USRE42353E1 - Quinazoline derivatives and pharmaceutical compositions containing them - Google Patents

Quinazoline derivatives and pharmaceutical compositions containing them Download PDF

Info

Publication number
USRE42353E1
USRE42353E1 US12/170,027 US17002797A USRE42353E US RE42353 E1 USRE42353 E1 US RE42353E1 US 17002797 A US17002797 A US 17002797A US RE42353 E USRE42353 E US RE42353E
Authority
US
United States
Prior art keywords
alkyl
carbamoyl
group
hydroxy
fluoroanilino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US12/170,027
Inventor
Andrew Peter Thomas
Craig Johnstone
Edward Clayton
Elaine Sophie Elizabeth Stokes
Jean-Jacques Marcel Lohmann
Laurent Francois Andre Hennequin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Ltd
Genzyme Corp
Original Assignee
AstraZeneca UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26144073&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE42353(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AstraZeneca UK Ltd filed Critical AstraZeneca UK Ltd
Application granted granted Critical
Publication of USRE42353E1 publication Critical patent/USRE42353E1/en
Assigned to ZENECA LIMITED, ZENECA PHARMA S.A. reassignment ZENECA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLAYTON, EDWARD, STOKES, ELAINE SOPHIE ELIZABETH, THOMAS, ANDREW PETER, JOHNSTON, CRAIG, LOHMANN, JEAN-JACQUES MARCEL, HENNEQUIN, LAURENT FRANCOIS ANDRE
Assigned to SYNGENTA LIMITED reassignment SYNGENTA LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ZENECA LIMITED
Assigned to ASTRAZENECA SAS reassignment ASTRAZENECA SAS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ZENECA PHARMA SA
Assigned to ASTRAZENECA UK LIMITED reassignment ASTRAZENECA UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTRAZENECA SAS
Assigned to ASTRAZENECA UK LIMITED reassignment ASTRAZENECA UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZENECA LIMITED (NOW SYNGENTA LIMITED)
Assigned to ZENECA PHARMA S.A., ZENECA LIMITED reassignment ZENECA PHARMA S.A. CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNOR NAME FROM CRAIG JOHNSTON TO CRAIG JOHNSTONE PREVIOUSLY RECORDED ON REEL 035550 FRAME 0475. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CLAYTON, EDWARD, STOKES, ELAINE SOPHIE ELIZABETH, THOMAS, ANDREW PETER, JOHNSTONE, CRAIG, LOHMANN, JEAN-JACQUES MARCEL, HENNEQUIN, LAURENT FRANCOIS ANDRE
Assigned to GENZYME CORPORATION reassignment GENZYME CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASTRAZENECA UK LIMITED
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/023Adhesive plasters or dressings wound covering film layers without a fluid handling layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/94Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00217Wound bandages not adhering to the wound
    • A61F2013/00221Wound bandages not adhering to the wound biodegradable, non-irritating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F13/8405Additives, e.g. for odour, disinfectant or pH control
    • A61F2013/8408Additives, e.g. for odour, disinfectant or pH control with odour control

Definitions

  • the present invention relates to quinazoline derivatives, processes for their preparation, pharmaceutical compositions containing them as active ingredient, methods for the treatment of disease states associated with angiogenesis and/or increased vascular permeability, to their use as medicaments and to their use in the manufacture of medicaments for use in the production of antiangiogenic and/or vascular permeability reducing effects in warm-blooded animals such as humans.
  • Normal angiogenesis plays an important role in a variety of processes including embryonic development, wound healing and several components of female reproductive function.
  • Undesirable or pathological angiogenesis has been associated with disease states including diabetic retinopathy, psoriasis, cancer, rheumatoid arthritis, atheroma, Kaposi's sarcoma and haemangioma (Fan et al, 1995, Trends Pharmacol. Sci. 16: 57-66; Folknan, 1995, Nature Medicine 1: 27-31).
  • vascular permeability is thought to play a role in both normal and pathological physiological processes (Cullinan-Bove et al, 1993, Endocrinology 133: 829-837; Senger et al, 1993, Cancer and Metastasis Reviews, 12: 303-324).
  • Several polypeptides with in vitro endothelial cell growth promoting activity have been identified including, acidic and basic fibroblast growth factors (aFGF & bFGF) and vascular endothelial growth factor (VEGF).
  • aFGF & bFGF acidic and basic fibroblast growth factors
  • VEGF vascular endothelial growth factor
  • VEGF is an important stimulator of both normal and pathological angiogenesis (Jakeman et al, 1993, Endocrinology, 133: 848-859; Kolch et al, 1995, Breast Cancer Research and Treatment, 36:139-155) and vascular permeability (Connolly et al, 1989, J. Biol. Chem. 264: 20017-20024).
  • Antagonism of VEGF action by sequestration of VEGF with antibody can result in inhibition of tumour growth (Kim et al, 1993, Nature 362: 841-844).
  • Receptor tyrosine kinases are important in the transmission of biochemical signals across the plasma membrane of cells. These transmembrane molecules characteristically consist of an extracellular ligand-binding domain connected through a segment in the plasma membrane to an intracellular tyrosine kinase domain. Binding of ligand to the receptor results in stimulation of the receptor-associated tyrosine kinase activity which leads to phosphorylation of tyrosine residues on both the receptor and other intracellular molecules. These changes in tyrosine phosphorylation initiate a signalling cascade leading to a variety of cellular responses. To date, at least nineteen distinct RTK subfamilies, defined by amino acid sequence homology, have been identified.
  • Flt or Flt1 the fms-like tyrosine kinase receptor
  • KDR the kinase insert domain-containing receptor
  • Flt4 another fms-like tyrosine kinase receptor
  • Two of these related RTKs, Flt and KDR have been shown to bind VEGF with high affinity (De Vries et al, 1992, Science 255: 989-991; Terman et al, 1992, Biochem. Biophys. Res. Comm. 1992, 187: 1579-1586). Binding of VEGF to these receptors expressed in heterologous cells has been associated with changes in the tyrosine phosphorylation status of cellular proteins and calcium fluxes.
  • European Patent Publication No. 0326330 discloses certain quinoline, quinazoline and cinnoline plant fungicides. Certain of these plant fungicides are also stated to possess insecticidal and miticidal activity. There is however no disclosure or any suggestion that any of the compounds disclosed may be used for any purpose in animals such as humans. In particular, the European Patent Publication contains no teaching whatsoever concerning angiogenesis and/or increased vascular permeability mediated by growth factors such as VEGF.
  • EP 0566226 discloses anilinoquinazolines which have activity against epidermal growth factor (EGF) receptor tyrosine kinase.
  • EP 0566226 contains no teaching whatsoever concerning angiogenesis and/or increased vascular permeability mediated by growth factors such as VEGF.
  • compounds of EP 0566226 which have been tested do not show significant activity against VEGF receptor tyrosine kinase.
  • the present invention is based on the surprising discovery that certain quinazolines inhibit the effects of VEGF, a property of value in the treatment of disease states associated with angiogenesis and/or increased vascular permeability such as cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation and ocular diseases with retinal vessel proliferation.
  • Compounds of the present invention possess good activity against VEGF receptor tyrosine kinase whilst possessing some activity against EGF receptor tyrosine kinase.
  • some compounds of the present invention possess substantially higher potency against VEGF receptor tyrosine kinase than against EGF receptor tyrosine kinase or FGF R1 receptor tyrosine kinase.
  • certain compounds of the invention which have been tested possess activity against VEGF receptor tyrosine kinase such that they may be used in an amount sufficient to inhibit VEGF receptor tyrosine kinase whilst demonstrating no significant activity against EGF receptor tyrosine kinase or FGF R1 receptor tyrosine kinase. While we do not wish to be bound by theoretical considerations such compounds may for example be of interest in treating tumours which are associated with VEGF, especially those tumours which are dependent on VEGF for their growth.
  • VEGF and EGF receptor tyrosine kinases possess good activity against both VEGF and EGF receptor tyrosine kinases. Indeed certain compounds possess substantially equivalent activities against VEGF and EGF receptor tyrosine kinases. It is believed that these compounds may be of interest in treating tumour states associated with both VEGF and EGF, especially where a patient is suffering from a condition in which tumours are present which are dependent on both VEGF and EGF for their growth.
  • n 2
  • R 1 is advantageously hydrogen, liydroxy, cyano, nitro, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy or amino.
  • R 1 is preferably hydrogen, hydroxy, cyano, nitro, trifluoromethyl, methyl, ethyl, methoxy or ethoxy, more preferably hydrogen, methyl or methoxy, most preferably hydrogen or methoxy, but especially methoxy.
  • R 2 is preferably hydrogen, fluoro, amino or nitro, but especially hydrogen.
  • R 3 represents hydroxy, halogeno, C 1-2 alkyl, C 1-2 alkoxy, trifluoromethyl, cyano, amino or nitro.
  • one R 3 substituent is metahydroxy and the other one is selected from halogeno and methyl.
  • phenyl group bearing (R 3 ) m is preferably of the formula II:
  • the phenyl group bearing (R 3 ) m is the 3-hydroxy-4-methylphenyl group, the 2-fluoro-5-hydroxyphenyl group or the 4-chloro-2-fluorophenyl group, or the 4-bromo-2-fluorophenyl group, especially the 4-chloro-2-fluorophenyl group or the 4-bromo-2-fluorophenyl group more especially the 4-chloro-2-fluorophenyl group.
  • X 1 represents —O—, —S—, —NR 7 CO—, —NR 10 SO 2 — or —NR 11 — (wherein R 7 , R 10 and R 11 each independently represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 1 represents —O—, —S—, —NR 7 CO— or —NR 10 SO 2 — (wherein R 7 and R 10 each independently represents hydrogen or C 1-2 alkyl).
  • X 1 represents —O—, —S—, —NR 7 CO— (wherein R 7 represents hydrogen or methyl).
  • R 7 represents hydrogen or methyl.
  • X 1 represents —O—, or —NHCO—, or —S—, especially —O—, or —S— more especially —O—.
  • X 2 and X 3 which may be the same or different each represents —O—, —S—, —SO—, —SO 2 —, —NR 17 CO—, or —NR 21 — (wherein R 17 and R 21 each independently represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 2 and X 3 which may be the same or different each represents —O—, —S—, —SO—, —SO 2 — or —NR 21 — (wherein R 21 represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 2 and X 3 which may be the same or different each represents —O—, —S— or —NR 21 — (wherein R 21 represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 3 is —O— and X 2 is —NR 17 CO— (wherein R 17 represents hydrogen, or methyl).
  • X 4 represents —O— or —NR 23 — (wherein R 23 represents hydrogen, C 1-3 alkyl or C 1-2 alkoxyethyl).
  • X 5 represents —O—, —S—, —SO—, —SO 2 —, —NR 28 CO—, —NR 31 SO 2 — or —NR 32 — (wherein R 28 , R 31 and R 32 each independently represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl) or X 5 is carbonyl.
  • X 5 represents —O—, —S—, —SO—, —SO 2 — or —NR 32 — (wherein R 32 represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 5 represents —O— or —NR 32 — (wherein R 32 represents hydrogen or C 1-2 alkyl).
  • X 6 represents —O—, —S—, —SO—, —SO 2 —, —NR 34 CO—, —NR 37 SO 2 — or —NR 38 — (wherein R 34 , R 37 and R 38 each independently represents hydrogen, C 1-2 alkyl or C 1-2 alkoxyethyl).
  • X 6 represents —O—.
  • R 4 is selected from one of the following eight groups:
  • R 4 is C 2-3 alkylX 2 methylX 3 R 16 (wherein X 2 and X 3 are as defined hereinbefore and R 16 represents hydrogen or C 1-3 alkyl) with the proviso that X 1 cannot be —CH 2 — when R 4 is C 2-3 alkylX 2 methylX 3 R 16 .
  • R 4 is selected from one of the following seven groups:
  • R 4 is C 2-3 alkylX 2 methylX 3 R 16 (wherein X 2 and X 3 are as defined hereinbefore and R 16 represents hydrogen or C 1-3 alkyl) with the proviso that X 1 cannot be —CH 2 — when R 4 is C 2-3 alkyX 2 xmethylX 3 R 16 .
  • R 4 is selected from one of the following seven groups:
  • R 4 is C 2-3 alkylX 2 methylX 3 R 16 (wherein X 2 and X 3 are as defined hereinbefore and R 16 represents hydrogen or C 1-3 alkyl) with the proviso that X 1 cannot be —CH 2 — when R 4 is C 2-3 alkylX 2 methylX 3 R 16 .
  • R 4 is selected from one of the following five groups:
  • R 4 is C 2-3 alkylX 2 methylX 3 R 16 (wherein X 2 and X 3 are as defined hereinbefore and R 16 represents hydrogen or C 1-3 alkyl) with the proviso that X 1 cannot be —CH 2 — when R 4 is C 2-3 alkylX 2 methylX 3 R 16 .
  • R 4 is selected from one of the following five groups:
  • R 4 is C 2-3 alkylX 2 methylX 3 R 16 (wherein X 2 and X 3 are as defined hereinbefore and R 16 represents hydrogen or C 1-3 alkyl) with the proviso that X 1 cannot be —CH 2 — when R 4 is C 2-3 alkylX 2 methylX 3 R 16 .
  • Especially preferred values for the group R 4 -X 1 are 3-(methylsulphonyl)propoxy, (1-methylpiperidin-3-yl)methoxy, 4-(pyrrolidin-1-yl)but-2-en-1-yloxy, 2-(2-methoxyethoxy)ethoxy, 3-(1,1-dioxothiomorpholino)propoxy, 2-(2-(pyrrolidin-1-yl)ethoxy)ethoxy, 2-(2-(4-methylpiperazin-1-yl)ethoxy)ethoxy, 3-morpholinopropylthio, 2-([N-methoxyacetyl-N-methyl]amino)ethoxy, 2-(2-oxopyrrolidin-1-yl)ethoxy, 2-thiomorpholinoethoxy, 3-(2-carbamoylpyrrolidin-1-yl)propoxy, 3-(2-oxopyrrolidin-1-yl)propoxy and 2-(2-morpholinoethoxy)eth
  • More especially preferred values for the group R 4 -X 1 are 3-(methylsulphonyl)propoxy, (1-methylpiperidin-3-yl)methoxy and 4-(pyrrolidin-1-yl)but-2-en-1-yloxy.
  • Preferred compounds of the present invention by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
  • More preferred compounds of the present invention by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
  • Particularly preferred compounds of the present invention by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
  • Additional particularly preferred compounds of the present invention by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
  • VEGF and EGF receptor tyrosine kinases include:
  • preferred compounds are:
  • alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. An analogous convention applies to other generic terms. Unless otherwise stated the term “alkyl” advantageously refers to chains with 1-6 carbon atoms, preferably 1-4 carbon atoms.
  • alkoxy as used herein, unless stated otherwise includes “alkyl” —O— groups in which “alkyl” is as hereinbefore defined.
  • aryl as used herein unless stated otherwise includes reference to a C 6-10 aryl group which may, if desired, carry one or more substituents selected from halogeno, alkyl, alkoxy, nitro, trifluoromethyl and cyano, (wherein alkyl and alkoxy are as hereinbefore defined).
  • aryloxy as used herein unless otherwise stated includes “aryl” —O—groups in which “aryl” is as hereinbefore defined.
  • sulphonyloxy as used herein refers to alkylsulphonyloxy and arylsulphonyloxy groups in which “alkyl” and “aryl” are as hereinbefore defined.
  • alkanoyl as used herein unless otherwise stated includes formyl and alkylC ⁇ O groups in which “alkyl” is as defined hereinbefore, for example C 2 alkanoyl is ethanoyl and refers to CH 3 C ⁇ O, C 1 alkanoyl is formyl and refers to CHO.
  • alkenyl includes both straight and branched chain alkenyl groups but references to individual alkenyl groups such as 2-butenyl are specific for the straight chain version only. Unless otherwise stated the term “alkenyl” advantageously refers to chains with 2-5 carbon atoms, preferably 3-5 carbon atoms.
  • alkynyl includes both straight and branched chain alkynyl groups but references to individual alkynyl groups such as 2-butynyl are specific for the straight chain version only. Unless otherwise stated the term “alkynyl” advantageously refers to chains with 2-5 carbon atoms, preferably 3-5 carbon atoms.
  • a compound of the formula I or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which inhibits VEGF receptor tyrosine kinase activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
  • X 1 is, for example, a group of formula —NR 7 CO—, it is the nitrogen atom bearing the R 7 group which is attached to the quinazoline ring and the carbonyl (CO) group is attached to R 4
  • X 1 is, for example, a group of formula —CONR 8 —
  • X 1 linking groups such as —NR 10 SO 2 — and —SO 2 NR 9 —.
  • R 4 is, for example, a group of the formula C 1-5 alkylX 5 R 27 and X 5 is a group —NR 28 CO—, it is the nitrogen atom bearing the R 28 group which is attached to the alkyl chain which is attached to the quinazoline ring and the carbonyl (CO) group is attached to R 27
  • X 5 is, for example, a group of formula —CONR 29 —, it is the carbonyl group which is attached to the alkyl chain which is attached to the quinazoline ring and the nitrogen atom bearing the R 29 group is attached to R 27 .
  • X 1 represents —NR 11 — and R 11 is C 1-3 alkoxyC 2-3 alkyl it is the C 2-3 alkyl moiety which is linked to the nitrogen atom of X 1 and an analogous convention applies to other groups.
  • R 4 is, for example, a group of formula C 1-5 alkylX 2 C 1-5 alkylX 3 R 16 , it is the terminal C 1-5 alkyl moiety which is bound to X 1
  • R 4 is, for example, a group of formula C 2-5 alkenylR 14 it is the C 2-5 alkenyl moiety which is bound to X 1 and an analgous convention applies to other groups.
  • R 4 is a group 1-R 33 prop-1-en-3-yl it is the first carbon to which the group R 33 is attached and it is the third carbon which is linked to X 1
  • R 4 is a group 2-R 33 pent-3-en-5-yl it is the second carbon to which the group R 33 is attached and it is the fifth carbon which is linked to X 1
  • an analogous convention applies to other groups.
  • the present invention relates to the compounds of formula I as hereinbefore defined as well as to the salts thereof.
  • Salts for use in pharmaceutical compositions will be pharmaceutically acceptable salts, but other salts may be useful in the production of the compounds of formula I and their pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts of the invention may, for example, include acid addition salts of the compounds of formula I as hereinbefore defined which are sufficiently basic to form such salts.
  • Such acid addition salts include for example salts with inorganic or organic acids affording pharmaceutically acceptable anions such as with hydrogen halides (especially hydrochloric or hydrobromic acid of which hydrochloric acid is particularly preferred) or with sulphuric or phosphoric acid, or with trifluoroacetic, citric or maleic acid.
  • salts may be formed with an inorganic or organic base which affords a pharmaceutically acceptable cation.
  • Such salts with inorganic or organic bases include for example an alkali metal salt, such as a sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, an ammonium salt or for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • a compound of the formula I, or salt thereof, and other compounds of the invention may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes include, for example, those illustrated in European Patent Applications, Publication Nos. 0520722, 0566226, 0602851 and 0635498. Such processes, are provided as a further feature of the invention and are as described hereinafter. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
  • the reaction is advantageously effected in the presence of either an acid or a base.
  • an acid is, for example, an anhydrous inorganic acid such as hydrogen chloride.
  • a base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or for example, an alkali metal or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide.
  • such a base is, for example, an alkali metal hydride, for example sodium hydride, or an alkali metal or alkaline earth metal amide, for example sodium amide or sodium bis(trimethylsilyl)amide.
  • the reaction is preferably effected in the presence of an inert solvent or diluent, for example an alkanol or ester such as methanol, ethanol, 2-propanol or ethyl acetate, a halogenated solvent such as methylene chloride, trichloromethane or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic hydrocarbon solvent such as toluene, or a dipolar aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide.
  • the reaction is conveniently effected at a temperature in the range, for
  • the compound of the invention may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-L 1 wherein L 1 has the meaning defined hereinbefore.
  • the salt may be treated with a base as defined hereinbefore using a conventional procedure.
  • halogenating agents include inorganic acid halides, for example thionyl chloride, phosphorus(III)chloride, phosphorus(V)oxychloride and phosphorus(V)chloride.
  • the halogenation reaction is conveniently effected in the presence of an inert solvent or diluent such as for example a halogenated solvent such as methylene chloride, trichloromethane or carbon tetrachloride, or an aromatic hydrocarbon solvent such as benzene or toluene.
  • the reaction is conveniently effected at a temperature in the range, for example 10 to 150° C., preferably in the range 40 to 100° C.
  • the compounds of formula XII and salts thereof which constitute a further feature of the present invention may for example be prepared by reacting a compound of the formula XIII:
  • the compounds of formula XII and salts thereof may also be prepared by cyclising a compound of the formula XIV:
  • the compounds of formula III and salts thereof may also be prepared for example by reacting a compound of the formula XVIII:
  • a compound of formula XVIII is conveniently used in which L 2 represents a phenoxy group which may if desired carry up to 5 substituents, preferably up to 2 substituents, selected from halogeno, nitro and cyano.
  • the reaction may be conveniently effected under conditions as described for process (c) hereinbefore.
  • One compound of formula III may if desired be converted into another compound of formula III in which the moiety L 1 is different.
  • a compound of formula III in which L 1 is other than halogeno, for example optionally substituted phenoxy may be converted to a compound of formula III in which L 1 is halogeno by hydrolysis of a compound of formula III (in which L 1 is other than halogeno) to yield a compound of formula XII as hereinbefore defined, followed by introduction of halide to the compound of formula XII, thus obtained as hereinbefore defined, to yield a compound of formula III in which L 1 represents halogen.
  • the compounds of formula V and salts thereof may also be prepared by reacting a compound of formula XXI:
  • the compounds of formula V and salts thereof may also be prepared by reacting a compound of formula XXII:
  • a pharmaceutically acceptable salt of a compound of the formula I When a pharmaceutically acceptable salt of a compound of the formula I is required, it may be obtained, for example, by reaction of said compound with, for example, an acid using a conventional procedure, the acid having a pharmaceutically acceptable anion.
  • This assay determines the ability of a test compound to inhibit tyrosine kinase activity.
  • DNA encoding VEGF or epidermal growth factor (EGF) receptor cytoplasmic domains may be obtained by total gene synthesis (Edwards M, International Biotechnology Lab 5(3), 19-25, 1987) or by cloning. These may then be expressed in a suitable expression system to obtain polypeptide with tyrosine kinase activity.
  • EGF and EGF receptor cytoplasmic domains which were obtained by expression of recombinant protein in insect cells, were found to display intrinsic tyrosine kinase activity.
  • VEGF receptor Flt (Genbank accession number X51602)
  • a 1.7 kb DNA fragment encoding most of the cytoplasmic domain, commencing with methionine 783 and including the termination codon, described by Shibuya et al (Oncogene, 1990, 5: 519-524) was isolated from cDNA and cloned into a baculovirus transplacement vector (for example pAcYM1 (see The Baculovirus Expression System: A Laboratory Guide, L. A. King and R. D. Possee, Chapman and Hall, 1992) or pAc360 or pBlueBacHis (available from Invitrogen Corporation)).
  • pAcYM1 see The Baculovirus Expression System: A Laboratory Guide, L. A. King and R. D. Possee, Chapman and Hall, 1992
  • pAc360 or pBlueBacHis available from Invitrogen Corporation
  • This recombinant construct was co-transfected into insect cells (for example Spodoptera frugiperda 21(Sf21)) with viral DNA (eg Pharmingen BaculoGold) to prepare recombinant baculovirus.
  • insect cells for example Spodoptera frugiperda 21(Sf21)
  • viral DNA eg Pharmingen BaculoGold
  • cytoplasmic fragments starting from methionine 806 (KDR, Genbank accession number L04947) and methionine 668 (EGF receptor, Genbank accession number X00588) may be cloned and expressed in a similar manner.
  • cFlt tyrosine kinase activity Sf21 cells were infected with plaque-pure cFlt recombinant virus at a multiplicity of infection of 3 and harvested 48 hours later.
  • Harvested cells were washed with ice cold phosphate buffered saline solution (PBS) (10 mM sodium phosphate pH7A, 138 mM sodium chloride, 2.7 mM potassium chloride) then resuspended in ice cold HNTG/PMSF (20 mM Hepes pH7.5, 150 mM sodium chloride, 10% v/v glycerol, 1% v/v Triton X100, 1.5 mM magnesium chloride, 1 mM ethylene glycol-bis( ⁇ aminoethyl ether) N,N,N′,N′tetraacetic acid (EGTA), 1 mM PMSF (phenylmethylsulphonyl fluoride); the PMSF is added just before use from a
  • a stock of substrate solution was prepared from a random copolymer containing tyrosine, for example Poly (Glu, Ala, Tyr) 6:3:1 (Sigma P3899), stored as 1 mg/ml stock in PBS at ⁇ 20° C. and diluted 1 in 500 with PBS for plate coating.
  • a random copolymer containing tyrosine for example Poly (Glu, Ala, Tyr) 6:3:1 (Sigma P3899)
  • Test compounds were diluted with 10% dimethylsulphoxide (DMSO) and 25 ⁇ l of diluted compound was transferred to wells in the washed assay plates. “Total” control wells contained 10% DMSO instead of compound. Twenty five microlitres of 40 mM manganese(II)chloride containing 8 ⁇ M adenosine-5′-triphosphate (ATP) was added to all test wells except “blank” control wells which contained manganese(II)chloride without ATP. To start the reactions 50 ⁇ l of freshly diluted enzyme was added to each well and the plates were incubated at room temperature for 20 minutes. The liquid was then discarded and the wells were washed twice with PBST.
  • DMSO dimethylsulphoxide
  • mice IgG anti-phosphotyrosine antibody Upstate Biotechnology Inc. product 05-321
  • PBST bovine serum albumin
  • HRP horse radish peroxidase
  • SSA bovine serum albumin
  • ABTS 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
  • This assay determines the ability of a test compound to inhibit the growth factor-stimulated proliferation of human umbilical vein endothelial cells (HUVEC).
  • HUVEC human umbilical vein endothelial cells
  • HUVEC cells were isolated in MCDB 131 (Gibco BRL)+7.5% v/v foetal calf serum (FCS) and were plated out (at passage 2 to 8), in MCDB 131+2% v/v FCS+3 ⁇ g/ml heparin+1 ⁇ g/ml hydrocortisone, at a concentration of 1000 cells/well in 96 well plates. After a minimum of 4 hours they were dosed with the appropriate growth factor (i.e. VEGF 3 ng/ml, EGF 3 ng/ml or b-FGF 0.3 ng/ml) and compound. The cultures were then incubated for 4 days at 37° C. with 7.5% carbon dioxide.
  • FCS foetal calf serum
  • This test measures the capacity of compounds to reduce the acute increase in uterine weight in rats which occurs in the first 4-6 hours following oestrogen stimulation.
  • This early increase in uterine weight has long been known to be due to oedema caused by increased permeability of the uterine vasculature and recently Cullinan-Bove and Koos (Endocrinology, 1993,133:829-837) demonstrated a close temporal relationship with increased expression of VEGF mRNA in the uterus.
  • prior treatment of the rats with a neutralising monoclonal antibody to VEGF significantly reduces the acute increase in uterine weight, confirming that the increase in weight is substantially mediated by VEGF.
  • oestradiol benzoate Groups of 20 to 22-day old rats were treated with a single subcutaneous dose of oestradiol benzoate (2.5 ⁇ g/rat) in a solvent, or solvent only. The latter served as unstimulated controls. Test compounds were orally administered at various times prior to the administration of oestradiol benzoate. Five hours after the administration of oestradiol benzoate the rats were humanely sacrificed and their uteri were dissected, blotted and weighed. The increase in uterine weight in groups treated with test compound and oestradiol benzoate and with oestradiol benzoate alone was compared using a Student T test. Inhibition of the effect of oestradiol benzoate was considered significant when p ⁇ 0.05.
  • a pharmaceutical composition which comprises a compound of the formula I as defined hereinbefore or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable excipient or carrier.
  • the composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) for example as a sterile solution, suspension or emulsion, for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
  • a sterile solution, suspension or emulsion for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • topical administration for example as an ointment or cream
  • rectal administration for example as a suppository.
  • the above compositions may be prepared in a conventional manner using conventional excipients.
  • compositions of the present invention are advantageously presented in unit dosage form.
  • the compound will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square metre body area of the animal, i.e. approximately 0.1-100 mg/kg.
  • a unit dose in the range for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged and this normally provides a therapeutically-effective dose.
  • a unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
  • a compound of the formula I or a pharmaceutically acceptable salt thereof as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
  • compounds of the present invention inhibit VEGF receptor tyrosine kinase activity and are therefore of interest for their antiangiogenic effects and/or their ability to cause a reduction in vascular permeability.
  • a further feature of the present invention is a compound of formula I, or a pharmaceutically acceptable salt thereof, for use as a medicament, conveniently a compound of formula I, or a pharmaceutically acceptable salt thereof, for use as a medicament for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal such as a human being.
  • a method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof as defined hereinbefore.
  • the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
  • a daily dose in the range of 1-50 mg/kg is employed.
  • the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • the antiangiogenic and/or vascular permeability reducing treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
  • the other component(s) of such conjoint treatment in addition to the antiangiogenic and/or vascular permeability reducing treatment defined hereinbefore may be: surgery, radiotherapy or chemotherapy.
  • Such chemotherapy may cover three main categories of therapeutic agent:
  • the compounds defined in the present invention are of interest for their antiangiogenic and/or vascular permeability reducing effects.
  • Such compounds of the invention are expected to be useful in a wide range of disease states including cancer, diabetes, psoriasis, rheumatoid artritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation and ocular diseases with retinal vessel proliferation.
  • diseases of the invention are expected to slow advantageously the growth of primary and recurrent solid tumours of, for example, the colon, breast, prostate, lungs and skin.
  • Such compounds of the invention are expected to inhibit the growth of those primary and recurrent solid tumours which are associated with VEGF especially those tumours which are significantly dependent on VEGF for their growth and spread, including for example, certain tumours of the colon, breast, prostate, lung, vulva and skin.
  • the compounds of formula I and their pharmaceutically acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of VEGF receptor tyrosine kinase activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • Potassium carbonate (2.2 g, 16 mmol) was added to a solution of 4-3-acetoxy-4-methylanilino)-7-hydroxy-6-methoxyquinazoline (1.51 g, 4 mmol) in DMF (30 ml) and the mixture stirred for 15 minutes.
  • 2-Bromoethyl methyl ether (667 mg, 4.8 mmol) was then added dropwise. The mixture was stirred for 1 hour at ambient temperature, then heated at 60° C. for 17 hours and finally allowed to cool. The insoluble material was removed by filtration and the filter pad washed with DMF.
  • the starting material was prepared as follows:
  • Acetic anhydride (1.9 ml, 20.3 mmol) was added to a mixture of 2-methyl-5-nitrophenol (2.5 g, 16.3 mmol) and 1M aqueous sodium hydroxide (24.5 ml) at ambient temperature. The mixture was stirred for 40 minutes, the solid was removed by filtration and the filtrate extracted with ethyl acetate. The organic layers were combined, washed with an aqueous saturated sodium chloride solution, dried (MgSO 4 ) and evaporated to yield 2-acetoxy-4-nitrotoluene (3.1 g, 100%).
  • the starting material was prepared as follows:
  • 1-2-Chloroethyl)pyrrolidine hydrochloride 200 mg, 1.2 mmol was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (403 mg, 1.26 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (650 mg, 4.7 mmol) in DMF (4 ml). The mixture was heated to 100° C. and further portions of 1-(2-chloroethyl)pyrrolidine hydrochloride (800 mg in total) were added periodically over 4 hours while the reaction mixture was maintained at 100° C. The reaction was then allowed to cool and volatiles were removed by evaporation.
  • the starting material was prepared as follows:
  • the starting material was prepared as follows:
  • the purified product was recrystallised from methylene chloride/isohexane to give 4-chloro-2-fluoroanilino)-7-(2-methoxyethoxy)-6-nitroquinazoline (304 mg, 60%) as a yellow solid.
  • the starting material was prepared as follows:
  • Triphenylphosphine (410 mg, 1.5 mmol) and 1-methyl-3-pyrrolidinol (0.128 ml, 1.5 mmol) were added to a solution of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (4 ml). Diethyl azodicarboxylate (0.246 ml, 1.5 mmol) was added dropwise and the reaction mixture was stirred for 1 hour at ambient temperature.
  • Tetrakis(triphenylphosphine)palladium(0) 23 mg, 0.02 mmol
  • a solution of sodium triisopropylsilylthiolate 102 mg, 0.48 mmol
  • THF 2 ml
  • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(trifluoromethylsulphonyloxy)quinazoline 180 mg, 0.4 mmol
  • the starting material was prepared as follows:
  • Trifluoromethanesulphonic anhydride (0.55 ml, 3.3 mmol) was added to a stirred suspension of 4-(chloro-2-fluoroanilino)-7-hydroxy-6methoxyquinazoline (959 mg, 3 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (2.2 ml) and pyridine (2.2 ml) under argon at 0° C.
  • the reaction mixture was stirred for 1 hour at 0° C., allowed to warm to ambient temperature and stirred for a further 1.5 hours.
  • the starting material was prepared as follows:
  • the final compounds in Examples 13 and 14 may be mixed, in any relative proportions, for example to give a racemic mixture.
  • racemate may be made as follows:
  • 1,1′-(Azodicarbonyl)dipiperidine (560 mg, 2.2 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (240 mg, 0.75 mmol), (prepared as described for the starting material in Example 2), 1-methyl-3-piperidinemethanol (115 mg, 0.89 mmol) and tributylphosphine (440 mg, 2.2 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration.
  • the solvent was removed from the filtrate by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol (a gradient from 100/0 to 90/10).
  • the semi-purified product was triturated with acetone and the solid product collected by filtration and dried to give further crude product (0.53 g).
  • the filtrate from the trituration was repurified by column chromatography as before to give freer crude product (0.23 g).
  • the crude products were combined and dissolved in acetone/methanol/methylene chloride and ethereal hydrogen chloride (6 ml of a 1M solution) added.
  • the starting material was prepared as follows:
  • the starting material was prepared as follows:
  • the starting material was prepared as follows:
  • the starting material was prepared as follows:
  • Example 25 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-methylthiopropoxy)quinazoline (250 mg, 0.6 mmol), (prepared as described in Example 21), was treated with OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (84 mg) and the product was pas and isolated to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-methylsulphinylpropoxy)quinazoline (75 mg, 29%).
  • OXONE trade mark of E.I. du Pont de Nemours & Co., Inc
  • the starting material was prepared as follows:
  • 1,1′-(Azodicarbony)dipiperidine (1.56 g, 6.2 mmol) followed by 3-(methylthio)-1-propanol (0.32 ml, 3 mmol) was added to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 48), and tributylphosphine (1.42 mL 6.1 mmol) in methylene chloride (20 ml) at 5° C. The mixture was stirred at 5° C. for 1 hour and then for 18 hours at ambient temperature.
  • 1,1′-(Azodicarbonyl)dipiperidine (355 mg, 1.4 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (150 mg, 0.47 mmol), (prepared as described for the starting material in Example 2), 2-(cyclopentyloxy)ethanol (91 mg, 0.7 mmol), (U.S. Pat. No. 4,515,814), and tributylphosphine (284 mg, 1.4 mmol) in methylene chloride (6 ml) at 0° C. The mixture was then allowed to warm to ambient temperature and stirred for 3.5 hours.
  • reaction mixture was diluted with methylene chloride, washed with aqueous sodium hydrogen carbonate solution, water and then brine, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (100/8/1).
  • the product was recystallised from acetonitrile, collected by filtration, washed with ethyl acetate and dried to give 7-(2-[N-tert-butoxycarbonylamino]ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (235 mg, 25%).
  • the starting material was prepared as follows:
  • Triphenylphosphine (2.46 g, 9.3 mmol) was added to a suspension of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1.0 g, 3.1 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (25 ml) and the suspension stirred at 0° C. for 30 minutes.
  • a solution of 3-(N-tert-butoxycarbonylamino)-1-propanol (0.65 g, 3.7 mmol) in methylene chloride (3 ml) was added and then diethyl azodicarboxylate (1.47 ml, 7.6 mmol) was added dropwise.
  • reaction mixture was allowed to warm to ambient temperature and stirred for 18 hours.
  • the reaction mixture was diluted with methylene chloride and washed with aqueous sodium hydrogen carbonate solution, water and then brine.
  • the resultant solution was dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified by column chromatography eluting with methylene chloride/methanol/triethylamine (100/0/0 and then 95/4/1) to give 7-(3-(N-tert-butoxycarbonylamino)propoxy)-4-(4-chloro-2-fluororanilino)-6-methoxyquinazoline (620 mg, 42%).
  • 1,1′-(Azodicarbonyl)dipiperidine (560 mg, 2.2 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (240 mg, 0.75 mmol), (prepared as described for the starting material in Example 2), tetrahydro-3-furanmethanol (90 mg, 0.88 mmol) and tributylphosphine (440 mg, 2.2 mmol) in methylene chloride (12 ml) and the mixture stirred for 18 hours. The mixture was diluted with ether, and the resulting precipitate was removed by filtration.
  • 1,1′-(Azodicarbonyl)dipiperidine (5.6 g, 22 mmol) was added in portions to a mixture of 4-(4chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2.4 g, 7.5 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (4.4 g, 22 mmol) and 1-(2-hydroxyethyl)-2-pyrrolidinone (1.1 g, 8.5 mmol) in methylene chloride (105 ml). The mixture was stirred for 18 hours, diluted with ether (100 ml) and the resulting precipitate was removed by filtration.
  • 1,1′-(Azodicarbonyl)dipiperidine (525 mg, 2.1 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (420 mg, 2.1 mmol) and 1-(2-hydroxyethyl)-2-imidazolidinone (100 mg, 7.7 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration.
  • 1,1′-(Azodicarbonyl)dipiperidine (525 mg, 2.1 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (420 mg, 2.1 mmol) and 4-(2-hydroxyethyl)-1,1-dioxothiomorpholine (140 mg, 7.8 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration.
  • the starting material was prepared as follows:
  • Ethyl 4chlorobutyrate (0.154 ml, 1.1 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (319.5 mg, 1 mmol), (prepared as described for the starting material in Example 2), and anhydrous potassium carbonate (690 mg, 5 mmol) in DMF (10 ml). The mixture was stirred and heated at 105° C. for 4 hours then allowed to cool. The mixture was diluted with methylene chloride and the insolubles were removed by filtration.
  • Oxalyl chloride (0.4 ml, 2.2 mmol) was added to a suspension of 7-(3-carboxypropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (260 mg, 0.64 mmol), (prepared as described for the starting material in Example 42), in methylene chloride (25 ml) followed by 1 drop of DMF. The mixture was stirred at ambient temperature for 2.5 hours and the volatiles were removed by evaporation. A solution of pyrrolidine (0.13 ml, 2.1 mmol) in N,N-dimethylacetamide (8 ml) was added to the solid residue and the mixture was stirred at ambient temperature for 2 hours.
  • the starting material was prepared as follows:
  • Bromoacetaldehyde dimethyl acetal (0.74 ml, 3.1 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (10 g, 3.13 mmol), (prepared as described for the starting material in Example 2), and anhydrous potassium carbonate (2.16 g, 15.6 mmol) in DMF (30 ml). The mixture was stirred and heated at 110° C. for 4 hours, then allowed t6 cool and the volatiles were removed by evaporation. Water was added to the residue and the aqueous mixture was extracted with methylene chloride ( ⁇ 4).
  • Diethyl azodicarboxylate (261 mg, 1.5 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7hydroxy-6-methoxyquinazoline (160 mg, 0.5 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (393 mg, 1.5 mmol) and 1-(3-hydroxypropyl)-2-pyrrolidinone (107 mg, 0.75 mmol) in methylene chloride (5 ml) under nitrogen.
  • the mixture was stirred for 20 minutes at ambient temperature and then purified by pouring directly onto a column of silica eluting with methylene chloride/ethyl acetate/methanol (60/35/5 followed by 60/30/10).
  • the purified product was triturated with ether and collected by filtration.
  • the solid was dissolved in ethyl acetate and treated with 3M hydrogen chloride in ethyl acetate (0.4 ml).
  • the starting material was prepared as follows:
  • the starting material was prepared as follows:
  • Methanesulphonyl chloride 32 mg, 0.275 mmol was added dropwise to a mixture of 4-4-bromo-2-fluoroanilino)-6-methoxy-7-(3-metlylaminopropoxy)quinazoline (109 mg, 0.25 mmol) and triethylamine (30 mg, 0.3 mmol) in methylene chloride (3 ml) cooled at 0° C. The solution was stirred for 2 hours at 0° C. and the volatiles were removed by evaporation. The residue was partitioned between ethyl acetate and water, the organic layer was separated, washed with brine, dried (MgSO 4 and the solvent removed by evaporation.
  • the solid was triturated with ether and collected by filtration.
  • the solid was dissolved in methylene chloride containing methanol (0.5 ml) and 3M hydrogen chloride in ethyl acetate (0.3 ml) was added.
  • the suspension was diluted with ethyl acetate and concentrated by evaporation.
  • the resulting solid product was collected by filtration,-washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-(3([N-methyl-N-methylsulphonyl]amino)propoxy)quinazoline hydrochloride (85 mg, 61%).
  • the starting material was prepared as follows:
  • Diethyl azodicarboxylate (522 mg, 3 mmol) was added dropwise to a suspension of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (364 mg, 1 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (786 mg, 3 mmol) and 3-methylamino-1-propanol (178 mg, 2 mmol), (J.Am.Chem.Soc., 1954, 76, 2789), in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature, neutral alumina ( ⁇ 20 g) was added to the reaction mixture and the solvent was removed by evaporation.
  • the powder was poured onto a column of neutral alumina and was eluted with a mixture of methylene chloride/methanol (95/5 followed by 90/10 and 80/20).
  • the purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-methylaminopropoxy)quinazoline (220 mg, 50%).
  • the mixture was then stirred for 2 hours at ambient temperature and the mixture was purified by pouring directly onto a column of silica and eluting with methylene chloride/ethyl acetate/methanol (60/35/5).
  • the purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum.
  • the solid was dissolved in methylene chloride and 3M hydrogen chloride in ethyl acetate (0.4 ml) was added.
  • the starting material was prepared as follows:
  • Methoxyacetyl chloride 34 mg, 0.31 mmol was added to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (113 mg, 0.3 mmol), (prepared as described for the starting material in Example 60), and triethylamine (33 mg, 0.33 mmol) in methylene chloride (3 ml). The mixture was stirred for 18 hours at ambient temperature and was then partitioned between ethyl acetate and brine. The organic layer was separated, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified by chromatography on silica eluting with methylene chloride/acetonitrile/methanol (6/3/1).
  • the purified solid product was triturated with methylene chloride and ether, collected by filtration, washed with ether and dried under vacuum.
  • the solid was dissolved in a mixture of methylene chloride/methanol (1/1) and 2M hydrogen chloride in ethyl acetate (0.5 ml) was added.
  • Diethyl azodicarboxylate (400 mg, 2.3 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (615 mg, 2.3 mmol) and 4-(2-hydroxyethyl)-3-morpholinone (170 mg, 1.17 mmol), (EP 580402A2), in methylene chloride (5 ml) under nitrogen. The mixture was stirred for 4 hours at ambient temperature, methylene chloride (5 ml) was added and stirring was continued for a further 18 hours at ambient temperature. THF (5 ml).
  • Diethyl azodicarboxylate (209 mg, 1.2 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6 methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (314 mg, 1.2 mmol) and 2-(2-morpholinoethoxy)ethanol (97 mg, 0.56 mmol) in methylene chloride (4 ml) under nitrogen.
  • the starting material was prepared as follows:
  • 2-(2-Chloroethoxy)ethanol (1.25 g, 10 mmol) was added to a mixture of morpholine (2.58 g, 30 mmol) and potassium carbonate (5.5 g, 40 mmol) in acetonitrile (50 ml). The mixture was heated at reflux for 6 hours and then stirred for 18 hours at ambient temperature. The insolubles were removed by filtration and the volatiles were removed from the filtrate by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (95/5 followed by 90/10 and then 80/20) to give 2-(2-morpholinoethoxy)ethanol (600 mg, 34%).
  • Diethyl azodicarboxylate (209 mg, 1.2 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (314 mg, 1.2 mmol) and (S)-1-(3-hydroxypropyl)-pyrrolidine-2-carboxamide (97 mg, 0.56 mmol), (prepared as described for the starting material in Example 50), in methylene chloride (4 ml).
  • Diethyl azodicarboxylate (209 mg, 1 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), cis-3-(2,6-dimethylmorpholino)-1-propanol (97 mg, 0.56 mmol) and triphenylphosphine (314 mg, 1.2 mmol) in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature and the solvent was removed by evaporation.
  • the starting material was prepared as follows:
  • Diethyl azodicarboxylate (218 mg, 1.25 mmol) was added dropwise to a solution of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (159 mg, 0.5 mmol), (prepared as described for the starting material in Example 2), 4-hydroxy-1-methylpiperidine (115 mg, 1 mmol) and triphenylphosphine (328 mg, 1.25mmol) in methylene chloride (5 ml) cooled at 5° C. under nitrogen. The mixture was stirred for 1 hour at ambient temperature, the solvent was removed by evaporation and the residue was partitioned between 2M hydrochloric acid and ether.
  • the aqueous layer was separated, adjusted to pH9 with aqueous sodium hydrogen carbonate solution and extracted with methylene chloride.
  • the methylene chloride layer was washed with brine, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified on neutral alumina eluting with methylene chloride/methanol (97/3).
  • the purified product was triturated with ether, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidine-4-yloxy)quinazoline (180 mg, 79%).
  • Methanesulphonyl chloride 35 ⁇ l, 0.46 mmol was added dropwise to a solution of 4-(4-chloro-2-fluoro)-6-methoxy-7-(3-methyl aminopropoxy)quinazoline (170 mg, 043 mmol) and triethylamine (67 ⁇ l, 0.48 mmol) in methylene chloride (3 ml). The mixture was stirred for 5 hours at ambient temperature, the volatiles was removed by evaporation and the residue was partitioned between ethyl acetate and water. The organic layer was separated, washed with water and then brine, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the staring material was prepared as follows:
  • Diethyl azodicarboxylate (2.4 ml, 15 mmol) was added dropwise to a solution of 3-([N-(tert-butylcarbonyl)-N-methyl]amino)-1-propanol (1.77 g, 9.4 mmol), 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2 g, 6.26 mmol), (prepared as described for the starting material in Example 2), and triphenylphosphine (4.1 g, 15 mmol) in methylene chloride (50 ml) under nitrogen.
  • the purified product was triturated with ether, collected by filtration and repurified by column chromatography eluting with methylene chloride/methanol (97/3) to give 7-3-([N-(tert-butylcarbonyl)-N-methyl]amino)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (2.2 g, 72%).
  • the starting material was prepared as follows:
  • Diethyl azodicarboxylate (3.13 g, 24 mmol) was added dropwise to a suspension of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2.56 mg, 8 mmol), (prepared as described for the starting material in Example 2), 2-[(N-(tert-butylcarbonyl)-N-methyl]amino)ethanol (2.1 g, 1.2 mmol), (Synth. Commun. 1993, 23, 2443), and triphenylphosphine (63 g, 24 mmol) in methylene chloride (50 ml) under nitrogen.
  • the starting material was prepared as follows:
  • 1,2-Dibromoethane (5.4 ml, 62 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (5 g, 15.6 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (8.6 g, 62 mmol) in DMF (50 ml) and the mixture stirred for 18 hours at ambient temperature. Water was added and the resulting precipitate was collected by filtration. The solid was purified by chromatography on neutral alumina eluting with methylene chloride/methanol (95/5).
  • the semi-purified product was repurified by chromatography on silica eluting with methylene chloride/methanol (97/3).
  • the purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 7-(2-bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (3.58 g, 54%).
  • the starting material was prepared as follows:
  • 2-Bromoethyl ether (1.57 ml, 12 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1 g, 3.1 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (1.73 g, 12 mmol) in DMF (10 ml).
  • the mixture was s for 18 hours at ambient temperature and was partitioned between ethyl acetate and water. The organic layer was separated, washed with water and then brine, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified by column chromatography on alumina eluting with methylene chloride/acetonitrile/methanol (60/37/3).
  • the semi-purified product was repurified by column chromatography on silica eluting with methylene chloride/methanol (95/5).
  • the purified product was dissolved in methylene chloride and 2.9M ethereal hydrogen chloride (1 ml) was added.
  • the starting material was prepared as follows:
  • Diethyl azodicarboxylate (368 ⁇ l, 2.34 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (284 mg, 0.78 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (613 mg, 2.34 mmol) and 4-(2-hydroxyethyl)-3-morpholinone (170 mg, 1.17 mmol), (EP580402A2), in methylene chloride (10 ml) under nitrogen. The mixture was stirred for 2.5 hours at ambient temperature, the insolubles were removed by filtration.
  • the filtrate was purified by pouring it directly on to a column of silica and eluting with methylene chloride/ethyl acetate/methanol (60/35/5).
  • the purified product was triturated with ether and collected by filtration.
  • the solid was dissolved in methylene chloride containing a few drops of methanol and 3.8M ethereal hydrogen chloride (0.5 ml) was added.
  • Diethyl azodicarboxylate (283 ⁇ l, 1.8 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (218 mg, 0.6 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (95 ⁇ l, 0.84 mmol) and 1-(2-hydroxyethyl)-2-pyrrolidinone (95 ⁇ l, 0.84 mmol) in methylene chloride (8 ml) under nitrogen.
  • the mixture was stirred for 4 hours at ambient temperature, and then purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol (60/32.5/7.5).
  • the purified product was triturated with ether and collected by filtration.
  • the solid was dissolved in methylene chloride/methanol (1/1) and 2M ethereal hydrogen chloride (1 ml) was added.
  • Diethyl azodicarboxylate (236 ⁇ l, 1.5 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (182 mg, 0.5 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (393 mg, 1.5 mmol) and 2-(2-methoxyethoxy)ethanol (84 ⁇ l, 0.7 mmol) in methylene chloride (7 ml) under nitrogen.
  • the mixture was stirred for 4 hours at ambient temperature, the reaction mixture was purified by pouring it directly on to a column of silica and eluting with ethyl acetate/petroleum ether (9/1 followed by 10/0). The purified product was triturated with ether and collected by filtration. The solid was dissolved in methylene chloride/methanol and 2M ethereal hydrogen chloride (1 ml) was added.
  • Diethyl azodicarboxylate (567 ⁇ l, 3.6 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (383 mg, 1.2 mmol), (prepared as described for the starting material in Example 2), 4-(3-hydroxypropyl)-3,5-dioxomorpholine (291 mg, 1.68 mmol) and triphenylphosphine (944 mg, 3.6 mmol) in methylene chloride (10 ml) under nitrogen. The mixture was sired at ambient temperature for 6 hours and the insolubles were removed by filtration.
  • the filtrate was purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol (60/34/6 followed by 60/24/16 and 60/16/24).
  • the semi-purified product was repurified by column chromatography eluting with methylene chloride/acetonitrile/methanol (5/4/1).
  • the purified product was dissolved in methylene chloride/methanol 2M ethereal hydrogen chloride (1 ml) was added and the volatiles were removed by evaporation.
  • the starting material was prepared as follows:
  • Diethyl azodicarboxylate (472 ⁇ l, 3 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (319.5 mg, 1 mmol), (prepared as described for the staring material in Example 2), triphenylphosphine (786 mg, 3 mmol) and 4-(2-hydroxyethyl)-3,5-dioxomorpholine (223 mg, 1.4 mmol) in methylene chloride (10 ml) under nitrogen. The mixture was stirred at ambient temperature for 4.5 hours and the insolubles were removed by filtration.
  • the starting material was prepared as follows:
  • Ethanolamine (2.44 g, 40 mmol) was added dropwise to a solution of diglycolic anhydride (2.32 g, 20 mmol) in pyridine (10 ml). The mixture was stirred for 5 minutes at ambient temperature and then heated at reflux for 2 hours. The volatiles were removed by evaporation and the residue was heated at 180° C. for 2 hours The reaction mixture was allowed to cool and was purified by column chromatography eluting with methylene chloride/methanol (9/1) to give 4-(2-hydroxyethyl)-3,5-dioxomorpholine (400 mg, 12.5%).
  • Diethyl azodicarboxylate (378 ⁇ l, 2.4 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (292 mg, 0.8 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (629 mg, 2.4 mmol) and 2-(2-morpholinoethoxy)ethanol (196 mg, 1.12 mmol), (prepared as described for the starting material in Example 53), in methylene chloride (10 ml) under nitrogen.
  • the mixture was stirred for 3.5 hours at ambient temperature and the mixture was purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol 6/3/1).
  • the purified product was dissolved in methylene chloride/methanol and the insolubles were removed by filtration. 2M Ethereal hydrogen chloride (1 ml) was added to the filtrate and the volatiles were removed by evaporation.
  • Diethyl azodicarboxylate (220 ⁇ l, 1.4 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (170 mg, 0.46 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (367 mg, 1.4 mmol) and 3-(1,1-dioxothiomorpholino)-1-propanol (135 mg, 0.7 mmol) in methylene chloride (4 ml) under nitrogen.
  • the starting material was prepared as follows:
  • the mixture was stirred for 10 minutes at ambient temperature, the volatiles were removed by evaporation and the residue was partitioned between methylene chloride and water. The organic layer was separated, washed with brine, dried (MgSO 4 ) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (97/3). The purified product was dissolved in methylene chloride (5 ml) and 2.2M ethereal hydrogen chloride (2 ml) was added and the volatiles were removed by evaporation.
  • Example 74 Using a method analogous to that in Example 74, a mixture of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (102 mg, 0.27 mmol), (prepared as described for the staring material in Example 60), and triethylamine (0.1 ml, 0.72 mmol) in acetonitrile (17 ml) was treated with 3-morpholinopropylsulphonyl chloride (75 mg, 0.28 mmol), (WO 930181), to give, after purification and hydrochloride salt formation, 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-methyl-N-(3-morpholinopropylsulphonyl)]amino)ethoxy)quinazoline hydrochloride (96 mg, 54%).
  • Diethyl azodicarboxylate (0.18 ml, 1.14 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (111 mg, 0.35 mmol), (prepared as described for the staring material in Example 2), triphenylphosphine (312 mg, 1.19 mmol) and (S)-1-(3-hydroxypropyl)-2-(N,N-dimethylcarbamoyl)pyrrolidine (84 mg, 0.42 mmol) in methylene chloride (10 ml) cooled at 0° C. under nitrogen.
  • the aqueous layer was separated, adjusted to pH9 with sodium hydrogen carbonate and was extracted with methylene chloride.
  • the combined organic extracts were washed with water and then brine, dried (MgSO 4 ) and the solvent removed by evaporation.
  • the residue was purified by column chromatography on silica eluting with methylene chloride/methanol (85/15 followed by 75/25 and 60/40).
  • the purified product was dissolved in methylene chloride (5 ml) and methanol (1 ml), 3.9M ethereal hydrogen chloride (0.5 ml) was added and the mixture was diluted with ether.
  • the starting material was prepared as follows:

Abstract

The invention relates to quinazoline derivatives of formula (1)
Figure USRE042353-20110510-C00001

wherein m is an integer from 1 to 2; R1 represents hydrogen, hydroxy, halogeno, nitro, trifluoromethyl, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or —NR5R6 (wherein R5 and R6, which may be the same or different, each represents hydrogen or C1-3alkyl); R2 represents hydrogen, hydroxy, halogeno, methoxy, amino or nitro; R3 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro; X1 represents —O—, —CH2—, —S—, —SO—, —SO2—, —NR7CO—, —CONR8—, —SO2NR9—, —NR10SO2— or —NR11— (wherein R7, R8, R9, R10 and R11 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl); R4 represents an optionally substituted 5 or 6 membered saturated carbocyclic or heterocyclic group or a group which is alkenyl, alkynyl or optionally substituted alkyl, which alkyl group may contain a heteroatom linking group, which alkenyl, alkynyl or alkyl group may carry a terminal optionally substituted group selected from alkyl and a 5 or 6 membered saturated carbocyclic or heterocyclic group, and salts thereof; processes for their preparation, pharmaceutical compositions containing a compound of formula (I) or a pharmaceutically acceptable salt thereof as active ingredient. The compounds of formula (I) and pharmaceutically acceptable salts thereof inhibit the effects of VEGF, a property of value in the treatment of a number of disease states including cancer and rheumatoid arthritis.

