USRE41656E1 - Method and system for reducing effects of sea surface ghost contamination in seismic data - Google Patents

Method and system for reducing effects of sea surface ghost contamination in seismic data Download PDF

Info

Publication number
USRE41656E1
USRE41656E1 US11/501,195 US50119500A USRE41656E US RE41656 E1 USRE41656 E1 US RE41656E1 US 50119500 A US50119500 A US 50119500A US RE41656 E USRE41656 E US RE41656E
Authority
US
United States
Prior art keywords
particle motion
location
vertical
data
acoustic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/501,195
Other languages
English (en)
Inventor
Johan Robertsson
Julian Edward Kragh
James Edward Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westerngeco LLC
Original Assignee
Westerngeco LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westerngeco LLC filed Critical Westerngeco LLC
Application granted granted Critical
Publication of USRE41656E1 publication Critical patent/USRE41656E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/56De-ghosting; Reverberation compensation

Definitions

  • the present invention relates to the field of reducing the effects of sea-surface ghost reflections in seismic data.
  • the invention relates an improved de-ghosting method that utilises measurements or estimates of multi-component marine seismic data recorded in a fluid medium.
  • Removing the ghost reflections from seismic data is for many experimental configurations equivalent to up/down wavefield separation of the recorded data.
  • the down-going part of the wavefield represents the ghost and the up-going wavefield represents the desired signal.
  • Exact filters for up/down separation of multi-component wavefield measurements in Ocean Bottom Cable (OBC) configurations have been derived by Amundsen and Ikelle, and are described in U.K. Patent Application Number 9800741.2.
  • An example of such a filter corresponding to de-ghosting of pressure data at a frequency of 50 Hz for a seafloor with P-velocity of 2000 m/s, S-velocity of 500 m/s and density of 1800 kg/m3 is shown in FIG. 2 .
  • the OBC de-ghosting filters have been shown to work very well on synthetic data. However, apart from the difficulty with poles and zeros at critical wave numbers, they also require knowledge about the principles of the immediate sub-bottom locations as well as hydrophone/geophone calibration and coupling compensation.
  • a method for sea surface ghost correction through the application of spatial filters to the case of marine seismic data acquired in a fluid medium.
  • both pressure and vertical velocity measurements are acquired along the streamer.
  • the invention takes advantage of non-conventional velocity measurements taken along a marine towed streamer, for example.
  • New streamer designs are currently under development and are expected to become commercially available in the near future. For example, the Defense Evaluation and Research Agency (DERA), based in Dorset, U.K., claim to have successfully built such a streamer for high frequency sonar applications.
  • DPA Defense Evaluation and Research Agency
  • the invention is also applicable to seismic data obtained with configurations of multiple conventional streamers.
  • the filters make use of vertical pressure gradient measurements, as opposed to velocity measurements.
  • an estimate of the vertical pressure gradient can be obtained from over/under twin streamer data, or more generally from streamer data acquired by a plurality of streamers where the streamers are spatially deployed in a manner analogous to that described in U.K Patent Application Number 9820049.6, by Robertsson, entitled “Seismic detection apparatus and related method” filed in 1998 (hereinafter “Robertsson (1998)”).
  • three streamers can be used, forming a triangular shape cross-section along their length.
  • Vertical pressure gradient data can also be obtained from pressure gradient measuring devices.
  • the filters fully account for the rough sea perturbed ghost, showing improvement over other techniques based on normal incidence approximations (see e.g., White (1965)), which have been applied to data recorded at the sea floor.
  • the results are not sensitive to streamer depth, allowing the streamer(s) to be towed at depths below swell noise contamination, hence opening up the acquisition weather window where shallow towed streamer data would be unusable.
  • Local streamer accelerations will be minimised in the deep water flow regime, improving resolution of the pressure, multi-component velocity and pressure gradient measurements.
  • the filter is not critically dependent on detailed knowledge of the physical properties of the surrounding fluid medium.
  • the filters can be simple spatial convolutions, and with the regular geometry of typical towed streamer acquisition the filters are efficient to apply in the frequency-wavenumber wavenumber (FK) domain.
  • the filters can also be formulated for application in other domains, such as time-space and intercept time-slowness ( ⁇ -p)
  • a method of reducing the effects is seismic data of downward propagating reflected and scattered acoustic energy travelling in a fluid medium.
  • the method advantageously makes use of two types of data: pressure data, that represents the pressure in the fluid medium, such as sea water, at a number of locations; and vertical particle motion data, that represents the vertical particle motion of the acoustic energy propagating in the fluid medium at a number of locations within the same spatial area as the pressure data.
  • the distance between the locations that are represented by the pressure data and the vertical particle motion data in each case is preferably less than the Nyquist spatial sampling criterion.
  • the vertical particle motion data can be in various forms, for example, velocity, pressure gradient, displacement, or acceleration.
  • the spatial filter is created by calculating a number of coefficients that are based on the velocity of sound in the fluid medium and the density of the fluid medium.
  • the spatial filter is designed so as to be effective at separating up and down propagating acoustic energy over substantially the entire range of non-horizontal incidence angles in the fluid medium.
  • the spatial filter is applied to either the vertical particle motion data or to the pressure data, and then combined with the other data to generate pressure data that has its up and down propagating components separated.
  • the separated data are then processed further and analysed. Ordinarily the down-going data would be analysed, but the up going data could be used instead if the sea surface was sufficiently calm.
  • a method of reducing the effects of downward propagating reflected and scattered acoustic energy travelling in a fluid medium wherein the pressure data and vertical particle motion data represent variations caused by a first source event and a second source event.
  • the source events are preferably generated by firing a seismic source at different locations at different times, and the distance between the locations is preferably less than the Nyquist spatial sampling criterion.
  • the present invention is also embodied in a computer-readable medium which can be used for directing an apparatus, preferably a computer, to reduce the effects in seismic data of downward propagating reflected and scattered acoustic energy travelling in a fluid medium as otherwise described herein.
  • FIG. 1 shows examples of simple seismic ray paths for primary events, and ghosts that are last reflected from the rough sea-surface;
  • FIG. 2 shows an exact pressure de-ghosting filter for OBC data for a seafloor with P-velocity of 2000 m/s, S-velocity of 500 m/s and density of 1800 kg/m3; the upper panel shows the Real part of exact filter; and the lower panel shows the Imaginary part of exact filter;
  • FIG. 3 shows the Real part of the exact OBC de-ghosting filter (in the solid line) shown in FIG. 2 , the first order Taylor approximation filter (in the plus line), and the first four fractional expansion approximations filters (in the dash-dotted lines);
  • FIG. 4 illustrates the potential impact of 3D rough sea surface ghost reflection and scattering on consistency of the seismic data waveform
  • FIG. 5 illustrates the potential impact of the rough sea surface ghost perturbation on time-lapse seismic data quality
  • FIGS. 6a-6f show various embodiments for data acquisition set-ups and streamer configurations according to preferred embodiments of the invention.
  • FIG. 8 is a flow chart illustrating some of the steps of the de-ghosting method for the combination of pressure and vertical velocity data to achieve separated pressure data, according to a preferred embodiment of the invention.
  • FIG. 9 schematically illustrates an example of a data processor that can be used to carry out preferred embodiments of the invention.
