USRE42633E1 - Spool valve for fluid control - Google Patents

Spool valve for fluid control Download PDF

Info

Publication number
USRE42633E1
USRE42633E1 US10/941,012 US94101204A USRE42633E US RE42633 E1 USRE42633 E1 US RE42633E1 US 94101204 A US94101204 A US 94101204A US RE42633 E USRE42633 E US RE42633E
Authority
US
United States
Prior art keywords
spool
fluid
stem
stem portion
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/941,012
Inventor
Vernon E. Gleasman
Warren R. Alexander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torvec Inc
Original Assignee
Torvec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torvec Inc filed Critical Torvec Inc
Priority to US10/941,012 priority Critical patent/USRE42633E1/en
Assigned to TORVEC, INC. reassignment TORVEC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALEXANDER, WARREN R, GLEASMAN, VERNON
Application granted granted Critical
Publication of USRE42633E1 publication Critical patent/USRE42633E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/141Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52475Mechanical actuating means with crank, eccentric, or cam with a cam comprising a sliding valve
    • F16K31/52483Mechanical actuating means with crank, eccentric, or cam with a cam comprising a sliding valve comprising a multiple-way sliding valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer
    • Y10T137/86445Plural, sequential, valve actuations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • Y10T137/86791Piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • Y10T137/86791Piston
    • Y10T137/86799With internal flow passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86879Reciprocating valve unit

