USRE40234E1 - Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system - Google Patents
Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system Download PDFInfo
- Publication number
- USRE40234E1 USRE40234E1 US07/973,107 US97310792A USRE40234E US RE40234 E1 USRE40234 E1 US RE40234E1 US 97310792 A US97310792 A US 97310792A US RE40234 E USRE40234 E US RE40234E
- Authority
- US
- United States
- Prior art keywords
- radical
- group
- radicals
- transition metal
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 47
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 46
- 229920013639 polyalphaolefin Polymers 0.000 title claims abstract description 33
- 230000008569 process Effects 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 title claims description 93
- 239000004711 α-olefin Substances 0.000 claims abstract description 25
- 239000000178 monomer Substances 0.000 claims description 42
- 239000003446 ligand Substances 0.000 claims description 30
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 27
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 125000001424 substituent group Chemical group 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 11
- 125000005842 heteroatom Chemical group 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 230000002378 acidificating effect Effects 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims description 7
- 125000000129 anionic group Chemical group 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 229910052752 metalloid Inorganic materials 0.000 claims description 6
- 239000002879 Lewis base Substances 0.000 claims description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 5
- 150000007527 lewis bases Chemical class 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 150000002738 metalloids Chemical class 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 6
- -1 polypropylene Polymers 0.000 description 144
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 123
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 120
- 239000000203 mixture Substances 0.000 description 60
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 57
- 229920000642 polymer Polymers 0.000 description 49
- 239000002904 solvent Substances 0.000 description 43
- 150000001875 compounds Chemical class 0.000 description 39
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 32
- 238000006116 polymerization reaction Methods 0.000 description 31
- 238000003756 stirring Methods 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 27
- 150000003254 radicals Chemical class 0.000 description 26
- 239000004743 Polypropylene Substances 0.000 description 23
- 229920001155 polypropylene Polymers 0.000 description 23
- 239000000047 product Substances 0.000 description 21
- 239000007787 solid Substances 0.000 description 21
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- 239000000706 filtrate Substances 0.000 description 20
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 18
- 150000003623 transition metal compounds Chemical class 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 238000009826 distribution Methods 0.000 description 17
- 239000007788 liquid Substances 0.000 description 17
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 17
- 239000000460 chlorine Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000003208 petroleum Substances 0.000 description 16
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 16
- 239000003085 diluting agent Substances 0.000 description 14
- 229920000098 polyolefin Polymers 0.000 description 14
- 241000894007 species Species 0.000 description 14
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 13
- 229910003074 TiCl4 Inorganic materials 0.000 description 12
- 230000007547 defect Effects 0.000 description 12
- 238000001914 filtration Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 12
- 241000349731 Afzelia bipindensis Species 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 125000001183 hydrocarbyl group Chemical group 0.000 description 11
- IHLVCKWPAMTVTG-UHFFFAOYSA-N lithium;carbanide Chemical compound [Li+].[CH3-] IHLVCKWPAMTVTG-UHFFFAOYSA-N 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000013461 design Methods 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000013022 venting Methods 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 229910010068 TiCl2 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001580 isotactic polymer Polymers 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910018516 Al—O Inorganic materials 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 229910007928 ZrCl2 Inorganic materials 0.000 description 5
- 150000001335 aliphatic alkanes Chemical class 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 150000001412 amines Chemical group 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000012968 metallocene catalyst Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 5
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 4
- 229920013640 amorphous poly alpha olefin Polymers 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CQGMYZPVYXUJDA-ZQBYOMGUSA-N CC1(C)C[3H]C1 Chemical compound CC1(C)C[3H]C1 CQGMYZPVYXUJDA-ZQBYOMGUSA-N 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 3
- 229910003865 HfCl4 Inorganic materials 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229920001585 atactic polymer Polymers 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical group N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229960004132 diethyl ether Drugs 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 3
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229920001576 syndiotactic polymer Polymers 0.000 description 3
- 125000006659 (C1-C20) hydrocarbyl group Chemical group 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- XKLRNMYIDFIRDW-BMQNMLBSSA-N CC12(C[3H]C1)CC1(C)(C[3H]C1)C2 Chemical compound CC12(C[3H]C1)CC1(C)(C[3H]C1)C2 XKLRNMYIDFIRDW-BMQNMLBSSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910007932 ZrCl4 Inorganic materials 0.000 description 2
- KUNZSLJMPCDOGI-UHFFFAOYSA-L [Cl-].[Cl-].[Hf+2] Chemical compound [Cl-].[Cl-].[Hf+2] KUNZSLJMPCDOGI-UHFFFAOYSA-L 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000001118 alkylidene group Chemical group 0.000 description 2
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 150000001923 cyclic compounds Chemical class 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 2
- OJPDGVFVOZRCQF-UHFFFAOYSA-L (1-dimethylsilylcyclohexyl)-(1H-inden-1-yl)azanide titanium(3+) dichloride Chemical compound [Cl-].[Cl-].[Ti+3].C[SiH](C)C1(CCCCC1)[N-]C1C=CC2=CC=CC=C12 OJPDGVFVOZRCQF-UHFFFAOYSA-L 0.000 description 1
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- XMYFZAWUNVHVGI-UHFFFAOYSA-N 3-ethylpent-2-ene Chemical group CCC(CC)=CC XMYFZAWUNVHVGI-UHFFFAOYSA-N 0.000 description 1
- ZQDPJFUHLCOCRG-UHFFFAOYSA-N 3-hexene Chemical group CCC=CCC ZQDPJFUHLCOCRG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DLDVQHVZXJDSII-UHFFFAOYSA-N C12=CC=CCC2CCC1[Ti]C1C2=CC=CCC2CC1 Chemical compound C12=CC=CCC2CCC1[Ti]C1C2=CC=CCC2CC1 DLDVQHVZXJDSII-UHFFFAOYSA-N 0.000 description 1
- OFZYBEBWCZBCPM-UHFFFAOYSA-N CC1(C)CCC1 Chemical compound CC1(C)CCC1 OFZYBEBWCZBCPM-UHFFFAOYSA-N 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N CC1CCCC1 Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- VDSFRVFMTUOJEP-CRGZJZPVSA-N CCC[C@H](C)C[C@H](C)C[C@H](C)CC(C)C.C[C@H]1CC2(CC3(C2)CC2(C3)C[C@H](C)C2)C1 Chemical compound CCC[C@H](C)C[C@H](C)C[C@H](C)CC(C)C.C[C@H]1CC2(CC3(C2)CC2(C3)C[C@H](C)C2)C1 VDSFRVFMTUOJEP-CRGZJZPVSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OTGRELVCTUFVJO-UHFFFAOYSA-M Cl[Hf] Chemical compound Cl[Hf] OTGRELVCTUFVJO-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- PGTKVMVZBBZCKQ-UHFFFAOYSA-N Fulvene Chemical compound C=C1C=CC=C1 PGTKVMVZBBZCKQ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical class OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- JGALSKCCWGCHHM-UHFFFAOYSA-N [Ti]C Chemical compound [Ti]C JGALSKCCWGCHHM-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- HQMRIBYCTLBDAK-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;chloride Chemical compound CC(C)C[Al](Cl)CC(C)C HQMRIBYCTLBDAK-UHFFFAOYSA-M 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- IDASTKMEQGPVRR-UHFFFAOYSA-N cyclopenta-1,3-diene;zirconium(2+) Chemical compound [Zr+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IDASTKMEQGPVRR-UHFFFAOYSA-N 0.000 description 1
- SRKKQWSERFMTOX-UHFFFAOYSA-N cyclopentane;titanium Chemical compound [Ti].[CH]1C=CC=C1 SRKKQWSERFMTOX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- PBGGNZZGJIKBMJ-UHFFFAOYSA-N di(propan-2-yl)azanide Chemical compound CC(C)[N-]C(C)C PBGGNZZGJIKBMJ-UHFFFAOYSA-N 0.000 description 1
- UZBQIPPOMKBLAS-UHFFFAOYSA-N diethylazanide Chemical compound CC[N-]CC UZBQIPPOMKBLAS-UHFFFAOYSA-N 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 150000002362 hafnium Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- DBKDYYFPDRPMPE-UHFFFAOYSA-N lithium;cyclopenta-1,3-diene Chemical compound [Li+].C=1C=C[CH-]C=1 DBKDYYFPDRPMPE-UHFFFAOYSA-N 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- CATWEXRJGNBIJD-UHFFFAOYSA-N n-tert-butyl-2-methylpropan-2-amine Chemical compound CC(C)(C)NC(C)(C)C CATWEXRJGNBIJD-UHFFFAOYSA-N 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical group CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- OSFBJERFMQCEQY-UHFFFAOYSA-N propylidene Chemical group [CH]CC OSFBJERFMQCEQY-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical group C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 1
- GBNDTYKAOXLLID-UHFFFAOYSA-N zirconium(4+) ion Chemical compound [Zr+4] GBNDTYKAOXLLID-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/10—Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Definitions
- This invention relates to a process for polymerizing ⁇ -olefins which utilize utilizes certain monocyclopentadienyl metal compounds of a Group IV B transition metal of the Periodic Table of Elements in an alumoxane activated catalyst system to produce crystalline poly- ⁇ -olefins, particularly polypropylene and ⁇ -olefin copolymers of propylene.
- Ziegler-Natta catalysts systems a transition metal compound cocatalyzed by an aluminum alkyl—are capable of producing polyolefins having a high molecular weight but a broad molecular weight distribution.
- transition metal compound has two or more cyclopentadienyl ring ligands—such transition metal compound being referred to herein as a “metallocene “metallocene”—which catalyzes the production of olefin monomers to polyolefins.
- titanocenes and zirconocenes have been utilized as the transition metal component in such “metallocene” containing catalyst system for the production of polyolefins and ethylene- ⁇ -olefin copolymers.
- metallocenes are cocatalyzed with aluminum alkyl—as is the case with a traditional type Ziegler-Natta catalyst system—the catalytic activity of such metallocene catalyst system is generally too low to be of any commercial interest.
- metallocenes may be cocatalyzed with an alumoxane—rather than an aluminum alkyl—to provide a metallocene catalyst system of high activity for the production of polyolefins.
- the zirconocenes as cocatalyzed or activated with an alumoxane, are commonly more active than their hafnium or titanium analogous analogues for the polymerization of ethylene alone or together with an ⁇ -olefin comonomer.
- alumoxane activator sufficient to provide an aluminum atom to transition metal atom ratio (Al:TM) of at least greater than 1000:1; often greater than 5000:1, and frequently on the order of 10,000:1.
- Such quantities of alumoxane impart to a polymer produced with such catalyst system an undesirable content of catalyst metal residue, i.e., an undesirable “ash” content (the nonvolatile metal content).
- an undesirable “ash” content the nonvolatile metal content.
- the reactor pressure exceeds about 500 bar only the zirconium or hafnium species of metallocenes may be used. Titanium species of metallocenes are generally unstable at such high pressures unless deposited upon a catalyst support.
- a wide variety of Group IV B transition metal compounds have been named as possible candidates for an alumoxane cocatalyzed catalyst system.
- WO 87/03887 describes the use of a composition comprising a transition metal coordinated to at least one cyclopentadienyl and at least one heteroatom ligand as a transition metal component fo ruse in an alumoxane activated catalyst system for ⁇ -olefin polymerization.
- the composition is broadly defined as a transition metal, preferably of Group IV B of the Periodic Table, which is coordinated with at least one cyclopentaidienyl ligand and one to three heteroatom ligands, the balance of the transition metal coordination requirement being satisfied with cyclopentadienyl or hydrocarbyl ligands.
- Catalyst systems described by this reference are illustrated solely with reference to transition metal compounds which are metallocenes, i.e., bis(cyclopentadienyl) Group IV B transition metal compounds.
- Polymers comprised of ⁇ -olefin monomers have hydocarbyl groups pendant from the polymer backbone chain.
- the pendant hydrocarbyl groups may be arranged in different stereochemical configurations which are denominated as, for example, atactic, isotactic, or syndiotactic pendant group configuration.
- the degree and type of tacticity of a polyolefin molecule is a are critical determinant determinants of the physical properties which a resin composed of such polymer molecules will exhibit.
- Other critical determinants of the properties which a resin will exhibit are the type and relative concentration of monomers and comonomers, the weight average molecular weight (M w ) of the polymer molecules comprising the resin bulk, the molecular weight distribution (MWD) and the composition distribution of the resin.
- the weight average molecular weight (M w ) of a poly- ⁇ -olefin is an important physical property determinant of the practical uses to which such polymer can be put.
- the M w of such a resin must generally be in excess of 100,000.
- the poly- ⁇ -olefin resin must generally have a high degree of crystallinity.
- the degree of crystallinity which a poly- ⁇ -olefin is capable of obtaining is, in major part, determined by the stereochemical regularity of the hydrocarbyl groups which are pendent to the polymer molecule backbone, i.e., the tacticity of the polymer.
- tacticity Five types have been described in poly- ⁇ -olefins: atactic, normal isotactic, isotactic stereoblock, syndiotactic, and hemiisotactic. Although all of these tacticity configurations have been primarily demonstrated in the case of polypropylene, in theory each is equally possible for polymers comprised of any ⁇ -olefin, cyclic olefin or internal olefin.
- Atactic poly- ⁇ -olefins are those wherein the hydrocarbyl groups pendent to the polymer molecule backbone assume no regular order in space with reference to the backbone.
- This random, or atactic, structure is represented by a polymer backbone of alternating methylene and methine carbons, with randomly oriented branches substituting the methine carbons.
- the methine carbons randomly have R and S configurations, creating adjacent pairs either of like configuration (a “meso” or “m” dyad) or of unlike configuration (a “racemic” or “r” dyad).
- the atactic form of a polymer contains approximately equal fractions of meso and racemic dyads.
- Atactic poly- ⁇ -olefins are soluble in aliphatic and aromatic solvents at ambient temperature. Since atactic polymers exhibit no regular order or repeating unit configurations in the polymer chain, such atactic polymers are amorphous materials. Since atactic poly- ⁇ -olefins are amorphous, the resins composed thereof have no measurable melting point. Atactic polymers exhibit little if any crystallinity, hence they are generally unsuitable for high strength applications regardless of the weight average molecular weight of the resin.
- Isotactic poly- ⁇ -olefins are those wherein the pendent hydrocarbyl groups are ordered in space to the same side or plane of the polymer backbone chain.
- isotactic polypropylene as an example, the isotactic structure is typically described as having the pendent methyl groups attached to the ternary carbon atoms of successive monomeric units on the same side of a hypothetical plane through the carbon backbone chain of the polymer, e.g., the methyl groups are all above or below the plane as shown below.
- the degree of isotactic regularity may be measured by NMR techniques. Bovey's NMR nomenclature for an isotactic pentad is . . . mmmm . . . with each “m” representing a “meso” dyad or successive methyl groups on the same side in of the plane.
- stereoblock isotactic polymer differs from the formation of the normal isotactic structure in the way that the propagation site reacts to a stereochemical error in the chain.
- the normal isotactic chain will return to the original configuration following an error because the stereochemical regulator, the catalytic active metal species and its surrounding ligands, continue to dictate the same stereochemical preference during monomer insertion.
- the catalytic active metal site itself changes from one which dictates a monomer insertion of R configuration to one which dictates an S configuration for monomer insertion.
- the isotactic stereo-block form is shown below.
- normal isotactic polymers Unlike normal isotactic polymers, the lengths of individual blocks of the same configuration in the stereo-block structure vary widely due to changing reaction conditions. Since only the erroneous parts of the chains affect the crystallinity of the resin product, in general, normal isotactic polymers and isotactic stereoblock polymers of long block length (greater than 50 isotactic placements) have similar properties.
- isotactic poly- ⁇ -olefins are insoluble in xylene and are capable of exhibiting a high degree of crystallinity and are in part characterizable by their melting point temperature. Accordingly, isotactic poly- ⁇ -olefins are, depending upon their weight average molecular weight exceeding about 100,000, well suited to high strength end use applications.
- Syndiotactic poly- ⁇ -olefins are those wherein the hydrocarbyl groups pendent to the polymer molecular backbone alternate sequentially in order from one side or plane to the opposite side or plane relative to the polymer backbone, as shown below.
- this pentad is described as . . . rrr . . . in which each r represents a “racemic” dyad, i.e., successive methyl groups on alternative sides of the plane.
- the percentage of r dyads in the chain determines the degree of syndiotacticity of the polymer.
- syndiotactic propagation has been studied for over 25 years; however, only a few good syndiospecific catalysts have been discovered, all of which are extremely sensitive to monomer bulkiness.
- well-characterized syndiotactic polymers are limited only to polypropylenes.
- the molecular chain backbone of a syndiotactic polymer can be considered to be a copolymer of olefins with alternating stereochemical configurations.
- Highly syndiotactic polymers are generally highly crystalline and will frequently have high melting points similar to their isotactic polymorphs.
- syndiotactic poly- ⁇ -olefins are capable of exhibiting a high degree of crystallinity, hence are suitable for high strength applications provided their M w exceeds about 100,000.
- Syndiotactic poly- ⁇ -olefins poly- ⁇ - olefins are in part characterized by their exhibition of a melting point temperature.
- the final resin properties and its their suitability for particular applications depend depends on the type of tacticity, the melting point (stereoregularity), the average molecular weight, the molecular weight distribution, the type and level of monomer and comonomer, the sequence distribution, and the presence or absence of head or end group functionality.
- the catalyst system by which such a stereoregular poly- ⁇ -olefin resin is to be produced should, desirably, be versatile in terms of M w , MWD, tacticity type and level, and comonomer choice. Further, the catalyst system should be capable of producing these polymers with or without head and/or end group functionality, such as olefinic unsaturation.
- Such catalyst system must be capable, as a commercially practical constraint, of producing such resins at an acceptable production rate.
- the catalyst system should be one which, at its productivity rate, provides a resin product which does not require a subsequent treatment to remove catalyst residue to a level which is acceptable for the resin in the end use application desired.
- Catalysts that produce isotactic polyolefins are also disclosed in U.S. Pat. No. 4,794,096.
- This patent discloses a chiral, stereorigid metallocene catalyst which is activated by an alumoxane cocatalyst which is reported to polymerize olefins to isotactic polyolefin forms.
- Alumoxane cocatalyzed metallocene structures which have been reported to polymerize stereoregularly are the ethylene bridged bis-indenyl and bis-tetrahydroindenyl titanium and zirconium (IV) catalyst.
- Such catalyst systems were synthesized and studied in Wild et al., J. Organomet. Chem.
- Metallocene-alumoxane catalyst generally require a high content of alumoxane cocatalyst to be sufficiently productive for commercial use. Accordingly, metallocene-alumoxane produced isotactic poly- ⁇ -olefin resins generally have a higher than desired catalyst residue content. Hafnocene systems, which yield polymers of higher average M w than the zirconium analogs, analogues, have very low activities even at high alumoxane concentrations.
- Syndiotactic polyolefins were first disclosed by Natta et al. in U.S. Pat. No. 3,258,455. As reported, Natta obtained syndiotactic polypropylene by using a catalyst prepared from titanium trichloride and diethyl aluminum monochloride. A later patent to Natta et al., U.S. Pat. No. 3,305,538, discloses the use of vanadium triacetylacetonate or halogenated vanadium compounds in combinations with organic aluminum compounds for production of syndiotactic polypropylene.
- the process of this invention employs a catalyst system comprised of a transition metal component from Group IV B of the Periodic Table of the Elements (CRC Handbook of Chemistry and Physics, 68th ed. 1987-1988) and an alumoxane component.
- the catalyst system may be employed in solution, slurry, gas or bulk phase polymerization procedure to produce crystalline poly- ⁇ -olefins of high weight average molecular weight and relatively narrow molecular weight distribution.
- the “Group IV B transition metal component” of the catalyst system is represented by the formula: wherein:
- (C 2 H 4-x R x )( C 5 H 4-x R x ) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, “x” is 0, 1, 2, 3, or 4 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from a group consisting of C 1 -C 20 hydrocarbyl radicals, substituted C 1 -C 20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C 1 -C 20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements; and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, aklylboridoalkylborido radical
- T is a covalent bridging group containing a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
- a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
- L is a neutral Lewis base such as diethylether, tetra-ethylammonium chloride, tetrahydrofuran, dimethylaniline, aniline, trimethylphosphine, n-butylamine, and the like; and “w” is a number from 0 to 3.
- L can also be a second transition metal compound of the same type such that the two metal centers M and M′ are bridged by Q and Q′, wherein M′ has the meaning as M and Q′ has the same meaning as Q.
- dimeric compounds are represented by the formula:
- the alumoxane component of the catalyst may be represented by the formulas: (R 3 —Al—O) m ; R 4 (R 5 —Al—O) m ⁇ AlR 6 R 4 ( R 5 —Al—O ) m —AlR 6 2 or mixtures thereof, wherein R 3 -R 6 are, independently, a C 1 -C 5 alkyl group or halide and “m” is an integer ranging from 1 to about 50 and preferably is from about 13 to about 25.
- Catalyst systems of the invention may be prepared by placing the “Group IV B transition metal component” and the alumoxane component in common solution in a normally liquid alkane or aromatic solvent, which solvent is preferably suitable for use as a polymerization diluent for the liquid phase polymerization of an ⁇ -olefin monomer.
- Those species of the Group IV B transition metal component wherein the metal is titanium have been found to impart beneficial properties to a catalyst system which are unexpected in view of what is known about the properties of bis(cyclopentaidienyl) titanium compounds which are cocatalyzed by alumoxanes.
- titanocenes in their soluble form are generally unstable in the presence of aluminum alkyls
- the monocyclopentadienyl titanium metal components of this invention, particularly those wherein the heteroatom is nitrogen generally exhibit greater stability in the presence of aluminum alkyls and higher catalyst activity rates.
- titanium species of the Group IV B transition metal component catalyst of this invention generally exhibit higher catalyst activities and the production of poly- ⁇ -olefins of greater molecular weight than catalyst systems prepared with the zirconium or hafnium species of the Group IV B transition metal component.
- the transition metal component for the catalyst system may be tailored to function in the catalyst system to produce highly crystalline poly- ⁇ -olefins to the total or substantial avoidance of the production of atactic poly- ⁇ -olefin molecules which are amorphous.
