JPS63280876A - Lubricating mechanism of swash plate type compressor - Google Patents

Lubricating mechanism of swash plate type compressor

Info

Publication number
JPS63280876A
JPS63280876A JP62114452A JP11445287A JPS63280876A JP S63280876 A JPS63280876 A JP S63280876A JP 62114452 A JP62114452 A JP 62114452A JP 11445287 A JP11445287 A JP 11445287A JP S63280876 A JPS63280876 A JP S63280876A
Authority
JP
Japan
Prior art keywords
swash plate
passage
suction
refrigerant
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114452A
Other languages
Japanese (ja)
Inventor
Hisao Kobayashi
久雄 小林
Hiroyuki Deguchi
出口 弘幸
Katsunori Kawai
河合 克則
Koji Okamoto
好司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP62114452A priority Critical patent/JPS63280876A/en
Publication of JPS63280876A publication Critical patent/JPS63280876A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable lubrication to be carried out by utilizing the lubricating oil mixed into a coolant gas, by providing a main suction passage through which returned coolant gas is introduced from the inlet of a compressor into a swash plate chamber, and an auxiliary suction passage through which the bottom of a housing is communicated with the swash plate chamber via a throttle. CONSTITUTION:When a swash plate 32 is turned with a drive shaft 26, a piston 36 reciprocates inside a cylinder core bore 12 via a ball joint 38. And, for instance, when the piston 36 moves to the left, a suction valve 42b fitted on the piston head part 36b on the rear side opens, so that the coolant gas is sucked inside the cylinder bore 12 on the right side. In this case, the coolant gas is sucked through a machinery body suction port 46 of a suction cylinder 44 formed in a rear housing 18 into an auxiliary suction passage 48b. Further, the sucked coolant gas is reversed from the bottom 48c of the auxiliary suction passage 48b, and is supplied to a main suction passage 48a. Thus, the lubricating oil separated from the coolant gas is reserved at the bottom part 48c, and the lubricating oil is supplied to respective bearings or the like through a throttle 52 via a small chamber 54 and a lubricating oil passage 56.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、斜板式圧縮機に関し、特に斜板の回転に従っ
てシリンダポア内を往復動するピストンにより、冷媒ガ
スをシリンダポア内に吸入して圧縮し、圧縮後の冷媒ガ
スを吐出室へ吐出する形式の斜板式圧縮機における機内
の潤滑機構に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a swash plate compressor, and in particular, a piston that reciprocates within the cylinder pore according to the rotation of the swash plate sucks refrigerant gas into a cylinder pore and compresses it. , relates to an internal lubrication mechanism in a swash plate compressor that discharges compressed refrigerant gas into a discharge chamber.

〔従来技術〕[Prior art]

斜板式圧縮機は、回転駆動軸上に固定れた斜板の回転に
依ってピストンをシリンダポア内で往復運動させ、冷媒
ガスの圧縮を行うことから、機内の回転動作部、摺動々
構部、特にラジアル及びスラスト軸受、ピストン摺動面
、シリンダ壁面、斜板とピストンとの係合部等は、潤滑
油の供給により、適正な潤滑状態に維持し、かつ潤滑油
による冷却作用によって、異常摩耗、焼付現象を防止す
ることが圧縮機の耐用性を確保するヒで必須とされる。
A swash plate compressor compresses refrigerant gas by reciprocating a piston within a cylinder pore by rotating a swash plate fixed on a rotary drive shaft. In particular, radial and thrust bearings, piston sliding surfaces, cylinder walls, and the engagement area between the swash plate and piston are maintained in a proper lubricated state by supplying lubricating oil, and the cooling effect of lubricating oil prevents abnormalities. Preventing wear and seizure phenomena is essential to ensure the durability of the compressor.

このために、従来より、斜板式圧′&4機では、冷媒流
体中に潤滑油を混入させ、該潤滑油を夫々の動作部に対
して供給する種々の機内潤滑機構が提供されている。例
えば、実開昭50−19002号公報や実開昭54−8
106号公報にはシリンダ底部に潤滑油貯溜室を設け、
また、回転斜板が固定された駆動軸の一端にオイルポン
プを取り付けて潤滑油貯溜室内に溜まった潤滑油を駆動
軸を介しt軸受等の所要部に供給するものが開示されて
いる。
To this end, various types of in-machine lubrication mechanisms have been conventionally provided for swash plate type pressurizers that mix lubricating oil into the refrigerant fluid and supply the lubricating oil to the respective operating parts. For example, Utility Model Application Publication No. 50-19002 and Utility Model Application No. 54-8
Publication No. 106 provides a lubricating oil storage chamber at the bottom of the cylinder,
Furthermore, an oil pump is disclosed that is attached to one end of a drive shaft to which a rotating swash plate is fixed, and supplies lubricating oil accumulated in a lubricating oil storage chamber to required parts such as a T-bearing via the drive shaft.

また、特開昭57−203883号公報に開示 された
斜板式圧縮機は、ピストンの作用面に吸入弁機構を有し
た頭上弁型のピストンを有した圧縮機で、シリンダボア
挟間の空間を冷媒ガスの吸入通路、吐出通路に形成する
と共にその吸入通路を形成する空間の底部を潤滑油の貯
溜室に形成し、且つ該潤滑油貯溜室を斜板室に連通させ
、斜板の回転に依って潤滑油を跳ね上げて動作要素に潤
滑油を供給する構成を備えている。また、頭上弁からシ
リンダポア内に冷媒ガスを吸入する際にシリンダポア内
を冷媒ガス中の潤滑油で潤滑することも可能に形成され
ていることがわかる。
Furthermore, the swash plate compressor disclosed in Japanese Patent Application Laid-open No. 57-203883 is a compressor that has an overhead valve type piston with a suction valve mechanism on the working surface of the piston, and the space between the cylinder bores is used for refrigerant gas. The bottom of the space forming the suction passage is formed as a lubricating oil storage chamber, and the lubricating oil storage chamber is communicated with the swash plate chamber, so that lubrication is achieved by rotation of the swash plate. It has a structure that splashes oil to supply lubricating oil to operating elements. Furthermore, it can be seen that the cylinder pore is configured such that when the refrigerant gas is sucked into the cylinder pore from the overhead valve, the inside of the cylinder pore can be lubricated with lubricating oil in the refrigerant gas.