  • FIG. 10 shows an example of a shot record computed below a 4 m significant wave height (SWH) rough sea surface, the left panel shows pressure, and the right panel shows vertical velocity scaled by water density and the compressional wave speed in water;
  • SWH significant wave height
  • FIG. 11 illustrates de-ghosting results of the shot record in FIG. 10 , the left panel shows results using the vertical incidence approximation, and the right panel illustrates the exact solution;
  • FIG. 12 illustrates an example of de-ghosting results in detail for a single trace at 330 m offset corresponding to an arrival angle of about 37 degrees, the upper panel shows the vertical incidence approximation, and the lower panel shows the Exact solution;
  • FIGS. 12a-b illustrate two possible examples of multi-component streamer design.
  • FIG. 1 is a schematic diagram showing reflections between a sea surface (S), sea floor (W) and a target reflector (T).
  • S sea surface
  • W sea floor
  • T target reflector
  • Various events that will be recorded in the seismogram are shown and are labelled according to the series of interfaces they are reflected at.
  • the stars indicate the seismic source and the arrowheads indicate the direction of propagation at the receiver.
  • Events ending with ‘S’ were last reflected at the rough sea surface and are called receiver ghost events.
  • Down-going sea-surface ghost reflections are an undesirable source of contamination, obscuring the interpretation of the desired up-going reflections from the earth's sub-surface.
  • Rough seas are a source of noise in seismic data. Aside from the often-observed swell noise, further errors are introduced into the reflection events by ghost reflection and scattering from the rough sea surface. The rough sea perturbed ghost events introduce errors that are significant for time-lapse seismic surveying and the reliable acquisition of repeatable data for stratigraphic inversion.
  • the effect of the rough sea is to perturb the amplitude and arrival time of the sea surface reflection ghost and add a scattering coda, or tail, to the ghost impulse.
  • the impulse response can be calculated by finite difference or Kirchhoff methods (for example) from a scattering surface which represents statistically typical rough sea surfaces.
  • a directional form of the Pierson-Moskowitz spectrum described by Pierson, W. J. and Moskowitz, L., 1964 ‘A proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii’ J. Geo. Res., 69, 24, 5181-5190, (hereinafter “Pierson and Moskowitz (1964)”), and Hasselmann, D. E., Dunckel, M.
  • SWH Significant Wave Height
  • FIG. 4 shows an example of rough sea impulses along a 400 m 2D line (e.g. streamer) computed under a 2 m SWH 3D rough sea surface.
  • the streamer shape affects the details of the impulses, and in this example the streamer is straight and horizontal.
  • FIG. 4 shows, from top to bottom: The ghost wavelet (white trough) arrival time, the ghost wavelet maximum amplitude, a section through the rough sea realisation above the streamer, and the computed rough sea impulses.
  • the black peak is the upward travelling wave, which is unperturbed; the white trough is the sea ghost reflected from the rough sea surface.
  • the latter part of the wavelet at each receiver is the scattering coda from increasingly more distant parts of the surface.
  • the arrival time perturbations are governed by the dominant wavelengths in the sea surface, which are 100-200 m for 2-4 m SWH seas, and the amplitude perturbations are governed by the curvature of the sea surface which has an RMS radius of about 80 m and if fairly independent of sea state.
  • the diffraction coda appear as quasi-random noise following the ghost pulse.
  • the rough sea perturbations cause a partial fill and a shift of the ghost notch in the frequency domain. They also add a small ripple to the spectrum, which amounts to 1-2 dB of error for typical sea states. In the post stack domain this translates to an error in the signal that is about ⁇ 20 dB for a 2 m SWH sea.
  • FIG. 5 shows an example of how such an error can be significant for time-lapse surveys.
  • the panel on the top left shows a post-stack time-migrated synthetic finite difference seismic section.
  • the top middle panel shows the same data but after simulating production in the oil reservoir by shifting the oil water contact by 6 m and introducing a 6 m partial depletion zone above this.
  • the small difference is just noticeable on the black leg of the reflection to the right of the fault just below 2 s two-way travel-time.
  • the panel on the right (top) shows the difference between these two sections multiplied by a factor of 10. This is the ideal seismic response from the time-lapse anomaly.
  • the left and middle bottom panels show the same seismic sections, but rough sea perturbations of a 2 m SWH (as described above) have been added to the raw data before processing. Note that different rough sea effects are added to each model to represent the different seas at the time of acquisition. The difference obtained between the two sections is shown on the bottom right panel (again multiplied by a factor of 10).
  • the errors in the reflector amplitude and phase introduce noise of similar amplitude to the true seismic time-lapse response. To a great extent, the true response is masked by these rough sea perturbations.
  • a method for correcting these types of error is clearly important in such a case, and with the increasing requirement for higher quality, low noise-floor data, correction for the rough sea ghost becomes necessary even in modest sea states.
  • Equation (1) gives the frequency domain expression for a preferred filter relating the up-going pressure field, p u (x), to the total pressure, p(x), and vertical particle velocity, v z (x).
  • p u ⁇ ( x ) 0.5 ⁇ [ p ⁇ ( x ) + ⁇ k z * v z ⁇ ( x ) ] ( 1 )
  • k z is the vertical wavenumber for compressional waves in the water
  • is the density of water
  • * denotes spatial convolution.
  • c the compressional wave speed in the water
  • k x is the horizontal wavenumber for compressional waves in the water.
  • Equation (1) can also be formulated in terms of the vertical pressure gradient (dp(x)/dz).
  • FIGS. 6a-6f show various embodiments for data acquisition set-ups and streamer configurations according to preferred embodiments of the invention.
  • FIG. 6a shows a seismic vessel 120 towing a seismic source 110 and a seismic streamer 118 .
  • the sea surface is shown by reference number 112 .
  • the depth of streamer 118 is about 60 meters, however those of skill in the art will recognise that a much shallower depth would ordinarily be used such as 6-10 meters.
  • the dashed arrows 122 a-d show paths of seismic energy from source 110 .
  • Arrow 122 a shows the initial down-going seismic energy.
  • Arrow 122 b shows a portion of the seismic energy that is transmitted through the sea floor 114 .
  • Arrow 122 c shows an up-going reflection.
  • Arrow 122 d shows a down-going ghost reflected from the surface.
  • the down-going rough sea receiver ghost 122 d can be removed from the seismic data.
  • FIGS. 6b-6f show greater detail of acquisition set-ups and streamer configurations, according to the invention.
  • FIG. 6b shows a multi-component streamer 124 .
  • the streamer 124 comprises multiple hydrophones (measuring pressure) 126 a, 126 b, and 126 c, and multiple 3C geophones (measuring particle velocity in three directions x, y, and z) 128 a, 128 b, and 128 c.
  • the spacing between the hydrophones 126 a and 126 b, and between geophones 128 a and 128 b is shown to be less than 12 meters. Additionally, the preferred spacing in relation to the frequencies of interest is discussed in greater detail below.
  • FIG. 6c shows a streamer 130 that comprises multiple hydrophones 132 a, 132 b, and 132 c, and multiple pressure gradient measuring devices 134 a, 134 b, and 134 c.
  • the spacing between the hydrophones 132 a and 132 b, and between pressure gradient measuring devices 134 a and 134 b is shown to be less than 12 meters.
  • FIG. 6d shows a multi-streamer configuration that comprises hydrophone streamers 140 a and 140 b.
  • the streamers comprise multiple hydrophones 142 a, 142 b, and 142 c in the case of streamer 140 a, and 142 d, 142 e, and 142 f in the case of streamer 140 b.
  • the spacing between the hydrophones is shown to be less than 12 meters.
  • the separation between streamers 140 a and 140 b in the example shown in FIG. 6d is less then 2 meters. Although the preferred separation is less than 2 meters, greater separations are contemplated as being within the scope of the invention.
  • FIG. 6e shows a cross sectional view of a dual streamer arrangement.
  • FIG. 6f shows a multi-streamer configuration comprising three hydrophone streamers 140 a, 140 b, and 140 c.
