of the frictional material 16 , is formed as a separate member.
  • the material of the converter cover 2 may be a lighter material (i.e., aluminum-based material) to thereby reduce the entire weight of the assembly.
  • FIG. 7 shows the construction of a torque converter in accordance with a sixth embodiment of the present disclosure.
  • the backing member 20 is integrally formed from an iron-based material to serve as a sliding contact member.
  • the backing member 20 is integrally formed with the converter cover 2 via the cast-in operation when casting the converter cover 2 formed by an aluminum casting operation.
  • the impeller shell 1 is fitted into the converter cover 2 to which the backing member 20 is cast-in. Then, the impeller shell 1 and the converter cover 2 are bonded by the friction stir welding operation, similar to the previous embodiments.
  • the claimed invention may include other embodiments and modifications without deviating from the subject matter or scope of the present disclosure.
  • the present disclosure may be applied to a bonding structure for containers other than the torque converter case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A bonding structure for a container member is disclosed. The container member has an opening and a covering member for covering the opening. The container member and covering member are abutted with each other and bonded by a friction stir welding operation. The bonding structure for the container and covering members comprises a bonding portion and a backing member. The bonding portion of the container member and the covering member is formed by inserting a friction stir welding tool into an abutting portion of the container member and the covering member. The backing member is provided for obstructing a plastic flow of materials for the container member and the covering member when the friction stir welding operation is performed. The backing member is disposed adjacent to the bonding portion, at a side of the abutting portion that is opposite to an inserting side of the friction stir welding tool.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority from Japanese Patent Application Serial Nos. 2006-249650 filed Sep. 14, 2006 and 2007-141767 filed May 29, 2007, the disclosures of which, including their specifications, drawings and claims, are incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present disclosure relates to a bonding structure for containers and a method of bonding same.
BACKGROUND
An impeller shell and a converter cover of a conventional torque converter are typically assembled using an arc welding operation. However, when using such an operation, one problem that usually occurs is sputters that are generated during the operation. More specifically, the sputters may sneak through a gap of a fitting portion disposed between the impeller shell and the converter cover. Thus, the sputters may inadvertently penetrate into the torque converter and turn into metallic granular substances. As such, the metallic granular substances may become prevalent in the ATF (Automatic Transmission Fluid), thereby requiring a high-performance filter with a fine mesh to filter out same.
In one attempt to resolve the above problem, Japanese Laid-Open Patent Publication No. 2004-286105 discloses a method of assembling a torque converter using a friction stir welding operation. Specifically, the fitting portion of an impeller shell and a converter cover is faced toward a stir rod (tool) to implement the above operation, wherein the stir rod transitions along an axial direction of the torque converter. The stir rod is then inserted into the fitting portion to thereby bond them together without generating any sputters.
In the above method, the bonding portions of the impeller shell and the converter cover are formed in a planar shape. By doing so, the stress at the bonding portion caused by an inner pressure of the torque converter can be avoided. In this respect, a spacing portion for forming a planar surface is formed at a lower surface side of the bonding portion (see cavity 13 shown in FIG. 3 of Japanese Laid-Open Patent Publication No. 2004-286105).
However, when using the above method, a plastically flowing material may flow into the spacing portion during the friction stir welding operation. Further, a depression may occur at the bonding portion, thus deteriorating the overall bonding strength of the bonding portion.
SUMMARY
A bonding structure for a container member is disclosed. The container member has an opening and a covering member for covering the opening. The container member and covering member are abutted with each other and bonded by a friction stir welding operation. The bonding structure for the container and covering members comprises a bonding portion and a backing member. The bonding portion of the container member and the covering member is formed by inserting a friction stir welding tool into an abutting portion of the container member and the covering member. The backing member is provided for obstructing a plastic flow of materials for the container member and the covering member when the friction stir welding operation is performed. The backing member is disposed adjacent to the bonding portion, at a side of the abutting portion that is opposite to an inserting side of the friction stir welding tool. A method is also disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
The features of the present disclosure will become more apparent from the following description of the embodiments given in conjunction with the accompanying drawings.
FIG. 1 is a partial sectional view illustrating a main portion of a torque converter.
FIGS. 2A to 2D are partial sectional views illustrating a method of assembling a torque converter in accordance with a first embodiment of the present disclosure.
FIGS. 3A to 3D are partial sectional views illustrating a method of assembling a torque converter in accordance with a second embodiment of the present disclosure.
FIG. 4 is a partial sectional view illustrating a bonding structure for a torque converter case in accordance with a third embodiment of the present disclosure.
FIG. 5A is a partial sectional view illustrating a process of fixing a backing member to an impeller shell in accordance with a fourth embodiment of the present disclosure.
FIG. 5B is a partial sectional view illustrating a method of bonding a torque converter case in accordance with the fourth embodiment of the present disclosure.
FIGS. 6A to 6D are partial sectional views illustrating a method of assembling a torque converter in accordance with a fifth embodiment of the present disclosure.
FIG. 7 is a partial sectional view illustrating a method of assembling a torque converter in accordance with a sixth embodiment of the present disclosure.