- the Group IV B transition metal component of the catalyst system is represented by the general formula: wherein M is Zr, Hf or Ti in its highest formal oxidation state (+4, d 0 complex);
- (C 5 H 4-x R x ) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, “x” is 0, 1, 2, 3, or 4 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from a group consisting of C 1 -C 20 hydrocarbyl radicals, substituted C 1 -C 20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, and alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C 1 -C 20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements; and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, aklylborido radicals or any other radical containing a Lewis acidic or basic functionality; or
- JR′ z-2 is a heteroatom ligand in which J is an element with a coordination number of three from Group V A or an element with a coordination number of two from Group VI A of the Periodic Table of Elements, preferably nitrogen, phosphorus, oxygen or sulfur with nitrogen being preferred, and each R′ is, independently a radical selected from a group consisting of C 1 -C 20 hydrocarbyl radicals, substituted C 1 -C 20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, and “z” is the coordination number of the element J;
- each Q is, independently, any univalent anionic ligand such as a halide, hydride, or substituted or unsubstituted C 1 -C 20 hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide or arylphosphide, provided that where any Q is a hydrocarbyl such Q is different from (C 5 H 4-x R x ), or both Q together may be an alkylidene or a cyclometallated hydrocarbyl or any other divalent anionic chelating ligand;
- T is a covalent bridging group containing a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
- a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
- L is a neutral Lewis base such as diethylether, tetrahydrofuran, dimethylaniline, aniline, trimethylphosphine, n-butylamine, and the like; and “w” is a number from 0 to 3; L can also be a second transition metal compound of the same type such that the two metal centers M and M′ are bridged by Q and Q′, wherein M′ has the meaning as M and Q′ has the same meaning as Q.
- Such compounds are represented by the formula:
- T group which are suitable as a constituent group of the Group IV B transition metal component of the catalyst system are identified in column 1 of Table 1 under the heading “T”.
- Suitable, but not limiting, Group IV B transition metal compounds which may be utilized in the catalyst system of this invention include those wherein the T group bridge is a dialkyl, diaryl or alkylaryl silane, silyl, or methylene or ethylene.
- the T group bridge is a dialkyl, diaryl or alkylaryl silane, silyl, or methylene or ethylene.
- Exemplary of the more preferred species of bridged Group IV B transition metal compounds are dimethylsilyl, methylphenylsilyl, diethylsilyl, ethylphenylsilyl, diphenylsilyl, ethylene or methylene bridged compounds.
- Most preferred of the bridged species are dimethylsilyl, diethylsilyl and methylphenylsilyl bridged compounds.
- Exemplary hydrocarbyl radicals for Q are methyl, ethyl, propyl, butyl, amyl, isoamyl, hexyl, isobutyl, heptyl, octyl, nonyl, decyl, cetyl, 2-ethylhexyl, phenyl and the like, with methyl being preferred.
- Exemplary halogen atoms for Q include chlorine, bromine, fluorine and iodine, with chlorine being preferred.
- Exemplary alkoxides and aryloxides for Q are methoxide, phenoxide and substituted phenoxides such as 4-methylphenoxide.
- Exemplary amides of Q are dimethylamide, diethylamide, methylethylamide, di-t-butylamide, diisoproylamide diisopropylamide and the like.
- Exemplary aryl amides are diphenylamide and any other substituted phenyl amides.
- Exemplary phosphides of Q are diphenylphosphide, dicyclohexylphosphide, diethylphosphide, dimethylphosphide and the like.
- Suitable hydrocarbyl and substituted hydrocarbyl radicals which may be substituted as an R group for at least one hydrogen atom in the cyclopentadienyl ring, will contain from 1 to about 20 carbon atoms and include straight and branched alkyl radicals, cyclic hydrocarbon radicals, alkyl-substituted cyclic hydrocarbon radicals, aromatic radicals and alkyl-substituted aromatic radicals, amido-substituted hydrocarbon radicals, phosphido-substituted hydrocarbon radicals, alkoxy-substituted hydrocarbon radicals, and cyclopentadienyl rings containing one or more fused saturated or unsaturated rings.
- Suitable organometallic radicals which may be substituted as an R group for at least one hydrogen atom in the cyclopentadienyl ring, include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, trimethylgermyl and the like.
- Other suitable radicals that may be substituted for one or more hydrogen atom in the cyclopentadienyl ring include halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, alkylborido radicals and the like.
- Suitable R′ radicals of the heteroatom J ligand are independently a hydrocarbyl radical selected from the group consisting of 1 to about 20 carbon atoms and include straight and branched alkyl radicals, cyclic hydrocarbon radicals, alkyl-substituted cyclic hydrocarbon radicals, aromatic radicals and the like; substituted C 1 -C 20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical and a an alkylborido radical, or a radical containing a Lewis acidic or basic functionality, and the like.
- heteroatom ligand groups JR′ z-2
- Examples of heteroatom ligand groups (JR′ z-2 ) which are suitable as a constituent group of the Group IV B transition metal component of the catalyst system are identified in column 3 of Table 1 under the heading (JR′ z-2 ).
- Table 1 depicts representative constituent moieties for the “Group IV B transition metal component”, the list is for illustrative purposes only and should not be construed to be limiting in any way. A number of final components may be formed by permuting all possible combinations of the constituent moieties with each other.
- Illustrative compounds are: dimethylsilylfluorenyl-t-butylamido zirconium dichloride, dimethylsilylfluorenyl-t-butylamido hafnium dichloride, dimethylsilylfluorenylcycohexylamide zirconium dihalide, and dimethylsilylfluorenylcyclohexylamido hafnium dichloride.
- titanium species of the Group IV B transition metal compound have generally been found to yield catalyst systems which in comparison to their zirconium or hafnium analogues, are of higher activity.
- Illustrative, but not limiting of the titanium species which may exhibit such superior properties are; are: dimethylsilylfluorenyl-t-butylamido titanium dichloride, dimethylsilylindenylcyclohexylamide titanium dichloride, dimethylsilyl-t-butylcyclopentadienylcyclododecylamido titanium dichloride, dimethylsilylmethylcyclopentadienylcyclododecylamido titanium dichloride, dimethylsilylmethylcyclopentadienyl-2,6-diisopropylphenylamido titanium dichloride, dimethylsilylmethylcyclopentadienylcyclohexylamido titanium dichloride, and dimethylsilylmethylcyclopentadienyl-2,5-
- the above compounds and those permuted from Table 1 do not include the neutral Lewis base ligand (L).
- the conditions under which complexes containing neutral Lewis base ligands such as ether or those which form dimeric compounds is are determined by the steric bulk of the ligands about the metal center.
- the t-butyl group in Me 2 (Si(Me 4 C 5 )(N-t-Bu)ZrCl 2 has greater steric requirements than the phenyl group in Me 2 Si(Me 4 C 5 )(NPh)ZrCl 2 •Et 2 O thereby not permitting ether coordination in the former compound.
- the Group IV B transition metal compounds can be prepared by reacting a cyclopentadienyl lithium compound with a dihalo compound, whereupon a lithium halide salt is liberated and a monohalo substituent is covalently bound to the cyclopentadienyl compound.
- the so substituted cyclopentadienyl reaction product is next reacted with a lithium salt of a phosphide, oxide, sulfide or amide (for the sake of illustrative purposes, a lithium amide) whereupon the halo element of the monohalo substituent group of the reaction product reacts to liberate a lithium halide salt and the amine moiety of the lithium amide salt is covalently bound to the substituent of the cyclopentadienyl reaction product.
- a lithium salt of a phosphide, oxide, sulfide or amide for the sake of illustrative purposes, a lithium amide
- the resulting amine derivative of the cyclopentadienyl product is then reacted with an alkyl lithium reagent whereupon the labile hydrogen atoms, at the carbon atom of the cyclopentadienyl compound and at the nitrogen atom of the amine moiety covalently bound to the substituent group, react with the alkyl of the lithium alkyl reagent to liberate the alkane and produce a dilithium salt of the cyclopentadienyl compound.
- the bridged species of the Group IV B transition metal compound is produced by reacting the dilithium salt cyclopentadienyl compound with a Group IV B transition metal preferably a Group IV B transition metal halide.
- the class of transition metal components most preferred for use in the process for production of crystalline poly- ⁇ -olefins poly- ⁇ - olefins is that wherein the covalent bridging group T contains silicon and the heteroatom J of the heteroatom ligand is nitrogen.
- the preferred class of transition metal components are of the formula: wherein Q, L, R′, R, “x” and “w” are as previously defined and R 1 and R 2 are each independently a C 1 to C 20 hydrocarbyl radicals, substituted C 1 to C 20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R 1 and R 2 may also be joined forming a C 3 to C 20 ring which incorporates the silicon bridge.
- the alumoxane component of the catalyst system is an oligomeric compound which may be represented by the general formula (R 3 —Al—O) m which is a cyclic compound, or may be R 4 (R 5 —Al—O) m -AlR 6 2 which is a linear compound.
- An alumoxane is generally a mixture of both the linear and cyclic compounds.
- R 4, R 5 R 3 , R 4 , R 5 and R 6 are, independently a C 1 -C 5 alkyl radical, for example, methyl, ethyl, propyl, butyl or pentyl and “m” is an integer from 1 to about 50.
- R 3 , R 4 , R 5 and R 6 are each methyl and “m” is at least 4.
- R 3-6 groups may be halide.
- alumoxanes can be prepared by various procedures.
- a trialkyl aluminum may be reacted with water, in the form of a moist inert organic solvent; or the trialkyl aluminum may be contacted with a hydrated salt, such as hydrated copper sulfate suspended in an inert organic solvent, to yield an alumoxane.
- a hydrated salt such as hydrated copper sulfate suspended in an inert organic solvent
- Suitable alumoxanes which may be utilized in the catalyst systems of this invention are those prepared by the hydrolysis of a trialkylaluminum; such as trimethylaluminum, triethylaluminum, tripropylaluminum; triisobutylaluminum, dimethylaluminumchloride, diisobutylaluminumchloride, diethylaluminumchloride, and the like.
- the most preferred alumoxane for use is methylalumoxane (MAO).
- the catalyst systems employed in the method of the invention comprise a complex formed upon admixture of the Group IV B transition metal component with an alumoxane component.
- the catalyst system may be prepared by addition of the requisite Group IV B transition metal and alumoxane components to an inert solvent in which olefin polymerization can be carried out by a solution slurry, gas or bulk phase polymerization procedure.
- the catalyst system may be conveniently prepared by placing the selected Group IV B transition metal component and the selected alumoxane component, in any order to addition, in an alkane or aromatic hydrocarbon solvent—preferably one which is also suitable for service as a polymerization diluent.
- an alkane or aromatic hydrocarbon solvent preferably one which is also suitable for service as a polymerization diluent.
- the catalyst system may be prepared in situ in the polymerization reactor.
- the catalyst system may be separately prepared, in concentrated form, and added to the polymerization diluent in a reactor.
- the components of the catalyst system may be prepared as separate solutions and added to the polymerization diluent in a reactor, in appropriate ratios, as is suitable for a continuous liquid phase polymerization reaction procedure.
- Alkane and aromatic hydrocarbons suitable as solvents for formation of the catalyst system and also as a polymerization diluent are exemplified by, but are not necessarily limited to, straight and branched chain hydrocarbons such as isobutane, butane, pentane, hexane, heptane, octane and the like, cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane and the like, and aromatic and alkyl-substituted aromatic compounds such as benzene, toluene, xylene and the like.
- Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene and the like.
- the Group IV B transition metal compound is present in the polymerization diluent in a concentration of from about 0.0001 to about 1.0 millimoles/liter of diluent and the alumoxane component is present in an amount to provide a molar aluminum to transition metal ratio of from about 1 : 1 to about 20,000:1.
- Sufficient solvent should be employed so as to provide adequate heat transfer away from the catalyst components during reaction and to permit good mixing.
- the catalyst system ingredients that is, the Group IV B transition metal, the alumoxane, and polymerization diluent—can be added to the reaction vessel rapidly or slowly.
- the temperature maintained during the contact of the catalyst components can vary widely, such as, for example, from ⁇ 10° to 300° C. Greater or lesser temperatures can also be employed.
- the reaction is maintained within a temperature of from about 25° to 100° C., most preferably about 25° C.
- the individual catalyst system components, as well as the catalyst system once formed, are protected from oxygen and moisture. Therefore, the reactions to prepare the catalyst system are performed in an oxygen and moisture free atmosphere and, where the catalyst system is recovered separately separately, it is recovered in an oxygen and moisture free atmosphere. Preferably, therefore, the reactions are performed in the presence of an inert dry gas such as, for example, helium or nitrogen.
- an inert dry gas such as, for example, helium or nitrogen.
- the catalyst system is utilized in the liquid phase (slurry, solution, suspension or bulk phase or combination thereof), high pressure fluid phase or gas phase polymerization of an ⁇ -olefin monomer.
- liquid phase process comprises the steps of contacting an ⁇ -olefin monomer with the catalyst system in a suitable polymerization diluent and reacting said monomer in the presence of said catalyst system for a time and at a temperature sufficient to produce a poly- ⁇ -olefin of high crystallinity and molecular weight.
- the monomer for such process comprises an ⁇ -olefin having 3 to 20 carbon atoms.
- Propylene is a preferred monomer.
- Homopolymers of higher ⁇ -olefin such as butene, styrene and copolymers thereof with ethylene and/or C 4 or higher ⁇ -olefins, diolefins, cyclic olefins and internal olefins can also be prepared.
- Conditions most preferred for the homo- or copolymerization of the ⁇ -olefin are those wherein an ⁇ -olefin is submitted to the reaction zone at pressures of from about 0.09 0.019 psia to about 50,000 psia and the reaction temperature is maintained at from about ⁇ 100° to about 300° C.
- the aluminum to transition metal molar ratio is preferably from about 1:1 to 18,000 to : 1. A more preferable range would be 1:1 to 2000:1.
- the reaction time is preferably from about 10 seconds to about 1 hour.
- one means for carrying out the process of the present invention for production of a polymer is as follows: in a stirred-tank reactor liquid ⁇ -olefin monomer is introduced, such as propylene.
- the catalyst system is introduced via nozzles in either the vapor or liquid phase.
- the reactor contains a liquid phase composed substantially of the liquid ⁇ -olefin monomer together with a vapor phase containing vapors of the monomer.
- the reactor temperature and pressure may be controlled via reflux of vaporizing ⁇ -olefin monomer (autorefrigeration), as well as by cooling coils, jackets etc.
- the polymerization rate is controlled by the concentration of catalyst.
- Group IV B transition metal component for use in the catalyst system; (2) the type and amount of alumoxane used; (3) the polymerization diluent type and volume; (4) reaction temperature; and (5) reaction pressure, one may tailor the product polymer to the weight average molecular weight value desired while still maintaining the molecular weight distribution to a value below about 4.0.
- the preferred polymerization diluents for practice of the process of the invention are aromatic diluents, such as toluene, or alkanes, such as hexanes.
- the resins that are prepared in accordance with this invention can be used to make a variety of products including films and fibers.
- Lithiated substituted cyclopentadienyl compounds are typically prepared from the corresponding cyclopentadienyl ligand and D-BuLi n- BuLi or MeLi, or by reaction of MeLi with the proper fulvene.
- TiCl 4 , ZrCl 4 and HfCl 4 were purchased from either Aldrich Chemical Company or Cerac.
- TiCl 4 was typically used in its etherate form.
- the etherate, TiCl 4 •2Et 2 O can be prepared by gingerly adding TiCl 4 to diethylether.
- Amines, silanes and lithium reagents were purchased from Aldrich Chemical Company or Petrarch Systems. Methylalumoxane was supplied by either Schering or Ethyl Corp.
- Me 2 Si ( MeC 5 H 4 )( HN - 2 , 6 - i - Pr 2 C 6 H 3 ) was slowly added to a solution of Me 2 Si(MeC 5 H 4 )(HN-2,6-i-PrC 6 H 3 ) in Me 2 Si ( MeC 5 H 4 )( HN - 2 , 6 - i - Pr 2 C 6 H 3 ) in ether. This was allowed to stir overnight. The solvent was reduced in volume and the mixture was filtered and the solid collected was washed with aliquots of ether, then vacuum dried.
- Me 2 Si(MeC 5 H 4 )Cl (10.0 g, 0.058 mol) was diluted with ether. LiHNC 6 H 11 (6.1 g, 0.058 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum and toluene was added to precipitate the LiCl. vacuum The toluene was removed from the filtrate leaving behind a pale yellow liquid, Me 2 Si(MeC 5 H 4 )(HNC 6 H 11 ). The yield was assumed to be ⁇ 95%.
- Table 2 summarizes the polymerization conditions employed and the properties obtained in the product polymers as set forth in Examples 1-10 above.
- Type mmole mmole TMC (hr) (g) hr MW MWD (° C.) m mmmm r rrrr Units 1
- A 3.30 ⁇ 10 ⁇ 3 2.5 760 0.5 0.7 424 169,500 1.605 na a 0.725 0.446 0.275 0.022 115 2
- B 2.11 ⁇ 10 ⁇ 3 2.5 1200 0.5 0.5 474 279,800 1.823 na a 0.547 0.227 0.453 0.063 180 3 C 5.61 ⁇ 10 ⁇ 3 5.0 900 1.0 2.2 392 29,000 2.673 143 0.359 0.151 0.641 0.353 110.5 4
- D 1.41 ⁇ 10 ⁇ 3 5.0 360 1.0 1.4 100 76,900 1.553 145 0.982 0.934 0.018 0.000 9.1 5
- E 1.41 ⁇ 10 ⁇ 3 5.0 360 1.0 2.3 164 68,600 1.718 149 0.945 0.883
- Group IVB IV- B transition metal component for use in the catalyst system; (2) the type and amount of alumoxane used; (3) the polymerization diluent type and volume; and (4) reaction temperature, one may tailor the product polymer to the weight average molecular weight value desired while still maintaining the molecular weight distribution at a value below about 4.0.
- the stereochemical control of the polymer formed is highly dependent on the exact structure of the transition metal component.
- Ti titanium
- the resins that are prepared in accordance with this invention can be used to make a variety of products including films and fibers.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention is a catalytic process using a Group IV B transition metal component and an alumoxane component to polymerize α-olefins to produce high crystallinity and high molecular weight poly-α-olefins.
Description
This application is a continuation-in-part of U.S. patent application Ser. No. 533,245 filed June 4, 1990 which in turn is a continuation-in-part of U.S. patent application Ser. No. 406,945 filed Sept. 13, 1989 and now abandoned.
This invention relates to a process for polymerizing α-olefins which utilize utilizes certain monocyclopentadienyl metal compounds of a Group IV B transition metal of the Periodic Table of Elements in an alumoxane activated catalyst system to produce crystalline poly-α-olefins, particularly polypropylene and α-olefin copolymers of propylene.
As is well known, various processes and catalysts exist for the homopolymerization or copolymerization of olefins. For many applications it is of primary importance for a polyolefin to have a high weight average molecular weight while having a relatively narrow molecular weight distribution. A high weight average molecular weight, when accompanied by a narrow molecular weight distribution, provides a polyolefin with high strength properties.
Traditional Ziegler-Natta catalysts systems—a transition metal compound cocatalyzed by an aluminum alkyl—are capable of producing polyolefins having a high molecular weight but a broad molecular weight distribution.
More recently a catalyst system has been developed wherein the transition metal compound has two or more cyclopentadienyl ring ligands—such transition metal compound being referred to herein as a “metallocene “metallocene”—which catalyzes the production of olefin monomers to polyolefins. Accordingly, titanocenes and zirconocenes, have been utilized as the transition metal component in such “metallocene” containing catalyst system for the production of polyolefins and ethylene-α-olefin copolymers. When such metallocenes are cocatalyzed with aluminum alkyl—as is the case with a traditional type Ziegler-Natta catalyst system—the catalytic activity of such metallocene catalyst system is generally too low to be of any commercial interest.
It has since become known that such metallocenes may be cocatalyzed with an alumoxane—rather than an aluminum alkyl—to provide a metallocene catalyst system of high activity for the production of polyolefins.
The zirconocenes, as cocatalyzed or activated with an alumoxane, are commonly more active than their hafnium or titanium analogous analogues for the polymerization of ethylene alone or together with an α-olefin comonomer. When employed in a non-supported form—i.e., as a homogeneous or soluble catalyst system—to obtain a satisfactory rate of productivity even with the most active zirconocene species typically requires the use of a quantity of alumoxane activator sufficient to provide an aluminum atom to transition metal atom ratio (Al:TM) of at least greater than 1000:1; often greater than 5000:1, and frequently on the order of 10,000:1. Such quantities of alumoxane impart to a polymer produced with such catalyst system an undesirable content of catalyst metal residue, i.e., an undesirable “ash” content (the nonvolatile metal content). In high pressure polymerization procedures using soluble catalyst systems wherein the reactor pressure exceeds about 500 bar only the zirconium or hafnium species of metallocenes may be used. Titanium species of metallocenes are generally unstable at such high pressures unless deposited upon a catalyst support. A wide variety of Group IV B transition metal compounds have been named as possible candidates for an alumoxane cocatalyzed catalyst system. Although bis(cyclopentadienyl) Group IV B transition metal compounds have been the most preferred and heavily investigated for use in alumoxane activated catalyst systems for polyolefin production, suggestions have appeared that mono and tris(cyclopentadienyl) transition metal compounds may also be useful. See, for example U.S. Pat. Nos. 4,522,982; 4,530,914 and 4,701,431. Such mono(cyclopentadienyl) transition metal compounds as have heretofore been suggested as candidates for an alumoxane activated catalyst system are mono(cyclopentadienyl) transition metal trihalides and trialkyls.
More recently, International Publication No. WO 87/03887 describes the use of a composition comprising a transition metal coordinated to at least one cyclopentadienyl and at least one heteroatom ligand as a transition metal component fo ruse in an alumoxane activated catalyst system for α-olefin polymerization. The composition is broadly defined as a transition metal, preferably of Group IV B of the Periodic Table, which is coordinated with at least one cyclopentaidienyl ligand and one to three heteroatom ligands, the balance of the transition metal coordination requirement being satisfied with cyclopentadienyl or hydrocarbyl ligands. Catalyst systems described by this reference are illustrated solely with reference to transition metal compounds which are metallocenes, i.e., bis(cyclopentadienyl) Group IV B transition metal compounds.
Even more recently, at the Third Chemical Congress of North American held in Toronto, Canada in June 1988, John Bercaw reported upon efforts to use a compound of a Group III B transition metal coordinated to a single cyclopentadienyl heteroatom bridged ligand as a catalyst system for the polymerization of olefins. Although some catalytic activity was observed under the conditions employed, the degree of activity and the properties observed in the resulting polymer product were discouraging of a belief that such monocyclopentadienyl transition metal compound could be usefully employed for commercial polymerization processes.