Definitions

  • This invention relates to valving used to control the flow of fluids, e.g., radial valves incorporated as an integral part of hydraulic pump/motors; and, more particularly, it relates to apparatus for controlling the operation of spools used in such valves and to the shape of the spools themselves.
  • Valving using reciprocating spools to control the flow of fluids is well known in the hydraulics art.
  • spool valves arranged radially, are used as part of hydraulic pump/motor apparatus (e.g., see U.S. Pat. No. 5,513,553 entitled “Hydraulic Machine with Gear-Mounted Swash-Plate”).
  • each spool reciprocates axially within a cylinder formed in the valve body.
  • each cylinder is provided with a pair of ports defining first and second fluid passages
  • the spool has a pair of port-blocking portions separated by a stem so that, when the spool is moved axially to a first position, the first fluid passage is blocked while fluids are permitted to move past the stem and through the second fluid passage.
  • the second fluid passage is blocked while fluids are permitted to move past the stem and through the first fluid passage.
  • each spool portion of the valve acts as a cam follower that rides on a revolving cam surface, and each spool is spring biased toward the cam surface so rotation of the cam controls the successive and continuous axial movement of the respective spools in each valve set.
  • the response time and general operation of such spring-biased spool systems are often affected by dirt and counter-pressure problems.
  • the individual spools of such known valving often rotate (albeit, very slowly) about their central axes when being operated within their respective cylinders. Therefore, the narrowed stem section of each spool has preferably been designed with a cylindrical shape (see FIGS. 3 and 4 ) so that, should such spool rotation occur, changes in the orientation of its stem section do not result in any change in the shape of the fluid passageway formed about the cylindrical stem section when the valve is opened.
  • Valve design is of particular importance when the valving is used to control the flow of hydraulic fluids under high speed and high pressure conditions, e.g., in automotive pump/motors which are capable of developing high horsepower and must be able to achieve speeds as high as 4000 rpm and to withstand pressures as high as 4000 p.s.i. Consistent fluid flow under such conditions is critical.
  • Valving according to the invention overcomes the response time problems of spring-biased valving and not only assures consistency of valve timing but also significantly increases the efficiency of fluid flow past the stem portion of each spool.
  • each spool reciprocates axially within a cavity, preferably a cylinder, formed in the valve body.
  • the cylinder may include ports forming only a single fluid passage.
  • each cylinder is provided with first and second ports defining first and second fluid passages.
  • the spool has a pair of port-blocking portions separated by a stem so that, when the spool is moved axially to a first position, the first fluid passage is blocked while fluids are permitted to move past the stem and through the second fluid passage; and, when the spool is moved axially to a second position, the second fluid passage is blocked while fluids are permitted to move past the stem and through the first fluid passage.
  • a plurality of individual valves are arranged radially about the drive shaft of a hydraulic pump/motor.
  • the spool within each valve includes a tang that extends from the bottom of the spool.
  • the tang is provided with a hole through which a cam-following roller is received and supported in a predetermined orientation that permits rolling engagement of the roller with the parallel surfaces of the cam track.
  • the parallel surfaces of the cam track are divided into two mirror-image portions that provide a balanced positive drive for controlling the position of the cam-following rollers.
  • the combination of the cam track, roller, and tang controls the timing of the reciprocation of each spool and, simultaneously, also serves as an orientation mechanism that prevents rotation of the spool about its central axial axis within its respective cylinder.
  • each spool defines a passageway preferably formed by either (a) a single, central support which, when viewed in a cross section taken perpendicular to the central axis of the spool, has a non-circular curved surface shaped hydrodynamically, or (b) only a pair of sidewalls.
  • the interior surfaces of the sidewalls are also shaped hydrodynamically.
  • the respective hydrodynamic shapes of the central supports and the sidewalls are designed to facilitate the high-speed/high-pressure flow of fluids through the fluid passages controlled by the valve. That is, these hydrodynamic surfaces are shaped to facilitate both (i) the flow of fluids through the spool and (ii) the direction of fluid flow to and from the fluid passageways defined by the respective cylinder ports when said stem portion is aligned therewith.
  • the invention's orientation mechanism prevents any axial rotation of the spools.
  • this mechanism includes the cam followers that are mounted on each spool.
  • these cam followers preferably, rollers
  • these cam followers are captured between the parallel surfaces of a rotating cam so that each spool, while being positively driven by the cam track, cannot rotate about its axis, thereby maintaining the desired orientation of the spool's stem passageway.
  • FIG. 1 is a schematic cross-sectional view (with minor parts and cross-hatching omitted to enhance clarity) of selected portions of a hydraulic pump/motor machine (e.g., of the type disclosed in U.S. Pat. No. 5,513,553), showing the invention's improved radial spool valving positioned within the left end of the housing.
  • a hydraulic pump/motor machine e.g., of the type disclosed in U.S. Pat. No. 5,513,553
  • FIG. 2 is a similarly schematic cross-sectional view of the radial spool valve portion of FIG. 1 , taken along the plane 2 - 2 (with parts removed) representing (a) the machine's nine pump cylinders and respective valve openings, (b) one-half of the invention's positive cam track, and (c) only the tang and roller portions of two spools.
  • FIGS. 3 , 4 , and 5 illustrate three respective schematic views of a conventional spool for well-known prior art valving in which: FIG. 3 is a side view; FIG. 4 is another side view taken along the plane 4 - 4 in FIG. 3 ; and FIG. 5 is a cross-sectional view taken perpendicular to the central axis of the spool along the plane 5 - 5 of FIG. 4 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 6 , 7 , and 8 illustrate three respective views of an improved spool according to a first embodiment of the invention in which: FIG. 6 is a schematic side view; FIG. 7 is another side view taken along the plane 7 - 7 in FIG. 6 ; and FIG. 8 is a cross-sectional view taken along the plane 8 - 8 of FIG. 7 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 9 , 10 , and 11 illustrate three respective views of an improved spool according to a second embodiment of the invention in which: FIG. 9 is a schematic side view; FIG. 10 is another side view taken along the plane 10 - 10 in FIG. 9 ; and FIG. 11 is a cross-sectional view taken along the plane 11 - 11 of FIG. 10 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 12 , 13 , and 14 illustrate three respective views of an improved spool according to a third embodiment of the invention in which: FIG. 12 is a schematic side view; FIG. 13 is another side view taken along the plane 13 - 13 in FIG. 12 ; and FIG. 14 is a cross-sectional view taken along the plane 14 - 14 of FIG. 13 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 15 , 16 , and 17 illustrate three respective views of an improved spool according to a fourth embodiment of the invention in which: FIG. 15 is a schematic side view; FIG. 16 is another side view taken along the plane 16 - 16 in FIG. 15 ; and FIG. 17 is a cross-sectional view taken in the direction of the central axis of the spool along the plane 17 - 17 of FIG. 16 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 18 , 19 , and 20 illustrate three respective views of an improved spool according to a fifth embodiment of the invention in which: FIG. 18 is a schematic side view; FIG. 19 is another side view taken along the plane 19 - 19 in FIG. 18 ; and FIG. 20 is a cross-sectional view taken along the plane 20 - 20 of FIG. 19 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIGS. 21 , 22 , and 23 illustrate three respective views of an improved spool according to a sixth embodiment of the invention in which: FIG. 21 is a schematic side view; FIG. 22 is another side view taken along the plane 22 - 22 in FIG. 21 ; and FIG. 23 is a cross-sectional view taken along the plane 23 - 23 of FIG. 22 , using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
  • FIG. 1 shows portions of a hydraulic pump 10 which includes a drive shaft 12 that is rotatable by an exterior power source, e.g., an auto engine, coupled to its right end (neither the right end of shaft 12 nor the exterior power source is shown).
  • Pump 10 has a cylinder block portion 14 in which a plurality of pump cylinders 16 is arranged radially about the axis 42 of drive shaft 12 , and the axis of each cylinder 16 is aligned parallel to axis 42 .
  • a pump piston 18 is fitted within each pump cylinder 16 and is connected by means of a respective “dog bone” piston rod 20 to a nutating-but-non-rotating wobbler 22 of a swish-plate 24 that also includes a nutating-and-rotating rotor 26 .
  • rotor 26 of swash-plate 24 is pivotally connected to drive shaft 12 for rotation therewith and the angle of swash-plate 24 relative to drive shaft 12 is controlled by means including a link 28 .
  • Wobbler 22 is supported within an interior gear 32 of a pair of spherical gears, the exterior gear 34 of the pair being mounted to the internal wall of a swash-plate housing portion 30 that is connected to the right end of cylinder block portion 14 of pump 10 .
  • pump pistons 18 in response to the rotation of drive shaft 12 , moves fluid into and out of pump cylinders 16 through an orifice 17 .
  • low pressure fluid entering orifice 17 follows the piston to fill its respective cylinder 16 ; and, thereafter, as each respective piston 18 is driven back to the left, high pressure fluid is forced out of its respective cylinder 16 through orifice 17 .
  • This high speed flow of low and high pressure fluid is controlled by spool valving carried within a valve block 36 connected to the left end of cylinder block 14 by bolts 38 .
  • Valve block 36 is bored with a plurality of valve cylinders 40 arranged about axis 42 of drive shaft 12 , and the axis of each valve cylinder 40 extends radially from axis 42 .
  • a respective spool 44 a is moved axially to sequentially open and close a pair of ports 46 , 48 defining respective high and low pressure fluid passageways connecting with corresponding respective passageways 50 , 52 in respective spiral manifolds 53 only one shown in hidden lines) formed in an end cap 54 , which forms the left end of the housing of pump 10 .
  • valve block 36 Operation of spool valves mounted in valve block 36 will first be generally described using spools according to a first embodiment of the invention.
  • All of the valve spools of the invention share the same basic arrangement of similar elements which are generally identified by the same reference numerals, the elements of each different embodiment being differentiated by the use of letter suffixes (a through f) specific to each embodiment.]
  • each spool 44 a includes a pair of port-blocking portions 56 a, 58 a separated by a stem 60 a; and, in preferred embodiments, a tang 62 a extends from port-blocking portion 58 a.