  • Adequate spatial sampling of the wavefield is highly preferred for the successful application of the de-ghosting filters.
  • a spatial sampling interval of 12 m is adequate for all incidence angles.
  • a spatial sampling interval of 6.25 meters is preferred. These spacings are determined according to the Nyquist spatial sampling criterion. Note that if all incidence angles are not required, a coarser spacing than described above can be used.
  • the filters can be applied equally to both group formed or point receiver data.
  • FIG. 8 is a flow chart illustrating some of the steps of the de-ghosting method for the combination of pressure and vertical velocity data to achieve separated pressure data, according to a preferred embodiment of the invention.
  • step 202 spatial filter coefficients are calculated. The coefficients are preferably dependent on the characteristics of the acquisition parameters 203 (such as the temporal sample interval of the pressure and particle motion data, the spatial separation of the vertical particle motion measuring devices, and the spatial aperture of the filter), the density of the fluid medium 206 , and the speed of the compressional wave in the fluid medium (or velocity of sound) 204 .
  • Vertical particle motion data 208 and pressure data 212 are received, typically stored as time domain traces on a magnetic tape or disk.
  • step 210 the vertical particle motion data 208 are convolved in with the spatial filter to yield filtered vertical particle motion data.
  • the filtered vertical particle motion data are added to pressure data 212 to give the downward propagating component of the separated pressure data.
  • step 216 the filtered vertical particle motion data are subtracted from pressure data 212 to give the upward propagating component of the separated pressure data.
  • step 218 the upward component is further processes and analysed.
  • FIG. 9 illustrates one possible configuration for such a data processor.
  • the data processor typically consists of one or more central processing units 350 , main memory 352 , communications or I/O modules 354 , graphics devices 356 , a floating point accelerator 358 , and mass storage devices such as tapes and discs 360 .
  • tapes and discs 360 are computer-readable media that can contain programs used to direct the data processor to carry out the processing described herein.
  • FIG. 10 shows a shot record example, computed under a 4 m Significant Wave Height (SWH) sea and using the finite-difference method described by Robertsson, J. O. A., Blanch, J. O. and Symes, W. W., 1994 ‘Viscoelastic finite-difference modelling’ Geophysics, 59, 1444-1456 (hereinafter “Robertsson et al. (1994)”) and Robertsson, J. O. A., 1996 ‘A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-difference modelling in the Presence of Topography’, Geophysics, 61, 6, 1921-1934 (hereinafter “Robertsson (1996)”).
  • SWH Significant Wave Height
  • the streamer depth in this example is 60 m.
  • the left panel shows the pressure response and the right panel shows the vertical velocity response scaled by the water density and the compressional wave speed in water.
  • a point source 50 Hz Ricker wavelet was used and the streamer depth was 60 m in this example.
  • the choice of streamer depth allows a clear separation of the downward travelling ghost from the upward travelling reflection energy for visual clarity of the de-ghosting results.
  • the trace spacing on the plot is 24 m. A single reflection and its associated ghost are shown, along with the direct wave travelling in the water layer. Perturbations in the ghost wavelet and scattering noise from the rough sea surface are evident.
  • FIG. 11 shows the results of de-ghosting the shot record shown in FIG. 10 .
  • the left panel shows the result using the normal incidence approximation and the right panel shows the result using the exact solution.
  • the exact solution shows a consistent response over all offsets, whereas the normal incidence approximation starts to break down at incident angles greater than about 20 degrees, and shows a poorer result at the near offsets.
  • the direct wave is not amplified by the exact filter application even though the poles of the filter lie close to its apparent velocity.
  • the exact filter is tapered before application such that it is has near unity response for frequencies and wavenumbers corresponding to apparent velocities of 1500 m/s and greater.
  • the weak event just below the signal reflection is a reflection from the wide absorbing boundary of the model. It is upward travelling and hence untouched by the filter.
  • FIG. 12 shows details of the de-ghosted results for a single trace from FIG. 11 .
  • the trace offset is 330 m corresponding to a 37 degree incidence angle.
  • the upper panel shows the normal incidence approximation, and the lower panel shows the exact solution. Not only does the exact solution provide a superior result in terms of the de-ghosting, but also in terms of amplitude preservation of the signal reflection—the upper panel shows loss of signal amplitude after the de-ghosting.
  • the filters described herein are applicable to, for example, measurements of both pressure and vertical velocity along the streamer.
  • pressure measurements are commercially available. Therefore, engineering of streamer sections that are capable of commercially measuring vertical velocity is preferred in order to implement the filters.
  • FIGS. 13a-b illustrate two possible examples of multi-component streamer design.
  • FIG. 13a shows a coincident pressure and single 3-component geophone. In this design, the 3-component geophone is perfectly decoupled from the streamer.
  • FIG. 13b shows a coincident pressure and twin 3-component geophones. In this design, one of the 3-component geophones is decoupled from the streamer, the other is coupled to the streamer, measurements from both are combined to remove streamer motion from the data.
  • the filters make use of vertical pressure gradient measurements.
  • An estimate of vertical pressure can be obtained from over/under twin streamers (such as shown in FIGS. 6d and 6e ) and multiple streamers (such as shown in FIG. 6f ) deployed in configurations analogous to that described in Robertsson (1998), allowing the filters to be directly applied to such data.
  • the streamers should not be vertically separated by more than 2 m for seismic frequencies below approximately 80 Hz.
  • An important advantage of multiple streamer configurations such as shown in FIG. 6f is that their relative locations are less crucial than for over/under twin streamer geometries, where the two streamers are preferably directly above one another.
  • the filters described here are applied in 2D (along the streamer) to data modelled in 2D.
  • the application to towed streamer configurations naturally lends itself to this implementations, the cross-line (streamer) sampling to the wavefield being usually insufficient for a full 3D implementation.
  • Application of these filters to real data will give rise to residual errors caused by scattering of the wavefield from the cross-line direction. This error increases with frequency though is less than 0.5 dB in amplitude and 3.6° in phase for frequencies up to 150 Hz, for a 4 m SWH sea. These small residual noise levels are acceptable when time-lapse seismic surveys are to be conducted.
  • the filters can be applied in common receiver domain to remove the downward travelling source ghost. Reciprocity simply means that the locations of source and receiver pairs can be interchanged, (the ray path remaining the same) without altering the seismic response.
  • FIG. 1 can also be used to define the source ghost if the stars are now regarded as receivers and the direction of the arrows is reversed, with the source now being located at the arrow. This application is particularly relevant for data acquired using vertical cables, which may be tethered, for example, to the sea floor, or suspended from buoys.
  • FIG. 6a those of skill in the art will understand that as the seismic vessel 120 travels though the water, the firing position of source 110 will change. The different positions of source 110 can be then be used to construct data in the common receiver domain as is well known in the art.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Oceanography (AREA)
  • Geophysics And Detection Of Objects (AREA)
US11/501,195 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data Expired - Lifetime USRE41656E1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9906456 1999-03-22
GBGB9906456.0A GB9906456D0 (en) 1999-03-22 1999-03-22 Method and system for reducing effects of sea surface ghost contamination in seismic data
PCT/GB2000/001074 WO2000057207A1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/936,863 Reissue US6775618B1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data