A need still exists for discovering catalyst systems that permit the production of higher molecular weight polyolefins and desirably with a narrow molecular weight distribution. It is further desirable that a catalyst be discovered which will catalyze the polymerization of an α-olefin monomer(s) to a highly crystalline form of poly-α-olefin i.e., the product polymer resin is free or substantially free of atactic stereochemical forms of poly-α-olefin molecules which are amorphous.
Polymers comprised of α-olefin monomers have hydocarbyl groups pendant from the polymer backbone chain. Relative to the polymer backbone chain, the pendant hydrocarbyl groups may be arranged in different stereochemical configurations which are denominated as, for example, atactic, isotactic, or syndiotactic pendant group configuration.
The degree and type of tacticity of a polyolefin molecule is a are critical determinant determinants of the physical properties which a resin composed of such polymer molecules will exhibit. Other critical determinants of the properties which a resin will exhibit are the type and relative concentration of monomers and comonomers, the weight average molecular weight (Mw) of the polymer molecules comprising the resin bulk, the molecular weight distribution (MWD) and the composition distribution of the resin.
Important from a commercial standpoint is the rate or productivity at which a catalyst system will produce a poly-α-olefin resin of a desired set of properties in terms of tacticity, weight average molecular weight and molecular weight distribution.
The weight average molecular weight (Mw) of a poly-α-olefin is an important physical property determinant of the practical uses to which such polymer can be put. For end use applications which require high strength and low creep, the Mw of such a resin must generally be in excess of 100,000. Further, for such high strength applications, the poly-α-olefin resin must generally have a high degree of crystallinity. The degree of crystallinity which a poly-α-olefin is capable of obtaining is, in major part, determined by the stereochemical regularity of the hydrocarbyl groups which are pendent to the polymer molecule backbone, i.e., the tacticity of the polymer.
Five types of tacticity have been described in poly-α-olefins: atactic, normal isotactic, isotactic stereoblock, syndiotactic, and hemiisotactic. Although all of these tacticity configurations have been primarily demonstrated in the case of polypropylene, in theory each is equally possible for polymers comprised of any α-olefin, cyclic olefin or internal olefin.
Atactic poly-α-olefins are those wherein the hydrocarbyl groups pendent to the polymer molecule backbone assume no regular order in space with reference to the backbone. This random, or atactic, structure is represented by a polymer backbone of alternating methylene and methine carbons, with randomly oriented branches substituting the methine carbons. The methine carbons randomly have R and S configurations, creating adjacent pairs either of like configuration (a “meso” or “m” dyad) or of unlike configuration (a “racemic” or “r” dyad). The atactic form of a polymer contains approximately equal fractions of meso and racemic dyads.
Atactic poly-α-olefins, particularly atactic polypropylene, are soluble in aliphatic and aromatic solvents at ambient temperature. Since atactic polymers exhibit no regular order or repeating unit configurations in the polymer chain, such atactic polymers are amorphous materials. Since atactic poly-α-olefins are amorphous, the resins composed thereof have no measurable melting point. Atactic polymers exhibit little if any crystallinity, hence they are generally unsuitable for high strength applications regardless of the weight average molecular weight of the resin.
Isotactic poly-α-olefins are those wherein the pendent hydrocarbyl groups are ordered in space to the same side or plane of the polymer backbone chain. Using isotactic polypropylene as an example, the isotactic structure is typically described as having the pendent methyl groups attached to the ternary carbon atoms of successive monomeric units on the same side of a hypothetical plane through the carbon backbone chain of the polymer, e.g., the methyl groups are all above or below the plane as shown below.
The degree of isotactic regularity may be measured by NMR techniques. Bovey's NMR nomenclature for an isotactic pentad is . . . mmmm . . . with each “m” representing a “meso” dyad or successive methyl groups on the same side in of the plane.
The degree of isotactic regularity may be measured by NMR techniques. Bovey's NMR nomenclature for an isotactic pentad is . . . mmmm . . . with each “m” representing a “meso” dyad or successive methyl groups on the same side in of the plane.
In the normal isotactic structure of a poly-α-olefin, all of the monomer units have the same stereochemical configuration, with the exception of random errors which appear along the polymer. Such random errors almost always appear as isolated inversions of configuration which are corrected in the very next α-olefin monomer insertion to restore the original R or S configuration of the propagating polymer chain. Single insertions of inverted configuration give rise to rr triads, which distinguish this isotactic structure in its NMR from the isotactic stereoblock form.
As is known in the art, any deviation or inversion in the regularity of the structure of the chains lowers the degree of isotacticity and hence the crystallinity of which the polymer is capable. There are two other types of “errors” which have been observed in isotactic polymers prepared using metallocene-alumoxane catalyst systems which act to lower the melting point and/or Tg of the material. These errors, as shown below arise when a monomer is added to the growing polymer chain in a 1, 3 or 2,1 fashion.
As is known in the art, any deviation or inversion in the regularity of the structure of the chains lowers the degree of isotacticity and hence the crystallinity of which the polymer is capable. There are two other types of “errors” which have been observed in isotactic polymers prepared using metallocene-alumoxane catalyst systems which act to lower the melting point and/or Tg of the material. These errors, as shown below arise when a monomer is added to the growing polymer chain in a 1, 3 or 2,1 fashion.
Long before anyone had discovered a catalyst system which produced the isotactic stereoblock form of a poly-α-olefin, the possible existence of a polymer of such micro-structure had been recognized and mechanisms for its formation had been proposed based on conventional Ziegler-Natta mechanisms in Langer, A. W., Lect. Bienn. Polym. Symp. 7th (1974); Ann. N.Y. Acad. Sci. 295, 110-126 (1977). The first example of this form of polypropylene and a catalyst which produces it in a pure form were reported in U.S. Pat. No. 4,522,982. The formation of stereoblock isotactic polymer differs from the formation of the normal isotactic structure in the way that the propagation site reacts to a stereochemical error in the chain. As mentioned above, the normal isotactic chain will return to the original configuration following an error because the stereochemical regulator, the catalytic active metal species and its surrounding ligands, continue to dictate the same stereochemical preference during monomer insertion. In stereoblock propagation, the catalytic active metal site itself changes from one which dictates a monomer insertion of R configuration to one which dictates an S configuration for monomer insertion. The isotactic stereo-block form is shown below.
This occurs either because the metal and its ligands change to the opposite stereochemical configuration or because the configuration of the last added monomer, rather than the metal chirality, controls the configuration of the next added monomer. In Ziegler-Natta catalysts, including the above referenced system, the exact structure and dynamic properties of the active site are not well understood, and it is virtually impossible to distinguish between the “site chirality exchange” and “chain end control” mechanisms for the formation of isotactic stereoblock poly-α-olefins.
This occurs either because the metal and its ligands change to the opposite stereochemical configuration or because the configuration of the last added monomer, rather than the metal chirality, controls the configuration of the next added monomer. In Ziegler-Natta catalysts, including the above referenced system, the exact structure and dynamic properties of the active site are not well understood, and it is virtually impossible to distinguish between the “site chirality exchange” and “chain end control” mechanisms for the formation of isotactic stereoblock poly-α-olefins.
Unlike normal isotactic polymers, the lengths of individual blocks of the same configuration in the stereo-block structure vary widely due to changing reaction conditions. Since only the erroneous parts of the chains affect the crystallinity of the resin product, in general, normal isotactic polymers and isotactic stereoblock polymers of long block length (greater than 50 isotactic placements) have similar properties.
Highly isotactic poly-α-olefins are insoluble in xylene and are capable of exhibiting a high degree of crystallinity and are in part characterizable by their melting point temperature. Accordingly, isotactic poly-α-olefins are, depending upon their weight average molecular weight exceeding about 100,000, well suited to high strength end use applications.
Syndiotactic poly-α-olefins are those wherein the hydrocarbyl groups pendent to the polymer molecular backbone alternate sequentially in order from one side or plane to the opposite side or plane relative to the polymer backbone, as shown below.
In NMR nomenclature, this pentad is described as . . . rrr . . . in which each r represents a “racemic” dyad, i.e., successive methyl groups on alternative sides of the plane. The percentage of r dyads in the chain determines the degree of syndiotacticity of the polymer.
In NMR nomenclature, this pentad is described as . . . rrr . . . in which each r represents a “racemic” dyad, i.e., successive methyl groups on alternative sides of the plane. The percentage of r dyads in the chain determines the degree of syndiotacticity of the polymer.
Syndiotactic propagation has been studied for over 25 years; however, only a few good syndiospecific catalysts have been discovered, all of which are extremely sensitive to monomer bulkiness. As a result, well-characterized syndiotactic polymers are limited only to polypropylenes. . The molecular chain backbone of a syndiotactic polymer can be considered to be a copolymer of olefins with alternating stereochemical configurations. Highly syndiotactic polymers are generally highly crystalline and will frequently have high melting points similar to their isotactic polymorphs.
Like isotactic poly-α-olefins, syndiotactic poly-α-olefins are capable of exhibiting a high degree of crystallinity, hence are suitable for high strength applications provided their Mw exceeds about 100,000. Syndiotactic poly-β-olefins poly-α-olefins are in part characterized by their exhibition of a melting point temperature.
For any of the above described materials the final resin properties and its their suitability for particular applications depend depends on the type of tacticity, the melting point (stereoregularity), the average molecular weight, the molecular weight distribution, the type and level of monomer and comonomer, the sequence distribution, and the presence or absence of head or end group functionality. Accordingly, the catalyst system by which such a stereoregular poly-α-olefin resin is to be produced should, desirably, be versatile in terms of Mw, MWD, tacticity type and level, and comonomer choice. Further, the catalyst system should be capable of producing these polymers with or without head and/or end group functionality, such as olefinic unsaturation. Still further, such catalyst system must be capable, as a commercially practical constraint, of producing such resins at an acceptable production rate. Most preferably, the catalyst system should be one which, at its productivity rate, provides a resin product which does not require a subsequent treatment to remove catalyst residue to a level which is acceptable for the resin in the end use application desired. Finally, an important feature of a commercial catalyst system is its adaptability to a variety of processes and conditions.
Conventional titanium based Ziegler-Natta catalysts for the preparation of isotactic polymers are well known in the art. These commercial catalysts are well suited for the production of highly crystalline, high molecular weight materials. The systems are, however, limited in terms of molecular weight, molecular weight distribution, and tacticity control. The fact that the conventional catalysts contain several types of active sites further limits their ability to control the composition distribution in copolymerization.
More recently a new method of producing isotactic polymers from an alumoxane cocatalyzed, or activated, metallocene which in its natural state has chirality centered at the transition metal of the metallocene, was reported in Ewen, J. A., J. Amer. Chem. Soc., v. 106, p. 6355 (1984) and Kaminsky, W., et al., Angew. Chem. Int. Ed. Eng.; 24, 507-8 (1985).
Catalysts that produce isotactic polyolefins are also disclosed in U.S. Pat. No. 4,794,096. This patent discloses a chiral, stereorigid metallocene catalyst which is activated by an alumoxane cocatalyst which is reported to polymerize olefins to isotactic polyolefin forms. Alumoxane cocatalyzed metallocene structures which have been reported to polymerize stereoregularly are the ethylene bridged bis-indenyl and bis-tetrahydroindenyl titanium and zirconium (IV) catalyst. Such catalyst systems were synthesized and studied in Wild et al., J. Organomet. Chem. 232, 233-47 (1982), and were later reported in Ewen and Kaminsky et al., mentioned above, to polymerize β-olefins α-olefins stereoregularly. Further reported in West German Off DE 3443087A1 (1986), but without giving experimental verification, is that the bridge length of such stereorigid metallocenes can vary from a C1 to C4 hydrocarbon and the metallocene rings can be simple or bi-cyclic but must be asymmetric.
Metallocene-alumoxane catalyst generally require a high content of alumoxane cocatalyst to be sufficiently productive for commercial use. Accordingly, metallocene-alumoxane produced isotactic poly-α-olefin resins generally have a higher than desired catalyst residue content. Hafnocene systems, which yield polymers of higher average Mw than the zirconium analogs, analogues, have very low activities even at high alumoxane concentrations.
Syndiotactic polyolefins were first disclosed by Natta et al. in U.S. Pat. No. 3,258,455. As reported, Natta obtained syndiotactic polypropylene by using a catalyst prepared from titanium trichloride and diethyl aluminum monochloride. A later patent to Natta et al., U.S. Pat. No. 3,305,538, discloses the use of vanadium triacetylacetonate or halogenated vanadium compounds in combinations with organic aluminum compounds for production of syndiotactic polypropylene.
More recently, a metallocene based catalyst system has been disclosed which is stated to be capable of production of syndiotactic polypropylene of high stereo-regularity. U.S. Pat. No. 4,892,851 describes catalyst systems consisting of a bridged metallocene having at least two differently substituted cyclopentadienyl ring ligands which, when cocatalyzed with an alumoxane, is stated to be capable of production of syndiotactic polypropylene. Again, in commercial production to obtain a sufficient productivity level with such catalyst system, the content of alumoxane is undesirably high and consequently the catalyst residue in the resin so produced is undesirably high.
In all methylalumoxane/metallocene catalyst systems the polymer characteristics (Mw, MWD, tacticity type, comonomer incorporation, etc.) are controlled either by modifications to the structure of the metallocene precursor or by adjustment of the process conditions (temperature, pressure, concentrations). In general, adjustment of process conditions does not allow independent control of tacticity level, Mw and comonomer content. Addition of chain transfer agents such as hydrogen gas to the reactor gives lower molecular weight products without affecting tacticity, however, the resulting polymer no longer has unsaturated end groups. End group functionalization is often an important feature in the application of low molecular weight polymers. Given these limitations, one must prepare a wide variety of differently substituted metallocene precursors to access the entire range of desired materials.
In view of the difficulty and practical limitations in the synthesis of bridged metallocene complexes necessary for the production of an alumoxane activated metallocene catalyst system capable of producing crystalline, poly-α-olefins, it would be desirable to develop new catalytic processes which produce highly crystalline forms of poly-α-olefins of high molecular weight and relatively narrow molecular weight distributions.
The process of this invention employs a catalyst system comprised of a transition metal component from Group IV B of the Periodic Table of the Elements (CRC Handbook of Chemistry and Physics, 68th ed. 1987-1988) and an alumoxane component. The catalyst system may be employed in solution, slurry, gas or bulk phase polymerization procedure to produce crystalline poly-α-olefins of high weight average molecular weight and relatively narrow molecular weight distribution.
The “Group IV B transition metal component” of the catalyst system is represented by the formula:
wherein:
wherein:
- M is Zr, Hf or Ti in its highest formal oxidation state (+4, d0 complex);
(C2H4-xRx)(C 5 H 4-x R x) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, “x” is 0, 1, 2, 3, or 4 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C1-C20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements; and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, aklylboridoalkylborido radicals or any other radical containing a Lewis acidic or basic functionality; or (C5H4-xRx) is a cyclopentadienyl ring in which at least two adjacent R-groups are joined forming a C4-C20 ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand such as indenyl, tetrahydroindenyl, fluorenyl or octahydrofluorenyl;
-
- (JR′z-2) is a heteroatom ligand in which J is an element with a coordination number of three from Group V A or an element with a coordination number of two from Group VI A of the Periodic Table of Elements, preferably nitrogen, phosphorus, oxygen or sulfur, and each R′ is, independently a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals Wherein wherein one or more hydrogen atoms are replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, and “z” is the coordination number of the element J;
- each Q may be independently any univalent anionic ligand such as a halide, hydride, or substituted or unsubstituted C1-C20 hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide or arylphosphide, provided that where any Q is a hydrocarbyl such Q is different from (C5H4-xRx), or both Q together may be an alkylidene or a cyclometallated hydrocarbyl or any other divalent anionic chelating ligand;
T is a covalent bridging group containing a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
L is a neutral Lewis base such as diethylether, tetra-ethylammonium chloride, tetrahydrofuran, dimethylaniline, aniline, trimethylphosphine, n-butylamine, and the like; and “w” is a number from 0 to 3. L can also be a second transition metal compound of the same type such that the two metal centers M and M′ are bridged by Q and Q′, wherein M′ has the meaning as M and Q′ has the same meaning as Q. Such dimeric compounds are represented by the formula:
The alumoxane component of the catalyst may be represented by the formulas: (R3—Al—O)m; R4(R5—Al—O)m −AlR 6 R4(R 5 —Al—O)m —AlR 6 2 or mixtures thereof, wherein R3-R6 are, independently, a C1-C5 alkyl group or halide and “m” is an integer ranging from 1 to about 50 and preferably is from about 13 to about 25.
Catalyst systems of the invention may be prepared by placing the “Group IV B transition metal component” and the alumoxane component in common solution in a normally liquid alkane or aromatic solvent, which solvent is preferably suitable for use as a polymerization diluent for the liquid phase polymerization of an α-olefin monomer.
Those species of the Group IV B transition metal component wherein the metal is titanium have been found to impart beneficial properties to a catalyst system which are unexpected in view of what is known about the properties of bis(cyclopentaidienyl) titanium compounds which are cocatalyzed by alumoxanes. Whereas titanocenes in their soluble form are generally unstable in the presence of aluminum alkyls, the monocyclopentadienyl titanium metal components of this invention, particularly those wherein the heteroatom is nitrogen, generally exhibit greater stability in the presence of aluminum alkyls and higher catalyst activity rates.
Further, the titanium species of the Group IV B transition metal component catalyst of this invention generally exhibit higher catalyst activities and the production of poly-α-olefins of greater molecular weight than catalyst systems prepared with the zirconium or hafnium species of the Group IV B transition metal component.
A typical polymerization process of the invention such as for the polymerization or copolymerization of propylene comprises the steps of contacting propylene or other C4 -C 20 α-olefins alone, or with other unsaturated monomers including C 3 -C 20 α-olefins, C 4 -C 20 diolefins, and/or acetylenically unsaturated monomers either alone or in combination with other olefins and/or other unsaturated monomers, with a catalyst comprising, in a suitable polymerization diluent, a Group IV B transition metal component illustrated above; and a methylalumoxane in an amount to provide a molar aluminum to transition metal ratio of from about 1:1 to about 20,000:1 or more; and reacting such monomer in the presence of such catalyst system at a temperature of from about −100° C. to about 300° C. for a time of from about 1 second to about 10 hours to produce a poly-α-olefin having a weight average molecular weight of from about 1,000 or less to about 2,000,000 or more and a molecular weight distribution of from about 1.5 1 to about 15.0.
As discussed further hereafter, by proper selection of the type and pattern R substituents for the cyclopentadienyl ligand in relationship to the type of R′ substituent of the heteroatom ligand the transition metal component for the catalyst system may be tailored to function in the catalyst system to produce highly crystalline poly-α-olefins to the total or substantial avoidance of the production of atactic poly-α-olefin molecules which are amorphous.
The Group IV B transition metal component of the catalyst system is represented by the general formula:
wherein M is Zr, Hf or Ti in its highest formal oxidation state (+4, d0 complex);
wherein M is Zr, Hf or Ti in its highest formal oxidation state (+4, d0 complex);
(C5H4-xRx) is a cyclopentadienyl ring which is substituted with from zero to four substituent groups R, “x” is 0, 1, 2, 3, or 4 denoting the degree of substitution, and each substituent group R is, independently, a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, and alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C1-C20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements; and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, aklylborido radicals or any other radical containing a Lewis acidic or basic functionality; or (C5H4-xRx) is a cyclopentadienyl ring in which two adjacent R-groups are joined forming C4-C20 ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand such as indenyl, tetrahydroindenyl, fluorenyl or octahydrofluorenyl;
(JR′z-2) is a heteroatom ligand in which J is an element with a coordination number of three from Group V A or an element with a coordination number of two from Group VI A of the Periodic Table of Elements, preferably nitrogen, phosphorus, oxygen or sulfur with nitrogen being preferred, and each R′ is, independently a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, and “z” is the coordination number of the element J;
each Q is, independently, any univalent anionic ligand such as a halide, hydride, or substituted or unsubstituted C1-C20 hydrocarbyl, alkoxide, aryloxide, amide, arylamide, phosphide or arylphosphide, provided that where any Q is a hydrocarbyl such Q is different from (C5H4-xRx), or both Q together may be an alkylidene or a cyclometallated hydrocarbyl or any other divalent anionic chelating ligand;
T is a covalent bridging group containing a Group IV A or V A element such as, but not limited to, a dialkyl, alkylaryl or diaryl silicon or germanium radical, alkyl or aryl phosphine or amine radical, or a hydrocarbyl radical such as methylene, ethylene and the like;
and L is a neutral Lewis base such as diethylether, tetrahydrofuran, dimethylaniline, aniline, trimethylphosphine, n-butylamine, and the like; and “w” is a number from 0 to 3; L can also be a second transition metal compound of the same type such that the two metal centers M and M′ are bridged by Q and Q′, wherein M′ has the meaning as M and Q′ has the same meaning as Q. Such compounds are represented by the formula:
Examples of the T group which are suitable as a constituent group of the Group IV B transition metal component of the catalyst system are identified in column 1 of Table 1 under the heading “T”.
Suitable, but not limiting, Group IV B transition metal compounds which may be utilized in the catalyst system of this invention include those wherein the T group bridge is a dialkyl, diaryl or alkylaryl silane, silyl, or methylene or ethylene. Exemplary of the more preferred species of bridged Group IV B transition metal compounds are dimethylsilyl, methylphenylsilyl, diethylsilyl, ethylphenylsilyl, diphenylsilyl, ethylene or methylene bridged compounds. Most preferred of the bridged species are dimethylsilyl, diethylsilyl and methylphenylsilyl bridged compounds.
Exemplary hydrocarbyl radicals for Q are methyl, ethyl, propyl, butyl, amyl, isoamyl, hexyl, isobutyl, heptyl, octyl, nonyl, decyl, cetyl, 2-ethylhexyl, phenyl and the like, with methyl being preferred. Exemplary halogen atoms for Q include chlorine, bromine, fluorine and iodine, with chlorine being preferred. Exemplary alkoxides and aryloxides for Q are methoxide, phenoxide and substituted phenoxides such as 4-methylphenoxide. Exemplary amides of Q are dimethylamide, diethylamide, methylethylamide, di-t-butylamide, diisoproylamide diisopropylamide and the like. Exemplary aryl amides are diphenylamide and any other substituted phenyl amides. Exemplary phosphides of Q are diphenylphosphide, dicyclohexylphosphide, diethylphosphide, dimethylphosphide and the like. Exemplary alkyldiene radicals for both Q together are methylidene, ethylidene and propylidene. Examples of the Q group which are suitable as a constituent group or element of the Group IV B transition metal component of the catalyst system are identified in column 4 of Table 1 under the heading “Q”.