  • Tang 62 a has a guide hole 64 a which receives and supports a cam-following roller 66 a.
  • a pair of mirror-image cam elements 70 , 72 are mounted within valve block 36 , being fitted over the left end of drive shaft 12 .
  • Machined as grooves in the interior faces of cam elements 70 , 72 is a pair of respective cam tracks 74 , 76 , each having at least two parallel surfaces forming the sidewalls of each respective track 74 , 76 .
  • Cam elements 70 , 72 are fixed to rotate with drive shaft 12 and are held in position by a key 78 so that cam track 76 forms the mirror image of cam track 74 .
  • cam element 72 is keyed to shaft 12 ; and then each respective roller 66 a is fitted through the respective guide hole 64 formed in the tang 62 of its respective spool 44 .
  • Each cam-following roller 66 a is then positioned with one end within cam track 76 of cam element 72 .
  • cam element 70 is also keyed to shaft 12 so that the other end of each roller 66 a is received within cam track 74 of cam element 70 , and cam element 70 is suitably locked in position.
  • tang 62 a is fixed relative to spool 44 a, and since cam-following roller 66 a is captured within cam tracks 74 and 76 of cam elements 70 , 72 , spool 44 a is prevented from rotation about the axis of its respective valve cylinder 40 at all times during operation. Further, since the position of stem 60 a is also fixed relative to the other elements of spool 44 a, the orientation of stem portion 60 a is similarly prevented from rotation about the axis of its respective valve cylinder 40 at all times during operation.
  • a primary feature of the invention resides in the shape and orientation of the stem portion of each spool and in the facilitation of the flow and direction of fluid through the passageway formed by each stem portion when the latter is aligned with the port(s) of its respective valve cylinder 40 .
  • the axial movements of each spool 44 a control sequential and bi-directional flows of fluids, i.e., flows into as well as out of each pump cylinder 16 .
  • each well-known and widely used prior art spool 44 port-blocking portions 56 and 58 are separated by a stem 60 which is cylindrical in form.
  • the bottom of port-blocking portion 58 is provided with a spherical surface 59 that is designed to ride on the surface of a conventional control cam (e.g., similar to the surface of the inner wall of cam track 74 in FIG. 2 ).
  • Spherical surface 59 of each such prior art spool 44 serves as a cam follower, being conventionally held in contact with the surface of the control cam by spring bias (not shown).
  • each stem 60 of prior art spool 44 is centered on the axis of the spool and has a cylindrical form. Therefore, should spool 44 rotate axially within its respective valve cylinder during valve operation, the relative size and shape of the fluid passageway formed by the stem portion of spool 44 remain constant.
  • a fluid flows past a cylinder at high speed (e.g., the movement of air past a flag pole or the mast of a sailboat), eddies are formed in the moving fluid resulting in a rippling turbulence.
  • the turbulence resulting from the movement of the fluid through the stem passageway of spool 44 is schematically illustrated in FIG. 5 by fluid flow arrow 80 which, as noted above, indicates the bi-directional flow of fluid through each valve.
  • fluid flow arrow 80 indicates the bi-directional flow of fluid through each valve.
  • Such turbulent flow decreases valve efficiency, particularly at high speeds and pressures.
  • the invention herein is directed to the reduction of such turbulence and, thereby, to an increase in the efficiency of high speed/pressure hydraulic pump/motors.
  • port-blocking portions 56 a and 58 a of spool 44 a are separated by stem portion 60 a in which the interiors 80 a of two sidewalls define a passageway for the flow of fluid when stem portion 60 a is aligned with ports 46 and 48 , respectively, of cylinder 40 . Since there is no intermediate stem element (e.g., stem 60 of prior art spool 44 ), fluid is free to move unimpeded and bi-directionally past stem portion 60 a of spool 44 a, as indicated schematically by fluid flow arrow 82 a in FIG. 8 .
  • FIGS. 9 , 10 , and 11 A second embodiment of the invention's spool design is illustrated in FIGS. 9 , 10 , and 11 .
  • Port-blocking portions 56 b and 58 b of spool 44 b are separated by a central support 60 b forming the stem portion which defines a dual passageway for the flow of fluid when central support 60 b is aligned with ports 46 and 48 , respectively, of cylinder 40 .
  • This second embodiment includes a further feature of the invention, namely, the surfaces 80 b of central support 60 b are provided with a predetermined hydrodynamically shape for facilitating the bidirectional flow of fluid past surfaces 80 b and for reducing formation of eddies in the moving fluid.
  • central support 60 b is critical to the efficiency of the fluid passageways formed by this stem section, and the constancy of the orientation of central support 60 b is assured by the predetermined and fixed position of tang 62 a and roller 66 b relative to stem portion 60 b.
  • spool valves find widespread use in hydraulic machines such as pumps and motors.
  • pumps have pistons responsive to the rotation of a drive shaft, the latter being driven by an outside power source.
  • the pistons draw low pressure fluid into the pump's cylinders and then force the fluid out of the cylinders at high pressure.
  • high pressure fluid moves the motor's pistons, causing rotation of the motor's drive shaft, and the fluid then exits the cylinders at a lower pressure for return to a closed hydraulic loop shared with a mating hydraulic pump (or, in sonic cases, to a sump).
  • each valve cylinder 40 includes an orifice 17 that connects with the left end of each pump cylinder 16 .
  • Each valve cylinder 40 also includes two other separated ports 46 and 48 that, respectively, connect with fluid passageways 50 and 52 formed in end cap 53 of pump 10 .
  • port 46 is positioned above the level of orifice 17
  • port 48 is positioned below the level of orifice 17 .
  • FIG. 1 shows swash-plate 24 at the maximum tilt angle position at which pump 10 is moving fluid at its maximum flow rate. Assuming that swash-plate 24 has just reached the position shown, spool 44 a has just reached its illustrated position in which both ports 46 , 48 are blocked.
  • swash-plate 24 starts moving piston 18 to the right and cam elements 70 , 72 move spool 44 a downward, connecting fluid return passageway 52 with orifice 17 and permitting fluid to move from port 48 upward into orifice 17 of pump cylinder 16 .
  • Return fluid under lower pressure continues to move through orifice 17 and into cylinder 16 until the rotation of swash-plate 24 has allowed the full movement of piston 18 to the right.
  • spool 44 a has already moved upward and both ports 46 , 48 are again blocked.
  • the following embodiments relate to facilitation of the direction of fluid flow through the stem passageways of the invention's spools.
  • FIGS. 12 , 13 , and 14 A third embodiment of the invention, spool 44 c, is illustrated in FIGS. 12 , 13 , and 14 ; and spool 44 c combines key features of the first and second embodiments. Namely, in a design similar to the first embodiment, stem portion 60 c comprises a fully-open fluid passageway defined by only two sidewalls. However, in this embodiment, the interior surfaces 80 c of the sidewalls are provided with a predetermined hydrodynamically shape selected to facilitate fluid flow to and from a single port (e.g., orifice 17 in FIG. 2 just discussed above) to a pair of ports, (e.g., ports 46 and 48 in FIG. 1 ) opening, respectively, to the left and right of the single port.
  • a single port e.g., orifice 17 in FIG. 2 just discussed above
  • a pair of ports e.g., ports 46 and 48 in FIG. 1
  • FIGS. 15 , 16 , and 17 A fourth embodiment, spool 44 d, is illustrated in FIGS. 15 , 16 , and 17 . While stem portion 60 d also uses a pair of sidewalls to define the limits of the stem passageway, a horizontal divider 79 with hydrodynamically surfaces 80 d splits the passageway to direct the flow of fluid as indicated by fluid flow arrows 82 d. In this embodiment, it is assumed that a single port (e.g., orifice 17 of FIG. 2 ) is positioned to the right in FIG. 17 . This embodiment is designed to enhance the flow of fluid to and from entrance and exit ports located, respectively, above and below the single port.
  • a single port e.g., orifice 17 of FIG. 2
  • FIGS. 18 , 19 , and 20 illustrate a fifth embodiment, spool 44 e, which is a modification of the second embodiment.
  • the single center support 60 e is provided with hydrodynamically surfaces 80 e that are designed to direct fluid flow to and from separated ports (e.g., ports 46 and 48 in FIG. 2 ) which are positioned to the left and right, respectively, of a single port (e.g., orifice 17 in FIG. 2 ).
  • This directional fluid flow is indicated by arrows 82 e in FIG. 20 .
  • FIGS. 21 , 22 , and 23 illustrate a sixth embodiment, spool 44 f, which is a preferred modification applicable to the first and third embodiments (see FIGS. 7 and 13 ) wherein the stem portion of the spool comprises a fully-open fluid passageway defined by only two sidewalls.
  • the stem portion of the spool comprises a fully-open fluid passageway defined by only two sidewalls.
  • the passage of high pressure fluid through the stem opening may result in a slight “bowing out” of the sidewalls and the undesirable reduction of clearance between the outside surface of the spool and the interior surface of its respective cylinder.
  • a pressure-balancing channel 84 is formed around the entire exterior circumference of stem portion 60 f.
  • the depth of channel 84 is shown greatly exaggerated in the illustrations.
  • the width of channel 84 is shown as extending along the full vertical height of stem portion 60 f, a narrower channel may suffice, since the size of channel 84 need be no larger than that necessary to introduce a balancing pressure (between the outside of each sidewall and the interior surface of the cylinder in which spool 44 f is mounted) sufficient to prevent distortion of the sidewalls.
  • spool 44 f has no intermediate stem element (e.g., stem 60 of prior art spool 44 ), and fluid is free to move unimpeded and bi-directionally past stem portion 60 f of spool 44 f, as indicated schematically by fluid flow arrow 82 f in FIG. 23 .
  • no flow is indicated through channels 84 formed on the outer circumference of stem portion 60 f, because the depth of channels 84 (shown greatly exaggerated), while appropriate for introducing the desired balancing pressure, is not large enough to permit any appreciable flow of fluid therethrough.
  • the orientation of the fluid passageways through the stem portions of the spools is once again critical. As explained in relation to the first and second embodiments, this critical orientation is maintained by a mechanism that prevents rotation of the individual spools 44 a-f about the axis of their respective valve cylinders 40 .
  • Such an orientation mechanism might include some form of keyway arrangement using a key and slot/slide combination shared by each valve cylinder and spool.
  • the preferred orientation mechanism comprises a positively driven cam follower captured in a cam track and positioned in a fixed orientation relative to each spool as fully described above.
  • the invention as described above increases pump efficiency by (a) positively driving each spool, by (b) facilitating the direction of fluid flow past the stem portion of each spool, and by (c) using spool stem design to reduce fluid turbulence.
  • the reduction of fluid turbulence in the valving system of hydraulic pump/motors not only increases machine efficiency but also significantly reduces the machine noise that accompanies all high speed movement of fluid.