Description

This application is the national phase of international application PCT/GB97/02588 filed Sep. 23, 1997 which designated the U.S.
The present invention relates to quinazoline derivatives, processes for their preparation, pharmaceutical compositions containing them as active ingredient, methods for the treatment of disease states associated with angiogenesis and/or increased vascular permeability, to their use as medicaments and to their use in the manufacture of medicaments for use in the production of antiangiogenic and/or vascular permeability reducing effects in warm-blooded animals such as humans.
Normal angiogenesis plays an important role in a variety of processes including embryonic development, wound healing and several components of female reproductive function. Undesirable or pathological angiogenesis has been associated with disease states including diabetic retinopathy, psoriasis, cancer, rheumatoid arthritis, atheroma, Kaposi's sarcoma and haemangioma (Fan et al, 1995, Trends Pharmacol. Sci. 16: 57-66; Folknan, 1995, Nature Medicine 1: 27-31). Alteration of vascular permeability is thought to play a role in both normal and pathological physiological processes (Cullinan-Bove et al, 1993, Endocrinology 133: 829-837; Senger et al, 1993, Cancer and Metastasis Reviews, 12: 303-324). Several polypeptides with in vitro endothelial cell growth promoting activity have been identified including, acidic and basic fibroblast growth factors (aFGF & bFGF) and vascular endothelial growth factor (VEGF). By virtue of the restricted expression of its receptors, the growth factor activity of VEGF, in contrast to that of the FGFs, is relatively specific towards endothelial cells. Recent evidence indicates that VEGF is an important stimulator of both normal and pathological angiogenesis (Jakeman et al, 1993, Endocrinology, 133: 848-859; Kolch et al, 1995, Breast Cancer Research and Treatment, 36:139-155) and vascular permeability (Connolly et al, 1989, J. Biol. Chem. 264: 20017-20024). Antagonism of VEGF action by sequestration of VEGF with antibody can result in inhibition of tumour growth (Kim et al, 1993, Nature 362: 841-844).
Receptor tyrosine kinases (RTKs) are important in the transmission of biochemical signals across the plasma membrane of cells. These transmembrane molecules characteristically consist of an extracellular ligand-binding domain connected through a segment in the plasma membrane to an intracellular tyrosine kinase domain. Binding of ligand to the receptor results in stimulation of the receptor-associated tyrosine kinase activity which leads to phosphorylation of tyrosine residues on both the receptor and other intracellular molecules. These changes in tyrosine phosphorylation initiate a signalling cascade leading to a variety of cellular responses. To date, at least nineteen distinct RTK subfamilies, defined by amino acid sequence homology, have been identified. One of these subfamilies is presently comprised by the fms-like tyrosine kinase receptor, Flt or Flt1, the kinase insert domain-containing receptor, KDR (also referred to as Flk-1), and another fms-like tyrosine kinase receptor, Flt4. Two of these related RTKs, Flt and KDR, have been shown to bind VEGF with high affinity (De Vries et al, 1992, Science 255: 989-991; Terman et al, 1992, Biochem. Biophys. Res. Comm. 1992, 187: 1579-1586). Binding of VEGF to these receptors expressed in heterologous cells has been associated with changes in the tyrosine phosphorylation status of cellular proteins and calcium fluxes.
European Patent Publication No. 0326330 discloses certain quinoline, quinazoline and cinnoline plant fungicides. Certain of these plant fungicides are also stated to possess insecticidal and miticidal activity. There is however no disclosure or any suggestion that any of the compounds disclosed may be used for any purpose in animals such as humans. In particular, the European Patent Publication contains no teaching whatsoever concerning angiogenesis and/or increased vascular permeability mediated by growth factors such as VEGF.
European Patent Publication No. 0566226 discloses anilinoquinazolines which have activity against epidermal growth factor (EGF) receptor tyrosine kinase. EP 0566226 contains no teaching whatsoever concerning angiogenesis and/or increased vascular permeability mediated by growth factors such as VEGF. Moreover compounds of EP 0566226 which have been tested do not show significant activity against VEGF receptor tyrosine kinase.
The present invention is based on the surprising discovery that certain quinazolines inhibit the effects of VEGF, a property of value in the treatment of disease states associated with angiogenesis and/or increased vascular permeability such as cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation and ocular diseases with retinal vessel proliferation. Compounds of the present invention possess good activity against VEGF receptor tyrosine kinase whilst possessing some activity against EGF receptor tyrosine kinase. Furthermore, some compounds of the present invention, possess substantially higher potency against VEGF receptor tyrosine kinase than against EGF receptor tyrosine kinase or FGF R1 receptor tyrosine kinase. Thus certain compounds of the invention which have been tested possess activity against VEGF receptor tyrosine kinase such that they may be used in an amount sufficient to inhibit VEGF receptor tyrosine kinase whilst demonstrating no significant activity against EGF receptor tyrosine kinase or FGF R1 receptor tyrosine kinase. While we do not wish to be bound by theoretical considerations such compounds may for example be of interest in treating tumours which are associated with VEGF, especially those tumours which are dependent on VEGF for their growth.
Other compounds of the invention possess good activity against both VEGF and EGF receptor tyrosine kinases. Indeed certain compounds possess substantially equivalent activities against VEGF and EGF receptor tyrosine kinases. It is believed that these compounds may be of interest in treating tumour states associated with both VEGF and EGF, especially where a patient is suffering from a condition in which tumours are present which are dependent on both VEGF and EGF for their growth.
According to one aspect of the present invention there is provided a quinazoline derivative of the formula I:
Figure USRE042353-20110510-C00002

[wherein:
    • m is an integer from 1 to 2;
    • R1 represents hydrogen, hydroxy, halogeno, nitro, trifluoromethyl, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or —NR5R6 (wherein R5 and R6, which may be the same or different, each represents hydrogen or C1-3alkyl);
    • R2 represents hydrogen, hydroxy, halogeno, methoxy, amino or nitro;
    • R3 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyolxy, trifluoromethyl, cyano, amino or nitro;
    • X1 represents —O—, —CH2—, —S—, —SO—, —SO2—, —NR7CO—, —CONR8—, —SO2NR9—, —NR10SO2— or —NR11— (wherein R7, R8, R9, R10 and R11 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl);
    • R4 is selected from one of the following eight groups:
      • 1) C1-5alkylR12 (wherein R12 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C1-5alkyl through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) or C1-5alkylR13 (wherein R13 is a group selected from pyrrolidin-1-yl, imidazolidin-1-yl and thiomorpholino, which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
      • 2) C2-5alkenylR14 (wherein R14 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
      • 3) C2-5alkynylR15 (wherein R15 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
      • 4) C1-5alkylX2C1-5alkylX3R16 (wherein X2 and X3 which may be the same or different are each —O—, —S—, —SO—, —SO2—, —NR17CO—, —CONR18—, —SO2NR19—, —NR20SO2— or —NR21— (wherein R17, R18, R19, R20 and R21 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —C2— when R4 is C1-5alkylX2C1-5alkylX3R16;
      • 5) C1-5alkylX4COR22 (wherein X4 represents —O— or —NR23— (wherein R23 represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R22 represents —NR24R25 or —OR 26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-3alkoxyC2-3alkyl));
      • 6) C1-5alkylX5R27 (wherein X5 represents —O—, —S—, —SO—, —SO2—, —OCO—, —NR28CO—, —CONR29—, —SO2NR30—, —NR31SO2— or —NR32— (wherein R28, R29, R30, R31 and R32 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) or X5 is carbonyl, and R27 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl or R27 is C1-3alkyl with the proviso that when R27 is C1-3alkyl, X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and X1 is not —CH2—);
      • 7) C1-3alkoxyC2-4alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and
      • 8) C1-3alkoxyC2-4alkyl or C1-4alkyl provided that X1 is —O—; and additionally R4 may be selected from the following five groups:
    • 9) C1-5alkylX6C1-5alkylR33 (wherein X6 represents —O—, —S—, —SO—, —SO2—, —NR34CO—, —CONR35—, —SO2NR36—, —NR37SO2— or —NR38— (wherein R34, R35, R36, R37 and R38 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R33 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
      • 10) R39 (wherein R39 is a group selected from pyrrolidin-3-yl, piperidin-3-yl and piperidin-4-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
      • 11) C1-5alkylR40 (wherein R40 is piperazin-1-yl which bears at least one substituent selected from C1-4alkanoyl, C1-4alkoxycarbonyl, C1-4hydroxyalkyl and —CONR41R42 (wherein R41 and R42 each independently represents hydrogen or C1-4alkyl);
      • 12) C1-5alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-4alkyl, C1-4hydroxyalkyl, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) with the proviso that when R4 is C1-5alkylR43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—; and
      • 13) C1-5alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituents selected from oxo, C1-4alkyl, C1-4hydroxyalkyl, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl); with the further proviso that when R4 is selected from group 8) R1 and/or R2 is/are nitro or at least one R3 is C1-3alkanoyloxy;]
        and salts thereof.
Preferably m is 2.
R1 is advantageously hydrogen, liydroxy, cyano, nitro, trifluoromethyl, C1-3alkyl, C1-3alkoxy or amino.
R1 is preferably hydrogen, hydroxy, cyano, nitro, trifluoromethyl, methyl, ethyl, methoxy or ethoxy, more preferably hydrogen, methyl or methoxy, most preferably hydrogen or methoxy, but especially methoxy.
R2 is preferably hydrogen, fluoro, amino or nitro, but especially hydrogen.
In one embodiment of the present invention R3 represents hydroxy, halogeno, C1-2alkyl, C1-2alkoxy, trifluoromethyl, cyano, amino or nitro.
Advantageously in another embodiment of the present invention one R3 substituent is metahydroxy and the other one is selected from halogeno and methyl.
In another embodiment of the invention the phenyl group bearing (R3)m is preferably of the formula II:
Figure USRE042353-20110510-C00003

wherein:
    • Ra represents hydrogen, methyl, fluoro or chloro, preferably hydrogen or fluoro;
    • Rb represents hydrogen, methyl, methoxy, bromo, fluoro or chloro, especially hydrogen, methyl or chloro;
    • Rc represents hydrogen or hydroxy;
    • Rd represents hydrogen, fluoro or chloro, especially hydrogen or fluoro.
In a particular aspect of the present invention, the phenyl group bearing (R3)m is the 3-hydroxy-4-methylphenyl group, the 2-fluoro-5-hydroxyphenyl group or the 4-chloro-2-fluorophenyl group, or the 4-bromo-2-fluorophenyl group, especially the 4-chloro-2-fluorophenyl group or the 4-bromo-2-fluorophenyl group more especially the 4-chloro-2-fluorophenyl group.
Advantageously X1 represents —O—, —S—, —NR7CO—, —NR10SO2— or —NR11— (wherein R7, R10 and R11 each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
Preferably X1 represents —O—, —S—, —NR7CO— or —NR10SO2— (wherein R7 and R10 each independently represents hydrogen or C1-2alkyl).
More preferably X1 represents —O—, —S—, —NR7CO— (wherein R7 represents hydrogen or methyl). Particularly X1 represents —O—, or —NHCO—, or —S—, especially —O—, or —S— more especially —O—. Conveniently X2 and X3 which may be the same or different each represents —O—, —S—, —SO—, —SO2—, —NR17CO—, or —NR21— (wherein R17 and R21 each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
Advantageously X2 and X3 which may be the same or different each represents —O—, —S—, —SO—, —SO2— or —NR21— (wherein R21 represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
Preferably X2 and X3 which may be the same or different each represents —O—, —S— or —NR21— (wherein R21 represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
In a particular aspect of the present invention X3 is —O— and X2 is —NR17CO— (wherein R17 represents hydrogen, or methyl).
Advantageously X4 represents —O— or —NR23— (wherein R23 represents hydrogen, C1-3alkyl or C1-2alkoxyethyl).
Advantageously X5 represents —O—, —S—, —SO—, —SO2—, —NR28CO—, —NR31SO2— or —NR32— (wherein R28, R31 and R32 each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) or X5 is carbonyl.
Preferably X5 represents —O—, —S—, —SO—, —SO2— or —NR32— (wherein R32 represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
More preferably X5 represents —O— or —NR32— (wherein R32 represents hydrogen or C1-2alkyl).
Advantageously X6 represents —O—, —S—, —SO—, —SO2—, —NR34CO—, —NR37SO2— or —NR38— (wherein R34, R37 and R38 each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl).
Preferably X6 represents —O—.
Conveniently R4 is selected from one of the following eight groups:
    • 1) C1-5alkylR12 (wherein R12 is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl and pyrrolidin-3-yl, and piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) or C2-5alkylR45 (wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino, which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
    • 2) C3-5alkenylR46 (wherein R46 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C3-5alkenyl through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) or C4-5alkenylR47 (wherein R47 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to C4-5alkenyl through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
    • 3) C3-5alkynylR48 (wherein R48 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C3-5alkynyl through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) or C4-5alkynylR49 (wherein R49 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to C4-5alkynyl through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
    • 4) C2-3alkylX2C2-3alkylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2C2-3alkylX3R16;
    • 5) C2-3alkylX4COR22 (wherein X4 is as defined hereinbefore and R22 represents —NR24R25 or —OR26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-2alkoxyethyl));
    • 6) C2-4alkylX5R27 (wherein X5 is as defined hereinbefore and R27 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl or R27 is C1-3alkyl with the proviso that when R27 is C1-3alkyl, X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and X1 is not —CH2—);
    • 7) C1-3alkoxyC2-4alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and
    • 8) C1-3alkoxyC2-4alkyl or C1-4alkyl provided that X1 is —O—; and additionally R4 may conveniently be selected from the following four groups:
    • 9) C2-4alkylX6C2-4alkylR33 (wherein X6 is as defined hereinbefore and R33 represents a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
    • 10) C2-4alkylyR40 (wherein R40 is piperazin-1-yl which bears at least one substituent selected from C2-3alkanoyl, C1-3alkoxycarbonyl, C1-3hydroxyalkyl and CONR41R42 (wherein R41 and R42 each independently represents hydrogen or C1-3alkyl));
    • 11) C2-4alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-3alkyl, C1-3hydroxyalkyl, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) with the proviso that when R4 is C2-4alkyl R43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—; and
    • 12) C2-4alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituents selected from oxo, C1-3alkyl, C1-3hydroxyalkyl, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
    • with the further proviso that when R4 is selected from group 8) R1 and/or R2 is/are nitro or at least one R3 is C1-3alkanoyloxy.
An additional convenient value of R4 is C2-3alkylX2methylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2methylX3R16.
Advantageously R4 is selected from one of the following seven groups:
    • 1) C1-4alkylR12 (wherein R12 is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl and pyrrolidin-3-yl, and piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or C2-4alkylR45(wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
    • 2) 1-R46prop-1-en-3-yl, 1-R46but-2-en-4-yl, 1-R46but-1-en-3-yl, 1-R46pent-2-en-4-yl or 2-R46pent-3-en-5-yl (wherein R46 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamnoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R47but-2-en-4-yl, 1-R47pent-2-en-4-yl or 2-R47pent-3-en-5-yl (wherein R47 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
    • 3) 1-R48prop-1-yn-3-yl, 1-R48but-2-yn-4-yl, 1-R48but-1-yn-3-yl, 1-R48pent-2-yn-4-yl or 2-R48pent-3-yn-5-yl (wherein R48 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R49but-2-yn-4-yl, 1-R49pent-2-yn-4-yl or 2-R49pent-3-yn-5-yl (wherein R49 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
    • 4) C2-3alkylX2C2-3alkylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2C2-3alkylX3R16;
    • 5) C2-3alkylX4COR22 (wherein X4 is as defined hereinbefore and R22 represents —NR24R25 or —OR26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-2alkoxyethyl));
    • 6) C2-3alkylX5R27 (wherein X5 is as defined hereinbefore and R27 represents a group selected from cyclopentyl, cyclohexyl pyrrolidinyl and piperidinyl which group is linked to X5 through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy, and additional possible substituents are carbamoyl, C1-2akylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl or R27 is C1-3alkyl with the proviso that when R27 is C1-3alkyl, X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and X1 is not —CH2—); and
    • 7) C1-2alkoxyC2-3alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and additionally R4 may advantageously be selected from the following four groups:
    • 8) C2-3alkylX6C2-3alkylR33 (wherein X6 is as defined hereinbefore and R33 represents a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl, and C1-3alkoxycarbonyl);
    • 9) C2-3alkylR40 (wherein R40 is piperazin-1-yl which bears at least one substituent selected from acetyl, C1-2alkoxycarbonyl, C1-2hydroxyalkyl and CONR41R42 (wherein R41 and R42 each independently represents hydrogen or C1-2alkyl);
    • 10) C2-3alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl) with the proviso that when R4 is C2-3alkylR43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—; and
    • 11) C2-3alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl).
An additional advantageous value of R4 is C2-3alkylX2methylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkyX2xmethylX3R16.
Preferably R4 is selected from one of the following seven groups:
    • 1) C1-3alkylR12 (wherein R12 is a group selected from 1,3dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl and pyrrolidin-3-yl and piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl) or C2-3alkylR45 (wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl);
    • 2) 1-R46but-2-en-4-yl (wherein R46 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl) or 1-R47but-2-en-4-yl (wherein R47 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl);
    • 3) 1-R48but-2-yn-4-yl (wherein R48 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl) or 1-R49but-2-yn-4-yl (wherein R49 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl and C1-3alkoxy, and additional possible substituents are carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, acetyl and C1-3alkoxycarbonyl);
    • 4) C2-3alkylX2C2-3alkylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2C2-3alkylX3R16;
    • 5) 2-(3,3-dimethylureido)ethyl, 3-(3,3-dimethylureido)propyl, 2-(3-methylureidoethyl)ethyl, 3-(3-methylureido)propyl, 2-ureidoethyl, 3-ureidopropyl, 2-(N,N-dimethylcarbamoyloxy)ethyl, 3-(N,N-dimethylcarbamoyloxy)propyl, 2-(N-methylcarbamoyloxy)ethyl, 3-(N-methylcarbamoyloxy)propyl, 2-(carbamoyloxy)ethyl, 3-(carbamoyloxy)propyl or 2-(1,3,3-trimethylureido)ethyl, 3-(1,3,3-trimethylureido)propyl, 2-(isopropoxycarbonylamino)ethyl, 3-(isopropoxycarbonylamino)propyl, 2-(isobutoxycarbonylamino)ethyl, 3-(isobutoxycarbonylamino)propyl, 2-(t-butoxycarbonylamino)ethyl or 3-(t-butoxycarbonylamino)propyl;
    • 6) C2-3alkylX5R27 (wherein X5 is as defined hereinbefore and R27 is a group selected from cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X5 through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy and additional possible substituents are carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl or R27 is C1-2alkyl with the proviso that when R27 is C1-2alkyl, X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and X1 is not —CH2—); and
    • 7) C1-2alkoxyC2-3alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and additionally R4 may preferably be selected from the following three groups:
    • 8) C2-3alkylX6C2-3alkylR33 (wherein X6 is as defined hereinbefore and R33 represent a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, of which at least one is N, which heterocyclic group is linked to C2-3alkyl through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
    • 9) C2-3alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl) with the proviso that when R4 is C2-3alkylR43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—); and
    • 10) C2-3alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl).
An additional preferred value of R4 is C2-3alkylX2methylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2methylX3R16.
More preferably R4 is selected from one of the following five groups:
    • 1) C1-3alkylR12 (wherein R12 is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl and pyrrolidin-3-yl and piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy, and additional possible substituents are carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl) or C2-3alkylR45 (wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy, and additional possible substituents are carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
    • 2) 1-R50but-2-en-4-yl (wherein R50 is a group selected from imidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3dithian-2-yl, piperidin-4-yl, pyrrolidin-1-yl, pyrrolidin-3-yl, piperazin-1-y1, morpholino and thiomorpholino and piperidino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy, and additional possible substituents are carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl); 3) 1-R51but-2-yn-4-yl (wherein R51 is a group selected from imidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, pyrrolidin-1-yl, pyrrolidin-3-yl, pipeiain-1-yl, morpholino and thiomorpholino and piperidino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl and C1-2alkoxy, and additional possible substituents are carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
    • 4) C2-3alkylX2C2-3alkylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2C2-3alkylX3R16; and
    • 5) C2-3alkoxyC2-3alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and additionally R4 may more preferably be selected from the following four groups:
    • 6) 2-(3,3-dimethylureido)ethyl, 3-(3,3-dimethylureido)propyl, 2-(3-methylureido)ethyl, 3-(3-methylureido)propyl, 2-ureidoethyl, 3-ureidopropyl, 2-(N,N-dimethylcarbamoyloxy)ethyl, 3-(N,N-dimethylcarbamoyloxy)propyl, 2-(N-methylcarbamoyloxy)ethyl, 3-(N-methylcarbamoyloxy)propyl, 2-(carbamoyloxy)ethyl, 3-(carbamoyloxy)propyl, 2-(1,3,3-trimethylureido)ethyl, 3-(1,3,3-trimethylureido)propyl, 2-(isopropoxycarbonylamino)ethyl, 3-(isopropoxycarbonylamino)propyl, 2-(isobutoxycarbonylamino)ethyl, 3-(isobutoxycarbonylamino)propyl, 2-(t-butoxycarbonylamino)ethyl or 3-(t-butoxycarbonylamino)propyl;
    • 7) C2-3alkylX5R27 (wherein R27 is C1-2alkyl and X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and with the proviso that X1 is not —CH2—);
    • 8) C2-3alkylX6C2-3alkylR33 (wherein X6 is as defined hereinbefore and R33 represents a group selected from morpholino, 2-oxopyrrolidin-1-yl, pyrrolidin-1-yl, piperidino, piperazin-1-yl and 4-methylpiperazin-1-yl); and
    • 9) C2-3alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl) with the proviso that when R4 is C2-3alkylR43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—.
An additional more preferred value of R4 is C2-3alkylX2methylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2methylX3R16.
Most preferably R4 is selected from one of the following five groups:
    • 1) C1-3alkylR12 (wherein R12 is 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2yl, 1,3-dithian-2-yl, pyrrolidin-2-yl or pyrrolidin-3-yl or piperidin-2-yl, piperidin-3-yl piperidin-4-yl, 1-methylpiperidin-2-yl, 1-methylpiperidin-3-yl, 1-methylpiperidin-4-yl, 1-methylpyrrolidin-2-yl, 1-methylpyrrolidin-3-yl, piperazin-2-yl, 1-methylpiperazin-2-yl, 4-methylpiperazin-2-yl, 1,4-dimethylpiperazin-2-yl, morpholin-2-yl, morpholin-3-yl, 4-methylmorpholin-2-yl or 4-methylmorpholin-3-yl) or C2-3alkylR45 (wherein R45 is pyrrolidin-1-yl or thiomorpholino or 1,1-dioxothiomorpholino, 2-oxopyrrolidin-1-yl, 2(N-methylcarbamoyl)pyrrolidin-1-yl, 2-(N,N-diethylcarbamoyl)pyrrolidin-1-yl, 2-carbamoylpyrrolidin-1-yl, 2-oxoimidazolidin-1-yl or 3-methyl-2-oxoimidazolidin-1-yl);
    • 2) 1-R50but-2-en-4-yl (wherein R50 is 2-oxoimidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, 1-methylpiperidin-4-yl, pyrrolidin-1-yl, 1-methylpyrrolidin-3-yl, piperazin-1-yl, morpholino or thiomorpholino or 4-methylpiperazin-1-yl, piperidino or 3-methyl-2-oxoimidazolidin-1-yl);
    • 3) 1-R51but-2-yn-4-yl (wherein R51 is 2-oxoimidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, 1-methylpiperidin-4-yl, pyrrolidin-1-yl, 1-methylpyrrolidin-3-yl, piperazin-1-yl, morpholino or thiomorpholino or 4-methylpiperazin-1-yl, piperidino or 3-methyl-2-oxoimidazolidin-1-yl);
    • 4) C2-3alkylX2C2-3alkylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2C2-3alkylX3R16; and
    • 5) C1-2alkoxyC2-3alkyl provided that X1 is —S—, or X1 is —SO— or —SO2—; and additionally R4 may most preferably be selected from the following three groups:
    • 6) C2-3alkylX5R27 (wherein R27 is C1-2alkyl and X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— and with the proviso that X1 is not —CH2—);
    • 7) C2-3alkylX6C2-3alkylR33 (wherein X6 is as defined hereinbefore and R33 represents a group selected from pyrrolidin-1-yl, 4-methylpiperazin-1-yl and morpholino); and
    • 8) C2-3alkylR43 (wherein R43 is morpholino which may bear one or two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl) with the proviso that when R4 is C2-3alkylR43, X1 is —S—, —SO—, —SO2—, —SO2NR9— or —NR10SO2—.
An additional most preferred value of R4 is C2-3alkylX2methylX3R16 (wherein X2 and X3 are as defined hereinbefore and R16 represents hydrogen or C1-3alkyl) with the proviso that X1 cannot be —CH2— when R4 is C2-3alkylX2methylX3R16.
Especially preferred values for the group R4-X1 are 3-(methylsulphonyl)propoxy, (1-methylpiperidin-3-yl)methoxy, 4-(pyrrolidin-1-yl)but-2-en-1-yloxy, 2-(2-methoxyethoxy)ethoxy, 3-(1,1-dioxothiomorpholino)propoxy, 2-(2-(pyrrolidin-1-yl)ethoxy)ethoxy, 2-(2-(4-methylpiperazin-1-yl)ethoxy)ethoxy, 3-morpholinopropylthio, 2-([N-methoxyacetyl-N-methyl]amino)ethoxy, 2-(2-oxopyrrolidin-1-yl)ethoxy, 2-thiomorpholinoethoxy, 3-(2-carbamoylpyrrolidin-1-yl)propoxy, 3-(2-oxopyrrolidin-1-yl)propoxy and 2-(2-morpholinoethoxy)ethoxy.
More especially preferred values for the group R4-X1 are 3-(methylsulphonyl)propoxy, (1-methylpiperidin-3-yl)methoxy and 4-(pyrrolidin-1-yl)but-2-en-1-yloxy.
In a particular aspect of the present invention there is provided a compound of the formula Ia:
Figure USRE042353-20110510-C00004

[wherein:
    • R1a is hydrogen or methoxy;
    • R2a is hydrogen;
    • the phenyl group bearing (R3a)ma is the 4-chloro-2-fluorophenyl group or the 4-bromo-2-fluorophenyl group;
    • X1a is —O—, —S—, —NR5aCO— or —NR6aSO2— (wherein R5a and R6a each independently represents hydrogen or C1-2alkyl);
    • R4a is selected from one of the following eleven groups:
      • 1) C1-4alkylR7a (wherein R7a is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl and pyrrolidin-3-yl, and piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or C2-4alkylR8a (wherein R8a is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
      • 2) 1-R9aprop-1-en-3-yl, 1-R9abut-2-en-4-yl, 1-R9abut-1-en-3-yl, 1-R9apent-2-en-4-yl or 2-R9apent-3-en-5-yl (wherein R9a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R10abut-2-en-4-yl, 1-R10apent-2-en-4-yl or 2-R10apent-3-en-5-yl (wherein R10a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which Eone is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
      • 3) 1-R11aprop-1-yn-3-yl, 1-R11abut-2-yn-4-yl, 1-R11abut-1-yn-3-yl, 1-R11apent-2-yn-4-yl or 2-R11apent-3-yn-5-yl (wherein R11a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo; hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R12abut-2-yn-4-yl, 1-R12apent-2-yn-4-yl or 2-R12apent-3-yn-5-yl (wherein R12a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C2-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
      • 4) C2-3 alkylX2aC2-3alkylX3aR13a (wherein X2a and X3a which may be the same or different each represents —O—, —S—, —SO—, —SO2—, —NR14aCO—, or —NR15a— (wherein R14a and R15a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R13a represents hydrogen or C1-3alkyl);
      • 5) C2-3alkylX4aCOR16a (wherein X4a represents —O— or —NR17a— (wherein R17a represents hydrogen C1-3alkyl or C1-2alkoxyethyl) and R16a represents —NR18aR19a or —OR20a (wherein R18a, R19a and R20a which may be the same or different each represents hydrogen, C1-4alkyl or C1-2alkoxyethyl));
      • 6) C2-3alkylX5aR21a (wherein X5a represents carbonyl, —O—, —S—, —SO—, —SO2—, —NR22aCO—, —NR23aSO2— or —NR24a— (wherein R22a, R23a and R24a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R21a represents a group selected from cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X5a through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl or R21a is C1-3alkyl with the proviso that when R21a is C1-3alkyl, X5a is —S—, —SO—, —SO2— or —NR23aSO2—); and
      • 7) C1-2alkoxyC2-3alkyl provided that X1a is —S—;
      • 8) C2-3alkylX6aC2-3alkylR25a (wherein X6a represents —O—, —S—, —SO2—, —SO—, —NR26aCO—, —NR27aSO2— or —NR28a— (wherein R26a, R27a and R28a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R25a represents a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl, and C1-3alkoxycarbonyl);
      • 9) C2-3alkylR29a (wherein R29a is piperazin-1-yl which bears at least one substituent selected from acetyl, C1-2alkoxycarbonyl, C1-2hydroxyalkyl and CONR30aR31a (wherein R30a and R31a each independently represents hydrogen or C1-2alkyl);
      • 10) C2-3alkylR32a (wherein R32a is morpholino which may bear one or two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)cabamoyl, acetyl and C1-2alkoxycarbonyl) with the proviso that when R4a is C2-3alkylR32a, X1a is —S— or —NR6aSO2— (wherein R6a is as defined hereinbefore); and
      • 11) C2-3alkylR33a (wherein R33a is morpholino which bears at least one and optionally two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl); and an additional value of R4a is C2-3alklyX2amethylX3aR13a (wherein X2a and X3a are as defined hereinbefore and R13a represents hydrogen or C1-3alkyl);] and salts thereof.
Preferred compounds of the present invention, by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
    • 4-(4-chloro-2-fluoroanilino)-7-(1,3-dioxolan-2-ylmethoxy)-6-methoxyquinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-yn-1-yloxy)quinazoline,
    • (E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-en-1-yloxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-7-(3-(2,6-dimethylmorpholino)propoxy)-6-methoxyquinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-([N-methyl-N-methylsulphonyl]amino)propoxy)quinazoline,
    • 7-(2-[N-tert-butoxycarbonylamino]ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline,
    • 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-([N-methyl-N-methylsulphonyl]amino)propoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-2-oxoimidazolidin-1-yl)ethoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline and
    • 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline and salts thereof especially hydrochloride salts thereof.
More preferred compounds of the present invention, by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
    • 4-(4-chloro-2-fluoroanilino-6-methoxy-7-(2-thiomorpholinoethoxy)quinazoline,
    • (S)-4-(4-bromo-2-fluoroanilino)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy)-6-methoxyquinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(2oxopyrrolidin-1-yl)propoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-oxopyrrolidin-1-yl)ethoxy)quinazoline,
    • (S)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-morpholinoethoxy)ethoxy)quinazoline and
    • 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-(2-oxopyrrolidin-1-yl)propoxy)quinazoline and salts thereof especially hydrochloride salts thereof.
Particularly preferred compounds of the present invention, by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline and
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)methoxyquinazoline and salts thereof especially hydrochloride salts thereof.
Additional particularly preferred compounds of the present invention, by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
    • 4-(4-bromo-2-fluoroanilino)-7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxyquinazoline,
    • 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-pyrrolidin-1-ylethoxy)ethoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-[4-methylpiperazin-1-yl]ethoxy)ethoxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-morpholinopropylthio)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-methyl-N-methoxyacetyl]amino)ethoxy)quinazoline and
    • 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(2-oxopyrrolidin-1-yl)ethoxy)quinazoline and salts thereof especially hydrochloride salts thereof.
Especially preferred compounds of the present invention, by virtue of their substantially equivalent activity against VEGF and EGF receptor tyrosine kinases include:
    • (E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-(pyrrolidin-1-yl)but-2-en-1-yloxy)quinazoline,
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(methylsulphonyl)propoxy)quinazoline,
    • (S)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)methoxyquinazoline and
    • (R)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)methoxyquinazoline and salts thereof especially hydrochloride salts thereof, of which 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(methylsulphonyl)propoxy)quinazoline and salts thereof especially hydrochloride salts thereof, is more especially preferred.
In a particular aspect of the present invention preferred compounds are:
    • 4-(3-acetoxy-4-methylanilino)-6-methoxy-7-2-methoxyethoxy)quinazoline
    • 4-(4-chloro-2-fluoroanilino)-7-(2-(1,3-dioxolan-2-yl)ethoxy)-6-methoxyquinazoline
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(pyrrolidin-1-yl)ethoxy)quinazoline
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline
    • 4-(4-chloro-2-fluoroanilino)-7-(1,3-dioxolan-2-ylmethoxy)-6-methoxyquinazoline
    • 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-thiomorpholinoethoxy)quinazoline and salts thereof especially the hydrochloride salts thereof.
For the avoidance of doubt it is to be understood that where in this specification a group is qualified by ‘hereinbefore defined’ or ‘defined hereinbefore’ the said group encompasses the first occurring and broadest definition as well as each and all of the preferred definitions for that group.
In this specification unless stated otherwise the term “alkyl” includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. An analogous convention applies to other generic terms. Unless otherwise stated the term “alkyl” advantageously refers to chains with 1-6 carbon atoms, preferably 1-4 carbon atoms. The term “alkoxy” as used herein, unless stated otherwise includes “alkyl” —O— groups in which “alkyl” is as hereinbefore defined. The term “aryl” as used herein unless stated otherwise includes reference to a C6-10 aryl group which may, if desired, carry one or more substituents selected from halogeno, alkyl, alkoxy, nitro, trifluoromethyl and cyano, (wherein alkyl and alkoxy are as hereinbefore defined). The term “aryloxy” as used herein unless otherwise stated includes “aryl” —O—groups in which “aryl” is as hereinbefore defined. The term “sulphonyloxy” as used herein refers to alkylsulphonyloxy and arylsulphonyloxy groups in which “alkyl” and “aryl” are as hereinbefore defined. The term “alkanoyl” as used herein unless otherwise stated includes formyl and alkylC═O groups in which “alkyl” is as defined hereinbefore, for example C2alkanoyl is ethanoyl and refers to CH3C═O, C1alkanoyl is formyl and refers to CHO. In this specification unless stated otherwise the term “alkenyl” includes both straight and branched chain alkenyl groups but references to individual alkenyl groups such as 2-butenyl are specific for the straight chain version only. Unless otherwise stated the term “alkenyl” advantageously refers to chains with 2-5 carbon atoms, preferably 3-5 carbon atoms. In this specification unless stated otherwise the term “alkynyl” includes both straight and branched chain alkynyl groups but references to individual alkynyl groups such as 2-butynyl are specific for the straight chain version only. Unless otherwise stated the term “alkynyl” advantageously refers to chains with 2-5 carbon atoms, preferably 3-5 carbon atoms.
In formula I, as hereinbefore defined, hydrogen will be present at positions 2 and 8 of the quinazoline group.
Within the present invention it is to be understood that a compound of the formula I or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which inhibits VEGF receptor tyrosine kinase activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
It is also to be understood that certain compounds of the formula I and salts thereof can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which inhibit VEGF receptor tyrosine kinase activity.
For the avoidance of any doubt, it is to be understood that when X1 is, for example, a group of formula —NR7CO—, it is the nitrogen atom bearing the R7 group which is attached to the quinazoline ring and the carbonyl (CO) group is attached to R4, whereas when X1 is, for example, a group of formula —CONR8—, it is the carbonyl group which is attached to the quinazoline ring and the nitrogen atom bearing the R8 group is attached to R4. A similar convention applies to the other two atom X1 linking groups such as —NR10SO2— and —SO2NR9—. When X1 is —NR11— it is the nitrogen atom bearing the R11 group which is linked to the quinazoline ring and to R4. An analogous convention applies to other groups, thus when R4 is, for example, a group of the formula C1-5alkylX5R27 and X5 is a group —NR28CO—, it is the nitrogen atom bearing the R28 group which is attached to the alkyl chain which is attached to the quinazoline ring and the carbonyl (CO) group is attached to R27, whereas when X5 is, for example, a group of formula —CONR29—, it is the carbonyl group which is attached to the alkyl chain which is attached to the quinazoline ring and the nitrogen atom bearing the R29 group is attached to R27. It is further to be understood that when X1 represents —NR11— and R11 is C1-3alkoxyC2-3alkyl it is the C2-3alkyl moiety which is linked to the nitrogen atom of X1 and an analogous convention applies to other groups.
For the avoidance of any doubt, it is to be understood that in a compound of the formula I when R4 is, for example, a group of formula C1-5alkylX2C1-5alkylX3R16, it is the terminal C1-5alkyl moiety which is bound to X1, similarly when R4 is, for example, a group of formula C2-5alkenylR14 it is the C2-5alkenyl moiety which is bound to X1 and an analgous convention applies to other groups. When R4 is a group 1-R33prop-1-en-3-yl it is the first carbon to which the group R33 is attached and it is the third carbon which is linked to X1, similarly when R4 is a group 2-R33pent-3-en-5-yl it is the second carbon to which the group R33 is attached and it is the fifth carbon which is linked to X1, and an analogous convention applies to other groups.
The present invention relates to the compounds of formula I as hereinbefore defined as well as to the salts thereof. Salts for use in pharmaceutical compositions will be pharmaceutically acceptable salts, but other salts may be useful in the production of the compounds of formula I and their pharmaceutically acceptable salts. Pharmaceutically acceptable salts of the invention may, for example, include acid addition salts of the compounds of formula I as hereinbefore defined which are sufficiently basic to form such salts. Such acid addition salts include for example salts with inorganic or organic acids affording pharmaceutically acceptable anions such as with hydrogen halides (especially hydrochloric or hydrobromic acid of which hydrochloric acid is particularly preferred) or with sulphuric or phosphoric acid, or with trifluoroacetic, citric or maleic acid. In addition where the compounds of formula I are sufficiently acidic, pharmaceutically acceptable salts may be formed with an inorganic or organic base which affords a pharmaceutically acceptable cation. Such salts with inorganic or organic bases include for example an alkali metal salt, such as a sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, an ammonium salt or for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
A compound of the formula I, or salt thereof, and other compounds of the invention (as hereinafter defined) may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes include, for example, those illustrated in European Patent Applications, Publication Nos. 0520722, 0566226, 0602851 and 0635498. Such processes, are provided as a further feature of the invention and are as described hereinafter. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
Thus the following processes (a) to (g) and (i) to (v) constitute further features of the present invention.
Synthesis of Compounds of Formula I
(a) Compounds of the formula I and salts thereof may be prepared by the reaction of a compound of the formula III:
Figure USRE042353-20110510-C00005
    • (wherein R1, R2, X1 and R4 are as defined hereinbefore and L1 is a displaceable moiety), with a compound of the formula IV:
Figure USRE042353-20110510-C00006
    • (wherein R3 and m are as defined hereinbefore) whereby to obtain compounds of the formula I and salts thereof. A convenient displaceable moiety L1 is, for example, a halogeno, alkoxy (preferably C1-4alkoxy), aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
The reaction is advantageously effected in the presence of either an acid or a base. Such an acid is, for example, an anhydrous inorganic acid such as hydrogen chloride. Such a base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or for example, an alkali metal or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide. Alternatively such a base is, for example, an alkali metal hydride, for example sodium hydride, or an alkali metal or alkaline earth metal amide, for example sodium amide or sodium bis(trimethylsilyl)amide. The reaction is preferably effected in the presence of an inert solvent or diluent, for example an alkanol or ester such as methanol, ethanol, 2-propanol or ethyl acetate, a halogenated solvent such as methylene chloride, trichloromethane or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic hydrocarbon solvent such as toluene, or a dipolar aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide. The reaction is conveniently effected at a temperature in the range, for example, 10 to 150° C., preferably in the range 20 to 80° C.
The compound of the invention may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-L1 wherein L1 has the meaning defined hereinbefore. When it is desired to obtain the free base from the salt, the salt may be treated with a base as defined hereinbefore using a conventional procedure.
(b) Where the group of formula IIa:
Figure USRE042353-20110510-C00007
    • (wherein R3 and m are as hereinbefore defined) represents a phenyl group carrying one or more hydroxy groups, a compound of the formula I and salts thereof can be prepared by the deprotection of a compound of formula V:
Figure USRE042353-20110510-C00008
    • (wherein X1, m, R1, R2, R3 and 4 are as hereinbefore defined, P represents a phenolic hydroxy protecting group and pl is an integer from 1 to 5 equal to the number of protected hydroxy groups and such that m-pl is equal to the number of R3 substituents which are not protected hydroxy). The choice of phenolic hydroxy protecting group P is within the standard knowledge of an organic chemist, forexample those included in standard texts such as “Protective Groups in Organic Synthesis” T. W. Greene and R. G. M. Wuts, 2nd Ed. Wiley 1991, including ethers (for example, methyl, methoxymethyl, allyl and benzyl and benzyl substituted with up to two substituents selected from C1-4alkoxy and nitro), silyl ethers (for example, t-butyldiphenylsilyl and t-butyldimethylsilyl), esters (for example, acetate and benzoate) and carbonates (for example, methyl and benzyl and benzyl substituted with up to two substituents selected from C1-4alkoxy and nitro). The removal of such a phenolic hydroxy protecting group may be effected by any of the procedures known for such a transformation, including those reaction conditions indicated in standard texts such as that indicated hereinbefore, or by a related procedure. The reaction conditions preferably being such that the hydroxy derivative is produced without unwanted reactions at other sites within the starting or product compounds. For example, where the protecting group P is acetate, the transformation may conveniently be effected by treatment of the quinazoline derivative with a base as defined hereinbefore and including ammonia, and its mono and di-alkylated derivatives, preferably in the presence of a protic solvent or co-solvent such as water or an alcohol, for example methanol or ethanol. Such a reaction can be effected in the presence of an additional inert solvent or diluent as defined hereinbefore and at a temperature in the range 0 to 50° C., conveniently at about 20° C.
      (c) Production of those compounds of formula I and salts thereof wherein the substituent X1 is —O—, —S— or —NR11— or —SO2—, —CONR8— or —SO2NR9— can be achieved by the reaction, conveniently in the presence of a base as defined hereinbefore, of a compound of the formula VI:
Figure USRE042353-20110510-C00009
    • (wherein m, X1, R1, R2 and R3 are as hereinbefore defined) with a compound of formula VII:
      R4—L1  (VII)
    • (wherein R4 and L1 are as hereinbefore defined); L1 is a displaceable moiety for example a halogeno or sulphonyloxy group such as a bromo or methanesulphonyloxy group. Conveniently L1 is a group O—+P(R52)3 (wherein R52 is butyl or phenyl) and in such cases the compound of formula VII is conveniently formed in situ. The reaction is preferably effected in the presence of a base (as defined hereinbefore in process (a)) and advantageously in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)), advantageously at a temperature in the range, for example 10 to 150° C., conveniently at about 50° C.
      (d) Compounds of the formula I and salts thereof may be prepared by the reaction of a compound of the formula VIII:
Figure USRE042353-20110510-C00010
    • with a compound of the formula IX:
      R4—X1—H  (IX)
    • (wherein L1, R1, R2, R3, R4, m and X1 are all as hereinbefore defined). The reaction may conveniently be effected in the presence of a base (as defined hereinbefore in process (a)) and advantageously in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)), advantageously at a temperature in the range, for example 10 to 150° C., conveniently at about 100° C.
      (e) Compounds of the formula I and salts thereof wherein R4 is C1-5alkylR53, [wherein R53 is selected from one of the following three groups:
    • 1) X7R27 (wherein X7 represents —O—, —S—, —SO2—, —NR54CO—, —NR55SO2— or —NR56— (wherein R54, R55 and R56 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R27 is as defined hereinbefore); and
    • 2) X8C1-5alkylX3R16 (wherein X8 represents —O—, —S—, —SO2—, —NR57CO—, —NR58SO2— or NR59— (wherein R57, R58 and R59 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and X3 and R16 are as defined hereinbefore); and
    • 3) X9C1-5alkylR33 (wherein X9 represents —O—, —S—, —SO2—, —NR60CO—, —NR61SO2— or NR62— (wherein R60, R61 and R62 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R33 is as defined hereinbefore);] may be prepared by reacting a compound of the formula X:
Figure USRE042353-20110510-C00011
    • (wherein L1, X1, R1, R2, R3 and m are as hereinbefore defined and R63 is C1-5alkyl) with a compound of the formula XI:
      R53—H  (XI)
    • (wherein R53 is as defined hereinbefore) to give a compound of the formula I. The reaction may conveniently be effected in the presence of a base (as defined hereinbefore in process (a)) and advantageously in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)), and at a temperature in the range, for example 0 to 150° C., conveniently at about 50° C.
Compounds of the formula I wherein R4 is C2-5alkylR45, (wherein R45 is as defined hereinbefore), may be prepared by reacting a compound of formula X (wherein R63 is C2-5alkyl) with a compound of the formula XIa:
R45—H  (XIa)
    • (wherein R45 is as defined hereinbefore) to give a compound of the formula I. The reaction may conveniently be effected in the presence of a base (as defined hereinbefore in process (a)) and advantageously in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)), and at a temperature in the range, for example 0 to 150° C., conveniently at about 50° C.
      (f) The production of those compounds of the formula I and salts thereof wherein the substituent R1 is represented by —NR5R6, where one or both of R5 and R6 are C1-3alkyl, may be effected by the reaction of compounds of formula I wherein the substituent R1 is an amino group and an alkylating agent, preferably in the presence of a base as defined hereinbefore. Such alkylating agents are C1-3alkyl moieties bearing a displaceable moiety as defined hereinbefore such as C1-3alkyl halides for example C1-3alkyl chloride, bromide or iodide. The reaction is preferably effected in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)) and at a temperature in the range, for example, 10 to 100° C., conveniently at about ambient temperature.
      (g) The production of compounds of formula I and salts thereof wherein one or more of the substituents R1, R2 or R3 is an amino group may be effected by the reduction of a corresponding compound of formula I wherein the substituent(s) at the corresponding position(s) of the quinazoline and/or aniline ring is tare a nitro group(s). The reduction may conveniently be effected as described in process (i) hereinafter. The production of a compound of formula I and salts thereof wherein the substituent(s) at the corresponding position(s) of the quinazoline and/or aniline ring is/are a nitro group(s) may be effected by the processes described hereinbefore and hereinafter in processes (a-e) and (i-v) using a quinazoline compound selected from the compounds of the formulae (I-XXVII) in which the substituent(s) at the corresponding position(s) of the quinazoline and/or aniline ring is/are a nitro group(s).
Synthesis of Intermediates
(i) The compounds of formula III and salts thereof, constitute a further feature of the present invention. Such compounds in which L1 is halogeno may for example be prepared by halogenating a compound of the formula XII:
Figure USRE042353-20110510-C00012
    • (wherein R1, R2, R3 and X1 are as hereinbefore defined).
Convenient halogenating agents include inorganic acid halides, for example thionyl chloride, phosphorus(III)chloride, phosphorus(V)oxychloride and phosphorus(V)chloride. The halogenation reaction is conveniently effected in the presence of an inert solvent or diluent such as for example a halogenated solvent such as methylene chloride, trichloromethane or carbon tetrachloride, or an aromatic hydrocarbon solvent such as benzene or toluene. The reaction is conveniently effected at a temperature in the range, for example 10 to 150° C., preferably in the range 40 to 100° C.
The compounds of formula XII and salts thereof which constitute a further feature of the present invention may for example be prepared by reacting a compound of the formula XIII:
Figure USRE042353-20110510-C00013
    • (wherein R1, R2 and L1 are as hereinbefore defined) with a compound of the formula IX as hereinbefore defined. The reaction may conveniently be effected in the presence of a base (as defined hereinbefore in process (a)) and advantageously in the presence of an inert solvent or diluent (as defined hereinbefore in process (a)), advantageously at a temperature in the range, for example 10 to 150° C., conveniently at about 100° C.
The compounds of formula XII and salts thereof may also be prepared by cyclising a compound of the formula XIV:
Figure USRE042353-20110510-C00014
    • (wherein R1, R2, R4 and X1, are as hereinbefore defined, and A1 is an hydroxy, alkoxy (preferably C1-4alkoxy) or amino group) whereby to form a compound of formula XII or salt thereof. The cyclisation may be effected by reacting a compound of the formula XIV, where A1 is an hydroxy or alkoxy group, with formamide or an equivalent thereof effective to cause cyclisation whereby a compound of formula XII or salt thereof is obtained, such as [3-(dimethylamino)-2-azaprop-2-enylidene]dimethylammonium chloride. The cyclisation is conveniently effected in the presence of formamide as solvent or in the presence of an inert solvent or diluent such as an ether for example 1,4-dioxan. The cyclisation is conveniently effected at an elevated temperature, preferably in the range 80 to 200° C. The compounds of formula XII may also be prepared by cyclising a compound of the formula XIV, where A1 is an amino group, with formic acid or an equivalent thereof effective to cause cyclisation whereby a compound of formula XII or salt thereof is obtained. Equivalents of formic acid effective to cause cyclisation include for example a tri-C1-4alkoxymethane, for example triethoxymethane and trimethoxymethane. The cyclisation is conveniently effected in the presence of a catalytic amount of an anhydrous acid, such as a sulphonic acid for example p-toluenesulphonic acid, and in the presence of an inert solvent or diluent such as for example a halogenated solvent such as methylene chloride, trichloromethane or carbon tetrachloride, an ether such as diethylether or tetrahydrofuran, or an aromatic hydrocarbon solvent such as toluene. The cyclisation is conveniently effected at a temperature in the range, for example 10 to 100° C., preferably in the range 20 to 50° C.
Compounds of formula XIV and salts thereof, which constitute a further feature of the present invention, may for example be prepared by the reduction of the nitro group in a compound of the formula XV:
Figure USRE042353-20110510-C00015
    • (wherein R1, R2, R4, X1 and A1 are as hereinbefore defined) to yield a compound of formula XIV as hereinbefore defined. The reduction of the nitro group may conveniently be effected by any of the procedures known for such a transformation. The reduction may be carried out, for example, by the hydrogenation of a solution of the nitro compound in the presence of an inert solvent or diluent as defined hereinbefore in the presence of a metal effective to catalyse hydrogenation reactions such as palladium or platinum. A further reducing agent is, for example, an activated metal such as activated iron (produced for example by washing iron powder with a dilute solution of an acid such as hydrochloric acid). Thus, for example, the reduction may be effected by heating the nitro compound and the activated metal in the presence of a solvent or diluent such as a mixture of water and alcohol, for example methanol or ethanol, to a temperature in the range, for example 50 to 150° C., conveniently at about 70° C.
Compounds of the formula XV and salts thereof which constitute a further feature of the present invention, may for example be prepared by the reaction of a compound of the formula XVI:
Figure USRE042353-20110510-C00016
    • (wherein R1, R2, L1 and A1 are as hereinbefore defined) with a compound of the formula IX as hereinbefore defined to give a compound of the formula XV. The reaction of the compounds of formulae XVI and IX is conveniently effected under conditions as described for process (d) hereinbefore.
Compounds of formula XV and salts thereof, may for example also be prepared by the reaction of a compound of the formula XVII:
Figure USRE042353-20110510-C00017
    • (wherein R1, R2, X1 and A1 are as hereinbefore defined with the proviso that X1 is not —CH2—) with a compound of the formula VII as hereinbefore defined to yield a compound of formula XV as hereinbefore defined. The reaction of the compounds of formulae XVII and VII is conveniently effected under conditions as described for process (c) hereinbefore.
The compounds of formula III and salts thereof may also be prepared for example by reacting a compound of the formula XVIII:
Figure USRE042353-20110510-C00018
    • (wherein R1, R2 and X1 are as hereinbefore defined with the proviso that X1 is not —CH2— and L2 represents a displaceable protecting moiety) with a compound of the formula VII as hereinbefore defined, whereby to obtain a compound of formula III in which L1 is represented by L2.
A compound of formula XVIII is conveniently used in which L2 represents a phenoxy group which may if desired carry up to 5 substituents, preferably up to 2 substituents, selected from halogeno, nitro and cyano. The reaction may be conveniently effected under conditions as described for process (c) hereinbefore.
The compounds of formula XVIII and salts thereof as hereinbefore defined may for example be prepared by deprotecting a compound of the formula XIX:
Figure USRE042353-20110510-C00019
    • (wherein R1, R2, P, X1 and L2 are as hereinbefore defined with the proviso that X1 is not —CH2—). Deprotection may be effected by techniques well known in the literature, for example where P represents a benzyl group deprotection may be effected by hydrogenolysis or by treatment with trifluoroacetic acid.
One compound of formula III may if desired be converted into another compound of formula III in which the moiety L1 is different. Thus for example a compound of formula III in which L1 is other than halogeno, for example optionally substituted phenoxy, may be converted to a compound of formula III in which L1 is halogeno by hydrolysis of a compound of formula III (in which L1 is other than halogeno) to yield a compound of formula XII as hereinbefore defined, followed by introduction of halide to the compound of formula XII, thus obtained as hereinbefore defined, to yield a compound of formula III in which L1 represents halogen.
(ii) The compounds of formula V and salts thereof, constitute a further feature of the present invention, and may for example be prepared by the reaction of a compound of formula III as hereinbefore defined with a compound of the formula XX:
Figure USRE042353-20110510-C00020
    • (wherein R3, m, pl and P are as hereinbefore defined). The reaction may for example be effected as described for process (a) hereinbefore.
The compounds of formula V and salts thereof may also be prepared by reacting a compound of formula XXI:
Figure USRE042353-20110510-C00021
    • (wherein R1, R2, L1, R3, m, pl and P are as hereinbefore defined) with a compound of formula IX as hereinbefore defined. The reaction may for example be effected as described for process (d) above.
The compounds of formula V and salts thereof may also be prepared by reacting a compound of formula XXII:
Figure USRE042353-20110510-C00022
    • (wherein R1, R2, R3, X1, P, pl and m are as hereinbefore defined with the proviso that X1 is not —CH2—) with a compound of the formula VII as hereinbefore defined. The reaction may for example be effected as described for process (c) hereinbefore.
The compounds of formula XXI and salts thereof may for example be prepared by reaction of a compound of formula XXIII:
Figure USRE042353-20110510-C00023
    • (wherein R1, R2, and L1 are as hereinbefore defined, and L1 in the 4 and 7-positions may be the same or different) with a compound of the formula XX as hereinbefore defined. The reaction may be effected for example by a process as described in (a) above.
Compounds of the formula XXII and salts thereof may be made by reacting compounds of the formulae XIX and XX as hereinbefore defined, under conditions described in (a) hereinbefore, to give a compound of formula XXIV:
Figure USRE042353-20110510-C00024
    • (wherein R1, R2, R3, P, X1, pl and m are as hereinbefore defined with the proviso that X1 is not —CH2—) and tie-in deprotecting the compound of formula XXIV for example as described in (i) above.
      (iii) Compounds of the formula VI as hereinbefore defined and salts thereof may be made by deprotecting the compound of formula XXV:
Figure USRE042353-20110510-C00025
    • (wherein R1, R2, R3, P, X1 and m are as hereinbefore defined) by a process for example as described in (i) above.
Compounds of the formula XXV and salts thereof may be made by reacting compounds of the formulae XIX and IV as hereinbefore defined, under the conditions described in (a) hereinbefore, to give a compound of the formula XXV or salt thereof.
(iv) Compounds of the formula VIII and salts thereof as hereinbefore defined may be made by reacting compounds of the formulae XXIII and IV as hereinbefore defined, the reaction for example being effected by a process as described in (a) above.
(v) Compounds of the formula X as defined hereinbefore and salts thereof may for example be made by the reaction of a compound of formula VI as defined hereinbefore with a compound of the formula XXVI:
L1—R63—L1  (XXVI)
    • (wherein L1 and R63 are as hereinbefore defined) to give a compound of the formula X. The reaction may be effected for example by a process as described in (c) above.
Compounds of the formula X and salts thereof may also be made for example by deprotecting a compound of the formula XXVII:
Figure USRE042353-20110510-C00026
    • (wherein L1, R63, X1, R1, R2, R3, P, m and p1 are as defined hereinbefore) by a process for example as described in (b) above.
Compounds of the formula XXVII and salts thereof may be made for example by reacting compounds of the formulae XXII and XXVI as defined hereinbefore, under the conditions described in (c) above.
When a pharmaceutically acceptable salt of a compound of the formula I is required, it may be obtained, for example, by reaction of said compound with, for example, an acid using a conventional procedure, the acid having a pharmaceutically acceptable anion.
Many of the intermediates defined herein are novel, for example, those of the formulae III, V, XII, XIV and XV, and these are provided as a further feature of the invention.
Intermediates of the formulae VIII, X, XXI, XXII, XXIV, XXV and XXVII are also provided as a further feature of the invention.
The identification of compounds which potently inhibit the tyrosine kinase activity associated with the VEGF receptors such as Flt and/or KDR and which inhibit angiogenesis and/or increased vascular permeability is desirable and is the subject of the present invention. These properties may be assessed, for example, using one or more of the procedures set out below:
(a) In Vitro Receptor Tyrosine Kinase Inhibition Test
This assay determines the ability of a test compound to inhibit tyrosine kinase activity. DNA encoding VEGF or epidermal growth factor (EGF) receptor cytoplasmic domains may be obtained by total gene synthesis (Edwards M, International Biotechnology Lab 5(3), 19-25, 1987) or by cloning. These may then be expressed in a suitable expression system to obtain polypeptide with tyrosine kinase activity. For example VEGF and EGF receptor cytoplasmic domains, which were obtained by expression of recombinant protein in insect cells, were found to display intrinsic tyrosine kinase activity. In the case of the VEGF receptor Flt (Genbank accession number X51602), a 1.7 kb DNA fragment encoding most of the cytoplasmic domain, commencing with methionine 783 and including the termination codon, described by Shibuya et al (Oncogene, 1990, 5: 519-524), was isolated from cDNA and cloned into a baculovirus transplacement vector (for example pAcYM1 (see The Baculovirus Expression System: A Laboratory Guide, L. A. King and R. D. Possee, Chapman and Hall, 1992) or pAc360 or pBlueBacHis (available from Invitrogen Corporation)). This recombinant construct was co-transfected into insect cells (for example Spodoptera frugiperda 21(Sf21)) with viral DNA (eg Pharmingen BaculoGold) to prepare recombinant baculovirus. (Details of the methods for the assembly of recombinant DNA molecules and the preparation and use of recombinant baculovirus can be found in standard texts for example Sambrook et al, 1989, Molecular cloning—A Laboratory Manual, 2nd edition, Cold Spring Harbour Laboratory Press and O'Reilly et al, 1992, Baculovirus Expression Vectors—A Laboratory Manual, W. H. Freeman and Co, New York). For other tyrosine kinases for use in assays, cytoplasmic fragments starting from methionine 806 (KDR, Genbank accession number L04947) and methionine 668 (EGF receptor, Genbank accession number X00588) may be cloned and expressed in a similar manner.
For expression of cFlt tyrosine kinase activity, Sf21 cells were infected with plaque-pure cFlt recombinant virus at a multiplicity of infection of 3 and harvested 48 hours later. Harvested cells were washed with ice cold phosphate buffered saline solution (PBS) (10 mM sodium phosphate pH7A, 138 mM sodium chloride, 2.7 mM potassium chloride) then resuspended in ice cold HNTG/PMSF (20 mM Hepes pH7.5, 150 mM sodium chloride, 10% v/v glycerol, 1% v/v Triton X100, 1.5 mM magnesium chloride, 1 mM ethylene glycol-bis(βaminoethyl ether) N,N,N′,N′tetraacetic acid (EGTA), 1 mM PMSF (phenylmethylsulphonyl fluoride); the PMSF is added just before use from a freshly-prepared 100 mM solution in methanol) using 1 ml HNTG/PMSF per 10 million cells. The suspension was centrifuged for 10 minutes at 13,000 rpm at 4° C., the supernatant (enzyme stock) was removed and stored in aliquots at −70° C. Each new batch of stock enzyme was titrated in the assay by dilution with enzyme diluent (100 mM Hepes pH 7.4, 0.2 mM sodium orthovanadate, 0.1% v/v Triton X100, 0.2 mM dithiothreitol). For a typical batch, stock enzyme is diluted 1 in 2000 with enzyme diluent and 50 μl of dilute enzyme is used for each assay well.
A stock of substrate solution was prepared from a random copolymer containing tyrosine, for example Poly (Glu, Ala, Tyr) 6:3:1 (Sigma P3899), stored as 1 mg/ml stock in PBS at −20° C. and diluted 1 in 500 with PBS for plate coating.
On the day before the assay 100 μl of diluted substrate solution was dispensed into all wells of assay plates (Nunc maxisorp 96-well immunoplates) which were sealed and left overnight at 4° C.
On the day of the assay the substrate solution was discarded and the assay plate wells were washed once with PBST (PBS containing 0.05% v/v Tween 20) and once with 50 mM Hepes pH7.4.
Test compounds were diluted with 10% dimethylsulphoxide (DMSO) and 25 μl of diluted compound was transferred to wells in the washed assay plates. “Total” control wells contained 10% DMSO instead of compound. Twenty five microlitres of 40 mM manganese(II)chloride containing 8 μM adenosine-5′-triphosphate (ATP) was added to all test wells except “blank” control wells which contained manganese(II)chloride without ATP. To start the reactions 50 μl of freshly diluted enzyme was added to each well and the plates were incubated at room temperature for 20 minutes. The liquid was then discarded and the wells were washed twice with PBST. One hundred microlitres of mouse IgG anti-phosphotyrosine antibody (Upstate Biotechnology Inc. product 05-321), diluted 1 in 6000 with PBST containing 0.5% w/v bovine serum albumin (BSA), was added to each well and the plates were incubated for 1 hour at room temperature before discarding the liquid and washing the wells twice with PBST. One hundred microlitres of horse radish peroxidase (HRP)-linked sheep anti-mouse Ig antibody (Amersham product NXA 931), diluted 1 in 500 with PBST containing 0.5% w/v BSA, was added and the plates were incubated for 1 hour at room temperature before discarding the liquid and washing the wells twice with PBST. One hundred microlitres of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) solution, freshly prepared using one 50 mg ABTS tablet (Boehringer 1204 521) in 50 ml freshly prepared 50 mM phosphate-citrate buffer pH5.0+0.03% sodium perborate (made with 1 phosphate citrate buffer with sodium perborate (PCSB) capsule (Sigma P4922) per 100 ml distilled water), was added to each well. Plates were then incubated for 20-60 minutes at room temperature until the optical density value of the “total” control wells, measured at 405 nm using a plate reading spectrophotometer, was approximately 1.0. “Blank” (no ATP) and “total” (no compound) control values were used to determine the dilution range of test compound which gave 50% inhibition of enzyme activity.
(b) In Vitro HUVEC Proliferation Assay
This assay determines the ability of a test compound to inhibit the growth factor-stimulated proliferation of human umbilical vein endothelial cells (HUVEC).
HUVEC cells were isolated in MCDB 131 (Gibco BRL)+7.5% v/v foetal calf serum (FCS) and were plated out (at passage 2 to 8), in MCDB 131+2% v/v FCS+3 μg/ml heparin+1 μg/ml hydrocortisone, at a concentration of 1000 cells/well in 96 well plates. After a minimum of 4 hours they were dosed with the appropriate growth factor (i.e. VEGF 3 ng/ml, EGF 3 ng/ml or b-FGF 0.3 ng/ml) and compound. The cultures were then incubated for 4 days at 37° C. with 7.5% carbon dioxide. On day 4 the cultures were pulsed with 1 μCi/well of tritiated-thymidine (Amersham product TRA 61) and incubated for 4 hours. The cells were harvested using a 96-well plate harvester (Tomtek) and then assayed for incorporation of tritium with a Beta plate counter. Incorporation of radioactivity into cells, expressed as cpm, was used to measure inhibition of growth factor-stimulated cell proliferation by compounds.
(c) In Vivo Rat Uterine Oedema Assay
This test measures the capacity of compounds to reduce the acute increase in uterine weight in rats which occurs in the first 4-6 hours following oestrogen stimulation. This early increase in uterine weight has long been known to be due to oedema caused by increased permeability of the uterine vasculature and recently Cullinan-Bove and Koos (Endocrinology, 1993,133:829-837) demonstrated a close temporal relationship with increased expression of VEGF mRNA in the uterus. We have found that prior treatment of the rats with a neutralising monoclonal antibody to VEGF significantly reduces the acute increase in uterine weight, confirming that the increase in weight is substantially mediated by VEGF.
Groups of 20 to 22-day old rats were treated with a single subcutaneous dose of oestradiol benzoate (2.5 μg/rat) in a solvent, or solvent only. The latter served as unstimulated controls. Test compounds were orally administered at various times prior to the administration of oestradiol benzoate. Five hours after the administration of oestradiol benzoate the rats were humanely sacrificed and their uteri were dissected, blotted and weighed. The increase in uterine weight in groups treated with test compound and oestradiol benzoate and with oestradiol benzoate alone was compared using a Student T test. Inhibition of the effect of oestradiol benzoate was considered significant when p<0.05.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a compound of the formula I as defined hereinbefore or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable excipient or carrier.
The composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) for example as a sterile solution, suspension or emulsion, for topical administration for example as an ointment or cream or for rectal administration for example as a suppository. In general the above compositions may be prepared in a conventional manner using conventional excipients.
The compositions of the present invention are advantageously presented in unit dosage form. The compound will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square metre body area of the animal, i.e. approximately 0.1-100 mg/kg. A unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged and this normally provides a therapeutically-effective dose. A unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
According to a further aspect of the present invention there is provided a compound of the formula I or a pharmaceutically acceptable salt thereof as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
We have found that compounds of the present invention inhibit VEGF receptor tyrosine kinase activity and are therefore of interest for their antiangiogenic effects and/or their ability to cause a reduction in vascular permeability.
A further feature of the present invention is a compound of formula I, or a pharmaceutically acceptable salt thereof, for use as a medicament, conveniently a compound of formula I, or a pharmaceutically acceptable salt thereof, for use as a medicament for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal such as a human being.
Thus according to a further aspect of the invention there is provided the use of a compound of the formula I, or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in the production of an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal such as a human being.
According to a further feature of the invention there is provided a method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof as defined hereinbefore.
As stated above the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated. Preferably a daily dose in the range of 1-50 mg/kg is employed. However the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
The antiangiogenic and/or vascular permeability reducing treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. In the field of medical oncology it is normal practice to use a combination of different forms of treatment to treat each patient with cancer. In medical oncology the other component(s) of such conjoint treatment in addition to the antiangiogenic and/or vascular permeability reducing treatment defined hereinbefore may be: surgery, radiotherapy or chemotherapy. Such chemotherapy may cover three main categories of therapeutic agent:
    • (i) other antiangiogenic agents that work by different mechanisms from those defined hereinbefore (for example linomide, inhibitors of integrin αvβ3 function, angiostatin, razoxin, thalidomide);
    • (ii) cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene), progestogens (for example megestrol acetate), aromatase inhibitors for example anastrozole, letrazole, vorazole, exemestane), antiprogestogens, antiandrogens (for example flutamide, nilutamide, bicalutamide, cyproterone acetate), LHRH agonists and antagonists (for example goserelin acetate, luprolide), inhibitors of testosterone 5α-dihydroreductase (for example finasteride), anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function) and inhibitors of growth factor function, (such growth factors include for example platelet derived growth factor and hepatocyte growth factor such inhibitors include growth factor antibodies, growth factor receptor antibodies, tyrosine kinase inhibitors and serine/threonine kinase inhibitors); and
    • (iii) antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as antimetabolites (for example antifolates like methotrexate, fluoropyrimidines like 5-fluorouracil, purine and adenosine analogues, cytosine arabinoside); antitumour antibiotics (for example anthracyclines like doxorubicin, daunomycin, epirubicin and idarubicin, mitomycin-C, dactinomycin, mithramycin); platinum derivatives (for example cisplatin, carboplatin); alkylating agents (for example nitrogen mustard, melphalan, chlorambucil, busulphan, cyclophosphamide, ifosfamide, nitrosoureas, thiotepa); antimitotic agents (for example vinca alkaloids like vincristine and taxoids like taxol, taxotere); topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan).
As stated above the compounds defined in the present invention are of interest for their antiangiogenic and/or vascular permeability reducing effects. Such compounds of the invention are expected to be useful in a wide range of disease states including cancer, diabetes, psoriasis, rheumatoid artritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation and ocular diseases with retinal vessel proliferation. In particular such compounds of the invention are expected to slow advantageously the growth of primary and recurrent solid tumours of, for example, the colon, breast, prostate, lungs and skin. More particularly such compounds of the invention are expected to inhibit the growth of those primary and recurrent solid tumours which are associated with VEGF especially those tumours which are significantly dependent on VEGF for their growth and spread, including for example, certain tumours of the colon, breast, prostate, lung, vulva and skin.
In addition to their use in therapeutic medicine the compounds of formula I and their pharmaceutically acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of VEGF receptor tyrosine kinase activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
It is to be understood that where the term “ether” is used anywhere in this specification it refers to diethyl ether.
The invention will now be illustrated in the following non-limiting Examples in which, unless otherwise stated:
    • [(i) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids such as drying agents by filtration;
    • (ii) operations were carried out at ambient temperature, that is in the range 18-25° C. and under an atmosphere of an inert gas such as argon;
    • (iii) column chromatography (by the flash procedure) and medium pressure liquid chromatography (MPLC) were performed on Merck Kieselgel silica (Art. 9385) or Merck Lichroprep RP-18 (Art. 9303) reversed-phase silica obtained from E. Merck, Darmstadt, Germany;
    • (iv) yields are given for illustration only and are not necessarily the maximum attainable;
    • (v) melting points are uncorrected and were determined using a Mettler SP62 automatic melting point apparatus, an oil-bath apparatus or a Koffler hot plate apparatus.
    • (vi) the structures of the end-products of the formula I were confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques; proton magnetic resonance chemical shift values were measured on the delta scale and peak multiplicities are shown as follows: s, singlet; d, doublet; t, triplet; m, muitiplet; br, broad; q, quartet;
    • (vii) intermediates were not generally fully characterised and purity was assessed by thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), infra-red (IR) or NMR analysis;
    • (viii) the following abbreviations have been used:
      • DMF N,N-dimethylformamide
      • DMSO dimethylsulphoxide
      • THF tetrahydrofuran
      • TFA trifluoroacetic acid
      • NMP 1-methyl-2-pyrrolidinone.]
EXAMPLE 1
Potassium carbonate (2.2 g, 16 mmol) was added to a solution of 4-3-acetoxy-4-methylanilino)-7-hydroxy-6-methoxyquinazoline (1.51 g, 4 mmol) in DMF (30 ml) and the mixture stirred for 15 minutes. 2-Bromoethyl methyl ether (667 mg, 4.8 mmol) was then added dropwise. The mixture was stirred for 1 hour at ambient temperature, then heated at 60° C. for 17 hours and finally allowed to cool. The insoluble material was removed by filtration and the filter pad washed with DMF. The filtrate was partitioned between ethyl acetate and water, the organic layer was separated, washed with brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (95/5 followed by 93/7). The purified product was triturated with ether to give 4-(3acetoxy-4-methylanilino)-6-methoxy-7-(2-methoxyethoxy)quinazoline (1.34 g, 84%) as a white powder.
m.p. 180-183° C.; 1H NMR Spectrum: (CDCl3) 2.16(s, 3H); 2.34(s, 3H); 3.47(s, 3H); 3.87(t, 2H); 3.99(s, 3H); 4.31(t, 2H); 6.98(s, 1H); 7.21(d, 1H); 7.24(d, 1H); 7.42(d, 1H); 7.50(s, 1H); 8.64(s, 1H); MS-ESI: 420 [MNa]+; Elemental analysis: Found C, 63.1; H, 6.1; N, 10.4; C21H23N3O5 Requires C, 63.5; H, 5.8; N, 10.6%.
The starting material was prepared as follows:
A mixture of 2-amino-4-benzyloxy-5-methoxybenzamide (J. Med. Chem. 1977, vol 20, 146-149, 10 g, 0.04 mol) and Gold's reagent (7.4 g, 0.05 mol) in dioxane (100 ml) was stirred and heated at reflux for 24 hours. Sodium acetate (3.02 g, 0.037 mol) and acetic acid (1.65 ml, 0.029 mol) were added to the reaction mixture and it was heated for a further 3 hours. The mixture was evaporated, water was added to the residue, the solid was filtered off, washed with water and dried (MgSO4). Recrystallisation from acetic acid gave 7-benzyloxy-6-methoxy-3,4-dihydroquinazolin-4-one (8.7 g, 84%).
A mixture of 7-benzyloxy-6-methoxy-3,4-dihydroquinazolin4-one (2.82 g, 0.01 mol), thionyl chloride (40 ml) and DMF (0.28 ml) was stirred and heated to reflux for 1 hour. The mixture was evaporated, the residue was taken up in toluene and evaporated to dryness to give 7-benzyloxy-4-chloro-6-methoxyquinazoline (3.45 g).
Acetic anhydride (1.9 ml, 20.3 mmol) was added to a mixture of 2-methyl-5-nitrophenol (2.5 g, 16.3 mmol) and 1M aqueous sodium hydroxide (24.5 ml) at ambient temperature. The mixture was stirred for 40 minutes, the solid was removed by filtration and the filtrate extracted with ethyl acetate. The organic layers were combined, washed with an aqueous saturated sodium chloride solution, dried (MgSO4) and evaporated to yield 2-acetoxy-4-nitrotoluene (3.1 g, 100%). A mixture of this material (3.1 g, 15.9 mmol) and 10% palladium-on-charcoal catalyst (0.12 g) in ethyl acetate (50 ml) was stirred at ambient temperature under an atmosphere of hydrogen for 2 hours. The catalyst was removed by filtration and the filtrate evaporated to give 3-acetoxy-4-methylaniline (2.45 g, 94%).
A mixture of 7-benzyloxy-4-chloro-6-methoxyquinazoline (2.18 g, 7.25 mmol), 3-acetoxy-4-methylaniline (1.32 g, 8 mmol) and 2-propanol (50 ml) was stirred and heated to reflux for 1 hour. The mixture was cooled to ambient temperature. The precipitate was collected by filtration, washed with 2-propanol and ether to give 4-(3-acetoxy-4-methylanilino)-7-benzyloxy-6-methoxyquinazoline. A mixture of 4-(3-acetoxy-4-methylanilino)-7-benzyloxy-6-methoxyquinazoline (2.68 g, 5.75 mmol), 10% palladium-on-charcoal catalyst (0.27 g) in methanol (50 ml), DMF (12 ml) and trichloromethane (50 ml) was stirred at ambient temperature under 1.5 atmospheres of hydrogen for 30 minutes. The catalyst was removed by filtration and the filtrate evaporated. The residual solid was triturated in ether, collected by filtration and dried under vacuum at 50° C. to give 4-(3-acetoxy-4-methylanilino)-7-hydroxy-6-methoxyquinazoline (2.1 g, 100%).
EXAMPLE 2
A solution of 2-(2-bromoethyl)-1,3-dioxolane (258 mg, 1.4 mmol) in DMF (0.5 ml) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (329 mg, 1.02 mmol) and potassium carbonate (264 mg, 2 mmol) in DMF (2 ml). The mixture was heated at 100° C. for 3 hours and allowed to cool. The volatiles were removed by evaporation, and the residue partitioned between aqueous sodium hydrogen carbonate solution and methylene chloride. The organic phase was separated and passed through phase separating paper. The solvent was removed by evaporation, and the residue was purified by column chromatography eluting with methylene chloride/methanol (95/5) to give 4-(4-chloro-2-fluoroanilino)-7-(2-(1,3-dioxolan-2-yl)ethoxy)methoxyquinazoline (71 mg, 17%).
1H NMR Spectrum: (DMSOd6) 2.1(m, 2H); 3.8(m, 2H); 3.95(m, 5H); 4.25(t, 2H); 5.05(t, 1H); 7.18(s, 1H); 7.3(m, 1H); 7.55(m, 2H); 7.8(s, 1H); 8.35(s, 1H); 9.5(s, 1H); MS-ESI: 420 [MH]+; Elemental analysis: Found C, 57.4; H, 4.7; N, 9.1; C20H19N3O4ClF Requires C, 57.2; H, 5.6; N, 10.0%.
The starting material was prepared as follows:
A solution of 7-benzyloxy-4chloro-6-methoxyquinazoline (1.2 g, 4 mmol), (prepared as described for the starting material in Example 1), and 4-chloro-2-fluoroaniline (4441 μl, 4 mmol) in 2-propanol (40 ml) was refluxed for 1.5 hours. After cooling, the precipitate was collected by filtration, washed with 2-propanol then ether and dried under vacuum to give 7-benzyloxy-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (1.13 g, 64%). m.p. 239-242° C.
1H NMR Spectrum: (DMSOd6) 4.0(s, 3H); 5.36(s, 2H); 7.39-7.52(m, 9H); 8.1(s, 1H); 8.75(s, 1H); MS-ESI: 410 [MH]+; Elemental analysis: Found C, 59.2; H, 4.3; N, 9.4; C22H17N3O2ClF 1 HCl Requires C, 59.2; H, 4.1; N, 9.41%.
A solution of 7-benzyloxy-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (892 mg, 2 mmol) in TFA (10 ml) was refluxed for 50 minutes. After cooling, the mixture was poured onto ice. The precipitate was collected by filtration, dissolved in methanol (10 ml) and basified to pH11 with aqueous ammonia. After concentration by evaporation, the solid product was collected by filtration, washed with water then ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline as a yellow solid (460 mg, 72%). m.p. 141-143° C.
1H NMR Spectrum: (DMSOd6) 3.95(s, 3H); 7.05(s, 1H); 7.35(d, 1H); 7.54-7.59(m, 2H); 7.78(s, 1H); 8.29(s, 1H); MS-ESI: 320-322 [MH]+.
EXAMPLE 3
1-2-Chloroethyl)pyrrolidine hydrochloride (200 mg, 1.2 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (403 mg, 1.26 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (650 mg, 4.7 mmol) in DMF (4 ml). The mixture was heated to 100° C. and further portions of 1-(2-chloroethyl)pyrrolidine hydrochloride (800 mg in total) were added periodically over 4 hours while the reaction mixture was maintained at 100° C. The reaction was then allowed to cool and volatiles were removed by evaporation. The residue was partitioned between methylene chloride and water, separated and the organic phase passed through phase separating paper. Column chromatography eluting with methylene chloride/methanol (95/5) gave 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(pyrrolidin-1-yl)ethoxy)quinazoline (50 mg, 10%).
1H NMR Spectrum: (DMSOd6) 1.8-2.1(m, 4H); 3.1(m, 2H); 3.55-3.7(m, 4H); 4.05(s, 3H); 4.6(t, 2H); 7.4(m, 2H); 7.58(d, 1H); 7.65(dt, 1H); 8.5(s, 1H); 8.8(s, 1H); MS-ESI: 417 [MH]. Elemental analysis: Found C, 60.2; H, 5.4; N, 12.3; C21H22N4O2ClF Requires C, 60.5; H, 5.3; N, 13.4%.
EXAMPLE 4
A solution of 1-(3-chloropropyl)pyrrolidine (230 mg, 0.96 mmol) was added to 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (295 mg, 0.92 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (130 mg, 0.94 mmol) in DMF (8 ml). The mixture was heated at 100° C. for 90 minutes and allowed to cool. The volatiles were removed by evaporation and the residues were partitioned between water and methylene chloride. The organic phase was separated and passed through phase separating paper, and the solvent was removed under reduced pressure. The residue was dissolved in acetone and hydrogen chloride in ether (2 ml of a 1M solution, 2 mmol) was added. The mixture was stirred at ambient temperature for 30 minutes and the resulting precipitate was collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline hydrochloride hydrate (320 mg, 67%).
1H NMR Spectrum: (DMSOd6) 1.8-2.0(m, 6H); 3-3.6(m, 6H); 4.05(s, 3H); 4.3(t, 2H); 7.4(m, 2H); 7.55(d, 1H); 7.6(m, 1H); 8.4(s, 1H); 8.8(s, 1H); MS-ESI: 431 [MH]+; Elemental analysis: Found C, 51.0; H, 5.9; N, 10.6; C22H24N4O2ClF 1.8 H2O 1.5 HCl Requires C, 51.0; H, 5.7; N, 10.8%.
The starting material was prepared as follows:
Pyrrolidine (3 g, 42 mmol) was added to a solution of 1-bromo-3-chloropropane (3.2 g, 20 mmol) in toluene (20 ml). The mixture was stirred at ambient temperature overnight and then heated at 60° C. for 4 hours. The mixture was allowed to cool and the precipitate removed by filtration. The bulk of toluene was removed by evaporation to give an oil. 1H NMR indicated the oil was a 1:1 mol:mol mixture of toluene and 1-(3-chloropropyl)pyrrolidine. This material was used without further purification.
1H NMR Spectrum: (CDCl3) 1.75(m, 4H); 2.0(q, 2H); 2.35(s, 3H, toluene): 2.45-2.6(m, 6H); 3.6(t, 2H); 7.15-7.3(m, 5H, toluene).
EXAMPLE 5
A solution of 2-(2-methoxyethoxy)ethanol (90 mg, 0.75 mmol) in methylene chloride (1 ml) was added to tributylphosphine (320 mg, 1.58 mmol) and 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (200 mg, 0.63 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (6 ml) at 0° C. under argon. To the resulting mixture 1,1′-(azodicarbonyl)dipiperidine (400 mg, 1.6 mmol) was added in portions. The mixture was allowed to warm to ambient temperature and stirred under argon for 2 hours. Ether (5 ml) was added, and the precipitated solids were removed by filtration. The volatiles were removed from the filtrate by evaporation, and the residue was purified by column chromatography eluting with methylene chloride/methanol (90/10). The resulting partially purified product was dissolved in acetone, and ethereal hydrogen chloride (0.6 ml of a 1M solution, 0.6 mmol) added. The resulting precipitated product was collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline hydrochloride (128 mg, 44%).
1H NMR Spectrum: (DMSOd6) 3.25(s, 3H); 3.45(dd, 2H); 3.6(dd, 2H); 3.8(t, 2H); 4.0(s, 3H); 4.3(t, 2H); 7.4(s, 1H); 7.45(dd, 1H); 7.55-7.7(m, 2H); 8.3(s, 1H); 8.75(s, 1H); 11.5(br s, 1H); MS-ESI: 422 [MH]+; Elemental analysis: Found C, 52.3; H, 4.7; N, 9.1; C20H21N3O4ClF 1 HCl Requires C, 524; H, 4.8; N, 9.2%.
EXAMPLE 6
A solution of 2-(bromomethyl)-1,3-dioxolane (190 mg, 1.1 mmol) in DMF (1 ml) was added to 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (258 mg, 0.81 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (200 mg, 1.5 mmol) in DMF (2 ml). The mixture was heated at 100° C. for 4 hours and then allowed to cool. The volatiles were removed by evaporation and the residue partitioned between water and methylene chloride. The organic phase was separated, passed through phase separating paper and purified by column chromatography eluting with methylene chloride/methanol (95/5) to give 4-(4-chloro-2-fluoroanilino)-7-(1,3-dioxolan-2-ylmethoxy)-6-methoxyquinazoline (130 mg, 38%).
1H NMR Spectrum: (DMSOd6) 3.8-4.1(m, 7H); 4.15(d, 2H); 5.30(t, 1H); 7.22(s, 1H); 7.30(m, 1H); 7.55(m, 2H); 7.80(s, 1H); 8.35(s, 1H); 9.55(s, 1H). Also contained 0.3 methanol. MS-ESI: 406 [MH]+; Elemental analysis: Found C, 55.1; H, 4.5; N, 9.5; C19H17N3O4ClF 0.3 H2O Requires C, 55.1; H, 4.5; N, 10.0%. 0.3 Methanol.
EXAMPLE 7
A mixture of 6,7-dimethoxy-5-nitro-3,4-dihydroquinazolin-4-one (1.75 g, 7.0 mmol) and thionyl chloride (25 ml) and DMF (3 drops) was heated at reflux for 2 hours. Excess thionyl chloride was removed by evaporation and the residue azeotroped with toluene. 3-Hydroxy-4-methylaniline (0.94 g, 7.6 mmol) in 2-propanol (40 ml) was added to the residue and the mixture heated at reflux for 2 hours. The mixture was allowed to cool, the precipitate collected by filtration, washed with 2-propanol and dried to give 6,7-dimethoxy-4-(3-hydroxy-4-methylanilino)-5-nitroquinazoline hydrochloride (2.02 g, 81%).
m.p. 206-208° C.; 1H NMR Spectrum: (DMSOd6) 3.90(s, 3H); 4.05(s, 1H); 6.50(d,1H); 6.65(s,1H); 6.97(d, 1H); 7.57(s, 1H); 8.15(s, 1H); MS-ESI: 357 [MH]+; Elemental analysis: Found C, 52.0; H, 4.3; N, 13.9; C17H16N4O5 1 HCl Requires C, 52.0; H, 4.3; N, 14.3%.
The starting material was prepared as follows:
A mixture of 4,5-dimethoxyanthranilic acid (19.7 g) and formamide (10 ml) was stirred and heated at 190° C. for 5 hours. The mixture was allowed to cool to approximately 80° C. and water (50 ml) was added. The mixture was stored at ambient temperature for 3 hours. The precipitate was isolated, washed with water and dried to give 6,7-dimethoxy-3,4-dihydroquinazolin-4-one (3.65 g).
Fuming nitric acid (47 ml) was added to 6,7-dimethoxy-3,4-dihydroquinazolin-4-one (10 g, 48 mmol), in water (40 ml). The reaction mixture was heated at 120° C. for 1 hour, then allowed to cool and diluted with water. The resulting precipitate was collected by filtration, washed with water and dried to give 6,7-dimethoxy-5-nitro-3,4-dihydroquinazolin-4-one (3.9 g, 32%).
1H NMR Spectrum: (DMSOd6) 3.87(s, 3H); 4.05(s, 1H); 7.42(s, 1H); 8.13(s, 1H); MS-ESI: 251 [MH]+.
EXAMPLE 8
Sodium (148 mg, 6.4 mmol) was added to 2-methoxyethanol (10 ml), the mixture stirred for 15 minutes to give a complete solution and the volatiles removed by evaporation. The residue was dissolved in DMSO (5 ml) and 7-chloro-4-(4-chloro-2-fluoroanilino)-6-nitroquinazoline hydrochloride (500 mg, 1.3 mmol) was added. The mixture was stirred at ambient temperature for 18 hours then diluted with a solution of acetic acid (1 ml) in water (20 ml). The resulting precipitate was collected by filtration, washed with water, dried and purified by column chromatography eluting with methylene chloride/methanol (96/4). The purified product was recrystallised from methylene chloride/isohexane to give 4-chloro-2-fluoroanilino)-7-(2-methoxyethoxy)-6-nitroquinazoline (304 mg, 60%) as a yellow solid.
1H NMR Spectrum: (DMSOd6) 3.15(s, 3H); 3.60(m, 2H); 4.31(m, 2H); 7.24(m, 1H); 7.4-7.5(m, 3H); 8.42(s, 1H); 9.03(s, 1H); MS-ESI: 393 [MH]+; Elemental analysis: Found C, 51.8; H, 3.7; N, 14.1; C17H14N4O4ClF Requires C, 52.0; H, 3.6; N, 14.3%.
The starting material was prepared as follows:
A mixture of 7-chloro-6-nitro-3,4-hydroquinazolin-4-one (40 g, 0.18 mol), (J. Org. Chem. 1975,40, 356), phosphorus oxychloride (50 ml) and DMF (1 ml) in thionyl chloride (300 ml) was heated at reflux for 4 hours. The reaction mixture was allowed to cool and the volatiles removed by evaporation and by azeotroping with toluene. The residue was basified with aqueous sodium hydrogen carbonate solution and extracted with methylene chloride (4×100 ml). The extracts were combined, washed with brine and filtered through phase separating paper. The solvent was removed by evaporation and the residue triturated with ether/isohexane to give 4,7-dichloro-6-nitroquinazoline (35.2 g, 81%) as a pale yellow solid.
A mixture of 4,7-dichloro-6-nitroquinazoline (24.4 g, 0.1 mol), 4-chloro-2-fluoroaniline and ethereal hydrogen chloride (100 ml of a 1M solution) in 2-propanol (600 ml) was heated at reflux for 1.5 hours. The mixture was allowed to cool and diluted with acetone. The solid product was collected by filtration, washed with acetone and dried to give 7-chloro-4-(4-chloro-2-fluoroanilino)-6nitroquinazoline hydrochloride (35.0 g, 90%) as a yellow powder.
MS-ESI: 353 [MH]+.
EXAMPLE 9
Triphenylphosphine (410 mg, 1.5 mmol) and 1-methyl-3-pyrrolidinol (0.128 ml, 1.5 mmol) were added to a solution of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (4 ml). Diethyl azodicarboxylate (0.246 ml, 1.5 mmol) was added dropwise and the reaction mixture was stirred for 1 hour at ambient temperature. Additional triphenylphosphine (61 mg, 0.23 mmol) followed by diethyl azodicarboxylate (37 μl, 0.23 mmol) was added and the mixture was stirred for 15 minutes at ambient temperature. The solvent was removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol (80/20) followed by methylene chloride/methanol/triethylamine (80/20/0.5). The purified product was dissolved in methylene chloride/methanol and the insolubles were removed by filtration. A solution of hydrogen chloride in 2-propanol (0.5 ml of a 5M solution) was added to the filtrate and the volatiles were removed by evaporation. The residue was triturated with 2-propanol and ether, collected by filtration and dried to give 4-(4-chloro-2-fluoranilino)-6-methoxy-7-(1-methylpyrrolidin-3-yloxy)quinazoline hydrochloride hydrate (149 mg, 40%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.13-2.83(m, 2H); 2.92(s, 3H); 2.99(s, 3H); 3.20-3.32(m, 1H); 3.44-3.59(m, 1H); 3.72-3.81(m, 1H); 3.96-4.14(m, 2H); 4.01 (s, 3H); 5.35-5.43(m, 1H); 7.42-7.47(m, 2H); 7.58-7.63(m, 2H); 8.21(s, 1H); 8.88(s, 1H); MS-ESI: 403 [MH]+; Elemental analysis: Found C, 48.8; H, 5.2; N, 11.0; C20H20N4O2ClF 1 H2O 2 HCl Requires C, 48.7; H, 4.9; N, 11.4%.
EXAMPLE 10
4-(Chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), and triphenylphosphine (512 mg, 1.9 mmol) were added to a stirred solution of 4-morpholino-2-butyn-1-ol (182 mg, 1.1 mmol), (J. Am. Chem. Soc. 1957, 79, 6184), in methylene chloride (4 ml) under argon. Diethyl azodicarboxylate (0.307 ml, 1.9 mmol) was added dropwise and the reaction mixture was stirred for 30 minutes at ambient temperature. Additional 4-morpholino-2-butyn-1-ol (60 mg, 0.39 mmol), triphenylphosphine (102 mg, 0.39 mmol) and followed by diethyl azodicarboxylate (61 μl, 0.39 mmol) were added and the mixture was stirred for a further 15 minutes at ambient temperature. The solvent was removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/acetonitrile/methanol (60/37/3 followed by 60/35/5 and 55/37/8). The resulting purified oil was dissolved in a mixture of methylene chloride and methanol and ethereal hydrogen chloride (1 ml of a 2.9M solution) was added. The volatiles were removed by evaporation, the solid residue suspended in ether and collected by filtration. The product was recrystallised from 2-propanol/methanol/ether, collected by filtration, washed with 2-propanol and ether and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-yn-1-yloxy)quinazoline hydrochloride hydrate (75 mg, 18%).
m.p. 175-178° C.; 1H NMR Spectrum: (DMSOd6; CF3COOD) 3.10(m, 2H); 3.46(m, 2H); 3.72(m, 2H); 3.99(m, 2H); 4.03(s, 3H); 4.29(s, 2H); 5.28(s, 2H); 7.47(dd, 2H); 7.62(s, 1H); 7.69(dd, 1H); 8.29(s, 1H); 8.89(s, 1H); MS-ESI: 457 [MH]+; Elemental analysis: Found C, 50.8; H, 4.9; N, 10.3; C23H22N4O3ClF 1 H2O 2 HCl Requires C, 50.4; H, 4.7; N, 10.2%.
EXAMPLE 11
Tetrakis(triphenylphosphine)palladium(0) (23 mg, 0.02 mmol) followed by a solution of sodium triisopropylsilylthiolate (102 mg, 0.48 mmol), (Tetrahedron.Lett. 1994, 35, 3221), in THF (2 ml) was added to a stirred solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(trifluoromethylsulphonyloxy)quinazoline (180 mg, 0.4 mmol) in THF (2 ml) and benzene (2 ml) under argon. The reaction mixture was heated at reflux for 2 hours and then allowed to cool. 2-Bromoethyl methyl ether (83 mg, 0.6 mmol) in DMF (1 ml) and then a solution of tetrabutylammonium fluoride in THF (0.5 ml of a 1M solution, 0.5 mmol) were added dropwise and the reaction mixture was stirred at ambient temperature for 30 minutes. The mixture was diluted with ethyl acetate, washed with water and brine, dried (MgSO4) and the volatiles removed by evaporation. The residue was purified by column chromatography on neutral alumina eluting with methylene chloride/acetone (95/5). The purified product was triturated with ether, collected by filtration and dissolved in methylene chloride (4 ml). Ethereal hydrogen chloride (0.4 ml of 3M solution) was added, the solution was diluted with ether and the resulting precipitate was collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-4-methoxy-7-(2-methoxyethylthio)quinazoline hydrochloride (80 mg, 46%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.33(t, 2H); 3.34(s, 3H); 3.71 (t, 2H); 4.07(s, 3H); 7.48(dd, 1H); 7.64(t, 1H); 7.69(dd, 1H); 7.73(s, 1H); 8.10(s, 1H); 8.89(s, 1H). MS-ESI: 394 [MH]+; Elemental analysis: Found C, 50.1; H, 4.3; N, 9.8; S, 7.3; C18H17N3O2ClFS 1 HCl Requires C, 50.2; H, 4.2; N, 9.8; S, 7.4%.
The starting material was prepared as follows:
Trifluoromethanesulphonic anhydride (0.55 ml, 3.3 mmol) was added to a stirred suspension of 4-(chloro-2-fluoroanilino)-7-hydroxy-6methoxyquinazoline (959 mg, 3 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (2.2 ml) and pyridine (2.2 ml) under argon at 0° C. The reaction mixture was stirred for 1 hour at 0° C., allowed to warm to ambient temperature and stirred for a further 1.5 hours. The volatiles were removed by evaporation, the residue was dissolved in ethyl acetate, washed with dilute hydrochloric acid and brine, dried (MgSO4) and the solvent removed by evaporation. The residue was triturated with ether/petroleum ether to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(trifluoromethylsulphonyloxyquinazoline (270 mg, 60%) as a beige solid.
1H NMR Spectrum: (DMSOd6) 4.07(s, 3H); 7.39(dd, 1H); 7.57-7.62(m, 2H); 7.92(s, 1H); 8.21(s, 1H); 8.49(s, 1H); MS-ESI: 452 [MH]+.
EXAMPLE 12
4-(2-Hydroxyethyl)thiomorpholine (114 mg, 0.78 mmol), (J. Am. Chem. Soc. 1934. 56, 1720), in methylene chloride (1 ml) followed by 1,1′-(azodicarbonyl)dipiperidine (525 mg, 2.08 mmol) were added to a stirred solution of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 0.70 mmol), (prepared as described for the starting material in Example 2), and tributylphosphine (0.51 ml, 2.08 mmol) in methylene chloride (10 ml) under nitrogen. The mixture was stirred for 3.5 hours and allowed to stand for a further 18 hours. Ether (8 ml) was added, the precipitate removed by filtration and the solvent removed from the filtrate by evaporation. The residue was dissolved in acetone and ethereal hydrogen chloride (2.5 ml of a 1 M solution) added. The precipitated product was collected by filtration and purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (150/8/1). The purified product was triturated with ether to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-thiomorpholinoethoxy)quinazoline (70 mg, 22%) as a pale yellow solid.
m.p. 181-182° C.; 1H NMR Spectrum: (DMSOd6) 3.56(t, 2H); 3.92(s, 3H); 4.59(t, 2H); 7.31(dd, 1H); 7.35(s, 1H); 7.46(d, 1H); 7.53(dd, 1H); 8.33(s, 1H); 8.68(s, 1H); 11.7(br s, 1H); MS-ESI: 449 [MH]+; Elemental analysis: Found C, 56.4; H, 5.1; N, 12.3; C21H22N4O2ClFS Requires C, 56.2; H, 4.9; N, 12.5%.
EXAMPLE 13
A solution of (R)-(1-methylpiperidin-3-yl)methanol (2.29 g, 18 mmol) in methylene chloride (10 ml) was added to a stirred mixture of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (4.0 g, 12.5 mmol), (prepared as described for the starting material in Example 2), and triphenylphosphine (9.81 g, 37.5 mmol) in methylene chloride (200 ml). Diethyl azodicarboxylate (5.87 ml, 37 mmol) was added dropwise and the reaction mixture was stirred for 18 hours at ambient temperature. The volatiles were removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (a gradient from 100/0/0 to 85/15/0.1). The purified product was triturated with ethyl acetate, collected by filtration, washed with ethyl acetate and dried to give (R)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)methoxyquinazoline (2.78 g, 52%).
[α]D +11.7°; 1H NMR Spectrum: (DMSOd6) 1.08(m, 1H); 1.50(m, 1H); 1.64(m, 1H); 1.80(m, 3H); 2.07(m, 1H); 2.16(s, 3H); 2.62(d, 1H); 2.81(d, 1H); 3.92(s, 3H); 4.02(d, 2H); 7.18(s, 1H); 7.32(d, 1H); 7.55(m, 2H); 7.79(s, 1H); 8.34(s, 1H); 9.50(s, 1H); MS-ESI: 431 [MH]; Elemental analysis: Found C, 60.7; H, 5.4; N, 13.3; C22H24N4O2ClF Requires C, 61.3; H, 5.6; N, 13.0%.
The starting material was prepared as follows:
(R)-Ethyl nipecotate (5.7 g 365 mmol), (prepared by resolution of ethyl nipecotate by treatment with L(+)-tartaric acid as described in J. Org. Chem. 1991, (56), 1168), was dissolved in 38.5% aqueous formaldehyde solution (45 ml) and formic acid (90 ml) and the mixture heated at reflux for 18 hours. The mixture was allowed to cool and added dropwise to cooled saturated aqueous sodium hydrogen carbonate solution. The mixture was adjusted to pH12 by addition of sodium hydroxide and the mixture was extracted with methylene chloride. The organic extract was washed with brine, dried (MgSO4) and the solvent removed by evaporation to give (R)-ethyl 1-methylpiperidine-3-carboxylate (4.51 g, 73%) as a colourless oil.
MS-ESI: 172 [MH]+.
A solution of (R)-ethyl 1-methylpiperidine-3-carboxylate (5.69 g, 33 mmol) in ether (20 ml) was added dropwise to a stirred solution of lithium aluminum hydride (36.6 ml of a 1M solution in THF, 36.6 mmol) in ether (85 ml) cooled to maintain a reaction temperature of 20° C. The mixture was stirred for 1.5 hours at ambient temperature and then water (1.4 ml), 15% aqueous sodium hydroxide solution (1.4 ml) and then water (4.3 ml) were added. The insolubles were removed by filtration and the volatiles removed from the filtrate by evaporation to give (R)-(1-methylpiperidin-3-yl)methanol (4.02 g, 94%) as a colourless oil.
1H NMR Spectrum: (DMSOd6) 1.06(q, 1H); 1.51-1.94(m, 5H); 2.04(s, 3H); 2.34(br s. 1H); 2.62(m, 1H); 2.78(d, 1H); 3.49(m, 1H); 3.59(m. 1H); MS-ESI: 130 [MH]+.
EXAMPLE 14
Using a method analogous to that in Example 13, (S)-(1-methylpiperidin-3-yl)methanol (185 g, 1.1 mmol), (prepared as described for the starting material in Example 13 but resolving with D(−)-tartaric acid), was treated with 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (319 mg, 1 mmol), (prepared as described for the starting material in Example 2), triphenylpbosphine (785 mg, 3 mmol) and diethyl azodicarboxylate (0.475 ml, 3 mmol) to give, after work-up and purification, (S)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)methoxyquinazoline (187 mg, 44%).
EXAMPLE 15
The final compounds in Examples 13 and 14 may be mixed, in any relative proportions, for example to give a racemic mixture.
Alternatively the racemate may be made as follows:
1,1′-(Azodicarbonyl)dipiperidine (560 mg, 2.2 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (240 mg, 0.75 mmol), (prepared as described for the starting material in Example 2), 1-methyl-3-piperidinemethanol (115 mg, 0.89 mmol) and tributylphosphine (440 mg, 2.2 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration. The volatiles were removed from the filtrate by evaporation, and the residue was dissolved in acetone and ethereal hydrogen chloride (1.5 ml of a 1M solution, 1.5 mmol) was added. The precipitated product was collected by filtration and purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (75/8/1). The purified solid product was triturated with ether collected by filtration and dried to give 4-(4chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-ylmethoxy)quinazoline (105 mg, 33%).
m.p. 211-212° C.; 1H NMR Spectrum: (DMSOd6) 1.08(m, 1H); 1.50(m, 1H); 1.78(m, 4H); 2.08(m, 1H); 2.16(m, 3H); 2.62(m, 1H); 2.82(m, 1H); 3.95(s, 3H); 4.00(d, 2H); 7.18(s, 1H); 7.32(m, 1H); 7.52(dd, 1H); 7.58(t, 1H); 7.79(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 431 [MH]+; Elemental analysis: Found C, 59.9; H, 5.5; N, 12.9; C22H24N4O2ClF 0.5H2O Requires C, 60.0; H, 5.7; N, 12.7%.
EXAMPLE 16
3-(Methylsulphonyl)propan-1-ol (0.6 g, 4.3 mmol) followed by 1,1′-(azodicarbonyl)dipiperidine (4.2 g, 16 mmol) in portions were added to a stirred solution of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1.5 g, 4.7 mmol), (prepared as described for the starting material in Example 2), and tributylphosphine (4.0 ml, 16 mmol) in methylene chloride (50 ml) under nitrogen. The mixture was stirred for 18 hours, the resulting precipitate was collected by filtration and dried to give crude product (1.36g). The solvent was removed from the filtrate by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol (a gradient from 100/0 to 90/10). The semi-purified product was triturated with acetone and the solid product collected by filtration and dried to give further crude product (0.53 g). The filtrate from the trituration was repurified by column chromatography as before to give freer crude product (0.23 g). The crude products were combined and dissolved in acetone/methanol/methylene chloride and ethereal hydrogen chloride (6 ml of a 1M solution) added. The precipitated product was collected by filtration and recrystalilsed from methanol/methylene chloride/hexane to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3(methylsulphonyl)propoxy)quinazoline hydrochloride (640 mg, 29%).
m.p.>250° C.; 1H NMR Spectrum: (DMSOd6) 2.25(q, 2H); 3.02(s, 3H); 3.36(t, 2H); 4.00(s, 3H); 4.30(t, 2H); 7.35(s, 1H); 7.42(d, 1H); 7.60(t, 1H); 7.65(d, 1H); 8.25(s, 1H); 8.78(s, 1H); 11.5(br s, 1H); MS-ESI: 440 [MH]+; Elemental analysis: Found C, 47.8; H, 4.2; N, 8.8; S, 6.7; C19H19N3O4ClFS 1HCl Requires C, 47.4; H, 4.2; N, 9.0; S, 6.8%.
The starting material was prepared as follows:
A solution of 3-(methylthio)propan-1-ol (5.3 g, 50 mmol) in methanol (500 ml) was added to a solution of OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (30 g) in water (150 ml) and the mixture stirred at ambient temperature for 24 hours. The precipitated solid was removed by filtration and the methanol removed from the filtrate by evaporation. The aqueous residue was saturated with sodium chloride and extracted with methylene chloride (4×25 ml). The aqueous residue was then saturated with ammonium chloride and extracted with ethyl acetate (4×25 ml). The extracts were combined, dried (MgSO4) and the solvent removed by evaporation to give 3-(methylsulphonyl)propan-1-ol (610 mg, 9%) as an oil.
1H NMR Spectrum: (CDCl3) 2.10(m, 2H); 2.96(s, 3H); 3.20(t, 2H); 3.80(t, 2H); MS-ESI: 139 [MH]+.
EXAMPLE 17
Diethyl azodicarboxylate (5.91 ml, 37 mmol) was added dropwise to a stirred mixture of (E)-4-pyrrolidin-1-yl)but-2-en-1-ol (3.97 g, 28 mmol), 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (3.0 g, 9 mmol), (prepared as described for the starting material in Example 2), and triphenylphosphine (9.84 g, 38 mmol) in methylene chloride (300 ml). The reaction mixture was stirred for 18 hours at ambient temperature. The volatiles were removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol (a gradient from 80/20 to 70/30). The purified product was dissolved in methylene chloride/methanol and 1M ethereal hydrogen chloride (25 ml) was added. The precipitated product was collected by filtration, washed with ether and dried to give (E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-(pyrrolidin-1-yl)but-2-en-1-yloxy)quinazoline hydrochloride (1.62 g, 33%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.85-1.95(m, 2H); 2.0-2.15(m, 2H); 3.0-3.1(m, 2H); 3.5-3.6(m, 2H); 3.95(d, 2H); 4.1(s, 3H); 4.95(d, 2H); 6.1(td, 1H); 6.35(td, 1H); 7.4(s, 1H); 7.45(dd, 1H); 7.6-7.7(m, 2H); 8.15(s, 1H); 8.90(s, 1H); MS-EI: 443 [MH]+; Elemental analysis: Found C, 52.7; H, 5.3; N, 10.8; C21H24N4O2ClF 0.6H2O 1.85HCl Requires C, 53.0; H, 5.2; N, 10.7%.
The starting material was prepared as follows:
Thionyl chloride (9.3 ml, 128 mmol) was added dropwise to a stirred solution of 2-butyne-1,4-diol (10 g, 116 mmol) in toluene (15 ml) and pyridine (10.3 ml) cooled at 0° C. The mixture was stirred for 3.5 hours at ambient temperature and then poured onto ice water. The mixture was extracted with ether, the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and then brine, dried (MgSO4) and the volatiles removed by evaporation. The residue was purified by column chromatography eluting with petroleum ether/ether (7/3) to give 4-chlorobut-2-yn-1-ol (4.74 g, 39%).
1H NMR Spectrum: (CDCl3) 1.68(t, 1H); 4.18(d, 2H); 4.33(d, 2H).
Pyrrolidine (7.8 ml, 94 mmol) was added dropwise to a solution of 4-chlorobut-2-yn-1-ol (4.74 g, 45 mmol) in toluene (40 ml) and the mixture stirred and heated at 60° C. for 1 hour. The volatiles were removed by evaporation and the residue was purified by chromatography eluting with methylene chloride/methanol (96/4) to give 4-(pyrrolidin-1-yl)but-2-yn-1-ol (4.3 g, 69%).
1H NMR Spectrum: (CDCl3) 1.82(t, 4H); 2.63(t, 4H); 3.44(t, 2H), 4.29(t, 2H).
A solution of 4-(pyrrolidin-1-yl)but-2-yn-1-ol (4.3 g, 31 mmol) in THF (20 ml) was added dropwise to a suspension of lithium aluminum hydride (2.35 g, 62 mmol) in anhydrous THF (8 ml) and the mixture stirred and heated at 60° C. for 2 hours. The mixture was cooled to 5° C. and 2M aqueous sodium hydroxide solution (28 ml) was added dropwise. The resulting suspension was filtered and the volatiles removed from the filtrate by evaporation. The residue was dissolved in a mixture of methylene chloride/ethyl acetate, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on aluminum oxide eluting with methylene chloride/methanol (97/3) to give (E)-4-(pyrrolidin-1-yl)but-2-en-1-ol (3.09 g, 70%).
1H NMR Spectrum: (CDCl3) 1.82(m, 4H); 2.61 (m, 4H); 3.17(m, 2H); 4.13(s, 2H); 5.84(m, 2H).
EXAMPLE 18
A solution of 4-(4-bromo-2-fluoroanilino)-7-(3-chloropropoxy)-6-methoxyquinazoline (150 mg, 0.34 mmol) in 1-(2-hydroxyethyl)piperazine (5 ml) was heated at 100° C. for 30 minutes. The reaction mixture was allowed to cool and made basic with aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate (3×50 ml). The extracts were combined, washed twice with water, then brine and dried (MgSO4). The volatiles were removed by evaporation and the residue dissolved in acetone/methanol (10/1) (50 ml) and ethereal hydrogen chloride added. The resulting precipitate was collected by filtration, washed with ether and hexane and dried under vacuum to give 4-(bromo-2-fluoroanilino)-7-(3-[4-(2-hydroxyethyl)piperazinyl]propoxy)-6-methoxyquinazoline hydrochloride (180 mg, 80%).
1H NMR Spectrum: (DMSOd6) 2.35(br t, 2H); 3.2-3.8(br m, 12H); 3.80(t, 2H); 4.02(s, 3H); 4.35(t, 2H); 7.45(s, 1H); 7.30(s, 1H); 7.50-7.58(m, 2H); 7.76(dd, 1H); 8.42(s, 1H); 8.80(s, 1H); 11.82(brs, 1H); MS-ESI: 534 [MH]+.
The starting material was prepared as follows:
A mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1.2 g, 3.3 mmol), (prepared as described for the starting material in Example 48), 1-bromo-3-chloropropane (1.6 ml, 16 mmol) and potassium carbonate (2.1 g, 15 mmol) in DMF (25 ml) was heated at 45° C. for 3 hours. The mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×70 ml). The organic extracts were combined, washed with water and brine, dried (MgSO4) and the volatiles were removed by evaporation. The residue was triturated with hexantlethyl acetate, collected by filtration and dried under vacuum to give 4-(4-bromo-2-fluoroanihno)-7-(3-chloropropoxy)-6-methoxyquinazoline (492 mg, 34%).
1H NMR Spectrum: (DMSOd6) 2.24(m, 2H); 3.80(t, 2H); 3.95(s, 3H); 4.26(t, 2H); 7.20(s, 1H); 7.42-7.55(m, 2H); 7.63(dd, 1H); 7.80(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 440 [MH]+.
EXAMPLE 19
A solution of OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (390 mg) in water (2 ml) was added to a solution of 4-(chloro-2-fluoroanilino)-7-(3-(ethylthio)propoxy)-6-methoxyquinazoline (75 mg, 0.18 mmol) in methanol (10 ml) and the mixture stirred for 18 hours at ambient temperature. The reaction mixture was basified with aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate (3×25 ml). The extracts were combined, washed twice with water and then with brine, dried (MgSO4) and the solvent removed by evaporation. The solid residue was recrystallised from ethyl acetate/hexane to give 4-(chloro-2-fluoroanilino)-7-(3-(ethylsulphonyl)propoxy)-6-methoxyquinazoline (35 mg, 43%).
1H NMR Spectrum: (DMSOd6) 1.24 (t, 3H); 2.22(m, 2H); 3.15(q, 2H); 3.95(s, 3H); 4.25(t, 2H); 7.20(s, 1H); 7.35(dd, 1H); 7.5-7.6(m, 2H); 7.80(s, 1H); 8.35(s, 1H); 9.54(s, 1H); MS-ESI: 454 [MH]+; Elemental analysis: Found C, 51.7; H, 4.6; N, 9.2; C20H21N3O4ClFS 0.5H2O Requires C, 51.9; H, 4.8; N, 9.1%.
The starting material was prepared as follows:
A mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (957 mg, 3 mmol), (prepared as described for the starting material in Example 2), 1-bromo-3-chloropropane (2.36 g, 15 mmol) and potassium carbonate (2.1 g, 15 mmol) in DMF (20 ml) was heated at 40° C. for 1.5 hours. The mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×50 ml). The organic extracts were combined, washed with water and brine, dried (MgSO4) and the volatiles were removed by evaporation. The residue was triturated with hexanelethyl acetate, collected by filtration and dried under vacuum to give 4-(4-chloro-2-fluoroaniiino)-7-(3-chloropropoxy)-6-methoxyquinazoline (650 mg, 55%).
1H NMR Spectrum: (DMSOd6) 2.26(m, 2H); 3.82(t, 2H); 3.95(s, 3H); 4.26(t, 2H); 7.20(s, 1H); 7.32(dd, 1H); 7.48-7.60(m, 2H); 7.80(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-EI: 396 [MH]+.
A mixture of sodium efhanethiolate (120 mg, 1.5 mmol) and 4-(4-chloro-2-fluoroanilino)-7-(3-chloropropoxy)-6-methoxyquinazline (227 mg, 0.57 mmol) in DMF (10 ml) was stirred and heated at 70° C. for 3 hours. The reaction mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×75 ml). The extracts were combined, washed with water (×2), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was recrystallised from ethyl acetate/hexane to give 4-(chloro-2-fluoroanilino)-7-(3-(ethylthio)propoxy)-6-methoxyquinazoline (86 mg, 400%).
1H NMR Spectrum: (DMSOd6) 1.20(t, 3H); 2.03(m, 2H); 2.66(t, 2H); 3.95(s, 3H); 4.20(t, 2H); 7.18(s, 1H); 7.33(dd, 1H); 7.5-7.6(m, 2H); 7.78(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 422 [MH]+.
EXAMPLE 20
A mixture of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (3.28 g, 10 mmol), (prepared as described for the starting material in Example 2), 1-bromo-3-tetrahydropyranyloxypropane (2.5 g, 11 mmol) and potassium carbonate (5.0 g, 36 mmol) in DMF (50 ml) was stirred and heated at 90° C. for 3 hours. The reaction mixture was allowed to cool, was diluted with water (500 ml) and extracted with ethyl acetate (3×100 ml). The extracts were combined, washed with water (×3), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was purified by column chromatography eluting with ethyl acetate. The purified product was recrystallized from ethyl acetatethexane to give 4-(chloro-2-fluoroanilino)-6-methoxy-7-tetrshydropyran-2-yloxypropoxy)quinazoline (2.25 g, 49%).
m.p. 18-185° C.; 1H NMR Spectrum: (DMSOd6) 1.35-1.54(m, 4H); 1.55-1.75(m, 2H); 2.05(m, 2H); 3.35-3.45(m, 1H); 3.66-3.84(m, 2H); 3.95(s, 3H); 4.23(t, 2H); 4.60(s, 1H); 7.18(s, 1H); 7.32(dd, 1H); 7.5-7.6(m, 2H); 7.78(s, 1H); 8.35(s, 1H); 9.53(s, 1H); MS-ESI: 462 [MH]+; Elemental analysis: Found C, 59.6; H, 5.3; N, 9.1; C23H25N3O4ClF Requires C, 59.9; H, 5,4; N, 9.4%.
EXAMPLE 21
A mixture of sodium methanethiolate (70 mg, 1 mmol) and 4(4-chloro-2-fluoroanilino)-7-(3-chloropropoxy)-6-methoxyquinazoline (200 mg, 0.5 mmol), (prepared as described for the starting material in Example 19), in DMF (10 ml) was stirred and heated at 70° C. for 1 hour. The reaction mixture was allowed to cool, was diluted with water and extracted with ethiyl acetate (3×25 ml). The extracts were combined, washed with water (×2), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was recrystallised from ethyl acetate/hexane to give 4-(chloro-2-fluoroanilino)-6-methoxy-7-(3-methylthiopropoxy)quinazoline (143 mg, 35%).
m.p. 169-170° C. 1H NMR Spectrum: (DMSOd6) 2.0-2.12(m, 2H); 2.08(s, 3H); 2.64(t, 2H);.3.93(s, 3H); 4.21(t, 2H); 7.18(s, 1H); 7.33(d, 1H); 7.50-7.61(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.53(s, 1H); MS-ESI: 408 [MH]+.
EXAMPLE 22
A mixture of 4-(bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.7 mmol), (prepared as described for the starting material in Example 48), 2-chloroethyl methyl sulphide (0.1 ml, 1 mmol) and potassium carbonate (1.0 g, 7 mmol) in DMF (10 ml) was stirred and heated at 50° C. for 4 hours. The reaction mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×25 ml). The extracts were combined, washed with water (×2), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was purified by column chromatography eluting with ethyl acetate. The purified product was recrystallised from ethyl acetate/hexane to give 4-(4-bromo-2-fluoroanilino)-6-methoy-7-(2-methylthioethoxy)quinazoline (100 mg, 34%).
1H NMR Spectrum: (DMSOd6) 2.20(s, 3H); 2.90(t, 2H); 3.92(s, 3H); 4.30(t, 2H); 7.20(s,1H); 7.42-7.54(m, 2H); 7.62(dd, 1H); 7.80(s, 1H); 8.36(s, 1H); 9.54(s, 1H); MS-ESI: 438 [MH]+; Elemental analysis: Found C, 48.8; H, 3.9; N, 9.8; S, 7.3; C18H17N3O2BrFS Requires C, 49.3; H, 3.9; N, 9.6; S, 7.3%.
EXAMPLE 23
A solution of 7-(2-bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (130 mg, 0.36mmnol), (prepared as described for the starting material in Example 62), in 1-ethoxycarbonylpipeiazine (1.5 ml) was stirred and heated at 100° C. for 2 hours. The mixture was allowed to cool, diluted with water and extracted with ethyl acetate (3×25 ml). The extracts were combined, washed with water (×2) and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was dissolved in acetone and 1M ethereal hydrogen chloride (2 ml) was added. The resulting precipitate was collected by filtration and then purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (94/5/1). The purified product was dissolved in acetone and 1M ethereal hydrogen chloride (2 ml) was added. The resulting precipitate was collected by filtration, washed with ether and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2-(4-ethoxycarbonylpiperazin-1-yl)ethoxy)-6-methoxyquinazoline hydrochloride (85 mg. 46%).
1H NMR Spectrum: (DMSOd6) 1.20(t, 3H); 3.1-3.6(m, 8H); 3.66(br s, 2H); 4.00(s, 3H); 4.08(q, 2H); 4.65(br s, 2H); 7.40(m, 2H); 7.90(t, 1H); 7.65(dd, 1H); 8.40(s, 1H); 8.80(s, 1H); 11.66(brs, 1H); MS-ESI: 504 [MH]+; Elemental analysis: Found C, 48.6; H, 5.0; N, 12.2; C24H27N5O4ClF 1H2O 2HCl Requires C, 48.5; H, 5.2; N, 11.8%.
EXAMPLE 24
A mixture of 4-(bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (306 mg, 0.84 mmol), (prepared as described for the starting material in Example 48). 2-chloroethyl ethyl sulphide (0.15 ml, 1.3 mmol) and potassium carbonate (0.5 g, 3.6 mmol) in DMF (10 ml) was stirred and heated at 50° C. for 1 hour. The reaction mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×25 ml). The extracts were combined, washed with water (×2), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was purified by column chromatography eluting with ethyl acetate. The purified product was recrystallised from ethyl acetate/hexane to give 4-(4-bromo-2-fluoroanilino)-7-(2-ethylthioethoxy)-6-methoxyquinazoline (221 mg, 58%).
1H NMR Spectrum: (DMSOd6) 1.24(t, 3H); 2.66(q, 2H); 2.94(t, 2H); 3.95(s, 3H); 4.30(t, 2H); 7.20(s, 1H); 7.45(t, 1H); 7.52(d, 1H); 7.65(dd, 1H); 7.80(s, 1H); 9.55(s, 1H); MS-ESI: 452 [MH]+.
EXAMPLE 25
A solution of OXONE, (trade mark of E.I. duPont de Nemours & Co., Inc), (150 mg) in water (2 ml) was added to a solution of 4-(4-bromo-2-fluoroanilino)-7-(2-ethylthioethoxy)-6-methoxyquinazoline (125 mg, 0.28 mmol), (prepared as described in Example 24), in methanol (10 ml). The reaction mixture was stirred for 16 hours at ambient temperature, the methanol was removed by evaporation, the aqueous residue was basified with sodium hydrogen carbonate solution and then extracted with ethyl acetate (3×30 ml). The extracts were combined, washed with water (×2), and then brine, and dried (MgSO4). The solvent was removed by evaporation and the residue was purified by column chromatography eluting with ethyl acetate and then with methylene chloridetmethanol (9/1) to give 4-(4-bromo-2-fluoroanilino)-7-(2-ethylsulphinylethoxy)-6-methoxyquinazoline (32 mg, 31%).
1H NMR Spectrum: (DMSOd6) 1.21(t, 3H); 2.72-2.84(m, 1H); 2.86-2.96(m, 1H); 3.04-3.12(m, 1H); 3.94(s, 3H); 4.42-4.58(m, 2H); 7.26(s, 1H); 7.42-7.55(m, 2H); 7.64(dd, 1H); 7.82(s, 1H); 8.35(s, 1H); 9.55(s, 1H); MS-ESI: 468 [MH]+.
EXAMPLE 26
Using a method analogous to that in Example 25, 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-methylthiopropoxy)quinazoline (250 mg, 0.6 mmol), (prepared as described in Example 21), was treated with OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (84 mg) and the product was pied and isolated to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-methylsulphinylpropoxy)quinazoline (75 mg, 29%).
1H NMR Spectum: (DMSOd6) 2.18(t, 2H); 2.60(s, 3H); 2.78-2.98(m, 2H); 3.95(s, 3H); 4.25(t, 2H); 7.20(s, 1H); 7.35(dd, 1H); 7.50-7.61(m, 2H); 7.80(s, 1H); 8.53(s, 1H); 9.55(s, 1H); MS-ESI: 424 [MH]+; Elemental analysis: Found C, 53.4; H, 4.5; N, 9.8; C19H19N3O4ClFS Requires C, 53.9; H, 4.5; N, 9.8%.
EXAMPLE 27
A solution of OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (800 mg) in water (3 ml) was added to a solution of 4-(4-bromo-2-fluoroanilino)-7-(2-ethylthioethoxy)-6-methoxyquinazoline (320 mg, 0.7mmol), (prepared as described in Example 24), in methanol (10 ml). The reaction mixture was stirred for 20 hours at ambient temperature, the methanol was removed by evaporation, the aqueous residue was basified with sodium hydrogen carbonate solution, saturated with sodium chloride and then extracted with ethyl acetate (3×5oml). The extracts were combined, dried (MgSO4) and the solvent was removed by evaporation. The residue was dissolved in acetone/methanol and 1M ethereal hydrogen chloride (2 ml) was added. The volatiles were removed by evaporation, the residue was triturated with 2-propanol/hexane, collected by filtration and dried to give 4-(4-bromo-2-fluoroanilino)-7-(2-ethylsulphonylethoxy)-6-methoxyquinazoline hydrochloride (200 mg, (55%).
1H NMR Spectrum: (DMSOd6) 1.28(t, 3H); 3.25(q, 2H); 3.74(t, 2H); 4.00(s, 3H); 4.54(t, 2H); 7.43(s, 1H); 7.54(m, 1H); 7.56(s, 1H); 7.75(d, 1H); 8.36(s, 1H); 8.78(s, 1H); 11.61(br s, 1H); MS-ESI: 484 [MH]+.
EXAMPLE 28
A solution of OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (800 mg) in water (3 ml) was added to a solution of 4-(4chloro-2-fluoroanilino)-7-(2-ethylthioethoxy)-6-methoxyquinazoline (220 mg, 0.56 mmol) in methanol (10 ml). The reaction mixture was stirred for 20 hours at ambient temperature, the methanol was removed by evaporation, the aqueous residue was basified with sodium hydrogen carbonate solution, saturated with sodium chloride and then extracted with ethyl acetate (3×50 ml). The extracts were combined, dried (MgSO4) and the solvent was removed by evaporation. The residue was dissolved in acetone/methanol and 1M ethereal hydrogen chloride (1.2 ml) was added. The volatiles were removed by evaporation, the residue was triturated with 2-propanol, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2-ethylsulphonylethoxy)-6-methoxyquinazoline hydrochloride (24 mg, 90%).
1H NMR Spectrun: (DMSOd6) 1.25(t, 3H); 3.30(q, 2H); 3.75(t, 2H); 4.00(s, 3H); 4.55(t, 2H); 7.36(s, 1H); 7.41(dd, 1H); 7.58(t, 1H); 7.64(dd, 1H); 8.22(s, 1H); 8.78(s, 1H); MS-ESI: 440 [MH]+.
The starting material was prepared as follows:
A mixture of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (450 mg, 1.4 mmol), (prepared as described for the starting material in Example 2), 2-chloroethyl ethyl sulphide (0.2 ml, 1.7 mmol) and potassium carbonate (1.5 g, 11 mmol) in DMF (10 ml) was stirred and heated at 50° C. for 2 hours. The reaction mixture was allowed to cool, was diluted with water and extracted with ethyl acetate (3×50 ml). The extracts were combined, washed with 0.1M sodium hydroxide solution (×2), water and then brine, and dried (MgSO4). The solvent was removed by evaporation to give crude 4-(4-chloro-2-fluoroanilino)-7-(2-ethylthioethoxy)-6-methoxyquinazoline (230 mg, 57%) which was used directly.
EXAMPLE 29
A mixture of 4-(chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquiazoline (400 mg, 1.3 mmol), (prepared as described for the starting material in Example 2), 2-chloroethyl methyl sulphide (0.168 ml, 1.7 mmol) and potassium carbonate (347 mg, 2.5 mmol) in NMP (10 ml) was stirred and heated at 90° C. for 1 hour, then allowed to cool and stirred for 16 hours at ambient temperature. The reaction mixture was diluted with water and extracted with ethyl acetate. The extracts were combined, washed with water, and then brine, and dried (MgSO4). The solvent was removed by evaporation, the residue was triturated with ethyl acetate/hexane and collected by filtration to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylthioethoxy)quinazoline (220 mg, 440/%).
m.p. 174-176° C.; 1H NMR Spectrum: (DMSOd6) 2.20(s, 3H); 2.92(t, 2H); 3.94(s, 3H); 4.32(t, 2H); 7.20(s, 1H); 7.32(d, 1H); 7.49-7.6(m, 2H); 7.80(s, 1H); 8.36(s, 1H); 9.55(s, 1H); MS-ESI: 452 [MH]+.
EXAMPLE 30
A solution of OXONE, (trade mark of E.I. du Pont de Nemours & Co., Inc), (652 mg) in water (1.6 ml) was added to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylthioethoxy)quinaaoline (200 mg, 0.5 mmol), (prepared as described in Example 29), in metanol (10 ml) and the mixture was stredfor 18 hours at ambient temperature. The mixture was diluted with methylene chloride, was washed with aqueous sodium hydrogen carbonate solution, dried (MgSO4) and the solvent was removed by evaporation. The residue was triturated with ethyl acetate/hexane, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylsulphonylethoxy)quinazoline (172 mg, 80%).
m.p. 227-230° C. 1H NMR Spectrum: (DMSOd6) 3.18(s, 3H); 3.70(t, 2H); 3.92(s, 3H); 4.50(t, 2H); 7.22-7.38(m, 2H); 7.42(s, 1H); 7.48-7.60(m, 2H); 8.37(s, 1H); 9.55(s, 1H); MS-ESI: 426 [MH]+; Elemental analysis: Found C, 46.0; H, 3.6; N, 8.7; C18H17N3O4ClFS 2.2H2O Requires C, 46.4; H, 4.1; N, 9.0%.
EXAMPLE 31
1,1′-(Azodicarbony)dipiperidine (1.56 g, 6.2 mmol) followed by 3-(methylthio)-1-propanol (0.32 ml, 3 mmol) was added to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 48), and tributylphosphine (1.42 mL 6.1 mmol) in methylene chloride (20 ml) at 5° C. The mixture was stirred at 5° C. for 1 hour and then for 18 hours at ambient temperature. The insolubles were removed by filtration and the volatiles were removed from the filtrate by evaporation. The residue was purified by column chromatography eluting with ethyl acetate/methanol (100/0 increasing to 95/5) to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-methylthiopropoxy)quinazoline (400 mg, 50%).
m.p. 250-252° C.; 1H NMR Spectrum: (DMSOd6) 2.08(t, 2H); 2.64(t, 2H); 4.00(s, 3H); 4.28(t, 2H); 7.40(s, 1H); 7.48-7.58(m, 2H); 7.78(d, 1H); 8.30(s, 1H); 8.80(s, 1H); MS-ESI: 452 [MH]+.
EXAMPLE 32
A solution of OXONE, (trade mark of E.I du Pont de Nemours & Co., Inc), (800 mg) in water (4.5 ml) was added to a solution of 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-methylthiopropoxy)quinazoline (300 mg, 0.66 mmol), (prepared as described in Example 31), in methanol (15 ml) and the mixture was stirred for 4 hours at ambient temperature. The mixture was diluted with methylene chloride, was washed with aqueous sodium hydrogen carbonate solution, dried (MgSO4) and the solvent was removed by evaporation. The residue was triturated with ethyl acetaie/hexane, collected by filtration and dried to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-methylsulphonylpropoxy)quinazoline (235 mg, 73%).
m.p.>250° C. 1H NMR Spectrum: (DMSOd6) 2.30(t, 2H); 3.20(s, 3H); 3.30(t, 2H); 4.10(s, 3H); 4.30(t, 2H); 7.38(s, 1H); 7.5-7.6(m, 2H); 7.78(d, 1H); 8.30(s, 1H); 8.80(s, 1H); MS-ESI: 484 [MH]+; Elemental analysis: Found C, 42.8; H, 3.8; N, 7.8; C19H19N3O4BrFS 0.5H2O Requires C, 43.1; H, 3.9; N, 7.9%.
EXAMPLE 33
1,1′-(Azodicarbonyl)dipiperidine (355 mg, 1.4 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (150 mg, 0.47 mmol), (prepared as described for the starting material in Example 2), 2-(cyclopentyloxy)ethanol (91 mg, 0.7 mmol), (U.S. Pat. No. 4,515,814), and tributylphosphine (284 mg, 1.4 mmol) in methylene chloride (6 ml) at 0° C. The mixture was then allowed to warm to ambient temperature and stirred for 3.5 hours. Ether (3 ml) was added and the insolubles were removed by filtration and the volatiles were removed from the filtrate by evaporation. The residue was dissolved in acetone and 1M ethereal hydrogen chloride (0.6 ml) was added. The mixture was left to stand for 60 hours and the precipitate was collected by filtration, washed with acetone and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2-cyclopentyloxyethoxy)-6-methoyquinazoiline hydrochloride (130 mg, 60%).
1H NMR Spectrun: (DMSOd6) 1.4-1.8(m, 8H); 3.75(t, 2H); 4.00(s, 4H); 4.30(t, 2H); 737(s, 1H); 7.42(dd, 1H); 7.60(t, 1H); 7.64(dd, 1H); 8.25(s, 1H); 8.78(s, 1H); MS-ESI: 432 [MH]+; Elemnental analysis: Found C, 55.8; H, 5.0; N, 8.8; C22H23N3O3ClF 1H2O 1HCl Requires C, 56.0; H, 5.2; N, 8.9%.
EXAMPLE 34
Diethyl azodicarboxylate (0.94 ml, 6 mmol) was added dropwise to a mixture of triphenylphosphine (1.57 g, 6 mmol), 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinzline (640 mg, 2 mmol), (prepared as described for the starting material in Example 2), and N-(tert-butoxycarbnyl)ethanolamine (0.354 g, 2.2 mmol) in methylene chloride (20 ml) at 0° C. The reaction mixture was allowed to warm to ambient temperature and stirred for 4 hours. The reaction mixture was diluted with methylene chloride, washed with aqueous sodium hydrogen carbonate solution, water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (100/8/1). The product was recystallised from acetonitrile, collected by filtration, washed with ethyl acetate and dried to give 7-(2-[N-tert-butoxycarbonylamino]ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (235 mg, 25%).
m.p. 190-191° C.; 1H NMR Spectrum: (DMSOd6) 1.36(s, 9H); 3.34(q, 2H); 3.91(s, 3H); 4.15(t, 2H); 6.98(t, 1H); 7.19(s, 1H); 7.33(dd, 1H); 7.56(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.51(s, 1H); 9.51(s, 1H); MS-ESI: 463 [MH]+; Elemental analysis: Found C, 57.0; H, 5.1; N, 12.5; C22H24N4O4ClF Requires C, 57.1; H, 5.1; N, 12.1%.
EXAMPLE 35
Sodium hydride (55 mg of a 60% dispersion in mineral oil, 1.1 mmol) was added to a solution of glutarimide (120 mg, 1.06 mmol) in DMF (5 ml) at ambient temperature under argon and the mixture stirred for 30 minutes. 7-(2-Bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (428 mg, 1 mmol), (prepared as described for the starting material in Example 62), in DMF (2 ml) was added and the resulting pale green solution was stirred for 18 hours and then quenched with water. The volatiles were removed by evaporation, and the residue was partitioned between water and ethyl acetate. The organic phase was separated and washed with water and then dried (MgSO4). The solvent was removed by evaporation, and the residue was purified by column chromatography eluting with ethyl acetate then ethyl acetatemtal (9/1). The purified product was recrystallised from ethyl acetate and hexane, collected by filtration and washed with ether to give 4-(4-chloro-2-fluoroanilino)-7-(2-(2,6-dioxopiperidino)ethoxy)-6-methoxyquinizoline (252 mg, 55%).
m.p. 202-203° C.; 1H NMR Spectrum: (DMSOd6) 1.84(m, 2H); 2.63(t, 4H); 3.91(s, 3H); 4.08(t, 2H); 4.17(t, 2H); 7.10(s, 1H); 7.34(dd, 1H); 7.55(m, 2H); 7.79(s, 1H); 8.34(s, 1H); 9.52(s, 1H); MS-ESI: 459 [MH]+; Elemental analysis: Found C, 57.2; H, 4.2; N, 11.9; C22H20N4O4ClF Requires C, 57.6; H, 4.3; N, 12.2%.
EXAMPLE 36
Isobutyl chloroformate (88 mg, 5.9 mmol) was added to a stirred solution of 7-(3-aminopropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline trifluoroacetate (151 mg, 0.4 mmol) and triethylamine (0.2 ml, 1.4 mmol) in THF (15 ml). The reaction mixture was stirred at ambient temperature for 30 minutes and the volatiles were removed by evaporation. The residue was dissolved in methylene chloride, the solution was washed with aqueous sodium hydrogen carbonate solution and then brine, dried (MgSO4) and the solvent was removed by evaporation. The residue was recrystallised from acetonitrile to give 4-(4-chloro-2-fluoroanilino)-7-(3-[N-isobutoxycarbonylamino]propoxy)-6-methoxyquinazoline (41.2 mg, 20%) as a white solid.
m.p. 136-137° C.; 1H NMR Spectrum: (DMSOd6) 0.87(d, 6H); 1.80(m, 1H); 1.93(t, 2H); 3.16(q, 2H); 3.71(d, 2H); 3.94(s, 3H); 4.15(t, 2H); 7.16(s, 2H); 7.32(dd, 1H); 7.55(m, 2H); 7.79(s, 1H); 8.34(s, 1H); 9.50(s, 1H); MS-ESI: 477 [MH]+; Elemental analysis: Found C, 57.1; H, 4.9; N, 11.6; C23H26N4O4ClF Requires C, 57.1; H, 5.5; N, 11.6%.
The starting material was prepared as follows:
A solution of di-tert-butyl dicarbonate (32 g, 148 mmol) in methylene chloride (70 ml) was added dropwise to a stid solution of 3-amino-1-propanol (10.1 g, 134 mmol) in methylene chloride (100 ml). The reaction mixture was stirred overnight and was then washed with saturated aqueous sodium hydrogen carbonate solution, water and then brine. The organic layer was dried (MgSO4) and the volatiles were removed by evaporation to give 3-(N-tert-butoxycarbonylamino)-1-propanol (23.3 g, 100%) as a colourless oil.
1H NMR Spectrum: (CDCl3) 1.48(s, 9H); 1.68(m, 2H); 2.90(br s, 1H); 3.30(m, 2H); 3.65(m, 2H); 4.78(br s, 1H); MS-ESI: 176 [MH]+.
Triphenylphosphine (2.46 g, 9.3 mmol) was added to a suspension of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1.0 g, 3.1 mmol), (prepared as described for the starting material in Example 2), in methylene chloride (25 ml) and the suspension stirred at 0° C. for 30 minutes. A solution of 3-(N-tert-butoxycarbonylamino)-1-propanol (0.65 g, 3.7 mmol) in methylene chloride (3 ml) was added and then diethyl azodicarboxylate (1.47 ml, 7.6 mmol) was added dropwise. The reaction mixture was allowed to warm to ambient temperature and stirred for 18 hours. The reaction mixture was diluted with methylene chloride and washed with aqueous sodium hydrogen carbonate solution, water and then brine. The resultant solution was dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol/triethylamine (100/0/0 and then 95/4/1) to give 7-(3-(N-tert-butoxycarbonylamino)propoxy)-4-(4-chloro-2-fluororanilino)-6-methoxyquinazoline (620 mg, 42%).
1H NMR Spectrum: (DMSOd6) 1.36(s, 9H); 1.89(t, 2H); 3.11 (q, 2H); 3.91(s, 3H); 4.14(t, 2H); 6.89(m, 1H); 7.16(s, 1H); 7.31(dd, 1H); 7.56(m, 2H); 7.77(s. 1H); 8.32(s, 1H); 9.51(s, 1H); MS-ESI: 477 [MH]+.
7-(3-(N-tert-butoxycarbonylamino)propoxy)-4-(4-chloro-2-fluoroanlno)-6-methoxyquinazoline (610 mg, 1.28 mmol) was added slowly to TFA (10 ml). The reaction was stirred at ambient temperature for 2 hours and the volatiles were removed by evaporation and by azeotroping with toluene to give 7-(3-aminopropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinoline trifluoroacetate (455 mg, 94%) as an oil.
EXAMPLE 37
A mixture of 7-(2-bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (425 mg, 1 mmol), (repared as described for the starting material in Example 62), and 1-methyl-4-(methylamino)piperidine (128 mg, 1 mmol) in N,N-dimethylacetamide (2 ml) was stirred at 65° C. for 3 hours. The volatiles were removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (75/8/1). The purified product was triturated with ether, collected by filtration, washed with ether and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-methyl-N-(1-methylpiperidin-4-yl)]amino)ethoxy)quinazoline (180 mg, 38%) as a pale yellow powder.
m.p. 191-192° C.; 1H NMR Spectrum: (DMSOd6) 1.44(m, 2H); 1.70(m, 2H); 1.86(m, 2H); 2.15(s, 3H); 2.30(s, 3H); 2.78(m, 2H); 2.88(t, 2H); 3.94(s, 3H); 4.18(t, 2H); 7.19(s, 1H); 7.33(m, 1H); 7.52(m, 1H); 7.58(t, 1H); 7.78(s, 1H); 8.34(s, 1H); 9.48(s, 1H); MS-ESI: 474 [MH]+; Elemental analysis: Found C, 60.9; H, 6.3; N, 14.7; C24H29N5O2ClF Requires C, 60.8; H, 6.2; N, 14.8%.
EXAMPLE 38
1,1′-(Azodicarbonyl)dipiperidine (560 mg, 2.2 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (240 mg, 0.75 mmol), (prepared as described for the starting material in Example 2), tetrahydro-3-furanmethanol (90 mg, 0.88 mmol) and tributylphosphine (440 mg, 2.2 mmol) in methylene chloride (12 ml) and the mixture stirred for 18 hours. The mixture was diluted with ether, and the resulting precipitate was removed by filtration. The solvent was removed from the filtrate by evaporation, and the residue was dissolved in acetone and ethereal hydrogen chloride (0.75 ml of a 1M solution, 0.75 mmol) was added. The mixture was diluted with ether and the resulting precipitate was collected by filtration. The solid was purified by column chromatography eluting with methylene chloride/acetonitrile/methanol (a gradient firm 50/50/1 to 50/50/2). The purified product was triturated with ether, collected by filtration and dried to give 4-(4-chloro-2-fluoroanino)-6-methoxy-7(tetrahydrofuran-3-ylmethoxy)quinazoline (93mg, 31%).
m.p. 201-202° C.; 1H NMR Spectrum: (DMSOd6) 1.70(m, 1H); 2.05(m, 1H); 2.72(m, 1H); 3.56(m, 1H); 3.66(q, 1H); 3.79(m, 2H); 3.94(s, 3H); 4.08(m, 2H); 7.20(s, 1H); 7.32(m, 1H); 7.52(dd, 1H); 7.58(t, 1H); 7.78(t, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 404 [MH]+; Elemental analysis: Found C, 59.2; H, 4.6; N, 10.6; C20H19N3O3ClF Requires C, 59.5; H, 4.7; N, 10.4%.
EXAMPLE 39
1,1′-(Azodicarbonyl)dipiperidine (5.6 g, 22 mmol) was added in portions to a mixture of 4-(4chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2.4 g, 7.5 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (4.4 g, 22 mmol) and 1-(2-hydroxyethyl)-2-pyrrolidinone (1.1 g, 8.5 mmol) in methylene chloride (105 ml). The mixture was stirred for 18 hours, diluted with ether (100 ml) and the resulting precipitate was removed by filtration. The volatiles were removed from the filtrate by evaporation, and the residue was dissolved in acetone and ethereal hydrogen chloride (15 ml of a 1M solution, 15 mmol) was added. The solid was collected by filtration and was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (150/8/1). The purified product was dissolved in acetone and ethereal hydrogen chloride (15 ml of a 1M solution, 15 mmol) was added. The resulting precipitate was collected by filtration, washed with ether and dried to give 4-(4-chloro-2-flooroanilino)-6-methoxy-7-(2-(2-oxopyrrolidin-1-yl)ethoxy)quinazoline hydrochloride (2.1 g, 60%).
m.p. 250-252° C.; 1H NMR Spectrum: (DMSOd6) 1.92(m, 2H); 2.22(t, 2H); 3.52(t, 2H); 3.68(t, 2H); 4.02(s, 3H); 4.30(t, 2H); 7.38(s, 1H); 7.42(m, 1H); 7.58(t, 1H); 7.66(dd, 1H); 8.35(s, 1H); 8.79(s, 1H); 11.69(br s, 1H); MS-ESI: 431 [MH]+; Elemental analysis: Found C, 53.5; H, 4.4; N, 12.2; 21H20N4O3ClF 0.1H2O 1HC1 Requires C, 53.8; H, 4.6; N, 11.9%.
EXAMPLE 40
1,1′-(Azodicarbonyl)dipiperidine (525 mg, 2.1 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (420 mg, 2.1 mmol) and 1-(2-hydroxyethyl)-2-imidazolidinone (100 mg, 7.7 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration. The volatiles were removed from the filtrate by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (150/81). The purified product was triturated with ether collected by filtration, washed with ether and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-oxoimidazolidin-1-yl)ethoxy)quinazoline (19 mg. 6%).
m.p. >250° C. 1H NMR Spectrum: (DMSOd6) 3.27(t, 2H); 3.53(m, 4H); 3.97(s, 3H); 4.27(t, 2H); 6.39(s, 1H); 7.26(s, 1H); 7.35(m, 1H); 7.57(dd, 1H); 7.61(t, 1H); 7.82(s, 1H); 8.38(s, 1H); 9.55(s, 1H); MS-ESI: 432 [MH]+; Elemental analysis: Found C, 53.7; H, 4.4; N, 15.4; C20H19N5O3ClF 1H2O Requires C, 53.4; H, 4.7; N, 15.6%.
EXAMPLE 41
1,1′-(Azodicarbonyl)dipiperidine (525 mg, 2.1 mmol) was added in portions to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (225 mg, 7.0 mmol), (prepared as described for the starting material in Example 2), tributylphosphine (420 mg, 2.1 mmol) and 4-(2-hydroxyethyl)-1,1-dioxothiomorpholine (140 mg, 7.8 mmol) in methylene chloride (10 ml). The mixture was stirred for 18 hours, diluted with ether and the resulting precipitate was removed by filtration. The volatiles were removed from the filtrate by evaporation, and the residue was dissolved in acetone and ethereal hydrogen chloride (14 ml of a 1M solution, 14 mmol) and the precipitate was collected by filtration. The residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (150/8/1). The purified product was triturated with ether/methylene chloride collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2-(1,1-dioxothiomorpholino)ethoxy)-6-methoxyquinazoline (120 mg, 36%).
m.p. 246-249° C.; 1H NMR Spectrum: (DMSOd6) 3.03(t, 2H); 3.10(br s, 8H); 3.95(s, 3H); 4.27(t, 2H); 7.24(s, 1H); 7.38(m, 1H); 7.53(dd, 1H); 7.58(t, 1H); 7.80(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 481 [MH]+; Elemental analysis: Found C, 52.0; H, 4.6; N, 11.9; S 6.6; C21H22N4O4ClFS Requires C, 52.4; H, 4.6; N, 11.6; S 6.7%.
EXAMPLE 42
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (94 mg, 4.9 mmol) was added to a mixture of 7-(3carboxypropoxy)4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (164 mg, 0.4 mmol), morpholine (0.11 g; 1.26 mmol) and 4-dimethylaminopyridine (200 mg, 1.64 mmol) in DMF (5 ml). The reaction mixture was stirred at ambient temperature for 24 hours and the volatiles were removed by evaporation. Water was added to the residue and the aqueous mixture was extracted with methylene chloride (3×30 ml). The extracts were combined and the solvent removed by evaporation. The residue was triturated with ether and the precipitate was collected by filtration. The solid was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (100/8/1). The purified product was triturated with acetone, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-morpholinocarbonylpropoxy)quinazoline (88 mg, 46%).
m.p. 216-217° C.; 1H NMR Spectrum: (DMSOd6) 2.02(m, 2H); 2.5(m, 2H); 3.45(m, 4H); 3.55(m, 4H); 3.92(s, 3H); 4.15(t, 2H); 7.18(s, 1H); 7.32(d, 1H); 7.55(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.52(s, 1H); MS-ESI: 475 [MH]+; Elemental analysis: Found C, 58.2; H, 5.2; N, 12.2; C23H24N4O4ClF Requires C, 58.2; H, 5.1; N, 11.8%.
The starting material was prepared as follows:
Ethyl 4chlorobutyrate (0.154 ml, 1.1 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (319.5 mg, 1 mmol), (prepared as described for the starting material in Example 2), and anhydrous potassium carbonate (690 mg, 5 mmol) in DMF (10 ml). The mixture was stirred and heated at 105° C. for 4 hours then allowed to cool. The mixture was diluted with methylene chloride and the insolubles were removed by filtration. The solvent was removed from the filtrate by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (1008/1). The purified product was triturated with ether collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-7-(3-ethoxycarbonylpropoxy)-6-methoxyquinazoline (230 mg, 53%).
1H NMR Spectrum: (DMSOd6) 1.18(t, 3H); 2.02(m, 2H); 2.48(m, 2H); 3.94(s, 3H); 4.06(q, 2H); 4.15(t, 2H); 7.18(s, 1H); 7.32(m, 1H); 7.54(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.52(s, 1H); MS-ESI: 434 [MH]+; Elemental analysis: Found C, 58.0; H, 4.8; N, 9.8; C21H21N3O4ClF Requires C, 58.1; H, 4.9; N, 9.7%.
A mixture of 4-(4-chloro2-fluoroanilino)-7-(3-ethoxycarbonylpropoxy)6-methoxyquinazoline (220 mg, 0.5 mmol) in aqueous sodium hydroxide solution (4 ml of a 2M solution, 8 mmol), water (2 ml) and methanol (0.5 ml) was stirred and heated at 40° C. for 3 hours. The mixture was allowed to cool and was then acidified with 2M hydrochloric acid. The resulting white precipitate was collected by filtration and washed with acetone and water to give 7-(3carboxypropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (170 mg, 83%).
EXAMPLE 43
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (145 mg, 0.75 mmol) was added to a mixture of 7-(3-carboxypropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (250 mg, 0.62 mmol), (prepared as described for the starting material in Example 42), 1-methylpiperazine (0.21 ml, 2.32 mmol) and 4-dimethylaminopyridine (300 mg, 2.46 mol) in DMF (7.5 ml). The reaction mixture was stirred at ambient temperature for 24 hours and the volatiles were removed by evaporation. Water was added to the residue and the aqueous mixture was extracted with methylene chloride (3×30 ml). The combined organic extracts were washed with brine and the solvent was removed by evaporation. The residue was triturated with ether and the precipitate was collected by filtration. The solid was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (100/8/1). The purified product was triturated with ether collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(4-methylpiperazin-1-ylcarbonyl)propoxy)quinazoline (133 mg, 44%).
m.p. 248-250° C. 1H NMR Spectrum: (DMSOd6) 2.00(t, 2H); 2.15(s, 3H); 2.25(m, 4H); 2.45(m, 2H); 3.45(m, 4H); 3.92(s, 3H); 4.15(t, 2H); 7.18(s, 1H); 7.30(d, 1H); 7.55(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.52(s, 1H); MS-ESI: 488 [MH]+; Elemental analysis: Found C, 58.6; H, 5.5; N, 13.9; C24H27N5O3ClF 0.2H2O Requires C, 58.6; H, 5.6; N, 14.3%.
EXAMPLE 44
Oxalyl chloride (0.4 ml, 2.2 mmol) was added to a suspension of 7-(3-carboxypropoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (260 mg, 0.64 mmol), (prepared as described for the starting material in Example 42), in methylene chloride (25 ml) followed by 1 drop of DMF. The mixture was stirred at ambient temperature for 2.5 hours and the volatiles were removed by evaporation. A solution of pyrrolidine (0.13 ml, 2.1 mmol) in N,N-dimethylacetamide (8 ml) was added to the solid residue and the mixture was stirred at ambient temperature for 2 hours. The volatiles were removed by evaporation and the residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (100/8/1). The purified product was triturated with acetone, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-pyrrolidin-1-ylcarbonylpropoxy)quinazoline (206 mg, 70%).
m.p. 254-256° C.; 1H NMR Spectrum: (DMSOd6) 1.76(m, 2H); 1.85(m, 2H); 2.02(m, 2H); 2.41(t, 2H); 3.26(t, 2H); 3.38(t, 2H); 3.95(s, 3H); 4.15(t, 2H); 7.18(s, 1H); 7.32(d, 1H); 7.55(m, 2H); 7.78(s, 1H); 8.34(s, 1H); 9.52(s, 1H); MS-ESI: 459 [ME]+; Elemental analysis: Found C, 59.9; H, 5.3; N, 12.0; C23H24N4O3ClF Requires C, 60.2; H, 5.3; N, 12.2%.
EXAMPLE 45
A mixture of 4-(4-chloro-2-fluoroanilino)-7-(2,2-dimethoxyethoxy)-6-methoxyquinazoline (210 mg, 0.52 mmol), water (5 ml) and TFA (5 ml) was stirred at ambient temperature for 3 hours then heated at 60° C. for 1 hour. The solution was allowed to cool, then diluted with water and the resulting precipitate was collected by filtration and dried. The solid was dissolved in methanol (10 ml) and cyclopentylamine (0.057 ml, 0.57 mmol) and dried 3 Å molecular sieves (2.5g) were added. The mixture was stirred for 30 minutes, glacial acetic acid (0.20 ml, 3.2 mmol) and sodium cyanoborohydride (150 mg, 2.4 mmol) were added and the reaction stirred for 4 hours then left to stand for 18 homs. The insolubles were removed by filtration and the solvent was removed from the filtrate by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol/aqueous ammonia (1008/1). The purified product was triturated with ether/hexane, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2-cyclopentylaminoethoxy)-6-methoxyquinazoline (80 mg, 36%).
m.p. 171-173° C.; 1H NMR Spectrum: (DMSOd6) 1.55(m, 8H); 2.94(t, 2H); 3.08(m, 1H); 3.94(s, 3H); 4.19(t, 2H); 7.19(s, 1H); 7.33(m, 1H); 7.52(dd, 1H); 7.59(t, 1H); 7.78(s, 1H); 8.34(s, 1H); 950(s, 1H); MS-ESI: 431 [MH]+
The starting material was prepared as follows:
Bromoacetaldehyde dimethyl acetal (0.74 ml, 3.1 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (10 g, 3.13 mmol), (prepared as described for the starting material in Example 2), and anhydrous potassium carbonate (2.16 g, 15.6 mmol) in DMF (30 ml). The mixture was stirred and heated at 110° C. for 4 hours, then allowed t6 cool and the volatiles were removed by evaporation. Water was added to the residue and the aqueous mixture was extracted with methylene chloride (×4). The extracts were combined, washed with brine and dried by filtration through phase separating paper. The volatiles were removed by evaporation, the residue was triturated with ether, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-7-(2,2-dimethoxyethoxy)-6-methoxyquinazoline (440 mg, 35%).
1H NMR Spectrum: (DMSOd6) 3.36(s, 6H); 3.94(s, 3H); 4.05(d, 2H); 4.75(t, 1H); 7.22(s, 1H); 7.32(m, 1H); 7.52(m, 1H); 7.58(t, 1H); 7.80(s, 1H); 8.35(s, 1H); 9.52(s, 1H); MS-ESI: 408 [MH]+
EXAMPLE 46
Diethyl azodicarboxylate (1.55 ml, 9.89 mmol), 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1.2g, 3.3 mmol), (prepared as described for the starting material in Example 48), and a solution of (E)-4-(pyrrolidin-1-yl)but-2-en-1-ol (697 mg, 4.9 mmol), (prepared as described for the starting material in Example 17), in methylene chloride (5 ml) were added successively to a solution of triphenylphosphine (2.59 g, 9.89 mmol) in methylene chloride (150 ml) cooled at 5° C. The mixture was stirred at ambient temperature for 10 minutes then methylene chloride (100 ml) was added followed successively by triphenylphosphine (432 mg, 1.6 mmol), (E)-4-(pyrrolidin-1-yl)but-2-en-1-ol (232 mg, 1.6 mmol) and diethyl azodicarboxylate (246 μl, 1.6 mmol). The mixture was stirred at ambient temperature for 30 minutes and then the solvent was removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (8/2 followed by 7/3 and 6/4). The semi-purified product was repurified by column chromatography eluting with methylene chloride/methanol (8/2 followed by 7.5/2.5). The purified product was dissolved in methylene chloride, 3.7M ethereal hydrogen chloride (3 ml) was added and the volatiles were removed by evaporation. The residue was triturated with ether, collected by filtration and dried under vacuum to give (E)-4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(4-pyrrolidin-1-ylbut-2-en-1-yloxy)quinazoline hydrochloride (600 mg, 32%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.8-1.9(m, 2H); 2.0-2.1(m, 2H); 3.0-3.1(m, 2H); 3.45-3.55(m, 2H); 3.88(d, 2H); 4.01(s, 3H); 4.9(d, 2H); 6.0(td, 1H); 6.3(td, 1H); 7.41(s, 1H); 7.5-7.65(m, 2H); 7.82(d, 1H); 8.13(s, 1H); 8.88(s, 1H); MS-(EI): 487 [M.]+; Elemental analysis: Found C, 48.2; H, 4.9; N, 9.6; C23H24N4O2BrF 0.5H2O 2HCl Requires C, 48.5; H, 4.8; N, 9.8%.
EXAMPLE 47
Diethyl azodicarboxylate (261 mg, 1.5 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7hydroxy-6-methoxyquinazoline (160 mg, 0.5 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (393 mg, 1.5 mmol) and 1-(3-hydroxypropyl)-2-pyrrolidinone (107 mg, 0.75 mmol) in methylene chloride (5 ml) under nitrogen. The mixture was stirred for 20 minutes at ambient temperature and then purified by pouring directly onto a column of silica eluting with methylene chloride/ethyl acetate/methanol (60/35/5 followed by 60/30/10). The purified product was triturated with ether and collected by filtration. The solid was dissolved in ethyl acetate and treated with 3M hydrogen chloride in ethyl acetate (0.4 ml). The precipitate was collected by filtration, washed with ethyl acetate and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(2-oxopyrrolidin-1-yl)propoxy)quinazoline hydrochloride (170 mg, 70%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.9-2.0(m, 2H); 2.0-2.1(m, 2H); 2.21(t, 2H); 3.4–3.5(m, 4H); 4.02(s, 3H); 4.20(s, 3H); 4.20(t, 2H); 7.32(s, 1H); 7.46(dd, 1H); 7,63(t, 1H); 7.71(dd, 1H); 8.17(s, 1H); 8.87(s, 1H); MS-ESI: 445 [MH]+; Elemental analysis: Found C, 54.9; H, 4.7; N, 11.6; C22H22N4O3ClF0.3H2O 0.85HCl Requires C, 54.9; H, 4.9; N, 11.6%.
The starting material was prepared as follows:
A solution of γ-butyrolactone (8.6g, 0.1 mol) and 3-amino-1-propanol (9 g, 0.12 mol) was heated at reflux for 18 hours. The crude product mixture was distilled under reduced pressure to give 1-(3-hydroxypropyl)-2-pyrrolidinone (2.5 g. 17%).
b.p. ˜130° C. under ˜0.05 mmHg; 1H NMR Spectrum: (CDCl3) 1.7-1.8(m, 3H); 2.0-2.15(m, 2H); 2.44(t, 2H); 3.4-3.5(m, 4H); 3.54(t, 2H); MS-(EI): 143[M.]+.
EXAMPLE 48
Using a method analogous to that in Example 47, 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (146 mg, 0. mmol) in methylene chloride (5 ml) was treated with 1-(3-hydroxypropyl)-2-pyrrolidinone (86 mg, 0.6 mmol), triphenylphosphine (314 mg, 1.2 mmol) and diethyl azodicarboxylate (209 mg, 1.2 mmol) and was purified and isolated to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-(2-oxypyrrolidin-1-yl)propoxy)quinazoline hydrochloride (140 mg, 67%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.9-2.0(m, 2H); 2.0-2.1(m, 2H); 2.21(t, 2H); 3.4–3.5(m, 4H); 4.02(s, 3H); 4.20(t, 2H); 7.32(s, 1H); 7.5-7.65(m, 2H); 7.82(d, 1H); 8.15(s, 1H); 8.87(s, 1H); MS-ESI: 490 [MH]; Elemental analysis: Found C, 49.9; H, 4.4; N, 10.5; CH22H22N4O3BrF 0.2H2O 0.95HCl Requires C, 50.1; H, 4.5; N, 10.6%.
The starting material was prepared as follows:
A solution of 7-benzyloxy-4-chloro-6-methoxyquinazoline (8.35 g, 27.8 mmol), (prepared as described for the starting material in Example 1), and 4-bromo-2-fluoroaniline (5.65 g, 29.7 mmol) in 2-propanol (200 ml) was heated at reflux for 4 hours. The resulting precipitate was collected by filtration, washed with 2-propanol and then ether and dried under vacuum to give 7-benzyloxy-4-(4-bromo-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (9.46 g, 78%).
1H NMR Spectrum: (DMSOd6; CD3COOD) 4.0(s, 3H); 5.37(s, 2H); 7.35-7.5(m, 4H); 7.52–7.62(m, 4H); 7.8(d, 1H); 8.14(9s, 1H); 8.79(s, 1H); MS-ESI: 456 [MH]+; Elemental analysis: Found C, 54.0; H, 3.7; N, 8.7; C22H17N3O2BrF 0.9HCl Requires C, 54.2; H, 3.7; N, 8.6%.
A solution of 7-benzyloxy-4-(bromo-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (9.4 g, 19.1 mmol) in TFA (90 ml) was heated at reflux for 50 minutes. The mixture was allowed to cool and was poured on to ice. The resulting precipitate was collected by filtration and dissolved in methanol (70 ml). The solution was adjusted to pH9-10 with concentrated aqueous ammonia solution. The mixture was concentrated to half initial volume by evaporation. The resulting precipitate was collected by filtration, washed with water and then ether, and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (5.66 g, 82%).
1H NMR Spectrum: (DMSOd6; CD3COOD) 3.95(s, 3H); 7.09(s, 1H); 7.48(s, 1H); 7.54(t, 1H); 7.64(d, 1H); 7.79(s, 1H); 8.31(s, 1H); MS-ESI: 366 [MH]+; Elemental analysis: Found C, 49.5; H, 3.1; N, 11.3; C15H11N3O2BrF Requires C, 49.5; H, 3.0; N, 11.5%.
EXAMPLE 49
Methanesulphonyl chloride (32 mg, 0.275 mmol) was added dropwise to a mixture of 4-4-bromo-2-fluoroanilino)-6-methoxy-7-(3-metlylaminopropoxy)quinazoline (109 mg, 0.25 mmol) and triethylamine (30 mg, 0.3 mmol) in methylene chloride (3 ml) cooled at 0° C. The solution was stirred for 2 hours at 0° C. and the volatiles were removed by evaporation. The residue was partitioned between ethyl acetate and water, the organic layer was separated, washed with brine, dried (MgSO4 and the solvent removed by evaporation. The solid was triturated with ether and collected by filtration. The solid was dissolved in methylene chloride containing methanol (0.5 ml) and 3M hydrogen chloride in ethyl acetate (0.3 ml) was added. The suspension was diluted with ethyl acetate and concentrated by evaporation. The resulting solid product was collected by filtration,-washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-(3([N-methyl-N-methylsulphonyl]amino)propoxy)quinazoline hydrochloride (85 mg, 61%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.1-2.2(m, 2H); 2.82(s, 3H); 2.89(s, 3H); 3.29(t, 2H); 4.02(s, 3H); 4.27(t, 2H); 7.35(s, 1H); 7.55-7.65(m, 2H); 7.79(d, 1H); 8.12(s, 1H); 8.88(s, 1H); MS-(EI): 512 [M.]+; Elemental analysis: Found C, 43.5; H, 4.2; N, 10.0; C20H22N4O4BrFS0.6H2O 0.75HCl Requires C, 43.5; H, 4.4; N, 10.2%.
The starting material was prepared as follows:
Diethyl azodicarboxylate (522 mg, 3 mmol) was added dropwise to a suspension of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (364 mg, 1 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (786 mg, 3 mmol) and 3-methylamino-1-propanol (178 mg, 2 mmol), (J.Am.Chem.Soc., 1954, 76, 2789), in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature, neutral alumina (˜20 g) was added to the reaction mixture and the solvent was removed by evaporation. The powder was poured onto a column of neutral alumina and was eluted with a mixture of methylene chloride/methanol (95/5 followed by 90/10 and 80/20). The purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-methylaminopropoxy)quinazoline (220 mg, 50%).
EXAMPLE 50
A solution of diethyl azodicarboxylate (209 mg, 1.2 mmol) in methylene chloride (1 ml) and then (S)-1-3-hydroxypropyl)-pyrrolidine-2-carboxamide (97 mg, 0.56 mmol) was added dropwise to a suspension of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (146 mg, 0.4 mmol), (prepared as described for the starting material in Example 48), and triphenylphosphine (314 mg, 1.2 mmol) in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature and further triphenylphosphine (109 mg, 0.4 mmol) and (S)-1-(3-hydroxypropyl)-pyrrolidine-2-carboxamide (40 mg, 0.23 mmol) were added followed by the dropwise addition of diethyl azodicarboxylate (70 mg, 0.4 mmol). The mixture was stirred for 30 minutes at ambient temperature and further (S)-1-(3-hydroxypropyl)-pyrrolidine-2-carboxamide (34 mg, 0.2 mmol) was added. The mixture was then stirred for 2 hours at ambient temperature and the mixture was purified by pouring directly onto a column of silica and eluting with methylene chloride/ethyl acetate/methanol (60/35/5). The purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum. The solid was dissolved in methylene chloride and 3M hydrogen chloride in ethyl acetate (0.4 ml) was added. The resulting precipitate was collected by filtration, washed with ethyl acetate and dried under vacuum to give (S)-4-(4-bromo-2-fluoroanilino)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy)-6-methoxyquinazoline hydrochloride (110 mg, 47%).
1H NMR Spectrum: (DMSOd6; CF3COOD; 60° C.) 1.9-2.0(m, 2H); 2.0-2.1(m, 2H); 2.15–2.25(m, 2H); 3.2-3.3(m, 1H); 3.3-3.5(m, 2H); 3.7-3.8(m, 1H); 4.02(s, 3H); 4.15-4.2(m, 1H); 4.3-4.4(m, 2H); 7.4(s, 1H); 7.5-7.6(m, 2H); 7.75(d, 1H); 8.2(s, 1H); 8.83(s, 1H); MS-(EI): 518 [M.]+; Elemental analysis: Found C, 46.0; H, 4.9; N, 11.2; C23H25N5O3BrF 0.8H2O 1.9HCl Requires C, 45.9; H, 4.8; N, 11.6%.
The starting material was prepared as follows:
3-Bromo-1-propanol (584 mg, 4.2mmol) was added to a mixture of (S)-pyrrolidine-2-carboxamide (399 mg, 3.5 mmol) and potassium carbonate (966 mg, 7 mmol) in acetonitrile (10 ml). The mixture was heated at reflux for 5 hours and the mixture was stirred for 18 hours at ambient temperature. The insolubles were removed by filtration and the solvent was removed from the filtrate by evaporation The residue was purified by column chromatography on silica eluting with methylene chloride/methanol (9/1 followed by 8/2) to give (S)-1-(3-hydroxypropyl)-pyrrolidine-2-carboxamide (365 mg, 60%).
MS-(EI): 173 [M.]+.
EXAMPLE 51
Methoxyacetyl chloride (34 mg, 0.31 mmol) was added to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (113 mg, 0.3 mmol), (prepared as described for the starting material in Example 60), and triethylamine (33 mg, 0.33 mmol) in methylene chloride (3 ml). The mixture was stirred for 18 hours at ambient temperature and was then partitioned between ethyl acetate and brine. The organic layer was separated, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by chromatography on silica eluting with methylene chloride/acetonitrile/methanol (6/3/1). The purified solid product was triturated with methylene chloride and ether, collected by filtration, washed with ether and dried under vacuum. The solid was dissolved in a mixture of methylene chloride/methanol (1/1) and 2M hydrogen chloride in ethyl acetate (0.5 ml) was added. The mixture was diluted with ether and and the resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([methyl-N-methoxyacetyl]amino)ethoxy)quinazoline hydrochloride (62 mg, 42%).
1H NMR Spectrum: (DMSOd6; CF3COOD; 80° C.) 2.9-3.2(br s, 3H); 3.35(s, 3H); 3.8-3.9(br s, 2H); 4.05(s, 3H); 4.0-4.3(m, 2H); 4.4(t, 2H); 7.4(s, 1H); 7.45(d, 1H); 7.6-7.7(m, 2H); 8.1(s, 1H); 8.8(s, 1H); MS-ESI: 449 [MH]+; Elemental analysis: Found C, 48.8; H, 4.6; N, 10.7; C21H22N4O4ClF 0.9H2O 1.35HCl Requires C, 49.0; H, 4.9; N, 10.9%.
EXAMPLE 52
Diethyl azodicarboxylate (400 mg, 2.3 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (615 mg, 2.3 mmol) and 4-(2-hydroxyethyl)-3-morpholinone (170 mg, 1.17 mmol), (EP 580402A2), in methylene chloride (5 ml) under nitrogen. The mixture was stirred for 4 hours at ambient temperature, methylene chloride (5 ml) was added and stirring was continued for a further 18 hours at ambient temperature. THF (5 ml). 4-(2-hydroxyethyl)-3-morpholinone (113 mg, 0.78 mmol). triphenylphosphine (204 mg, 0.78 mmol) were added and diethyl azodicarboxylate (136 mg, 0.78 mmol) was then added dropwise. The mixture was stirred for 5 minutes at ambient temperature, and was purified by pouring directly onto a silica column, eluting with methylene chloride/ethyl acetate/methanol (5/4/1). The purified solid was dissolved in methylene chloride and 2M methanolic hydrogen chloride (0.5 ml) was added. The mixture was concentrated by evaporation and then diluted with ether. The resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline hydrochloride (150 mg, 39%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.6(t, 2H); 3.8-3.9(m, 4H); 4.05(s, 3H); 4.1(s, 3H); 4.4(t, 2H); 7.3(s, 1H); 7.45(d. 1H); 7.65(t, 1H); 7.7(d, 1H); 8.1(s, 1H); 8.9(s, 1H); MS-ESI: 469 [MNa]+; Elemental analysis: Found C, 51.6; H, 4.4; N, 11.8; C21H20N4O4ClF 0.35H2O 0.95HCl Requires C, 51.7; H, 4.5; N, 11.5%.
EXAMPLE 53
Diethyl azodicarboxylate (209 mg, 1.2 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6 methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (314 mg, 1.2 mmol) and 2-(2-morpholinoethoxy)ethanol (97 mg, 0.56 mmol) in methylene chloride (4 ml) under nitrogen. The mixture was stirs for 1 hour at ambient temperature, triphenylphosphine (105 mg, 0.4 mmol), 2-(2-morpholinoethoxy)ethanol (49 mg, 0.28 mmol) and diethyl azodicarboxylate (70 mg, 0.4 mmol) were added. The mixture was stirred for 1 hour at ambient temperature and was purified by pouring directly onto a silica column eluting with methylene chloride/acetonitrile/methanol (6/3/1). The purified product was triturated with ether, collected by filtration and dissolved in methylene chloride. 2M Ethereal hydrogen chloride (0.5 ml) was added and the resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-morpholinoethoxy)ethoxy)quinazoline hydrochloride (100 mg, 45%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.1-3.2(m, 2H); 3.3-3.5(m, 5H); 3.7-3.8(m, 2H); 3.9-4.0(m, 5H); 4.02(s, 3H); 4.4(br s, 2H); 7.46(s, 1H); 7.48(d, 1H); 7.6(t, 1H); 7.7(d, 1H); 8.25(s, 1H); 8.89(s, 1H); MS-ESI: 477 [MH]+; Elemental analysis: Found C, 48.8; H, 5.6; N, 9.9; C23H26N4O4ClF 1H2O 1.95HCl Requires C, 48.8; H, 5.3; N, 9.9%.
The starting material was prepared as follows:
2-(2-Chloroethoxy)ethanol (1.25 g, 10 mmol) was added to a mixture of morpholine (2.58 g, 30 mmol) and potassium carbonate (5.5 g, 40 mmol) in acetonitrile (50 ml). The mixture was heated at reflux for 6 hours and then stirred for 18 hours at ambient temperature. The insolubles were removed by filtration and the volatiles were removed from the filtrate by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (95/5 followed by 90/10 and then 80/20) to give 2-(2-morpholinoethoxy)ethanol (600 mg, 34%).
1H NMR Spectrum: (CDCl3) 2.5(br s, 4H); 2.59(t, 2H); 3.6-3.85(m, 10H); MS-(EI): 175 [M.]+.
EXAMPLE 54
Diethyl azodicarboxylate (209 mg, 1.2 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), triphenylphosphine (314 mg, 1.2 mmol) and (S)-1-(3-hydroxypropyl)-pyrrolidine-2-carboxamide (97 mg, 0.56 mmol), (prepared as described for the starting material in Example 50), in methylene chloride (4 ml). The mixture was stirred for 2 hours at ambient temperature, and further triphenylphosphine (105 mg, 0.4 mmol) and (S-1-(3-hydroxypropyl)pyrrolidine-2-carboxamide (49 mg, 0.28 mmol) were added followed by the dropwise addition of diethyl azodicarboxylate (70 mg, 0.4 mmol). The mixture was stirred for 1 hour at ambient temperature, and was purified by pouring directly onto a silica column eluting with methylene chloride/acetonitrile/methanol (6/3/1 followed by 60/25/15). The purified oil was triturated with ether, collected by filtration, washed with ether and dried under vacuum. The solid was dissolved in methylene chloride and 2M ethereal hydrogen chloride (0.5 ml) was added. The mixture was diluted with ether and the resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give (S)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (70 mg, 32%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.8-2.0(m, 2H); 2.05-2.15(m, 2H); 2.2-2.3(m, 2H); 3.1-3.5(m, 2H); 3.7-3.8(m, 1H); 4.02(s, 3H); 4.0-54.2(m, 2H); 4.3(m, 2H); 7.04(s, 1H); 7.45(d, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.22(s, 1H); 8.88(s, 1H); MS-ESI: 474 [MH]+; Elemental analysis: Found C, 49.4; H, 12.4; N, 5.3; C23H25N5O3ClF 1.5H2O 1.55HCl Requires C, 49.5; H, 12.6; N, 5.3%.
EXAMPLE 55
Diethyl azodicarboxylate (209 mg, 1 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (128 mg, 0.4 mmol), (prepared as described for the starting material in Example 2), cis-3-(2,6-dimethylmorpholino)-1-propanol (97 mg, 0.56 mmol) and triphenylphosphine (314 mg, 1.2 mmol) in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature and the solvent was removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (95/5 followed by 90/10). The purified product was dissolved in methylene chloride and 2M ethereal hydrogen chloride (1 ml) was added. The solution was diluted with ether and left to stand. The resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-7-(3-(2,6dimethylmorpholino)propoxy)-6-methoxyquinazoline hydrochloride (130 mg, 590%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.17(d, 6H); 2.3-2.4(m, 2H); 2.7(t, 2H); 3.25–3.35(m, 2H); 3.55(d, 2H); 3.9-4.0(m, 2H); 4.03(s, 3H); 4.35(t, 2H); 7.43(s, 1H); 7.45(d, 1H); 7.63(t, 1H); 7.70(d, 1H); 8.25(s, 1H); 8.88(s, 1H); MS-ESI: 475 [MH]+; Elemental analysis: Found C, 51.7; H, 6.0; N, 9.7; C24H26N4O3ClF 0.6H2O 1.95HCl Requires C, 51.8; H, 5.6; N, 10.0%.
The starting material was prepared as follows:
3-Chloro-1-propanol (1.04 g, 11 mmol) followed by potassium carbonate (2.07 g, 15 mmol) was added to a solution of 2,6-dimethylmorpholino (1.15 g, 10 mmol), (supplied by Aldrich Chemical Company Limited as a mixture of isomers), in acetonitrile (15 ml). The mixture was heated at reflux overnight and allowed to cool, the insolubles were removed by filtration and the volatiles were removed from the filtrate by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/acetonitrile/methanol (60/35/5 followed by 60/30/10) to give cis-3-(2,6-dimethylmorpholino)-1-propanol (500 mg).
1H NMR Spectrum: (CDCl3) 1.16(d, 6H); 1.7-1.8(m, 4H); 2.61(t, 2H); 2.91(d, 2H); 3.6-37 (m, 2H); 3.81(t, 2H); MS-ESI: 173 [M.]+.
EXAMPLE 56
A solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(trifluoromethylsulphonyloxy)quinazoline (180 mg, 0.4 mmol), (prepared as described for the starting material in Example 11), in anhydrous THF (2 ml) and benzene (2 ml) was purged of oxygen and placed under nitrogen. Tetrakis(triphenylphosphine)palladium(0) (23 mg, 0.02 mmol) followed by a solution of sodium triisopropylsilylthiolate (102 mg, 0.48 mmol), (Tetrahedron Lett. 1994, 35, 3221), in THF (2 ml) was added and the mixture was heated at reflux for 2 hours The mixture was allowed to cool to ambient temperature and 4-(3-chloropropyl)morpholine (98 mg, 0.6 mmol), (J. Am. Chem. Soc. 1945,67,736), DMF (2 ml) and tetrabutylammonium fluoride,(0.5 ml of a 1M solution in THF, 0.5 mmol) were added sequentially. The mixture was stirred for 1 hour at ambient temperature, the volatiles were removed by evaporation and the residue was partitioned between ethyl acetate and water. The organic layer was ed, washed with brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified on neutral alumina eluting with methylene chloride/acetone (90/10 followed by 80/20). The purified product was triturated in a mixture of ether and hexane, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-morpholinopropylthio)quinazoline hydrochloride (65 mg, 30%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.1-2.2(m, 2H); 3.1-3.2(m, 2H); 3.22(t, 2H); 3.3–3.4(m, 2H); 3.47(d, 2H); 3.74(t, 2H); 4.0(d, 2H); 4.08(s, 3H); 7.48(d, 1H); 7.64(t, 2H; 7.68(d, 1H); 7.86(s, 1H); 8.19(s, 1H); 8.91(s, 1H); MS-ESI: 463 [MH]+; Elemental analysis: Found C, 47.6; H, 5.16; N, 47.6; C22H24N4O2ClFS 1.2H2O 1.85HCl Requires C, 47.8; H, 5.16; N, 47.8%.
EXAMPLE 57
3-Chloroperbenzoic acid (188 mg, 1.05 mmol) was added in portions to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methoxyethylthio)quinazoline (275 mg, 0.7 mmol), (prepared as described in Example 11), in methylene chloride (6 ml). The mixture was stirred for 30 minutes at ambient temperature, diluted with methylene chloride (20 ml), washed with aqueous sodium hydrogen carbonate solution and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/acetone (8/2 followed by 7/3 and 6/4). The purified product was dissolved in methylene chloride and 3M ethereal hydrogen chloride (0.5 ml) was added. The mixture was diluted with ether and the resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methoyethylsulphinyl)quinazoline hydrochloride (110 mg 38%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.05(td, 1H); 3.24(s, 3H); 3.5-3.6(m, 1H); 3.7–3.8(m, 2H); 4.1(s, 3H); 7.5(d, 1H); 7.65(t, 1H); 7.75(d, 1H); 8.2(s, 1H); 8.4(s,1H); 9.0(s, 1H); MS-ESI: 410 [MH]+; Elemental analysis: Found C, 47.9; H, 4.2; N, 9.3; C18H17N3O3ClFS 0.5H2O 0.85HCl Requires C, 48.0; H, 4.2; N, 9.3%.
EXAMPLE 58
Diethyl azodicarboxylate (218 mg, 1.25 mmol) was added dropwise to a solution of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (159 mg, 0.5 mmol), (prepared as described for the starting material in Example 2), 4-hydroxy-1-methylpiperidine (115 mg, 1 mmol) and triphenylphosphine (328 mg, 1.25mmol) in methylene chloride (5 ml) cooled at 5° C. under nitrogen. The mixture was stirred for 1 hour at ambient temperature, the solvent was removed by evaporation and the residue was partitioned between 2M hydrochloric acid and ether. The aqueous layer was separated, adjusted to pH9 with aqueous sodium hydrogen carbonate solution and extracted with methylene chloride. The methylene chloride layer was washed with brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified on neutral alumina eluting with methylene chloride/methanol (97/3). The purified product was triturated with ether, collected by filtration and dried to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidine-4-yloxy)quinazoline (180 mg, 79%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.9-2.0(m, 1H); 2.05-2.15(m, 2H); 2.35-2.45(m, 1H); 2.85 and 2.90(2s, 3H); 3.05-3.25(m, 2H); 3.45(m, 1H); 3.6(d, 1H); 4.1 and 4.12(2s, 3H); 4.8-4.9(m, 0.5 H); 5-5.05(m, 0.5H); 7.4-7.7(m, 4H); 8.2(d, 1H); 8.9(s, 1H); MS-ESI: 417 [MH]+.
EXAMPLE 59
Methanesulphonyl chloride (35 μl, 0.46 mmol) was added dropwise to a solution of 4-(4-chloro-2-fluoro)-6-methoxy-7-(3-methyl aminopropoxy)quinazoline (170 mg, 043 mmol) and triethylamine (67 μl, 0.48 mmol) in methylene chloride (3 ml). The mixture was stirred for 5 hours at ambient temperature, the volatiles was removed by evaporation and the residue was partitioned between ethyl acetate and water. The organic layer was separated, washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/acetonitrile/methanol (70/28/2). The purified product was dissolved in a mixture of methylene chloride/methanol (1/1) and 2M ethereal hydrogen chloride (1 ml) was added. The volatiles were removed by evaporation and the residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-([N-methyl-N-methylsulphonyl]amino)propoxy)quinazoline hydrochloride (133 mg, 61%/).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.1-2.2(m, 2H); 2.82(s, 3H); 2.89(s, 3H); 3.3(t, 2H); 4.02(s, 3H); 4.27(t, 2H); 736(s, 1H); 7.46(d, 1H); 7.6-7.7(m, 2H); 8.14(s, 1H); 8.88(s, 1H); MS-ESI: 469 [MH]+; Elemental analysis: Found C, 48.1; H, 4.7; N, 10.8; C20H22N4O4ClFS 0.9HCl Requires C, 47.9; H, 4.6; N, 11.2%.
The staring material was prepared as follows:
A solution of di-tert-butyl dicarbonate (4.9 g, 22 mmol) in THF (12 ml) was added dropwise to a solution of 3-methylamino-1-propanol (2 g, 22 mmol), (J.Am.Chem.Soc., 1954, 76,2789), in a mixture of THF (12 ml) and water (12 ml). The mixture was stirred for 18 hours at ambient temperature, the THF was removed by evaporation. The aqueous residue was extracted with ether. The extracts were combined, washed with 0.1M hydrochloric acid, and then brine, dried (MgSO4 and the solvent removed by evaporation to give 3-([N-(tert-butylcarbonyl)-N-methyl]amino)-1-propanol (3.95 g, 95%).
1H NMR Spectrum: (CDCl3) 1.46(s, 9H); 1.6-1.8(m, 2H); 2.83(s, 3H); 3.3-3.4(br s, 2H); 3.5–3.6(br s, 2H); MS-(EI): 190 [MH]+.
Diethyl azodicarboxylate (2.4 ml, 15 mmol) was added dropwise to a solution of 3-([N-(tert-butylcarbonyl)-N-methyl]amino)-1-propanol (1.77 g, 9.4 mmol), 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2 g, 6.26 mmol), (prepared as described for the starting material in Example 2), and triphenylphosphine (4.1 g, 15 mmol) in methylene chloride (50 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature, and further 3-([N-(tert-butylcarbonyl)-N-methyl]amino)-1-propanol (236 mg, 1.2 mmol), triphenylphosphine (820 mg, 3.1 mmol) and diethyl azodicarboxylate (492 μl, 3.1 mmol) were added. The solution was stirred for 1 hour at ambient temperature and concentrated by evaporation. The residue was purified on column chromatography eluting with acetonitrile. The purified product was triturated with ether, collected by filtration and repurified by column chromatography eluting with methylene chloride/methanol (97/3) to give 7-3-([N-(tert-butylcarbonyl)-N-methyl]amino)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (2.2 g, 72%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.3(s, 9H); 2.0-2.1(m, 2H); 2.8-2.9(br s, 3H); 3.4–3.5(m, 2H); 4.0(s, 3H); 4.25(t, 2H); 7.3(s, 1H); 7.45(d, 1H); 7.6-7.7(m, 2H); 8.08(s, 1H); 8.88(s, 1H); MS-(EI): 491 [MH]+; Elemental analysis: Found C, 58.6; H, 5.8; N, 11.3; C24H28N4O4ClF Requires C, 58.7; H, 5.7; N, 11.4%.
A solution of 7-(3-([N-(tert-butylcarbonyl)-N-methyl]amino)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (2.1 g, 4.3 mmol) in a mixture of methylene chloride (6 ml) and TFA (5 ml) was stirred at ambient temperature for 1 hour. Toluene was added and the volatiles were removed by evaporation. The residue was dissolved in water and the solution was adjusted to pH7-8 with saturated aqueous sodium hydrogen carbonate solution. The resulting precipitate was separated by centrifugation and decanting the filtrate and the solid product was thoroughly washed with water. The solid was recrystallised from methylene chloride/methanol, the product collected by filtration, washed with water, and then ether and dried under vacuum over phosphorus pentoxide to give 4-(4-chloro-2-fluoroanilino)methoxy-7-(3-methylaminopropoxy)quinazoline (1,4 g, 83%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.2-2.3(m, 2H); 2.65(s, 3H); 3.1-3.2(m, 2H); 4.05(s, 3H); 4.32(t, 2H); 7.37(s, 1H); 7.48(d, 1H); 7.64(t, 1H); 7.67(d, 1H); 8.11(s, 1H); 8.9(s, 1H); MS-(EI): 391 [MH]+.
EXAMPLE 60
Triethylamine (44 μl, 0.32 mmol) and then a solution of 2-bromoethyl methyl ether (40 mg, 0.29 mmol) in acetone (0.5 ml) was added dropwise to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (100 mg, 0.26 mmol) in acetone (2.5 ml) heated at 50° C. under nitrogen. The mixture was stirred for 7 hours at 50° C., the mixture was allowed to cool and partitioned between ethyl acetate and water. The organic layer was separated, washed with brine, dried (MgSO4) and the volatiles removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (92/8). The purified product was dissolved in methylene chloride, insolubles were removed by filtration and 2.2M ethereal hydrogen chloride (0.5 ml) was added to the filtrate. The volatiles were removed by evaporation and the residue was triturated with ether, collected by filtration and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-(2-methoxyethyl)-N-methyl]amino)ethoxy)quinazoline hydrochloride (22 mg, 16%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.0(s, 3H); 3.35(s, 3H); 3.4-3.6(m, 2H); 3.65-3.85(m, 4H); 4.03(s, 3H); 4.64(t, 2H); 7.45(s, 1H); 7.47(d, 1H); 7.63(t, 1H); 7.69(d, 1H); 8.23(s, 1H); 8.9(s, 1H); MS-ESI: 435 [MH]+; Elemental analysis: Found C, 48.9; H, 5.3; N, 10.4; C21H24N4O3ClF 0.8H2O 1.85HCl Requires C, 48.8; H, 5.3; N, 10.8%.
The starting material was prepared as follows:
Diethyl azodicarboxylate (3.13 g, 24 mmol) was added dropwise to a suspension of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (2.56 mg, 8 mmol), (prepared as described for the starting material in Example 2), 2-[(N-(tert-butylcarbonyl)-N-methyl]amino)ethanol (2.1 g, 1.2 mmol), (Synth. Commun. 1993, 23, 2443), and triphenylphosphine (63 g, 24 mmol) in methylene chloride (50 ml) under nitrogen. The mixture was stirred for 1.5 hours at ambient temperature and further 2-[(N-(tert-butylcarbonyl)-N-methyl]amino)ethanol (0.21 g, 1.2 mmol), triphenylphosphine (630 mg, 2.4 mmol) and diethyl azodicarboxylate (0.31 g, 2.4 mmol) were added. The mixture was stirred for 1 hour, the mixture was purified by pouring it directly onto a silica column and eluting with methylene chloride/ether/methanol (60/30/10) to give 7-(2-([N-(tert-butylcarbonyl)-N-methyl]amino)ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (3.8 g, 99%).
A solution of 7-(2-([N-(tert-butylcarbonyl)-N-methyl]amino)ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (2.38 g, 5 mmol) in methylene chloride (5 ml) and TFA (10 ml) was stirred at ambient temperature for 1 hour. Toluene was added and the volatiles were removed by evaporation. The residue was partitioned between 2M hydrochloric acid and ethyl acetate. The aqueous layer was adjusted to pH8 with sodium hydrogen carbonate and extracted with ethyl acetate. The organic extracts were combined, washed with brine, dried (MgSO4) and the solvent removed by evaporation to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (700 mg, 37%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.75(s, 3H); 3.5-3.6(m, 2H); 4.05(s, 3H); 4.5(t, 2H); 7.4(s, 1H); 7.4-7.5(m, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.15(s, 1H); 8.8(s, 1H).
EXAMPLE 61
Dimethylcarbamyl chloride (38 μl, 0.42 mmol) was added to a solution of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (150 mg, 0.4 mmol), (prepared as described for the starting material in Example 60), and triethylamine (61 μl, 0.44 mmol) in methylene chloride (4 ml). The mixture was stirred for 2.5 hours at ambient temperature, the resulting precipitate was collected by filtration and washed with ether. The solid was purified by column chromatography, eluting with methylene chloride/methanol (92/8). The purified product was dissolved in methylene chloride/methanol (1/1), 2.9M ethereal hydrogen chloride (1 ml) was added and the volatiles were removed by evaporation. The residue was triturated with ether and the solid product collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-N′,N′,N′-trimethylureido)ethoxy)quinazoline hydrochloride (80 mg, 41%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.73(s, 6H); 2.91(s, 3H); 3.59(t, 2H): 4.0(s, 3H); 4.34(t, 2H); 7.36(s, 1H); 7.5(d, 1H); 7.63(t, 1H); 7.68(d, 1H); 8.1(s, 1H); 8.9(s, 1H); MS-(EI): 447 [M.]+; Elemental analysis: Found C, 51.2; H, 5.1; N, 13.9; C21H23N5O3ClF 0.5H2O 1HCl Requires C, 51.1; H, 5.1; N, 14.2%.
EXAMPLE 62
7-(2-Bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (150 mg, 0.35 mmol) and 1-acetylpiperazine (135 mg, 1 mmol) were heated together at 140° C. for 10 minutes. The mixture was allowed to cool and was dissolved in a mixture of methylene chloride/ethyl acetate. The solution was washed with water, and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (9/1). The purified product was dissolved in methylene chloride and 2.9M ethereal hydrogen chloride was added. The precipitate was collected by filtration, washed with ether and dried under vacuum to give 7-(2-(4-acetylpiperazin-1-yl)ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline hydrochloride (152 mg, 79%).
1H NMR Spectrum: (DMSOd6; CF3COOD; 50° C.) 2.07(s, 3H); 3.3-3.7(br s, 8H); 3.75(t, 2H); 4.05(s, 3H); 4.65(t, 2H); 7.45(br s, 2H); 7.6-7.7(m, 2H); 8.15(s, 1H); 8.9(s, 1H); MS-(EI): 473 [M.]+; Elemental analysis: Found C, 49.8; H, 5.0; N, 12.5; C23H25N5O3ClF 0.5H2O 1.9HCl Requires C, 50.0; H, 5.1; N, 12.7%.
The starting material was prepared as follows:
1,2-Dibromoethane (5.4 ml, 62 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (5 g, 15.6 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (8.6 g, 62 mmol) in DMF (50 ml) and the mixture stirred for 18 hours at ambient temperature. Water was added and the resulting precipitate was collected by filtration. The solid was purified by chromatography on neutral alumina eluting with methylene chloride/methanol (95/5). The semi-purified product was repurified by chromatography on silica eluting with methylene chloride/methanol (97/3). The purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 7-(2-bromoethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (3.58 g, 54%).
1H NMR Spectrum: (DMSOd6) 3.28(s, 3H); 3.96(s, 3H); 4.48(t, 2H); 4.85(t, 2H); 7.21(s, 1H); 7.34(d, 1H); 7.5-7.6(m, 2H); 7.80(s, 1H); 8.36(s, 1H); 9.55(s, 1H).
EXAMPLE 63
A mixture of 7-(2-(2-bromoethoxy)ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (150 mg, 0.32 mmol) in 1-methylpiperazine (2 ml) was heated at 100° C. for 1 hour. The mixture was allowed to cool and was partitioned between ethyl acetate and water. The organic layer was separated and washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/methanol (85/15 followed by 80/20). The purified solid product was dissolved in methylene chloride/methanol (1/1) and 2.9M ethereal hydrogen chloride was added. The volatiles were removed by evaporation and the solid was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-[4-methylpiperazin-1-yl]ethoxy)ethoxy)quinazoline hydrochloride (54 mg, 28%).
1H NMR Spectra: (DMSOd6; CF3COOD; 50° C.) 2.9(s, 3H); 3.5-3.8(m, 10H); 3.95(br s, 4H); 4.03(s, 3H); 4.4(m, 2H); 7.40-7.45(m, 1H); 7.42(s, 1H); 7.55-7.65(m, 2H); 8.15(s, 1H); 8.8(s, 1H); MS-ESI: 490 [MH]+; Elemental analysis: Found C, 46.0; H, 5.6; N, 10.9; C24H29N5O3ClF 1.5H2O 2.9HCl Requires C, 46.3; H, 5.6; N, 11.2%.
The starting material was prepared as follows:
2-Bromoethyl ether (1.57 ml, 12 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (1 g, 3.1 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (1.73 g, 12 mmol) in DMF (10 ml). The mixture was s for 18 hours at ambient temperature and was partitioned between ethyl acetate and water. The organic layer was separated, washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/acetonitrile/methanol (60/38/2). The purified product was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 7-(2-(2-bromoethoxy)ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline (763 mg, 52%).
1H NMR Spectrum: (CDCl3) 3.5(t, 2H); 3.9(t, 2H); 3.95(t, 2H); 4.03(s, 3H); 4.35(t, 2H); 7.03(s, 1H); 7.2-7.4(m, 4H); 8.55(t, 1H); 8.7(s, 1H); MS-ESI: 472 [MH]+.
EXAMPLE 64
A solution of 7-(2-(2-bromoethoxy)ethoxy)-4-chloro-2-fluoroanilino)-6-methoxyquinazoline (150 mg, 0.32 mmol), (prepared as described for the starting material in Example 63), in pyrrolidine (2 ml) was heated at 80° C. for 5 hours. The mixture was allowed to cool and was partitioned between ethyl acetate and water. The organic layer was washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/methanol/triethylamine (80/20/0 followed by 80/20/1). The purified product was dissolved in methylene chloride and 2.9M ethereal hydrogen chloride (1 ml) was added. The volatiles were removed by evaporation, the residue was triturated with ether, collected by filtration and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-pyrrolidin-1-ylethoxy)ethoxy)quinazoline hydrochloride (35 mg, 20%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.8-1.9(m, 2H); 1.95-2.1(m, 2H); 3.05-3.15(m, 2H); 3.45(t, 2H); 3.55-3.65(m, 2H); 3.8-3.85(m, 2H); 3.95-4.0(m, 2H); 4.01(s, 3H); 4.4(br s, 2H); 7.39(s, 1H); 7.48(d, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.11(s, 1H); 8.89(s, 1H); MS-ESI: 461 [MH]+; Elemental analysis: Found C, 49.4; H, 5.4; N, 10.1; C23H26N4O3ClF 1.2H2O 2HCl Requires C, 49.7; H, 5.5; N, 10.1%.
EXAMPLE 65
1-(2-(2-Bromoethyl)ethoxy)-2-pyrrolidinone (272 mg, 1.1 mmol) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (250 mg, 0.78 mmol), (prepared as described for the starting material in Example 2), and potassium carbonate (324 mg, 2.3 mmol) in DMF (5 ml) and the mixture stirred for 4 hours at ambient temperature. The mixture was partitioned between ethyl acetate and water, the organic layer was separated, washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on alumina eluting with methylene chloride/acetonitrile/methanol (60/37/3). The semi-purified product was repurified by column chromatography on silica eluting with methylene chloride/methanol (95/5). The purified product was dissolved in methylene chloride and 2.9M ethereal hydrogen chloride (1 ml) was added. The volatiles were removed by evaporation, the residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-[2-oxopyrrolidin-1-yl]ethoxy)ethoxy)quinazoline hydrochloride (63 mg, 16%).
1H NMR Spectrum: (DMSOd6, CF3COOD) 1.85-1.95(m, 2H); 2.2(t, 2H); 3.35-3.45(m, 4H); 3.65(t, 2H); 3.9(br s, 2H); 4.02(s, 3H); 4.35(br s, 2H); 7.35(s, 1H); 7.45(d, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.15(s, 1H); 8.88(s, 1H); MS-ESI: 475 [MH]+; Elemental analysis: Found C, 53.2; H, 5.0; N 11.1; C23H24N4O4ClF 0.6H2O 0.85HCl Requires C, 53.5; H, 5.1; N, 10.8%.
The starting material was prepared as follows:
A solution of 2-pyrrolidinone (1.5 g, 17.6mmol) in anhydrous toluene (8 ml) was added dropwise to a suspension of sodium hydride (741 mg, 18 mmol, prewashed with pentane) in anhydrous toluene (60 ml) and the mixture was stirred at 100° C. for 1.5 hours. The mixture was allowed to cool to ambient temperature and tetrabutylammonium bromide (57 mg, 0.176 mmol) was added followed by 2-bromoethyl ether (8 ml, 35 mmol). The mixture was stirred for 21 hours at ambient temperature, the insolubles were removed by filtration and the solid was washed with ether. The volatiles were removed from the filtrate by evaporation and the residue was purified by column chromatography on silica eluting with methylene chloride/acetonitrile/methanol (60/38/2) to give 1-(2-(2-bromoethyl)ethoxy)2-pyrrolidinone (971 mg, 23%).
1H NMR Spectrum: (CDCl3) 2.0-2.1(m, 2H); 2.4(t, 2H); 3.4-3.5(m, 4H); 3.52(t, 2H); 3.65(t, 1H); 3.78(t, 2H); MS-(EI): 237 [M]+.
EXAMPLE 66
Diethyl azodicarboxylate (325 μl, 2 mmol) was added dropwise to a mixture of (E)-4-morpholinobut-2-en-1-ol (151 mg, 0.96 mmol), (J. Med. Chem. 1972, 15, 110-112), 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (220 mg, 0.688 mol), (prepared as described for the starting material in Example 2), and triphenylphosphine (541 mg, 2 mmol) in methylene chloride (4 ml). The mixture was stirred for 30 minutes at ambient temperature, and further (E)-4-morpholinobut-2-en-1-ol (10 mg, 0.06 mmol), triphenylphosphine (36 mg, 0.137 mol) and diethyl azodicarboxylate (22 μl, 0.14 mmol) were added. The mixture was stirred for 20 minutes and the volatiles were removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/methanol (92/8). The purified solid was dissolved in methylene chloride and 2M ethereal hydrogen chloride (3 ml) was added. The volatiles were removed by evaporation and the solid was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give (E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-en-1-yloxy)quinazoline hydrochloride (165 mg, 45%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.1-3.15(m, 2H); 3.35-3.45(m, 2H); 3.75(t, 2H); 3.9(d, 2H); 4.0(d, 2H); 4.03(s, 3H); 4.95(d, 2H); 6.05(td, 1H); 6.3(td, 1H); 7.45(s, 1H); 7.47(d, 1H); 7.62(t, 1H); 7.7(d, 1H); 8.25(s, 1H); 8.88(s, 1H); MS-ESI: 459 [MH]+; Elemental analysis: Found C, 50.3; H, 5.3; N, 10.1; C23H24N4O3ClF 1.4H2O 1.8HCl Requires C, 50.2; H, 5.2; N, 10.2%.
EXAMPLE 67
Diethyl azodicarboxylate (368 μl, 2.34 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (284 mg, 0.78 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (613 mg, 2.34 mmol) and 4-(2-hydroxyethyl)-3-morpholinone (170 mg, 1.17 mmol), (EP580402A2), in methylene chloride (10 ml) under nitrogen. The mixture was stirred for 2.5 hours at ambient temperature, the insolubles were removed by filtration. The filtrate was purified by pouring it directly on to a column of silica and eluting with methylene chloride/ethyl acetate/methanol (60/35/5). The purified product was triturated with ether and collected by filtration. The solid was dissolved in methylene chloride containing a few drops of methanol and 3.8M ethereal hydrogen chloride (0.5 ml) was added. The volatiles were removed by evaporation and the residue was triturated with ether, collected by filtration and dried under vacuum to give of 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline hydrochloride (108 mg, 26%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.56(t, 2H); 3.8-3.9(m, 4H); 4.06(s, 3H); 4.06(s, 2H); 4.4(t, 2H); 7.35(s, 1H); 7.5-7.6(m, 2H); 7.8(d, 1H); 8.13(s, 1H); 8.87(s, 1H); MS-ESI: 491 [MH]+; Elemental analysis: Found C, 47.1; H, 4.1; N, 10.5; C21H20N4O4BrF 0.3H2O 0.95HCl Requires C, 47.5; H, 4.1; N, 10.5%.
EXAMPLE 68
Diethyl azodicarboxylate (283 μl, 1.8 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (218 mg, 0.6 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (95 μl, 0.84 mmol) and 1-(2-hydroxyethyl)-2-pyrrolidinone (95 μl, 0.84 mmol) in methylene chloride (8 ml) under nitrogen. The mixture was stirred for 4 hours at ambient temperature, and then purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol (60/32.5/7.5). The purified product was triturated with ether and collected by filtration. The solid was dissolved in methylene chloride/methanol (1/1) and 2M ethereal hydrogen chloride (1 ml) was added. The volatiles were removed by evaporation, the residue was triturated with ether, collected by filtration and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(2-oxopyrrolidin-1-yl)ethoxy)quinazoline hydrochloride (182 mg, 60%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.9-2.0(m, 2H); 2.24(t, 2H); 3.53(t, 2H); 3.7(t, 2H); 4.01(s, 3H); 4.34(t, 2H); 7.36(s, 1H); 7.5-7.6(m, 2H); 7.75(d, 1H); 8.16(s, 1H); 8.87(s, 1H); MS-ESI: 477 [MH]+; Elemental analysis: Found C, 50.2; H, 4.3; N, 10.9; C21H20N4O3BrF 0.8HCl Requires C, 50.0; H, 4.2; N, 11.1%.
EXAMPLE 69
Diethyl azodicarboxylate (236 μl, 1.5 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (182 mg, 0.5 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (393 mg, 1.5 mmol) and 2-(2-methoxyethoxy)ethanol (84 μl, 0.7 mmol) in methylene chloride (7 ml) under nitrogen. The mixture was stirred for 4 hours at ambient temperature, the reaction mixture was purified by pouring it directly on to a column of silica and eluting with ethyl acetate/petroleum ether (9/1 followed by 10/0). The purified product was triturated with ether and collected by filtration. The solid was dissolved in methylene chloride/methanol and 2M ethereal hydrogen chloride (1 ml) was added. The mixture was concentrated by evaporation and the precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline hydrochloride (84 mg, 34%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.26(s, 3H); 3.47(m, 2H); 3.64(m, 2H); 3.85(m, 2H); 4.02(s, 3H); 4.35(m, 2H); 7.35(s, 1H); 7.5-7.7(m, 2H); 7.82(d, 1H); 8.12(s, 1H); 8.87(s, 1H); MS-ESI: 468 [MH]+; Elemental analysis: Found C, 47.5; H, 4.4; N, 8.7; C20H21N3O4BrF 0.65H2O 0.65HCl Requires C, 47.9; H, 4.6; N, 8.3%.
EXAMPLE 70
Diethyl azodicarboxylate (567 μl, 3.6 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (383 mg, 1.2 mmol), (prepared as described for the starting material in Example 2), 4-(3-hydroxypropyl)-3,5-dioxomorpholine (291 mg, 1.68 mmol) and triphenylphosphine (944 mg, 3.6 mmol) in methylene chloride (10 ml) under nitrogen. The mixture was sired at ambient temperature for 6 hours and the insolubles were removed by filtration. The filtrate was purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol (60/34/6 followed by 60/24/16 and 60/16/24). The semi-purified product was repurified by column chromatography eluting with methylene chloride/acetonitrile/methanol (5/4/1). The purified product was dissolved in methylene chloride/methanol 2M ethereal hydrogen chloride (1 ml) was added and the volatiles were removed by evaporation. The residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-7-(3-(3,5-dioxomorpholino)propoxy)-6-methoxyquinazoline hydrochloride (56 mg, 10%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.0-2.1(m, 2H); 3.35(t, 2H); 3.98(s, 2H); 4.01(s, 3H); 4.24(t, 2H); 7.33(s, 1H); 7.45(d, 1H); 7.62(t, 1H); 7.68(d, 1H); 8.13(s, 1H); 8.87(s, 1H); MS-ESI: 475 [MH]+; Elemental analysis: Found C, 48.9; H, 4.4; C22H20N4O5ClF 1.4H2O 1HCl Requires C, 49.2; H, 4.5.
The starting material was prepared as follows:
A solution of diglycolic anhydride (2.32 g, 20 mmol) in 3-amino-1-propanol (6 ml) was refluxed at 180° C. for 3 hours. The volatiles were removed by evaporation and the residue was purified by column chromatography on silica eluting with methylene chloride/methanol (8/2) to give 4-(3-hydroxypropyl)-3,5-dioxomorpholine (3.46 g, 99%).
1H NMR Spectrum: (CDCl3) 2.75-2.8(m, 2H); 3.1(br s, 1H); 3.45-3.5(m, 2H); 3.75(t, 2H); 4.04(s, 2H); MS-(EI): 174 [MH]+.
EXAMPLE 71
Diethyl azodicarboxylate (472 μl, 3 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (319.5 mg, 1 mmol), (prepared as described for the staring material in Example 2), triphenylphosphine (786 mg, 3 mmol) and 4-(2-hydroxyethyl)-3,5-dioxomorpholine (223 mg, 1.4 mmol) in methylene chloride (10 ml) under nitrogen. The mixture was stirred at ambient temperature for 4.5 hours and the insolubles were removed by filtration. The solvent was removed from the filtrate by evaporation and the residue was purified by column chromatography eluting with methylene chloride/acetonitrile/methanol (85/12.5/2.5). The purified product was dissolved in methylene chloride, 2M ethereal hydrogen chloride (1 ml) was added and the mixture was diluted with ether. The resulting precipitate was collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-7-(2-(3,5-dioxomorpholino)ethoxy)-6-methoxyquinazoline hydrochloride (97 mg, 20%).
1H NMR (DMSOd6; CF3COOD) 4.0(s, 3H); 4.19(d, 2H); 4.39(t, 2H); 4.45(s, 4H); 7.35(s, 1H); 7.45(d, 1H); 7.67(t, 1H); 7.69(d, 1H); 8.12(s, 1H); 8.87(s, 1H); MS-ESI: 461 [MH]+; Elemental analysis: Found C, 49.9; H, 3.9; N, 11.1; C21H18N4O5ClF 0.5H2O 0.9HCl Requires C, 50.2; H, 4.0; N, 11.1%.
The starting material was prepared as follows:
Ethanolamine (2.44 g, 40 mmol) was added dropwise to a solution of diglycolic anhydride (2.32 g, 20 mmol) in pyridine (10 ml). The mixture was stirred for 5 minutes at ambient temperature and then heated at reflux for 2 hours. The volatiles were removed by evaporation and the residue was heated at 180° C. for 2 hours The reaction mixture was allowed to cool and was purified by column chromatography eluting with methylene chloride/methanol (9/1) to give 4-(2-hydroxyethyl)-3,5-dioxomorpholine (400 mg, 12.5%).
1H NMR Spectrum: (CDCl3) 1.6(br s, 1H); 3.8(t, 2H); 4.05(t, 2H); 4.4(s, 4H); MS-EI: 160[MH]+;
EXAMPLE 72
Diethyl azodicarboxylate (378 μl, 2.4 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (292 mg, 0.8 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (629 mg, 2.4 mmol) and 2-(2-morpholinoethoxy)ethanol (196 mg, 1.12 mmol), (prepared as described for the starting material in Example 53), in methylene chloride (10 ml) under nitrogen. The mixture was stirred for 3.5 hours at ambient temperature and the mixture was purified by pouring it directly on to a column of silica and eluting with methylene chloride/acetonitrile/methanol 6/3/1). The purified product was dissolved in methylene chloride/methanol and the insolubles were removed by filtration. 2M Ethereal hydrogen chloride (1 ml) was added to the filtrate and the volatiles were removed by evaporation. The residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-morpholinoethoxy)ethoxy)quinazoline hydrochloride (232 mg, 49%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 3.1-32(m, 2H); 3.35-3.4(br s, 2H); 3.45(d, 2H); 3.75(t, 2H); 3.9-4.0(m,6H); 4.02(s, 3H); 4.4(br s, 2H); 7.45(s, 1H); 7.5-7.6(m, 2H); 7.8(m, 1H); 8.22(s, 1H); 8.87(s, 1H); MS-ESI: 523 [MH]+; Elemental analysis: Found C, 46.3; H, 4.9; N, 9.2; C23H26N4O4BrF 0.5H2O 1.8HCl Requires C, 46.3; H, 4.9; N, 9.4%.
EXAMPLE 73
Diethyl azodicarboxylate (220 μl, 1.4 mmol) was added dropwise to a mixture of 4-(4-bromo-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (170 mg, 0.46 mmol), (prepared as described for the starting material in Example 48), triphenylphosphine (367 mg, 1.4 mmol) and 3-(1,1-dioxothiomorpholino)-1-propanol (135 mg, 0.7 mmol) in methylene chloride (4 ml) under nitrogen. The mixture was stirred for 1 hour at ambient temperature and further triphenylphosphine (61 mg, 0.23 mmol), 3-(1,1-dioxothiomorpholino)-1-propanol (30 mg, 0.23 mmol) and diethyl azodicarboxylate (37 μl, 0.23 mmol) were added. The mixture was stirred for 1 hour at ambient temperature and the mixture was purified by pouring it on to a column of silica and eluting with methylene chloride/methanol (95/5). The purified product was dissolved in methylene chloride/methanol, 2.2M ethereal hydrogen chloride (1 ml) was added and the volatiles were removed by evaporation. The residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-bromo-2-fluoroanilino)-7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxyquinazoline hydrochloride (138 mg, 47%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.3-2.4(m, 2H); 3.5(t, 2H); 3.7-3.8(br s, 4H); 3.85(br s, 4H); 4.03(s, 3H); 4.35(t, 2H); 7.4(s, 1H); 7.5-7.6(m, 2H); 7.8(d, 1H); 8.21(s, 1H); 8.88(s, 1H); MS-ESI: 539 [MH]+; Elemental analysis: Found C, 42.1; H, 4.6; N, 8.6; C22H24N4O4BrFS 1.1H2O 1.85HCl Requires C, 42.2; H, 4.5; N, 8.9%.
The starting material was prepared as follows:
A mixture of 3-amino-1-propanol (650 μl, 8.4 mmol) and vinyl sulphone (1 g, 8.4 mmol) was heated at 110° C. for 45 minute The mixture was allowed to cool and was purified by column chromatography eluting with methylene chloride/methanol (95/5) to give 3-(1,1-dioxothiomorpholino)-1-propanol (800 mg, 90%).
1H NMR Spectrum: (CDCl3) 1.7-1.8(m, 2H); 2.73(t, 2H); 3.06(br s, 8H); 3.25(s, 1H); 3.78(t, 2H); MS-ESI: 194 [MH]+.
EXAMPLE 74
A solution of 2-methoxyethylsulphonyl chloride (42 mg, 0.26 mmol), (J. Amer. Chem. Soc. 1992, 114, 1743-1749), in acetonitrile (1 ml) was added to a mixture of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (94 mg, 0.25 mmol), (prepared as described for the starling material in Example 60), and triethylamine (80 μl, 0.5 mmol) in acetonitrile (15 ml). The mixture was stirred for 10 minutes at ambient temperature, the volatiles were removed by evaporation and the residue was partitioned between methylene chloride and water. The organic layer was separated, washed with brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography eluting with methylene chloride/methanol (97/3). The purified product was dissolved in methylene chloride (5 ml) and 2.2M ethereal hydrogen chloride (2 ml) was added and the volatiles were removed by evaporation. The residue was triturated with ether, collected by filtration, washed with ether and dried under vacuum to give 4-(4-chloro-2-fluoroanilino)-7-(2-([N-methyl-N-(2-methoxyethylsulphonyl)]amino)ethoxy)6-methoxyquinazoline hydrochloride (86 mg, 64%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.96(s, 3H); 3.28(s, 3H); 3.47(t, 2H); 3.6-3.7(m, 4H); 4.02(s, 3H); 4.37(t, 2H); 7.37(s, 1H); 7.46(d, 1H); 7.64(t, 1H); 7.7(d, 1H); 8.15(s, 1H); 8.88(s, 1H); MS-ESI 499 [MH]+; Elemental analysis: Found C, 47.2; H, 4.9; N, 10.2; C21H24N4O5ClFS 1HCl Requires C, 47.1; H, 4.7; N, 10.5%.
EXAMPLE 75
Using a method analogous to that in Example 74, a mixture of 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-methylaminoethoxy)quinazoline (102 mg, 0.27 mmol), (prepared as described for the staring material in Example 60), and triethylamine (0.1 ml, 0.72 mmol) in acetonitrile (17 ml) was treated with 3-morpholinopropylsulphonyl chloride (75 mg, 0.28 mmol), (WO 930181), to give, after purification and hydrochloride salt formation, 4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-methyl-N-(3-morpholinopropylsulphonyl)]amino)ethoxy)quinazoline hydrochloride (96 mg, 54%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 2.1-2.2(m, 2H); 3.0(s, 3H); 3.05-3.15(m, 2H); 3.2-3.3(m, 2H); 3.3-3.4(m, 2H); 3.45(d, 2H); 3.65-3.8(m, 4H); 3.95(d, 2H); 4.03(s, 3H); 4.39(t, 2H); 7.42(s, 1H); 7.45(d, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.2(s, 1H); 8.9(s, 1H); MS-ESI: 568 [MH]+.
EXAMPLE 76
Diethyl azodicarboxylate (0.18 ml, 1.14 mmol) was added dropwise to a mixture of 4-(4-chloro-2-fluoroanilino)-7-hydroxy-6-methoxyquinazoline (111 mg, 0.35 mmol), (prepared as described for the staring material in Example 2), triphenylphosphine (312 mg, 1.19 mmol) and (S)-1-(3-hydroxypropyl)-2-(N,N-dimethylcarbamoyl)pyrrolidine (84 mg, 0.42 mmol) in methylene chloride (10 ml) cooled at 0° C. under nitrogen. The mixture was stirred for 15 minutes at 0° C., the mixture was allowed to warm to ambient temperature and was then stirred for 22 hours. Further (S)-1-(3-hydroxypropyl)-2-(N,N-diethylcarbamoyl)pyrrolidine (10 mg, 0.05 mmol), triphenylphosphine (35 mg, 0.13 mmol) and diethyl azodicarboxylate (20 μl, 0.13 mmol) were added and the mixture was stirred for a further 2 hours. The mixture was partitioned between water and methylene chloride and the aqueous phase was adjusted to pH2 with 2M hydrochloric acid. The aqueous layer was separated, adjusted to pH9 with sodium hydrogen carbonate and was extracted with methylene chloride. The combined organic extracts were washed with water and then brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography on silica eluting with methylene chloride/methanol (85/15 followed by 75/25 and 60/40). The purified product was dissolved in methylene chloride (5 ml) and methanol (1 ml), 3.9M ethereal hydrogen chloride (0.5 ml) was added and the mixture was diluted with ether. The resulting precipitate was collected by filtration, washed with ether, and dried under vacuum to give (S)-4-(4-chloro-2-fluoroanilino)-7-(3-(2-(N,N-dimethylcarbamoyl)pyrrolidin-1-yl)propoxy)-6-methoxyquinazoline hydrochloride (86 mg, 32%).
1H NMR Spectrum: (DMSOd6; CF3COOD) 1.8-1.95(m, 2H); 2.1-2.3(m, 4H); 2.92(s, 3H); 3.0(s, 3H); 3.2-3.45(m, 3H); 3.75-3.85(m, 1H); 4.0(s, 3H); 4.32(t, 2H); 4.75(t, 1H); 7.4(s, 1H); 7.45(d, 1H); 7.65(t, 1H); 7.7(d, 1H); 8.25(s, 1H); 8.9(s, 1H); MS-ESI: 502 [MH]+; Elemental analysis: Found C, 50.2; H, 5.5; N, 11.6; C25H29N5O3ClF 1H2O2HCl Requires C, 50.6; H, 5.6; N, 11.8%.
The starting material was prepared as follows:
A mixture of (S)-2-(N,N-dimethylcarbamoyl)pyrrolidine (426 mg, 3 mmol), (Chem. pharm. Bull. 1973, 21, 2112-2116), 3-bromo-1-propanol (0.41 ml, 4.5 mmol) and potassium carbonate (829 mg, 6 mmol) in acetonitrile (6 ml) was heated at reflux for 8 hours. The mixture was allowed to cool and was partitioned between methylene chloride and water. The organic layer was separated, washed with brine, dried (MgSO4) and the solvent removed by evaporation. The residue was purified by column chromatography, eluting with methylene chloride/methanol (a gradient from 90/10 to 60/40) to give (S)-1-(3-hydroxypropyl)-2-(N,N-dimethylcarbamoyl)pyrrolidine (290 mg, 48%).
1H NMR Spectrum: (CDCl3; CD3COOD) 1.8-2.1(m, 4H); 2.2-2.3(m, 1H); 2.6-2.7(m,1H); 3.0(s, 3H); 3.10(s, 3H); 3.4-3.6(m, 31); 3.75-3.85(m, 3H); 5.05(m, 1H); MS-ESI: 223 [MH]+.
EXAMPLE 77
The following illustrate representative pharmaceutical dosage forms containing the compound of formula I, or a pharmaceutically acceptable salt thereof (hereafter compound X), for therapeutic or prophylactic use in humans:
(a) Tablet I mg/tablet
Compound X 100
Lactose Ph. Eur 182.75
Croscarmellose sodium 12.0
Maize starch paste (5% w/v paste) 2.25
Magnesium stearate 3.0
(b) Tablet II mg/tablet
Compound X 50
Lactose Ph. Eur 223.75
Croscarmellose sodium 6.0
Maize starch 15.0
Polyvinylpyrrolidone (5% w/v paste) 2.25
Magnesium stearate 3.0
(c) Tablet III mg/tablet
Compound X 1.0
Lactose Ph. Eur 93.25
Croscarmellose sodium 4.0
Maize starch paste (5% w/v paste) 0.75
Magnesium stearate 1.0
(d) Capsule mg/capsule
Compound X 10
Lactose Ph. Eur 488.5
Magnesium stearate 1.5
(e) Injection I (50 mg/ml)
Compound X 5.0% w/v
1N Sodium hydroxide solution 15.0% v/v
0.1N Hydrochloric acid
(to adjust pH to 7.6)
Polyethylene glycol 400 4.5% w/v
Water for injection to 100%
(f) Injection II 10 mg/ml)
Compound X 1.0% w/v
Sodium phosphate BP 3.6% w/v
0.1N Sodium hydroxide solution 15.0% v/v
Water for injection to 100
(g) Injection III (1 mg/ml, buffered to pH 6)
Compound X 0.1% w/v
Sodium phosphate BP 2.26% w/v
Citric acid 0.38% w/v
Polyethylene glycol 400 3.5% w/v
Water for injection to 100%
Note
The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Claims (23)

What is claimed is:
1. A quinazoline derivative of the formula I:
Figure USRE042353-20110510-C00027
wherein:
m is an integer from 1 to 2;
R1 represents hydrogen, hydroxy, halogeno, nitro, trifluoromethyl, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or —NR5R6 (wherein R5 and R6, which may be the same or different, each represents hydrogen or C1-3alkyl);
R2 represents hydrogen, hydroxy, halogeno, methoxy, or aminoor nitro;
R3 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro;
X1 represents —O—, —O—;
R4 is selected from one of the following eleven groups:
1) C1-5alkylR12 (wherein R12 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C1-5alkyl through a carbon atom and which heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl) or C1-5alkylR13 (wherein R13 is a group selected from pyrrolidin-1-yl, imidazolidin-1-yl and thiomorpholino, which group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
2) C2-5alkenylR14 (wherein R14 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
3) C3-5alkynylR15 (wherein R15 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
4) C1-5alkylX2C1-5alkylX3R16 (wherein X2 and X3 which may be the same or different are each —O—, —S—, —SO—, —SO2—, —NR17CO—, —CONR18—, —SO2NR19—, —NR20SO2— or —NR21— (wherein R17, R18, R19, R20 and R21 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R16 represents hydrogen or C1-3alkyl);
5) C1-5alkylX4COR22 (wherein X4 represents —O— or —NR23— (wherein R23 represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R22 represents —NR24R25 or —OR26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-3alkoxyC2-3alkyl));
6) C1-5alkylX5R27 (wherein X5 represents —O—, —S—, —SO—, —SO2—, —OCO—, —NR28CO—, —CONR29—, —SO2NR30—, —NR31SO2— or —NR32— (wherein R28, R29, R30, R31 and R32 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) or X5 is carbonyl, and R27 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl or R27 is C1-3allyl C1-3alkyl with the proviso that when R27 is C1-3alkyl, X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31SO2— or —NR31SO2—);
7) C1-3alkoxyC2-4alkyl or C1-4alkyl;
8) C1-5alkylX6C1-5alkylR33 (wherein X6 represents —O—, —S—, —SO—, —SO2—, —NR34CO—, —CONR35—, —SO2NR36—, —NR37SO2— or —NR38— (wherein R34, R35, R36, R37 and R38 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R33 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substitutes substituents selected from oxo, hydroxy, halogeno, C1-4alkyl), C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
9) R39 (wherein R39 is a group selected from pyrrolidin-3-yl, piperidine-3-yl and piperidine-4-yl piperidin-3-yl and piperidin-4-yl which group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
10) C1-5alkylR40 (wherein R40 is piperazin-1-yl which bears at least one substituent selected from C1-4alkanoyl, C1-4alkoxycarbonyl, C1-4hydroxyalkyl and —CONR41R42 (wherein R41 and R42 each independently represents hydrogen or C1-4alkyl) or C1-4alkyl)); and
11) C1-5alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituent substituents selected from oxo, C1-4alkyl, C1-4hydroxyalkyl, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl);
with the further proviso that when R4 is selected from group 7) R1 and/or R2 is/are nitro or at least one R3 is C1-3alkanoyloxy;
or a salt thereof.
2. A quinazoline derivative as claimed in claim 1 wherein R1 represents hydrogen, hydroxy, cyano, nitro, trifluoromethyl, methyl, ethyl, methoxy or ethoxy.
3. A quinazoline derivative as claimed in claim 1 or claim 2 wherein R2 is hydrogen.
4. A quinazoline derivative as claimed in claim 1 or claim 2 wherein the phenyl group bearing (R3)m is of the formula II:
Figure USRE042353-20110510-C00028
wherein:
Ra represents hydrogen, methyl, fluoro, or chloro;
Rb represents hydrogen, methyl, methoxy, bromo, fluoro or chloro;
Rc represents hydrogen or hydroxy;
Rd represents hydrogen, fluoro or chloro.
5. A quinazoline derivative as claimed in claim 1 or claim 2 wherein R4 is selected from one of the following nine groups:
1) C1-4alkylR12 (wherein R12 is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidine-2-yl, piperidine-3-yl, piperidine-4-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or C2-4alkylR45 (wherein R45 is a group selected from imidazolidine-1-yl, imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
2) 1-R46prop-1-en-3-yl, 1-R46but-2-en-4-yl, 1-but-1-en-3-yl, 1-R46but-1-en-3-yl, 1-R46pent-2-en-4-yl or 2-R46pent-3-en-5yl (wherein R46 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a carbon atom and which heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R47but-2-en-4-yl, 1-R47pent-2-en-4-yl or 2-R47pent-3-en-5-yl (wherein R47 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
3) 1-R48prop-1-yn-3-yl, 1-R48but-2-yn-4-yl, 1-R48but-1-yn-3-yl, 1-R48pent-2-yn-4-yl or 2-R48pent-3-yn-5-yl (wherein R48 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R49but-2-yn-4-yl, 1-R49pent-2-yn-4-yl or 2-R49pent-3-yn-5-yl (wherein R49 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkylcarbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
4) C2-3alkylX2C1-3alkylX3R16 (wherein X2 and X3 are as defined in claim 1 and R16 represents hydrogen or C1-3alkyl);
5) C2-3alkylX4COR22 (wherein X4 is as defined in claim 1 and R22 represents —NR24R25 or —OR26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-2alkoxyethyl));
6) C2-3alkylX5R27 (wherein X5 is as defined in claim 1 and R27 represents a group selected from cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X5 through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl or R27 is C1-3alkyl with the proviso that when R27 is C1-3alkyl, X5 is —S—, —SO—, —SO2—, —SO2N30— or —NR31SO2—);
7) C2-3alkylX6C2-3alkyl33 (wherein X6 is as defined in claim 1 and R33 represents a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituent substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl, and C1-3alkoxycarbonyl);
8) C2-3alkylR40 (wherein R40 is piperazin-1-yl which bears at least one substituent selected from acetyl, C1-2alkoxycarbonyl, C1-2hydroxyalkyl and CONR41R42 (wherein R41 and R42 each independently represents hydrogen or C1-2alkyl) or C1-2alkyl)); and
9) C2-3alkylR44 (wherein R44 is morpholino which bears at least one and optionally two substituents selected from oxo, C1-2alky, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acaetyl acetyl and C1-2alkoxycarbonyl).
6. A quinazoline derivative as claimed in claim 5 wherein R4 is selected from one of the following seven groups:
1) C1-3alkylR12 C1-3alkylR12 (wherein R12 is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl) or C2-3alkylR45 (wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylkcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
2) 1-R50but-2-en-4-yl (wherein R50 is a group selected from imidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, pyrrolidin-1-yl, pyrrolidin-3-yl, piperazin-1-yl, morpholino, thiomorpholino and piperidino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl).
3) 1-R51but-2-yn-4-yl (wherein R51 is a group selected from imidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, pyrrolidin-1-yl, pyrrolidin-3-yl, piperazin-1-yl morpholino, thiomorpholino and piperidino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
4) C2-3alkylX2C1-3alkylX3R16 (wherein X2 and X3 are as defined in claim 1 and R16 represents hydrogen or C1-3alkyl);
5) 2-(3,3-dimethylureido)ethyl, 3-(3,3dimethylureido)propyl, 3-(3,3-dimethylureido)propyl, 2-(3-methylureido)ethyl, 3-(3-methylureido)propyl, 2-ureidoethyl, 3-ureidopropyl, 2-(N,N-dimethylcarbamoyloxy)ethyl, 3-(N,N-dimethylcarbamoyloxy)propyl, 2-(N-methylcarbamoyloxy)ethyl, 3-(N-methylcarbamoyloxy)propyl, 2-(carbamoyloxy)ethyl, 3-(carbamoyloxy)propyl, 2-(1,3,3-trimethylureido)ethyl, 3-1,3,3-trimethylureido)propyl, 3-(1,3,3-trimethylureido)propyl, 2-(isopropoxycarbonylamino)ethyl, 3-(isopropoxycarbonylamino)propyl, 2-(isobutoxycarbonylamino)ethyl, 3-(isobutoxycarbonylamino)propyl, 2-(t-butoxycarbonylamino)ethyl or 3-(t-butoxycarbonylamino)propyl;
6) C2-3alkylX5R27 (wherein R27 is C1-2alkyl and X5 is —S—, —SO—, —SO2—, —SO2NR30— or —NR31 SO2— or —NR31SO2—); and
7) C2-3alkyX6C2-3alkylR33 (wherein X6 is as defined in claim 1 and R33 represents a group selected from morpholino, 2-oxopyrrolidin-1-yl, pyrrolidin-1-yl, piperidino, piperazin-1-yl and 4-methylpiperazin-1-yl).
7. A quinazoline derivative of the formula 1a:
Figure USRE042353-20110510-C00029
wherein:
R1a is hydrogen or methoxy;
R2a is hydrogen;
the phenyl group bearing (R3a)ma is the 4-chloro-2-fluorophenyl group or the 4-bromo-2-fluorophenyl group;
X1a is —O—;
R4a is selected from one of the following nine groups:
1) C1-4alkylR7a (wherein R7a is a group selected from 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, morpholin-2-yl, morpholin-3-yl and piperazin-2-yl which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or C2-4alkylR8a (wherein R8a is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
2) 1-R9aprop-1-en-3-yl, 1-R9abut-2-en-4-yl, 1-R9abut-1-en-3-yl, 1-R9apent-2-en-4-yl or 2-R9apent-3-en-5-yl (wherein R9a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R10abut-2-en-4-yl, 1-R10apent-2-en-4-yl or 2-R10apent-3-en-5-yl (wherein R10a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkenyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbomoyl, N,N-di(C1-3alkyl)carbamoyl, C1-3alkanoyl and C1-3alkoxycarbonyl);
3) 1-R11aprop-1-yn-3-yl, 1-R11abut-2-yn-4-yl, 1-R11abut-1-yn-3-yl, 1-R11apent-2-yn-4-yl or 2-R11apent-3-yn-5-yl (wherein R11a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl) or 1-R12abut-2-yn-4-yl, 1-12apent-2-yn-4-yl 1-R12apent-2-yn-4-yl or 2-R12apent-3-yn-5-yl (wherein R12a is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, of which one is N and the other is selected independently from O, S and N, which heterocyclic group is linked to the alkynyl group through a nitrogen atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbarmoyl, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)carbarmoyl, C1-3alkanoyl N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl and C1-3alkoxycarbonyl);
4) C2-3alkylX2aC1-3alkylX3aR13a (wherein X2a and X3a which may be the same or different each represents, —O—, —S—, —SO—, —SO2—, —NR14aCO—, or —NR15a— (wherein R14a and R15a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R13a represents hydrogen or C1-3alkyl);
5) C2-3alkylX4aCOR16a C2-3alkylX4aCOR16a (wherein X4a represents —O— or —NR17a—(wherein R17a represents hydrogen, C1-3alkyl or C1-2alkoxyethyl) and R16a represents —NR18aR19a or —OR20a (wherein R18a, R19a and R20a which may be the same or different each represents hydrogen, C1-4alkyl or C1-2alkoxyethyl));
6) C2-3alkylX5aR21a (wherein X5a represents carbonyl, —O—, —S—, —SO—, —SO2—, —NR22aCO—, —NR23aSO2—, or —NR24a— (wherein R22a, R23a and R23a each independently R24a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R21a represents a group selected from cyclopentyl, cyclohexyl, pyrrolidinyl and piperidinyl which group is linked to X5a through a carbon atom and which group may carry one substituent selected from oxo, hydroxy, halogeno, C1-2alkyl, C1-2hydroxyalkyl, C1-2alkoxy, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl or R21a is C1-3alkyl with that proviso the proviso that when R21a is C1-3alkyl, X5a is —S—, —SO—, —SO2— or —NR23aSO2—);
7) C2-3alkylX6aC2-3alkylR25a (wherein X6a represents —O—, —S—, —SO—, —SO2—, —NR26aCO—, —NR27aSO2— or —NR28a-(wherein R26a, R27a and R28a each independently represents hydrogen, C1-2alkyl or C1-2alkoxyethyl) and R25a represents a 5 or 6 membered saturated heterocyclic group with one or two heteratoms selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-3alkyl, C1-3hydroxyalkyl, C1-3alkoxy, carbamoyl, C1-3alkylcarbamoyl, N,N-di(C1-3alkyl)cabamoyl, N,N-di(C1-3alkyl)carbamoyl, C2-3alkanoyl, and C1-3allkoxycarbonyl); C1-3alkoxycarbonyl);
8) C2-3alkylR29a (wherein R29a is piperizin-1-yl piperazin-1-yl which bears at least one substituent selected from acetyl, C1-2alkoxycarbonyl, C1-2hydroxyalkyl and CONR30aR31a (wherein R30a and R31a each independently represents hydrogen or C1-2alkyl) or C1-2alkyl)); and
9) C2-3alkylR33a (wherein R33a is morpholino which bears at least one and optionally two substituents selected from oxo, C1-2alkyl, C1-2hydroxyalkyl, carbamoyl, C1-2alkylcarbamoyl, N,N-di(C1-2alkyl)carbamoyl, acetyl and C1-2alkoxycarbonyl);
or a salt thereof.
8. A quinazoline derivative as claimed in claim 1 selected from:
4-(4-chloro-2-fluoroanilino)-7-(1,3-dioxolan-2-ylmethoxy)-6-methoxyquinzoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-en-1-yloxy)quinazoline;
(E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-morpholinobut-2-en-1-yloxy)-quinazoline;
4-(4-chloro-2-fluoroanilino)-7-(3-(2,6-dimethylmorpholino)propoxy)-6-methoxyquinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-([N-methyl-N-methylsulphonyl]amino)-propoxy)quinazoline;
7-(2-[N-tert-butoxycarbonylamino]ethoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline;
4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-([N-methyl-N-methylsulphonyl]amino)-propoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-2-(2-oxoimidazolidin-1-yl)ethoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline;
4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(3-oxomorpholino)ethoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-thiomorpholinoethoxy)quinazoline;
(S)-4-(4-bromo-2-fluoroanilino)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy-6-methoxyquinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(2-oxopyrrolidin-1-yl)propoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-oxopyrrolidin-1-yl)ethoxy)-quinazoline;
(S)-7-(3-(2-carbamoylpyrrolidin-1-yl)propoxy)-4-(4-chloro-2-fluoroanilino)-6-methoxyquinazoline,
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-morpholinoethoxy)ethoxy)-quinazoline; and
4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(3-(2-oxopyrrolidin-1-yl)propoxy)-quinazoline;
and salts thereof.
9. A quinazoline derivative as claimed in claim 1 selected from:
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)-methoxyquinazoline;
4-(4-bromo-2-fluoroanilino)-7-3-(1,1-dixothiomorpholino)propoxy)-6-methoxyquinazoline;
4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline,
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-2-pyrrolidin-1-ylethoxy)ethoxy)-quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-(2-[4-methylpiperazin-1-yl]ethoxy)-ethoxy)quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(2-([N-methyl-N-methoxyacetyl]amino)-ethoxy)quinazoline; and
4-(4-bromo-2-fluoroanilino)-6-methoxy-7-(2-2-oxopyrrolidin-1-yl)ethoxy)quinazoline;
and salts thereof.
10. A quinazoline derivative as claimed in claim 1 selected from:
(E)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(4-(pyrrolidin-1-yl)but-2-en-1-yloxy)-quinazoline;
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(methylsulphonyl)propoxy)quinazoline;
(S)-4-4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)-methoxyquinazoline; and
(R)-4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-3-yl)-methoxyquinazoline;
and salts thereof.
11. A quinazoline derivative as claimed in claim 1 selected from:
4-(4-chloro-2-fluoroanilino)-6-methoxy-7-(3-(methylsulphonyl)propoxy)quinazoline;
and salts thereof.
12. A quinazoline derivative as claimed in any one of claims 1 and 7-11 claim 1 or claim 7 in the form of pharmaceutically acceptable salt.
13. A quinazoline derivative as claimed in claim 1 or claim 2 wherein R1 represents methoxy.
14. A quinazoline derivative as claimed in claim 1 or claim 2 wherein m is 2.
15. A quinazoline derivative as claimed in claim 1 or claim 2 wherein the phenyl group bearing (R3)m is the 4-chloro-2-fluorophenyl group or the 4-bromo-2-fluorophenyl group.
16. A quinazoline derivative as claimed in claim 1 or claim 2 wherein R4 is selected from one of the following six groups:
1) C1-3alkylR12 (wherein R12 is 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3dithiolan-2-yl, 1,3-dithian-2-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, 1-methylpiperidin-2-yl, 1-methylpiperidin-3-yl, 1-methylpiperidin-4- yl, 1-methylpyrrolidin-2-yl, 1-methylpyrrolidin-3-yl, piperazin-2-yl, 1-methylpiperazine-2-yl, 4-methylpiperazin-2-yl, 1,4-dimethylpiperazin-2-yl, morpholin-2-yl, morpholin-3-yl, 4-methylmorpholin-2-yl or 4-methylmorpholin-3- yl) or C2-3alkylR45 (wherein R45 is pyrrolidin-1-yl, thiomorpholino, 1,1- dioxothiomorpholino, 2-oxopyrrolidin-1-yl, 2-(N-methylcarbamoyl)pyrrolidin-1-yl, 2-(N,N-dimethylcarbamoyl)pyrrolidin-1-yl, 2-carbamoylpyrrolidin-1yl, 2- oxoimidazolidin-1-yl or 3-methyl-2-oxoimidazolidin-1-yl);
2) 1-R50but-2-en-4-yl (wherein R50 is 2-oxoimidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3- dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, 1-methylpiperidin-4- yl, pyrrolidin-1-yl, 1-methylpyrrolidin-3-yl, piperazin-1-yl, morpholino, thiomorpholino, 4-methylpiperazin-1-yl, piperidino or 3-methyl-2-oxoimidazolidin- 1-yl);
3) 1-R51but-2-yn-4-yl (wherein R51 is 2-oxoimidazolidin-1-yl, 1,3-dioxolan-2-yl, 1,3- dioxan-2-yl, 1,3-dithiolan-2-yl, 1,3-dithian-2-yl, piperidin-4-yl, 1-methylpiperidin-4- yl, pyrrolidin-1-yl, 1-methylpyrrolidin-3-yl, piperazin-1-yl, morpholino, thiomorpholino, 4-methylpiperazin-1-yl, piperidino or 3-methyl-2-oxoimidazolidin- 1-yl);
4) C2-3alkylX2C1-3alkylX3R16 (wherein X2 and X3 are as defined in claim 17 and R16 represents hydrogen or C1-3alkyl);
5) C2-3alkylX5R27 (wherein R27 is C1-2 alkyl and X5 is -S-, -SO-, -SO2-, -SO2NR30-or- NR31SO2-(wherein R30 and R31 are as defined in claim 1)); and
6) C2-3alkylX6C2-3alkylR33 (wherein X6 is as defined in claim 1 and R33 represents a group selected from pyrrolidin-1-yl, 4-methylpiperazin-1-yl and morpholino).
17. A quinazoline derivative of the formula I:
Figure USRE042353-20110510-C00030
wherein:
m is an integer from 1 to 2;
R1 represents hydrogen, hydroxy, halogeno, nitro, trifuloromethyl, eyano, cyano, C1-3alkyl, C1-3alkoxy, C1-3alkylthio, or -NR5R6 (wherein R5and R6, which may be the same or different, each represents hydrogen or C1-3alkyl);
R2R2 represents hydrogen, hydroxy, halageno,halogeno, methoxy,or aminoor nitro;
R3R3 represents hydroxy, halogeno, C1-3alkyl, C1-3alkoxy, C1-3alkanoyloxy, trifluoromethyl, cyano, amino or nitro;
X1 represents -O-;
R4 is selected from one of the following seven groups:
1) C1-5alkylR12 (wherein R12 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group is linked to C1-5alkyl through a carbon atom and which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy) or C1-5alkylR13 (wherein R13 is a group selected from pyrrolidin-1-yl, imidazolidin-1-yl and thiomorpholino, which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy);
2) C2-5alkenylR 14 C2-5alkenylR14 (wherein R14 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroyalkyl C1-4hydroxyalkyl and C1-4alkoxy);
3) C2-5alkynylR15 (wherein R15 is a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or two substituents selected from oxo, hydroxy halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy);
4) C1-5alkylX2C1-5alkylX3R16 (wherein X2 and X3 which may be the same or different are each -O-, -S-, -SO-, -SO2-, -NR17CO-, -CONR18-, -SO 2NR19-, -NR20SO2- —SO2NR19—, —NR20SO2— or -NR21- (wherein R17, R18, R19, R20 and R21 each independetly independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R16 represents hydrogen or C1-3alkyl);
5) C1-5alkylX4COR22 (wherein X4 represents -O- or -NR23-(wherein R23 represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R22 represents -NR24R25 or -OR26 (wherein R24, R25 and R26 which may be the same or different each represents hydrogen, C1-4alkyl or C1-3alkoxyC2-3alkyl));
6) C1-5alkylX5R27 (wherein X5 represents -O-, -S-, -SO2-, -OCO-, -NR28CO-, -CONR29-, -SO2NR30-, -NR31SO2- or -NR32-(wherein R28, R29, R30, R31 and R32 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R27 represents cyclopentyl, cyclohexyl or a 5 or 6 membered saturated heterocyclic group with one or two heteroatoms, selected independently from O, S and N, which cyclopentyl, cyclohexyl or heterocyclic group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl and C1-4alkoxy and C1-4alkoxy); and
7) C1-3alkoxyC2-4alkyl or C1-4alkyl;
with the proviso that when R4 is selected from group 7) R1 and/or R2 is/are nitro or at least one R3 is C1-3alkanoyloxy;
and salts thereof.
18. A quinazoline derivative as claimed in claim 17 wherein R1 represents methoxy.
19. A quinazoline derivative as claimed in 17 or claim 18 wherein R2 represents hydrogen.
20. A quinazoline derivative as claimed in claim 17 or claim 18 wherein the phenyl group bearing (R3)m is of the formula II:
Figure USRE042353-20110510-C00031
wherein:
Ra represents hydrogen, methyl, fluoro or chloro;
Rb represents hydrogen, methyl, methoxy, bromo, fluoro or chloro;
Rc represents hydrogen or hydroxy;
Rd represents hydrogen, fluoro or chloro.
21. A process for the preparation of a quinazoline derivative of formula I or salt thereof (as defined in claim 1) which comprises:
(a) the reaction of a compound of the formula III:
Figure USRE042353-20110510-C00032
 (wherein R1, R2, X1 and R4 are as defined in claim 1 and L1 is a displaceble moiety), with a compound of the formula IV:
Figure USRE042353-20110510-C00033
 (wherein R3 and m are as defined in claim 1) whereby to obtain compounds of the formula I and salts thereof;
(b) for the preperation preparation of compounds of formula I and salts thereof in which the group of formula IIa:
Figure USRE042353-20110510-C00034
 (wherein R3 and m are as defined in claim 1) represents a phenyl group carrying one or more hydroxy groups, the deprotection of a compound of formula V:
Figure USRE042353-20110510-C00035
 (wherein X1, m, R1, R2, R3 and R4 are as defined in claim 1, P represents a phenolic hydroxy protecting group and p1 is an integer from 1 to 5 equal to the number of protected hydroxy groups and such that m-p1 is equal to the number of R3 substituents which are not protected hydroxy);
(c) for the preparation of those compounds of formula I and salts thereof wherein the substituent X1 is —O—, the reaction of a compound of the formula VI:
Figure USRE042353-20110510-C00036
 (wherein X1, R1, R2 and R3 are as defined in claim 1) with a compound of formula VII:

R4—L1  (VII)
 (wherein R14 R4 is as defined im in claim 1 and L1 is as defined herein);
(d) the reaction of a compound of the formula VII:
Figure USRE042353-20110510-C00037
 with a compound of the formula IX:

R4—X1—H  (IX)
 (wherein R1, R2, R3, R4, m and X1 are as defined in claim 1 and L1 is as defined herein);
(e) for the preparation of compounds of formula I and salts thereof wherein R4 is C1-5alkylR53, wherein R53 is selected from one of the following three groups:
1) X7R27 (wherein X7 represents —O—, —S—, —SO2—, —NR54CO—, —NR55SO2— or —NR56— (wherein R54, R55 and R56 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R27 is as defined in claim 1);
2) X8C1-5alkylX3R16 (wherein X8 represents —O—, —S—, —SO12—, —SO2—, —NR57CO—, —NR58SO2— or —NR59— (wherein R57, R58 and R59 each independently represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and X3 and R16 are as defined in claim 1); and
3) X9C1-5alkylR33 (wherein X9 represents —O—, —S—, —SO2—, —NR60CO—NR61SO2— or —NR62— (wherein R60, R61 and R62 each independently represent represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and R33 is as defined in claim 1);
the reaction of a compound of the formula X:
Figure USRE042353-20110510-C00038
 (wherein X1, R1, R2, R3 and m are as defined in claim 1, L1 is as defined herein and R63 is C1-5alkyl) with a compound of the formula XI:

R53—H  (XI)
 (wherein R53 is as defined herein) to give a compound of the formula I;
(f) for the preparation of compounds of the formula I wherein R4 is C2-5alkylR45, (wherein R45 is a group selected from imidazolidin-1-yl, pyrrolidin-1-yl and thiomorpholino, which group may bear one or two substituents selected from oxo, hydroxy, halogeno, C1-4alkyl, C1-4hydroxyalkyl, C1-4alkoxy, carbamoyl, C1-4alkylcarbamoyl, N,N-di(C1-4alkyl)carbamoyl, C1-4alkanoyl and C1-4alkoxycarbonyl), the reaction of a compound of formula X (wherein R63 is C2-5alkyl) with a compound of the formula XIa:

R45—H  (XIa)
 (wherein R45 is as defined herein) to give a compound of the formula I;
(g) for the preparation of those compounds of the formula I and salts thereof wherein the substituent R1 is represented by —NR5R6 where one or both of R5 and R6 are C1-3alkyl, the reaction of compounds of formula I wherein the substituent R1 is an amino group with an alkylating agent;
(h) for the prepation of compounds of formula I and salts thereof wherein one or more of the substituents R1, R2 or R3 is an amino group, the reduction of a corresponding compound of formula I wherein the substituent(s) at the corresponding position(s) of the quinazoline and/or aniline ring is/are a nitro group(s):
and when a pharmaceutically acceptable salt of a quinazoline derivative of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired pharmaceutically acceptable salt.
22. A pharmaceutical composition which comprises as active ingredient a compound of formula I as defined in any one of claims 1 and 7-11 claim 1 or claim 7 or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable excipient or carrier.
23. A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof as defined in any one of claims 1 and 7-11.
US12/170,027 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them Expired - Lifetime USRE42353E1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP96402033 1996-09-25
EP96402033 1996-09-25
EP97401042 1997-05-09
EP97401042 1997-05-09
PCT/GB1997/002588 WO1998013354A1 (en) 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/269,595 Reissue US6414148B1 (en) 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them

Publications (1)

Publication Number Publication Date
USRE42353E1 true USRE42353E1 (en) 2011-05-10

Family

ID=26144073

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/170,027 Expired - Lifetime USRE42353E1 (en) 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them
US09/269,595 Ceased US6414148B1 (en) 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them
US10/080,716 Expired - Lifetime US6673803B2 (en) 1996-09-25 2002-02-25 Quinazoline derivatives and pharmaceutical compositions containing them
US10/698,388 Expired - Lifetime US6897210B2 (en) 1996-09-25 2003-11-03 Quinazoline derivatives and pharmaceutical compositions containing them
US11/024,840 Abandoned US20050239777A1 (en) 1996-09-25 2004-12-30 Quinazoline derivatives and pharmaceutical compositions containing them
US12/766,106 Abandoned US20110071144A1 (en) 1996-09-25 2010-04-23 Quinazoline derivatives and pharmaceutical compositions containing them

Family Applications After (5)

Application Number Title Priority Date Filing Date
US09/269,595 Ceased US6414148B1 (en) 1996-09-25 1997-09-23 Quinazoline derivatives and pharmaceutical compositions containing them
US10/080,716 Expired - Lifetime US6673803B2 (en) 1996-09-25 2002-02-25 Quinazoline derivatives and pharmaceutical compositions containing them
US10/698,388 Expired - Lifetime US6897210B2 (en) 1996-09-25 2003-11-03 Quinazoline derivatives and pharmaceutical compositions containing them
US11/024,840 Abandoned US20050239777A1 (en) 1996-09-25 2004-12-30 Quinazoline derivatives and pharmaceutical compositions containing them
US12/766,106 Abandoned US20110071144A1 (en) 1996-09-25 2010-04-23 Quinazoline derivatives and pharmaceutical compositions containing them

Country Status (33)

Country Link
US (6) USRE42353E1 (en)
EP (1) EP0929530B1 (en)
JP (3) JP3438818B2 (en)
KR (1) KR100618065B1 (en)
CN (1) CN1142920C (en)
AT (1) ATE228114T1 (en)
AU (1) AU729968C (en)
BR (1) BR9711302B1 (en)
CA (1) CA2263319C (en)
CH (1) CH0929530H1 (en)
CL (1) CL2004001178A1 (en)
CY (1) CY2453B1 (en)
CZ (1) CZ296962B6 (en)
DE (1) DE69717294C5 (en)
DK (1) DK0929530T3 (en)
ES (1) ES2185999T3 (en)
GB (1) GB9718972D0 (en)
HK (1) HK1019332A1 (en)
HU (1) HU228176B1 (en)
IL (1) IL129038A (en)
MY (1) MY129540A (en)
NO (1) NO313138B1 (en)
NZ (1) NZ334014A (en)
PL (1) PL190326B1 (en)
PT (1) PT929530E (en)
RU (1) RU2198879C2 (en)
SI (1) SI0929530T1 (en)
SK (1) SK283175B6 (en)
TR (1) TR199900674T2 (en)
TW (1) TW520364B (en)
UA (1) UA57752C2 (en)
WO (1) WO1998013354A1 (en)
ZA (1) ZA978553B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029627A1 (en) * 2006-07-12 2010-02-04 Alexandra Papanikos Mtki quinazoline derivatives
US20100152174A1 (en) * 2004-12-08 2010-06-17 Eddy Jean Edgard Freyne Macrocyclic quinazole derivatives and their use as mtki
US20100173913A1 (en) * 2003-12-18 2010-07-08 Janssen Pharmaceutica N.V. Pyrido-and pyrimidopyrimidine derivatives as anti-proliferative agents
US8318731B2 (en) 2007-07-27 2012-11-27 Janssen Pharmaceutica Nv Pyrrolopyrimidines
WO2015031604A1 (en) 2013-08-28 2015-03-05 Crown Bioscience, Inc. Gene expression signatures predictive of subject response to a multi-kinase inhibitor and methods of using the same
US9040548B2 (en) 1999-11-05 2015-05-26 Astrazeneca Ab Quinazoline derivatives as VEGF inhibitors
US9688691B2 (en) 2004-12-08 2017-06-27 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
US10011587B2 (en) 2014-05-15 2018-07-03 The Methodist Hospital System Multivalent ligands targeting VEGFR

Families Citing this family (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
GB9707800D0 (en) 1996-05-06 1997-06-04 Zeneca Ltd Chemical compounds
NZ334125A (en) 1996-09-25 2000-10-27 Zeneca Ltd Quinoline derivatives inhibiting the effect of growth factors such as VEGF
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
DE69838172T2 (en) 1997-08-22 2008-04-10 Astrazeneca Ab OXINDOLYLCHINAZOLE DERIVATIVES AS ANGIOGENESEHEMMER
US6706721B1 (en) 1998-04-29 2004-03-16 Osi Pharmaceuticals, Inc. N-(3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine mesylate anhydrate and monohydrate
EP1115724A1 (en) * 1998-09-21 2001-07-18 Shire Biochem Inc. Quinolizinones as integrin inhibitors
US6972288B1 (en) 1999-02-27 2005-12-06 Boehringer Ingelheim Pharma Kg 4-amino-quinazoline and quinoline derivatives having an inhibitory effect on signal transduction mediated by tyrosine kinases
DE19911509A1 (en) * 1999-03-15 2000-09-21 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
RS49836B (en) * 1999-03-31 2008-08-07 Pfizer Products Inc., Process and intermediates for preparing anti-cancer compounds
TR200103692T2 (en) * 1999-06-21 2002-10-21 Boehringer Ingelheim Pharma Kg Drugs containing bicyclic heterocycles and their manufacture.
US6933299B1 (en) 1999-07-09 2005-08-23 Smithkline Beecham Corporation Anilinoquinazolines as protein tyrosine kinase inhibitors
WO2001004111A1 (en) * 1999-07-09 2001-01-18 Glaxo Group Limited Anilinoquinazolines as protein tyrosine kinase inhibitors
IL148576A0 (en) 1999-09-21 2002-09-12 Astrazeneca Ab Quinazoline derivatives and their use as pharmaceuticals
SE9903544D0 (en) 1999-10-01 1999-10-01 Astra Pharma Prod Novel compounds
UA74803C2 (en) 1999-11-11 2006-02-15 Осі Фармасьютікалз, Інк. A stable polymorph of n-(3-ethynylphenyl)-6,7-bis(2-methoxyetoxy)-4-quinazolinamine hydrochloride, a method for producing thereof (variants) and pharmaceutical use
US7087613B2 (en) 1999-11-11 2006-08-08 Osi Pharmaceuticals, Inc. Treating abnormal cell growth with a stable polymorph of N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine hydrochloride
EP1254138B1 (en) * 2000-02-09 2005-05-11 Novartis AG Pyridine derivatives inhibiting angiogenesis and/or vegf receptor tyrosine kinase
GB2359551A (en) 2000-02-23 2001-08-29 Astrazeneca Uk Ltd Pharmaceutically active pyrimidine derivatives
EP1272185B1 (en) 2000-03-06 2005-07-27 AstraZeneca AB Use of quinazoline derivatives as angiogenesis inhibitors
US20070021392A1 (en) * 2000-03-31 2007-01-25 Davis Peter D Divided dose therapies with vascular damaging activity
GB0008269D0 (en) * 2000-04-05 2000-05-24 Astrazeneca Ab Combination chemotherapy
NZ521421A (en) * 2000-04-07 2004-09-24 Astrazeneca Ab Quinazoline compounds
UA73993C2 (en) 2000-06-06 2005-10-17 Астразенека Аб Quinazoline derivatives for the treatment of tumours and a pharmaceutical composition
AR028948A1 (en) 2000-06-20 2003-05-28 Astrazeneca Ab NEW COMPOUNDS
KR20080027400A (en) 2000-08-21 2008-03-26 아스트라제네카 아베 Quinazoline derivatives
US6403580B1 (en) 2000-08-26 2002-06-11 Boehringer Ingelheim Pharma Kg Quinazolines, pharmaceutical compositions containing these compounds, their use and processes for preparing them
DE10042061A1 (en) * 2000-08-26 2002-03-07 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
US6740651B2 (en) 2000-08-26 2004-05-25 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
US6656946B2 (en) * 2000-08-26 2003-12-02 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
DE10042058A1 (en) * 2000-08-26 2002-03-07 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
US6617329B2 (en) 2000-08-26 2003-09-09 Boehringer Ingelheim Pharma Kg Aminoquinazolines and their use as medicaments
EP1326859A1 (en) * 2000-10-13 2003-07-16 AstraZeneca AB Quinazoline derivatives with anti-tumour activity
SE0003828D0 (en) 2000-10-20 2000-10-20 Astrazeneca Ab Novel compounds
EP1330444B1 (en) 2000-11-01 2011-03-23 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making them
US7019012B2 (en) * 2000-12-20 2006-03-28 Boehringer Ingelheim International Pharma Gmbh & Co. Kg Quinazoline derivatives and pharmaceutical compositions containing them
US7141577B2 (en) 2001-04-19 2006-11-28 Astrazeneca Ab Quinazoline derivatives
WO2002092577A1 (en) * 2001-05-14 2002-11-21 Astrazeneca Ab Quinazoline derivatives
EP1408980A4 (en) 2001-06-21 2004-10-20 Ariad Pharma Inc Novel quinazolines and uses thereof
GB0126879D0 (en) * 2001-11-08 2002-01-02 Astrazeneca Ab Combination therapy
GB0128108D0 (en) * 2001-11-23 2002-01-16 Astrazeneca Ab Therapeutic use
GB0128109D0 (en) 2001-11-23 2002-01-16 Astrazeneca Ab Therapeutic use
BR0307151A (en) * 2002-02-01 2004-12-07 Astrazeneca Ab Compound or a salt thereof, process for preparing it, pharmaceutical composition, use of the compound or salt thereof, method for producing an antiangiogenic and / or vascular permeability reducing effect in a warm-blooded animal such as a human , which requires a treatment of the said type, and processes for the preparation of 5-bromo-7-azaindole, and for the production of 5-methoxy-7-azaindole
TWI324597B (en) * 2002-03-28 2010-05-11 Astrazeneca Ab Quinazoline derivatives
US6924285B2 (en) 2002-03-30 2005-08-02 Boehringer Ingelheim Pharma Gmbh & Co. Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them
DE10221018A1 (en) * 2002-05-11 2003-11-27 Boehringer Ingelheim Pharma Use of inhibitors of EGFR-mediated signal transduction for the treatment of benign prostatic hyperplasia (BPH) / prostatic hypertrophy
WO2004004732A1 (en) * 2002-07-09 2004-01-15 Astrazeneca Ab Quinazoline derivatives for use in the treatment of cancer
ES2400339T3 (en) * 2002-07-15 2013-04-09 Symphony Evolution, Inc. Compounds, pharmaceutical compositions thereof and their use in the treatment of cancer
GB0217431D0 (en) 2002-07-27 2002-09-04 Astrazeneca Ab Novel compounds
ES2295685T3 (en) 2002-08-24 2008-04-16 Astrazeneca Ab PIRIMIDINE DERIVATIVES AS MODULATORS OF THE ACTIVITY OF THE CHEMIOKIN RECEIVER.
GB0221828D0 (en) 2002-09-20 2002-10-30 Astrazeneca Ab Novel compound
GB0223380D0 (en) * 2002-10-09 2002-11-13 Astrazeneca Ab Combination therapy
US7462623B2 (en) * 2002-11-04 2008-12-09 Astrazeneca Ab Quinazoline derivatives as Src tyrosine kinase inhibitors
KR101010299B1 (en) 2002-12-24 2011-01-25 아스트라제네카 아베 Phosphonooxy quinazoline derivatives and their pharmaceutical use
EA011009B1 (en) 2003-01-14 2008-12-30 Арена Фармасьютикалз Инк. 1,2,3-substituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
US7223749B2 (en) * 2003-02-20 2007-05-29 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them
GB0309850D0 (en) 2003-04-30 2003-06-04 Astrazeneca Ab Quinazoline derivatives
PA8603801A1 (en) 2003-05-27 2004-12-16 Janssen Pharmaceutica Nv DERIVATIVES OF QUINAZOLINE
SE0301569D0 (en) 2003-05-27 2003-05-27 Astrazeneca Ab Novel compounds
GB0316176D0 (en) * 2003-07-10 2003-08-13 Astrazeneca Ab Combination therapy
JP2007526886A (en) * 2003-07-10 2007-09-20 アストラゼネカ アクチボラグ Use of quinazoline derivative ZD6474 in combination with platinum-based antitumor agents and optional ionizing radiation in the treatment of diseases associated with angiogenesis and / or increased vascular permeability
AR045047A1 (en) 2003-07-11 2005-10-12 Arena Pharm Inc ARILO AND HETEROARILO DERIVATIVES TRISUSTITUIDOS AS MODULATORS OF METABOLISM AND PROFILAXIS AND TREATMENT OF DISORDERS RELATED TO THEMSELVES
GB0317665D0 (en) 2003-07-29 2003-09-03 Astrazeneca Ab Qinazoline derivatives
GB0318423D0 (en) * 2003-08-06 2003-09-10 Astrazeneca Ab Chemical compounds
CA2903196A1 (en) 2003-08-27 2005-03-10 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
CA2539049A1 (en) * 2003-09-16 2005-03-24 Astrazeneca Ab Quinazoline derivatives
ES2305844T3 (en) 2003-09-16 2008-11-01 Astrazeneca Ab DERIVATIVES OF QUINAZOLINE AS INHIBITORS OF THYROSINE KINASE.
US8318752B2 (en) * 2003-09-19 2012-11-27 Astrazeneca Ab 4-(3-chloro-2-fluoroanilino)-7-methoxy-6-{[1-(N-methylcarbamoyl-methyl)piperidin-4-yl]oxy}quinazoline, its pharmaceutically acceptable salts, and pharmaceutical compositions comprising the same
CN1882570B (en) * 2003-09-19 2010-12-08 阿斯利康(瑞典)有限公司 Quinazoline derivatives
BRPI0414735A (en) * 2003-09-25 2006-11-21 Astrazeneca Ab quinazoline derivative, compound, pharmaceutical composition, use of quinazoline derivative, method for producing an antiproliferative effect on a warm-blooded animal, and process for the preparation of a quinazoline derivative
GB0322409D0 (en) 2003-09-25 2003-10-29 Astrazeneca Ab Quinazoline derivatives
PL2210607T3 (en) * 2003-09-26 2012-01-31 Exelixis Inc N-[3-fluoro-4-({6-(methyloxy)-7-[(3-morpholin-4-ylpropyl)oxy]quinolin-4-yl}oxy)phenyl]-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide for the treatment of cancer
US7456189B2 (en) 2003-09-30 2008-11-25 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
GB0326459D0 (en) 2003-11-13 2003-12-17 Astrazeneca Ab Quinazoline derivatives
DE602004031037D1 (en) 2003-11-19 2011-02-24 Array Biopharma Inc HETEROCYCLIC INHIBITORS OF MEK
GB0328243D0 (en) 2003-12-05 2004-01-07 Astrazeneca Ab Methods
BRPI0418351A (en) 2004-01-05 2007-05-08 Astrazeneca Ab compound or a pharmaceutically acceptable salt thereof, methods of limiting cell proliferation in a human or animal, treating a human or animal suffering from cancer, treating cancer prophylaxis, treating a human or animal suffering from a disease treatment of a human or animal suffering from a proliferative cancer treatment disease, for the treatment of cancer-associated infections, for the prophylactic treatment of cancer-associated infections, pharmaceutical composition, use of a compound or a pharmaceutically acceptable salt thereof, method of inhibiting chk1 kinase, and process for preparing a compound or a pharmaceutically acceptable salt thereof
CN1914182B (en) 2004-02-03 2011-09-07 阿斯利康(瑞典)有限公司 Quinazoline derivatives
GEP20084551B (en) 2004-05-06 2008-11-25 Warner Lambert Co 4-phenylamino-quinazolin-6-yl-amides
GB0411378D0 (en) * 2004-05-21 2004-06-23 Astrazeneca Ab Pharmaceutical compositions
SE0401657D0 (en) 2004-06-24 2004-06-24 Astrazeneca Ab Chemical compounds
JP2008505907A (en) * 2004-07-06 2008-02-28 アンジオン バイオメディカ コーポレイション Quinazoline modulators that modulate hepatocyte growth factor and c-met activity for cancer therapy
ES2442678T3 (en) 2004-08-28 2014-02-12 Astrazeneca Ab Pyrimidine sulfonamide derivatives as chemokine receptor modulators
GB0424339D0 (en) * 2004-11-03 2004-12-08 Astrazeneca Ab Combination therapy
US7947676B2 (en) 2004-12-14 2011-05-24 Astrazeneca Ab Pyrazolo[3,4-d]pyrimidine compounds as antitumor agents
RU2394839C2 (en) 2004-12-21 2010-07-20 Астразенека Аб Antibodies against angiopoietin-2 and use thereof
JP2008526734A (en) * 2004-12-31 2008-07-24 エスケー ケミカルズ カンパニー リミテッド Quinazoline derivatives effective in preventing diabetes and obesity
DOP2006000010A (en) 2005-01-10 2006-07-31 Arena Pharm Inc PROCEDURE TO PREPARE AROMATIC ETERES
AU2006210710B2 (en) 2005-02-04 2009-12-10 Astrazeneca Ab Pyrazolylaminopyridine derivatives useful as kinase inhibitors
BRPI0607432A2 (en) * 2005-02-26 2009-09-01 Astrazeneca Ab quinazoline derivative or a pharmaceutically acceptable salt thereof, compound, pharmaceutical composition, use of a quinazoline derivative or a pharmaceutically acceptable salt thereof, and process for the preparation of a quinazoline derivative or a pharmaceutically acceptable salt thereof
US20080240926A1 (en) * 2005-03-28 2008-10-02 Toshiharu Kobayashi Cobalt-Free Ni-Base Superalloy
CN101175733A (en) * 2005-05-12 2008-05-07 黄文林 Tyrosine kinase restrainer, its production method and application as antineoplastic medicine
CN101175732B (en) * 2005-05-12 2010-06-16 黄文林 Production method for quinazoline derivatives and its application for producing medicine used for treating tumor disease
CN101175734B (en) * 2005-05-12 2011-10-12 黄文林 Quinazoline derivatives as antineoplastic medicine and its production method
WO2006119675A1 (en) * 2005-05-12 2006-11-16 Wenlin Huang The preparation process of quinazoline derivatives and application for the manufacture for the treatment of tumor disease
NZ563707A (en) 2005-05-18 2011-01-28 Array Biopharma Inc Heterocyclic inhibitors of MEK and methods of use thereof
BRPI0613563A2 (en) 2005-07-21 2012-01-17 Astrazeneca Ab new piperidine derivatives
TW200738634A (en) 2005-08-02 2007-10-16 Astrazeneca Ab New salt
TW200738658A (en) 2005-08-09 2007-10-16 Astrazeneca Ab Novel compounds
EP1928861B1 (en) 2005-09-20 2010-11-17 AstraZeneca AB 4- (ih-indazol-5-yl-amino)-quinazoline compounds as erbb receptor tyrosine kinase inhibitors for the treatment of cancer
JPWO2007034917A1 (en) 2005-09-22 2009-03-26 大日本住友製薬株式会社 New adenine compounds
WO2007034916A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034881A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034882A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090118263A1 (en) 2005-09-22 2009-05-07 Dainippon Sumitomo Pharma Co., Ltd. Novel Adenine Compound
GB0519879D0 (en) 2005-09-30 2005-11-09 Astrazeneca Ab Chemical process
EP1937632A1 (en) 2005-10-06 2008-07-02 Astra Zeneca AB Novel compounds
AU2006201635A1 (en) * 2005-10-20 2007-05-10 Ludwig Institute For Cancer Research Novel inhibitors and methods for their preparation
EP1945631B8 (en) 2005-10-28 2013-01-02 AstraZeneca AB 4- (3-aminopyrazole) pyrimidine derivatives for use as tyrosine kinase inhibitors in the treatment of cancer
EP1948179A1 (en) 2005-11-11 2008-07-30 Boehringer Ingelheim International GmbH Quinazoline derivatives for the treatment of cancer diseases
PL2090575T3 (en) 2005-11-15 2011-09-30 Array Biopharma Inc Processes and intermediates for the preparation of N4-phenyl-quinazoline-4-amine derivatives
TW200730512A (en) 2005-12-12 2007-08-16 Astrazeneca Ab Novel compounds
ATE552853T1 (en) 2005-12-13 2012-04-15 Medimmune Ltd PROTEINS THAT SPECIFICALLY BIND INSULIN-LIKE GROWTH FACTORS AND THEIR APPLICATIONS
ES2380683T3 (en) 2005-12-15 2012-05-17 Astrazeneca Ab Diphenyl ethers, amides, sulphides and substituted methanes for the treatment of respiratory disease
WO2007081978A2 (en) * 2006-01-11 2007-07-19 Angion Biomedica Corporation Modulators of hepatocyte growth factor / c-met activity
US20070231298A1 (en) * 2006-03-31 2007-10-04 Cell Genesys, Inc. Cytokine-expressing cancer immunotherapy combinations
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
EP2125722A2 (en) 2006-05-26 2009-12-02 AstraZeneca AB Bi-aryl or aryl-heteroaryl substituted indoles
CL2007002225A1 (en) 2006-08-03 2008-04-18 Astrazeneca Ab SPECIFIC UNION AGENT FOR A RECEIVER OF THE GROWTH FACTOR DERIVED FROM PLATES (PDGFR-ALFA); NUCLEIC ACID MOLECULA THAT CODIFIES IT; VECTOR AND CELL GUESTS THAT UNDERSTAND IT; CONJUGADO UNDERSTANDING THE AGENT; AND USE OF THE AGENT OF A
DE102006037478A1 (en) 2006-08-10 2008-02-14 Merck Patent Gmbh 2- (Heterocyclylbenzyl) -pyridazinone derivatives
DK2057156T3 (en) 2006-08-23 2017-05-08 Kudos Pharm Ltd 2-METHYLMORPHOLINPYRIDO, PYRAZO AND PYRIMIDO-PYRIMIDINE DERIVATIVES AS MTOR INHIBITORS
US7547781B2 (en) 2006-09-11 2009-06-16 Curis, Inc. Quinazoline based EGFR inhibitors containing a zinc binding moiety
AU2007296744A1 (en) * 2006-09-11 2008-03-20 Curis, Inc. Multi-functional small molecules as anti-proliferative agents
EP2061469B8 (en) * 2006-09-11 2014-02-26 Curis, Inc. Quinazoline based egfr inhibitors
CN101535279B (en) * 2006-09-11 2015-05-20 柯瑞斯公司 Quinazoline based egfr inhibitors containing a zinc binding moiety
DK2068880T3 (en) * 2006-09-18 2012-07-23 Boehringer Ingelheim Int Method of treating cancer harboring EGFR mutations
JP2010504949A (en) 2006-09-29 2010-02-18 アストラゼネカ アクチボラグ Combination of ZD6474 and bevacizumab for cancer therapy
EP1921070A1 (en) * 2006-11-10 2008-05-14 Boehringer Ingelheim Pharma GmbH & Co. KG Bicyclic heterocycles, medicaments comprising them, their use and process for their preparation
TW200825084A (en) 2006-11-14 2008-06-16 Astrazeneca Ab New compounds 521
US7799954B2 (en) 2006-11-17 2010-09-21 Abraxis Bioscience, Llc Dicarbonyl derivatives and methods of use
TW200831528A (en) 2006-11-30 2008-08-01 Astrazeneca Ab Compounds
CN101610813A (en) 2006-12-19 2009-12-23 阿斯利康(瑞典)有限公司 Quinuclidinol derivatives as muscarinic receptor antagonist
CL2008000191A1 (en) 2007-01-25 2008-08-22 Astrazeneca Ab COMPOUNDS DERIVED FROM 4-AMINO-CINNOTINA-3-CARBOXAMIDA; CSF-1R QUINASA INHIBITORS; YOUR PREPARATION PROCESS; AND ITS USE TO TREAT CANCER.
BRPI0807234A2 (en) * 2007-02-06 2014-06-03 Boehringer Ingelheim Int Bicyclic heterocycles, pharmaceutical compositions containing these compounds, use of same and processes for preparing same
US20080190689A1 (en) * 2007-02-12 2008-08-14 Ballard Ebbin C Inserts for engine exhaust systems
PE20081887A1 (en) 2007-03-20 2009-01-16 Dainippon Sumitomo Pharma Co NEW ADENINE COMPOUND
EP2138497A4 (en) 2007-03-20 2012-01-04 Dainippon Sumitomo Pharma Co Novel adenine compound
UA99459C2 (en) 2007-05-04 2012-08-27 Астразенека Аб 9-(pyrazol-3-yl)- 9h-purine-2-amine and 3-(pyraz0l-3-yl)-3h-imidazo[4,5-b]pyridin-5-amine derivatives and their use for the treatment of cancer
DE102007025717A1 (en) 2007-06-01 2008-12-11 Merck Patent Gmbh Aryl ether pyridazinone derivatives
DE102007025718A1 (en) 2007-06-01 2008-12-04 Merck Patent Gmbh pyridazinone derivatives
DE102007026341A1 (en) 2007-06-06 2008-12-11 Merck Patent Gmbh Benzoxazolonderivate
UA100983C2 (en) 2007-07-05 2013-02-25 Астразенека Аб Biphenyloxypropanoic acid as crth2 modulator and intermediates
DE102007032507A1 (en) 2007-07-12 2009-04-02 Merck Patent Gmbh pyridazinone derivatives
DE102007038957A1 (en) 2007-08-17 2009-02-19 Merck Patent Gmbh 6-thioxo-pyridazine derivatives
DE102007041115A1 (en) 2007-08-30 2009-03-05 Merck Patent Gmbh Thiadiazinonderivate
US8119616B2 (en) * 2007-09-10 2012-02-21 Curis, Inc. Formulation of quinazoline based EGFR inhibitors containing a zinc binding moiety
BRPI0817941A2 (en) 2007-10-04 2015-05-05 Astrazeneca Ab Steroidal [3,2-c] pyrazole compounds with glucocorticoid activity
AU2008309383B2 (en) 2007-10-11 2012-04-19 Astrazeneca Ab Pyrrolo [2, 3 -D] pyrimidin derivatives as protein kinase B inhibitors
US8080558B2 (en) 2007-10-29 2011-12-20 Natco Pharma Limited 4-(tetrazol-5-yl)-quinazoline derivatives as anti-cancer agent
TWI441820B (en) 2007-12-19 2014-06-21 Genentech Inc 5-anilinoimidazopyridines and methods of use
DE102007061963A1 (en) 2007-12-21 2009-06-25 Merck Patent Gmbh pyridazinone derivatives
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
CA2708871C (en) 2007-12-21 2017-11-21 Medimmune Limited Binding members for interleukin-4 receptor alpha (il-4r.alpha.) - 173
CN101945875B (en) 2007-12-21 2013-04-24 健泰科生物技术公司 Azaindolizines and methods of use
JP5529757B2 (en) * 2008-01-17 2014-06-25 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Sulfoximine-substituted quinazoline derivatives as immunomodulators, their preparation and use as pharmaceuticals
DK2245026T3 (en) 2008-02-07 2012-10-15 Boehringer Ingelheim Int Spirocyclic heterocycles, drug containing these compounds, their use and process for their preparation
US20110028471A1 (en) * 2008-02-21 2011-02-03 Astrazeneca Ab Combination therapy 238
JP5529761B2 (en) 2008-02-28 2014-06-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Protein kinase inhibitors and their uses
DE102008019907A1 (en) 2008-04-21 2009-10-22 Merck Patent Gmbh pyridazinone derivatives
MX2010012442A (en) 2008-05-13 2011-10-11 Astrazeneca Ab Fumarate salt of 4- (3-chloro-2-fluoroanilino) -7-methoxy-6- { [1- (n-methylcarbamoylmethyl) piperidin- 4-yl] oxy}quinazoline.
RU2509077C2 (en) 2008-05-27 2014-03-10 Астразенека Аб Phenoxypyridinylamide derivatives, and their use in treatment of pde4-mediated disease states
DE102008025750A1 (en) 2008-05-29 2009-12-03 Merck Patent Gmbh Dihydropyrazolderivate
DE102008028905A1 (en) 2008-06-18 2009-12-24 Merck Patent Gmbh 3- (3-pyrimidin-2-yl-benzyl) - [1,2,4] triazolo [4,3-b] pyridazine derivatives
DE102008029734A1 (en) 2008-06-23 2009-12-24 Merck Patent Gmbh Thiazolyl-piperidine derivatives
US8426430B2 (en) * 2008-06-30 2013-04-23 Hutchison Medipharma Enterprises Limited Quinazoline derivatives
ES2426096T3 (en) 2008-07-01 2013-10-21 Genentech, Inc. Isoindolone derivatives as MEK kinase inhibitors and methods of use
TWI461423B (en) 2008-07-02 2014-11-21 Astrazeneca Ab Thiazolidinedione compounds useful in the treatment of pim kinase related conditions and diseases
US8648191B2 (en) * 2008-08-08 2014-02-11 Boehringer Ingelheim International Gmbh Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them
DE102008037790A1 (en) 2008-08-14 2010-02-18 Merck Patent Gmbh Bicyclic triazole derivatives
DE102008038221A1 (en) 2008-08-18 2010-02-25 Merck Patent Gmbh 7-azaindole derivatives
CN101659657B (en) * 2008-08-29 2014-05-14 北大方正集团有限公司 Quinoline substituted by cyan and preparation method and applications thereof
CN101659658B (en) * 2008-08-29 2014-04-02 北大方正集团有限公司 Quinoline substituted by cyan
RU2581962C2 (en) 2008-09-19 2016-04-20 Медиммун Ллк Targeted binding agents against dll4 and application thereof
DE102008052943A1 (en) 2008-10-23 2010-04-29 Merck Patent Gmbh azaindole derivatives
WO2010067102A1 (en) 2008-12-09 2010-06-17 Astrazeneca Ab Diazaspiro [5.5] undecane derivatives and related compounds as muscarinic-receptor antagonists and beta-adrenoreceptor agonists for the treatment of pulmonary disorders
US7863325B2 (en) 2008-12-11 2011-01-04 Axcentua Pharmaceuticals Ab Crystalline genistein sodium salt dihydrate
CN102292097B (en) 2008-12-11 2015-05-27 艾克赛特药品有限公司 Crystalline forms of genistein
US20100152197A1 (en) 2008-12-15 2010-06-17 Astrazeneca Ab (4-tert-butylpiperazin-2-yl)(piperazin-1-yl)methanone-n-carboxamide derivatives
EP2367821B1 (en) 2008-12-17 2015-09-16 Merck Patent GmbH C-ring modified tricyclic benzonaphthiridinone protein kinase inhibitors and use thereof
JP2012512871A (en) 2008-12-18 2012-06-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Tricyclic azaindole
DE102008063667A1 (en) 2008-12-18 2010-07-01 Merck Patent Gmbh 3- (3-pyrimidin-2-yl-benzyl) - ° [1,2,4] triazolo [4,3-b] pyrimidine derivatives
DE102008062825A1 (en) 2008-12-23 2010-06-24 Merck Patent Gmbh 3- (3-pyrimidin-2-yl-benzyl) - [1,2,4] triazolo [4,3-b] pyridazine derivatives
DE102008062826A1 (en) 2008-12-23 2010-07-01 Merck Patent Gmbh pyridazinone derivatives
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
DE102009003975A1 (en) 2009-01-07 2010-07-08 Merck Patent Gmbh Benzothiazolonderivate
DE102009003954A1 (en) 2009-01-07 2010-07-08 Merck Patent Gmbh pyridazinone derivatives
DE102009004061A1 (en) 2009-01-08 2010-07-15 Merck Patent Gmbh pyridazinone derivatives
CN102388024A (en) 2009-01-16 2012-03-21 埃克塞里艾克西斯公司 Malate salt of n- (4- { [ 6, 7-bis (methyloxy) quin0lin-4-yl] oxy}phenyl-n' - (4 -fluorophenyl) cyclopropane-1-dicarboxamide, and crystalline forms therof for the treatment of cancer
EP3100745B1 (en) 2009-02-05 2018-04-18 Immunogen, Inc. Novel benzodiazepine derivatives
WO2010089580A1 (en) 2009-02-06 2010-08-12 Astrazeneca Ab Use of a mct1 inhibitor in the treatment of cancers expressing mct1 over mct4
MX2011008452A (en) 2009-02-10 2011-12-16 Astrazeneca Ab Triazolo [4,3-b] pyridazine derivatives and their uses for prostate cancer.
GB0905127D0 (en) 2009-03-25 2009-05-06 Pharminox Ltd Novel prodrugs
UY32520A (en) 2009-04-03 2010-10-29 Astrazeneca Ab COMPOUNDS THAT HAVE AGONIST ACTIVITY OF THE GLUCOCORTICOESTEROID RECEPTOR
US8389580B2 (en) 2009-06-02 2013-03-05 Duke University Arylcyclopropylamines and methods of use
US20100317593A1 (en) 2009-06-12 2010-12-16 Astrazeneca Ab 2,3-dihydro-1h-indene compounds
JP5963672B2 (en) 2009-07-06 2016-08-03 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング BIBW2992, a salt thereof and a method for drying a solid pharmaceutical preparation comprising this active ingredient
GB0913342D0 (en) 2009-07-31 2009-09-16 Astrazeneca Ab Compounds - 801
UA108618C2 (en) 2009-08-07 2015-05-25 APPLICATION OF C-MET-MODULATORS IN COMBINATION WITH THEMOSOLOMID AND / OR RADIATION THERAPY FOR CANCER TREATMENT
DE102009043260A1 (en) 2009-09-28 2011-04-28 Merck Patent Gmbh Pyridinyl-imidazolone derivatives
WO2011035540A1 (en) 2009-09-28 2011-03-31 齐鲁制药有限公司 4-(substituted anilino)quinazoline derivatives as tyrosine kinase inhibitors
EP2483244A1 (en) 2009-10-02 2012-08-08 AstraZeneca AB 2-pyridone compounds used as inhibitors of neutrophil elastase
DE102009049679A1 (en) 2009-10-19 2011-04-21 Merck Patent Gmbh Pyrazolopyrimidinderivate
WO2011048409A1 (en) 2009-10-20 2011-04-28 Astrazeneca Ab Cyclic amine derivatives having beta2 adrenergic receptor agonist and muscarinic receptor antagonist activity
US8399460B2 (en) 2009-10-27 2013-03-19 Astrazeneca Ab Chromenone derivatives
CN102741245B (en) 2009-11-18 2014-11-05 尼奥梅德研究院 Benzoimidazole compounds and uses thereof
EP3279215B1 (en) 2009-11-24 2020-02-12 MedImmune Limited Targeted binding agents against b7-h1
WO2011068233A1 (en) 2009-12-03 2011-06-09 Dainippon Sumitomo Pharma Co., Ltd. Imidazoquinolines which act via toll - like receptors (tlr)
BR112012014164A2 (en) 2009-12-14 2016-05-17 Merck Patent Gmbh sphingosine kinase inhibitors
DE102009058280A1 (en) 2009-12-14 2011-06-16 Merck Patent Gmbh thiazole
US8907098B2 (en) 2009-12-17 2014-12-09 Merck Patent Gmbh Inhibitors of sphingosine kinase
AU2011206864B2 (en) 2010-01-15 2013-12-19 Suzhou Neupharma Co., Ltd. Certain chemical entities, compositions, and methods
WO2011089416A1 (en) 2010-01-19 2011-07-28 Astrazeneca Ab Pyrazine derivatives
WO2011095807A1 (en) 2010-02-07 2011-08-11 Astrazeneca Ab Combinations of mek and hh inhibitors
CA2789629A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc. Cd20 antibodies and uses thereof
WO2011114148A1 (en) 2010-03-17 2011-09-22 Astrazeneca Ab 4h- [1, 2, 4] triazolo [5, 1 -b] pyrimidin-7 -one derivatives as ccr2b receptor antagonists
TWI406853B (en) * 2010-04-07 2013-09-01 Dev Center Biotechnology Dual inhibitors of egfr and vegfr-2 and uses and production processes thereof
WO2011154677A1 (en) 2010-06-09 2011-12-15 Astrazeneca Ab Substituted n-[1-cyano-2-(phenyl)ethyl] 1-aminocycloalk-1-ylcarboxamide compounds - 760
KR101217526B1 (en) * 2010-06-11 2013-01-02 한미사이언스 주식회사 Pharmaceutical composition comprising amide derivative or pharmaceutically acceptable salt thereof
GB201009801D0 (en) 2010-06-11 2010-07-21 Astrazeneca Ab Compounds 950
WO2012000182A1 (en) * 2010-06-30 2012-01-05 Hutchison Medipharma Limited Quinazoline compounds
TW201219383A (en) 2010-08-02 2012-05-16 Astrazeneca Ab Chemical compounds
TWI535712B (en) 2010-08-06 2016-06-01 阿斯特捷利康公司 Chemical compounds
DE102010034699A1 (en) 2010-08-18 2012-02-23 Merck Patent Gmbh pyrimidine derivatives
US9018197B2 (en) 2010-08-28 2015-04-28 Suzhou Neupharma Co. Ltd. Tetradecahydro-1H-cyclopenta[a]phenanthrene compounds, compositions, and related methods of use
EA201390421A1 (en) 2010-09-22 2013-09-30 Арена Фармасьютикалз, Инк. GPR119 RECEPTOR MODULATORS AND TREATMENT OF RELATED DISORDERS
GB201016442D0 (en) 2010-09-30 2010-11-17 Pharminox Ltd Novel acridine derivatives
DE102010048800A1 (en) 2010-10-20 2012-05-10 Merck Patent Gmbh quinoxaline
DE102010049595A1 (en) 2010-10-26 2012-04-26 Merck Patent Gmbh quinazoline derivatives
WO2012066335A1 (en) 2010-11-19 2012-05-24 Astrazeneca Ab Phenol compounds als toll -like receptor 7 agonists
WO2012066336A1 (en) 2010-11-19 2012-05-24 Astrazeneca Ab Benzylamine compounds as toll -like receptor 7 agonists
JP2013542916A (en) 2010-11-19 2013-11-28 大日本住友製薬株式会社 Cyclic amide compounds and their use in the treatment of diseases
WO2012067269A1 (en) 2010-11-19 2012-05-24 Dainippon Sumitomo Pharma Co., Ltd. Aminoalkoxyphenyl compounds and their use in the treatment of disease
JP5978225B2 (en) 2010-12-16 2016-08-24 大日本住友製薬株式会社 Imidazo [4,5-c] quinolin-1-yl derivatives useful for therapy
JP5978226B2 (en) 2010-12-17 2016-08-24 大日本住友製薬株式会社 Purine derivatives
EP2655416A1 (en) 2010-12-20 2013-10-30 Medimmune Limited Anti-il-18 antibodies and their uses
WO2012103810A1 (en) 2011-02-02 2012-08-09 Suzhou Neupharma Co., Ltd Certain chemical entities, compositions, and methods
PT2675480T (en) 2011-02-15 2019-04-15 Immunogen Inc Methods of preparation of conjugates
EP2675793B1 (en) 2011-02-17 2018-08-08 Cancer Therapeutics Crc Pty Limited Fak inhibitors
US9174946B2 (en) 2011-02-17 2015-11-03 Cancer Therapeutics Crc Pty Ltd Selective FAK inhibitors
RU2013144571A (en) 2011-03-04 2015-04-10 Ньюджен Терапьютикс, Инк. ALIN-SUBSTITUTED KINAZAZOLES AND WAYS OF THEIR APPLICATION
GB201104267D0 (en) 2011-03-14 2011-04-27 Cancer Rec Tech Ltd Pyrrolopyridineamino derivatives
UY34013A (en) 2011-04-13 2012-11-30 Astrazeneca Ab ? CHROMENONE COMPOUNDS WITH ANTI-TUMORAL ACTIVITY ?.
WO2012155339A1 (en) 2011-05-17 2012-11-22 江苏康缘药业股份有限公司 4-phenylamino-6-butenamide-7-alkyloxy quinazoline derivatives, preparative method and use thereof
KR101317809B1 (en) 2011-06-07 2013-10-16 한미약품 주식회사 Pharmaceutical composition comprising amide derivative inhibiting the growth of cancer cell and non-metalic salt lubricant
WO2012175991A1 (en) 2011-06-24 2012-12-27 Pharminox Limited Fused pentacyclic anti - proliferative compounds
US20140227293A1 (en) 2011-06-30 2014-08-14 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
MX353334B (en) 2011-07-12 2018-01-09 Astrazeneca Ab N- (6- ( (2r,3s) -3,4-dihydroxybutan-2-yloxy) -2- (4 - fluorobenzylthio) pyrimidin- 4 - yl) -3- methylazetidine- 1 - sulfonamide as chemokine receptor modulator.
ES2900230T3 (en) 2011-07-27 2022-03-16 Astrazeneca Ab 2-(2,4,5-anilino substituted)pyrimidine compounds
DE102011111400A1 (en) 2011-08-23 2013-02-28 Merck Patent Gmbh Bicyclic heteroaromatic compounds
CN107245056A (en) 2011-08-26 2017-10-13 润新生物公司 Chemical entities, composition and method
US9328081B2 (en) 2011-09-01 2016-05-03 Neupharma, Inc. Certain chemical entities, compositions, and methods
CN115403531A (en) 2011-09-14 2022-11-29 润新生物公司 Chemical entities, compositions, and methods as kinase inhibitors
EP2757885B1 (en) 2011-09-21 2017-03-15 Neupharma, Inc. Certain chemical entites, compositions, and methods
WO2013045955A1 (en) 2011-09-29 2013-04-04 The University Of Liverpool Prevention and/or treatment of cancer and/or cancer metastasis
US9249111B2 (en) 2011-09-30 2016-02-02 Neupharma, Inc. Substituted quinoxalines as B-RAF kinase inhibitors
US20130178520A1 (en) 2011-12-23 2013-07-11 Duke University Methods of treatment using arylcyclopropylamine compounds
US9670180B2 (en) 2012-01-25 2017-06-06 Neupharma, Inc. Certain chemical entities, compositions, and methods
AU2012367141B2 (en) 2012-01-28 2016-12-22 Merck Patent Gmbh Triazolo[4,5-d]pyrimidine derivatives
WO2013117285A1 (en) 2012-02-09 2013-08-15 Merck Patent Gmbh Furo [3, 2 - b] - and thieno [3, 2 - b] pyridine derivatives as tbk1 and ikk inhibitors
BR112014019357A8 (en) 2012-02-09 2017-07-11 Merck Patent Gmbh TETRAHYDRO-QUINAZOLINONE DERIVATIVES AS TANC AND PARP INHIBITORS
JP6479476B2 (en) 2012-02-21 2019-03-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 8-Substituted 2-amino- [1,2,4] triazolo [1,5-A] pyrazines as Syk Tyrosine Kinase Inhibitors and GCN2 Serine Kinase Inhibitors
EP2817306B1 (en) 2012-02-21 2015-09-16 Merck Patent GmbH Cyclic diaminopyrimidine derivatives as syk inhibitors
WO2013124025A1 (en) 2012-02-21 2013-08-29 Merck Patent Gmbh Furopyridine derivatives
CN104159901B (en) 2012-03-07 2016-10-26 默克专利股份公司 Triazolopyridine oxazine derivatives
EP2752413B1 (en) 2012-03-26 2016-03-23 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences Quinazoline derivative and application thereof
KR102070567B1 (en) 2012-03-28 2020-01-29 메르크 파텐트 게엠베하 Bicyclic pyrazinone derivatives
WO2013144532A1 (en) 2012-03-30 2013-10-03 Astrazeneca Ab 3 -cyano- 5 -arylamino-7 -cycloalkylaminopyrrolo [1, 5 -a] pyrimidine derivatives and their use as antitumor agents
BR112014024903A2 (en) 2012-04-05 2017-07-11 Hoffmann La Roche bispecific antibodies to human tweak and human il17 and their uses
WO2013165924A1 (en) 2012-04-29 2013-11-07 Neupharma, Inc. Certain chemical entities, compositions, and methods
CN104271580B (en) 2012-05-04 2017-02-22 默克专利股份公司 Pyrrolotriazinone derivatives
US9738724B2 (en) 2012-06-08 2017-08-22 Sutro Biopharma, Inc. Antibodies comprising site-specific non-natural amino acid residues, methods of their preparation and methods of their use
GB201211021D0 (en) 2012-06-21 2012-08-01 Cancer Rec Tech Ltd Pharmaceutically active compounds
US9732161B2 (en) 2012-06-26 2017-08-15 Sutro Biopharma, Inc. Modified Fc proteins comprising site-specific non-natural amino acid residues, conjugates of the same, methods of their preparation and methods of their use
JP6430936B2 (en) 2012-07-24 2018-11-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Hydroxystatin derivatives for the treatment of arthropathy
JP6374384B2 (en) 2012-08-07 2018-08-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Pyridopyrimidine derivatives as protein kinase inhibitors
PT2882714T (en) 2012-08-08 2020-02-19 Merck Patent Gmbh (aza-)isoquinolinone derivatives
US9238644B2 (en) 2012-08-17 2016-01-19 Cancer Therapeutics Crc Pty Limited VEGFR3 inhibitors
EP2887965A1 (en) 2012-08-22 2015-07-01 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
EP3584255B1 (en) 2012-08-31 2022-02-16 Sutro Biopharma, Inc. Modified amino acids comprising an azido group
WO2014041349A1 (en) 2012-09-12 2014-03-20 Cancer Therapeutics Crc Pty Ltd Tetrahydropyran-4-ylethylamino- or tetrahydropyranyl-4-ethyloxy-pyrimidines or -pyridazines as isoprenylcysteincarboxymethyl transferase inhibitors
US9688635B2 (en) 2012-09-24 2017-06-27 Neupharma, Inc. Certain chemical entities, compositions, and methods
WO2014048532A1 (en) 2012-09-26 2014-04-03 Merck Patent Gmbh Quinazolinone derivatives as parp inhibitors
JP6348115B2 (en) 2012-10-26 2018-06-27 ザ ユニバーシティー オブ クイーンズランド Use of endocytosis inhibitors and antibodies for cancer therapy
US10767229B2 (en) 2012-11-05 2020-09-08 Gmdx Co Pty Ltd Methods for determining the cause of somatic mutagenesis
WO2014075077A1 (en) 2012-11-12 2014-05-15 Neupharma, Inc. Certain chemical entities, compositions, and methods
EP2920146B1 (en) 2012-11-16 2016-09-28 Merck Patent GmbH 3-aminocyclopentane carboxamide derivatives
KR20140096571A (en) 2013-01-28 2014-08-06 한미약품 주식회사 Method for preparing 1-(4-(4-(3,4-dichloro-2-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)piperidin-1-yl)prop-2-en-1-one
WO2014117274A1 (en) 2013-01-31 2014-08-07 Neomed Institute Imidazopyridine compounds and uses thereof
AU2014221010B2 (en) 2013-02-25 2018-06-14 Merck Patent Gmbh 2-amino -3,4-dihydro-quinazoline derivatives and the use thereof as cathepsin D inhibitors
JP6423804B2 (en) 2013-02-28 2018-11-14 イミュノジェン・インコーポレーテッド Complex containing cell binding agent and cytotoxic agent
WO2014134483A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014135245A1 (en) 2013-03-05 2014-09-12 Merck Patent Gmbh 9-(aryl or heteroaryl)-2-(pyrazolyl, pyrrolidinyl or cyclopentyl)aminopurine derivatives as anticancer agents
WO2014144227A1 (en) 2013-03-15 2014-09-18 Magceutics, Inc. Magnesium compositions and uses thereof for cancers
WO2014161570A1 (en) 2013-04-03 2014-10-09 Roche Glycart Ag Antibodies against human il17 and uses thereof
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014195507A1 (en) 2013-06-07 2014-12-11 Universite Catholique De Louvain 3-carboxy substituted coumarin derivatives with a potential utility for the treatment of cancer diseases
EP3013424A4 (en) 2013-06-25 2017-03-29 University of Canberra Methods and compositions for modulating cancer stem cells
ES2865473T3 (en) 2013-07-10 2021-10-15 Sutro Biopharma Inc Antibodies Comprising Multiple Site-Specific Unnatural Amino Acid Residues, Methods for Their Preparation, and Methods of Use
HUE043465T2 (en) 2013-08-23 2019-08-28 Neupharma Inc Certain chemical entities, compositions, and methods
ES2851724T3 (en) 2013-09-18 2021-09-08 Epiaxis Therapeutics Pty Ltd Stem cell modulation
WO2015048852A1 (en) 2013-10-01 2015-04-09 The University Of Queensland Kits and methods for diagnosis, screening, treatment and disease monitoring
EP3055298B1 (en) 2013-10-11 2020-04-29 Sutro Biopharma, Inc. Modified amino acids comprising tetrazine functional groups, methods of preparation, and methods of their use
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US9242965B2 (en) 2013-12-31 2016-01-26 Boehringer Ingelheim International Gmbh Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors
GB201403536D0 (en) 2014-02-28 2014-04-16 Cancer Rec Tech Ltd Inhibitor compounds
CN105330653A (en) * 2014-08-11 2016-02-17 石药集团中奇制药技术(石家庄)有限公司 Quinazoline derivatives
WO2016029262A1 (en) 2014-08-25 2016-03-03 University Of Canberra Compositions for modulating cancer stem cells and uses therefor
WO2016077881A1 (en) 2014-11-17 2016-05-26 The University Of Queensland Glycoprotein biomarkers for esophageal adenocarcinoma and barrett's esophagus and uses thereof
MA41179A (en) 2014-12-19 2017-10-24 Cancer Research Tech Ltd PARG INHIBITOR COMPOUNDS
UA126268C2 (en) 2015-01-06 2022-09-14 Арена Фармасьютікалз, Інк. Methods of treating conditions related to the s1p1 receptor
GB201501870D0 (en) 2015-02-04 2015-03-18 Cancer Rec Tech Ltd Autotaxin inhibitors
GB201502020D0 (en) 2015-02-06 2015-03-25 Cancer Rec Tech Ltd Autotaxin inhibitory compounds
CA2976227C (en) 2015-02-17 2023-10-24 Neupharma, Inc. Quinazoline derivatives and their use in treatment of cancer
GB201510019D0 (en) 2015-06-09 2015-07-22 Cancer Therapeutics Crc Pty Ltd Compounds
PL3310760T3 (en) 2015-06-22 2023-03-06 Arena Pharmaceuticals, Inc. Crystalline l-arginine salt of (r)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta[b]indol-3-yl)acetic acid for use in s1p1 receptor-associated disorders
JP6842458B2 (en) 2015-08-04 2021-03-17 オーセントラ セラピュティクス ピーティーワイ エルティーディーAucentra Therapeutics Pty Ltd N- (pyridin-2-yl) -4- (thiazole-5-yl) pyrimidine-2-amine derivative as a therapeutic compound
WO2017031551A1 (en) 2015-08-26 2017-03-02 Gmdx Co Pty Ltd Methods of detecting cancer recurrence
GB201516504D0 (en) 2015-09-17 2015-11-04 Astrazeneca Ab Imadazo(4,5-c)quinolin-2-one Compounds and their use in treating cancer
GB201519568D0 (en) 2015-11-05 2015-12-23 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
AU2017212739B2 (en) 2016-01-27 2024-03-21 Sutro Biopharma, Inc. Anti-CD74 antibody conjugates, compositions comprising anti-CD74 antibody conjugates and methods of using anti-CD74 antibody conjugates
SG11201806122YA (en) 2016-02-01 2018-08-30 Univ Canberra Proteinaceous compounds and uses therefor
GB201604182D0 (en) 2016-03-11 2016-04-27 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
PE20181895A1 (en) 2016-03-21 2018-12-11 Astrazeneca Ab CINNOLIN-4-AMINE COMPOUNDS AND THEIR USE IN THE TREATMENT OF CANCER
CN108834414A (en) 2016-04-07 2018-11-16 阿斯利康(瑞典)有限公司 N, N- dimethyl -3- [[5- (3- methyl -2- oxo -1- tetrahydropyran -4-base-imidazo [4,5-C] quinoline-8-yl) -2- pyridyl group] oxygroup] propane -1- amine oxide is used for treating cancer as ATM (ataxia telangiectasia mutation) kinase modulator
CN105853434A (en) * 2016-04-13 2016-08-17 李春 Medicinal composition for treating gingivitis in orthodontic children
HRP20221051T8 (en) 2016-04-15 2023-07-21 Cancer Research Technology Limited Heterocyclic compounds as ret kinase inhibitors
GB2554333A (en) 2016-04-26 2018-04-04 Big Dna Ltd Combination therapy
GB201608227D0 (en) 2016-05-11 2016-06-22 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
CN109789146B (en) 2016-07-29 2023-04-18 拉普特医疗公司 Chemokine receptor modulators and uses thereof
EP3497087B1 (en) 2016-08-15 2021-11-10 Neupharma, Inc. Pyrrolo[1,2-c]pyrimidine, imidazo[1,5-c]pyrimidine, quinazoline, purine and imidazo[1,5-a][1,3,5]triazine derivatives as tyrosine kinase inhibitors for the treatment of cancer
CA3035081A1 (en) 2016-09-02 2018-03-08 Dana-Farber Cancer Institute, Inc. Composition and methods of treating b cell disorders
US10919896B2 (en) 2016-09-22 2021-02-16 Cancer Research Technology Limited Preparation and uses of pyrimidinone derivatives
GB201617103D0 (en) 2016-10-07 2016-11-23 Cancer Research Technology Limited Compound
US10786502B2 (en) 2016-12-05 2020-09-29 Apros Therapeutics, Inc. Substituted pyrimidines containing acidic groups as TLR7 modulators
EP3548478B1 (en) 2016-12-05 2021-11-17 Apros Therapeutics, Inc. Pyrimidine compounds containing acidic groups
JOP20190151B1 (en) 2016-12-20 2023-09-17 Astrazeneca Ab Amino-triazolopyridine compounds and their use in treating cancer
CA3051604A1 (en) 2017-02-01 2018-08-09 Aucentra Therapeutics Pty Ltd Derivatives of n-cycloalkyl/heterocycloalkyl-4-(imidazo [1,2-a]pyridine)pyrimidin-2-amine as therapeutic agents
WO2018162625A1 (en) 2017-03-09 2018-09-13 Truly Translational Sweden Ab Prodrugs of sulfasalazine, pharmaceutical compositions thereof and their use in the treatment of autoimmune disease
JOP20190209A1 (en) 2017-03-16 2019-09-12 Astrazeneca Ab Deuterated imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
GB201704325D0 (en) 2017-03-17 2017-05-03 Argonaut Therapeutics Ltd Compounds
GB201705971D0 (en) 2017-04-13 2017-05-31 Cancer Res Tech Ltd Inhibitor compounds
CN108864079B (en) 2017-05-15 2021-04-09 深圳福沃药业有限公司 Triazine compound and pharmaceutically acceptable salt thereof
WO2018215798A1 (en) 2017-05-26 2018-11-29 Cancer Research Technology Limited 2-quinolone derived inhibitors of bcl6
PL3630188T3 (en) 2017-05-31 2022-01-03 Amplio Pharma Ab A pharmaceutical composition comprising a combination of methotrexate and novobiocin, and the use of said composition in therapy
WO2019007447A1 (en) 2017-07-05 2019-01-10 E.P.O.S Iasis Research And Development Limited Multifunctional conjugates
US20200207859A1 (en) 2017-07-26 2020-07-02 Sutro Biopharma, Inc. Methods of using anti-cd74 antibodies and antibody conjugates in treatment of t-cell lymphoma
AU2018309265B2 (en) 2017-08-01 2022-06-02 Merck Patent Gmbh Thiazolopyridine derivatives as adenosine receptor antagonists
US11447505B1 (en) 2017-08-18 2022-09-20 Cancer Research Technology Limited Pyrrolo[2,3-b]pyridine compounds and their use in the treatment of cancer
TWI791593B (en) 2017-08-21 2023-02-11 德商馬克專利公司 Benzimidazole derivatives as adenosine receptor antagonists
WO2019038214A1 (en) 2017-08-21 2019-02-28 Merck Patent Gmbh Quinoxaline derivatives as adenosine receptor antagonists
KR20200051802A (en) 2017-09-18 2020-05-13 서트로 바이오파마, 인크. Anti-folate receptor alpha antibody conjugates and uses thereof
CN111344293A (en) 2017-09-20 2020-06-26 阿斯利康(瑞典)有限公司 1, 3-dihydroimidazo [4, 5-c ] cinnolin-2-one compounds and their use in the treatment of cancer
TWI702205B (en) 2017-10-06 2020-08-21 俄羅斯聯邦商拜奧卡德聯合股份公司 Epidermal growth factor receptor inhibitors
CA3081750A1 (en) 2017-11-06 2019-05-09 Rapt Therapeutics, Inc. Anticancer agents
EP3488868B1 (en) 2017-11-23 2023-09-13 medac Gesellschaft für klinische Spezialpräparate mbH Pharmaceutical composition for oral administration containing sulfasalazine and / or a sulfasalazine organic salt, production process and use
EP3489222A1 (en) 2017-11-23 2019-05-29 medac Gesellschaft für klinische Spezialpräparate mbH Sulfasalazine salts, production processes and uses
US11325900B2 (en) 2018-01-15 2022-05-10 Aucentra Holdings Pty Ltd 5-(pyrimidin-4-yl)thiazol-2-yl urea derivatives as therapeutic agents
GB201801128D0 (en) 2018-01-24 2018-03-07 Univ Oxford Innovation Ltd Compounds
IL276295B2 (en) 2018-01-26 2024-02-01 Rapt Therapeutics Inc Chemokine receptor modulators and uses thereof
CA3090528A1 (en) 2018-02-08 2019-08-15 Neupharma, Inc. Certain chemical entities, compositions, and methods
WO2019175093A1 (en) 2018-03-12 2019-09-19 Astrazeneca Ab Method for treating lung cancer
EP4201939A1 (en) 2018-04-13 2023-06-28 Cancer Research Technology Limited Bcl6 inhibitors
AU2019260793B2 (en) 2018-04-27 2023-05-18 Spruce Biosciences, Inc. Methods for treating testicular and ovarian adrenal rest tumors
US10857153B2 (en) 2018-06-04 2020-12-08 Apros Therapeutics, Inc. Pyrimidine compounds containing acidic groups
GB201809102D0 (en) 2018-06-04 2018-07-18 Univ Oxford Innovation Ltd Compounds
JP2021527051A (en) 2018-06-05 2021-10-11 ラプト・セラピューティクス・インコーポレイテッド Pyrazolo-pyrimidine-amino-cycloalkyl compounds and their therapeutic use
GB201810092D0 (en) 2018-06-20 2018-08-08 Ctxt Pty Ltd Compounds
GB201810581D0 (en) 2018-06-28 2018-08-15 Ctxt Pty Ltd Compounds
US20220047716A1 (en) 2018-09-17 2022-02-17 Sutro Biopharma, Inc. Combination therapies with anti-folate receptor antibody conjugates
WO2020068600A1 (en) 2018-09-24 2020-04-02 Rapt Therapeutics, Inc. Ubiquitin-specific-processing protease 7 (usp7) modulators and uses thereof
CA3117510A1 (en) 2018-10-25 2020-04-30 Merck Patent Gmbh 5-azaindazole derivatives as adenosine receptor antagonists
WO2020083856A1 (en) 2018-10-25 2020-04-30 Merck Patent Gmbh 5-azaindazole derivatives as adenosine receptor antagonists
GB201819126D0 (en) 2018-11-23 2019-01-09 Cancer Research Tech Ltd Inhibitor compounds
EP3960858A4 (en) 2018-12-25 2023-02-15 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences Small rna medicament for prevention and treatment of inflammation-related diseases and combination thereof
AR117844A1 (en) 2019-01-22 2021-09-01 Merck Patent Gmbh THIAZOLOPYRIDINE DERIVATIVES AS ANTAGONISTS OF THE ADENOSINE RECEPTOR
JP2022524759A (en) 2019-03-07 2022-05-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Carboxamide-pyrimidine derivative as an SHP2 antagonist
CN111747931A (en) 2019-03-29 2020-10-09 深圳福沃药业有限公司 Azaaromatic cyclic amide derivatives for the treatment of cancer
US20230085408A1 (en) 2019-04-05 2023-03-16 STORM Therapeutics Ltd. Mettl3 inhibitory compounds
WO2020210384A1 (en) 2019-04-08 2020-10-15 Merck Patent Gmbh Pyrimidinone derivatives as shp2 antagonists
GB201905328D0 (en) 2019-04-15 2019-05-29 Azeria Therapeutics Ltd Inhibitor compounds
WO2020227105A1 (en) 2019-05-03 2020-11-12 Sutro Biopharma, Inc. Anti-bcma antibody conjugates
US20220324874A1 (en) 2019-05-21 2022-10-13 Voronoi Inc. N-containing heteroaryl derivative and pharmaceutical composition comprising same as active ingredient for prevention or treatment of cancer
GB201908885D0 (en) 2019-06-20 2019-08-07 Storm Therapeutics Ltd Therapeutic compounds
EP4023639A1 (en) 2019-08-31 2022-07-06 Etern Biopharma (Shanghai) Co., Ltd. Pyrazole derivative for fgfr inhibitor and preparation method therefor
WO2021055744A1 (en) 2019-09-20 2021-03-25 Ideaya Biosciences, Inc. 4-substituted indole and indazole sulfonamido derivatives as parg inhibitors
GB201913988D0 (en) 2019-09-27 2019-11-13 Celleron Therapeutics Ltd Novel treatment
GB201914860D0 (en) 2019-10-14 2019-11-27 Cancer Research Tech Ltd Inhibitor compounds
GB201915829D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
GB201915831D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
GB201915828D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
CA3162166A1 (en) 2019-12-02 2021-06-10 Storm Therapeutics Limited Polyheterocyclic compounds as mettl3 inhibitors
EP4114852A1 (en) 2020-03-03 2023-01-11 Sutro Biopharma, Inc. Antibodies comprising site-specific glutamine tags, methods of their preparation and methods of their use
GB202004960D0 (en) 2020-04-03 2020-05-20 Kinsenus Ltd Inhibitor compounds
GB202012969D0 (en) 2020-08-19 2020-09-30 Univ Of Oxford Inhibitor compounds
US20230322687A1 (en) * 2020-09-25 2023-10-12 Cspc Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd Salt of arylaminoquinazoline-containing compound, and preparation method therefor and use thereof
WO2022074379A1 (en) 2020-10-06 2022-04-14 Storm Therapeutics Limited Mettl3 inhibitory compounds
WO2022074391A1 (en) 2020-10-08 2022-04-14 Storm Therapeutics Limited Compounds inhibitors of mettl3
EP3992191A1 (en) 2020-11-03 2022-05-04 Deutsches Krebsforschungszentrum Imidazo[4,5-c]quinoline compounds and their use as atm kinase inhibitors
WO2022179608A1 (en) * 2021-02-25 2022-09-01 石药集团中奇制药技术(石家庄)有限公司 Use of multi-target protein kinase inhibitor
GB202102895D0 (en) 2021-03-01 2021-04-14 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
WO2022197641A1 (en) 2021-03-15 2022-09-22 Rapt Therapeutics, Inc. 1h-pyrazolo[3,4-d]pyrimidin-6-yl-amine derivatives as hematopoietic progenitor kinase 1 (hpk1) modulators and/or inhibitors for the treatment of cancer and other diseases
KR20240004659A (en) 2021-04-30 2024-01-11 셀진 코포레이션 Combination therapy using an anti-BCMA antibody-drug conjugate (ADC) in combination with a gamma secretase inhibitor (GSI)
EP4333900A2 (en) 2021-05-03 2024-03-13 Merck Patent GmbH Her2 targeting fc antigen binding fragment-drug conjugates
BR112023024040A2 (en) 2021-05-17 2024-02-06 Hk Inno N Corp COMPOUND, THE OPTICAL ISOMER THEREOF, THE SOLVATE THEREOF, THE HYDRATE THEREOF OR THE PHARMACEUTICALLY ACCEPTABLE SALT THEREOF AND THEIR USE, PHARMACEUTICAL COMPOSITION COMPRISING SAID COMPOUND, FUNCTIONAL HEALTH FOOD COMPOSITION AND COMBINED PREPARATION
CA3221411A1 (en) 2021-05-25 2022-12-01 Merck Patent Gmbh Egfr targeting fc antigen binding fragment-drug conjugates
GB202107907D0 (en) 2021-06-02 2021-07-14 Storm Therapeutics Ltd Combination therapies
GB202108383D0 (en) 2021-06-11 2021-07-28 Argonaut Therapeutics Ltd Compounds useful in the treatment or prevention of a prmt5-mediated disorder
WO2023057394A1 (en) 2021-10-04 2023-04-13 Forx Therapeutics Ag N,n-dimethyl-4-(7-(n-(1-methylcyclopropyl)sulfamoyl)-imidazo[1,5-a]pyridin-5-yl)piperazine-1-carboxamide derivatives and the corresponding pyrazolo[1,5-a]pyridine derivatives as parg inhibitors for the treatment of cancer
WO2023057389A1 (en) 2021-10-04 2023-04-13 Forx Therapeutics Ag Parg inhibitory compounds
WO2023131690A1 (en) 2022-01-10 2023-07-13 Merck Patent Gmbh Substituted heterocycles as hset inhibitors
GB202202199D0 (en) 2022-02-18 2022-04-06 Cancer Research Tech Ltd Compounds
WO2023175185A1 (en) 2022-03-17 2023-09-21 Forx Therapeutics Ag 2,4-dioxo-1,4-dihydroquinazoline derivatives as parg inhibitors for the treatment of cancer
WO2023175184A1 (en) 2022-03-17 2023-09-21 Forx Therapeutics Ag 2,4-dioxo-1,4-dihydroquinazoline derivatives as parg inhibitors for the treatment of cancer
WO2023186881A1 (en) 2022-03-29 2023-10-05 Baden-Württemberg Stiftung Ggmbh P38 map kinase inhibitors for use in the treatment of colorectal cancer
GB202204935D0 (en) 2022-04-04 2022-05-18 Cambridge Entpr Ltd Nanoparticles
WO2023196432A1 (en) 2022-04-06 2023-10-12 Rapt Therapeutics, Inc. Chemokine receptor modulators and uses thereof
GB202209404D0 (en) 2022-06-27 2022-08-10 Univ Of Sussex Compounds
US20240058465A1 (en) 2022-06-30 2024-02-22 Sutro Biopharma, Inc. Anti-ror1 antibody conjugates, compositions comprising anti ror1 antibody conjugates, and methods of making and using anti-ror1 antibody conjugates
WO2024030825A1 (en) 2022-08-01 2024-02-08 Neupharma, Inc Crystalline salts of crystalline salts of (3s,5r,8r,9s,10s,13r,14s,17r)-14-hydroxy-10,13-dimethyl-17-(2- oxo-2h-pyran-5-yl)hexadecahydro-1h-cyclopenta[a]phenanthren-3-yl piperazine-1-carboxylate
GB202213167D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213166D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213164D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213163D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213162D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Prodrugs