FIG. 8A is a partial sectional view of a first comparative example.
FIG. 8B is a partial sectional view of a second comparative example.
FIG. 8C is a partial sectional view illustrating a problem associated with the second comparative example.
DETAILED DESCRIPTION
While the claims are not limited to the illustrated embodiments, an appreciation of various aspects of the disclosure is best gained through a discussion of various examples thereof. Referring now to the drawings, illustrative embodiments are shown in detail. Although the drawings represent the embodiments, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an innovative aspect of an embodiment. Further, the embodiments described herein are not intended to be exhaustive or otherwise limiting or restricting to the precise form and configuration shown in the drawings and disclosed in the following detailed description. Exemplary embodiments of the present disclosure are described in detail by referring to the drawings as follows.
FIG. 1 is a partial sectional view illustrating a main portion of a torque converter 100 constructed in accordance with a first embodiment of the present invention. As shown in FIG. 1, the torque converter 100 has a torque converter case 101 (a container). As described below, the torque converter case 101 is formed by abutting a converter cover 2 (a covering member) with an impeller shell 1 (a container member) and bonding an abutting surface using a friction stir welding (FSW) operation. In one embodiment, the converter cover 2 has a disk-like shape.
The torque converter case 101 supports a stator 3, a turbine runner 4, a lock-up clutch 5, etc. The impeller shell 1 has a curved cross-sectional shape, the end of which is opened to accommodate the turbine runner 4. By fitting the converter cover 2 covering an opening 1j into the opening end of the impeller shell 1, the impeller shell 1 and the converter cover 2 can be abutted with each other. By inserting a friction stir welding tool into the abutting portion of the impeller shell 1 and the converter cover 2, the impeller shell 1 and the converter cover 2 are friction stir welded using a bonding portion 8 formed at the abutting portion. A plurality of wings 6a is formed at an inner surface of the impeller shell 1. The wings 6a and the impeller shell 1 collectively comprise an impeller 6. Further, the impeller 6 and the turbine runner 4 are disposed opposite to each other.
A shoulder portion 1b is formed on an outer portion along a diametric direction of an outer surface, or outer periphery, 1a of the impeller shell 1. The shoulder portion 1b is subject to a load applied on the impeller shell 1 when the friction stir welding operation is performed. The shoulder portion 1b contacts a jig shown in FIG. 1 and is subjected to a pressure load from a stir rod (tool) 7 in the friction stir welding equipment. The shoulder portion 1b further supports the torque converter 100. A rib 1c may be formed between the shoulder portion 1b and the bonding portion 8 so as to ensure the axial strength and the rigidity of the impeller shell 1. Although the bonding portion 8 is formed over an entire periphery of the impeller shell 1 and the converter cover 2, the bonding portion 8 is preferably provided only at the major points of the shoulder portion 1b and the rib 1c. Aluminum alloy having a relatively low softening temperature is preferably used as a material for the impeller shell 1 and the converter cover 2. The softening temperature is a temperature wherein the material is softened by frictional heat during the friction stir welding operation. However, it will be appreciated that in addition to the aluminum alloy, other types of materials capable of being friction stir welded may be used to form the impeller shell 1 and the converter cover 2 (e.g., including, but not limited to, magnesium alloy, titanium, titanium alloy, copper, copper alloy, mild steel, etc.).
In the bonding structure for the torque converter case 101 of the present embodiment, an annular backing member 12 is provided as a bank member for obstructing the plastic flow of materials for the impeller shell 1 and the converter cover 2 during the friction stir welding operation. The backing member 12 is disposed along the bonding portion 8 at a side opposite to an inserting side of the stir rod 7. A material having a softening temperature higher than that of the material used for the impeller shell is used a material for the backing member. In one particular embodiment, an iron-based material having a softening temperature higher than that of an aluminum alloy is used as the material for the backing member. Further, the rotation speed and the pressing force (against a material to be bonded) of the stir rod 7 are set to predetermined values, wherein the frictional heat generated from friction with the impeller shell 1 and the converter cover 2 (materials to be bonded) does not exceed the softening temperature of the backing member 12. By doing so, the backing member 12 is not softened when the friction stir welding operation is performed. Accordingly, the plastic flow of the materials for the impeller shell 1 and the converter cover 2 can be effectively obstructed by the backing member 12.
First Embodiment
FIGS. 2A to 2D are partial sectional views illustrating a method of assembling the torque converter of a first embodiment. Specifically, FIG. 2A shows a process of fitting the converter cover 2 after installing the backing member 12 at the impeller shell 1. FIG. 2B shows a process of inserting a tool 7 into the impeller shell 1 and the converter cover 2. Further, FIG. 2C shows a process for the friction stir welding operation. FIG. 2D shows a state when the bonding operation is completed. Each stage will now be described in further detail.
As shown in FIG. 2A, a flange portion 1d is formed in the impeller shell 1. The flange portion 1d extends from an outer periphery 1a of the impeller shell 1 to an outside of a diametric direction. In the flange portion 1d, an annular abutting portion 1g, which is abutted to the converter case 2 during the friction stir welding operation, is extended toward an axial direction of the impeller shell 1. An inner peripheral surface of the abutting portion 1g is a generally cylindrical abutting portion 1e, which is coaxial with the rotation axis of the torque converter. On the other hand, an outer peripheral end in a diametric direction of the converter cover 2 is a flange-like abutting portion 2g, which is abutted to the abutting portion 1g of the impeller shell 1 during the friction stir welding operation. An outer surface in a diametric direction of the abutting portion 2g is a generally cylindrical abutting portion 2a formed coaxially with an axis of the torque converter 100. By fitting the converter cover 2 into an inner side of the abutting portion 1g of the impeller shell 1, the abutting surfaces 1e and 2a are abutted with each other in a diametric direction of the torque converter 100.