Publications (1)

Publication Number Publication Date
USRE41656E1 true USRE41656E1 (en) 2010-09-07

Family

ID=10850039

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/264,784 Expired - Lifetime USRE43188E1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data
US09/936,745 Expired - Lifetime US6529445B1 (en) 1999-03-22 2000-03-21 Method of reducing effects of a rough sea surface on seismic data
US11/501,195 Expired - Lifetime USRE41656E1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data
US09/936,863 Ceased US6775618B1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/264,784 Expired - Lifetime USRE43188E1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data
US09/936,745 Expired - Lifetime US6529445B1 (en) 1999-03-22 2000-03-21 Method of reducing effects of a rough sea surface on seismic data

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/936,863 Ceased US6775618B1 (en) 1999-03-22 2000-03-21 Method and system for reducing effects of sea surface ghost contamination in seismic data

Country Status (5)

Country Link
US (4) USRE43188E1 (no)
AU (2) AU3311100A (no)
GB (3) GB9906456D0 (no)
NO (2) NO333154B1 (no)
WO (2) WO2000057206A1 (no)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140153363A1 (en) * 2012-12-04 2014-06-05 Pgs Geophysical As Systems and methods for removal of swell noise in marine electromagnetic surveys
US9103943B2 (en) 2011-11-28 2015-08-11 Fugro-Geoteam As Acquisition and processing of multi-source broadband marine seismic data
US10107929B2 (en) * 2014-12-18 2018-10-23 Pgs Geophysical As Methods and systems to determine ghost operators from marine seismic data
US10324210B2 (en) * 2016-06-30 2019-06-18 Schlumberger Technology Corporation Method and apparatus for determining rough sea topography during a seismic survey