Suitable hydrocarbyl and substituted hydrocarbyl radicals, which may be substituted as an R group for at least one hydrogen atom in the cyclopentadienyl ring, will contain from 1 to about 20 carbon atoms and include straight and branched alkyl radicals, cyclic hydrocarbon radicals, alkyl-substituted cyclic hydrocarbon radicals, aromatic radicals and alkyl-substituted aromatic radicals, amido-substituted hydrocarbon radicals, phosphido-substituted hydrocarbon radicals, alkoxy-substituted hydrocarbon radicals, and cyclopentadienyl rings containing one or more fused saturated or unsaturated rings. Suitable organometallic radicals, which may be substituted as an R group for at least one hydrogen atom in the cyclopentadienyl ring, include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, trimethylgermyl and the like. Other suitable radicals that may be substituted for one or more hydrogen atom in the cyclopentadienyl ring include halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, alkylborido radicals and the like. Examples of cyclopentadienyl ring groups (C5H4-xRx) which are suitable as a constituent group of the Group IV B transition metal component of the catalyst system are identified in Column column 2 of Table 1 under the heading (C5H4-xRx). Suitable R′ radicals of the heteroatom J ligand are independently a hydrocarbyl radical selected from the group consisting of 1 to about 20 carbon atoms and include straight and branched alkyl radicals, cyclic hydrocarbon radicals, alkyl-substituted cyclic hydrocarbon radicals, aromatic radicals and the like; substituted C1-C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical and a an alkylborido radical, or a radical containing a Lewis acidic or basic functionality, and the like. Examples of heteroatom ligand groups (JR′z-2) which are suitable as a constituent group of the Group IV B transition metal component of the catalyst system are identified in column 3 of Table 1 under the heading (JR′z-2).
Table 1 depicts representative constituent moieties for the “Group IV B transition metal component”, the list is for illustrative purposes only and should not be construed to be limiting in any way. A number of final components may be formed by permuting all possible combinations of the constituent moieties with each other. Illustrative compounds are: dimethylsilylfluorenyl-t-butylamido zirconium dichloride, dimethylsilylfluorenyl-t-butylamido hafnium dichloride, dimethylsilylfluorenylcycohexylamide zirconium dihalide, and dimethylsilylfluorenylcyclohexylamido hafnium dichloride.
As noted, titanium species of the Group IV B transition metal compound have generally been found to yield catalyst systems which in comparison to their zirconium or hafnium analogues, are of higher activity. Illustrative, but not limiting of the titanium species which may exhibit such superior properties are; are: dimethylsilylfluorenyl-t-butylamido titanium dichloride, dimethylsilylindenylcyclohexylamide titanium dichloride, dimethylsilyl-t-butylcyclopentadienylcyclododecylamido titanium dichloride, dimethylsilylmethylcyclopentadienylcyclododecylamido titanium dichloride, dimethylsilylmethylcyclopentadienyl-2,6-diisopropylphenylamido titanium dichloride, dimethylsilylmethylcyclopentadienylcyclohexylamido titanium dichloride, and dimethylsilylmethylcyclopentadienyl-2,5-di-t-butylphenylamido titanium dichloride.
For illustrative purposes, the above compounds and those permuted from Table 1 do not include the neutral Lewis base ligand (L). The conditions under which complexes containing neutral Lewis base ligands such as ether or those which form dimeric compounds is are determined by the steric bulk of the ligands about the metal center. For example, the t-butyl group in Me2(Si(Me4C5)(N-t-Bu)ZrCl2 has greater steric requirements than the phenyl group in Me2Si(Me4C5)(NPh)ZrCl2•Et2O thereby not permitting ether coordination in the former compound. Similarly, due to the decreased steric bulk of the trimethylsilylcyclopentadienyl group in [Me2Si(Me3SiC5H3)(N-t-Bu)ZrCl2]2 versus that of the tetramethylcyclopentadienyl group in Me2Si(Me4C5)(N-t-Bu)ZrCl2, Me2 Si(Me 4 C 5)(N-t-Bu)ZrCl 2 , the former compound is dimeric and the latter is not.
To illustrate members of the Group IV B transition metal component, select any combination of the species in Table 1. An example of a bridged species would be dimethylsilyclopentadienyl-t-butylamidodichloro dimethylsilylcyclopentadienyl-t-butylamidodichloro zirconium.
TABLE 1 |
|
|
T | (C5H4-2Rx) | (JR′z-2) | Q | M |
dimethylsilyl | cyclopentadienyl | (t-butylamide | hydride | zirconium |
t-butylamido | ||||
diethylsilyl | methylcyclopentadienyl | phenylamido | chloro | hafnium |
di-n-propylsilyl | 1,2-dimethylcyclopentadienyl | p-n-butylphenylamido | methyl | titanium |
diisopropylsilyl | 1,3-dimethylcyclopentadienyl | cyclohexylamido | ethyl | |
di-n-butylsilyl | indenyl | perflurophenylamido | phenyl | |
di-t-butylsilyl | 1,2-diethylcyclopentadienyl | n-butylamido | fluoro | |
di-o-hexylsilyl | tetramethylcyclopentadienyl | methylamido | bromo | |
methylphenylsilyl | ethylcyclopentadienyl | ethylamido | iodo | |
ethylmethylsilyl | n-butylcyclopentadienyl | n-propylamido | n-propyl | |
diphenylsilyl | cyclohexylmethylcyclopentadienyl | isopropylamido | isopropyl | |
di(p-t-butylphenethylsilyl) | n-octylcyclopentadienyl | benzylamido | n-butyl | |
n-hexylmethylsilyl | βphenylpropylcyclopentadienyl | t-butylphosphido | amyl | |
cyclopentamethylenesilyl | tetrahydroindenyl | ethylphosphido | isoamyl | |
cyclotetramethylenesilyl | propylcyclopentadienyl | phenylphosphido | hexyl | |
cyclotrimethylenesilyl | t-butylcyclopentadienyl | cyclohexylphosphido | isobutyl | |
dimethylgermanyl | benzylcyclopentadienyl | oxo | heptyl | |
diethylgermanyl | diphenylmethylcyclopentadienyl | sulfido | octyl | |
phenylamido | trimethylgermylcyclopentadienyl | eosyl | ||
t-butyltamido | trimethylstannylcyclopentadienyl | decyl | ||
methylamido | triethylplumbylcyclopentadienyl | cetyl | ||
t-butylphosphido | trifluromethylcyclopentadienyl | methoxy | ||
ethylphosphido | trimethylsilylcyclopentadienyl | ethoxy | ||
phenylphosphido | pentamethylcyclcopenta- | propoxy | ||
dienyl (when y = 0) | ||||
methylene | fluorenyl | butoxy | ||
dimethylmethylene | octahydrofluorenyl | phenoxy | ||
diethylmethylene | N,N-dimethylamidocyclopentadienyl | dimethylamido | ||
ethylene | dimethylphosphidocyclopentadienyl | diethylamido | ||
dimethylethylene | methoxycyclopentadienyl | methylethylamido | ||
diethylethylene | dimethylboridocyclopentadienyl | di-t-butylamido | ||
dipropylethylene | (N,N-dimethylamidomethyl)cyclopentadienyl | diphenylamido | ||
propylene | tetrafluorocyclopentadienyl | diphenylphosphido | ||
dimethylpropylene | dicyclohexylphosphido | |||
diethylpropylene | dimethylphosphido | |||
1,1-dimethyl-3,3- | methylidene (both Q) | |||
dimethylpropylene | ||||
tetramethyldisiloxane | ethylidene (both Q) | |||
1,1,4,4-tetramethyl- | propylidene (both Q) | |||
disilylethylene | ||||
The Group IV B transition metal compounds can be prepared by reacting a cyclopentadienyl lithium compound with a dihalo compound, whereupon a lithium halide salt is liberated and a monohalo substituent is covalently bound to the cyclopentadienyl compound. The so substituted cyclopentadienyl reaction product is next reacted with a lithium salt of a phosphide, oxide, sulfide or amide (for the sake of illustrative purposes, a lithium amide) whereupon the halo element of the monohalo substituent group of the reaction product reacts to liberate a lithium halide salt and the amine moiety of the lithium amide salt is covalently bound to the substituent of the cyclopentadienyl reaction product. The resulting amine derivative of the cyclopentadienyl product is then reacted with an alkyl lithium reagent whereupon the labile hydrogen atoms, at the carbon atom of the cyclopentadienyl compound and at the nitrogen atom of the amine moiety covalently bound to the substituent group, react with the alkyl of the lithium alkyl reagent to liberate the alkane and produce a dilithium salt of the cyclopentadienyl compound. Thereafter the bridged species of the Group IV B transition metal compound is produced by reacting the dilithium salt cyclopentadienyl compound with a Group IV B transition metal preferably a Group IV B transition metal halide.
The class of transition metal components most preferred for use in the process for production of crystalline poly-β-olefins poly-α-olefins is that wherein the covalent bridging group T contains silicon and the heteroatom J of the heteroatom ligand is nitrogen. Accordingly, the preferred class of transition metal components are of the formula:
wherein Q, L, R′, R, “x” and “w” are as previously defined and R1 and R2 are each independently a C1 to C20 hydrocarbyl radicals, substituted C1 to C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R1 and R2 may also be joined forming a C3 to C20 ring which incorporates the silicon bridge.
wherein Q, L, R′, R, “x” and “w” are as previously defined and R1 and R2 are each independently a C1 to C20 hydrocarbyl radicals, substituted C1 to C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R1 and R2 may also be joined forming a C3 to C20 ring which incorporates the silicon bridge.
The alumoxane component of the catalyst system is an oligomeric compound which may be represented by the general formula (R3—Al—O)m which is a cyclic compound, or may be R4(R5—Al—O)m-AlR6 2 which is a linear compound. An alumoxane is generally a mixture of both the linear and cyclic compounds. In the general alumoxane formula R3, R4, R5 R3 , R 4 , R 5 and R6 are, independently a C1-C5 alkyl radical, for example, methyl, ethyl, propyl, butyl or pentyl and “m” is an integer from 1 to about 50. Most preferably, R3, R4, R5 and R6 are each methyl and “m” is at least 4. When an alkyl aluminum halide is employed in the preparation of the alumoxane, one or more R3-6 groups may be halide.
As is now well known, alumoxanes can be prepared by various procedures. For example, a trialkyl aluminum may be reacted with water, in the form of a moist inert organic solvent; or the trialkyl aluminum may be contacted with a hydrated salt, such as hydrated copper sulfate suspended in an inert organic solvent, to yield an alumoxane. Generally, however prepared, the reaction of a trialkyl aluminum with a limited amount of water yields a mixture of both linear and cyclic species of alumoxane.
Suitable alumoxanes which may be utilized in the catalyst systems of this invention are those prepared by the hydrolysis of a trialkylaluminum; such as trimethylaluminum, triethylaluminum, tripropylaluminum; triisobutylaluminum, dimethylaluminumchloride, diisobutylaluminumchloride, diethylaluminumchloride, and the like. The most preferred alumoxane for use is methylalumoxane (MAO). Methylalumoxanes having an average degree of oligomerization of from about 4 to about 25 (“m”=4 to 25), with a range of 13 to 25, are the most preferred.
The catalyst systems employed in the method of the invention comprise a complex formed upon admixture of the Group IV B transition metal component with an alumoxane component. The catalyst system may be prepared by addition of the requisite Group IV B transition metal and alumoxane components to an inert solvent in which olefin polymerization can be carried out by a solution slurry, gas or bulk phase polymerization procedure.
The catalyst system may be conveniently prepared by placing the selected Group IV B transition metal component and the selected alumoxane component, in any order to addition, in an alkane or aromatic hydrocarbon solvent—preferably one which is also suitable for service as a polymerization diluent. When the hydrocarbon solvent utilized is also suitable for use as a polymerization diluent, the catalyst system may be prepared in situ in the polymerization reactor. Alternatively, the catalyst system may be separately prepared, in concentrated form, and added to the polymerization diluent in a reactor. If desired, the components of the catalyst system may be prepared as separate solutions and added to the polymerization diluent in a reactor, in appropriate ratios, as is suitable for a continuous liquid phase polymerization reaction procedure. Alkane and aromatic hydrocarbons suitable as solvents for formation of the catalyst system and also as a polymerization diluent are exemplified by, but are not necessarily limited to, straight and branched chain hydrocarbons such as isobutane, butane, pentane, hexane, heptane, octane and the like, cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane and the like, and aromatic and alkyl-substituted aromatic compounds such as benzene, toluene, xylene and the like. Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene and the like.
In accordance with this invention optimum results are generally obtained wherein the Group IV B transition metal compound is present in the polymerization diluent in a concentration of from about 0.0001 to about 1.0 millimoles/liter of diluent and the alumoxane component is present in an amount to provide a molar aluminum to transition metal ratio of from about 1:1 to about 20,000:1. Sufficient solvent should be employed so as to provide adequate heat transfer away from the catalyst components during reaction and to permit good mixing.
The catalyst system ingredients—that is, the Group IV B transition metal, the alumoxane, and polymerization diluent—can be added to the reaction vessel rapidly or slowly. The temperature maintained during the contact of the catalyst components can vary widely, such as, for example, from −10° to 300° C. Greater or lesser temperatures can also be employed. Preferably, during formation of the catalyst system, the reaction is maintained within a temperature of from about 25° to 100° C., most preferably about 25° C.
At all times, the individual catalyst system components, as well as the catalyst system once formed, are protected from oxygen and moisture. Therefore, the reactions to prepare the catalyst system are performed in an oxygen and moisture free atmosphere and, where the catalyst system is recovered separately separately, it is recovered in an oxygen and moisture free atmosphere. Preferably, therefore, the reactions are performed in the presence of an inert dry gas such as, for example, helium or nitrogen.
In a preferred embodiment of the process of this invention, the catalyst system is utilized in the liquid phase (slurry, solution, suspension or bulk phase or combination thereof), high pressure fluid phase or gas phase polymerization of an α-olefin monomer. These processes may be employed singularly or in series. The liquid phase process comprises the steps of contacting an α-olefin monomer with the catalyst system in a suitable polymerization diluent and reacting said monomer in the presence of said catalyst system for a time and at a temperature sufficient to produce a poly-α-olefin of high crystallinity and molecular weight.
The monomer for such process comprises an α-olefin having 3 to 20 carbon atoms. Propylene is a preferred monomer. Homopolymers of higher α-olefin such as butene, styrene and copolymers thereof with ethylene and/or C4 or higher α-olefins, diolefins, cyclic olefins and internal olefins can also be prepared. Conditions most preferred for the homo- or copolymerization of the α-olefin are those wherein an α-olefin is submitted to the reaction zone at pressures of from about 0.09 0.019 psia to about 50,000 psia and the reaction temperature is maintained at from about −100° to about 300° C. The aluminum to transition metal molar ratio is preferably from about 1:1 to 18,000 to : 1. A more preferable range would be 1:1 to 2000:1. The reaction time is preferably from about 10 seconds to about 1 hour. Without limiting in any way the scope of the invention, one means for carrying out the process of the present invention for production of a polymer is as follows: in a stirred-tank reactor liquid α-olefin monomer is introduced, such as propylene. The catalyst system is introduced via nozzles in either the vapor or liquid phase. The reactor contains a liquid phase composed substantially of the liquid α-olefin monomer together with a vapor phase containing vapors of the monomer. The reactor temperature and pressure may be controlled via reflux of vaporizing α-olefin monomer (autorefrigeration), as well as by cooling coils, jackets etc. The polymerization rate is controlled by the concentration of catalyst.
By appropriate selection of (1) Group IV B transition metal component for use in the catalyst system; (2) the type and amount of alumoxane used; (3) the polymerization diluent type and volume; (4) reaction temperature; and (5) reaction pressure, one may tailor the product polymer to the weight average molecular weight value desired while still maintaining the molecular weight distribution to a value below about 4.0.
The preferred polymerization diluents for practice of the process of the invention are aromatic diluents, such as toluene, or alkanes, such as hexanes.
The resins that are prepared in accordance with this invention can be used to make a variety of products including films and fibers.
In the examples which illustrate the practice of the invention the analytical techniques described below were employed for the analysis of the resulting polyolefin products. Molecular weight determinations for polyolefin products were made by Gel Permeation Chromatography (GPC) according to the following technique. Molecular weights and molecular weight distributions were measured using a Waters 150 gel permeation chromatograph equipped with a differential refractive index (DRI) detector and a Chromatix KMX-6 on-line light scattering photometer. The system was used at 135° C. with 1,2,4-trichlorobenzene as the mobile phase. Shodex (Showa Denko America, Inc.) polystyrene gel columns 802, 803, 804 and 805 were used. This technique is discussed in “Liquid Chromatography of Polymers and Related Materials III”, J. Cazes editor, Marcel Dekker. 1981, p. 207, which is incorporated herein by reference. No corrections for column spreading were employed; however, data on generally accepted standards, e.g. National Bureau of Standards Polyethylene 1484 and anionically produced hydrogenated polyisoprenes (an alternating ethylene-propylene copolymer) demonstrated that such corrections on Mw/Mn (=MWD) were less than 0.05 units. Mw/Mn was calculated from elution times. The numerical analyses were performed using the commercially available Beckman/CIS customized LALLS software in conjunction with the standard Gel Permeation package, run on a HP 1000 computer.
Calculations involved in the characterization of polymers by 13CNMR 13 C NMR follow the work of F. A. Bovey in “Polymer Conformation and Configuration” Academic Press, New York, 1969.
The following examples are intended to illustrate specific embodiments of the invention and are not intended to limit the scope of the invention.
All procedures were performed under an inert atmosphere of helium or nitrogen. Solvent choices are often optional, for example, in most cases either pentane or 30-60 petroleum ether can be interchanged. The lithiated amides were prepared from the corresponding amines and either n-BuLi or MeLi. Published methods for preparing LiHC5Me4 include C. M. Fendrick et al. Organometallics, 3, 819 (1984) and F. H. Köhler and K. H. Doll, Z. Naturforsch, 376, 144 (1982). Lithiated substituted cyclopentadienyl compounds are typically prepared from the corresponding cyclopentadienyl ligand and D-BuLi n-BuLi or MeLi, or by reaction of MeLi with the proper fulvene. TiCl4, ZrCl4 and HfCl4 were purchased from either Aldrich Chemical Company or Cerac. TiCl4 was typically used in its etherate form. The etherate, TiCl4•2Et2O, can be prepared by gingerly adding TiCl4 to diethylether. Amines, silanes and lithium reagents were purchased from Aldrich Chemical Company or Petrarch Systems. Methylalumoxane was supplied by either Schering or Ethyl Corp.
Compound A: Part 1. Me2SiCl2 (7.5 ml, 0.062 mol) was diluted with ˜30 ml of THF. A t-BuH4C5Li solution (7.29 g, 0.057 mol, ˜100 ml of THF) was slowly added, and the resulting mixture was allowed to stir overnight. The THF was removed in vacuo. Pentane was added to precipitate the LiCl, and the mixture was filtered through Celite. The pentane was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(t-BuC5H4)Cl (10.4 g, 0.048 mol).
Part 2. Me2Si(t-BuC5H4)Cl (8.0 g, 0.037 mol) was diluted with thf. THF. To this, LiHNChd 12H23 LiHNC12 H 23 (7.0 g, 0.037 mol) was slowly added. The mixture was allowed to stir overnight. The solvent was removed via vacuum and toluene was added to precipitate the LiCl. The toluene was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(t-BuC5H4)(HNC12H23)(12.7 g, 0.035 mol).
Part 3. Me2Si(t-BuC5H4)(HNC12H23)(12.7 g, 0.035 mol) was diluted with ether. To this, MeLi (1.4M in ether, 50 ml, 0.070 mol) was slowly added. This was allowed to stir for two hours prior to removing the solvent via vacuum. The product, Li2[Me2Si(t-BuC5H3)(NC12H23)] (11.1 g, 0.030 mol) was isolated.
Part 4. Li2[Me2Si(t-BuC5H3)(NC12H23)] (10.9 g, 0.029 mol) was suspended in cold ether. TiCl4•2Et2O (9.9 g, 0.029 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was filtered through Celite. The solvent was removed and pentane was added. The product is completely soluble in pentane. This solution was passed through a column containing a top layer of silica and a bottom layer of Celite. The filtrate was then evaporated down to an olive green colored solid identified as Me2Si(t-BuC5H3)(NC12H23)TiCl2 (5.27 g, 0.011 mol).
Compound B: Part 1. Me2SiCl2 (210 ml, 1.25 mol) was diluted with a mixture of ether and THF. LiMeC5H4 (25 g, 0.29 mol) was slowly added, and the resulting mixture was allowed to stir for a few hours, after which time the solvent was removed in vacuo. Pentane was added to precipitate the LiCl, and the mixture was filtered through Celite. The pentane was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(MeC5H4)Cl.
Part 2. Me2Si(MeC5H4)Cl (10.0 g, 0.058 mol) was diluted with a mixture of ether and THF. To this, LiHNC12H23 (11.0 g, 0.058 mol) Was was slowly added. The mixture was allowed to stir overnight. The solvent was removed via vacuum and toluene and pentane were added to precipitate the LiCl. The solvent was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(MeC5H4)(HNC12H23)(18.4 g, 0.058 mol).
Part 3. Me2Si(MeC5H4)(HNC12H23) (18.4 g, 0.058 mol) was diluted in ether. MeLi (1.4M in ether, 82 ml, 0.115 mol) was slowly added. The reaction was stirred for several hours before reducing the volume and then filtering off the white solid, Li2[Me2Si(MeC5H3)(NC12H23)] (14.2 g, 0.043 mol).
Part 4. Li2[Me2Si(MeC5H3)(NC12H23)] (7.7 g, 0.023 mol) was suspended in cold ether. TiCl4•2Et2O (7.8 g, 0.023 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was filtered through Celite. The dichloromethane was reduced in volume and petroleum ether was added to maximize precipitation. This mixture was then refrigerated for a short period of time prior to filtering off a yellow/green solid identified as Me2(Si(MeC5H3)(NC12H23)TiCl2 Me2 Si(MeC 5 H 3)(NC 12 H 23)TiCl 2 (5.87 g, 0.013 mol).
Compound C: Part 1. Me2SiCl2 (150 ml, 1.24 mol) was diluted with ˜200 ml of ether. Li(C13H9)•Et2O (lithiated fluorene etherate, 28.2 g, 0.11 mol) was slowly added. The reaction was allowed to stir for −1 ˜1 hr prior to removing the solvent via vacuum. Toluene was added and the mixture was filtered through Celite to remove the LiCl. The solvent was removed from the filtrate, leaving behind the off-white solid, Me2Si(C13H9)Cl (25.4 g, 0.096 mol).