A generally annular groove 11b is formed in the flange portion 1d of the impeller shell 1. An outer side portion, which is in a diametric direction of the backing member 12, is inserted into the groove 11b. The groove 11b and a space, which is connected to the groove 11b between the impeller shell 1 and the converter cover 2, collectively constitute a spacing portion 11 for receiving the backing member 12. A bottom surface 11a of the groove 11b is disposed more at an outer periphery side than the abutting surfaces 1e and 2a in a diametric direction of the torque converter 100. The abutting surfaces 1e and 2a are placed on the backing member 12 when fitting the converter cover 2 into the impeller shell 1 while inserting the backing member 12 into the groove 11b.
The backing member 12 is divided into a plurality of parts so as to be insertable into the annular spacing portion 11. In one particular embodiment, the backing member 12 is divided into three or more parts. A surface of the backing member 12, which is at a side of the bonding portion 8 (see FIG. 2C), is configured to be a substantially flat surface 12a. The plastic flow of the materials for the impeller shell 1 and the converter cover 2 may be obstructed by the substantially flat surface 12a during the friction stir welding operation. A surface of the backing member 12 at an opposite side is configured to be a substantially flat surface 12b, which contacts and becomes supported by the impeller shell 1.
Further, an annular convex portion 2c, which extends in a direction generally parallel to the abutting surfaces 1e and 2a, is formed at a wall surface 2b of the converter cover 2. The wall surface 2b of the converter cover 2 is generally orthogonal to the abutting surfaces 1e and 2a and forms the spacing portion 11. The convex portion 2c inhibits the movement of the backing member 12 to an inner side in the diametric direction and prevents the backing member 12 from escaping the groove 11b.
A method of assembling the torque converter, which is constructed in accordance with the above, will now be explained with reference to FIGS. 2A to 2D.
First, in FIG. 2A, a divided backing member 12 is inserted into the groove 11b of the impeller shell 1. The converter cover 2 is then fitted into the impeller shell 1 from a rotational axis direction of the torque converter. The converter cover 2 is fitted into the impeller shell 1 to thereby effect the positioning of the backing member 12 by the convex portion 2c formed in the converter cover 2. Further, the abutting surfaces 1e and 2a are abutted with each other, wherein a tip end 7a of the stir rod 7 is pressed into the abutting surfaces 1e and 2a from the top.
In FIG. 2B, the stir rod 7 is pressed to the abutting portions 1g and 2g with a predetermined load while being rotated at a predetermined rotation speed. As such, the friction stir welding operation for bonding the abutting portions 1g and 2g is initiated. As shown in FIG. 1, the friction stir welding operation first loads the shoulder portion 1b of the impeller shell 1 (into which the converter cover 2 is fitted) on the jig 10 when the converter cover 2 is allowed to be an upper side. The friction stir welding operation is then performed by moving the stir rod 7 towards the abutting portions 1g and 2g from the top of the abutting portions 1g and 2g. A frictional heat is generated between the tip end 7a and the abutting portions 1g and 2g by contacting them together. The materials for the impeller shell 1 and the converter cover 2 are softened by frictional heat, for example. As shown in FIG. 2C, the tip end 7a of the stir rod 7 is pressed into the softened materials to a predetermined depth.
Next, when the stir rod 7 is inserted into the abutting portions 1g and 2g as shown in FIG. 2C, the materials for the softened impeller shell 1 and the converter cover 2 plastically flow along a periphery of the stir rod 7 due to a rotational force of the stir rod 7. The plastically flowing materials are then blended. When the stir rod 7 is moved along the abutting surfaces 1e and 2a while the stir rod 7 is inserted, a bonding portion 8 is formed at a rear portion of the moving direction, wherein the bonding portion 8 is a solid phase bonding area in which the materials are blended. The impeller shell 1 and the converter cover 2 are integrated by such a bonding portion 8. As shown in FIG. 2D, the bonding operation of the impeller shell 1 and the converter cover 2 is completed by moving the stir rod 7 over their entire periphery and drawing the stir rod 7 from the abutting portions 1g and 2g.
As shown in FIG. 2C, a depth of the friction stir welding operation is set by contacting the shoulder portion 7b of the stir rod 7 to an end face P of an outer side of the abutting portions 1g and 2g. A distance from a tip face of the tip end 7a to the shoulder portion 7b is set to be a bonding depth. The bonding depth is set such that the bonding portion 8, which is formed by the friction stir welding operation, reaches the backing member 12. Since the backing member 12 is disposed at a side opposite to the inserting side of the stir rod 7, the plastically flowing materials are obstructed by the generally flat surface 12a of the backing member 12 when the friction stir welding operation is performed. By doing so, when the bonding between the impeller shell 1 and the converter cover 2 is maintained as an abutting bonding, it is possible to prevent the flow of plastically flowing materials and the deterioration of bonding quality of the bonding portion 8. Further, since the plastic flow of the materials for the impeller shell 1 and the converter cover 2 is obstructed by the generally flat surface 12a of the backing member 12, a surface at a backing member 12 side in the bonding portion 8 becomes a generally flat surface that is adjacent to the backing member 12.
FIGS. 8A-8C are each a partial sectional view illustrating a bonding state of the friction stir welding operation. Specifically, FIG. 8A is a partial sectional view illustrating a first comparative example, whereas FIG. 8B is a partial sectional view illustrating a second comparative example. Further, FIG. 8C is a partial sectional view illustrating a problem associated with the second comparative example.
In the first comparative example shown in FIG. 8A, a backing member is not used, unlike the first embodiment. Further, an impeller shell 71 and a converter cover 72 are bonded by a bonding portion 78. The bonding portion 78 is cut off when abutting the surface of the impeller shell 71 and the converter cover 72. In such a case, the cut-off portion becomes a stress concentration region C in the bonding portion 78 due to an application of pressure when using the torque converter.