〔解決すべき問題点と作用〕[Problems and effects to be solved]

然しなから、上述の前者の潤滑機構では、どうしても潤
滑油室としてのオイルパン及びオイルポンプ手段が必要
で、このために、圧縮機の外側体格がどうしても大型化
することから、車両の空調用圧縮機では、車両内におけ
る圧縮機の搭載場所が確保困難になると言う不具合があ
り、また、後者の潤滑機構では、シリンダボアの挟間に
冷媒吸入通路と潤滑油貯溜室とを確保しなければ、成ら
ないから、圧縮機の気筒数にどうしても制限が発生して
、気筒数を片側3気筒程度に制限しなければ成らないた
め、例えば、片側5気筒としたと、吸入、吐出の両冷媒
通路を充分に確保し難くなる不利がある。また、吸入、
吐出管がシリンダ端面から軸方向に突出した構造は、圧
縮機々体の軸方向の体長を増大化させ、やはり、車両へ
の取付は空間を増大することとなり、車両エンジン室内
でへの搭載を困難にする問題点がある。
However, the former lubrication mechanism described above requires an oil pan and oil pump means as a lubrication oil chamber, which inevitably increases the size of the outside of the compressor. However, in the latter case, there is a problem in that it is difficult to secure a place to mount the compressor in the vehicle, and the latter lubrication mechanism requires a refrigerant suction passage and a lubricating oil storage chamber to be secured between the cylinder bores. Therefore, the number of cylinders in the compressor is inevitably limited, and the number of cylinders must be limited to about 3 cylinders on each side.For example, if there are 5 cylinders on each side, both the intake and discharge refrigerant passages will be sufficiently It has the disadvantage of being difficult to secure. Also, inhalation,
The structure in which the discharge pipe protrudes in the axial direction from the cylinder end face increases the axial length of the compressor body, and installation in a vehicle also increases the space, making it difficult to install it in the vehicle engine compartment. There are issues that make it difficult.

依って、本発明は、このような不利や問題点を解消し、
可及的に小型化した斜板式圧縮機に適用可能な機内潤滑
機構を提供することを目的としたものである。
Therefore, the present invention eliminates such disadvantages and problems,
The purpose of this invention is to provide an in-machine lubrication mechanism that can be applied to a swash plate compressor that is as compact as possible.

〔解決手段と作用〕[Means of solution and action]

即ち、本発明によれば、シリンダブロック内の斜板室に
設けられ、駆動軸と共に回転する回転斜板と、その回転
斜板に押動されて多気筒シリンダボア内を往復運動する
ことにより冷媒の吸入、圧縮を行う複数のピストンと、
該ピストンの作用端面に設けられてピストンの吸入行程
時に開弁じて前記斜板室からシリンダボア内に冷媒ガス
を吸入可能にする頭上弁と、シリンダブロックの前後両
端に設けられ、圧縮後の冷媒ガスを前記シリンダボアか
ら受容する吐出室を有した前後のハウジングとを具備し
て成る斜板式圧縮機において、帰還冷媒を圧縮機入口か
ら前記斜板室に導入する主吸入冷媒通路と、前記主吸入
冷媒通路とは別の分岐路として形成され、前記前後のハ
ウジングの一方のハウジング内に底部を有し、該底部か
ら絞り通路を介して前記駆動軸及び斜板の回転機構部を
経由して前記斜板室に連通ずる副吸入冷媒通路とを具備
して構成され、前記副吸入冷媒通路中の冷媒に混入した
潤滑油で前記駆動軸及び斜板の回転機構部を潤滑するよ
うに構成した斜板式圧縮機の潤滑機構を提供し、吸入冷
媒は主吸入冷媒通路から主として斜板室を経由してシリ
ンダボア内に吸入させ、副吸入冷媒通路は、潤滑油の供
給に供し、これによって、シリンダブロックの両端面に
装着されるハウジングの少なくとも一方のハウジングに
は冷媒吸入室を設ける必要をなくして、空間削減を図り
、圧縮機々体の小型化を達成するものである。しかも、
副吸入冷媒通路は、斜板が固定される回転駆動軸内に貫
通、延設することにより、圧縮機の前方部と後方部とに
有る回転機構等の諸動作部分に充分に潤滑油を供給し得
るようにしている。以下、本発明を、添付図面に示す実
施例に基づいて、更に詳細に説明する。
That is, according to the present invention, a rotating swash plate is provided in a swash plate chamber in a cylinder block and rotates together with the drive shaft, and the refrigerant is sucked by being pushed by the rotating swash plate and reciprocating within the multi-cylinder cylinder bore. , a plurality of pistons that perform compression;
An overhead valve is provided on the working end surface of the piston and opens during the suction stroke of the piston to allow refrigerant gas to be sucked into the cylinder bore from the swash plate chamber; A swash plate compressor comprising front and rear housings each having a discharge chamber received from the cylinder bore, the main suction refrigerant passage introducing return refrigerant from the compressor inlet into the swash plate chamber; is formed as another branch passage, and has a bottom part in one of the front and rear housings, and is connected to the swash plate chamber from the bottom part via the drive shaft and the rotating mechanism part of the swash plate via the throttle passage. A swash plate compressor is provided with a auxiliary suction refrigerant passage that communicates with the auxiliary suction refrigerant passage, and is configured to lubricate the drive shaft and the rotating mechanism portion of the swash plate with lubricating oil mixed in the refrigerant in the auxiliary suction refrigerant passage. The suction refrigerant is sucked into the cylinder bore from the main suction refrigerant passage mainly through the swash plate chamber, and the sub suction refrigerant passage supplies lubricating oil. This eliminates the need to provide a refrigerant suction chamber in at least one of the housings, thereby reducing space and downsizing the compressor body. Moreover,
By penetrating and extending into the rotational drive shaft to which the swash plate is fixed, the auxiliary suction refrigerant passage supplies sufficient lubricating oil to various operating parts such as the rotating mechanism in the front and rear parts of the compressor. I'm trying to do what I can. Hereinafter, the present invention will be explained in more detail based on embodiments shown in the accompanying drawings.

〔実施例〕〔Example〕

第1図は、本発明に係る潤滑機構を具備した斜板式圧縮
機の1実施例の縦断面図、第2図は、同実施例による斜
板式圧縮機の一方の側面図、第3図は、他の実施例の縦
断面図である。
FIG. 1 is a longitudinal sectional view of an embodiment of a swash plate compressor equipped with a lubrication mechanism according to the present invention, FIG. 2 is a side view of one side of the swash plate compressor according to the same embodiment, and FIG. FIG. 2 is a vertical cross-sectional view of another embodiment.