Part 2. Me2Si(C13H9)Cl (8.0 g, 0.031 mol) was suspended in ether and THF in a ratio of 5:1. LiHNC6H11 (3.25 g, 0.031 mol) was slowly added. The reaction mixture was allowed to stir overnight. After removal of the solvent via vacuum, toluene was added and the mixture was filtered through Celite to remove the LiCl. The filtrate was reduced in volume to give a viscous orange liquid. To this liquid which was diluted in ether, 43 ml of 1.4M MeLi (0.060 mol) was added slowly. The mixture was allowed to stir overnight. The solvent was removed via vacuum to produce 13.0 g (0.031 mol) of Li2[Me2Si(C13H8)(NC6H11)]•1.25 Et2O.
Part 3. Li2[Me2Si(C13H8)(NC6H11)]•1.25Et2O (6.5 g, 0.15 0.015 mol) was dissolved in cold ether. TiCl4•2Et2O (5.16 g, 0.017 mol) was slowly added. The mixture was allowed to stir overnight. The solvent was removed via vacuum and methylene chloride was added. The mixture was filtered through Celite to remove the LiCl. The filtrate was reduced in volume and petroleum ether was added. This was refrigerated to maximize precipitation prior to filtering off the solid. Since the solid collected was not completely soluble in toluene, it was mixed with toluene and filtered to remove the toluene insolubles. The filtrate was reduced in volume and petroleum ether was added to induce precipitation. The mixture was refrigerated prior to filtration. The red-brown solid Me2Si(C13H8)(NC6H11)TiCl2 was isolated (2.3 g, 5.2 mmol).
Compound D: Part 1. Me2Si(C13H9)Cl was prepared as described in Example C for the preparation of compound C, Part 1.
Part 2. Me2Si(C13H9)Cl (8.0 g, 0.031 mol) was diluted in ether. LiHN-t-Bu (2.4 g, 0.030 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed in vacuo and methylene chloride was added to precipitate out the LiCl which was filtered off. The solvent was removed from the filtrate leaving behind an oily yellow liquid identified as Me2Si(C13H9)(NH-t-Bu) (8.8 g, 0.028 mol).
Part 3. Me2Si(C13H9)(NH-t-Bu) (8.8 g, 0.028 mol) was diluted in ether. MeLi (1.4M, 41 ml, 0.057 mol) was slowly added and the reaction was allowed to stir for about two hours. The solvent was removed via vacuum leaving behind an orange solid identified as Li2[Me2Si(C13H8)(N-t-Bu)]•Et2O.
Part 4. Li2[Me2Si(C13H8)(N-t-Bu)]•Et2O (3.0 g, 0.008 mol) was dissolved in ether. ZrCl4 (1.84 g, 0.008 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum and a mixture of toluene and methylene chloride was added to precipitate the LiCl which was filtered off. The solvent was reduced in volume and petroleum ether was added to precipitate the product. The mixture was refrigerated to maximize precipitation prior to being filtered. Me2Si(C13H8)(N-t-Bu)(N-t-Bu)ZrCl2 was isolated as a yellow solid (1.9 g, 0.005 mol.) mol).
Compound E: Part 1. Li2[Me2Si(C13H8)(NC6H1-1)•1.25 Et2O was prepared as described in Example C, Part 3 for the preparation of Compound C.
Part 2. Li2[Me2Si(C13H8)(NC6H11)•1.25Et2O (3.25 g, 7.6 mmol) was dissolved in ether. HfCl4 (1.78, 5.6 mmol) was slowly added. The orange mixture was allowed to stir overnight. The solvent was removed via vacuum and a mixture of toluene and methylene chloride was added. The mixture was filtered through Celite to remove LiCl. The filtrate was reduced in volume and petroleum ether was added. This was refrigerated to maximize precipitation prior to filtering off the orange solid. After filtration of the mixture, the product Me2Si(C13H8)(NC6H11)HfCl2 (1.9 g, 3.3 mmol) was isolated.
Compound F: Part 1. Li2[Me2Si(C13H8)(N-t-Bu)]•Et2O was prepared as described in Example D, Part 3 for the preparation of Compound D.
Part 2. Li2[Me2Si(C13H8)(N-t-Bu)]•Et2O (2.8 g, 7.3 mmol was dissolved in ether. HfCl4 (2.35 g, 7.3 mmol) was slowly added and the reaction mixture was allowed to stir over night. The solvent was removed via vacuum and toluene was added. The mixture was filtered through Celite to remove LiCl. The filtrate was reduced in volume and petroleum ether was added. This was refrigerated to maximize precipitation prior to filtering off the pale orange solid. After filtration of the mixture, the product Me2Si(C13H8)(N-t-Bu)HfCl2 (1.9 g, 3.5 mmol) was isolated.
Compound G: Part 1. LiC9H7 (40 g, 0.33 mol, lithiated indene=Li(Hind)) was slowly added to Me2SiCl2 (60 ml, 0.49 mol) in ether and THF. The reaction was allowed to stir for 1.5 hours prior to removing the solvent via vacuum. Petroleum ether was then added, and the LiCl was filtered off. The solvent was removed from the filtrate via vacuum, leaving behind the pale yellow liquid, (Hind)Me2SiCl (55.7 g, 0.27 mol).
partPart 2. (Hind)Me2SiCl (17.8 g, 0.085 mol) was diluted with ether. LiHNC6H11 (9.0 g, 0.086 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum and petroleum ether was added. The LiCl was filtered off and the solvent was removed via vacuum to give a viscous yellow liquid. To this liquid which was diluted in ether, 118 ml of 1.4 M MeLi (0.17 mol) was added and the mixture was allowed to stir for two hours. The solvent was removed via vacuum yielding the pale yellow solid, Li2[Me2Si(ind)(NC6H11)]•½Et2O (27.3 g, 0.085 mol).
Part 3. Li2[Me2Si(ind)(NC6H11)]•½Et2O (10.0 g, 0.031 mol) was suspended in ether. A small amount of TiCl4•2Et2O was added and the mixture was stirred for approximately five minutes. The mixture was then cooled to −30° C. before adding the remaining TiCl4•2Et2O (total: 10.5 g, 0.031 mol). The mixture was allowed to stir over night. The solvent was removed via vacuum and methylene chloride was added. The mixture was filtered through Celite and the brown filtrate was reduced in volume. Petroleum ether was added and the mixture was refrigerated to maximize precipitation. A brown solid was filtered off which was mixed in hot toluene and filtered through Celite to remove the toluene insolubles. Petroleum ether was added to the filtrate and the mixture was again refrigerated prior to filtering off the solid. This solid was recrystallized twice; once from ether and petroleum ether and once from toluene and petroleum ether. The last recrystallization isolated the pale brown solid, Me2Si(ind)(NC6H11)TiCl2 (1.7 g, 4.4 mmol).
Compound H: Part 1. Me2Si(MeC5H4)Cl was prepared as described in Example B, Part 1 for the preparation of Compound B.
Part 2. Me2Si(MeC5H4)Cl (11.5 g, 0.067 mol) was diluted with ether. LiHN-2,6-i-PrC6H3 LiHN- 2,6 -i-Pr 2 C 6 H 3 (12.2 g, 0.067 mol) was slowly added. The mixture was allowed to stir overnight. The solvent was removed via vacuum and a mixture of toluene and dichloromethane was added to precipitate the LiCl. The mixture was filtered and the solvent was removed from the filtrate leaving behind the viscous yellow liquid, Me2Si(MeC5H4)(HN-2,6-i-PrC6H3). Me2 Si(MeC 5 H 4)(HN- 2,6 -i-Pr 2 C 6 H 3).Assuming a ˜95% yield, 90 ml of MeLi (1.4 M in ether, 0.126 mol) was slowly added to a solution of Me2Si(MeC5H4)(HN-2,6-i-PrC6H3) in Me2 Si(MeC 5 H 4)(HN- 2,6 -i-Pr 2 C 6 H 3) in ether. This was allowed to stir overnight. The solvent was reduced in volume and the mixture was filtered and the solid collected was washed with aliquots of ether, then vacuum dried. The product, Li2[Me2Si(MeC5H3)(N-2,6-i-PrC6H3)], Li2 [Me 2 Si(MeC 5 H 3)(N- 2,6 -i-Pr 2 C 6 H 3)], was isolated (13.0 g, 0.036 mol).
Part 3. Li 2[Me2Si(MeC5H3)(N-2,6-i-PrC6H3)] Li2 [Me 2 Si(MeC 5 H 3)(N- 2,6 -i-Pr 2 C 6 H 3)](7.0 g, 0.019 mol) was diluted in cold ether. TiCl4•2Et2O (6.6 g, 0.019 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was filtered through Celite. The dichloromethane was reduced in volume and petroleum ether was added to maximize precipitation. This mixture was then refrigerated for a short period of time prior to filtering off an orange solid which was recrystallized from dichloromethane and identified as Me2Si(MeC5H3)(N-2,6-i-PrC6H3)TiCl2 Me2(Si(MeC 5 H 3)(N- 2,6 -i-Pr 2 C 6 H 3)TiCl 2 (1.75 g, 4.1 mmol).
Compound I: Part 1. Me2Si(MeC5H4)Cl was prepared as described in Example B, Part 1 for the preparation of compound B.
partPart 2. Me2Si(MeC5H4)Cl (10.0 g, 0.058 mol) was diluted with ether. LiHNC6H11 (6.1 g, 0.058 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum and toluene was added to precipitate the LiCl. vacuum The toluene was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(MeC5H4)(HNC6H11). The yield was assumed to be ˜95%. Based on this, two equivalents of MeLi (1.4 M in ether, 0.11 mol, 80 ml) was slowly added to an ether solution of Me2Si(MeC5H4)(HNC6H11). This was stirred for a few hours before removing the solvent and isolating the product, Li2[Me2Si(MeC5H3)(NC6H11)] (12.3 g, 0.050 mol).
Part 3. Li2[Me2Si(MeC5H3)(NC6H11)] (7.25 g, 0.029 mol) was suspended in cold ether. TiCl4.2Et2O TiCl4 •2Et 2 O (9.9 g, 0.029 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was filtered through Celite. The dichloromethane was reduced in volume and petroleum ether was added to maximize precipitation. This mixture was then refrigerated for a short period of time prior to filtering off a maize colored solid which was recrystallized from dichloromethane and identified as Me2Si(MeC5H3)(NC6H11)TiCl2 (3.25 g, 9.2 mmol).
Compound J: Part 1. Me2Si(MeC5H4)Cl was prepared as described in Example B, Part 1 for the preparation of Compound B.
Part 2. Me2Si(MeC5H4)Cl (10.0 g, 0.059 mol) was diluted with ether. LiHN-2,5-t-Bu2C6H3 (12.2 g, 0.58 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum and toluene was added to precipitate the LiCl. The toluene was removed from the filtrate leaving behind a pale yellow liquid, Me2Si(MeC5H4)(HN-2,5-t-Bu2C6H3). The yield was assumed to be ˜95%. Based on this, two equivalents of MeLi (1.4 M in ether, 0.11 mol, 80 ml) was slowly added to an ether solution of Me2Si(MeC5H4)(HN-2,5-t-Bu2C6H3). This was stirred for a few hours before removing the solvent and isolating the product, Li2[Me2Si(MeC5H3)(N-2,5-t-Bu2C6H3)] (7.4 g, 0.021 mol).
Part 3. Li2[Me2Si(MeC5H3)(N-2,5-t-Bu2C6H3)] (6.3 g, 0.018 mol) was suspended in cold ether. TiCl4•2Et2O (6.0 g, 0.18 mol) was slowly added and the mixture was allowed to stir overnight. The solvent was removed via vacuum. Dichloromethane was added and the mixture was filtered through Celite. The dichloromethane was reduced in volume and petroleum ether was added to maximize precipitation. This mixture was then refrigerated for a short period of time prior to filtering off a solid which was recrystallized from dichloromethane giving an orange solid identified as Me2Si(MeC5H3)(N-2,5-t-Bu2C6H3)TiCl2 (2.4 g, 5.2 mmol).
Using the same reactor design and general procedure already described in copending application U.S. Ser. No. 533,245 already described 533,245, 400 ml of toluene, 100 ml of propylene, 2.5 ml of 1.0M MAO, and 1.58 mg of compound A (1.0 ml of 15.8 mg of compound a in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 30 minutes followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 0.7 g of crystalline polypropylene (MW=169,500, MWD=1.605, m=0.725, r=0.275, 115 chain defects/1000 monomer units).
Using the same reactor design and general procedure already described, 100 ml of toluene, 100 ml of propylene, 2.5 ml of 1.0M MAO, and 0.92 mg of compound B (1.0 ml of 9.2 mg of compound B in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 30 minutes followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 0.5 g of crystalline polypropylene (MW=279,800, MWD=1.823, m=0.547, r=0.453, 180 chain defects/1000 monomer units) in addition to 0.2 g of amorphous polypropylene.
Using the same reactor design and general procedure already described, 100 ml of toluene, 100 ml of propylene, 5 ml of 1.0M MAO, and 2.46 mg of compound C (2 ml of 12.3 mg of compound C in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 1 hour, followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 2.2 g of crystalline polypropylene (MW=29,000, MWD=2.673, m=0.356, r=0.641, 110.5 chain defects/1000 monomer units, mp=143° C.) and a trace amount of amorphous polypropylene which was isolated from the filtrate.
Using the same reactor design and general procedure already described, 100 ml of toluene, 200 ml of propylene, 5 ml of 1.0M MAO, and 6.4 mg of compound D (5 ml of 12.4 mg of compound D in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for one hour, followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 1.4 g of crystalline polypropylene (MW=76,900, MWD=1.553, m=0.982, r=0.18, 9.1 defects/1000 monomer units, mp=145° C.) and trace amount of amorphous polypropylene which was isolated from the filtrate.
Using the same reactor design and general procedure already described, 100 ml of toluene, 200 ml of propylene, 5.0 ml of 1.0M MAO, and 8.0 mg of compound E (5.0 ml of 16.0 mg of compound E in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 1 hour followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 2.3 g of crystalline polypropylene (MW=68,600, MWD=1.718, m=0.945, r=0.055, 21.6 chain defects/1000 monomer units, mp=149° C.).
Using the same reactor design and general procedure already described, 100 ml of hexane, 500 ml of propylene, 10.0 ml of 1.0M MAO, and 3.4 mg of compound F (2.0 ml of 17.0 mg of compound F in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 2.5 hours followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 3.1 g of crystalline polypropylene (MW=70,600, MWD=1.726, m=0.858, r=0.143, 45.2 chain defects/1000 monomer units, mp=144° C.).
Using the same reactor design and general procedure already described, 200 ml of toluene, 200 ml of propylene, 5.0 ml of 1.0M MAO, and 5.5 mg of compound G (5.0 ml of 11.0 mg of compound G in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for 1.0 hour followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 2.4 g of crystalline polypropylene (MW=71,300, MWD=1.812, m=0.866, r=0.134, 52 chain defects/1000 monomer units, mp=147° C.) and trace amount of amorphous polymer.
Using the same reactor design and general procedure already described, 100 ml of toluene, 100 ml of propylene, 2.5 ml of 1.0M MAO, and 0.86 mg of compound H (1.0 ml of 8.6 mg of compound H in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for one hour followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 2.8 g of crystalline polypropylene (MW=170,300, MWD=2.275, m=0.884, r=0.116, 46.5 chain defects/1000 monomer units, mp=151° C.).
Using the same reactor design and general procedure already described, 100 ml of toluene, 100 ml of propylene, 2.5 ml of 1.0M MAO, and 0.70 mg of compound I (1.0 ml of 7.0 mg of compound I in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for one hour followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 2.3 g of crystalline polypropylene (MW=145,500, MWD=3.551, m=0.860, r=0.140, 57.1 chain defects/1000 monomer units, mp=151°0 151° C.).
Using the same reactor design and general procedure already described, 100 ml of toluene, 100 ml of propylene, 2.5 ml of 1.0M MAO, and 1.0 mg of compound J 1.0 ( 1.0 ml of 10.0 mg of compound J in 10 ml of toluene) were added to the reactor. The reactor was heated at 30° C. and the reaction was allowed to run for one hour followed by rapidly cooling and venting the system. The polymer was precipitated out and filtered off giving 1.4 g of crystalline polypropylene (MW=211,400, MWD=2.734, m=0.750, r=0.250, 97.3 chain defects/1000 monomer units, mp=144° C.).
Table 2 summarizes the polymerization conditions employed and the properties obtained in the product polymers as set forth in Examples 1-10 above.
TABLE 2 | ||||||||||||||
Act- | ||||||||||||||
Methyl- | ivity | Chain | ||||||||||||
Transition | alum- | g poly- | Defects/ | |||||||||||
Metal | oxane | RXN | mer/ | 1000 | ||||||||||
Exp. | Component (TMC) | MAO | MAO: | Time | Yield | mmole° | MP | Monomer |
No. | Type | mmole | mmole | TMC | (hr) | (g) | hr | MW | MWD | (° C.) | m | mmmm | r | rrrr | Units |
1 | A | 3.30 × 10−3 | 2.5 | 760 | 0.5 | 0.7 | 424 | 169,500 | 1.605 | naa | 0.725 | 0.446 | 0.275 | 0.022 | 115 |
2 | B | 2.11 × 10−3 | 2.5 | 1200 | 0.5 | 0.5 | 474 | 279,800 | 1.823 | naa | 0.547 | 0.227 | 0.453 | 0.063 | 180 |
3 | C | 5.61 × 10−3 | 5.0 | 900 | 1.0 | 2.2 | 392 | 29,000 | 2.673 | 143 | 0.359 | 0.151 | 0.641 | 0.353 | 110.5 |
4 | D | 1.41 × 10−3 | 5.0 | 360 | 1.0 | 1.4 | 100 | 76,900 | 1.553 | 145 | 0.982 | 0.934 | 0.018 | 0.000 | 9.1 |
5 | E | 1.41 × 10−3 | 5.0 | 360 | 1.0 | 2.3 | 164 | 68,600 | 1.718 | 149 | 0.945 | 0.883 | 0.055 | 0.007 | 21.6 |
6 | F | 6.26 × 10−3 | 10.0 | 1600 | 2.5 | 3.1 | 198 | 70,600 | 1.726 | 144 | 0.858 | 0.756 | 0.143 | 0.036 | 45.2 |
7 | G | 1.42 × 10−3 | 5.0 | 350 | 1.0 | 2.4 | 169 | 71,300 | 1.812 | 147 | 0.866 | 0.747 | 0.134 | 0.016 | 52 |
8 | H | 2.00 × 10−3 | 2.5 | 1250 | 1.0 | 2.8 | 1400 | 170,300 | 2.275 | 151 | 0.884 | 0.774 | 0.116 | 0.012 | 46.5 |
9 | I | 1.99 × 10−3 | 2.5 | 1250 | 1.0 | 2.3 | 1156 | 145,500 | 3.551 | 151 | 0.860 | 0.718 | 0.140 | 0.013 | 57.1 |
10 | J | 2.18 × 10−3 | 2.5 | 1150 | 1.0 | 1.4 | 642 | 211,400 | 2.734 | 144 | 0.750 | 0.535 | 0.250 | 0.031 | 97.3 |
aData not available. |
By appropriate selection of (1) Group IVB IV-B transition metal component for use in the catalyst system; (2) the type and amount of alumoxane used; (3) the polymerization diluent type and volume; and (4) reaction temperature, one may tailor the product polymer to the weight average molecular weight value desired while still maintaining the molecular weight distribution at a value below about 4.0.
The stereochemical control of the polymer formed is highly dependent on the exact structure of the transition metal component. Those transition metal components containing zirconium or hafnium (M=Zr or Hf) appear to have greater stereoregularity (fewer chain defects) than these those containing titanium (M=Ti). By appropriate selection of the transition metal component of the catalyst system a wide variety of crystalline poly-α-olefins with differing stereochemical structure are possible.
The resins that are prepared in accordance with this invention can be used to make a variety of products including films and fibers.
The invention has been described with reference to its preferred embodiments. Those of ordinary skill in the art may, upon reading this disclosure, appreciate changes or modifications which do not depart from the scope and spirit of the invention as described above or claimed hereafter.
Claims (13)
1. A process for producing crystalline poly-α-olefins comprising the steps of
(i) contacting an α-olefin monomer at a temperature and pressure sufficient to polymerize such monomer with a catalyst system comprising; comprising:
(A) an alumoxane, and
wherein M is Zr, Hf or Ti in its highest formal oxidation state;
R is a substituent group with “x” denoting the degree of substitution (x=0, 1, 2, 3 or 4) and each R is, independently, a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen radical, an amido radical, a phosphido radical, an alkoxy radical or any other radical containing a Lewis acidic or basic functionality, C1-C20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV A of the Periodic Table of Elements, and halogen radicals, amido radicals, phosphido radicals, alkoxy radicals, alkylborido radicals or a radical other radicals containing a Lewis acidic or basic functionality, or at least two adjacent R-groups are joined forming C4-C20 ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;
(JR′z-2) is a heteroatom ligand in which J is an element with a coordination number of three from Group V A or an element with a coordination number of two from Group VI A of the Periodic Table of Elements, and each R′ is, independently R′ is a radical selected from a group consisting of C1-C20 hydrocarbyl radicals, substituted C1-C20 hydrocarbyl radicals where one or more hydrogen atom is replaced by a halogen radical, an amido radical, a phosphido radical, and an alkoxy radical or a other radical containing a Lewis acidic or basic functionality, and “z” is the coordination number of the element J;
each Q is, independently, any univalent anionic ligand or two Q's are a divalent anionic chelating ligand; ligand, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring;
T is a covalent bridging group containing a Group IV A or V A element;
L is a neutral Lewis base where “w” denotes a number from 0 to 3;
(ii) recovering a crystalline poly-α-olefin.
wherein R1 and R2 are, independently, a C1 to C20 hydrocarbyl radicals, or substituted C1 to C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R1 and R2 may also be joined forming a C3 to C20 ring.
3. The processes of claims 1 or 2 wherein J is nitrogen.
4. The process of claim 3 wherein R is a C1 to C20 hydrocarbyl radical, “x” is 1 and R′ is a C6 to C20 cyclohydrocarbyl radical or an aromatic radical.