On the contrary, since the plastic flow of the materials for the impeller shell 1 and the converter cover 2 is obstructed by the generally flat surface 12a of the backing member 12 in the first embodiment, the bonding portion 8 is not cut off when abutting the surfaces between the workpieces as in the first comparative example. Therefore, it is possible to eliminate the stress concentration region C in the bonding portion 78 due to an application of pressure within the case when using the torque converter. Further, as shown in FIG. 8B, a spacing portion O for forming a planar surface is formed at a lower side of a bonding portion 88 to avoid the stress concentration in the bonding portion 88 of an impeller shell 81 and a converter cover 82. In such a case, the plastically flowing materials are likely to flow in the spacing portion O, as shown in FIG. 8C. On the contrary, since a back surface side of the bonding portion 8 is blocked by the backing member 12 in the first embodiment, the flow of the materials shown in FIG. 8C can be effectively prevented.
Further, in the first embodiment, the generally flat surface 12b at a side opposite to the bonding portion 8 of the backing member 12 is supported by the impeller shell 1. To this end, even when the pressing force is applied to the abutting portions 1g and 2g by the stir rod 7, the abutting portions 1g and 2g are supported by the impeller shell 1 via the backing member 12. Therefore, even in a container such as the torque converter case 101, the impeller shell 1 is supported so as to effectively carry out the friction stir welding operation by using the backing member 12.
Further, in the first embodiment, the impeller shell 1 has the groove 11b into which the backing member 12 is inserted. Also, the converter cover 2 has the generally convex shaped portion 2c for inhibiting the backing member 12 from escaping the groove 11b. To this end, a displacement of the backing member 12 is effectively prevented by the groove 11b and the convex portion 2c when the friction stir welding operation is conducted. In addition, the plastic flow of the materials can be effectively prevented by the backing member 12.
Second Embodiment
FIGS. 3A to 3D are partial sectional views illustrating a method of assembling a torque converter in accordance with a second embodiment of the present disclosure. As described above, the convex portion 2c is formed in the converter cover 2 of the first embodiment. However, in the second embodiment, a convex portion 2d that is extended further than the convex portion 2c is formed instead of the convex portion 2c. A concave portion 13 (into which the tip end of the convex portion 2d is fitted) is formed in the impeller shell 1. Similar to the convex portion 2c of the first embodiment, the convex portion 2d regulates the position of the backing member 12. The height of the convex portion 2d is set to be at least slightly greater than the thickness of the backing member 12.
As shown in FIG. 3A, after inserting the divided backing member 12 into the groove 11b of the impeller shell 1, the converter cover 2 is fitted into the impeller shell 1 as in the first embodiment. At this time, as shown in FIG. 3B, the tip end of the convex portion 2d is fitted into the concave portion 13. By doing so, a spacing portion 11 for receiving the backing member 12 is formed from a space for receiving the turbine runner 4, etc., by the convex portion 2d.
Thereafter, as shown in FIGS. 3B to 3D, the friction stir welding operation is performed as in the first preferred embodiment. Further, the bonding operation for the impeller shell 1 and the converter cover 2 is also performed.
In the second embodiment, the convex portion 2d and the concave portion 13 are formed to fit with each other when abutting the impeller shell 1 and the converter cover 2. Therefore, even when an inner pressure of the torque converter increases, it is possible to prevent the inner pressure from being applied to the bonding portion 8 due to the fit between the convex portion 2d and concave portion 13.
Third Embodiment
FIG. 4 is a partial sectional view illustrating a bonding structure for the torque converter case in accordance with a third embodiment of the present disclosure. This embodiment differs from the previous embodiments in terms of the construction of the torque converter. Specifically, the backing member 12 is formed as a separate member in the previous embodiments. However, in the third embodiment, the backing member 18 is integrally formed with the impeller shell 1 via a cast-in operation when casting the impeller shell 1. In this embodiment, the backing member 18 is made from an iron-based material, while the impeller shell 1 is formed by an aluminum casting operation.
The converter cover 2 is fit into the impeller shell 1 in which the backing member 12 is cast-in. Further, the impeller shell 1 and the converter cover 2 are bonded by the friction stir welding operation as in the previous preferred embodiments.
Fourth Embodiment
FIGS. 5A and 5B are partial sectional views illustrating a bonding structure for the torque converter case in accordance with a fourth embodiment of the present disclosure. Specifically, FIG. 5A is a partial sectional view illustrating a method of forming the impeller shell 1 in the bonding structure, whereas FIG. 5B is a partial sectional view illustrating a method of bonding.
In the fourth embodiment shown in FIGS. 5A and 5B, the backing member 19 (as a separate member) is fixed to the impeller shell 1 by a plastic forming operation. Further, in this embodiment, the shape of the flange portion 1d of the impeller shell 1 is configured such that the backing member 19 (which in the embodiment shown, has a generally annular shape) may be installed from the axial direction. The flange portion 1d is deformed to cover the backing member 19 by the plastic working of forging so that the backing member 19 is fixed and an abutting portion 1g is formed. In the present embodiment, it is not necessary to divide the backing member 19, unlike the first embodiment.
Similarly, in the third and fourth embodiments, it is also not necessary to divide the backing members 18 and 19 as in the first embodiment. Further, it is not necessary to provide any construction for regulating the movement of the backing member.
Fifth Embodiment
FIGS. 6A to 6D are partial sectional views illustrating a method of assembling a torque converter in accordance with a fifth embodiment of the present disclosure. In the first and second embodiments, the convex portions 2c and 2d are formed in the converter cover 2 so as to perform the positioning of the backing member 12. However, in the fifth embodiment, a component of the lock-up clutch 5 is used to performing the positioning of the backing member 12.