Abstract

A spool valve is provided with a stem portion that defines a fluid passageway formed by either (a) a single central support having a non-cylindrical curved surface shaped hydrodynamically, or (b) only a pair of sidewalls with, preferably, interior surfaces that are also shaped hydrodynamically. These stem passageways, which are designed to facilitate the flow of high-speed/high-pressure fluids controlled by the valve, are maintained in a predetermined orientation relative to the ports of the valve cylinders by a mechanism preferably including (a) a cam-following roller supported in a tang fixed to each spool and (b) a two-element cam that captures the roller within two of the parallel sides of a cam-track groove formed on the respective interior surfaces of each cam element.

Description

TECHNICAL FIELD
This invention relates to valving used to control the flow of fluids, e.g., radial valves incorporated as an integral part of hydraulic pump/motors; and, more particularly, it relates to apparatus for controlling the operation of spools used in such valves and to the shape of the spools themselves.
BACKGROUND
Valving using reciprocating spools to control the flow of fluids is well known in the hydraulics art. For instance, spool valves, arranged radially, are used as part of hydraulic pump/motor apparatus (e.g., see U.S. Pat. No. 5,513,553 entitled “Hydraulic Machine with Gear-Mounted Swash-Plate”). In most such known valving, each spool reciprocates axially within a cylinder formed in the valve body. Most commonly, each cylinder is provided with a pair of ports defining first and second fluid passages, and the spool has a pair of port-blocking portions separated by a stem so that, when the spool is moved axially to a first position, the first fluid passage is blocked while fluids are permitted to move past the stem and through the second fluid passage. Likewise, when the spool is moved axially to a second position, the second fluid passage is blocked while fluids are permitted to move past the stem and through the first fluid passage.
Traditionally in such valving, one end of the spool portion of the valve acts as a cam follower that rides on a revolving cam surface, and each spool is spring biased toward the cam surface so rotation of the cam controls the successive and continuous axial movement of the respective spools in each valve set. However, it is known that the response time and general operation of such spring-biased spool systems are often affected by dirt and counter-pressure problems. Also, it is well known that the individual spools of such known valving often rotate (albeit, very slowly) about their central axes when being operated within their respective cylinders. Therefore, the narrowed stem section of each spool has preferably been designed with a cylindrical shape (see FIGS. 3 and 4) so that, should such spool rotation occur, changes in the orientation of its stem section do not result in any change in the shape of the fluid passageway formed about the cylindrical stem section when the valve is opened.
Valve design is of particular importance when the valving is used to control the flow of hydraulic fluids under high speed and high pressure conditions, e.g., in automotive pump/motors which are capable of developing high horsepower and must be able to achieve speeds as high as 4000 rpm and to withstand pressures as high as 4000 p.s.i. Consistent fluid flow under such conditions is critical.
The invention disclosed herein is primarily directed to such critical fluid flow. Valving according to the invention overcomes the response time problems of spring-biased valving and not only assures consistency of valve timing but also significantly increases the efficiency of fluid flow past the stem portion of each spool.
SUMMARY OF THE INVENTION
The general format of valving according to this invention follows the known conventional spool valve arrangements discussed above. Namely, each spool reciprocates axially within a cavity, preferably a cylinder, formed in the valve body. The cylinder may include ports forming only a single fluid passage. However, in the embodiments designed for use with hydraulic pump/motors (e.g., as disclosed in FIGS. 1 and 2), each cylinder is provided with first and second ports defining first and second fluid passages. The spool has a pair of port-blocking portions separated by a stem so that, when the spool is moved axially to a first position, the first fluid passage is blocked while fluids are permitted to move past the stem and through the second fluid passage; and, when the spool is moved axially to a second position, the second fluid passage is blocked while fluids are permitted to move past the stem and through the first fluid passage.
However, in contrast to prior art arrangements, in the invention's valving, reciprocating axial motion of each spool is not controlled by a spring-biased cam follower. Instead, positive spool control is achieved with a cam follower captured within a cam track that is fixed to rotate with a drive shaft. The cam track has at least two parallel cam surfaces between which the cam follower is captured. In all preferred embodiments, the cam follower is a roller.
In the preferred valving arrangement illustrated in FIGS. 1 and 2, a plurality of individual valves are arranged radially about the drive shaft of a hydraulic pump/motor. The spool within each valve includes a tang that extends from the bottom of the spool. The tang is provided with a hole through which a cam-following roller is received and supported in a predetermined orientation that permits rolling engagement of the roller with the parallel surfaces of the cam track. In the disclosed embodiment, the parallel surfaces of the cam track are divided into two mirror-image portions that provide a balanced positive drive for controlling the position of the cam-following rollers. The combination of the cam track, roller, and tang controls the timing of the reciprocation of each spool and, simultaneously, also serves as an orientation mechanism that prevents rotation of the spool about its central axial axis within its respective cylinder.
The stem portion of each spool defines a passageway preferably formed by either (a) a single, central support which, when viewed in a cross section taken perpendicular to the central axis of the spool, has a non-circular curved surface shaped hydrodynamically, or (b) only a pair of sidewalls. Preferably, the interior surfaces of the sidewalls are also shaped hydrodynamically. The respective hydrodynamic shapes of the central supports and the sidewalls are designed to facilitate the high-speed/high-pressure flow of fluids through the fluid passages controlled by the valve. That is, these hydrodynamic surfaces are shaped to facilitate both (i) the flow of fluids through the spool and (ii) the direction of fluid flow to and from the fluid passageways defined by the respective cylinder ports when said stem portion is aligned therewith.
Of course, these hydrodynamic stem surfaces must be maintained in a predetermined orientation relative to the ports of the valve cylinders in order to assure maximum flow of fluid through these stem and cylinder passageways. The invention's orientation mechanism prevents any axial rotation of the spools. Namely, this mechanism includes the cam followers that are mounted on each spool. As just mentioned above, these cam followers (preferably, rollers) are captured between the parallel surfaces of a rotating cam so that each spool, while being positively driven by the cam track, cannot rotate about its axis, thereby maintaining the desired orientation of the spool's stem passageway.
DRAWINGS
FIG. 1 is a schematic cross-sectional view (with minor parts and cross-hatching omitted to enhance clarity) of selected portions of a hydraulic pump/motor machine (e.g., of the type disclosed in U.S. Pat. No. 5,513,553), showing the invention's improved radial spool valving positioned within the left end of the housing.
FIG. 2 is a similarly schematic cross-sectional view of the radial spool valve portion of FIG. 1, taken along the plane 2-2 (with parts removed) representing (a) the machine's nine pump cylinders and respective valve openings, (b) one-half of the invention's positive cam track, and (c) only the tang and roller portions of two spools.