5. The process of claim 1 wherein the Group IV-B transition metal component is of the formula:
wherein R1 and R2 are independently a C1 to C20 hydrocarbyl radicals, or substituted C1 to C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R1 and R2 may also be joined forming a C3 to C20 ring.
6. The process of claim 5 where wherein J is nitrogen.
7. The process of claim 6 wherein R′ is an alkyl radical or cyclic cycloalkyl radical.
8. The process of claim 1 wherein the Group IV-B transition metal component is of the formula formula:
wherein
“x” is 0, 1 or 2;
R1 and R2 are independently a C1 to C20 hydrocarbyl radicals, or substituted C1 to C20 hydrocarbyl radicals wherein one or more hydrogen atom is replaced by a halogen atom; R1 and R2 may also be joined forming a C3 to C20 ring.
9. The process of claim 8 wherein J is nitrogen.
10. The process of claim 9 wherein R′ is a cycloalkyl radical.
11. The process of claim 2 , 5, or 8 wherein M is titanium.
12. The process of claims 2 or 5 wherein M is hafnium or zirconium.
13. The process of claim 1 wherein T is a covalent bridging group containing silicon, J is nitrogen and when R is an alkyl radical, R′ is a cyclohydrocarbyl or aromatic radical, and or when “x” is 2 or 4 and the R substituents form a polycyclic ring system, R′ is an alkyl or cyclohydrocarbyl radical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/973,107 USRE40234E1 (en) | 1989-09-13 | 1992-11-06 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40694589A | 1989-09-13 | 1989-09-13 | |
US07/533,245 US5055438A (en) | 1989-09-13 | 1990-06-04 | Olefin polymerization catalysts |
US07/581,817 US5026798A (en) | 1989-09-13 | 1990-09-13 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US07/973,107 USRE40234E1 (en) | 1989-09-13 | 1992-11-06 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/581,817 Reissue US5026798A (en) | 1989-09-13 | 1990-09-13 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40234E1 true USRE40234E1 (en) | 2008-04-08 |
Family
ID=24326683
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/581,817 Ceased US5026798A (en) | 1989-09-13 | 1990-09-13 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US07/973,107 Expired - Lifetime USRE40234E1 (en) | 1989-09-13 | 1992-11-06 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/581,817 Ceased US5026798A (en) | 1989-09-13 | 1990-09-13 | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
Country Status (10)
Country | Link |
---|---|
US (2) | US5026798A (en) |
EP (1) | EP0548277B1 (en) |
JP (1) | JP3248907B2 (en) |
AT (1) | ATE209662T1 (en) |
BR (1) | BR9106842A (en) |
CA (1) | CA2090872C (en) |
DE (1) | DE69132836T2 (en) |
DK (1) | DK0548277T3 (en) |
ES (1) | ES2168252T3 (en) |
WO (1) | WO1992005204A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141911A1 (en) | 2012-03-19 | 2013-09-26 | Exxonmobil Chemical Patents Inc. | New catalysts for producing polyalpha-olefins |
US11905348B2 (en) | 2018-03-20 | 2024-02-20 | Mitsui Chemicals, Inc. | Ethylene/alpha-olefin/non-conjugated polyene copolymer, method for producing the same, and use thereof |
US11964447B2 (en) | 2017-02-20 | 2024-04-23 | Mitsui Chemicals, Inc. | Laminate |
Families Citing this family (354)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264405A (en) * | 1989-09-13 | 1993-11-23 | Exxon Chemical Patents Inc. | Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin-copolymer production catalysts |
US5055438A (en) * | 1989-09-13 | 1991-10-08 | Exxon Chemical Patents, Inc. | Olefin polymerization catalysts |
US5408017A (en) * | 1987-01-30 | 1995-04-18 | Exxon Chemical Patents Inc. | High temperature polymerization process using ionic catalysts to produce polyolefins |
USRE37788E1 (en) * | 1987-01-30 | 2002-07-09 | Exxon Chemical Patents, Inc. | Monocyclopentadienyl metal compounds for ethylene-α-olefin-copolymer production catalysts |
US5621126A (en) | 1987-01-30 | 1997-04-15 | Exxon Chemical Patents Inc. | Monocyclopentadienyl metal compounds for ethylene-α-olefin-copolymer production catalysts |
US5830087A (en) * | 1995-06-26 | 1998-11-03 | Lisco, Inc. | Multi-layer golf ball |
GB8914703D0 (en) * | 1989-06-27 | 1989-08-16 | Dow Europ Sa | Bioriented film |
US5763547A (en) * | 1992-10-02 | 1998-06-09 | The Dow Chemical Company | Supported catalyst complexes for olefin in polymerization |
US6686488B2 (en) | 1989-08-31 | 2004-02-03 | The Dow Chemical Company | Constrained geometry addition polymerization catalysts |
US6025448A (en) | 1989-08-31 | 2000-02-15 | The Dow Chemical Company | Gas phase polymerization of olefins |
NZ235032A (en) * | 1989-08-31 | 1993-04-28 | Dow Chemical Co | Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component |
US5227440A (en) * | 1989-09-13 | 1993-07-13 | Exxon Chemical Patents Inc. | Mono-Cp heteroatom containing Group IVB transition metal complexes with MAO: supported catalysts for olefin polymerization |
US5420217A (en) * | 1989-09-13 | 1995-05-30 | Exxon Chemical Patents Inc. | Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US7041841B1 (en) * | 1989-09-13 | 2006-05-09 | Exxonmobil Chemical Patents Inc. | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US6825369B1 (en) * | 1989-09-14 | 2004-11-30 | The Dow Chemical Company | Metal complex compounds |
CA2057892C (en) * | 1990-04-09 | 1995-08-08 | Tetsunosuke Shiomura | Propylene copolymer |
JP3020250B2 (en) * | 1990-04-09 | 2000-03-15 | 三井化学株式会社 | Method for producing syndiotactic polypropylene |
DE69130403T2 (en) * | 1990-04-18 | 1999-04-15 | Mitsui Chemicals, Inc., Tokio/Tokyo | Syndiotactic propylene copolymer, preparation thereof and composition containing this copolymer |
US5272236A (en) * | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
JP2545006B2 (en) * | 1990-07-03 | 1996-10-16 | ザ ダウ ケミカル カンパニー | Addition polymerization catalyst |
US6538080B1 (en) | 1990-07-03 | 2003-03-25 | Bp Chemicals Limited | Gas phase polymerization of olefins |
US5369196A (en) * | 1990-11-30 | 1994-11-29 | Idemitsu Kosan Co., Ltd. | Production process of olefin based polymers |
DE4120009A1 (en) * | 1991-06-18 | 1992-12-24 | Basf Ag | SOLUBLE CATALYST SYSTEMS FOR THE PRODUCTION OF POLYALK-1-ENEN WITH HIGH MOLES |
US5721185A (en) * | 1991-06-24 | 1998-02-24 | The Dow Chemical Company | Homogeneous olefin polymerization catalyst by abstraction with lewis acids |
US5594078A (en) * | 1991-07-23 | 1997-01-14 | Phillips Petroleum Company | Process for producing broad molecular weight polyolefin |
US6194532B1 (en) | 1991-10-15 | 2001-02-27 | The Dow Chemical Company | Elastic fibers |
US5783638A (en) | 1991-10-15 | 1998-07-21 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US5847053A (en) * | 1991-10-15 | 1998-12-08 | The Dow Chemical Company | Ethylene polymer film made from ethylene polymer blends |
US5674342A (en) | 1991-10-15 | 1997-10-07 | The Dow Chemical Company | High drawdown extrusion composition and process |
US5278272A (en) * | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
US5562958A (en) * | 1991-10-15 | 1996-10-08 | The Dow Chemical Company | Packaging and wrapping film |
US6448355B1 (en) * | 1991-10-15 | 2002-09-10 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US5582923A (en) | 1991-10-15 | 1996-12-10 | The Dow Chemical Company | Extrusion compositions having high drawdown and substantially reduced neck-in |
US5677383A (en) * | 1991-10-15 | 1997-10-14 | The Dow Chemical Company | Fabricated articles made from ethylene polymer blends |
US5525695A (en) * | 1991-10-15 | 1996-06-11 | The Dow Chemical Company | Elastic linear interpolymers |
US5395471A (en) | 1991-10-15 | 1995-03-07 | The Dow Chemical Company | High drawdown extrusion process with greater resistance to draw resonance |
DE69222317T2 (en) * | 1991-11-25 | 1998-02-12 | Exxon Chemical Patents, Inc., Baytown, Tex. | POLYIONIC TRANSITION METAL CONTAINER COMPOSITION |
JP3157163B2 (en) | 1991-12-30 | 2001-04-16 | ザ・ダウ・ケミカル・カンパニー | Polymerization of ethylene interpolymer |
EP0574561B1 (en) * | 1992-01-06 | 1998-01-28 | The Dow Chemical Company | Improved catalyst composition |
US5350723A (en) * | 1992-05-15 | 1994-09-27 | The Dow Chemical Company | Process for preparation of monocyclopentadienyl metal complex compounds and method of use |
US5240894A (en) * | 1992-05-18 | 1993-08-31 | Exxon Chemical Patents Inc. | Method for making and using a supported metallocene catalyst system |
US5317036A (en) * | 1992-10-16 | 1994-05-31 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reactions utilizing soluble unsupported catalysts |
GB9300934D0 (en) * | 1993-01-19 | 1993-03-10 | Bp Chem Int Ltd | Metallocene complexes |
PT681592E (en) * | 1993-01-29 | 2001-01-31 | Dow Chemical Co | ETHYLENE INTERPOLIMERIZATIONS |
US5391529A (en) * | 1993-02-01 | 1995-02-21 | Albemarle Corporation | Siloxy-aluminoxane compositions, and catalysts which include such compositions with a metallocene |
US5523136A (en) * | 1993-04-30 | 1996-06-04 | Cypress Packaging | Packaging film, packages and methods for using them |
CN1069707C (en) * | 1993-05-25 | 2001-08-15 | 埃克森化学专利公司 | Novel polyolefin fibers and their fabrics |
US5372980A (en) * | 1993-06-03 | 1994-12-13 | Polysar | Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers |
WO1995000562A1 (en) * | 1993-06-24 | 1995-01-05 | Exxon Chemical Patents Inc. | PROCESS FOR PRODUCING AMORPHOUS POLY-α-OLEFINS WITH A MONOCYCLOPENTADIENYL TRANSITION METAL CATALYST SYSTEM |
US5929128A (en) * | 1993-08-18 | 1999-07-27 | The Dow Chemical Company | Gaskets made from olefin polymers |
US5486585A (en) * | 1993-08-26 | 1996-01-23 | Exxon Chemical Patents Inc. | Amidosilyldiyl bridged catalysts and method of polymerization using said catalysts. |
GB9321254D0 (en) * | 1993-10-14 | 1993-12-01 | Du Pont Canada | Pouches of ethylene copolymer film containing a flowable material |
WO1995018836A1 (en) * | 1994-01-11 | 1995-07-13 | Exxon Chemical Patents Inc. | Alumoxanes and catalysts comprising alumoxanes |
US5504223A (en) * | 1994-01-25 | 1996-04-02 | The Dow Chemical Company | Synthesis of cyclopentadienyl metal coordination complexes from metal hydrocarbyloxides |
US5504224A (en) * | 1994-03-14 | 1996-04-02 | The Dow Chemical Company | Preparation of monocyclopentadienyl metal complexes by nucleophilic substitution of bis(cyclopentadienyl) metal complexes |
US6291389B1 (en) | 1994-04-28 | 2001-09-18 | Exxonmobil Chemical Patents Inc. | Cationic polymerization catalysts |
US6008307A (en) * | 1994-04-28 | 1999-12-28 | Exxon Chemical Patents Inc | Process for producing olefin polymers using cationic catalysts |
US6218470B1 (en) | 1994-06-01 | 2001-04-17 | The Dow Chemical Company | Thermoplastic elastomeric blends |
US6403710B1 (en) | 1994-08-29 | 2002-06-11 | The Dow Chemical Company | Block copolymer compositions containing substantially inert thermoelastic extenders |
US6111020A (en) * | 1994-09-02 | 2000-08-29 | The Dow Chemical Company | Crosslinked foams from blends of ethylene vinyl acetate and ethylene-styrene interpolymers |
US5741195A (en) * | 1994-09-30 | 1998-04-21 | Lisco, Inc. | High visibility inflated game ball |
US5536797A (en) * | 1994-10-03 | 1996-07-16 | The Dow Chemical Company | Syndiotactic prochiral olefin polymerization process |
US5773106A (en) | 1994-10-21 | 1998-06-30 | The Dow Chemical Company | Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus |
US5543484A (en) * | 1994-11-18 | 1996-08-06 | The Penn State Research Foundation | α-olefin/para-alkylstyrene copolymers |
US6015862A (en) * | 1994-11-18 | 2000-01-18 | The Penn State Research Foundation | Functionalized α-olefin/para-alkylstyrene terpolymers |
IT1272923B (en) * | 1995-01-23 | 1997-07-01 | Spherilene Srl | METALLOCENIC COMPOUNDS, PROCEDURE FOR THEIR PREPARATION, AND THEIR USE IN CATALYSTS FOR THE POLYMERIZATION OF OLEFINS |
US5539056A (en) * | 1995-01-31 | 1996-07-23 | Exxon Chemical Patents Inc. | Thermoplastic elastomers |
US5516848A (en) * | 1995-01-31 | 1996-05-14 | Exxon Chemical Patents Inc. | Process to produce thermoplastic elastomers |
US5731253A (en) * | 1995-07-27 | 1998-03-24 | Albemarle Corporation | Hydrocarbylsilloxy - aluminoxane compositions |
US5869575A (en) * | 1995-08-02 | 1999-02-09 | The Dow Chemical Company | Ethylene interpolymerizations |
DE19529230A1 (en) * | 1995-08-09 | 1997-05-15 | Basf Lacke & Farben | Mechanically sealing closure for vessels |
US5648308A (en) * | 1995-08-10 | 1997-07-15 | Albemarle Corporation | Process for upgrading metallocene catalysts |
US5962714A (en) * | 1995-10-02 | 1999-10-05 | Mccullough; Laughlin Gerard | Monocyclopentadienyl transition metal catalyst and olefin polymerization process |
CZ129998A3 (en) * | 1995-10-27 | 1998-08-12 | The Dow Chemical Company | Substituted metal complexes containing indenyl groups, coordination polymerization catalyst and polymerization process of olefins |
HUP9603449A3 (en) | 1995-12-15 | 2000-03-28 | Union Carbide Chem Plastic | Process for production of long-chain branched polyolefins, polyethylene composition and product |
US5665818A (en) * | 1996-03-05 | 1997-09-09 | Union Carbide Chemicals & Plastics Technology Corporation | High activity staged reactor process |
US5749202A (en) * | 1996-03-12 | 1998-05-12 | Tenneco Packaging | Stretch wrap films |
US5902684A (en) * | 1996-03-12 | 1999-05-11 | Tenneco Packaging Inc. | Multilayered Metallocene stretch wrap films |
US5752362A (en) * | 1996-03-12 | 1998-05-19 | Tenneco Packaging | Stretch wrap films |
US5998017A (en) * | 1996-03-12 | 1999-12-07 | Tenneco Packaging | Stretch wrap films |
USRE38429E1 (en) * | 1996-03-12 | 2004-02-17 | Tyco Plastics Services Ag | Stretch wrap films |
US5976682A (en) * | 1996-03-12 | 1999-11-02 | Tenneco Packaging | Stretch wrap films |
US5814399A (en) * | 1996-03-12 | 1998-09-29 | Tenneco Packaging | Stretch wrap films |
US6225426B1 (en) * | 1996-04-10 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Process for producing polyolefin elastomer employing a metallocene catalyst |
US5959044A (en) * | 1996-07-08 | 1999-09-28 | Villar; Juan Carlos | Method of controlling continuous ethylene-limited metallocene-catalyzed copolymerization systems |
ZA976110B (en) | 1996-07-12 | 1999-01-11 | Dow Chemical Co | Elastomers processes for their manufacture and articles made from these elastomers |
US6248837B1 (en) | 1996-07-15 | 2001-06-19 | The Penn State Research Foundation | Process for preparing polyolefin diblock copolymers involving borane chain transfer reaction in transition metal-mediated olefin polymerization |
US6258308B1 (en) | 1996-07-31 | 2001-07-10 | Exxon Chemical Patents Inc. | Process for adjusting WVTR and other properties of a polyolefin film |
US5938878A (en) | 1996-08-16 | 1999-08-17 | Sentinel Products Corp. | Polymer structures with enhanced properties |
US5849823A (en) * | 1996-09-04 | 1998-12-15 | The Dow Chemical Company | Homogeneously branched ethylene α-olefin interpolymer compositions for use in gasket applications |
US5902854A (en) * | 1996-09-27 | 1999-05-11 | The Dow Chemical Company | Polydimethylsiloxane containing polymer blends |
US6271322B1 (en) | 1996-10-02 | 2001-08-07 | Mccullough Laughlin Gerard | Monocyclopentadienyl transition metal catalyst and olefin polymerization process |
US6015868A (en) * | 1996-10-03 | 2000-01-18 | The Dow Chemical Company | Substituted indenyl containing metal complexes and olefin polymerization process |
US5847177A (en) * | 1996-10-10 | 1998-12-08 | Albemarle Corporation | Production of hydrocarbon-soluble hydrocarbylaluminoxanes |
US5861463A (en) * | 1996-10-31 | 1999-01-19 | The Dow Chemical Company | Impact-modified thermoplastic polyolefins and articles fabricated therefrom |
EP0842978B1 (en) * | 1996-11-19 | 2002-09-25 | Kuraray Co., Ltd. | Resin composition and multilayered structure |
US5851070A (en) * | 1996-12-05 | 1998-12-22 | Tenneco Packaging Inc. | Seals for plastic bags |
US6376035B1 (en) | 1996-12-05 | 2002-04-23 | Pactiv Corporation | Zipper fins for plastic bags |
US5919535A (en) * | 1996-12-05 | 1999-07-06 | Tenneco Packaging | Fins for plastic bags |
US5912202A (en) * | 1997-01-10 | 1999-06-15 | Union Carbide Chemicals & Plastics Technology Corporation | Olefin polymerization catalyst composition having increased activity |
US5989725A (en) * | 1997-01-16 | 1999-11-23 | Tenneco Packaging | Clear high molecular weight film |
BR9808578A (en) * | 1997-02-07 | 2000-05-30 | Exxon Chemical Patents Inc | Propylene polymers incorporating polyethylene macromers |
US6114457A (en) * | 1997-02-07 | 2000-09-05 | Exxon Chemical Patents Inc. | High melt strength polyethylene compositions |
EP0958309B2 (en) | 1997-02-07 | 2013-10-09 | ExxonMobil Chemical Patents Inc. | Preparation of vinyl-containing macromers |
US6355757B2 (en) | 1997-02-14 | 2002-03-12 | Exxonmobil Chemical Patents, Inc. | Processing olefin copolymers |
US6451938B1 (en) | 1997-02-25 | 2002-09-17 | Exxon Mobil Chemical Patents Inc. | Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands |
US7338698B1 (en) | 1997-02-28 | 2008-03-04 | Columbia Insurance Company | Homogeneously branched ethylene polymer carpet, carpet backing and method for making same |
US20030211280A1 (en) | 1997-02-28 | 2003-11-13 | Shaw Industries, Inc. | Carpet, carpet backings and methods |
WO1998038376A1 (en) * | 1997-02-28 | 1998-09-03 | Shaw Industries, Inc. | Carpet, carpet backings and methods |
US6552126B2 (en) | 1997-03-03 | 2003-04-22 | Spalding Sports Worldwide, Inc. | Golf ball cover containing a blend of ionomer and plastomer, and method of making same |
DE19709486A1 (en) * | 1997-03-07 | 1998-09-10 | Studiengesellschaft Kohle Mbh | Processes and catalysts for the stereospecific polymerization of olefins with chiral half-sandwich metallocene catalysts |
US6013378A (en) * | 1997-03-17 | 2000-01-11 | Tenneco Packaging | HMW HDPE film with improved impact strength |
US5889128A (en) * | 1997-04-11 | 1999-03-30 | Massachusetts Institute Of Technology | Living olefin polymerization processes |
US6204348B1 (en) * | 1997-05-20 | 2001-03-20 | Borealis Gmbh | Modified polypropylenes of improved processability |
US5907942A (en) * | 1997-05-21 | 1999-06-01 | Tenneco Packaging | Stretch wrap films |
US6093480A (en) * | 1997-05-21 | 2000-07-25 | Tenneco Packaging | Stretch wrap films |
US5907943A (en) * | 1997-06-11 | 1999-06-01 | Tenneco Packaging Inc. | Stretch wrap films |
US5922441A (en) * | 1997-06-11 | 1999-07-13 | Tenneco Packaging Inc. | Stretch wrap films |
US6262161B1 (en) | 1997-06-26 | 2001-07-17 | The Dow Chemical Company | Compositions having improved ignition resistance |
BR9811085A (en) | 1997-08-08 | 2005-04-12 | Dow Chemical Co | Sheet materials suitable for use as a floor, wall or ceiling cover material, and processes and intermediates to do so |
US6265512B1 (en) | 1997-10-23 | 2001-07-24 | 3M Innovative Company | Elastic polypropylenes and catalysts for their manufacture |
US6083611A (en) * | 1997-11-12 | 2000-07-04 | Tenneco Packaging, Inc. | Roll wrap film |
US6117962A (en) * | 1997-12-10 | 2000-09-12 | Exxon Chemical Patents Inc. | Vinyl-containing stereospecific polypropylene macromers |
US6184327B1 (en) | 1997-12-10 | 2001-02-06 | Exxon Chemical Patents, Inc. | Elastomeric propylene polymers |
DE19757524A1 (en) | 1997-12-23 | 1999-06-24 | Bayer Ag | Transition metal complex compound having half sandwich structure and donor-acceptor groups |
US6329477B1 (en) | 1998-03-04 | 2001-12-11 | Exxonmobil Chemical Patents Inc. | Method for increasing diene conversion in EPDM type polymerizations |
US6319998B1 (en) | 1998-03-04 | 2001-11-20 | Exxon Mobil Chemical Patents Inc. | Method for making polymer blends by using series reactors |
DE19809159A1 (en) | 1998-03-04 | 1999-09-09 | Bayer Ag | Organometallic compounds |
DE19812881A1 (en) | 1998-03-24 | 1999-10-07 | Bayer Ag | New dendrimeric compounds, a process for their preparation and their use as catalysts |