さて、第1図及び第2図を参照すると、本発明に係る斜
板式圧縮機は、略円筒形のシリンダブロック10を存し
、このシリンダブロック10の中心軸線の回りに複数の
シリンダボア12が該中心軸線と平行に、且つ互いに平
行に穿設されておりこれらのシリンダボア12はシリン
ダブロック10の前後両端面に開口した貫通孔に形成さ
れている。シリンダブロック10の前後の端面には弁板
14を介してフロントハウジング16、リヤハウジング
18が、通しボルト11の共締めにより、密封取付けさ
れ、そのフロントハウジング16内には環状の前方吐出
室16aが形成されており、他方、リヤハウジング18
には同じく環状の後方吐出室18aが形成されている。
Now, referring to FIGS. 1 and 2, the swash plate compressor according to the present invention includes a substantially cylindrical cylinder block 10, and a plurality of cylinder bores 12 are arranged around the central axis of the cylinder block 10. These cylinder bores 12 are bored parallel to the central axis and parallel to each other, and are formed as through holes opening in both the front and rear end surfaces of the cylinder block 10. A front housing 16 and a rear housing 18 are hermetically attached to the front and rear end faces of the cylinder block 10 via a valve plate 14 by jointly tightening through bolts 11, and inside the front housing 16 is an annular front discharge chamber 16a. On the other hand, the rear housing 18
A similarly annular rear discharge chamber 18a is formed in the rear discharge chamber 18a.

そして両畦出室16a、18aは、それぞれの弁板14
の該吐出室側に付設された吐出弁20a、22aが開口
することにより、シリンダボア12から圧縮された冷媒
ガスを受容する高圧の冷媒ガス室として設けられている
もので、図示されていない吐出口から圧縮機外の空調回
路に圧縮冷媒を送出する。さて、シリンダブロック10
の中心部の前方と後方とには軸受保持部10a、10b
が設けられ、この軸受保持部10a、10bに保持され
たラジアル軸受24a、24bに依って駆動軸26が回
転可能に支承され、該駆動軸26の前端はフロントハウ
ジング16の中心に設けられた軸封室27を貫通して前
方に延長し、外部の回転駆動源、例えば車両エンジンか
らの駆動力で回転駆動されるようになっている。軸封室
27の内部には軸封装置30が備えられている。駆動軸
26の略中央部には斜板32が適宜の固定手段、例えば
、喫手段等により固着れ、駆動軸26と一体に斜板室2
8内で回転可能になっており、フロント側及びリヤ側ス
ラスト軸受34a、34bを介してシリンダブロック1
0の軸受保持部10a、10bの端面に支承されてい。
And both ridge projecting chambers 16a, 18a are connected to each valve plate 14.
When the discharge valves 20a and 22a attached to the discharge chamber side open, the high-pressure refrigerant gas chamber receives compressed refrigerant gas from the cylinder bore 12. The compressed refrigerant is sent from the compressor to the air conditioning circuit outside the compressor. Now, cylinder block 10
Bearing holding parts 10a and 10b are provided at the front and rear of the center of the
A drive shaft 26 is rotatably supported by radial bearings 24a and 24b held by the bearing holders 10a and 10b, and the front end of the drive shaft 26 is connected to a shaft provided at the center of the front housing 16. It extends forward through the sealed chamber 27 and is rotationally driven by a driving force from an external rotational drive source, for example, a vehicle engine. A shaft sealing device 30 is provided inside the shaft sealing chamber 27 . A swash plate 32 is fixed to approximately the center of the drive shaft 26 by appropriate fixing means, such as a cutting means, and is integrally attached to the drive shaft 26 in the swash plate chamber 2.
The cylinder block 1 is rotatable within the cylinder block 8 through front and rear thrust bearings 34a and 34b.
It is supported on the end faces of the bearing holding parts 10a and 10b of 0.