FIGS. 3, 4, and 5 illustrate three respective schematic views of a conventional spool for well-known prior art valving in which: FIG. 3 is a side view; FIG. 4 is another side view taken along the plane 4-4 in FIG. 3; and FIG. 5 is a cross-sectional view taken perpendicular to the central axis of the spool along the plane 5-5 of FIG. 4, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 6, 7, and 8 illustrate three respective views of an improved spool according to a first embodiment of the invention in which: FIG. 6 is a schematic side view; FIG. 7 is another side view taken along the plane 7-7 in FIG. 6; and FIG. 8 is a cross-sectional view taken along the plane 8-8 of FIG. 7, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 9, 10, and 11 illustrate three respective views of an improved spool according to a second embodiment of the invention in which: FIG. 9 is a schematic side view; FIG. 10 is another side view taken along the plane 10-10 in FIG. 9; and FIG. 11 is a cross-sectional view taken along the plane 11-11 of FIG. 10, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 12, 13, and 14 illustrate three respective views of an improved spool according to a third embodiment of the invention in which: FIG. 12 is a schematic side view; FIG. 13 is another side view taken along the plane 13-13 in FIG. 12; and FIG. 14 is a cross-sectional view taken along the plane 14-14 of FIG. 13, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 15, 16, and 17 illustrate three respective views of an improved spool according to a fourth embodiment of the invention in which: FIG. 15 is a schematic side view; FIG. 16 is another side view taken along the plane 16-16 in FIG. 15; and FIG. 17 is a cross-sectional view taken in the direction of the central axis of the spool along the plane 17-17 of FIG. 16, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 18, 19, and 20 illustrate three respective views of an improved spool according to a fifth embodiment of the invention in which: FIG. 18 is a schematic side view; FIG. 19 is another side view taken along the plane 19-19 in FIG. 18; and FIG. 20 is a cross-sectional view taken along the plane 20-20 of FIG. 19, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
FIGS. 21, 22, and 23 illustrate three respective views of an improved spool according to a sixth embodiment of the invention in which: FIG. 21 is a schematic side view; FIG. 22 is another side view taken along the plane 22-22 in FIG. 21; and FIG. 23 is a cross-sectional view taken along the plane 23-23 of FIG. 22, using dashed lines to indicate the directions of fluid flow past the stem portion of the spool.
DETAILED DESCRIPTION
FIG. 1 shows portions of a hydraulic pump 10 which includes a drive shaft 12 that is rotatable by an exterior power source, e.g., an auto engine, coupled to its right end (neither the right end of shaft 12 nor the exterior power source is shown). Pump 10 has a cylinder block portion 14 in which a plurality of pump cylinders 16 is arranged radially about the axis 42 of drive shaft 12, and the axis of each cylinder 16 is aligned parallel to axis 42. A pump piston 18 is fitted within each pump cylinder 16 and is connected by means of a respective “dog bone” piston rod 20 to a nutating-but-non-rotating wobbler 22 of a swish-plate 24 that also includes a nutating-and-rotating rotor 26. In a manner well known in the art, rotor 26 of swash-plate 24 is pivotally connected to drive shaft 12 for rotation therewith and the angle of swash-plate 24 relative to drive shaft 12 is controlled by means including a link 28. Wobbler 22 is supported within an interior gear 32 of a pair of spherical gears, the exterior gear 34 of the pair being mounted to the internal wall of a swash-plate housing portion 30 that is connected to the right end of cylinder block portion 14 of pump 10.
The reciprocation of pump pistons 18, in response to the rotation of drive shaft 12, moves fluid into and out of pump cylinders 16 through an orifice 17. As each respective piston 18 moves to the right, low pressure fluid entering orifice 17 follows the piston to fill its respective cylinder 16; and, thereafter, as each respective piston 18 is driven back to the left, high pressure fluid is forced out of its respective cylinder 16 through orifice 17. This high speed flow of low and high pressure fluid is controlled by spool valving carried within a valve block 36 connected to the left end of cylinder block 14 by bolts 38.
Valve block 36 is bored with a plurality of valve cylinders 40 arranged about axis 42 of drive shaft 12, and the axis of each valve cylinder 40 extends radially from axis 42. Within each valve cylinder 40, a respective spool 44a is moved axially to sequentially open and close a pair of ports 46, 48 defining respective high and low pressure fluid passageways connecting with corresponding respective passageways 50, 52 in respective spiral manifolds 53 only one shown in hidden lines) formed in an end cap 54, which forms the left end of the housing of pump 10.
Operation of spool valves mounted in valve block 36 will first be generally described using spools according to a first embodiment of the invention. [NOTE: All of the valve spools of the invention share the same basic arrangement of similar elements which are generally identified by the same reference numerals, the elements of each different embodiment being differentiated by the use of letter suffixes (a through f) specific to each embodiment.]
Referring now to FIGS. 2, 6, and 7, each spool 44a includes a pair of port-blocking portions 56a, 58a separated by a stem 60a; and, in preferred embodiments, a tang 62a extends from port-blocking portion 58a. Tang 62a has a guide hole 64a which receives and supports a cam-following roller 66a.
As shown in FIGS. 1 and 2, a pair of mirror- image cam elements 70, 72 are mounted within valve block 36, being fitted over the left end of drive shaft 12. Machined as grooves in the interior faces of cam elements 70, 72 is a pair of respective cam tracks 74, 76, each having at least two parallel surfaces forming the sidewalls of each respective track 74, 76. Cam elements 70, 72 are fixed to rotate with drive shaft 12 and are held in position by a key 78 so that cam track 76 forms the mirror image of cam track 74.
For assembly, after each spool 44a has been fitted within its respective valve cylinder 40, cam element 72 is keyed to shaft 12; and then each respective roller 66a is fitted through the respective guide hole 64 formed in the tang 62 of its respective spool 44. Each cam-following roller 66a is then positioned with one end within cam track 76 of cam element 72. Thereafter, cam element 70 is also keyed to shaft 12 so that the other end of each roller 66a is received within cam track 74 of cam element 70, and cam element 70 is suitably locked in position.
Since, as indicated above, tang 62a is fixed relative to spool 44a, and since cam-following roller 66a is captured within cam tracks 74 and 76 of cam elements 70, 72, spool 44a is prevented from rotation about the axis of its respective valve cylinder 40 at all times during operation. Further, since the position of stem 60a is also fixed relative to the other elements of spool 44a, the orientation of stem portion 60a is similarly prevented from rotation about the axis of its respective valve cylinder 40 at all times during operation.
A primary feature of the invention resides in the shape and orientation of the stem portion of each spool and in the facilitation of the flow and direction of fluid through the passageway formed by each stem portion when the latter is aligned with the port(s) of its respective valve cylinder 40. In this regard, it must be remembered that the axial movements of each spool 44a control sequential and bi-directional flows of fluids, i.e., flows into as well as out of each pump cylinder 16.
The importance of fluid flow facilitation is best appreciated when compared with prior art spools of the type illustrated in FIGS. 3 and 4. In each well-known and widely used prior art spool 44, port-blocking portions 56 and 58 are separated by a stem 60 which is cylindrical in form. The bottom of port-blocking portion 58 is provided with a spherical surface 59 that is designed to ride on the surface of a conventional control cam (e.g., similar to the surface of the inner wall of cam track 74 in FIG. 2). Spherical surface 59 of each such prior art spool 44 serves as a cam follower, being conventionally held in contact with the surface of the control cam by spring bias (not shown).
As indicated in the Background above, each stem 60 of prior art spool 44 is centered on the axis of the spool and has a cylindrical form. Therefore, should spool 44 rotate axially within its respective valve cylinder during valve operation, the relative size and shape of the fluid passageway formed by the stem portion of spool 44 remain constant. As is well known in the art of hydraulics, when a fluid flows past a cylinder at high speed (e.g., the movement of air past a flag pole or the mast of a sailboat), eddies are formed in the moving fluid resulting in a rippling turbulence. The turbulence resulting from the movement of the fluid through the stem passageway of spool 44 is schematically illustrated in FIG. 5 by fluid flow arrow 80 which, as noted above, indicates the bi-directional flow of fluid through each valve. Such turbulent flow decreases valve efficiency, particularly at high speeds and pressures.
The invention herein is directed to the reduction of such turbulence and, thereby, to an increase in the efficiency of high speed/pressure hydraulic pump/motors.
Reducing Turbulent Flow
Referring to a first embodiment of the invention's spool design illustrated in FIGS. 6, 7, and 8, port-blocking portions 56a and 58a of spool 44a are separated by stem portion 60a in which the interiors 80a of two sidewalls define a passageway for the flow of fluid when stem portion 60a is aligned with ports 46 and 48, respectively, of cylinder 40. Since there is no intermediate stem element (e.g., stem 60 of prior art spool 44), fluid is free to move unimpeded and bi-directionally past stem portion 60a of spool 44a, as indicated schematically by fluid flow arrow 82a in FIG. 8. It is important to note that the predetermined position of sidewall interiors 80a relative to ports 46 and 48 is critical to the efficiency of the fluid passageway therethrough; and the constancy of the orientation of sidewall interiors 80a is assured by the orientation mechanism described above, namely, the predetermined and fixed position of tang 62a and roller 66a relative to stem portion 60a.
A second embodiment of the invention's spool design is illustrated in FIGS. 9, 10, and 11. Port-blocking portions 56b and 58b of spool 44b are separated by a central support 60b forming the stem portion which defines a dual passageway for the flow of fluid when central support 60b is aligned with ports 46 and 48, respectively, of cylinder 40. This second embodiment includes a further feature of the invention, namely, the surfaces 80b of central support 60b are provided with a predetermined hydrodynamically shape for facilitating the bidirectional flow of fluid past surfaces 80b and for reducing formation of eddies in the moving fluid. Again, the predetermined position of central support 60b relative to ports 46 and 48 is critical to the efficiency of the fluid passageways formed by this stem section, and the constancy of the orientation of central support 60b is assured by the predetermined and fixed position of tang 62a and roller 66b relative to stem portion 60b.
Enhancing Direction of Flow
As indicated above, spool valves find widespread use in hydraulic machines such as pumps and motors. As is well known in the hydraulic arts, pumps have pistons responsive to the rotation of a drive shaft, the latter being driven by an outside power source. The pistons draw low pressure fluid into the pump's cylinders and then force the fluid out of the cylinders at high pressure. In hydraulic motors, the reverse is true, i.e., high pressure fluid moves the motor's pistons, causing rotation of the motor's drive shaft, and the fluid then exits the cylinders at a lower pressure for return to a closed hydraulic loop shared with a mating hydraulic pump (or, in sonic cases, to a sump). The direction of rotation of the motor's drive shaft is reversed when the flow of the high pressure fluid is reversed in the hydraulic lines serving the motor, etc. In any event, hydraulic fluid enters and exits the cylinders of pump/motors through separate ports, and the direction of flow through these ports can be reversed.
Referring once again to the spool valve arrangement shown at the top left hand portion of the hydraulic machine illustrated in FIG. 1, each valve cylinder 40 includes an orifice 17 that connects with the left end of each pump cylinder 16. Each valve cylinder 40 also includes two other separated ports 46 and 48 that, respectively, connect with fluid passageways 50 and 52 formed in end cap 53 of pump 10. In the particular arrangement illustrated, port 46 is positioned above the level of orifice 17, while port 48 is positioned below the level of orifice 17.
For purposes of this explanation, it is assumed that pump 10 is being operated in a closed fluid loop arrangement with a matching hydraulic motor. Further, it is assumed that high pressure fluid is present in passageway 50 and in the duct connecting with port 46 and that lower pressure return fluid is present in passageway 52 and in the duct connecting with port 48. FIG. 1 shows swash-plate 24 at the maximum tilt angle position at which pump 10 is moving fluid at its maximum flow rate. Assuming that swash-plate 24 has just reached the position shown, spool 44a has just reached its illustrated position in which both ports 46, 48 are blocked. As the pump cycle continues, swash-plate 24 starts moving piston 18 to the right and cam elements 70, 72 move spool 44a downward, connecting fluid return passageway 52 with orifice 17 and permitting fluid to move from port 48 upward into orifice 17 of pump cylinder 16. Return fluid under lower pressure continues to move through orifice 17 and into cylinder 16 until the rotation of swash-plate 24 has allowed the full movement of piston 18 to the right. At this instant, spool 44a has already moved upward and both ports 46, 48 are again blocked. As swash-plate 24 begins to drive piston 18 to the left, the continued upward movement of spool 44a connects orifice 17 with port 46, allowing piston 18 to force high pressure fluid out of cylinder 16 from orifice 17 upward into port 46 and passageway 50.
The following embodiments relate to facilitation of the direction of fluid flow through the stem passageways of the invention's spools.
A third embodiment of the invention, spool 44c, is illustrated in FIGS. 12, 13, and 14; and spool 44c combines key features of the first and second embodiments. Namely, in a design similar to the first embodiment, stem portion 60c comprises a fully-open fluid passageway defined by only two sidewalls. However, in this embodiment, the interior surfaces 80c of the sidewalls are provided with a predetermined hydrodynamically shape selected to facilitate fluid flow to and from a single port (e.g., orifice 17 in FIG. 2 just discussed above) to a pair of ports, (e.g., ports 46 and 48 in FIG. 1) opening, respectively, to the left and right of the single port.
A fourth embodiment, spool 44d, is illustrated in FIGS. 15, 16, and 17. While stem portion 60d also uses a pair of sidewalls to define the limits of the stem passageway, a horizontal divider 79 with hydrodynamically surfaces 80d splits the passageway to direct the flow of fluid as indicated by fluid flow arrows 82d. In this embodiment, it is assumed that a single port (e.g., orifice 17 of FIG. 2) is positioned to the right in FIG. 17. This embodiment is designed to enhance the flow of fluid to and from entrance and exit ports located, respectively, above and below the single port.
FIGS. 18, 19, and 20 illustrate a fifth embodiment, spool 44e, which is a modification of the second embodiment. Namely, the single center support 60e is provided with hydrodynamically surfaces 80e that are designed to direct fluid flow to and from separated ports (e.g., ports 46 and 48 in FIG. 2) which are positioned to the left and right, respectively, of a single port (e.g., orifice 17 in FIG. 2). This directional fluid flow is indicated by arrows 82e in FIG. 20.
Finally, FIGS. 21, 22, and 23 illustrate a sixth embodiment, spool 44f, which is a preferred modification applicable to the first and third embodiments (see FIGS. 7 and 13) wherein the stem portion of the spool comprises a fully-open fluid passageway defined by only two sidewalls. In order to facilitate fluid flow, it may be desirable to reduce the thickness of these sidewalls. However, as the sidewalls become thinner, the passage of high pressure fluid through the stem opening may result in a slight “bowing out” of the sidewalls and the undesirable reduction of clearance between the outside surface of the spool and the interior surface of its respective cylinder.
In this sixth embodiment, a pressure-balancing channel 84 is formed around the entire exterior circumference of stem portion 60f. (NOTE: The depth of channel 84 is shown greatly exaggerated in the illustrations.) Although the width of channel 84 (in FIGS. 21, 22, and 23) is shown as extending along the full vertical height of stem portion 60f, a narrower channel may suffice, since the size of channel 84 need be no larger than that necessary to introduce a balancing pressure (between the outside of each sidewall and the interior surface of the cylinder in which spool 44f is mounted) sufficient to prevent distortion of the sidewalls.
As was explained above in regard to the first and third embodiments, spool 44f has no intermediate stem element (e.g., stem 60 of prior art spool 44), and fluid is free to move unimpeded and bi-directionally past stem portion 60f of spool 44f, as indicated schematically by fluid flow arrow 82f in FIG. 23. However, it should also be noted that no flow is indicated through channels 84 formed on the outer circumference of stem portion 60f, because the depth of channels 84 (shown greatly exaggerated), while appropriate for introducing the desired balancing pressure, is not large enough to permit any appreciable flow of fluid therethrough.
In the four latter embodiments, the orientation of the fluid passageways through the stem portions of the spools is once again critical. As explained in relation to the first and second embodiments, this critical orientation is maintained by a mechanism that prevents rotation of the individual spools 44a-f about the axis of their respective valve cylinders 40. Such an orientation mechanism might include some form of keyway arrangement using a key and slot/slide combination shared by each valve cylinder and spool. However, once again, the preferred orientation mechanism comprises a positively driven cam follower captured in a cam track and positioned in a fixed orientation relative to each spool as fully described above.
The invention as described above increases pump efficiency by (a) positively driving each spool, by (b) facilitating the direction of fluid flow past the stem portion of each spool, and by (c) using spool stem design to reduce fluid turbulence. The reduction of fluid turbulence in the valving system of hydraulic pump/motors not only increases machine efficiency but also significantly reduces the machine noise that accompanies all high speed movement of fluid.

Claims (18)

1. In spool valve apparatus having a plurality of respective valves operated sequentially by the rotation of a drive shaft, each spool said valve comprising (a) a cylinder having at least a first fluid port defining a first fluid passage, and (b) a spool having a stem portion and at least one port-blocking portion, said spool being movable axially within the cylinder between first and second positions so that, when said spool is in said first position, said fluids are permitted to move past said stem portion and through said first fluid passage and, when said spool is in said second position, said first fluid passage is blocked, the improvement comprising:
a cam track rotated by said drive shaft and having at least two parallel surfaces; and
a plurality of cam followers, each cam follower being associated with, and aligned in a predetermined position relative to, a respective one of said spools, and each cam follower being captured between said parallel surfaces of said cam track for relative moving engagement therewith for controlling said axial motion of each respective spool and said sequential operation of said respective spool valves in response to the rotation of said drive shaft;
and wherein:
said stem portion of each respective spool defines a passageway formed by one of (a) no sidewalls with a central support comprising a non-cylindrical curved surface shaped hydrodynamically, and (b) a pair of sidewalls with said passageway formed therebetween, said central support and said sidewalls having interior surfaces shaped hydrodynamically, said sidewalls being positioned in a predetermined orientation relative to said respective first fluid port of said cylinder to facilitate the flow of fluids past said stem portion and through said first fluid port when said stem portion is aligned therewith.
2. The spool valve improvement of claim 1 wherein:
said cylinder comprises a second fluid port spaced from said first fluid port and defining a second fluid passage; and
when said spool is in said first position and said fluids are permitted to move past said stem portion and through said first fluid port, said second fluid port is blocked;
when said spool is in said second position, said first fluid passage is blocked and fluids are permitted to move past said stem and through said second fluid port; and
said predetermined orientation of said central support and of said passageway between said sidewalls of said stem portion is positioned to facilitate the flow of fluids (a) past said stem portion and through said first fluid passage when said stem portion is aligned with said first fluid port and (b) past said stem portion and through said second fluid passage when said stem portion is aligned with said second fluid port.
3. The spool valve improvement of claim 2 wherein said pair of sidewalls of said stem portion has interior surfaces that form said passageway therebetween, and each said interior surface is shaped hydrodynamically to facilitate the flow of fluids through said stem portion and to direct the flow of fluids to and from said respective first and second fluid ports when said stem portion is aligned therewith.
4. The spool valve improvement of claim 2 wherein said stem portion having a pair of sidewalls further comprises a pair of passageways formed between said sidewalls, each said passageway being oriented to direct fluid to and from a respective one of said cylinder fluid ports when said stem portion is aligned therewith.
5. The spool valve improvement of claim 2 wherein said non-cylindrical central support forms a pair of passageways, each said passageway being oriented to direct fluid to and from a respective one of said cylinder ports when said stem portion is aligned therewith.
6. The spool valve improvement of claim 2 wherein said plurality of cylinders is positioned equidistant from each other along axes extending radially from a central axis.
7. The spool valve improvement of claim 1 8 wherein said predetermined position of each said cam follower relative to its respective spool prevents rotation of each spool about the axis of its respective cylinder when said roller is in rolling engagement with said cam track and, thereby, maintains said predetermined orientation of said central support and said sidewalls of said stem portion to facilitate said fluid flow.
8. The spool valve improvement of claim 7 1 wherein each said cam follower comprises a roller captured for rolling engagement with said cam track.
9. The spool valve improvement of claim 8 wherein each said spool has a tang through which said respective roller is received and supported in said predetermined position to permit said rolling engagement with said parallel surfaces of said cam track.
10. The spool valve improvement of claim 8 wherein said parallel surfaces of said cam track are divided into two aligned mirror-image portions, and wherein each said roller is in rolling engagement with both said aligned mirror-image portions at all times.
11. The spool valve improvement of claim 1 wherein each said sidewall of said stem portion has an exterior surface and further comprises a pressure-balancing channel formed therein.
12. A spool for a valve for controlling the flow of fluids, said valve having a body including a cylinder having a cavity for receiving said spool, said cavity having an axis and at least one a first fluid port defining a first fluid passage, and said spool comprising:
a first port-blocking portion and a stem positioned around a central axis for alignment with the axis of said cavity;
said spool being movable axially within said cavity between first and second positions so that, when said spool is in said first position, said first fluid passage is blocked by said first port-blocking portion, and, when said spool is in said second position, fluids are permitted to move past said stem and through said first fluid passage; and
said stem defining a stem passageway formed by one of (a) no sidewalls with a central support, and (b) a pair of sidewalls with said stem passageway formed therebetween, said central support and said sidewalls, when viewed in cross section perpendicular to said central axis, having non-circular curved surfaces shaped aerodynamically, and said central support and said sidewalls also being positioned relative to said respective first fluid port of said cylinder to permit the flow of fluids through said stem passageway and through said first fluid port when said stem portion is aligned therewith.
13. The spool of claim 12 further comprising an orientation mechanism for positioning said stem passageway formed by said sidewalls and by said central support in a predetermined orientation relative to said first fluid passage so that said fluid flow through said first fluid port is facilitated at all times when said stem is aligned therewith.
14. The spool according to claim 13 wherein said spool valve for controlling the flow of fluids is incorporated in a machine having, a control cam surface rotated by a drive shaft, said control cam having at least two parallel surfaces, and wherein:
said orientation mechanism comprises a cam follower aligned in a predetermined position relative to said spool, said cam follower being captured between said parallel surfaces of said control cam for relative moving engagement therewith for controlling axial motion of said spool.
15. The spool according to claim 14 wherein said cam follower is a roller.
16. The spool according to claim 12 wherein each said sidewall of said stem portion has an exterior surface and further comprises a pressure-balancing channel formed therein.
17. The spool according to claim 12 wherein said cavity in said valve body includes a further port defining a second fluid passage, and said spool further comprises:
a second port-blocking portion separated from said first port-blocking portion by said stem and, when said spool is in said first position, said first port-blocking portion of said spool blocks said first fluid passage while fluids are permitted to move through said stem passageway and through said second fluid passage, and when said spool is in said second position, said second port-blocking portion of said spool blocks said second fluid passage while fluids are permitted to move through said stem passageway and through said first fluid passage; and
an orientation mechanism for positioning said stem passageway in a predetermined orientation relative to both said first fluid passage and said second fluid passage so that fluid flow through said stem passageway is facilitated at all times when said stem is aligned, respectively, with said first and second fluid passages.
18. In spool valve apparatus having a plurality of valves operated sequentially by the rotation of a drive shaft, each said valve comprising (a) a cylinder having at least a first fluid port defining a first fluid passage, and (b) a spool having a stem portion and at least one port-blocking portion, said spool being movable axially within the cylinder between first and second positions so that, when said spool is in said first position, fluids are permitted to move past said stem portion and through said first fluid passage and, when said spool is in said second position, said first fluid passage is blocked, the improvement comprising:
a cam track rotated by said drive shaft and having at least two parallel surfaces; and
a plurality of cam followers, each cam follower being associated with, and aligned in a predetermined position relative to, a respective one of said spools, and each cam follower being captured between said parallel surfaces of said cam track for relative moving engagement therewith for controlling said axial motion of each respective spool and said sequential operation of said respective spool valves in response to the rotation of said drive shaft;
wherein:
said stem portion of each respective spool defines a passageway formed by no sidewalls with a central support comprising a non-cylindrical curved surface shaped hydrodynamically, said central support being positioned in a predetermined orientation relative to said respective first fluid port of said cylinder to facilitate the flow of fluids past said stem portion and through said first fluid port when said stem portion is aligned therewith;
said cylinder comprises a second fluid port spaced from said first fluid port and defining a second fluid passage;
when said spool is in said first position and fluids are permitted to move past said stem portion and through said first fluid port, said second fluid port is blocked;
when said spool is in said second position, said first fluid passage is blocked and fluids are permitted to move past said stem and through said second fluid port;
said predetermined orientation of said central support is positioned to facilitate the flow of fluids (a) past said stem portion and through said first fluid passage when said stem portion is aligned with said first fluid port and (b) past said stem portion and through said second fluid passage when said stem portion is aligned with said second fluid port;
wherein said central support forms a pair of passageways, each said passageway being oriented to direct fluid to and from a respective one of said fluid ports when said stem portion is aligned therewith.
US10/941,012 1999-01-28 2004-09-14 Spool valve for fluid control Expired - Lifetime USRE42633E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/941,012 USRE42633E1 (en) 1999-01-28 2004-09-14 Spool valve for fluid control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/238,444 US6095192A (en) 1999-01-28 1999-01-28 Spool valve for fluid control
US10/941,012 USRE42633E1 (en) 1999-01-28 2004-09-14 Spool valve for fluid control

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/238,444 Reissue US6095192A (en) 1999-01-28 1999-01-28 Spool valve for fluid control

Publications (1)

Publication Number Publication Date
USRE42633E1 true USRE42633E1 (en) 2011-08-23

Family

ID=22897921

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/238,444 Expired - Lifetime US6095192A (en) 1999-01-28 1999-01-28 Spool valve for fluid control
US10/941,012 Expired - Lifetime USRE42633E1 (en) 1999-01-28 2004-09-14 Spool valve for fluid control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/238,444 Expired - Lifetime US6095192A (en) 1999-01-28 1999-01-28 Spool valve for fluid control

Country Status (10)

Country Link
US (2) US6095192A (en)
EP (1) EP1147331B1 (en)
JP (2) JP3725785B2 (en)
KR (1) KR100444275B1 (en)
CN (1) CN1238647C (en)
AT (1) ATE523690T1 (en)
AU (1) AU745650C (en)
BR (1) BR0006844A (en)
CA (1) CA2340354E (en)
WO (1) WO2000045074A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026329A1 (en) * 1999-02-03 2000-08-09 Kurt Sture Birger Ericson Air admittance valve for sanitary waste pipe system
WO2002030319A1 (en) * 2000-10-13 2002-04-18 Michael Kossak Improvements to manually held dental flossers
RU2503818C2 (en) * 2012-02-01 2014-01-10 Игорь Викторович Ниппард Conversion mechanism of back-and-forth movement of pistons to rotational movement of shaft in axial machines
JP7015467B2 (en) * 2017-11-22 2022-02-03 株式会社アイシン Fluid pump
CN114795742B (en) * 2022-06-30 2023-06-09 深圳市人民医院 Prevent to press sore detection pad