In the fifth embodiment of the present disclosure, the converter cover 2 of the torque converter has a flanged hat shape. Further, a hat-shaped sliding contact member 14 is installed along an inner side surface of the converter cover 2. One end 14c of a flange portion 14a, which is an outer portion in the diametric direction of the sliding contact member 14, faces an inner side surface of the backing member 12 in the diametric direction and regulates the position of the backing member 12. In other words, the end 14c of the flange portion 14a prevents the backing member 12 from escaping the groove 11. A bottom portion 14b of the sliding contact member 14 contacts a bottom portion 2x of the converter cover 2. A frictional material 16 of a lock-up piston 15 constructing the lock-up clutch 5 slidingly contacts an opposite surface 14e of the bottom surface 14d, which contacts the bottom portion 2x of the converter cover 2 at a top surface 2y thereof (see FIG. 6D).
In an alternative embodiment, the flange portion 14a may be dimensioned so as to extend into the groove 11 such that the end 14c of the flange portion 14c of the sliding contact member 14 serves as the backing member.
As shown in FIG. 6A, a flange portion 2i, which protrudes outward in the diametric direction from an outer periphery 2h, is formed in the converter cover 2. In the flange portion 2i, an annular abutting portion 2j, which is abutted to the impeller shell 1 during the friction stir welding operation, is formed. Further, a surface at an inner peripheral side of the abutting portion 2j is a generally cylindrical abutting surface 2k coaxial with the rotational axis of the torque converter. Also, a generally outer peripheral end in a diametric direction of the impeller shell 1 is a flange-like abutting portion 1h abutted to the abutting portion 2j of the converter cover 2 when the friction stir welding operation is performed. An outer surface in a diametric direction of the abutting portion 1h is a generally cylindrical abutting surface 1i formed coaxially with an axis of the torque converter 100. By fitting the impeller shell 1 into the abutting portion 2j of the converter cover 2, the abutting surfaces 2k and 1i are abutted with each other in a diametric direction of the torque converter 100.
The annular groove 11b is formed in the flange portion 2i of the converter cover 2, wherein an outer portion in a diametric direction of the backing member 12 is inserted into the groove 11b. The groove 11b and a space, which is connected to the groove 11b between the impeller shell 1 and the converter cover 2, comprise the spacing portion 11 for receiving and accommodating the backing member 12. The bottom surface 11a of the groove 11b is disposed at a more outer peripheral side than the abutting surfaces 2k and 1i in a diametric direction of the torque converter 100. The abutting surfaces 2k and 1i are placed on the backing member 12 when the impeller shell 1 is fitted into converter cover 2, and the backing member 12 is inserted into the groove 11b.
The backing member 12 is divided into three or more parts so as to be insertable into the annular spacing portion 11. The surface of the backing member 12 at the bonding portion 8 side (see FIG. 6C) is formed as the generally flat surface 12a. Further, the plastic flow of the materials for the impeller shell 1 and the converter cover 2 is obstructed by the generally flat surface 12a during the friction stir welding operation. A surface of the backing member 12 at an opposite side is configured to be a generally flat surface 12b. The generally flat surface 12b contacts and is supported by the converter cover 2.
A method of assembling the torque converter, which is described above, is explained below. First, the backing member 12 and the sliding contact member 14 are installed at the converter cover 2 in the order introduced. The impeller shell 1 is then fitted into the converter cover 2, as shown in FIG. 6A.
As shown in FIGS. 6B and 6C, the friction stir welding operation of the abutting surfaces 1i and 2k is thereafter performed. Then, as shown in FIG. 6D, the frictional material 16 of the lock-up piston 15 slidingly contacts the bottom portion 14b of the sliding contact 14.
Further, the peripheral rotation of the sliding contact member 14 between a bottom portion 2x of the converter cover 2 and a bottom portion 14b of the sliding contact member 14 is preferably regulated. It may also be desirable to provide an optional fitting portion for regulating an axial movement of the sliding contact member 14. The fitting portion may be formed such that a concave portion 17 is formed on the surface 2y contacted to the sliding contact member 14 of the bottom portion 2x of the converter cover 2. Also, a convex portion 14f that generally corresponds to the concave portion 17 is formed on the bottom surface 14d of the sliding contact member 14. The convex portion 14f is fitted into the concave portion 17.
Generally, when the frictional material 16 of the lock-up piston 15 slidingly contacts the converter cover 2, the material of the converter cover 2 must be an iron-based material, thereby increasing the weight of the converter cover 2. However, in the present embodiment, the iron-based sliding contact member 14, which comprises the sliding contact portion of the frictional material 16, is formed as a separate member. Thus, the material of the converter cover 2 may be a lighter material (i.e., aluminum-based material) to thereby reduce the entire weight of the assembly.
Sixth Embodiment
FIG. 7 shows the construction of a torque converter in accordance with a sixth embodiment of the present disclosure. In the sixth embodiment, the backing member 20 is integrally formed from an iron-based material to serve as a sliding contact member. The backing member 20 is integrally formed with the converter cover 2 via the cast-in operation when casting the converter cover 2 formed by an aluminum casting operation.
The impeller shell 1 is fitted into the converter cover 2 to which the backing member 20 is cast-in. Then, the impeller shell 1 and the converter cover 2 are bonded by the friction stir welding operation, similar to the previous embodiments.
While the preferred embodiments of the present disclosure are described above, the claimed invention may include other embodiments and modifications without deviating from the subject matter or scope of the present disclosure. For example, the present disclosure may be applied to a bonding structure for containers other than the torque converter case.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be apparent to those of skill in the art upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.