KR100380018B1 (en) | 1998-04-09 | 2003-10-04 | 주식회사 엘지화학 | Supported metallocene catalyst and olefin polymerization method using the catalyst |
DE19816154A1 (en) | 1998-04-09 | 1999-10-21 | Bernhard Rieger | Linear isotactic polymers, processes for their production and their use and a catalyst combination |
KR100358225B1 (en) | 1998-04-09 | 2003-01-24 | 주식회사 엘지화학 | Polymerization method using metallocene enabling cocatalyst to be recirculated |
US6784269B2 (en) | 1998-05-13 | 2004-08-31 | Exxonmobil Chemical Patents Inc. | Polypropylene compositions methods of making the same |
DE69918100T2 (en) | 1998-05-13 | 2005-07-07 | Exxonmobil Chemical Patents Inc., Baytown | PROPYLENEHOMOPOLYMERS AND MANUFACTURING METHOD |
US6306960B1 (en) | 1998-05-13 | 2001-10-23 | Exxonmobil Chemical Patents Inc. | Articles formed from foamable polypropylene polymer |
US6709742B2 (en) | 1998-05-18 | 2004-03-23 | Dow Global Technologies Inc. | Crosslinked elastic fibers |
AR018359A1 (en) * | 1998-05-18 | 2001-11-14 | Dow Global Technologies Inc | HEAT RESISTANT ARTICLE, CONFIGURED, IRRADIATED AND RETICULATED, FREE FROM A SILANAN RETICULATION AGENT |
KR100287955B1 (en) | 1998-06-08 | 2001-05-02 | 유현식 | Novel metallocene catalyst for olefin or styrene polymerization and polymerization method using the same |
US6706827B1 (en) * | 1998-06-08 | 2004-03-16 | Samsung Atofina Co. Ltd. | Metallocene catalysts for olefin or styrene polymerization and polymerization method using the metallocene catalysts |
DE19826403A1 (en) | 1998-06-15 | 1999-12-16 | Basf Ag | Transition metal complexes |
DE19837734C1 (en) | 1998-08-20 | 1999-12-23 | Bayer Ag | Fulvene-metal insertion complexes, useful as olefin polymerisation catalysts or hydrogenation catalysts |
DE19837739A1 (en) | 1998-08-20 | 2000-02-24 | Bayer Ag | Catalyst system based on Fulven-Cyclopentadienyl metal complexes |
US6225427B1 (en) | 1998-10-15 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Olefin polymerization process employing metallocene catalyst provided by cocatalyst activation of a metallocene procatalyst |
AU6429899A (en) | 1998-10-16 | 2000-05-08 | Exxon Chemical Patents Inc. | Process for producing polyolefin microporous breathable film |
EP1010709A1 (en) | 1998-12-14 | 2000-06-21 | Fina Research S.A. | Metallocene compound and its use for polyolefin production |
US6040261A (en) | 1999-04-15 | 2000-03-21 | Equistar Chemicals, Lp | Supported single-site catalyst and olefin polymerization process |
US6174930B1 (en) | 1999-04-16 | 2001-01-16 | Exxon Chemical Patents, Inc. | Foamable polypropylene polymer |
TW444043B (en) | 1999-05-11 | 2001-07-01 | Ind Tech Res Inst | Resin compositions for electric circuit boards |
KR100328866B1 (en) | 1999-07-02 | 2002-03-20 | 유현식 | Polymerization process of syndiotactic polystyrene derivatives using microfluidization |
US6265493B1 (en) | 1999-07-21 | 2001-07-24 | The Penn State Research Foundation | Polyolefin graft copolymers derived from linear copolymers of alpha-olefins and divinylbenzene having narrow molecular weight and composition distributions and process for preparing same |
US6096849A (en) * | 1999-07-21 | 2000-08-01 | The Penn State Research Foundation | Linear copolymers of alpha-olefins and divinylbenzene having narrow molecular weight and composition distributions and process for preparing same |
US6331597B1 (en) | 1999-08-09 | 2001-12-18 | The Dow Chemical Company | Azidosilane-modified, moisture-curable polyolefin polymers, process for making, and articles obtained therefrom |
CN1209404C (en) | 1999-09-01 | 2005-07-06 | 埃克森化学专利公司 | Breathable films and method for making |
MXPA02005716A (en) * | 1999-12-10 | 2002-09-18 | Exxon Chemical Patents Inc | Propylene diene copolymerized polymers. |
US6977287B2 (en) * | 1999-12-10 | 2005-12-20 | Exxonmobil Chemical Patents Inc. | Propylene diene copolymers |
US6809168B2 (en) * | 1999-12-10 | 2004-10-26 | Exxonmobil Chemical Patents Inc. | Articles formed from propylene diene copolymers |
ES2326537T3 (en) * | 2000-01-18 | 2009-10-14 | Basell Polyolefine Gmbh | BINDING FOR A METALOCENE CATALYST TO MANUFACTURE POLYMERS BASED ON PROPYLENE AND METHOD OF OBTAINING THE SAME. |
DE10003581A1 (en) | 2000-01-28 | 2001-08-02 | Bayer Ag | Organometallic compounds with fused indenyl ligands |
KR100349071B1 (en) | 2000-02-02 | 2002-08-14 | 삼성종합화학주식회사 | Process for Preparing Syndiotactic Styrenic Polymers by Recycling the Products |
US6160029A (en) * | 2000-03-08 | 2000-12-12 | The Dow Chemical Company | Olefin polymer and α-olefin/vinyl or α-olefin/vinylidene interpolymer blend foams |
US6608142B1 (en) | 2000-05-08 | 2003-08-19 | Teknor Apex Company | Polyvinyl chloride compositions |
ATE366738T1 (en) | 2000-05-31 | 2007-08-15 | Basell Polyolefine Gmbh | METHOD FOR PRODUCING TRANSITION METAL COMPOUNDS AND THEIR USE FOR POLYMERIZING OLEFINS |
US6482532B1 (en) | 2000-06-07 | 2002-11-19 | Dow Global Technologies Inc. | Easy tear non-halogenic food wrap |
GB0014547D0 (en) * | 2000-06-14 | 2000-08-09 | Borealis Tech Oy | Improvements in or relating to polymers |
US20050164577A1 (en) * | 2002-03-11 | 2005-07-28 | Reid Rona L. | Stretch fabric with improved chemical resistance and durability |
ATE420133T1 (en) * | 2000-08-22 | 2009-01-15 | Exxonmobil Chem Patents Inc | POLYPROPYLENE FILMS |
US6399707B1 (en) | 2000-09-29 | 2002-06-04 | Exxonmobil Chemical Patents Inc. | Impact copolymer and plastomer blend |
US6900321B2 (en) * | 2000-11-07 | 2005-05-31 | Symyx Technologies, Inc. | Substituted pyridyl amine complexes, and catalysts |
WO2002053374A1 (en) | 2001-01-02 | 2002-07-11 | Dow Global Technologies Inc. | Peelable seal and method of making and using same |
US6479600B2 (en) | 2001-01-08 | 2002-11-12 | The Penn State Research Foundation | Polyolefin containing a terminal phenyl or substituted phenyl group and process for preparing same |
US6592967B2 (en) | 2001-02-14 | 2003-07-15 | Avery Dennison Corporation | Microprism reflective sheeting with improved retention of reflectivity |
DE10127926A1 (en) | 2001-06-08 | 2002-12-12 | Bayer Ag | 1,3-disubstituted indene complexes |
WO2003001081A1 (en) * | 2001-06-21 | 2003-01-03 | Habasit Ag | MONOLITHIC BELTS CONTAINING ETHYLENE-α-OLEFIN COPOLYMERS |
WO2003000790A1 (en) * | 2001-06-22 | 2003-01-03 | Exxonmobil Chemical Patents, Inc. | Metallocene-produced very low density polyethylenes or linear lowdensity polyethylenes as impact modifiers |
US6916892B2 (en) * | 2001-12-03 | 2005-07-12 | Fina Technology, Inc. | Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polypropylene |
ATE415444T1 (en) * | 2002-02-22 | 2008-12-15 | Dow Global Technologies Inc | SMALL PARTICLE ADDITIVES CONTAINING THERMOPLASTIC FOAM |
WO2003078705A1 (en) * | 2002-03-11 | 2003-09-25 | Dow Global Technologies Inc. | Reversible, heat-set, elastic fibers, and method of making and articles made from same |
EP1860214B1 (en) | 2002-03-11 | 2009-04-29 | Dow Global Technologies Inc. | Reversible, heat-set, elastic fibers, and method of making and articles made from same |
US20030236365A1 (en) * | 2002-06-24 | 2003-12-25 | Fina Technology, Inc. | Polyolefin production with a high performance support for a metallocene catalyst system |
CN100484975C (en) * | 2002-07-31 | 2009-05-06 | 埃克森美孚化学专利公司 | Silane crosslinkable polyethylene |
JP2005538218A (en) * | 2002-09-05 | 2005-12-15 | エクソンモービル・ケミカル・パテンツ・インク | Stretched film |
ES2306884T3 (en) * | 2002-09-05 | 2008-11-16 | Exxonmobil Chemical Patents Inc. | CONTRAIBLE FILM. |
US20080153997A1 (en) * | 2006-12-20 | 2008-06-26 | Exxonmobil Research And Engineering | Polymer production at supercritical conditions |
WO2004026921A1 (en) * | 2002-09-20 | 2004-04-01 | Exxonmobil Chemical Patents Inc. | Polymer production at supercritical conditions |
US8008412B2 (en) * | 2002-09-20 | 2011-08-30 | Exxonmobil Chemical Patents Inc. | Polymer production at supersolution conditions |
WO2004031292A2 (en) | 2002-10-02 | 2004-04-15 | Dow Global Technologies Inc. | POLYMER COMPOSITIONS COMPRISING A LOW VISCOSITY, HOMOGENEOUSLY BRANCHED ETHYLENE/α-OLEFIN EXTENDER |
US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
EP2261292B1 (en) | 2002-10-15 | 2014-07-23 | ExxonMobil Chemical Patents Inc. | Polyolefin adhesive compositions |
US20040096626A1 (en) * | 2002-11-14 | 2004-05-20 | Epoli-Espumas De Polietileno Sa | Layered structures with enhanced properties |
US7736726B2 (en) | 2002-12-17 | 2010-06-15 | Cryovac, Inc. | Polymeric film with low blocking and high slip properties |
US20040122149A1 (en) * | 2002-12-19 | 2004-06-24 | Kadakia Vishal S. | Flame-retardant polyvinyl chloride compositions |
US20060062980A1 (en) * | 2003-01-08 | 2006-03-23 | Exxonmobil Chemical Patents Inc. | Elastic articles and processes for their manufacture |
CA2454507A1 (en) * | 2003-01-08 | 2004-07-08 | Dow Global Technologies Inc. | Unitary attic rafter vent and insulation dam assembly |
US7195806B2 (en) * | 2003-01-17 | 2007-03-27 | Fina Technology, Inc. | High gloss polyethylene articles |
CN1747997A (en) * | 2003-02-04 | 2006-03-15 | 陶氏环球技术公司 | Film layers made from polymer blends |
US20060100385A1 (en) * | 2003-02-05 | 2006-05-11 | Walia Parvinder S | Silane moisture cured heat resistant fibers made from polyolefin elastomers |
US6916750B2 (en) * | 2003-03-24 | 2005-07-12 | Kimberly-Clark Worldwide, Inc. | High performance elastic laminates made from high molecular weight styrenic tetrablock copolymer |
US7037989B2 (en) * | 2003-05-27 | 2006-05-02 | Exxonmobil Chemical Patents Inc. | Copolymers of ethylene and/or α-olefins and vicinally disubstituted olefins |
US7087301B2 (en) * | 2003-08-06 | 2006-08-08 | Fina Technology, Inc. | Bicomponent fibers of syndiotactic polypropylene |
EP1656414B1 (en) | 2003-08-13 | 2013-04-10 | Dow Global Technologies LLC | Method for joining piping systems and piping to equipment, fixtures, devices, structures, and appliances |
US20050112320A1 (en) * | 2003-11-20 | 2005-05-26 | Wright Jeffery J. | Carpet structure with plastomeric foam backing |
US7244795B2 (en) * | 2003-12-08 | 2007-07-17 | Univation Technologies, Llc | Polymerization process using metallocene catalyst systems |
US7410926B2 (en) * | 2003-12-30 | 2008-08-12 | Univation Technologies, Llc | Polymerization process using a supported, treated catalyst system |
US7211536B2 (en) * | 2004-10-22 | 2007-05-01 | Fina Technology, Inc. | Supported metallocene catalysts and their use in producing stereospecific polymers |
US20090264584A1 (en) * | 2004-02-04 | 2009-10-22 | Dow Global Technologies Inc. | Silane moisture cured heat resistant fibers made from polyolefin elastomers |
US20050182210A1 (en) | 2004-02-17 | 2005-08-18 | Natarajan Muruganandam | De-foaming spray dried catalyst slurries |
AU2005224261B2 (en) * | 2004-03-19 | 2010-04-01 | Dow Global Technologies, Inc. | Film layers made from polymer formulations |
US7601783B2 (en) * | 2004-04-07 | 2009-10-13 | Dow Global Technologies, Inc. | Method of controlling olefin polymerization |
US20050234198A1 (en) * | 2004-04-20 | 2005-10-20 | Fina Technology, Inc. | Heterophasic copolymer and metallocene catalyst system and method of producing the heterophasic copolymer using the metallocene catalyst system |
JP5268087B2 (en) * | 2004-07-08 | 2013-08-21 | エクソンモービル・ケミカル・パテンツ・インク | Polymer production under supercritical conditions |
US20060068183A1 (en) | 2004-09-29 | 2006-03-30 | Curwood, Inc. | Packaging laminates containing anti-block particles |
EP1650236A1 (en) * | 2004-10-21 | 2006-04-26 | Total Petrochemicals Research Feluy | Activating agents for hafnium based metallocene components |
US20060105166A1 (en) * | 2004-11-17 | 2006-05-18 | Lischefski Andrew J | Breathable packaging film having enhanced thermoformability |
US7169864B2 (en) * | 2004-12-01 | 2007-01-30 | Novolen Technology Holdings, C.V. | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
US20060118237A1 (en) * | 2004-12-03 | 2006-06-08 | Fina Technology, Inc. | Polymer films having good print and heat seal properties and laminates prepared therewith |
US7473750B2 (en) * | 2004-12-07 | 2009-01-06 | Fina Technology, Inc. | Random copolymers and formulations useful for thermoforming and blow molding applications |
US7241850B2 (en) * | 2004-12-15 | 2007-07-10 | Fina Technology, Inc. | Polypropylene having improved clarity and articles prepared therefrom |
US20070202285A1 (en) * | 2004-12-15 | 2007-08-30 | Fina Technology, Inc. | Articles having improved clarity, prepared from propylene-ethylene copolymers |
DE602005020688D1 (en) | 2004-12-17 | 2010-05-27 | Dow Global Technologies Inc | RHEOLOGY-MODIFIED POLYETHYLENE COMPOSITIONS |
US7651653B2 (en) | 2004-12-22 | 2010-01-26 | Kimberly-Clark Worldwide, Inc. | Machine and cross-machine direction elastic materials and methods of making same |
US7615660B2 (en) | 2005-01-28 | 2009-11-10 | Sumitomo Chemical Company, Limited | Production process of alkoxy-titanium complex |
US7504142B2 (en) | 2005-03-22 | 2009-03-17 | Curwood, Inc. | Packaging laminates and articles made therefrom |
US7279206B2 (en) | 2005-03-22 | 2007-10-09 | Curwood, Inc. | Packaging laminates and articles made therefrom |
US20060247394A1 (en) * | 2005-04-29 | 2006-11-02 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7645834B2 (en) * | 2005-04-29 | 2010-01-12 | Fina Technologies, Inc. | Catalyst system for production of polyolefins |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US7220806B2 (en) * | 2005-04-29 | 2007-05-22 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7138474B1 (en) | 2005-05-03 | 2006-11-21 | Fina Technology, Inc. | End use articles derived from polypropylene homopolymers and random copolymers |
US7232869B2 (en) * | 2005-05-17 | 2007-06-19 | Novolen Technology Holdings, C.V. | Catalyst composition for olefin polymerization |
US7282546B2 (en) * | 2005-06-22 | 2007-10-16 | Fina Technology, Inc. | Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations |
DE112006001733T5 (en) | 2005-07-01 | 2008-07-31 | Albemarle Corporation | Aluminoxanate salt compositions with improved stability in aromatic and aliphatic solvents |
US20070078223A1 (en) * | 2005-09-30 | 2007-04-05 | Chen John C | Compositions and structures having tailored oxygen transmission |
JP4991742B2 (en) * | 2005-10-26 | 2012-08-01 | ダウ グローバル テクノロジーズ エルエルシー | Multi-layer, pre-stretched elastic product |
US7709577B2 (en) | 2005-12-07 | 2010-05-04 | Exxonmobil Chemical Patents Inc. | Process of making polymer blends |
US20070299222A1 (en) | 2006-04-04 | 2007-12-27 | Fina Technology, Inc. | Transition metal catalysts and formation thereof |
US7683002B2 (en) | 2006-04-04 | 2010-03-23 | Fina Technology, Inc. | Transition metal catalyst and formation thereof |
CN101356226B (en) * | 2006-05-02 | 2012-09-05 | 陶氏环球技术有限责任公司 | High-density polyethylene compositions, method of making the same, articles made therefrom, and method of making such articles |
US7951873B2 (en) * | 2006-05-05 | 2011-05-31 | Exxonmobil Chemical Patents Inc. | Linear low density polymer blends and articles made therefrom |
US7456244B2 (en) * | 2006-05-23 | 2008-11-25 | Dow Global Technologies | High-density polyethylene compositions and method of making the same |
US7601255B2 (en) | 2006-09-06 | 2009-10-13 | Chemtura Corporation | Process for removal of residual catalyst components |
EP2079813B1 (en) * | 2006-10-30 | 2012-09-26 | Dow Global Technologies LLC | Adhesive films |
CN101631911B (en) * | 2006-11-13 | 2013-08-21 | 肖氏工业集团公司 | Methods and systems for recycling carpet and carpets manufactured from recycled material |
US8143352B2 (en) * | 2006-12-20 | 2012-03-27 | Exxonmobil Research And Engineering Company | Process for fluid phase in-line blending of polymers |
US8242237B2 (en) * | 2006-12-20 | 2012-08-14 | Exxonmobil Chemical Patents Inc. | Phase separator and monomer recycle for supercritical polymerization process |
ES2618350T3 (en) | 2006-12-21 | 2017-06-21 | Dow Global Technologies Llc | Phosphorus-sulfur flame retardant additives and polymer systems containing the same |
US7256240B1 (en) | 2006-12-22 | 2007-08-14 | Exxonmobil Chemical Patents Inc. | Process of making polymer blends |
US8080610B2 (en) | 2007-03-06 | 2011-12-20 | Exxonmobil Research And Engineering Company | Monomer recycle process for fluid phase in-line blending of polymers |
AU2007352541B2 (en) * | 2007-05-02 | 2013-03-28 | Dow Global Technologies Llc | High-density polyethylene compositions, method of making the same, injection molded articles made therefrom, and method of making such articles |
CN101679556B (en) * | 2007-06-04 | 2012-06-06 | 埃克森美孚化学专利公司 | Super-solution homogeneous propylene polymerization |
JP2008309604A (en) * | 2007-06-14 | 2008-12-25 | Japan Polypropylene Corp | Liquid amount measuring apparatus and polyolefin manufacturing method using it |
US20090053959A1 (en) * | 2007-08-21 | 2009-02-26 | Sudhin Datta | Soft and Elastic Nonwoven Polypropylene Compositions |
US7981517B2 (en) * | 2007-08-28 | 2011-07-19 | Dow Global Technologies Inc. | Bituminous compositions and methods of making and using same |
PL2207835T3 (en) | 2007-09-11 | 2018-01-31 | Dow Global Technologies Llc | Compositions and articles prepared therefrom |
US7928162B2 (en) | 2007-09-13 | 2011-04-19 | Exxonmobil Research And Engineering Company | In-line process for producing plasticized polymers and plasticized polymer blends |
CN101855250B (en) * | 2007-09-13 | 2013-01-02 | 埃克森美孚研究工程公司 | In-line blending of plasticizers with a base polymer |
US8945702B2 (en) * | 2007-10-31 | 2015-02-03 | Bemis Company, Inc. | Barrier packaging webs having metallized non-oriented film |
EP2112175A1 (en) | 2008-04-16 | 2009-10-28 | ExxonMobil Chemical Patents Inc. | Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane |
CN101909882B (en) | 2007-11-14 | 2014-06-25 | 陶氏环球技术有限责任公司 | Articles and methods of making the same |
TW200936619A (en) | 2007-11-15 | 2009-09-01 | Univation Tech Llc | Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom |
RU2505411C2 (en) * | 2007-11-27 | 2014-01-27 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Multilayer structure for production of package and package from it |
US7910679B2 (en) * | 2007-12-20 | 2011-03-22 | Exxonmobil Research And Engineering Company | Bulk homogeneous polymerization process for ethylene propylene copolymers |
CN103254514B (en) * | 2007-12-20 | 2015-11-18 | 埃克森美孚研究工程公司 | The blend of isotactic polyprophlene and ethylene-propylene copolymer |
EP2231779B1 (en) * | 2007-12-20 | 2012-06-06 | ExxonMobil Research and Engineering Company | In-line process to produce pellet-stable polyolefins |
US8318875B2 (en) * | 2008-01-18 | 2012-11-27 | Exxonmobil Chemical Patents Inc. | Super-solution homogeneous propylene polymerization and polypropylenes made therefrom |
EP2240539B1 (en) | 2008-02-06 | 2014-01-22 | Dow Global Technologies LLC | Article and method of producing a low density foam blend of styrenic polymer and polyolefin |
RU2509782C2 (en) * | 2008-09-25 | 2014-03-20 | Базелль Полиолефине Гмбх | Impact-resistant linear low density polyethylene and films made therefrom |
US8957158B2 (en) | 2008-09-25 | 2015-02-17 | Basell Polyolefine Gmbh | Impact resistant LLDPE composition and films made thereof |
US9334342B2 (en) | 2008-10-01 | 2016-05-10 | Fina Technology, Inc. | Polypropylene for reduced plate out in polymer article production processes |
EP2352769B1 (en) * | 2008-11-21 | 2013-05-01 | Dow Global Technologies LLC | Medium voltage cable sheath comprising an olefin-based polymer |
CN102245698B (en) | 2008-12-15 | 2014-01-08 | 埃克森美孚化学专利公司 | Thermoplastic olefin compositions |
US8147934B2 (en) | 2009-01-20 | 2012-04-03 | Curwood, Inc. | Easy-open packages formed from peelable thermoplastic laminates |
CN102361925B (en) | 2009-01-30 | 2013-08-14 | 陶氏环球技术有限责任公司 | High-density polyethylene compositions, method of producing the same, closure devices made therefrom, and method of making such closure devices |