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550011A (en) 1950-03-02 1951-04-24 Refinite Corp Control valve
US3092085A (en) 1959-11-13 1963-06-04 Sarl Ateliers De Poclain Batai Hydraulic engine
US3406705A (en) 1965-05-26 1968-10-22 Meyer Otto Piston gate valve for high pressure media
JPS4968867A (en) 1972-11-06 1974-07-03
JPS58111476U (en) 1982-01-25 1983-07-29 株式会社クボタ valve
US4748898A (en) 1985-05-28 1988-06-07 Honda Giken Kogyo Kabushiki Kaisha Switching valve device
CN87216330U (en) 1987-12-12 1988-11-16 张建国 Streamlined valve
US4916901A (en) 1987-07-03 1990-04-17 Honda Giken Kogyo Kabushiki Kaisha Swashplate type variable displacement hydraulic device
USRE33455E (en) 1985-05-28 1990-11-27 Honda Giken Kogyo Kabushiki Kaisha Swashplate assembly for a swashplate type hydraulic pressure device
US5038634A (en) 1988-02-18 1991-08-13 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
US5094147A (en) 1990-06-13 1992-03-10 Shaw Edwin L High torque low speed motor
US5109754A (en) 1990-06-13 1992-05-05 Shaw Edwin L High torque low speed motor
DE4108014A1 (en) 1991-03-13 1992-09-17 Stahlecker Gmbh Wilhelm Air pipe stop valve - has plug portion on control plunger freeing straight, even passage when open
US5248126A (en) 1991-09-12 1993-09-28 Volkswagen A.G. Slide for a slide valve, and method for the manufacture thereof
JPH06346974A (en) 1993-06-08 1994-12-20 Aqueous Res:Kk Oil passage switching device
US5513553A (en) 1994-07-13 1996-05-07 Gleasman; Vernon E. Hydraulic machine with gear-mounted swash-plate
US5554009A (en) 1993-10-13 1996-09-10 Honda Giken Kogyo Kabushiki Kaisha Swash-plate hydraulic pressure device
CN2240651Y (en) 1995-12-08 1996-11-20 张锡水 Ceramic sealing valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33455A (en) * 1861-10-08 Improvement in the construction of burglar-proof safes

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2550011A (en) 1950-03-02 1951-04-24 Refinite Corp Control valve
US3092085A (en) 1959-11-13 1963-06-04 Sarl Ateliers De Poclain Batai Hydraulic engine
US3406705A (en) 1965-05-26 1968-10-22 Meyer Otto Piston gate valve for high pressure media
JPS4968867A (en) 1972-11-06 1974-07-03
JPS58111476U (en) 1982-01-25 1983-07-29 株式会社クボタ valve
USRE33455E (en) 1985-05-28 1990-11-27 Honda Giken Kogyo Kabushiki Kaisha Swashplate assembly for a swashplate type hydraulic pressure device
US4748898A (en) 1985-05-28 1988-06-07 Honda Giken Kogyo Kabushiki Kaisha Switching valve device
US4916901A (en) 1987-07-03 1990-04-17 Honda Giken Kogyo Kabushiki Kaisha Swashplate type variable displacement hydraulic device
CN87216330U (en) 1987-12-12 1988-11-16 张建国 Streamlined valve
US5038634A (en) 1988-02-18 1991-08-13 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
US5094147A (en) 1990-06-13 1992-03-10 Shaw Edwin L High torque low speed motor
US5109754A (en) 1990-06-13 1992-05-05 Shaw Edwin L High torque low speed motor
DE4108014A1 (en) 1991-03-13 1992-09-17 Stahlecker Gmbh Wilhelm Air pipe stop valve - has plug portion on control plunger freeing straight, even passage when open
US5248126A (en) 1991-09-12 1993-09-28 Volkswagen A.G. Slide for a slide valve, and method for the manufacture thereof
JPH06346974A (en) 1993-06-08 1994-12-20 Aqueous Res:Kk Oil passage switching device
US5554009A (en) 1993-10-13 1996-09-10 Honda Giken Kogyo Kabushiki Kaisha Swash-plate hydraulic pressure device
US5513553A (en) 1994-07-13 1996-05-07 Gleasman; Vernon E. Hydraulic machine with gear-mounted swash-plate
CN1163650A (en) 1994-07-13 1997-10-29 托维克公司 Hydraulic machine with gear-mounted swash-plate
CN2240651Y (en) 1995-12-08 1996-11-20 张锡水 Ceramic sealing valve

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Abstract of Japanese Publication No. 04-191577 published Jul. 9, 1992. *
Abstract of Japanese Publication No. 07-119860 published May 12, 1995. *
Abstract of Japanese Publication No. 09-303579 published Nov. 25, 1997. *

Also Published As

Publication number Publication date
AU745650C (en) 2005-08-11
CA2340354C (en) 2004-04-20
WO2000045074A1 (en) 2000-08-03
EP1147331A4 (en) 2007-02-21
JP4598490B2 (en) 2010-12-15
EP1147331A1 (en) 2001-10-24
JP2003531345A (en) 2003-10-21
CN1367867A (en) 2002-09-04
JP3725785B2 (en) 2005-12-14
CA2340354E (en) 2008-07-15
CA2340354A1 (en) 2000-08-03
KR20010079619A (en) 2001-08-22
KR100444275B1 (en) 2004-08-11
AU745650B2 (en) 2002-03-28
BR0006844A (en) 2001-07-03
ATE523690T1 (en) 2011-09-15
EP1147331B1 (en) 2011-09-07
CN1238647C (en) 2006-01-25
JP2005155921A (en) 2005-06-16
US6095192A (en) 2000-08-01
AU2856800A (en) 2000-08-18

Similar Documents

Publication Publication Date Title
US3956969A (en) Hydrostatic pump including separate noise reducing valve assemblies for its inlet and outlet pressure ports
US5354181A (en) Hydraulic piston pumps equipped with suction valve
CN103195680A (en) Hydraulic piston pump with a variable displacement throttle mechanism
USRE42633E1 (en) Spool valve for fluid control
CA1036421A (en) Method and valve face configuration for reducing noise in a hydraulic pump
US20040042906A1 (en) Long-piston hydraulic machines
FI64840B (en) HYDRAULISK MOTOR
US4896564A (en) Axial piston motor or pump with an arrangement to thrust the rotor against a shoulder of the shaft
EP4077936B1 (en) Axial piston pump with inclined plate
MXPA01001443A (en) Spool valve for fluid control
US4445423A (en) Hydraulic motor
DE3127610A1 (en) Axial-piston pump for two delivery streams
US20040042910A1 (en) Long-piston hydraulic machines
US4793239A (en) Axial piston motor or pump with an arrangement to thrust the rotor against a bearing of the shaft
CN101326365A (en) Hydrostatic piston engine with rotatable control disc
CN209959696U (en) Bearing bush subassembly and have its vehicle
US3844198A (en) Hydraulic motors and driving systems employing same
US4664018A (en) Axial piston motor or pump with an arrangement to thrust the medial shaft into a spherical bed of the outgoing shaft
JPS63280876A (en) Lubricating mechanism of swash plate type compressor
CN116201726A (en) Piston transmission structure and piston pump with same
US2025771A (en) Pump mechanism
EP1264985B1 (en) Axial piston pump with outer diameter inlet filling
CN116044698A (en) Piston pump with double freedom of movement
US4715266A (en) Rotary fluid energy converter
CN116241455A (en) Piston torque transmission structure and piston pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: TORVEC, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLEASMAN, VERNON;ALEXANDER, WARREN R;SIGNING DATES FROM 19990121 TO 19990122;REEL/FRAME:026169/0887

FPAY Fee payment

Year of fee payment: 12