Claims (21)

1. A bonding structure for a container including a container member having an opening and a covering member for covering the opening of the container member, the bonding structure comprising:
a bonding portion of the container member and the covering member formed by inserting a friction stir welding tool into an abutting portion of the container member and the covering member and performing a friction stir welding operation; and
a backing member that is disposed within a spacing portion that is defined between and enclosed by the bonding portion, the container member and the covering member, wherein the backing member includes a first surface and an opposing second surface, the first surface is disposed adjacent to the bonding portion, at a side of the abutting portion that is opposite to an inserting side of the friction stir welding tool to obstruct a plastic flow of materials of the container member and the covering member when the friction stir welding operation is performed, and the opposing second surface is in contact with a flange portion of one of the container member and the covering member in the spacing portion.
2. The bonding structure for the container of claim 1, wherein the backing member is substantially rectangular, such that the first surface and the second surface are generally flat, the spacing portion is shaped complementary to the backing member, and wherein the plastic flow of the materials is obstructed by the first surface of the backing member.
3. The bonding structure for the container of claim 2, wherein the bonding portion includes a first substantially planar wall surface of the container member and a second substantially planar wall surface of the cover member, wherein the first substantially planar wall surface and the second substantially planar wall surface are opposite to the inserting side of the friction stir welding tool, are substantially coplanar with respect to each other, and are both in engagement with the first surface of the backing member.
4. The bonding structure for the container of claim 1, wherein the container member further comprises a groove into which the backing member is inserted, the groove formed by a third substantially planar wall surface of the flange portion and a first substantially planar wall surface of the abutting portion that is parallel to and spaced from the third substantially planar wall surface, and wherein the covering member has a generally convex portion for preventing the backing member from escaping the groove, the generally convex portion spaced apart from the abutting portion and extending toward the flange portion.
5. The bonding structure for the container of claim 4, wherein the backing member is constructed of a material that has a softening temperature that is higher than a softening temperature of one or more materials from which the container member and the covering member are constructed.
6. A bonding structure for a torque converter case including an impeller shell having an opening and a converter cover for covering the opening of the impeller shell, the bonding structure comprising:
a bonding portion of the impeller shell and the converter cover formed by inserting a friction stir welding tool into an abutting portion of the impeller shell and the converter cover and performing a first stir welding operation; and
a backing member that is disposed within a spacing portion that is defined between and enclosed by the bonding portion, the impeller shell and the converter cover, wherein the backing member includes a first surface and an opposing second surface, the first surface is in contact with the bonding portion, at a side of the abutting portion that is at a side opposite to an inserting side of the friction stir welding tool to obstruct a plastic flow of materials of the container member and the covering member when the friction stir welding operation is performed, and the opposing second surface is in contact with a flange portion of one of the impeller shell and the converter cover in the spacing portion.
7. The bonding structure for the torque converter case of claim 6, wherein the first surface is a generally flat surface, and wherein the plastic flow of the materials is obstructed by the generally flat surface.
8. The bonding structure for the torque converter case of claim 7, wherein the second surface of the backing member is supported by the impeller shell.
9. The bonding structure for the torque converter case of claim 7, wherein the impeller shell has a groove into which the backing member is inserted, the groove formed by the flange portion and the abutting portion, and wherein the converter cover has a generally convex portion for preventing the backing member from escaping the groove, the generally convex portion spaced apart from the abutting portion and extending toward the flange portion.
10. The bonding structure for the torque converter case of claim 9, wherein the backing member has a generally annular shape along the bonding portion and an outer portion in a diametric direction of the generally annular shape is inserted into the groove of the impeller shell, wherein the convex portion of the converter cover has a generally annular shape adjacent and inboard of the backing member, and wherein the impeller shell has a generally concave portion into which the convex portion is fitted such that an outer portion in a diametric direction of the generally annular shape faces the convex portion of the converter cover.
11. The bonding structure for the torque converter case of claim 9, wherein the torque converter case receives a lock-up clutch and a sliding contact member is mounted on the impeller shell, wherein a frictional material mounted to the lock-up clutch slidingly contacts the sliding contact member, and wherein an outer portion in a diametric direction of the sliding contact member prevents the backing member from escaping the groove.
12. The bonding structure for the torque converter case of claim 11, wherein the sliding contact member further comprises at least one generally convex portion and the converter cover comprises at least one generally concave portion, wherein the convex portion is fitted into the convex portion to secure the sliding contact member to the converter cover.
13. The bonding structure for the torque converter case of claim 8, wherein the torque converter case receives a lock-up clutch and a sliding contact member is mounted on the impeller shell, wherein a frictional material mounted to the lock-up clutch slidingly contacts the sliding contact member, and wherein an outer portion of the sliding contact member in a diametric direction of the sliding contact member serves as the backing member.
14. The bonding structure for the torque converter case of claim 8, wherein the impeller shell is formed by a casting operation, and wherein the backing member is integrally formed by a cast-in operation with the impeller shell.
15. The bonding structure for the torque converter case of claim 8, wherein a bonding portion of the impeller shell and the converter cover is molded by forging, and wherein the backing member is fixed to the impeller shell at the time of the forging.
16. The bonding structure of the torque converter case of claim 8, wherein the backing member is constructed of a material that has a softening temperature that is higher than a softening temperature of one or more materials from which the impeller shell and the converter cover are constructed.
17. A method of bonding a container including a container member having an opening and a covering member for covering the opening of the container member, the method comprising:
abutting a portion of the container member and the covering member with each other to define an abutted portion and a spacing portion that is defined between the container member and the covering member;
installing a backing member within the spacing portion that is defined between the container member and the covering member, the backing member having a first surface and a second surface opposite the first surface, wherein a first surface of the backing member is disposed adjacent to the abutted portion at a side opposite of the abutted portion to an inserting side of a friction stir welding tool, and the second surface of the backing member is disposed adjacent to a flange portion of one of the container member and the covering member; and
inserting the tool into the abutting portion of the container member and the covering member while rotating the tool and performing a friction stir welding operation to form a bonded portion, the backing member obstructing a plastic flow of materials of the container member and the covering member when the friction stir welding operation is performed wherein the backing member is enclosed within the spacing portion defined by the bonding portion, the container member and the covering member.
18. The method according to claim 17, wherein the flange portion is formed in the container, an end of the flange portion comprising the portion of the container member defining the abutted portion with the portion of the covering member.
19. The method according to claim 18, wherein installing the backing member comprises fixing the second surface of the backing member to the flange portion by a plastic forming operation; and wherein abutting the portion of the container member and the covering member with each other comprises:
deforming the edge of the flange portion to cover an outer peripheral edge of the backing member and a portion of the first surface of the backing member; and
placing the cover member to cover the opening of the covering member such that an outer peripheral edge of the covering member abuts the edge of the flange portion to define the abutted portion.
20. The method according to claim 17, wherein installing the backing member comprises integrally forming the backing member into the flange in a cast-in operation, the backing member comprising a different material from the one of the container member and the covering member including the flange.
21. The method according to claim 17, wherein the container member comprises an impeller shell and the covering member is a converter cover, the impeller shell and the converter cover forming a portion of a torque converter case, the method further comprising:
mounting the sliding contact member on an internal surface of the impeller shell, wherein an outer peripheral edge of the sliding contact member is sandwiched between the impeller shell and the converter cover facing the backing member.
US13/506,237 2006-09-14 2012-04-05 Bonding structures for containers and method of bonding same Expired - Fee Related USRE43846E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/506,237 USRE43846E1 (en) 2006-09-14 2012-04-05 Bonding structures for containers and method of bonding same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006249650 2006-09-14
JP2006-249650 2006-09-14
JP2007141767A JP5003287B2 (en) 2006-09-14 2007-05-29 Container joint structure, torque converter case joint structure, and container joint method
JP2007-141767 2007-05-29
US11/900,747 US8052031B2 (en) 2006-09-14 2007-09-13 Bonding structures for containers and method of bonding same
US13/506,237 USRE43846E1 (en) 2006-09-14 2012-04-05 Bonding structures for containers and method of bonding same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/900,747 Reissue US8052031B2 (en) 2006-09-14 2007-09-13 Bonding structures for containers and method of bonding same