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266990A (en) 1963-09-24 1966-08-16 Warner Lambert Pharmaceutical Derivatives of quinazoline
DE2213558A1 (en) 1971-03-30 1972-10-05 Lilly Industries Ltd., London Thiazolyl sulfides
JPS542327A (en) 1977-06-07 1979-01-09 Sankyo Co Ltd Agricultural and horticultural pesticide
GB2033894A (en) 1978-09-11 1980-05-29 Sankyo Co 4-anilinoquinayolines
US4343940A (en) 1979-02-13 1982-08-10 Mead Johnson & Company Anti-tumor quinazoline compounds
GB2160201A (en) 1984-06-14 1985-12-18 Wyeth John & Brother Ltd Quinazoline and cinnoline derivatives
WO1987004321A2 (en) 1986-01-23 1987-07-30 Rhone-Poulenc Nederlands B.V. Use of heterocyclic nitrogen-containing compounds for reducing moisture loss from plants and increasing crop yield
EP0326330A2 (en) 1988-01-29 1989-08-02 DowElanco Quinoline, quinazoline, and cinnoline fungicides
EP0326307A2 (en) 1988-01-23 1989-08-02 Kyowa Hakko Kogyo Co., Ltd. Novel pyridazinone derivatives and pharmaceutical preparations containing them
WO1992014716A1 (en) 1991-02-20 1992-09-03 Pfizer Inc. 2,4-diaminoquinazolines derivatives for enhancing antitumor activity
WO1992016527A1 (en) 1991-03-22 1992-10-01 Nippon Soda Co., Ltd. 2-substituted pyridine derivative, production thereof, and agrohorticultural bactericide
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
EP0520722A1 (en) 1991-06-28 1992-12-30 Zeneca Limited Therapeutic preparations containing quinazoline derivatives
EP0566226A1 (en) 1992-01-20 1993-10-20 Zeneca Limited Quinazoline derivatives
EP0602851A1 (en) 1992-12-10 1994-06-22 Zeneca Limited Quinazoline derivatives
US5373011A (en) 1992-06-11 1994-12-13 American Cyanamid Company Substituted quinazoline fungicidal agents
EP0635507A1 (en) 1993-07-19 1995-01-25 Zeneca Limited Tricyclic derivatives and their use as anti-cancer agents
EP0635498A1 (en) 1993-07-19 1995-01-25 Zeneca Limited Quinazoline derivatives and their use as anti-cancer agents
US5411963A (en) 1988-01-29 1995-05-02 Dowelanco Quinazoline derivatives
WO1995015758A1 (en) 1993-12-10 1995-06-15 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit csf-1r receptor tyrosine kinase
WO1995019169A2 (en) 1994-01-07 1995-07-20 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancer using inhibitors of platelet derived growth factor receptor
WO1995021613A1 (en) 1994-02-09 1995-08-17 Sugen, Inc. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
WO1995023141A1 (en) 1994-02-23 1995-08-31 Pfizer Inc. 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents
WO1995024190A2 (en) 1994-03-07 1995-09-14 Sugen, Inc. Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof
US5480883A (en) 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
WO1996009294A1 (en) 1994-09-19 1996-03-28 The Wellcome Foundation Limited Substituted heteroaromatic compounds and their use in medicine
WO1996015118A1 (en) 1994-11-12 1996-05-23 Zeneca Limited Aniline derivatives
WO1996016960A1 (en) 1994-11-30 1996-06-06 Zeneca Limited Quinazoline derivatives
WO1996029331A1 (en) 1995-03-20 1996-09-26 Dr. Karl Thomae Gmbh Imidazoquinazolines, drugs containing these compounds, their use and process for their preparation
WO1996030347A1 (en) 1995-03-30 1996-10-03 Pfizer Inc. Quinazoline derivatives
WO1996030370A2 (en) 1995-03-27 1996-10-03 Fujisawa Pharmaceutical Co., Ltd. Thiazole and thiadiazole derivatives, their preparation and pharmaceutical compositions useful in the treatment of thrombocytopenia
WO1996033980A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
WO1996033981A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivative
WO1996033979A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
WO1996033978A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivative
WO1996033977A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
US5571815A (en) 1992-03-14 1996-11-05 Hoechst Aktiengesellschaft Substituted pyrimidines, process for their preparation, and their use as pesticides and fungicides
EP0743308A2 (en) 1995-05-16 1996-11-20 Kanebo, Ltd. Quinazoline compound and anti-tumor agent containing said compound as an active ingredient
WO1996039145A1 (en) 1995-06-06 1996-12-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of her-2 autophosphorylation properties
WO1996040648A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Quinazolines and pharmaceutical compositions
WO1996040673A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Novel urea- and thiourea-type compounds
WO1997002266A1 (en) 1995-07-06 1997-01-23 Novartis Ag Pyrrolopyrimidines and processes for the preparation thereof
WO1997003069A1 (en) 1995-07-13 1997-01-30 Glaxo Group Limited Heterocyclic compounds and pharmaceutical compositions containing them
WO1997017329A1 (en) 1995-11-07 1997-05-15 Kirin Beer Kabushiki Kaisha Quinoline derivatives and quinazoline derivatives inhibiting autophosphorylation of growth factor receptor originating in platelet and pharmaceutical compositions containing the same
WO1997022596A1 (en) 1995-12-18 1997-06-26 Zeneca Limited Quinazoline derivatives
US5650415A (en) 1995-06-07 1997-07-22 Sugen, Inc. Quinoline compounds
EP0787722A1 (en) 1996-02-05 1997-08-06 American Cyanamid Company Substituted quinazoline derivatives
WO1997028161A1 (en) 1996-02-01 1997-08-07 Novartis Ag Novel pyrrolo[2,3-d]pyrimidines and their use as tyrosine kinase inhibitors
US5656643A (en) 1993-11-08 1997-08-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
WO1997030035A1 (en) 1996-02-13 1997-08-21 Zeneca Limited Quinazoline derivatives as vegf inhibitors
WO1997030044A1 (en) 1996-02-14 1997-08-21 Zeneca Limited Quinazoline compounds
WO1997030034A1 (en) 1996-02-14 1997-08-21 Zeneca Limited Quinazoline derivatives as antitumor agents
WO1997032856A1 (en) * 1996-03-05 1997-09-12 Zeneca Limited 4-anilinoquinazoline derivatives
WO1997034876A1 (en) 1996-03-15 1997-09-25 Zeneca Limited Cinnoline derivatives and use as medicine
DE19614718A1 (en) 1996-04-15 1997-10-16 Hoechst Schering Agrevo Gmbh Substituted pyridines / pyrimidines, processes for their preparation and their use as pesticides
WO1997037999A1 (en) 1996-04-04 1997-10-16 University Of Nebraska Board Of Regents Synthetic triple helix-forming compounds
WO1997038983A1 (en) 1996-04-12 1997-10-23 Warner-Lambert Company Irreversible inhibitors of tyrosine kinases
WO1997038994A1 (en) 1996-04-13 1997-10-23 Zeneca Limited Quinazoline derivatives
WO1997042187A1 (en) 1996-05-06 1997-11-13 Zeneca Limited Oxindole derivatives
WO1997049689A1 (en) 1996-06-21 1997-12-31 Pharmacia & Upjohn S.P.A. Bicyclic 4-aralkylaminopyrimidine derivatives as tyrosine kinase inhibitors
WO1998002434A1 (en) 1996-07-13 1998-01-22 Glaxo Group Limited Fused heterocyclic compounds as protein tyrosine kinase inhibitors
US5712395A (en) 1992-11-13 1998-01-27 Yissum Research Development Corp. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
US5714493A (en) 1991-05-10 1998-02-03 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
WO1998013350A1 (en) 1996-09-25 1998-04-02 Zeneca Limited Qinoline derivatives inhibiting the effect of growth factors such as vegf
WO1998014431A1 (en) 1996-10-01 1998-04-09 Kyowa Hakko Kogyo Co., Ltd. Nitrogenous heterocyclic compounds
EP0837063A1 (en) 1996-10-17 1998-04-22 Pfizer Inc. 4-Aminoquinazoline derivatives
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
WO1998023613A1 (en) 1996-11-27 1998-06-04 Pfizer Inc. Fused bicyclic pyrimidine derivatives
WO1998010767A3 (en) 1996-09-13 1998-08-06 Sugen Inc Use of quinazoline derivatives for the manufacture of a medicament in the treatment of hyperproliferative skin disorders
US5792771A (en) 1992-11-13 1998-08-11 Sugen, Inc. Quinazoline compounds and compositions thereof for the treatment of disease
WO1998035958A1 (en) 1997-02-13 1998-08-20 Novartis Ag Phthalazines with angiogenesis inhibiting activity
WO1998043960A1 (en) 1997-04-03 1998-10-08 American Cyanamid Company Substituted 3-cyano quinolines
WO1998050038A1 (en) 1997-05-06 1998-11-12 American Cyanamid Company Use of quinazoline compounds for the treatment of polycystic kidney disease
WO1999006378A1 (en) 1997-07-29 1999-02-11 Warner-Lambert Company Irreversible inhibitors of tyrosine kinases
WO1999006396A1 (en) 1997-07-29 1999-02-11 Warner-Lambert Company Irreversible bicyclic inhibitors of tyrosine kinases
WO1999009024A1 (en) 1997-08-14 1999-02-25 Smithkline Beecham Plc Phenyl urea and phenyl thiourea derivatives as hfgan72 antagonists
WO1999009016A1 (en) 1997-08-01 1999-02-25 American Cyanamid Company Substituted quinazoline derivatives and their use as tyrosine kinase inhibitors
WO1999010349A1 (en) 1997-08-22 1999-03-04 Zeneca Limited Oxindolylquinazoline derivatives as angiogenesis inhibitors
US5929080A (en) 1997-05-06 1999-07-27 American Cyanamid Company Method of treating polycystic kidney disease
US6002008A (en) 1997-04-03 1999-12-14 American Cyanamid Company Substituted 3-cyano quinolines
WO2001032651A1 (en) 1999-11-05 2001-05-10 Astrazeneca Ab Quinazoline derivatives as vegf inhibitors
US6414148B1 (en) 1996-09-25 2002-07-02 Zeneca Limited Quinazoline derivatives and pharmaceutical compositions containing them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US36265A (en) * 1862-08-26 Current water-wheel

Patent Citations (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266990A (en) 1963-09-24 1966-08-16 Warner Lambert Pharmaceutical Derivatives of quinazoline
DE2213558A1 (en) 1971-03-30 1972-10-05 Lilly Industries Ltd., London Thiazolyl sulfides
JPS542327A (en) 1977-06-07 1979-01-09 Sankyo Co Ltd Agricultural and horticultural pesticide
GB2033894A (en) 1978-09-11 1980-05-29 Sankyo Co 4-anilinoquinayolines
US4343940A (en) 1979-02-13 1982-08-10 Mead Johnson & Company Anti-tumor quinazoline compounds
GB2160201A (en) 1984-06-14 1985-12-18 Wyeth John & Brother Ltd Quinazoline and cinnoline derivatives
WO1987004321A2 (en) 1986-01-23 1987-07-30 Rhone-Poulenc Nederlands B.V. Use of heterocyclic nitrogen-containing compounds for reducing moisture loss from plants and increasing crop yield
EP0326307A2 (en) 1988-01-23 1989-08-02 Kyowa Hakko Kogyo Co., Ltd. Novel pyridazinone derivatives and pharmaceutical preparations containing them
US5411963A (en) 1988-01-29 1995-05-02 Dowelanco Quinazoline derivatives
EP0326330A2 (en) 1988-01-29 1989-08-02 DowElanco Quinoline, quinazoline, and cinnoline fungicides
WO1992014716A1 (en) 1991-02-20 1992-09-03 Pfizer Inc. 2,4-diaminoquinazolines derivatives for enhancing antitumor activity
WO1992016527A1 (en) 1991-03-22 1992-10-01 Nippon Soda Co., Ltd. 2-substituted pyridine derivative, production thereof, and agrohorticultural bactericide
US5714493A (en) 1991-05-10 1998-02-03 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase
USRE36256E (en) 1991-05-10 1999-07-20 Rhone-Poulenc Rorer Pharmaceuticals, Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5721237A (en) 1991-05-10 1998-02-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
US5710158A (en) 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
US5646153A (en) 1991-05-10 1997-07-08 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5409930A (en) 1991-05-10 1995-04-25 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6057320A (en) 1991-05-10 2000-05-02 Aventis Pharmaceuticals Products Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5480883A (en) 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
EP0520722A1 (en) 1991-06-28 1992-12-30 Zeneca Limited Therapeutic preparations containing quinazoline derivatives
US5457105A (en) 1992-01-20 1995-10-10 Zeneca Limited Quinazoline derivatives useful for treatment of neoplastic disease
EP0566226A1 (en) 1992-01-20 1993-10-20 Zeneca Limited Quinazoline derivatives
US5616582A (en) 1992-01-20 1997-04-01 Zeneca Limited Quinazoline derivatives as anti-proliferative agents
US5571815A (en) 1992-03-14 1996-11-05 Hoechst Aktiengesellschaft Substituted pyrimidines, process for their preparation, and their use as pesticides and fungicides
US5373011A (en) 1992-06-11 1994-12-13 American Cyanamid Company Substituted quinazoline fungicidal agents
US5792771A (en) 1992-11-13 1998-08-11 Sugen, Inc. Quinazoline compounds and compositions thereof for the treatment of disease
US5712395A (en) 1992-11-13 1998-01-27 Yissum Research Development Corp. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
US5580870A (en) 1992-12-10 1996-12-03 Zeneca Limited Quinazoline derivatives
EP0602851A1 (en) 1992-12-10 1994-06-22 Zeneca Limited Quinazoline derivatives
US5475001A (en) 1993-07-19 1995-12-12 Zeneca Limited Quinazoline derivatives
EP0635498A1 (en) 1993-07-19 1995-01-25 Zeneca Limited Quinazoline derivatives and their use as anti-cancer agents
EP0635507A1 (en) 1993-07-19 1995-01-25 Zeneca Limited Tricyclic derivatives and their use as anti-cancer agents
US5569658A (en) 1993-07-19 1996-10-29 Zeneca Limited Tricyclic derivatives
US5656643A (en) 1993-11-08 1997-08-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
WO1995015758A1 (en) 1993-12-10 1995-06-15 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit csf-1r receptor tyrosine kinase
WO1995019169A2 (en) 1994-01-07 1995-07-20 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancer using inhibitors of platelet derived growth factor receptor
WO1995021613A1 (en) 1994-02-09 1995-08-17 Sugen, Inc. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
US5736534A (en) 1994-02-23 1998-04-07 Pfizer Inc. 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents
WO1995023141A1 (en) 1994-02-23 1995-08-31 Pfizer Inc. 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents
WO1995024190A2 (en) 1994-03-07 1995-09-14 Sugen, Inc. Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof
WO1996009294A1 (en) 1994-09-19 1996-03-28 The Wellcome Foundation Limited Substituted heteroaromatic compounds and their use in medicine
WO1996015118A1 (en) 1994-11-12 1996-05-23 Zeneca Limited Aniline derivatives
US5821246A (en) 1994-11-12 1998-10-13 Zeneca Limited Aniline derivatives
WO1996016960A1 (en) 1994-11-30 1996-06-06 Zeneca Limited Quinazoline derivatives
US5955464A (en) 1994-11-30 1999-09-21 Zeneca Limited 4-anilinoquinazoline derivatives bearing a heteroaryl substituted at the 6-position and possessing anti-cell-proliferation properties
WO1996029331A1 (en) 1995-03-20 1996-09-26 Dr. Karl Thomae Gmbh Imidazoquinazolines, drugs containing these compounds, their use and process for their preparation
WO1996030370A2 (en) 1995-03-27 1996-10-03 Fujisawa Pharmaceutical Co., Ltd. Thiazole and thiadiazole derivatives, their preparation and pharmaceutical compositions useful in the treatment of thrombocytopenia
WO1996030347A1 (en) 1995-03-30 1996-10-03 Pfizer Inc. Quinazoline derivatives
US6015814A (en) 1995-04-27 2000-01-18 Zeneca Limited Quinazoline derivative
WO1996033977A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
US5942514A (en) 1995-04-27 1999-08-24 Zeneca Limited Quinazoline derivatives
WO1996033978A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivative
WO1996033979A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
WO1996033981A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivative
WO1996033980A1 (en) 1995-04-27 1996-10-31 Zeneca Limited Quinazoline derivatives
US5952333A (en) 1995-04-27 1999-09-14 Zeneca Limited Quinazoline derivative
US5932574A (en) 1995-04-27 1999-08-03 Zeneca Limited Quinazoline derivatives
US5770599A (en) 1995-04-27 1998-06-23 Zeneca Limited Quinazoline derivatives
EP0743308A2 (en) 1995-05-16 1996-11-20 Kanebo, Ltd. Quinazoline compound and anti-tumor agent containing said compound as an active ingredient
WO1996039145A1 (en) 1995-06-06 1996-12-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of her-2 autophosphorylation properties
WO1996040673A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Novel urea- and thiourea-type compounds
US5650415A (en) 1995-06-07 1997-07-22 Sugen, Inc. Quinoline compounds
WO1996040648A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Quinazolines and pharmaceutical compositions
WO1997002266A1 (en) 1995-07-06 1997-01-23 Novartis Ag Pyrrolopyrimidines and processes for the preparation thereof
WO1997003069A1 (en) 1995-07-13 1997-01-30 Glaxo Group Limited Heterocyclic compounds and pharmaceutical compositions containing them
WO1997017329A1 (en) 1995-11-07 1997-05-15 Kirin Beer Kabushiki Kaisha Quinoline derivatives and quinazoline derivatives inhibiting autophosphorylation of growth factor receptor originating in platelet and pharmaceutical compositions containing the same
US6258951B1 (en) 1995-12-18 2001-07-10 Zeneca Limited Chemical compounds
US6362336B1 (en) 1995-12-18 2002-03-26 Zeneca Limited Chemical compounds
US6071921A (en) 1995-12-18 2000-06-06 Zeneca Limited Chemical compounds
WO1997022596A1 (en) 1995-12-18 1997-06-26 Zeneca Limited Quinazoline derivatives
US5962458A (en) 1995-12-18 1999-10-05 Zeneca Limited Substituted quinazolines
WO1997028161A1 (en) 1996-02-01 1997-08-07 Novartis Ag Novel pyrrolo[2,3-d]pyrimidines and their use as tyrosine kinase inhibitors
EP0787722A1 (en) 1996-02-05 1997-08-06 American Cyanamid Company Substituted quinazoline derivatives
WO1997030035A1 (en) 1996-02-13 1997-08-21 Zeneca Limited Quinazoline derivatives as vegf inhibitors
US6184225B1 (en) 1996-02-13 2001-02-06 Zeneca Limited Quinazoline derivatives as VEGF inhibitors
US6897214B2 (en) 1996-02-14 2005-05-24 Zeneca Limited Quinazoline derivatives
WO1997030044A1 (en) 1996-02-14 1997-08-21 Zeneca Limited Quinazoline compounds
WO1997030034A1 (en) 1996-02-14 1997-08-21 Zeneca Limited Quinazoline derivatives as antitumor agents
US6399602B1 (en) 1996-02-14 2002-06-04 Zeneca Limited Quinazoline derivatives
US5814630A (en) 1996-02-14 1998-09-29 Zeneca Limited Quinazoline compounds
US5866572A (en) 1996-02-14 1999-02-02 Zeneca Limited Quinazoline derivatives
WO1997032856A1 (en) * 1996-03-05 1997-09-12 Zeneca Limited 4-anilinoquinazoline derivatives
US6291455B1 (en) 1996-03-05 2001-09-18 Zeneca Limited 4-anilinoquinazoline derivatives
WO1997034876A1 (en) 1996-03-15 1997-09-25 Zeneca Limited Cinnoline derivatives and use as medicine
US7087602B2 (en) 1996-03-15 2006-08-08 Astrazeneca Uk Limited Cinnoline derivatives and use as medicine
US6514971B1 (en) 1996-03-15 2003-02-04 Zeneca Limited Cinnoline derivatives and use as medicine
WO1997037999A1 (en) 1996-04-04 1997-10-16 University Of Nebraska Board Of Regents Synthetic triple helix-forming compounds
WO1997038983A1 (en) 1996-04-12 1997-10-23 Warner-Lambert Company Irreversible inhibitors of tyrosine kinases
US5770603A (en) 1996-04-13 1998-06-23 Zeneca Limited Quinazoline derivatives
WO1997038994A1 (en) 1996-04-13 1997-10-23 Zeneca Limited Quinazoline derivatives
DE19614718A1 (en) 1996-04-15 1997-10-16 Hoechst Schering Agrevo Gmbh Substituted pyridines / pyrimidines, processes for their preparation and their use as pesticides
US6265411B1 (en) 1996-05-06 2001-07-24 Zeneca Limited Oxindole derivatives
WO1997042187A1 (en) 1996-05-06 1997-11-13 Zeneca Limited Oxindole derivatives
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
WO1997049689A1 (en) 1996-06-21 1997-12-31 Pharmacia & Upjohn S.P.A. Bicyclic 4-aralkylaminopyrimidine derivatives as tyrosine kinase inhibitors
WO1998002434A1 (en) 1996-07-13 1998-01-22 Glaxo Group Limited Fused heterocyclic compounds as protein tyrosine kinase inhibitors
WO1998010767A3 (en) 1996-09-13 1998-08-06 Sugen Inc Use of quinazoline derivatives for the manufacture of a medicament in the treatment of hyperproliferative skin disorders
US6809097B1 (en) 1996-09-25 2004-10-26 Zeneca Limited Quinoline derivatives inhibiting the effect of growth factors such as VEGF
US6414148B1 (en) 1996-09-25 2002-07-02 Zeneca Limited Quinazoline derivatives and pharmaceutical compositions containing them
US20050239777A1 (en) 1996-09-25 2005-10-27 Thomas Andrew P Quinazoline derivatives and pharmaceutical compositions containing them
WO1998013350A1 (en) 1996-09-25 1998-04-02 Zeneca Limited Qinoline derivatives inhibiting the effect of growth factors such as vegf
US6897210B2 (en) 1996-09-25 2005-05-24 Zeneca Limited Quinazoline derivatives and pharmaceutical compositions containing them
US6673803B2 (en) 1996-09-25 2004-01-06 Zeneca Limited Quinazoline derivatives and pharmaceutical compositions containing them
WO1998014431A1 (en) 1996-10-01 1998-04-09 Kyowa Hakko Kogyo Co., Ltd. Nitrogenous heterocyclic compounds
EP0837063A1 (en) 1996-10-17 1998-04-22 Pfizer Inc. 4-Aminoquinazoline derivatives
WO1998023613A1 (en) 1996-11-27 1998-06-04 Pfizer Inc. Fused bicyclic pyrimidine derivatives
WO1998035958A1 (en) 1997-02-13 1998-08-20 Novartis Ag Phthalazines with angiogenesis inhibiting activity
WO1998043960A1 (en) 1997-04-03 1998-10-08 American Cyanamid Company Substituted 3-cyano quinolines
US6002008A (en) 1997-04-03 1999-12-14 American Cyanamid Company Substituted 3-cyano quinolines
WO1998050038A1 (en) 1997-05-06 1998-11-12 American Cyanamid Company Use of quinazoline compounds for the treatment of polycystic kidney disease
US5929080A (en) 1997-05-06 1999-07-27 American Cyanamid Company Method of treating polycystic kidney disease
WO1999006396A1 (en) 1997-07-29 1999-02-11 Warner-Lambert Company Irreversible bicyclic inhibitors of tyrosine kinases
WO1999006378A1 (en) 1997-07-29 1999-02-11 Warner-Lambert Company Irreversible inhibitors of tyrosine kinases
WO1999009016A1 (en) 1997-08-01 1999-02-25 American Cyanamid Company Substituted quinazoline derivatives and their use as tyrosine kinase inhibitors
WO1999009024A1 (en) 1997-08-14 1999-02-25 Smithkline Beecham Plc Phenyl urea and phenyl thiourea derivatives as hfgan72 antagonists
WO1999010349A1 (en) 1997-08-22 1999-03-04 Zeneca Limited Oxindolylquinazoline derivatives as angiogenesis inhibitors
US6294532B1 (en) 1997-08-22 2001-09-25 Zeneca Limited Oxindolylquinazoline derivatives as angiogenesis inhibitors
WO2001032651A1 (en) 1999-11-05 2001-05-10 Astrazeneca Ab Quinazoline derivatives as vegf inhibitors
US7173038B1 (en) 1999-11-05 2007-02-06 Astrazeneca Ab Quinazoline derivatives as VEGF inhibitors
US20070265286A1 (en) 1999-11-05 2007-11-15 Astrazeneca Ab Quinazoline derivatives as VEGF inhibitors

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
Arya et al., Nitroimidazoles: Part XVI-Some 1-Methy1-4-nitro-5-substituted Imidazoles, Indian Journal of Chemistry, vol. 21B, Dec. 1982, pp. 1115-1117.
Bridges, "The current status of tyrosine kinase inhibitors . . . ," Exp.Opin.Ther.Patents (1995), 5(12): 1245-1257, Editorial, Oncologic, Endocrine & Metabolic, 1995 Ashley Publications Ltd ISSN 1354-3776.
Bridges, et al., "Enantioselective Inhibition of the Epidermal Growth Factor Receptor Tyrosine Kinase by 4-(a-Phenethylamino)quinazolines," Bioorganic & Medicinal Chemistry, vol. 3, No. 12, pp. 1651-1656, 1995.
Connolly, et al., "Human Vascular Permeability Factor," J.Bio.Chem., vol. 264, No. 33, Nov. 1989, pp. 20017-20024.
Cullinan-Bove, et al., "Vascular Endothelial Growth Factor/Vascular Permeability Factor Expression in the Rat Uterus . . . ," Endocrinology, vol. 133, No. 2, 1993, pp. 829-837.
Fan, et al., "Controlling the Vasculature: Angiogenesis, Anti-Angiogenesis . . . ," TiPS Review, vol. 16, Feb. 1995, pp. 57-66.
Folkman, "Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease," Nature Medicine, vol. 1, No. 1, 1995, pp. 27-31.
Fry et al., "A Specific Inhibitor of the Epidermal Growth Factor Receptor Tyrosine Kinase," Science, vol. 265, Aug. 19, 1994, pp. 1093-1095.
Gazit et al., Tyrophostins IV-Highly Potent Inhibitors . . . Relationship Study of 4-Anilidoquinazolines, Bioorganic & Medicinal Chemistry, vol. 4. No. 8, 1996, pp. 1203-1207.
Golovkin et al., Nauchin TR-VSES-NAUCHNO-ISSLED INST FARM, 1990, 28, 70-75.
Hara et al., On the Amination of Azaheterocycles. A New Procedure for the Introduction of an Amino Group (1), J. Heterocyclic Chem. vol. 19, 1982, pp. 1285-1287.
Higashino et al., "Reactions of the Anion of Quinazoline Reissert Compound (3-Benzoyl-3,4-dihydro-4-quinazolinecarbonitrile) with Electrophiles", Chem. Phar. Bull. 33(3), 1985, pp. 950-961.
Iyer, et al., "Studies in Potential Amoebicides: Part III-Synthesis of 4-Substituted Amino-8-Hydroxy) Quinazolines & 3-Substituted 8-Hydroxy(&8-Methoxy)-4-Quinazolones," J.Sci.Industr.Res., vol. 15C, Jan. 1956, pp. 1-7.
Iyer, et. al.; Journal of Scientific & Industrial Research (1954), 13B, 451-2. *
Jakeman, et al., "Developmental Expression of Binding Sites and Messenger Ribonucleic Acid . . . ," Endocrinology, vol. 133, No. 2, 1993, pp. 848-859.
Karminski et al., The Synthesis of Some Quinazoline Derivatives and Their Biological Properties; J. Environ. Sci. Health, vol. B18, 1983, pp. 599-610.
Kim, et al., "Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo," Nature, vol. 362, Apr. 1993, pp. 841-844.
Klohs et al., "Antiangiognenic Agents", Curr. Opin. Biotech, 1/6, 1999, 544-549 (Abstract Attached).
Klohs, Wayne D. et."Antiangiogenic Agts.",Curr.Opin.Biotech. 10/6.544-49, Jun. 1999. *
Kobayashi, Derwent Abstract 82-87077, vol. 6, No. 244, Dec. 1982, JP 57-144266, Sep. 1982, "4-Anilinoquinazoline Derivative, its Preparation and Analgesic and Antiphlogistic Agent Containing Said Derivative as Active Component". (n. 7).
Kolch, et al., "Regulation of the Expression of the VEGF/VPS and its Receptors: Role in Tumor Angiogenesis," Breast Cancer Research and Treatment, vol. 36, 1995, pp. 139-155.
Kumar et al., Reactions of Diazines with Nucleophiles-IV.1 The Reactivity . . Single Electron Transfer Reactions, Bioorganic & Medicinal Chemistry, vol. 3, No. 7, 1995, pp. 891-897.
Kyorin, Derwent Abstract 84-53835, JP 59-13765, Jan. 1984, "2-(4-Quinazolinyl)amino benzoic acid derivs . . . having analgesic and antiinflammatory activities". (n.8).
Li, et al., Chem.Abs., vol. 92:76445u, 1980, p. 674-675.
Lin et al., Chem.Abs., vol. 96:122728w, 1982, p. 695.
Nagarajan et al., Nitroimidazoles: Part XIX†-Structure Activity Relationships‡, Indian Journal of Chemistry, vol. 23B, Apr. 1984, pp. 342-362.
Nomoto et al., Studies on Cardiotonic Agents. VII.1) Potent Cardiotonic Agent KF15232 with Myofibrillar CA2+ Sensitizing Effect, Chem. Pharm. Bull., vol. 39(4), 1991, pp. 900-910.
Rewcastle et al., "Tyrosine Kinase Inhibitors. 5 . . . 4-(Phenylamino)quinazolines as Potent . . . Inhibitors of the Tyrosine Kinase Domain of the Epidermal Growth Factor Receptor," J.Med.Chem. 1995, vol. 38, pp. 3482-3487.
Sankyo and Ube, Derwent Abstract 81-28290, JP 56-20577, Feb. 1981, "4-(N-alkyl:anilino) quinazoline derivs . . . having analgesic and antiinflammatory actions". (n.9).
Schonowsky et al., Chinazolinderivate, ihre Herstellung und biologische Wirkung, Quinzaolines, their Preparation and Biological Activity, Z. Naturforsch, 37b, 1982, pp. 907-911.
Senger, et al., "Vascular Permeability Factor (VPF, VEGF) in Tumor Biology," Cancer and Metastasis Reviews, vol. 12, 1993, pp. 303-324.
Sinyak, et al., Synthesis and Biological Properties of Derivatives of 4-Heterylmercaptoquinazoline, Zaporozh'e Medical Institute pp. 103-106, translated from Khimiko-farmatsevticheskii Zhurnal, vol. 20, No. 2, Feb. 1986, 168-171, original article submitted Dec. 29, 1984.
Spada, et al., Small molecule inhibitors of tyrosine Kinase activity, Exp.Opin.Ther.Patents (1995), 5(8):805-817, Patent Update, Oncologic, Endocrine & Metabolic, Ashley Publications Ltd ISSN 1354-3776.
Stets et al., Investigation of Anti-Arrhythmic Action of Quinazopyrine, Pharmacology Dept., Zaporozhye Medical Institute, Zaporozhye, and Vinnitsa Medical Institute, Vinnitsa, pp. 94-96, translated from Farmakol. 1 toksik., vol. 53, No. 3, 1990, pp. 15-17.
Traxler, et al., "Recent advances in protein tyrosine kinase inhibitors," Drugs of the Future 1995, vol. 20(12, pp. 1261-1274.
Vinogradoff et a;/, Development of a New Synthesis of . . . Sodium Salt via an Amidine Intermediate. J. Heterocyclic Chem. vol. 26, 97, Jan.-Feb. 1989, pp. 97-103.
Ward, et al., "Epidermal Growth Factor Receptor Tyrosine Kinase-Investigation of Catalytic Mechanism, Structure-Based Searching and Discovery of a Potent Inhibitor," Biochem.Pharmacology, vol. 48, No. 4, pp. 659-666 (1994).
Wolfe et al., A Facile One-Step Synthesis of Certain 4-(4-Pyrimidinylmethyl)quinazolines, J. Heterocyclic Chem., vol. 13, 1976, pp. 383-385.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457664B2 (en) 1999-11-05 2019-10-29 Genzyme Corporation Quinazoline derivatives as VEGF inhibitors
US9040548B2 (en) 1999-11-05 2015-05-26 Astrazeneca Ab Quinazoline derivatives as VEGF inhibitors
US8772272B2 (en) 2003-12-18 2014-07-08 Janssen Pharmaceutica Nv Pyrido-and pyrimidopyrimidine derivatives as anti-proliferative agents
US20100173913A1 (en) * 2003-12-18 2010-07-08 Janssen Pharmaceutica N.V. Pyrido-and pyrimidopyrimidine derivatives as anti-proliferative agents
US8933067B2 (en) 2003-12-18 2015-01-13 Janssen Pharmaceutica Nv Pyrido and pyrimidopyrimidine derivatives as anti-profilerative agents
US9688691B2 (en) 2004-12-08 2017-06-27 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
US10208062B2 (en) 2004-12-08 2019-02-19 Janssen Pharmaceutica Nv Macrocyclic quinazole derivatives and their use as MTKI
US20100152174A1 (en) * 2004-12-08 2010-06-17 Eddy Jean Edgard Freyne Macrocyclic quinazole derivatives and their use as mtki
US20100029627A1 (en) * 2006-07-12 2010-02-04 Alexandra Papanikos Mtki quinazoline derivatives
US8492377B2 (en) 2006-07-13 2013-07-23 Janssen Pharmaceutica Nv MTKI quinazoline derivatives
US8318731B2 (en) 2007-07-27 2012-11-27 Janssen Pharmaceutica Nv Pyrrolopyrimidines
WO2015031604A1 (en) 2013-08-28 2015-03-05 Crown Bioscience, Inc. Gene expression signatures predictive of subject response to a multi-kinase inhibitor and methods of using the same
US10011587B2 (en) 2014-05-15 2018-07-03 The Methodist Hospital System Multivalent ligands targeting VEGFR

Also Published As

Publication number Publication date
BR9711302B1 (en) 2011-04-05
TW520364B (en) 2003-02-11
UA57752C2 (en) 2003-07-15
NO991422D0 (en) 1999-03-24
US20110071144A1 (en) 2011-03-24
HU228176B1 (en) 2013-01-28
ZA978553B (en) 1998-03-25
ATE228114T1 (en) 2002-12-15
DE69717294T2 (en) 2003-09-04
CN1142920C (en) 2004-03-24
CY2453B1 (en) 2005-06-03
JP2003238539A (en) 2003-08-27
SK283175B6 (en) 2003-03-04
PT929530E (en) 2003-03-31
RU2198879C2 (en) 2003-02-20
AU729968C (en) 2006-04-06
IL129038A (en) 2002-11-10
CA2263319C (en) 2004-03-23
SI0929530T1 (en) 2003-04-30
NO313138B1 (en) 2002-08-19
AU729968B2 (en) 2001-02-15
PL332385A1 (en) 1999-09-13
GB9718972D0 (en) 1997-11-12
PL190326B1 (en) 2005-11-30
HK1019332A1 (en) 2000-02-03
NZ334014A (en) 2000-10-27
US6414148B1 (en) 2002-07-02
IL129038A0 (en) 2000-02-17
AU4561397A (en) 1998-04-17
KR20000048572A (en) 2000-07-25
JP2004002406A (en) 2004-01-08
EP0929530B1 (en) 2002-11-20
NO991422L (en) 1999-03-24
US20040242574A1 (en) 2004-12-02
DK0929530T3 (en) 2003-02-24
SK38999A3 (en) 1999-10-08
CZ103999A3 (en) 1999-06-16
US6897210B2 (en) 2005-05-24
ES2185999T3 (en) 2003-05-01
CZ296962B6 (en) 2006-08-16
DE69717294D1 (en) 2003-01-02
CH0929530H1 (en) 2006-03-15
HUP9902850A3 (en) 2000-07-28
MY129540A (en) 2007-04-30
DE69717294C5 (en) 2006-02-09
BR9711302A (en) 1999-08-17
US6673803B2 (en) 2004-01-06
CN1231662A (en) 1999-10-13
EP0929530A1 (en) 1999-07-21
JP3438818B2 (en) 2003-08-18
TR199900674T2 (en) 1999-07-21
JP2001500891A (en) 2001-01-23
WO1998013354A1 (en) 1998-04-02
HUP9902850A2 (en) 2000-04-28
KR100618065B1 (en) 2006-08-30
CA2263319A1 (en) 1998-04-02
US20020173646A1 (en) 2002-11-21
US20050239777A1 (en) 2005-10-27
CL2004001178A1 (en) 2005-06-03

Similar Documents

Publication Publication Date Title
USRE42353E1 (en) Quinazoline derivatives and pharmaceutical compositions containing them
US10457664B2 (en) Quinazoline derivatives as VEGF inhibitors
US6184225B1 (en) Quinazoline derivatives as VEGF inhibitors
EP0885198B1 (en) 4-anilinoquinazoline derivatives
US6265411B1 (en) Oxindole derivatives
US7087602B2 (en) Cinnoline derivatives and use as medicine
US7262201B1 (en) Quinazoline derivatives

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

PTEF Application for a patent term extension

Free format text: PRODUCT NAME: CAPRELSA (VANDETANIB); REQUESTED FOR 1738 DAYS

Filing date: 20110601

Expiry date: 20170923

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ZENECA PHARMA S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMAS, ANDREW PETER;JOHNSTON, CRAIG;CLAYTON, EDWARD;AND OTHERS;SIGNING DATES FROM 19990215 TO 19990315;REEL/FRAME:035550/0475

Owner name: ZENECA LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMAS, ANDREW PETER;JOHNSTON, CRAIG;CLAYTON, EDWARD;AND OTHERS;SIGNING DATES FROM 19990215 TO 19990315;REEL/FRAME:035550/0475

Owner name: ASTRAZENECA UK LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZENECA LIMITED (NOW SYNGENTA LIMITED);REEL/FRAME:035550/0515

Effective date: 20000104

Owner name: ASTRAZENECA UK LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTRAZENECA SAS;REEL/FRAME:035550/0633

Effective date: 20050621

Owner name: ASTRAZENECA SAS, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:ZENECA PHARMA SA;REEL/FRAME:035561/0331

Effective date: 20000207

Owner name: SYNGENTA LIMITED, ENGLAND

Free format text: CHANGE OF NAME;ASSIGNOR:ZENECA LIMITED;REEL/FRAME:035567/0259

Effective date: 20020527

AS Assignment

Owner name: ZENECA PHARMA S.A., FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNOR NAME FROM CRAIG JOHNSTON TO CRAIG JOHNSTONE PREVIOUSLY RECORDED ON REEL 035550 FRAME 0475. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMAS, ANDREW PETER;JOHNSTONE, CRAIG;CLAYTON, EDWARD;AND OTHERS;SIGNING DATES FROM 19990215 TO 19990315;REEL/FRAME:035602/0634

Owner name: ZENECA LIMITED, ENGLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNOR NAME FROM CRAIG JOHNSTON TO CRAIG JOHNSTONE PREVIOUSLY RECORDED ON REEL 035550 FRAME 0475. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMAS, ANDREW PETER;JOHNSTONE, CRAIG;CLAYTON, EDWARD;AND OTHERS;SIGNING DATES FROM 19990215 TO 19990315;REEL/FRAME:035602/0634

AS Assignment

Owner name: GENZYME CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASTRAZENECA UK LIMITED;REEL/FRAME:038319/0509

Effective date: 20150930

PTEG Grant of a patent term extension

Free format text: PRODUCT NAME: CAPRELSA (VANDETANIB)

Filing date: 20110601

Expiry date: 20170923

CC Certificate of correction
CC Certificate of correction