上記斜板32が駆動軸26と共に回転すると、シリンダ
ブロック10の複数の各シリンダボア12内に摺動可能
に密嵌されたピストン36は、ボール継手38を介して
軸方向の作動力を受け、それぞれのシリンダボア12内
で往復動作する。つまり、シリンダボア12内で後述の
ように、冷媒ガスの吸入と圧縮及び圧縮後の冷媒ガスの
吐出の三作甲を順次に繰り返すのである。ここで、ピス
トン36はフロント側及びリヤ側の2つの頭部36a、
36bと、その両g36a、36bの中央部に形成さ2
1.た斜板係合部36cとを有してなり、後者の斜板係
合部36cにおいて、既述のようにボール継手38を介
して斜板32に係合し、また、前者のピストン頭部36
a、36bには適数個づつ小径の軸方向の冷媒吸入孔4
0が穿設され、ピストン作用面に装着された吸入弁42
a、42bと協働して冷媒ガスを吸入側のシリンダボア
12内に吸入する。つまり、第1図に図示のピストン3
6が左方に摺動する過程では、リヤ側のピストン頭部3
6bにおけるピストン作用面に装着された吸入弁42b
が開弁じて冷媒吸入孔40から右側のシリンダボア12
内に冷媒ガスが吸入されるのである。さて、該冷媒ガス
は外部の空調回路から帰還すると、圧縮機のリヤハウジ
ング18に縦礼状に形成された吸入筒44の上端に開口
された機体吸入口46から吸入筒44内の副吸入冷媒通
路48bに向けてる。この副吸入冷媒通路48bは、吸
入筒44内に縦方向に延設されており、主吸入冷媒通路
48aとは機体吸入口46の直下近くで相互に分岐した
構造で穿設されている。主吸入冷媒通路48aは、縦方
向に延設された副吸入冷媒通路48bに対して略直角方
向に開口し、シリンダブロック10の膨出した通路壁5
0の内部を延長して、前述の斜板室28に連通している
。つまり、主吸入冷媒通路48aが帰還冷媒ガスの主た
る吸入通路として設けられ、機体吸入口46から副吸入
冷媒通路48bに入った冷媒ガスも吸入筒44内に該副
吸入冷媒通路48bの底部48Cに衝突すると、反転し
て上昇し、主吸入冷媒通路48aを通って結局は斜板室
28に吸入されるように構成されている。上記副吸入冷
媒通路48bは、上述のように、冷媒ガスの衝突、反転
がその底部48Cにおいて生ずるように、比較的長孔構
造を有し、該底部48Cは、リヤハウジング18に形成
された絞り52を通って小室54に連通し、該小室54
はリヤ側の弁板14の中央孔56bを介して駆動軸26
の中心に穿設された潤滑油通路56に、かつ、リヤ側ラ
ジアル軸受24bとリヤ側スラスト軸受34bとに連通
している。上記潤滑油通路56は駆動軸内を延長してフ
ロントハウジング16の軸封室27に開口し、更にフロ
ント側の弁板14の中央孔56aを介してフロント側ラ
ジアル軸受24aとフロント側スラスト軸受34aに連
通している。
When the swash plate 32 rotates together with the drive shaft 26, the pistons 36, which are slidably and tightly fitted into each of the plurality of cylinder bores 12 of the cylinder block 10, receive an axial operating force via the ball joint 38. It reciprocates within the cylinder bore 12 of the cylinder. That is, as will be described later, the three operations of suction and compression of refrigerant gas and discharge of the compressed refrigerant gas are sequentially repeated within the cylinder bore 12. Here, the piston 36 has two heads 36a on the front side and the rear side,
36b and both g36a, 2 formed in the center of 36b.
1. The latter swash plate engaging portion 36c engages with the swash plate 32 via the ball joint 38 as described above, and the former piston head 36
A, 36b are provided with an appropriate number of small diameter axial refrigerant suction holes 4.
A suction valve 42 is provided with 0 and is mounted on the piston action surface.
a and 42b to suck refrigerant gas into the cylinder bore 12 on the suction side. That is, the piston 3 shown in FIG.
6 slides to the left, the rear piston head 3
Suction valve 42b attached to the piston action surface in 6b
When the valve is opened, the cylinder bore 12 on the right side flows from the refrigerant suction hole 40.
Refrigerant gas is sucked into the tank. Now, when the refrigerant gas returns from the external air conditioning circuit, it passes through the airframe suction port 46 opened at the upper end of the suction cylinder 44 formed vertically in the rear housing 18 of the compressor and into the sub-suction refrigerant passage in the suction cylinder 44. I'm heading towards 48b. The auxiliary suction refrigerant passage 48b extends vertically within the suction cylinder 44, and is bifurcated from the main suction refrigerant passage 48a near directly below the body suction port 46. The main suction refrigerant passage 48a opens substantially perpendicularly to the vertically extending auxiliary suction refrigerant passage 48b, and the passage wall 5 of the cylinder block 10 bulges out.
0 is extended and communicated with the aforementioned swash plate chamber 28. In other words, the main suction refrigerant passage 48a is provided as the main suction passage for return refrigerant gas, and the refrigerant gas that has entered the auxiliary suction refrigerant passage 48b from the body suction port 46 also flows into the suction cylinder 44 to the bottom 48C of the auxiliary suction refrigerant passage 48b. When the refrigerant collides with the refrigerant, it reverses and rises, passing through the main suction refrigerant passage 48a and eventually being sucked into the swash plate chamber 28. As described above, the sub-intake refrigerant passage 48b has a relatively long hole structure so that collision and reversal of the refrigerant gas occur at the bottom 48C, and the bottom 48C is formed by a throttle formed in the rear housing 18. 52 to communicate with a small chamber 54 , and the small chamber 54
is connected to the drive shaft 26 through the center hole 56b of the rear valve plate 14.
It communicates with a lubricating oil passage 56 bored in the center of the rear radial bearing 24b and the rear thrust bearing 34b. The lubricating oil passage 56 extends inside the drive shaft, opens into the shaft sealing chamber 27 of the front housing 16, and further passes through the center hole 56a of the front valve plate 14 to the front radial bearing 24a and the front thrust bearing 34a. is connected to.

ここで、機体吸入孔46から流入した冷媒ガスについて
更に注目すると、この冷媒ガス中には潤滑油が混入され
ており、従って、吸入筒44の副吸入冷媒通路48bに
直進した冷媒ガスが、底部48cで絞り52の絞り効果
により、流量を制限されるから、多くのガスは底部48
cに衝突し、反転する。そして、その衝突、反転過程で
、冷媒ガス中の潤滑油分はガス体より慣性が大きいため
に冷媒ガスから分離され、斯くして混入潤滑油分が減少
した冷媒ガスが、反転して主吸入冷媒通路48aへ流動
することとなる。そして、吸入筒44の底部48cには
分離した潤滑油が溜まる。
Here, if we pay further attention to the refrigerant gas that has flowed in from the airframe suction hole 46, lubricating oil is mixed in this refrigerant gas. Since the flow rate is restricted by the throttle effect of the throttle 52 at 48c, most of the gas flows to the bottom 48.
It collides with c and is reversed. During the collision and reversal process, the lubricating oil content in the refrigerant gas is separated from the refrigerant gas because it has a larger inertia than the gas body, and the refrigerant gas with the mixed lubricating oil content reduced in this way reverses and enters the main suction. The refrigerant will flow to the refrigerant passage 48a. Separated lubricating oil accumulates at the bottom 48c of the suction cylinder 44.

勿論、僅かな冷媒ガスは、絞り52を通って、小室54
を通過し、更にラジアル軸受24bとスラスト軸受34
bとの隙間を経て、斜板室28に達する。
Of course, a small amount of refrigerant gas passes through the throttle 52 and enters the small chamber 54.
radial bearing 24b and thrust bearing 34.
It reaches the swash plate chamber 28 through the gap with b.

また、主吸入冷媒通路48aの冷媒ガスは、斜板室28
に達して該斜板室28内に拡散し、ピストン36による
吸入作用を受けて、シリンダボア12内に吸入されるこ
ととなる。ここで、斜板室28内の冷媒ガスは大きな斜
板室28に拡散する過程で圧力を減じるため、吸入筒4
4に機体吸入口46から流入した冷媒ガスの圧力が大き
い関係にある。つまり、副吸入冷媒通路4.8 bの圧
力が斜板室28内の圧力より高い状態にある。
Further, the refrigerant gas in the main suction refrigerant passage 48a is transferred to the swash plate chamber 28.
, and diffuses into the swash plate chamber 28 , receives a suction action from the piston 36 , and is sucked into the cylinder bore 12 . Here, in order to reduce the pressure of the refrigerant gas in the swash plate chamber 28 in the process of diffusing into the large swash plate chamber 28, the suction cylinder 4
The pressure of the refrigerant gas flowing in from the airframe intake port 46 is high. In other words, the pressure in the sub-suction refrigerant passage 4.8b is higher than the pressure in the swash plate chamber 28.

このように、圧力差が存在することから、前述した底部
48cに溜まった潤滑油は、該圧力差に基づく押圧力を
受け、絞り52を経て小室54に流入し、そこを充満す
ると共にリヤ側のラジアル及びスラスト軸受24b及び
34bを潤滑しながら、斜板室28に入り、該室28の
底に溜まる。
In this way, since there is a pressure difference, the lubricating oil accumulated in the bottom portion 48c is subjected to a pressing force based on the pressure difference, flows into the small chamber 54 through the throttle 52, fills the small chamber 54, and flows toward the rear side. The oil enters the swash plate chamber 28 while lubricating the radial and thrust bearings 24b and 34b, and accumulates at the bottom of the chamber 28.

また、潤滑油は同時に小室54から駆動軸26の潤滑通
路56を進んで、フロント側にも達し、フロント側のラ
ジアル及びスラスト軸受24a及び34aを潤滑する。
Further, the lubricating oil simultaneously advances from the small chamber 54 through the lubricating passage 56 of the drive shaft 26, reaches the front side, and lubricates the radial and thrust bearings 24a and 34a on the front side.

即ち、圧縮機内の回転要素の潤滑を行うのである。なお
、斜板室28内では主吸入冷媒通路48aを経由して流
入した冷媒ガスにも潤滑油が依然として含まれており、
しかも上述した副吸入冷媒通路48bの系統から斜板室
28に流入して室底に溜まった潤滑油が、斜板の回転で
t8ね上げられることとなり、斜板室28内には潤滑油
分が充分に存在するので、それが、斜板32とピストン
36との係合部のポール継手38等の動作要素やその周
囲の表面も潤滑し、更に冷媒ガスと共にピストン36の
吸入孔40からシリンダポア12内にも吸入されてシリ
ンダボア壁面とピストン摺動面を潤滑することとなる。
That is, it lubricates the rotating elements within the compressor. Note that within the swash plate chamber 28, the refrigerant gas that has entered via the main suction refrigerant passage 48a still contains lubricating oil.
Moreover, the lubricating oil that has flowed into the swash plate chamber 28 from the above-mentioned sub-suction refrigerant passage 48b and accumulated at the bottom of the chamber is lifted up by the rotation of the swash plate at t8, so that there is sufficient lubricating oil in the swash plate chamber 28. Since it exists in It is also sucked into the cylinder bore wall and the piston sliding surface to lubricate it.

潤滑油はその後、圧縮された冷媒ガスと一諸にシリンダ
ボア12から吐出室16a、f8aへ吐出され、高圧冷
媒ガスと共に外部空調回路に相溶状態で送出される。な
お、上述の潤滑油の潤滑過程で、該潤滑油は元々冷媒ガ
スで低温状態になされているから、潤滑と共に動作要素
類に冷却効果をも付与するのである。
The lubricating oil is then discharged together with the compressed refrigerant gas from the cylinder bore 12 to the discharge chambers 16a, f8a, and is sent to the external air conditioning circuit in a compatible state together with the high-pressure refrigerant gas. In addition, in the above-mentioned lubrication process, the lubricating oil is originally brought to a low temperature state by the refrigerant gas, so it not only lubricates but also provides a cooling effect to the operating elements.

以上の説明から明らかなように、本実施例に係る斜板式
圧縮機の潤滑機構によれば、帰還冷媒ガスの吸入通路系
統を斜板室に直結する主吸入冷媒通路48aと、それと
は別の副吸入冷媒通路48bとに分岐させて、主吸入冷
媒通路48aを主として冷媒ガスの吸入に供し、副吸入
冷媒通路48bは冷媒ガス中の潤滑油を分離させて、圧
縮機内の動作要素、特に軸受類に潤滑油を供給するため
の通路手段としたから、従来用いられオイルポンプを使
用することなく、しかも、リヤハウジング18の一部に
副吸入冷媒通路48b、底部48G、絞り52を設ける
だけで、外形寸法の拡大を極力抑制し、駆動軸26に潤
滑油通路56を貫通させて潤滑油の分配を図る潤滑機構
としたから、圧縮機の小型化を維持しながら、なおかつ
、機内潤滑を巧みに達成しているのである。
As is clear from the above description, according to the lubrication mechanism of the swash plate compressor according to the present embodiment, the suction passage system for the return refrigerant gas is connected to the main suction refrigerant passage 48a directly connected to the swash plate chamber, and the main suction refrigerant passage 48a is connected directly to the swash plate chamber. The main suction refrigerant passage 48a is mainly used for suction of refrigerant gas, and the auxiliary suction refrigerant passage 48b is used to separate lubricating oil from the refrigerant gas, and is used to separate operating elements in the compressor, especially bearings. Since this is a passage means for supplying lubricating oil to the rear housing 18, there is no need to use a conventional oil pump, and the sub-intake refrigerant passage 48b, the bottom 48G, and the throttle 52 are simply provided in a part of the rear housing 18. Since the lubrication mechanism is designed to suppress the expansion of external dimensions as much as possible and distribute the lubricant by passing the lubricant passage 56 through the drive shaft 26, it is possible to maintain the downsizing of the compressor while skillfully providing internal lubrication. It has been achieved.

次に本発明に係る他の実施1例を示す第3図を参照する
と、ここに図示された実施例は、前述の第1図、第2図
の実施例における主吸入冷媒J路48aの一部に流量調
整弁60を設けたことを除いて構造的には違いは無い。
Next, referring to FIG. 3 showing another embodiment according to the present invention, the embodiment illustrated here is a part of the main suction refrigerant J path 48a in the embodiment of FIGS. 1 and 2 described above. Structurally, there is no difference except that a flow rate adjustment valve 60 is provided in the section.

上記流量調整弁60は、シリンダブロック10の外部に
立設した中空の弁ハウジング62を有し、該弁ハウジン
グ62は上部は大気中に開口し、また内部にフランジ付
き弁体64をばね66で下方に押圧付勢して、該弁体6
4の下部の弁作用部を上下動可能に主吸入冷媒通路48
a内に突出させている。また、該弁体64のフランジ6
5とシリンダブロック10の外周との間にベローズ68
を伸縮自在に張設して吸入圧力室70を形成し、この吸
入圧力室70をシリンダブロック10に穿設した通孔7
2を介して主吸入冷媒通路48aに連通させた構成とし
ている。
The flow rate regulating valve 60 has a hollow valve housing 62 erected outside the cylinder block 10 , the upper part of the valve housing 62 is open to the atmosphere, and a flanged valve body 64 is mounted inside with a spring 66 The valve body 6 is pressed downward.
The main suction refrigerant passage 48 allows the valve operating part at the bottom of 4 to be moved up and down.
It is made to protrude inside a. Further, the flange 6 of the valve body 64
5 and the outer periphery of the cylinder block 10.
are extended in a flexible manner to form a suction pressure chamber 70, and this suction pressure chamber 70 is connected to a through hole 7 bored in the cylinder block 10.
2 and communicates with the main suction refrigerant passage 48a.

このような流量調整弁60は、大気圧とばね66の付勢
力に対する吸入冷媒ガスの圧力の変化を感知して弁体6
4の主吸入冷媒通路48a内への突出量を調節し、その
結果、主吸入冷媒通路48aの通路断面積を増減調節す
るものである。
Such a flow rate regulating valve 60 senses the change in the pressure of the suction refrigerant gas with respect to the atmospheric pressure and the biasing force of the spring 66, and adjusts the valve body 6 accordingly.
4 into the main suction refrigerant passage 48a, and as a result, the passage cross-sectional area of the main suction refrigerant passage 48a is increased or decreased.

こうして、主吸入冷媒通路48aの通路断面積を増減調
節すると、空調回路の冷房負荷の増減に応じて圧縮冷媒
の吐出量を調節し得るもので、冷房負荷が大きいときに
は、帰還冷媒の流入量が多く、吸入圧が大きいから流量
調整弁60の吸入室70の圧力が太き(、大気圧とばね
66の付勢力に抗して弁体64は主吸入冷媒通路48a
から退出させ、通路断面積を大きく保つから圧縮機内に
多量の冷媒ガスが吸入され、圧縮機の吐出容量も大とな
る。他方、冷房負荷が小となると、吸入圧が減少し、流
量調整弁60の吸入室70の圧力が小さくなるから、主
吸入冷媒通路48aへの弁体64の吐出量が増加し、通
路断面積が減少するから、圧縮機への吸入ガス量が減少
し、故に圧縮機の吐出容量は低下することとなる。つま
り、冷房負荷に対応した圧縮機吐出容量が得られること
になる。
In this way, by increasing or decreasing the passage cross-sectional area of the main suction refrigerant passage 48a, the discharge amount of the compressed refrigerant can be adjusted according to the increase or decrease in the cooling load of the air conditioning circuit, and when the cooling load is large, the inflow amount of the return refrigerant can be adjusted. Because the suction pressure is large, the pressure in the suction chamber 70 of the flow rate adjustment valve 60 is large (against the atmospheric pressure and the biasing force of the spring 66, the valve body 64
Since the refrigerant gas is discharged from the compressor and the cross-sectional area of the passage is kept large, a large amount of refrigerant gas is sucked into the compressor, and the discharge capacity of the compressor is also increased. On the other hand, when the cooling load becomes small, the suction pressure decreases, and the pressure in the suction chamber 70 of the flow rate adjustment valve 60 decreases, so the discharge amount of the valve body 64 to the main suction refrigerant passage 48a increases, and the passage cross-sectional area decreases. Since this decreases, the amount of gas sucked into the compressor decreases, and therefore the discharge capacity of the compressor decreases. In other words, the compressor discharge capacity corresponding to the cooling load can be obtained.

ここで、本実施例の圧縮機の特徴として、流量調整弁6
0の弁体64が主吸入冷媒通路48aの通路断面積を減
少させると、吸入冷媒ガスの斜板室28への流量が減少
して斜板室28内の圧力は低下し、そのとき、主吸入冷
媒通路48aからの潤滑油の流入量も減少するが、他方
、副吸入冷媒通路48bの底部48Cには流量調整弁6
0に影響されることなく、冷媒ガスが流入して、底部4
8Cに衝突、反転し、潤滑油を分離させている。
Here, as a feature of the compressor of this embodiment, the flow rate regulating valve 6
When the zero valve body 64 reduces the passage cross-sectional area of the main suction refrigerant passage 48a, the flow rate of the suction refrigerant gas to the swash plate chamber 28 decreases, and the pressure inside the swash plate chamber 28 decreases. The inflow amount of lubricating oil from the passage 48a also decreases, but on the other hand, a flow rate regulating valve 6 is provided at the bottom 48C of the sub-suction refrigerant passage 48b.
Refrigerant gas flows into the bottom 4 without being affected by
It collides with 8C, flips over, and separates the lubricating oil.

また、副吸入冷媒通路48bの底部48Cでは冷媒ガス
流入量が、流量調整弁60により減少させられることも
無いから、斜板室28よりも圧力は高く維持される。斯
くして、底部48cに溜まる潤滑油は、この副吸入冷媒
通路48bの底部48cと斜板室28との圧力差により
、絞り52、小室54を介し、また駆動軸26の潤滑油
通路56を介して夫々の軸受類やボール継手等に圧送さ
れて潤滑を行い、また、究極的には斜板室28を経由し
てシリンダボア12内に入り、シリンダボア壁面とピス
トン表面とを潤滑することとなる。従って、流量調整弁
60が設けられていることにより、圧縮機の吐出容量を
冷房負荷に見合って調節しながら、機内の潤滑は、副吸
入冷媒通路48bの系統からの潤滑油で適正に達成し得
るのである。
Further, since the amount of refrigerant gas flowing into the bottom portion 48C of the sub-suction refrigerant passage 48b is not reduced by the flow rate adjustment valve 60, the pressure is maintained higher than that in the swash plate chamber 28. In this way, the lubricating oil that accumulates in the bottom 48c flows through the throttle 52, the small chamber 54, and the lubricating oil passage 56 of the drive shaft 26 due to the pressure difference between the bottom 48c of the sub-suction refrigerant passage 48b and the swash plate chamber 28. The oil is then pumped to each bearing, ball joint, etc. for lubrication, and ultimately enters the cylinder bore 12 via the swash plate chamber 28 to lubricate the cylinder bore wall and piston surface. Therefore, by providing the flow rate adjustment valve 60, the discharge capacity of the compressor can be adjusted in accordance with the cooling load, and the interior of the machine can be properly lubricated with the lubricating oil from the system of the sub-suction refrigerant passage 48b. You get it.

以上、本発明を2つの実施例に基づいて説明したが、こ
れらに対し、本発明の潤滑機構の思想に基づき更に他の
実施例としたことも可能であり、例えば、副吸入冷媒通
路48b内に金網等のじゃま板を設けて、冷媒ガスと潤
滑油との分離を促進するようにしてもよい。
Although the present invention has been described above based on two embodiments, it is also possible to provide other embodiments based on the idea of the lubrication mechanism of the present invention. A baffle plate such as a wire mesh may be provided to promote separation of the refrigerant gas and lubricating oil.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、斜板式圧縮機における機内の潤
滑に当たり、帰還冷媒ガスの吸入系統を主、副2つの吸
入冷媒通路に分岐配置し、主吸入冷媒通路は冷媒ガスを
斜板室経由でシリンダボア内に吸入する系統に構成し、
副吸入冷媒通路は主に潤滑油を帰還冷媒ガスから分離し
て、機内の軸受等の回転動作要素や摺動部分、要素類に
潤滑油の供給を行うように構成したから、圧縮機々内の
潤滑をポンプレスに潤滑すると共に圧縮機の外形形状を
拡張することなく、むしろ小型化を図りつつ、適正潤滑
を図る潤滑機構を提供し得るという効果を奏するのであ
る。
As described above, according to the present invention, for internal lubrication in a swash plate compressor, the return refrigerant gas suction system is arranged branched into two main and auxiliary suction refrigerant passages, and the main suction refrigerant passage supplies refrigerant gas via the swash plate chamber. Constructed into a system that inhales into the cylinder bore,
The auxiliary suction refrigerant passage is designed to mainly separate lubricating oil from the return refrigerant gas and supply lubricating oil to rotating elements such as bearings, sliding parts, and elements inside the compressor. This has the effect that it is possible to provide a lubrication mechanism that can lubricate the compressor without a pump, and can achieve appropriate lubrication while reducing the size of the compressor without expanding the external shape of the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る潤滑機構を具備した斜板式圧縮
機の1実施例の縦断面図、第2図は、同実施例による斜
板式圧縮機の一方の側面図、第3図は、他の実施例の縦
断面図。 10・・・シリンダブロック、 12・・・シリンダボア、 14・・・弁板、 16・・・フロントハウジング、 16a・・・フロント吐出室、 18・・・リヤハウジング、 18a・・・リヤ吐出室、 24a、24b・・・フロント及びリヤ側ラジアル軸受
、 26・・・駆動軸、 28・・・斜板室、 32・・・斜板、 34a、34b・・・フロント及びリヤ側スラスト軸受
、 36・・ ・ピストン、 40・・・吸入孔、 42a、42b・−−吸入弁、 44・・・吸入筒、 46、・・・機体吸入口、 48a・・・主吸入冷媒通路、 48b・・・副吸入冷媒通路、 48C・・・底部、 52・ ・ ・絞り、 54・・・小室、 56・・・潤滑油通路、 60・・・流量調整弁。 俸1回 第2図
FIG. 1 is a longitudinal sectional view of an embodiment of a swash plate compressor equipped with a lubrication mechanism according to the present invention, FIG. 2 is a side view of one side of the swash plate compressor according to the same embodiment, and FIG. , a vertical cross-sectional view of another embodiment. DESCRIPTION OF SYMBOLS 10... Cylinder block, 12... Cylinder bore, 14... Valve plate, 16... Front housing, 16a... Front discharge chamber, 18... Rear housing, 18a... Rear discharge chamber, 24a, 24b...Front and rear side radial bearings, 26...Drive shaft, 28...Swash plate chamber, 32...Swash plate, 34a, 34b...Front and rear side thrust bearings, 36...・Piston, 40... Suction hole, 42a, 42b... Suction valve, 44... Suction cylinder, 46,... Aircraft suction port, 48a... Main suction refrigerant passage, 48b... Sub suction Refrigerant passage, 48C... bottom, 52... throttle, 54... small chamber, 56... lubricating oil passage, 60... flow rate adjustment valve. Salary 1st Figure 2

Claims (8)

【特許請求の範囲】[Claims] 1. シリンダブロック内の斜板室に設けられ、駆動軸
と共に回転する回転斜板と、その回転斜板に押動されて
多気筒シリンダボア内を往復運動することにより冷媒の
吸入、圧縮を行う複数のピストンと、該ピストンの作用
端面に設けられてピストンの吸入行程時に開弁して前記
斜板室からシリンダボア内に冷媒ガスを吸入可能にする
頭上弁と、シリンダブロックの前後両端に設けられ、圧
縮後の冷媒ガスを前記シリンダボアから受容する吐出室
を有した前後のハウジングとを具備して成る斜板式圧縮
機において、帰還冷媒を圧縮機入口から前記斜板室に導
入する主吸入冷媒通路と、前記主吸入冷媒通路とは別の
分岐路として形成され、前記前後のハウジングの一方の
ハウジング内に底部を有し、該底部から絞り通路を介し
て前記駆動軸及び斜板の回転機構部を経由して前記斜板
室に連通する副吸入冷媒通路とを具備して構成され、前
記副吸入冷媒通路中の冷媒に混入した潤滑油で前記駆動
軸及び斜板の回転機構部を潤滑するように構成した斜板
式圧縮機の潤滑機構。
1. A rotating swash plate that is installed in a swash plate chamber in the cylinder block and rotates together with the drive shaft, and a plurality of pistons that suck and compress refrigerant by being pushed by the rotating swash plate and reciprocating within the multi-cylinder cylinder bore. an overhead valve that is provided on the working end surface of the piston and opens during the suction stroke of the piston to allow refrigerant gas to be sucked into the cylinder bore from the swash plate chamber; A swash plate compressor comprising front and rear housings each having a discharge chamber for receiving gas from the cylinder bore, the main suction refrigerant passage introducing return refrigerant from the compressor inlet into the swash plate chamber, and the main suction refrigerant. It is formed as a branch path separate from the passage, and has a bottom in one of the front and rear housings, and the slant is connected from the bottom through the throttle passage and through the rotation mechanism of the drive shaft and swash plate. A swash plate type compression comprising a sub-suction refrigerant passage communicating with a plate chamber, and configured to lubricate the drive shaft and the rotating mechanism portion of the swash plate with lubricating oil mixed in the refrigerant in the sub-suction refrigerant passage. Machine lubrication mechanism.
2. 前記主冷媒吸入通路は、前記圧縮機入口における
冷媒流れ方向に対して略直角方向に延設されて、前記斜
板に連通するように形成れ、前記副吸入冷媒通路は、前
記圧縮機入口から前記底部まで冷媒流れ方向に延設され
た略直線通路に形成されていることを特徴とした特許請
求の範囲第1項に記載の斜板式圧縮機の潤滑機構。
2. The main refrigerant suction passage extends substantially perpendicularly to the refrigerant flow direction at the compressor inlet and is formed to communicate with the swash plate, and the auxiliary refrigerant suction passage extends from the compressor inlet. The lubrication mechanism for a swash plate compressor according to claim 1, wherein the lubrication mechanism is formed as a substantially straight passage extending in the refrigerant flow direction to the bottom.
3. 前記副吸入冷媒通路は、前記底部に潤滑油溜めを
備えた長尺通路に形成されていることを特徴とした特許
請求の範囲第1項に記載の斜板式圧縮機の潤滑機構。
3. 2. The lubrication mechanism for a swash plate compressor according to claim 1, wherein the sub-suction refrigerant passage is formed as a long passage having a lubricating oil reservoir at the bottom.
4. 前記主吸入冷媒通路は、その通路内に流量調整弁
を備えていることを特徴とした特許請求の範囲第1項に
記載の斜板式圧縮機の潤滑機構。
4. The lubrication mechanism for a swash plate compressor according to claim 1, wherein the main suction refrigerant passage is provided with a flow rate regulating valve therein.
5. 前記絞り通路は、前記後部のハウジング内に形成
された細い流体流路から成る特許請求の範囲第5項に記
載の斜板式圧縮機の潤滑機構。
5. 6. The lubrication mechanism for a swash plate compressor according to claim 5, wherein said throttle passage comprises a narrow fluid flow path formed within said rear housing.
6. 前記副吸入冷媒通路は、前記圧縮機入口と前記底
部との間に金網製のじゃま板を備えていることを特徴と
した特許請求の範囲第1項に記載の斜板式圧縮機の潤滑
機構。
6. The lubrication mechanism for a swash plate compressor according to claim 1, wherein the sub-suction refrigerant passage includes a baffle plate made of wire mesh between the compressor inlet and the bottom.
7. 前記副吸入冷媒通路が、前記駆動軸及び斜板の回
転機構部の駆動軸を支持するラジアル軸受と、斜板を支
持するスラスト軸受を経由して設けられたことを特徴と
した特許請求の範囲第1項に記載の斜板式圧縮機の潤滑
機構。
7. Claims characterized in that the auxiliary suction refrigerant passage is provided via a radial bearing that supports the drive shaft of the rotation mechanism section of the drive shaft and swash plate, and a thrust bearing that supports the swash plate. A lubrication mechanism for a swash plate compressor according to item 1.
8. 前記副吸入冷媒通路は、前記後部ハウジング内に
前記底部を有する吸入冷媒通路として形成れ、かつ前記
駆動軸内に形成れた貫通孔を介して該駆動軸の前方側に
設けられた回転機構に連通し、潤滑油を供給可能に形成
されている特許請求の範囲第1項に記載の斜板式圧縮機
の潤滑機構。
8. The auxiliary suction refrigerant passage is formed as a suction refrigerant passage having the bottom in the rear housing, and is connected to a rotation mechanism provided on the front side of the drive shaft through a through hole formed in the drive shaft. A lubrication mechanism for a swash plate compressor according to claim 1, which is configured to communicate with each other and supply lubricating oil.
JP62114452A 1987-05-13 1987-05-13 Lubricating mechanism of swash plate type compressor Pending JPS63280876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114452A JPS63280876A (en) 1987-05-13 1987-05-13 Lubricating mechanism of swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114452A JPS63280876A (en) 1987-05-13 1987-05-13 Lubricating mechanism of swash plate type compressor

Publications (1)

Publication Number Publication Date
JPS63280876A true JPS63280876A (en) 1988-11-17

Family

ID=14638082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114452A Pending JPS63280876A (en) 1987-05-13 1987-05-13 Lubricating mechanism of swash plate type compressor

Country Status (1)

Country Link
JP (1) JPS63280876A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4090278T1 (en) * 1989-03-02 1991-02-21 Toyoda Automatic Loom Works SWASHPLATE-REFRIGERANT COMPRESSOR WITH A SEPARATOR FOR REFRIGERANT GAS AND LUBRICANT
US5152673A (en) * 1991-08-09 1992-10-06 General Motors Corporation Fluid pumping assembly having a control valve boss fluid by-pass
US5167492A (en) * 1991-08-19 1992-12-01 General Motors Corporation Fluid pumping assembly having a lubrication circuit functioning independent of the orientation of the fluid pumping assembly
US5244355A (en) * 1991-08-09 1993-09-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4090278T1 (en) * 1989-03-02 1991-02-21 Toyoda Automatic Loom Works SWASHPLATE-REFRIGERANT COMPRESSOR WITH A SEPARATOR FOR REFRIGERANT GAS AND LUBRICANT
US5152673A (en) * 1991-08-09 1992-10-06 General Motors Corporation Fluid pumping assembly having a control valve boss fluid by-pass
US5244355A (en) * 1991-08-09 1993-09-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
US5167492A (en) * 1991-08-19 1992-12-01 General Motors Corporation Fluid pumping assembly having a lubrication circuit functioning independent of the orientation of the fluid pumping assembly

Similar Documents

Publication Publication Date Title
US4385875A (en) Rotary compressor with fluid diode check value for lubricating pump
US3945765A (en) Refrigerant compressor
US8117959B2 (en) Swash plate type compressor
US3930758A (en) Means for lubricating swash plate air conditioning compressor
US6296457B1 (en) Discharge pulsation damping apparatus for compressor
US4019342A (en) Compressor for a refrigerant gas
JPH0392587A (en) Lubricating structure for swash plate type compressor
JP2000080983A (en) Compressor
US5009574A (en) Thrust bearing and shoe lubricator for a swash plate type compressor
US5772407A (en) Reciprocating piston type compressor improved to distribute lubricating oil sufficiently during the starting phase of its operation
CA1048463A (en) Compressor for a refrigerant gas
US6862975B2 (en) Apparatus for lubricating piston type compressor
JPS63280875A (en) Suction gas guide mechanism of swash plate type compressor
JPH05231309A (en) Structure for lubrication in piston type compressor
JPH10213070A (en) Refrigerant compressor
KR100235511B1 (en) Double-headed piston type compressor
US4413954A (en) Swash-plate type compressor having pumpless lubricating system
JPS63280876A (en) Lubricating mechanism of swash plate type compressor
US6974315B2 (en) Reduced friction gerotor
US4273518A (en) Swash-plate type compressor
JPH11173288A (en) Compressor
JPS6313428Y2 (en)
JPH02264189A (en) Horizontal type rotary compressor
JP3632448B2 (en) Compressor
US6050783A (en) Reciprocating compressor in which a blowby gas can be returned into a suction chamber with a lubricating oil within a crank chamber kept at a sufficient level