Publications (1)

Publication Number Publication Date
USRE43846E1 true USRE43846E1 (en) 2012-12-11

Family

ID=38887805

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/900,747 Ceased US8052031B2 (en) 2006-09-14 2007-09-13 Bonding structures for containers and method of bonding same
US13/506,237 Expired - Fee Related USRE43846E1 (en) 2006-09-14 2012-04-05 Bonding structures for containers and method of bonding same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/900,747 Ceased US8052031B2 (en) 2006-09-14 2007-09-13 Bonding structures for containers and method of bonding same

Country Status (5)

Country Link
US (2) US8052031B2 (en)
EP (1) EP1900468B1 (en)
JP (1) JP5003287B2 (en)
KR (1) KR100925581B1 (en)
CN (1) CN101153652B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8561877B2 (en) * 2011-10-27 2013-10-22 GM Global Technology Operations LLC Structural integrity welded assembly

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508042A2 (en) * 2009-03-24 2010-10-15 Alutech Gmbh WORKSHOP UNIT WITH A TEMPERATURE-SENSITIVE VEHICLE COMPOUND
DE102011109702A1 (en) * 2011-08-06 2013-02-07 Daimler Ag Torque converter device for a motor vehicle
DE102012023156A1 (en) 2012-11-28 2014-05-28 Daimler Ag Drive train device for a motor vehicle
JP6207635B2 (en) 2013-02-22 2017-10-04 マグナ パワートレイン ゲーエムベーハー ウント コ カーゲー Gear box housing and manufacturing method of gear box housing
JP5840161B2 (en) * 2013-03-04 2016-01-06 本田技研工業株式会社 Dissimilar material joining method
DE102013019876A1 (en) 2013-11-28 2015-05-28 Daimler Ag Drive train device for a motor vehicle
CN104389977B (en) * 2014-09-22 2019-08-09 重庆红宇精密工业有限责任公司 A kind of band prevents the fluid torque-converter of welding pollution structure
JP6111296B2 (en) * 2015-08-06 2017-04-05 本田技研工業株式会社 Transmission with dissimilar metal joint shaft
CN108291622A (en) * 2015-12-18 2018-07-17 舍弗勒技术股份两合公司 Reduced volume torque converter with inverted cover closure
US10759009B2 (en) * 2017-09-11 2020-09-01 Hitachi Automotive Systems Americas, Inc. Friction stir welding flash and burr control
JP6647272B2 (en) * 2017-12-28 2020-02-14 本田技研工業株式会社 Member joining structure of power transmission device
DE102019210828A1 (en) * 2019-07-22 2021-01-28 Audi Ag Friction stir welding a workpiece

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160097A (en) 1996-09-27 1998-06-16 Boeing North American Inc Tank container and formation thereof
JP2001225179A (en) 2000-02-15 2001-08-21 Hitachi Ltd Welding structure
JP2001237621A (en) 2000-02-21 2001-08-31 Sumitomo Light Metal Ind Ltd Waveguide and its producing method
JP2002224861A (en) 2001-01-31 2002-08-13 Kobe Steel Ltd Joined vessel manufacturing method
US6676008B1 (en) * 2002-04-30 2004-01-13 Edison Welding Institute Friction stir welding of corner configurations
JP2004160528A (en) 2002-11-15 2004-06-10 Shin Meiwa Ind Co Ltd Friction stir welding method
US20040144832A1 (en) * 2003-01-14 2004-07-29 Honda Motor Co., Ltd Method of and apparatus for friction stir welding
JP2004286105A (en) 2003-03-20 2004-10-14 Nissan Motor Co Ltd Torque converter and its assembling method
JP2004293785A (en) 2003-03-13 2004-10-21 Showa Denko Kk Pressure vessel, fuel tank, vehicle, and manufacturing method for pressure vessel and fuel tank