US9127151B2 (en) | 2009-04-28 | 2015-09-08 | Exxonmobil Chemical Patents Inc. | Polymer compositions having improved properties as viscosity index improvers and use thereof in lubricating oils |
US20120028865A1 (en) | 2010-07-28 | 2012-02-02 | Sudhin Datta | Viscosity Modifiers Comprising Blends of Ethylene-Based Copolymers |
US8378042B2 (en) * | 2009-04-28 | 2013-02-19 | Exxonmobil Chemical Patents Inc. | Finishing process for amorphous polymers |
MX2011011855A (en) * | 2009-05-08 | 2011-12-06 | 3M Innovative Properties Co | Oral care method and kit. |
US8067652B2 (en) | 2009-08-13 | 2011-11-29 | Chemtura Corporation | Processes for controlling the viscosity of polyalphaolefins |
US9416206B2 (en) * | 2010-01-22 | 2016-08-16 | Exxonmobil Chemical Patents Inc. | Lubricating oil compositions and method for making them |
CN102725319B (en) | 2010-01-27 | 2014-10-15 | 埃克森美孚化学专利公司 | Copolymers, compositions thereof, and methods for making them |
CN102803308B (en) | 2010-02-18 | 2015-04-01 | 尤尼威蒂恩技术有限公司 | Methods for operating a polymerization reactor |
WO2011129956A1 (en) | 2010-04-13 | 2011-10-20 | Univation Technologies, Llc | Polymer blends and films made therefrom |
TWI523607B (en) | 2010-04-15 | 2016-03-01 | 陶氏農業科學公司 | Agricultural fumigation using a multilayer film including a pvdc vapor barrier |
US20130137331A1 (en) | 2010-06-15 | 2013-05-30 | Galen C. Richeson | Nonwoven Fabrics Made From Polymer Blends And Methods For Making Same |
US8278403B2 (en) | 2010-07-08 | 2012-10-02 | Fina Technology, Inc. | Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers |
WO2012009215A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring static charge on particulates |
CN103097015B (en) | 2010-07-16 | 2015-11-25 | 尤尼威蒂恩技术有限责任公司 | Measure the System and method for of particle accumulation in reactor surface |
WO2012015898A1 (en) | 2010-07-28 | 2012-02-02 | Univation Technologies, Llc | Systems and methods for measuring velocity of a particle/fluid mixture |
JP6023069B2 (en) | 2010-11-22 | 2016-11-09 | アルベマール・コーポレーシヨン | Activator composition, its manufacture and its use in catalysts |
CN103298843B (en) | 2010-11-30 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | There is catalyst composition of the flow performance of improvement and production and preparation method thereof |
AU2011340644B2 (en) | 2010-12-09 | 2015-06-18 | Cryovac, Llc | Multilayer heat-shrinkable film and containers made therefrom |
MX337727B (en) | 2010-12-17 | 2016-03-16 | Univation Tech Llc | Systems and methods for recovering hydrocarbons from a polyolefin purge gas product. |
CN103930431B (en) | 2011-03-15 | 2016-07-06 | 株式会社Mecharonics | Novel 4B race metallo-organic compound and preparation thereof |
BR112013029135B1 (en) | 2011-05-13 | 2020-12-15 | Univation Technologies, Llc | COMPOSITION AND POLYMERIZATION PROCESS |
US20120329965A1 (en) | 2011-06-24 | 2012-12-27 | Sk Innovation Co., Ltd. | Advanced transition metal catalytic systems in terms of comonomer incorporations and methods for preparing ethylene homopolymers or copolymers of ethylene and a-olefins using the same |
EP2573091A1 (en) | 2011-09-23 | 2013-03-27 | Lummus Novolen Technology Gmbh | Process for recycling of free ligand from their corresponding metallocene complexes |
US8841379B2 (en) | 2011-11-07 | 2014-09-23 | E I Du Pont De Nemours And Company | Method to form an aqueous dispersion of an ionomer-polyolefin blend |
EP2750797B1 (en) | 2011-11-08 | 2020-04-01 | Univation Technologies, LLC | Methods of preparing a catalyst system |
CN108384033B (en) | 2012-02-03 | 2021-11-12 | 陶氏环球技术有限责任公司 | Film comprising silane-containing ethylene interpolymer formulation and electronic device module comprising same |
US10316176B2 (en) | 2012-02-03 | 2019-06-11 | Exxonmobil Chemical Patents Inc. | Polymer compositions and methods of making them |
JP6088548B2 (en) | 2012-02-03 | 2017-03-01 | エクソンモービル ケミカル パテンツ インコーポレイテッド | Method for producing a polymer composition useful as an oil modifier |
US9139794B2 (en) | 2012-02-03 | 2015-09-22 | Exxonmobil Chemical Patents Inc. | Process for the production of polymeric compositions useful as oil modifiers |
US9309337B2 (en) | 2012-04-02 | 2016-04-12 | Exxonmobil Research And Engineering Company | Branched saturated hydrocarbon polymers as extensional rheology modifiers without impacting shear properties |
WO2013158225A1 (en) | 2012-04-18 | 2013-10-24 | Exxonmobil Chemical Patents Inc. | Polyolefin compositions and methods of production thereof |
IN2014DN08959A (en) | 2012-04-27 | 2015-05-22 | Albemarle Corp | |
EP2676903A1 (en) | 2012-06-19 | 2013-12-25 | Habasit Italiana S.P.A. | Acrylic-free conveyor belt |
CN104603615A (en) | 2012-09-07 | 2015-05-06 | 尤尼威蒂恩技术有限责任公司 | Method for determining stickiness temperature of resin |
BR112015018250B1 (en) | 2013-01-30 | 2021-02-23 | Univation Technologies, Llc | process to produce a catalyst composition and polymerization process |
EP3058002B1 (en) | 2013-10-14 | 2019-08-21 | Basell Polyolefine GmbH | Polyethylene of raised temperature resistance |
WO2015107127A1 (en) | 2014-01-15 | 2015-07-23 | Cryovac, Inc. | Multilayer pvdc barrier heat shrinkable films |
SG11201606561WA (en) | 2014-02-13 | 2016-09-29 | Mitsui Chemicals Inc | PROCESS FOR PRODUCING ETHYLENE/α-OLEFIN COPOLYMER |
JP6702854B2 (en) | 2014-02-28 | 2020-06-03 | 三井化学株式会社 | CROSSLINKED PRODUCT, PRODUCTION METHOD AND USE THEREOF, AND ETHYLENE COPOLYMER |
JP6618891B2 (en) | 2014-03-28 | 2019-12-11 | 三井化学株式会社 | Ethylene / α-olefin copolymer and lubricating oil |
CN106133005B (en) | 2014-03-28 | 2018-08-24 | 三井化学株式会社 | olefin-based resin and its manufacturing method |
EP3747913B1 (en) | 2014-04-02 | 2024-04-17 | Univation Technologies, LLC | Continuity compositions and olefin polymerisation method using the same |
KR101970078B1 (en) | 2014-09-10 | 2019-04-17 | 미쓰이 가가쿠 가부시키가이샤 | Lubricant composition |
US9944728B2 (en) | 2014-09-11 | 2018-04-17 | Mitsui Chemicals, Inc. | Production method of olefin (co)polymer containing constituent unit derived from 1-butene |
US10766981B2 (en) | 2014-09-30 | 2020-09-08 | Exxonmobil Chemical Patents Inc. | Bimodal polypropylenes and method of making same |
WO2016057124A1 (en) | 2014-10-06 | 2016-04-14 | Exxonmobil Chemical Patents Inc. | Thermoplastic polyolefin containing amorphous ethylene elastomer |
CN107018663A (en) | 2014-11-25 | 2017-08-04 | 尤尼威蒂恩技术有限责任公司 | Change the method for manufacture of polyolefins speed with the composition of induced condensing agent |
WO2016085945A1 (en) | 2014-11-25 | 2016-06-02 | Univation Technologies, Llc | Methods of monitoring and controlling the melt index of a polyolefin product during production |
WO2016085972A1 (en) | 2014-11-25 | 2016-06-02 | Univation Technologies, Llc | Methods of changing polyolefin production conditions to mitigate small gels in a polyolefin article |
ES2784518T3 (en) | 2014-12-09 | 2020-09-28 | Mitsui Chemicals Inc | Propylene-based resin composition |
WO2016094843A2 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
US10351639B2 (en) | 2014-12-12 | 2019-07-16 | Exxonmobil Research And Engineering Company | Organosilica materials for use as adsorbents for oxygenate removal |
WO2016171807A1 (en) | 2015-04-20 | 2016-10-27 | Exxonmobil Chemical Patents Inc. | Catalyst composition comprising fluorided support and processes for use thereof |
CN107428875B (en) | 2015-03-10 | 2021-02-26 | 尤尼威蒂恩技术有限责任公司 | Spray-dried catalyst composition, method of preparation and use in olefin polymerization processes |
BR112017020142B1 (en) | 2015-03-20 | 2022-04-12 | Mitsui Chemicals, Inc | Thermoplastic elastomer composition, methods of producing the same, molded article, automobile part, automobile hose and automobile trunk comprising said composition |
SG11201708069UA (en) | 2015-04-08 | 2017-10-30 | Univation Tech Llc | Closed reactor transitions between metallocene catalysts |
US10618989B2 (en) | 2015-04-20 | 2020-04-14 | Exxonmobil Chemical Patents Inc. | Polyethylene composition |
US10519256B2 (en) | 2015-04-27 | 2019-12-31 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
SG11201802756QA (en) | 2015-12-16 | 2018-06-28 | Exxonmobil Chemical Patents Inc | Low crystalline polymer compositions |
NZ745206A (en) | 2016-03-07 | 2024-08-30 | Cryovac Llc | Multilayer film for vacuum skin packaging, method of packaging and packages obtained therewith |
CA3018952C (en) | 2016-03-31 | 2023-06-27 | Exxonmobil Chemical Patents Inc. | Low crystalline polymer compositions prepared in a dual reactor |
US10633524B2 (en) | 2016-12-01 | 2020-04-28 | Cryovac, Llc | Multilayer heat shrinkable films |
CN110248576B (en) | 2017-01-04 | 2023-01-03 | 肖氏工业集团公司 | Carpet having improved delamination strength and fluid barrier properties and method of making same |
US10822481B2 (en) | 2017-01-05 | 2020-11-03 | Exxonmobil Chemical Patents Inc. | Thermoplastic polyolefin compositions with ethylene-propylene copolymers |
JP6741790B2 (en) | 2017-01-16 | 2020-08-19 | 三井化学株式会社 | Lubricating oil composition for automobile gear |
ES2902883T3 (en) | 2017-01-17 | 2022-03-30 | Cryovac Llc | Multilayer Non-Cross-linked Heat Shrinkable Packaging Films |
US20180282942A1 (en) | 2017-03-30 | 2018-10-04 | Columbia Insurance Company | Carpet tiles and systems and methods of making same |
WO2018187564A1 (en) | 2017-04-05 | 2018-10-11 | Shaw Industries Group, Inc. | Floor coverings and floor covering systems and methods of making and installing same |
CN110770024A (en) | 2017-06-29 | 2020-02-07 | 克里奥瓦克公司 | Use of a dual bakeable polyester film in vacuum skin packaging applications and skin packages obtained therefrom |
EP3645419A1 (en) | 2017-06-29 | 2020-05-06 | Cryovac, LLC | Use of dual ovenable polyester films in thermoforming packaging applications and dual ovenable thermoformed packages obtained therefrom |
WO2019162760A1 (en) | 2018-02-05 | 2019-08-29 | Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware | Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene |
US20210300651A1 (en) | 2018-08-03 | 2021-09-30 | Cryovac, Llc | Super-hydrophobic thermoplastic films for packaging and packages made therefrom |
US20210284410A1 (en) | 2018-08-03 | 2021-09-16 | Cryovac, Llc | Super-hydrophobic thermoplastic films for packaging |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
WO2020172306A1 (en) | 2019-02-20 | 2020-08-27 | Fina Technology, Inc. | Polymer compositions with low warpage |
EP3941950A1 (en) | 2019-03-21 | 2022-01-26 | ExxonMobil Chemical Patents Inc. | Methods for improving production in gas phase polymerization |
US20220098332A1 (en) | 2019-03-21 | 2022-03-31 | Exxonmobil Chemical Patents Inc. | Methods For Improving Gas Phase Polymerization |
WO2022232123A1 (en) | 2021-04-26 | 2022-11-03 | Fina Technology, Inc. | Thin single-site catalyzed polymer sheets |
WO2023152647A1 (en) | 2022-02-09 | 2023-08-17 | Cryovac, Llc | Multilayer film, process of making the same, vacuum package and process of making said package |
WO2023203039A1 (en) | 2022-04-20 | 2023-10-26 | Cryovac, Llc | Multilayer film for vacuum skin packaging, method of packaging and packages obtained therewith |
WO2024081188A1 (en) | 2022-10-11 | 2024-04-18 | Sealed Air Corporation (Us) | Polymeric multilayer film for use in bioprocessing applications |
WO2024163354A1 (en) | 2023-02-02 | 2024-08-08 | ExxonMobil Technology and Engineering Company | Compositions and methods relating to impact copolymer compatibilizers |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3258455A (en) | 1959-06-06 | 1966-06-28 | Montedison Spa | Polypropylene having syndiotactic structure |
US3305538A (en) | 1961-11-22 | 1967-02-21 | Montedison Spa | Polymerization process |
US4522982A (en) | 1983-06-06 | 1985-06-11 | Exxon Research & Engineering Co. | Isotactic-stereoblock polymers of alpha-olefins and process for producing the same |
US4530914A (en) | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
WO1987003887A1 (en) | 1985-12-26 | 1987-07-02 | Mitsui Petrochemical Industries, Ltd. | Process for polymerization of alpha-olefins |
US4701432A (en) | 1985-11-15 | 1987-10-20 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
US4769510A (en) | 1984-11-27 | 1988-09-06 | Hoechst Aktiengesellschaft | Process for the preparation of polyolefins |
US4794096A (en) | 1987-04-03 | 1988-12-27 | Fina Technology, Inc. | Hafnium metallocene catalyst for the polymerization of olefins |
US4892851A (en) | 1988-07-15 | 1990-01-09 | Fina Technology, Inc. | Process and catalyst for producing syndiotactic polyolefins |
EP0406912A2 (en) | 1986-09-24 | 1991-01-09 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing olefins |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5055438A (en) * | 1989-09-13 | 1991-10-08 | Exxon Chemical Patents, Inc. | Olefin polymerization catalysts |
NZ235032A (en) * | 1989-08-31 | 1993-04-28 | Dow Chemical Co | Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component |
-
1990
- 1990-09-13 US US07/581,817 patent/US5026798A/en not_active Ceased
-
1991
- 1991-09-13 DK DK91918649T patent/DK0548277T3/en active
- 1991-09-13 JP JP51787491A patent/JP3248907B2/en not_active Expired - Fee Related
- 1991-09-13 ES ES91918649T patent/ES2168252T3/en not_active Expired - Lifetime
- 1991-09-13 EP EP91918649A patent/EP0548277B1/en not_active Expired - Lifetime
- 1991-09-13 AT AT91918649T patent/ATE209662T1/en not_active IP Right Cessation
- 1991-09-13 CA CA002090872A patent/CA2090872C/en not_active Expired - Fee Related
- 1991-09-13 WO PCT/US1991/006671 patent/WO1992005204A1/en active IP Right Grant
- 1991-09-13 DE DE69132836T patent/DE69132836T2/en not_active Expired - Fee Related
- 1991-09-13 BR BR919106842A patent/BR9106842A/en not_active IP Right Cessation
-
1992
- 1992-11-06 US US07/973,107 patent/USRE40234E1/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3258455A (en) | 1959-06-06 | 1966-06-28 | Montedison Spa | Polypropylene having syndiotactic structure |
US3305538A (en) | 1961-11-22 | 1967-02-21 | Montedison Spa | Polymerization process |
US4522982A (en) | 1983-06-06 | 1985-06-11 | Exxon Research & Engineering Co. | Isotactic-stereoblock polymers of alpha-olefins and process for producing the same |
US4530914A (en) | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4769510A (en) | 1984-11-27 | 1988-09-06 | Hoechst Aktiengesellschaft | Process for the preparation of polyolefins |
US4701432A (en) | 1985-11-15 | 1987-10-20 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
WO1987003887A1 (en) | 1985-12-26 | 1987-07-02 | Mitsui Petrochemical Industries, Ltd. | Process for polymerization of alpha-olefins |
EP0406912A2 (en) | 1986-09-24 | 1991-01-09 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing olefins |
US4794096A (en) | 1987-04-03 | 1988-12-27 | Fina Technology, Inc. | Hafnium metallocene catalyst for the polymerization of olefins |
US4892851A (en) | 1988-07-15 | 1990-01-09 | Fina Technology, Inc. | Process and catalyst for producing syndiotactic polyolefins |
Non-Patent Citations (10)
Title |
---|
A. W. Langer, Jr., "Base Effects on Selected Ziegler-Type Catalysts"; Annals of The New York Academy of Sciences, vol. 295, 110-126; The Place of Transition Metals in Organic Synthesis Conference in November 11-12, 1976. |
C. M. Fendrick, et al., "Manipulation of Organoactinide Coordinative Unsaturation and Stereochemistry. Properties of Chelating Bis(polymethylcyclopentiadienyl) Hydrocarbyls and Hydrides"; Organometallics, 3, 819-821; Feb. 1984; Department of Chemistry, Northwestern University, Evanston, Illinois 60201. |
F. H. Kohler and K. H. Doll, "NMR Spectroscopy on Paramagnetic Complexes, XXVII[1] Paramagnetic 1, 1', 2, 2', 3, 3', 4, 4'-Octamethylmetallocenes"; 144-150: Z. Naturforsch 37b (1982); Anorganisch-chemisches Institut der Technischen Universitat Munchen, Lichtenbergstrasse 4, D-8046 Garching. |
F. R. W. P. Wild, et al., "Synthesis and Molecular Structures of Chiral ansa-Titanocene Derivatives with Bridged Tetrahydroindenyl Ligands"; Journal of Organometallic Chemistry, 232 (1982) 233-247, Printed in The Netherlands; Elsevier Sequoia S. A., Lausanne. |
J. A. Ewen, "Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/Methylalumoxane Catalysts"; 6355-6364, J. Am. Chem. Soc. 1984 106. |
J. G. Rooney and G. Ver Strate, "On Line Determination by Light Scattering of Mechanical Degradation in the GPC Process"; 207-235, Liquid Chromatography of Polymers and Related Materials III; Marcel Dekker, Inc., New York and Basel. |
Kukenhohner, "Untersuchungen zur Darstellung Chiraler Organotitan (IV)-Verbindungen fur Enantioselektire Synthesen" (1983) (unpublished Diplomarbeit, University of Marburg, Germany). |
KukenHohner, Organotitan (IV) Agentien: Komplexe Chiraler Chelatliganden und Enantioselektire c-c- Verkuupfungen (University of Marburg, Germany 1986). |
M. Reetz, Organotitanium Reagents in Organic Synthesis, pp. 117 and 121 (Springer-Verlay 1986. |
W. Kaminsky, et al., "Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst"; Chem. Int. Ed. Engl. 24 (1985) No. 6, 507-508. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141911A1 (en) | 2012-03-19 | 2013-09-26 | Exxonmobil Chemical Patents Inc. | New catalysts for producing polyalpha-olefins |
US8664461B2 (en) | 2012-03-19 | 2014-03-04 | Exxonmobil Chemical Patents Inc. | Catalysts for producing polyalpha-olefins and processes related thereto |
US11964447B2 (en) | 2017-02-20 | 2024-04-23 | Mitsui Chemicals, Inc. | Laminate |
US11905348B2 (en) | 2018-03-20 | 2024-02-20 | Mitsui Chemicals, Inc. | Ethylene/alpha-olefin/non-conjugated polyene copolymer, method for producing the same, and use thereof |
Also Published As
Publication number | Publication date |
---|---|
DE69132836T2 (en) | 2002-06-27 |
US5026798A (en) | 1991-06-25 |
CA2090872C (en) | 2001-07-03 |
WO1992005204A1 (en) | 1992-04-02 |
JP3248907B2 (en) | 2002-01-21 |
JPH06505033A (en) | 1994-06-09 |
DK0548277T3 (en) | 2002-04-02 |
AU8754291A (en) | 1992-04-15 |
DE69132836D1 (en) | 2002-01-10 |
BR9106842A (en) | 1993-07-20 |
ATE209662T1 (en) | 2001-12-15 |
AU667292B2 (en) | 1996-03-21 |
CA2090872A1 (en) | 1992-03-14 |
ES2168252T3 (en) | 2002-06-16 |
EP0548277A1 (en) | 1993-06-30 |
EP0548277B1 (en) | 2001-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40234E1 (en) | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system | |
US5723560A (en) | Higher molecular weight amorphous polypropylene | |
US6617466B1 (en) | Monocylopentadienyl transition metal olefin polymerization catalysts | |
US5420217A (en) | Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system | |
US5055438A (en) | Olefin polymerization catalysts | |
US5057475A (en) | Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization | |
US5227440A (en) | Mono-Cp heteroatom containing Group IVB transition metal complexes with MAO: supported catalysts for olefin polymerization | |
US5547675A (en) | Modified monocyclopentadienyl transition metal/alumoxane catalyst system for polymerization of olefins | |
US6380122B1 (en) | Metallocene compositions | |
US6380331B1 (en) | Metallocene compositions | |
CA2166055C (en) | Process for producing amorphous poly-.alpha.-olefins with a monocyclopentadienyl transition metal catalyst system | |
US6376413B1 (en) | Metallocene compositions | |
US6380123B1 (en) | Metallocene compositions | |
US6380334B1 (en) | Metallocene compositions | |
US7041841B1 (en) | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system | |
AU667292C (en) | Process for producing crystalline poly-alpha-olefins with a monocyclopentadienyl transition metal catalyst system | |
AU643237C (en) | Monocyclopentadienyl transition metal olefin polymerization catalysts | |
AU656498C (en) | Supported monocyclopentadienyl transition metal olefin polymerization catal ysts |