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477470B2 (en) * 2000-12-01 2002-11-05 Pgs Americas, Inc. Method and system for deghosting
GB2379741B (en) * 2001-09-18 2003-11-19 Westerngeco Ltd Method for reducing the effect of Sea-surface ghost reflections
FR2831962B1 (fr) * 2001-11-08 2004-06-25 Geophysique Cie Gle Procede de traitement sismique, notamment pour la compensation de birefringence sur des traces sismiques
GB2384068B (en) * 2002-01-11 2005-04-13 Westerngeco Ltd A method of and apparatus for processing seismic data
GB2389183B (en) 2002-05-28 2006-07-26 Westerngeco Ltd Processing seismic data
US7239577B2 (en) * 2002-08-30 2007-07-03 Pgs Americas, Inc. Apparatus and methods for multicomponent marine geophysical data gathering
GB2400662B (en) 2003-04-15 2006-08-09 Westerngeco Seismic Holdings Active steering for marine seismic sources
US7123543B2 (en) 2003-07-16 2006-10-17 Pgs Americas, Inc. Method for seismic exploration utilizing motion sensor and pressure sensor data
GB2405473B (en) 2003-08-23 2005-10-05 Westerngeco Ltd Multiple attenuation method
GB2410551B (en) 2004-01-30 2006-06-14 Westerngeco Ltd Marine seismic acquisition system
US7359283B2 (en) * 2004-03-03 2008-04-15 Pgs Americas, Inc. System for combining signals of pressure sensors and particle motion sensors in marine seismic streamers
GB2414299B (en) 2004-05-21 2006-08-09 Westerngeco Ltd Interpolation and extrapolation method for seismic recordings
US7800977B2 (en) * 2004-06-01 2010-09-21 Westerngeco L.L.C. Pre-stack combining of over/under seismic data
GB2415040B (en) 2004-06-12 2007-03-21 Westerngeco Ltd Three-dimensional deghosting
US7100438B2 (en) * 2004-07-06 2006-09-05 General Electric Company Method and apparatus for determining a site for an offshore wind turbine
US7336561B2 (en) * 2004-09-07 2008-02-26 Pgs Americas, Inc. System for attenuation of water bottom multiples in seismic data recorded by pressure sensors and particle motion sensors
US20060133202A1 (en) * 2004-12-22 2006-06-22 Tenghamn Stig R L Motion sensors in a marine seismic streamer
US7499373B2 (en) 2005-02-10 2009-03-03 Westerngeco L.L.C. Apparatus and methods for seismic streamer positioning
US7319636B2 (en) * 2005-03-14 2008-01-15 Westerngeco, L.L.C. Calibration of pressure gradient recordings
US7433264B2 (en) * 2005-03-18 2008-10-07 Westerngeco L.L.C. Methods and systems for determination of vertical correction of observed reflection seismic signals
US7450467B2 (en) * 2005-04-08 2008-11-11 Westerngeco L.L.C. Apparatus and methods for seismic streamer positioning
US7372769B2 (en) * 2005-04-08 2008-05-13 Western Geco L.L.C. Method and apparatus for adaptive over/under combination of seismic data
US8477561B2 (en) * 2005-04-26 2013-07-02 Westerngeco L.L.C. Seismic streamer system and method
US20060256653A1 (en) * 2005-05-05 2006-11-16 Rune Toennessen Forward looking systems and methods for positioning marine seismic equipment
US7768869B2 (en) 2005-05-05 2010-08-03 Pgs Americas, Inc. Method for deghosting and water layer multiple reflection attenuation in marine seismic data
GB2428089B (en) 2005-07-05 2008-11-05 Schlumberger Holdings Borehole seismic acquisition system using pressure gradient sensors
US7660191B2 (en) * 2005-07-12 2010-02-09 Westerngeco L.L.C. Methods and apparatus for acquisition of marine seismic data
US7804738B2 (en) * 2006-03-21 2010-09-28 Westerngeco L.L.C. Active steering systems and methods for marine seismic sources
US20080008038A1 (en) * 2006-07-07 2008-01-10 Johan Olof Anders Robertsson Method and Apparatus for Estimating a Seismic Source Signature
US7480204B2 (en) * 2006-07-07 2009-01-20 Westerngeco L.L.C. Seismic data processing
US7379386B2 (en) * 2006-07-12 2008-05-27 Westerngeco L.L.C. Workflow for processing streamer seismic data
US7523003B2 (en) 2006-07-12 2009-04-21 Westerngeco L.L.C. Time lapse marine seismic surveying
US7379385B2 (en) * 2006-07-26 2008-05-27 Westerngeco L.L.C. Processing of seismic data acquired using over/under streamers and/or over/under sources
US7773456B2 (en) * 2006-10-02 2010-08-10 Bp Corporation North America Inc. System and method for seismic data acquisition
GB2444953B (en) * 2006-12-19 2009-07-22 Westerngeco Seismic Holdings Method for obtaining an image of a subsurface by regularizing irregularly sampled seismic data
US8593907B2 (en) * 2007-03-08 2013-11-26 Westerngeco L.L.C. Technique and system to cancel noise from measurements obtained from a multi-component streamer
US7426438B1 (en) 2007-03-16 2008-09-16 Westerngeco L.L.C. Technique to provide seismic data-based products
US7679991B2 (en) * 2007-03-16 2010-03-16 Westerngeco L. L. C. Processing of seismic data acquired using twin over/under streamers
US8077543B2 (en) * 2007-04-17 2011-12-13 Dirk-Jan Van Manen Mitigation of noise in marine multicomponent seismic data through the relationship between wavefield components at the free surface
US7676327B2 (en) 2007-04-26 2010-03-09 Westerngeco L.L.C. Method for optimal wave field separation
GB2450122B (en) * 2007-06-13 2009-08-05 Westerngeco Seismic Holdings Method of representing signals
US7715988B2 (en) * 2007-06-13 2010-05-11 Westerngeco L.L.C. Interpolating and deghosting multi-component seismic sensor data
US8014228B2 (en) * 2007-08-09 2011-09-06 Westerngeco, L.L.C. Marine seismic sources and methods of use
US20090040872A1 (en) * 2007-08-09 2009-02-12 Jahir Pabon Removing Vibration Noise from Multicomponent Streamer Measurements
US8116166B2 (en) * 2007-09-10 2012-02-14 Westerngeco L.L.C. 3D deghosting of multicomponent or over / under streamer recordings using cross-line wavenumber spectra of hydrophone data
NO20083861L (no) * 2007-09-14 2009-03-16 Geco Technology Bv Bruk av kildehoydemalinger for a fjerne sjoforstyrrelser
GB2454747B (en) * 2007-11-19 2010-08-04 Westerngeco Seismic Holdings Moveout correction of seismic data
US8175765B2 (en) * 2007-12-13 2012-05-08 Westerngeco L.L.C. Controlling movement of a vessel traveling through water during a seismic survey operation
US7646672B2 (en) 2008-01-18 2010-01-12 Pgs Geophysical As Method for wavefield separation in 3D dual sensor towed streamer data with aliased energy in cross-streamer direction
US8077544B2 (en) * 2008-03-28 2011-12-13 Westerngeco L.L.C. Dual-wavefield multiple attenuation
US7957906B2 (en) 2008-05-07 2011-06-07 Pgs Geophysical As Method for attenuating low frequency noise in a dual-sensor seismic streamer
US8964501B2 (en) * 2008-05-25 2015-02-24 Westerngeco L.L.C. System and technique to determine high order derivatives from seismic sensor data
US7872942B2 (en) * 2008-10-14 2011-01-18 Pgs Geophysical As Method for imaging a sea-surface reflector from towed dual-sensor streamer data
US8085617B2 (en) 2008-10-31 2011-12-27 Sercel Inc. System and method for reducing the effects of ghosts from the air-water interface in marine seismic exploration
US8681586B2 (en) * 2008-11-21 2014-03-25 Exxonmobil Upstream Research Company Free charge carrier diffusion response transducer for sensing gradients
US8164977B2 (en) * 2008-12-10 2012-04-24 Westerngeco L.L.C. Simulating up-going pressure wavefield
US20100211322A1 (en) * 2009-02-13 2010-08-19 Massimiliano Vassallo Interpolating a pressure wavefield along an undersampled direction
US20100211320A1 (en) * 2009-02-13 2010-08-19 Massimiliano Vassallo Reconstructing a seismic wavefield
US8699297B2 (en) * 2009-02-13 2014-04-15 Westerngeco L.L.C. Deghosting and reconstructing a seismic wavefield
US8554484B2 (en) * 2009-02-13 2013-10-08 Westerngeco L.L.C. Reconstructing seismic wavefields
US8050139B2 (en) * 2009-03-27 2011-11-01 Westerngeco L.L.C. System and method for towing acoustic source arrays
GB0905261D0 (en) 2009-03-27 2009-05-13 Geco Technology Bv Processing seismic data
US9103934B2 (en) * 2009-08-05 2015-08-11 Westerngeco L.L.C. Method for reducing marine source volume while maintaining image quality
US20110044127A1 (en) * 2009-08-19 2011-02-24 Clement Kostov Removing free-surface effects from seismic data acquired in a towed survey
US9285493B2 (en) * 2009-08-27 2016-03-15 Pgs Geophysical As Sensor grouping for dual sensor marine seismic streamer and method for seismic surveying
FR2955397B1 (fr) 2010-01-15 2012-03-02 Cggveritas Services Sa Procede et dispositif d'acquisition de donnees sismiques marines
FR2955396B1 (fr) * 2010-01-15 2013-03-01 Cggveritas Services Sa Dispositif de traitement de donnees sismiques marines
US10545252B2 (en) * 2010-01-15 2020-01-28 Westerngeco L.L.C. Deghosting and interpolating seismic data
US8730766B2 (en) * 2010-01-22 2014-05-20 Ion Geophysical Corporation Seismic system with ghost and motion rejection
US8467265B2 (en) * 2010-01-26 2013-06-18 Westerngeco L.L.C. Interpolation and deghosting of seismic data acquired in the presence of a rough sea
EP2372318B1 (de) * 2010-03-26 2020-03-18 VEGA Grieshaber KG Störechospeicherung bei Behälterrauschen
US8902699B2 (en) * 2010-03-30 2014-12-02 Pgs Geophysical As Method for separating up and down propagating pressure and vertical velocity fields from pressure and three-axial motion sensors in towed streamers
AU2014201112B2 (en) * 2010-06-10 2014-07-31 Cggveritas Services Sa Method and apparatus for deghosting seismic data
FR2961316A1 (fr) * 2010-06-10 2011-12-16 Cggveritas Services Sa Procede de traitement de donnees sismiques marines
WO2012015520A1 (en) 2010-07-26 2012-02-02 Exxonmobil Upstream Research Company Seismic acquisition method for mode separation
DK178490B1 (en) * 2010-09-02 2016-04-18 Ion Geophysical Corp Multi-component, acoustic-wave sensor and methods
US8634270B2 (en) * 2010-10-01 2014-01-21 Westerngeco L.L.C. Determining sea conditions in marine seismic spreads
AU2011232767B2 (en) 2010-10-14 2014-05-08 Cggveritas Services Sa Method and device to acquire seismic data
US20130028048A1 (en) * 2011-07-25 2013-01-31 Soellner Walter Methods and apparatus for seismic imaging which accounts for sea-surface variations
US20130088939A1 (en) * 2011-10-10 2013-04-11 Pascal Edme Wavefield separation using a gradient sensor
US9835750B2 (en) 2012-01-20 2017-12-05 Cgg Services Sas Buoy based marine seismic survey system and method
WO2013144847A1 (en) * 2012-03-27 2013-10-03 Westerngeco Llc Interferometry-based data redatuming and/or depth imaging
US9442209B2 (en) * 2012-07-10 2016-09-13 Pgs Geophysical As Methods and systems for reconstruction of low frequency particle velocity wavefields and deghosting of seismic streamer data
US9405028B2 (en) 2013-02-22 2016-08-02 Ion Geophysical Corporation Method and apparatus for multi-component datuming
US9274241B2 (en) * 2013-03-14 2016-03-01 Pgs Geophysical As Method and system for suppressing swell-induced electromagnetic noise
US9841519B2 (en) 2013-03-14 2017-12-12 Ion Geophysical Corporation Seismic sensor devices, systems, and methods including noise filtering
US10520623B2 (en) * 2013-05-31 2019-12-31 Westerngeco L.L.C. Methods and systems for marine survey acquisition
GB2525072B (en) * 2014-02-18 2020-08-19 Pgs Geophysical As Correction of sea surface state
US10598807B2 (en) 2014-02-18 2020-03-24 Pgs Geophysical As Correction of sea surface state
US10436922B2 (en) * 2015-10-05 2019-10-08 Cgg Services Sas Device and method for constrained wave-field separation
US10732311B2 (en) 2016-10-19 2020-08-04 Pgs Geophysical As Method for adjusting attributes of marine seismic survey data
GB2560578B (en) * 2017-03-17 2022-06-15 Equinor Energy As A method of deghosting seismic data
CN109975868B (zh) * 2019-03-26 2020-03-03 中国科学院地质与地球物理研究所 一种基于泰勒展开的波动方程鬼波压制方法
WO2021127372A1 (en) * 2019-12-20 2021-06-24 Downunder Geosolutions (America) Llc Deconvolution of down-going seismic wavefields

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757356A (en) 1954-01-08 1956-07-31 Texas Instruments Inc Method and apparatus for canceling reverberations in water layers
US3747055A (en) 1971-06-16 1973-07-17 Texaco Inc High resolution shooting with space domain filtering
US4222266A (en) 1978-08-17 1980-09-16 Theodoulou Samuel M Body motion compensation filter with pitch and roll correction
GB2090407A (en) 1980-12-29 1982-07-07 Mobil Oil Corp F-K filtering of multiple reflections from a seismic section
US4486865A (en) 1980-09-02 1984-12-04 Mobil Oil Corporation Pressure and velocity detectors for seismic exploration
US4979150A (en) 1989-08-25 1990-12-18 Halliburton Geophysical Services, Inc. System for attenuation of water-column reverberations
US4992993A (en) * 1990-06-18 1991-02-12 Western Atlas International, Inc. Correction for variable water-column velocity in seismic data
US5051961A (en) * 1989-10-26 1991-09-24 Atlantic Richfield Company Method and apparatus for seismic survey including using vertical gradient estimation to separate downgoing seismic wavefield
US5309360A (en) * 1991-05-23 1994-05-03 Halliburton Geophysical Services, Inc. Method for attenuating undesirable data, such as multiples, using constrained cross-equalization
US5365492A (en) 1993-08-04 1994-11-15 Western Atlas International, Inc. Method for reverberation suppression
US5524100A (en) * 1993-09-24 1996-06-04 Western Atlas International, Inc. Method for deriving water bottom reflectivity in dual sensor seismic surveys
US5581514A (en) * 1993-11-10 1996-12-03 Geco-Prakla, Inc. Surface seismic profile system and method using vertical sensor
US5621700A (en) * 1996-05-20 1997-04-15 Schlumberger Technology Corporation, Geco-Prakla Div. Method for attenuation of reverberations using a pressure-velocity bottom cable
US5621699A (en) * 1995-07-07 1997-04-15 Pgs Ocean Bottom Seismic, Inc. Apparatus and method of calibrating vertical particle velocity detector and pressure detector in a sea-floor cable with in-situ passive monitoring
US5696734A (en) * 1996-04-30 1997-12-09 Atlantic Richfield Company Method and system for eliminating ghost reflections from ocean bottom cable seismic survey signals
US5754492A (en) * 1996-02-12 1998-05-19 Pgs Tensor, Inc. Method of reverberation removal from seismic data and removal of dual sensor coupling errors
US5850622A (en) 1996-11-08 1998-12-15 Amoco Corporation Time-frequency processing and analysis of seismic data using very short-time fourier transforms
US5850922A (en) 1996-05-17 1998-12-22 Ryobi North America, Inc. Shipping and retail display pallet pack
GB2333364A (en) 1998-01-15 1999-07-21 Geco As Attenuating multiples in marine seismic data
GB2341680A (en) 1998-09-16 2000-03-22 Geco Prakla Seismic detection apparatus with receivers defining a volume
US6477470B2 (en) 2000-12-01 2002-11-05 Pgs Americas, Inc. Method and system for deghosting
US6493636B1 (en) * 1998-11-05 2002-12-10 Shell Oil Company Method of marine seismic exploration utilizing vertically and horizontally offset streamers
US6684160B1 (en) * 1998-05-20 2004-01-27 Westerngeco Marine seismic acquisition system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353121A (en) * 1980-07-24 1982-10-05 Fairfield Industries, Inc. High resolution, marine seismic stratigraphic system
US4992992A (en) * 1988-10-21 1991-02-12 Western Atlas International, Inc. Processing for seismic data from slanted cable
SE465643B (sv) 1990-02-22 1991-10-07 Bertil Gateman Elektrooptiskt sensorsystem foer insamling av marina seismiska data
US5293352A (en) * 1993-01-07 1994-03-08 Western Atlas International, Inc. Method for removing noise due to near surface scatterers
US5521881A (en) * 1994-09-02 1996-05-28 Exxon Production Research Company Method of processing seismic data having multiple reflection noise
US5587965A (en) * 1996-04-26 1996-12-24 Western Atlas International, Inc. Surface multiple attenuation via eigenvalue decomposition

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757356A (en) 1954-01-08 1956-07-31 Texas Instruments Inc Method and apparatus for canceling reverberations in water layers
US3747055A (en) 1971-06-16 1973-07-17 Texaco Inc High resolution shooting with space domain filtering
US4222266A (en) 1978-08-17 1980-09-16 Theodoulou Samuel M Body motion compensation filter with pitch and roll correction
US4486865A (en) 1980-09-02 1984-12-04 Mobil Oil Corporation Pressure and velocity detectors for seismic exploration
GB2090407A (en) 1980-12-29 1982-07-07 Mobil Oil Corp F-K filtering of multiple reflections from a seismic section
US4979150A (en) 1989-08-25 1990-12-18 Halliburton Geophysical Services, Inc. System for attenuation of water-column reverberations
US5051961A (en) * 1989-10-26 1991-09-24 Atlantic Richfield Company Method and apparatus for seismic survey including using vertical gradient estimation to separate downgoing seismic wavefield
US4992993A (en) * 1990-06-18 1991-02-12 Western Atlas International, Inc. Correction for variable water-column velocity in seismic data
US5309360A (en) * 1991-05-23 1994-05-03 Halliburton Geophysical Services, Inc. Method for attenuating undesirable data, such as multiples, using constrained cross-equalization
US5365492A (en) 1993-08-04 1994-11-15 Western Atlas International, Inc. Method for reverberation suppression
US5524100A (en) * 1993-09-24 1996-06-04 Western Atlas International, Inc. Method for deriving water bottom reflectivity in dual sensor seismic surveys
US5581514A (en) * 1993-11-10 1996-12-03 Geco-Prakla, Inc. Surface seismic profile system and method using vertical sensor
US5621699A (en) * 1995-07-07 1997-04-15 Pgs Ocean Bottom Seismic, Inc. Apparatus and method of calibrating vertical particle velocity detector and pressure detector in a sea-floor cable with in-situ passive monitoring
US5825716A (en) * 1996-02-12 1998-10-20 Pgs Tensor Inc. Method of reverberation removal from seismic data and removal of dual sensor coupling errors
US5754492A (en) * 1996-02-12 1998-05-19 Pgs Tensor, Inc. Method of reverberation removal from seismic data and removal of dual sensor coupling errors
US5696734A (en) * 1996-04-30 1997-12-09 Atlantic Richfield Company Method and system for eliminating ghost reflections from ocean bottom cable seismic survey signals
US5850922A (en) 1996-05-17 1998-12-22 Ryobi North America, Inc. Shipping and retail display pallet pack
WO1997044685A1 (en) 1996-05-20 1997-11-27 Schlumberger Holdings Limited Method for attenuation of reverberations using a pressure-velocity bottom cable
US5621700A (en) * 1996-05-20 1997-04-15 Schlumberger Technology Corporation, Geco-Prakla Div. Method for attenuation of reverberations using a pressure-velocity bottom cable
US5850622A (en) 1996-11-08 1998-12-15 Amoco Corporation Time-frequency processing and analysis of seismic data using very short-time fourier transforms
GB2333364A (en) 1998-01-15 1999-07-21 Geco As Attenuating multiples in marine seismic data
US6101448A (en) * 1998-01-15 2000-08-08 Schlumberger Technology Corporation Multiple attenuation of multi-component sea-bottom data
US6684160B1 (en) * 1998-05-20 2004-01-27 Westerngeco Marine seismic acquisition system and method
GB2341680A (en) 1998-09-16 2000-03-22 Geco Prakla Seismic detection apparatus with receivers defining a volume
US6493636B1 (en) * 1998-11-05 2002-12-10 Shell Oil Company Method of marine seismic exploration utilizing vertically and horizontally offset streamers
US6477470B2 (en) 2000-12-01 2002-11-05 Pgs Americas, Inc. Method and system for deghosting
US6654694B2 (en) 2000-12-01 2003-11-25 Pgs America, Inc. Method and system for evaluating quality of deghosted seismic data
US6747913B2 (en) 2000-12-01 2004-06-08 Pgs Americas, Inc. Method and system for deghosting

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"A New Data-Processing Techique for the Elimination of Ghost Arrivals on Reflection Seismograms," Schneider, W.A., Larner, K.L., Burg, J.P. and Backus, M.M.-Geophysics, vol. 29, No. 5, Oct. 1964, pp. 783-805.
"A New Data-Processing Techique for the Elimination of Ghost Arrivals on Reflection Seismograms," Schneider, W.A., Larner, K.L., Burg, J.P. and Backus, M.M.—Geophysics, vol. 29, No. 5, Oct. 1964, pp. 783-805.
"A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography," by Robertsson, J.O.-Geophysics, vol. 61, No. 6, Nov.-Dec. 1996, pp. 1921-1934.
"A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography," by Robertsson, J.O.—Geophysics, vol. 61, No. 6, Nov.-Dec. 1996, pp. 1921-1934.
"A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii, " by Pierson, W. J. and Moskowitz, L.A.-Journal of Geophysical Research, vol. 69, No. 24, Dec. 1964, pp. 5181-5190.
"A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii, " by Pierson, W. J. and Moskowitz, L.A.—Journal of Geophysical Research, vol. 69, No. 24, Dec. 1964, pp. 5181-5190.
"Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable," by Barr, F.J. and Sanders, J.I.-Annual Meeting of Society Expl. Geophys., Jan. 1989, XP000672198, pp. 653-656.
"Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable," by Barr, F.J. and Sanders, J.I.—Annual Meeting of Society Expl. Geophys., Jan. 1989, XP000672198, pp. 653-656.
"Directional Wave Spectra Observed During JONSWAP," by Hasselmann, D.E. and Dunckel, M. and Ewing J. -Journal of Physical Oceanography, vol. 10, 1980, pp. 1264-1280.
"Directional Wave Spectra Observed During JONSWAP," by Hasselmann, D.E. and Dunckel, M. and Ewing J. —Journal of Physical Oceanography, vol. 10, 1980, pp. 1264-1280.
"Extraction of the Normal Component of the Particle Velocity From Marine Pressure Date," by Amundsen, L., Secrest, B.G. and Arntsen, B.-Geophysics, vol. 60, No. 1, Jan.-Feb. 1995, pp. 212-222.
"Extraction of the Normal Component of the Particle Velocity From Marine Pressure Date," by Amundsen, L., Secrest, B.G. and Arntsen, B.—Geophysics, vol. 60, No. 1, Jan.-Feb. 1995, pp. 212-222.
"Plane Waves Seismic Waves: Radiation, Transmission and Attenuation," by White, J.E.-McGraw-Hill, 1965, Chapter 2, pp. 14-77.
"Plane Waves Seismic Waves: Radiation, Transmission and Attenuation," by White, J.E.—McGraw-Hill, 1965, Chapter 2, pp. 14-77.
"Visoelastic Finite-Difference Modeling," by Robertsson, J.O. Blanch, J.O. and Symes, W.W. Geophysics, vol. 59, No. 9, Sep. 1994, pp. 1444-1456.
"Wavenumber Based Filtering of Marine Point-Source Data," by Amundsen, L.-Geophysics, vol. 58, No. 9 Sep. 1993, pp. 1335-1348.
"Wavenumber Based Filtering of Marine Point-Source Data," by Amundsen, L.—Geophysics, vol. 58, No. 9 Sep. 1993, pp. 1335-1348.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103943B2 (en) 2011-11-28 2015-08-11 Fugro-Geoteam As Acquisition and processing of multi-source broadband marine seismic data
US20140153363A1 (en) * 2012-12-04 2014-06-05 Pgs Geophysical As Systems and methods for removal of swell noise in marine electromagnetic surveys
US9625600B2 (en) * 2012-12-04 2017-04-18 Pgs Geophysical As Systems and methods for removal of swell noise in marine electromagnetic surveys
US10107929B2 (en) * 2014-12-18 2018-10-23 Pgs Geophysical As Methods and systems to determine ghost operators from marine seismic data
US10324210B2 (en) * 2016-06-30 2019-06-18 Schlumberger Technology Corporation Method and apparatus for determining rough sea topography during a seismic survey

Also Published As

Publication number Publication date
GB2363457A8 (en) 2001-12-19
GB2363457B (en) 2003-04-30
WO2000057207A1 (en) 2000-09-28
USRE43188E1 (en) 2012-02-14
AU3311900A (en) 2000-10-09
GB2363459B (en) 2003-04-30
GB9906456D0 (en) 1999-05-12
NO20014595L (no) 2001-11-21
NO20014595D0 (no) 2001-09-21
WO2000057206A1 (en) 2000-09-28
NO20014596L (no) 2001-11-20
GB2363457A (en) 2001-12-19
US6775618B1 (en) 2004-08-10
NO333154B1 (no) 2013-03-18
GB0122579D0 (en) 2001-11-07
AU3311100A (en) 2000-10-09
GB0122352D0 (en) 2001-11-07
NO332880B1 (no) 2013-01-28
GB2363459A (en) 2001-12-19
US6529445B1 (en) 2003-03-04
NO20014596D0 (no) 2001-09-21

Similar Documents

Publication Publication Date Title
USRE41656E1 (en) Method and system for reducing effects of sea surface ghost contamination in seismic data
CA2622703C (en) Method for prediction of surface related multiples from marine towed dual sensor seismic streamer data
US7768869B2 (en) Method for deghosting and water layer multiple reflection attenuation in marine seismic data
CA2453280C (en) Method for attenuating noise in seismic data
US6101448A (en) Multiple attenuation of multi-component sea-bottom data
US7953556B2 (en) Geophone noise attenuation and wavefield separation using a multi-dimensional decomposition technique
US8605541B2 (en) Three-dimensional deghosting
AU2018220021B2 (en) Systems and methods for removing acquisition related effects from seismic data
US7957221B2 (en) Method for optimum combination of pressure and particle motion sensors for a 3-D spread of dual-sensor marine seismic streamers
AU2002324926A1 (en) Method for attenuating noise in seismic data
US11092708B2 (en) Processes and systems to enhance illumination and resolution of seismic images using multiple reflected wavefields
EP3956696B1 (en) Attenuation of low-frequency noise in continously recorded wavefields
US11391857B2 (en) Methods and systems for attenuating residual acoustic energy in seismic data
Petronio et al. Dual signals separation in shallow borehole hydrophone data
Helgesen et al. MULTI‐OFFSET ACOUSTIC INVERSION OF A LATERALLY INVARIANT MEDIUM: APPLICATION TO REAL DATA 1
CA2205426A1 (en) Method for measuring the water thickness above a bottom cable
Sen et al. Converted Waves from Gas Hydrates: Constraints on the shear velocity structure of shallow sediments in Oregon Continental Margin
MacBeth et al. The problem of water-column multiples for processing converted S waves in marine VSP data

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8