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076647A (en) * 1993-02-01 1993-09-29 西安石油学院 A kind of copper-stainless-steel thin-wall pipe friction welding apparatus and method
DE4345399C2 (en) * 1993-12-24 1999-02-18 Daimler Benz Ag Frictionally welding cylindrical joint parts
US5431325A (en) * 1993-12-27 1995-07-11 Ford Motor Company Method and apparatus for producing hermetic torque converter seam
CN2228389Y (en) * 1995-05-10 1996-06-05 西安石油学院 Friction welding device for copper-stainless steel pipe
CN2376089Y (en) * 1999-05-07 2000-04-26 富士康(昆山)电脑接插件有限公司 Electric connector
JP4232339B2 (en) * 2001-02-06 2009-03-04 日立電線株式会社 Butt welding method of metal by friction stir welding
JP2004332814A (en) * 2003-05-07 2004-11-25 Aisin Aw Industries Co Ltd Impeller assembly for torque converter, and manufacturing method therefor
FR2867249B1 (en) * 2004-03-02 2006-04-28 Valeo Embrayages HYDROKINETIC COUPLING APPARATUS, IN PARTICULAR FOR A MOTOR VEHICLE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160097A (en) 1996-09-27 1998-06-16 Boeing North American Inc Tank container and formation thereof
JP2001225179A (en) 2000-02-15 2001-08-21 Hitachi Ltd Welding structure
JP2001237621A (en) 2000-02-21 2001-08-31 Sumitomo Light Metal Ind Ltd Waveguide and its producing method
JP2002224861A (en) 2001-01-31 2002-08-13 Kobe Steel Ltd Joined vessel manufacturing method
US6676008B1 (en) * 2002-04-30 2004-01-13 Edison Welding Institute Friction stir welding of corner configurations
JP2004160528A (en) 2002-11-15 2004-06-10 Shin Meiwa Ind Co Ltd Friction stir welding method
US20040144832A1 (en) * 2003-01-14 2004-07-29 Honda Motor Co., Ltd Method of and apparatus for friction stir welding
JP2004293785A (en) 2003-03-13 2004-10-21 Showa Denko Kk Pressure vessel, fuel tank, vehicle, and manufacturing method for pressure vessel and fuel tank
JP2004286105A (en) 2003-03-20 2004-10-14 Nissan Motor Co Ltd Torque converter and its assembling method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP 10-160097, published Jun. 16, 1998. *
Machine Translation of JP 2001-237621, published Aug. 31, 2001. *
Machine Translation of JP 2001-255179, published Aug. 21, 2001. *
Machine Translation of JP 2004-160528, published Jun. 10, 2004. *
Machine translation of JP 2004286105 which published Oct. 14, 2004. *
Machine Translation of JP 2004-286105, published Oct. 14, 2004. *
Machine Translation of JP 2004-293785, published Oct. 21, 2004. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8561877B2 (en) * 2011-10-27 2013-10-22 GM Global Technology Operations LLC Structural integrity welded assembly

Also Published As

Publication number Publication date
JP5003287B2 (en) 2012-08-15
US20080067216A1 (en) 2008-03-20
US8052031B2 (en) 2011-11-08
CN101153652B (en) 2010-06-02
KR100925581B1 (en) 2009-11-06
EP1900468A3 (en) 2011-07-20
EP1900468B1 (en) 2013-09-11
EP1900468A2 (en) 2008-03-19
CN101153652A (en) 2008-04-02
JP2008095949A (en) 2008-04-24
KR20080025008A (en) 2008-03-19

Similar Documents

Publication Publication Date Title
USRE43846E1 (en) Bonding structures for containers and method of bonding same
US20100314075A1 (en) Cooling plate and manufacturing method therefor
KR101148516B1 (en) Thrust washer and method of manufacture
JP4725348B2 (en) Torque fluctuation absorber
CN110612404B (en) Disk rotor, device for manufacturing disk rotor, roller, and method for manufacturing disk rotor
KR20150110655A (en) Gearbox housing and method for producing a gearbox housing
US7500546B2 (en) Brake lining cup attachment method for reduced wear
JP3085627B2 (en) Synchronizer ring
US20050016307A1 (en) Multi-part synchronizing ring of a synchronization device
JP4413677B2 (en) Point joining method for dissimilar metal parts
US20160368082A1 (en) Friction weld
JP6790747B2 (en) Torque converter with lockup clutch and its manufacturing method
US7150148B2 (en) Thrust receiving structure of torque converter cover
US8327987B2 (en) Torque converter with lock-up clutch having a split piston
US11788612B1 (en) Torque converter cover to pilot assembly
KR20220080964A (en) Sputtering target with upper-side reinforcement region and method for manufacturing the same sputtering target
FR2907863A1 (en) Dry clutch friction disk for motor vehicle, has rivet maintaining web, intercalated part and friction lining together, and including head supported on counterboring face of wide part of lining, where part is arranged between web and lining
JP5109699B2 (en) Torque converter case and joining method of torque converter case
JP5409314B2 (en) Axle housing final reduction gear mounting structure
JP2002044914A (en) Disc-drive motor, motor rotor and manufacturing method for the motor rotor
JP2005308116A (en) Vehicle member fastening structure
US20020139636A1 (en) Clutch driven disc friction material mounting
KR20220080955A (en) Sputtering target with reinforcement region and method for manufacturing the same sputtering target
JP2005009607A (en) Torque converter
FR3070455A1 (en) COVER FLANGE FOR CLUTCH MECHANISM, COVER OBTAINED FROM THE SAME, AND METHOD OF MANUFACTURING THE COVER

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY