USRE39788E1 - Gene therapy - Google Patents
Gene therapy Download PDFInfo
- Publication number
- USRE39788E1 USRE39788E1 US10/701,022 US70102203A USRE39788E US RE39788 E1 USRE39788 E1 US RE39788E1 US 70102203 A US70102203 A US 70102203A US RE39788 E USRE39788 E US RE39788E
- Authority
- US
- United States
- Prior art keywords
- cells
- til
- human
- gene
- lymphocytes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001415 gene therapy Methods 0.000 title abstract description 6
- 210000004027 cell Anatomy 0.000 claims abstract description 197
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 33
- 210000005260 human cell Anatomy 0.000 claims abstract description 26
- 238000001727 in vivo Methods 0.000 claims abstract description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 91
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 claims description 86
- 210000000601 blood cell Anatomy 0.000 claims description 49
- 239000013598 vector Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 41
- 210000004698 lymphocyte Anatomy 0.000 claims description 32
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 21
- 230000001177 retroviral effect Effects 0.000 claims description 19
- 238000000338 in vitro Methods 0.000 claims description 10
- 102000015696 Interleukins Human genes 0.000 claims description 8
- 108010063738 Interleukins Proteins 0.000 claims description 8
- 102000004127 Cytokines Human genes 0.000 claims description 7
- 108090000695 Cytokines Proteins 0.000 claims description 7
- 239000013603 viral vector Substances 0.000 claims description 7
- 210000000265 leukocyte Anatomy 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims 7
- 210000003719 b-lymphocyte Anatomy 0.000 claims 1
- 239000003550 marker Substances 0.000 abstract description 17
- 206010028980 Neoplasm Diseases 0.000 description 40
- 102000000588 Interleukin-2 Human genes 0.000 description 31
- 108010002350 Interleukin-2 Proteins 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 30
- 210000001519 tissue Anatomy 0.000 description 21
- 239000006228 supernatant Substances 0.000 description 20
- 239000000427 antigen Substances 0.000 description 19
- 102000036639 antigens Human genes 0.000 description 19
- 108091007433 antigens Proteins 0.000 description 19
- 101000929495 Homo sapiens Adenosine deaminase Proteins 0.000 description 18
- 230000012010 growth Effects 0.000 description 18
- 210000004881 tumor cell Anatomy 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000003814 drug Substances 0.000 description 16
- 239000002609 medium Substances 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 12
- 102000043395 human ADA Human genes 0.000 description 12
- 229940124597 therapeutic agent Drugs 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 11
- 238000001802 infusion Methods 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 11
- 102000003390 tumor necrosis factor Human genes 0.000 description 11
- 241001529936 Murinae Species 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- 108010060889 Toll-like receptor 1 Proteins 0.000 description 7
- 239000012737 fresh medium Substances 0.000 description 7
- 230000003393 splenic effect Effects 0.000 description 7
- 238000010361 transduction Methods 0.000 description 7
- 230000026683 transduction Effects 0.000 description 7
- 229930193140 Neomycin Natural products 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 229960004927 neomycin Drugs 0.000 description 6
- 238000011580 nude mouse model Methods 0.000 description 6
- 102100036664 Adenosine deaminase Human genes 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 229930182555 Penicillin Natural products 0.000 description 5
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 229940049954 penicillin Drugs 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 230000009696 proliferative response Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 102000007327 Protamines Human genes 0.000 description 4
- 108010007568 Protamines Proteins 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 229940047124 interferons Drugs 0.000 description 4
- 229940047122 interleukins Drugs 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 101000763579 Homo sapiens Toll-like receptor 1 Proteins 0.000 description 3
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241000204031 Mycoplasma Species 0.000 description 3
- 108010047620 Phytohemagglutinins Proteins 0.000 description 3
- 101150033527 TNF gene Proteins 0.000 description 3
- 230000000735 allogeneic effect Effects 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 241001493065 dsRNA viruses Species 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 208000000509 infertility Diseases 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 208000021267 infertility disease Diseases 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 208000021039 metastatic melanoma Diseases 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000002688 persistence Effects 0.000 description 3
- 230000001885 phytohemagglutinin Effects 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 239000002753 trypsin inhibitor Substances 0.000 description 3
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 208000031220 Hemophilia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 108010003272 Hyaluronate lyase Proteins 0.000 description 2
- 102000001974 Hyaluronidases Human genes 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 108010044467 Isoenzymes Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 241001068263 Replication competent viruses Species 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 102000005421 acetyltransferase Human genes 0.000 description 2
- 108020002494 acetyltransferase Proteins 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- XEGGRYVFLWGFHI-UHFFFAOYSA-N bendiocarb Chemical compound CNC(=O)OC1=CC=CC2=C1OC(C)(C)O2 XEGGRYVFLWGFHI-UHFFFAOYSA-N 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- 229960002773 hyaluronidase Drugs 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002992 thymic effect Effects 0.000 description 2
- 239000003104 tissue culture media Substances 0.000 description 2
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- 101150033839 4 gene Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- -1 DNAse type I Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 102100038796 E3 ubiquitin-protein ligase TRIM13 Human genes 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 101710181478 Envelope glycoprotein GP350 Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 101000664589 Homo sapiens E3 ubiquitin-protein ligase TRIM13 Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 101150083678 IL2 gene Proteins 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 241000239218 Limulus Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- 101100168995 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cyt-1 gene Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000283222 Physeter catodon Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 241000544076 Whipplea modesta Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 101150027964 ada gene Proteins 0.000 description 1
- 201000009628 adenosine deaminase deficiency Diseases 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 101150036080 at gene Proteins 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 210000001608 connective tissue cell Anatomy 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 230000002380 cytological effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000007387 excisional biopsy Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 208000037824 growth disorder Diseases 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 208000034737 hemoglobinopathy Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- ZQDWXGKKHFNSQK-UHFFFAOYSA-N hydroxyzine Chemical compound C1CN(CCOCCO)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZQDWXGKKHFNSQK-UHFFFAOYSA-N 0.000 description 1
- 229960003220 hydroxyzine hydrochloride Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000018337 inherited hemoglobinopathy Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 101150023613 mev-1 gene Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 210000003924 normoblast Anatomy 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229960000482 pethidine Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001566 pro-viral effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 108010030416 proteoliposomes Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 108010043277 recombinant soluble CD4 Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000002976 reverse transcriptase assay Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000003797 telogen phase Effects 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 210000003014 totipotent stem cell Anatomy 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000003211 trypan blue cell staining Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/525—Tumour necrosis factor [TNF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464436—Cytokines
- A61K39/464438—Tumor necrosis factors [TNF], CD70
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- This invention relates to the use of primary human cells as vehicles for human gene transfer. More particularly, this invention relates to the use of human cells (such as, for example, but not limited to, human blood cells) as vehicles for the transfer of human genes encoding therapeutic agents and/or genes encoding detectable markers.
- human cells such as, for example, but not limited to, human blood cells
- Retroviral-mediated gene transfer is a new therapeutic approach for the treatment of human disease (W. F. Anderson, Science 226:401 (1984)).
- Initial attention has centered on candidate diseases affecting the bone marrow such as the hemoglobinopathies and severe combined immunodeficiency.
- Early attempts at bone marrow gone transfer in large mammals and primates were only partially successful.
- specific blood cells for example lymphocytes, have been used. Lymphocytes have several features which make them potentially attractive cellular vehicles for gene therapy (K. Culver, et al., J. Cellular Biochemistry Suppl. 12B:171 (1988); R. M. Blaese, et al, Clin. Research 37:599A (1989)).
- Lymphocytes are readily available from peripheral blood as a single cell suspensions and they are easily manipulated in tissue culture where the availability of recombinant growth-factors such as rIL-2 permits their expansion by thousands of fold. This adaptability to tissue culture allows serial attempts at gene insertion, selection procedures and time to test for gene expression and other properties of the gene-transduced cells prior to their return to the patient. Long-lived antigen-specific memory lymphocytes proliferate when exposed to their appropriate antigen and thus the population of gene-treated lymphocytes can be selectively and specifically expanded in vivo by immunization of the host. Finally, some populations of antigen-specific lymphocytes “target” to sites in the body containing deposits of antigen.
- gene-treated antigen-specific lymphocytes can be used to deliver specific gene products directly to the site of pathology, such as a tumor, in a treated patient.
- pathology such as a tumor
- gene-treated antigen-specific lymphocytes can be used to deliver specific gene products directly to the site of pathology, such as a tumor.
- TIL transduced with genes promoting secretion of such a cytokine and using the TILs wn unique antigen-specific recept rs to target them to deposits f tumor will permit greater antitumor effect with less systemic toxicity.
- RNA DNA
- therapeutic agent RNA which encodes a therapeutic agent of interest
- RNA DNA
- therapeutic agent includes treatment and/or prophylaxis
- a primary cell is one which will not have indefinite growth in culture, i.e., the cells has not been manipulated or transformed to provide for indefinite growth in culture.
- the DNA (RNA) which is used for transducing the human cells may be one whose expression product is secreted from the cells.
- the DNA (RNA) cures a genetic deficiency of the cells and the expression product is not secreted from the cells (for example, the expression product of DNA encoding ADA is not secreted from the cells).
- the human cells may also be genetically engineering with DNA (RNA) which functions as a marker, as hereinafter described in more detail.
- RNA DNA
- primary human cells which are genetically engineered to include DNA which encodes a marker or therapeutic, with such cells expressing the encoded product in vivo.
- the invention is directed to a method of enhancing the therapeutic effects of human primary cells.
- a method of enhancing the therapeutic effects of human primary cells which specifically “target” to a tissue site in a patient, whereby DNA (RNA) which encodes an agent that enhances the therapeutic effects is inserted in the cells.
- the tissue site can be, for example, a tumor.
- the DNA (RNA) produces the agent in the patient's body, and in accordance with such embodiment the agent is expressed at the tissue site itself.
- primary human cells which are genetically engineered need not be targeted to a specific site and in accordance with the invention, such engineered primary human cells function as a systemic therapeutic; e.g., a desired therapeutic agent can be expressed and secreted from the cells systemically.
- the primary human cells may be primary human nucleated blood cells or primary human tumor cells.
- the primarily human cells are primary human nucleated blood cells.
- the primary human blood cell which can be used in the present invention include leukocytes, granulocytes, monocytes, macrophages, lymphocytes, immature forms of each of the previous cells (as well as immature erythroblasts) (CD 34 +cells) and totipotent stem cells.
- human cells preferably blood cells, which are genetically engineering are cells which are targeted to a specific site; for example, the cells can be tumor infiltrating lymphocytes (TIL cells).
- TIL cells tumor infiltrating lymphocytes
- the engineered cells function as a therapeutic at such site.
- the cells are n t cells which are targeted to a specific site and in such aspect such cells function as a systemic therapeutic.
- the DNA carried by the cells can be any DNA having clinical usefulness, for example, any DNA that directly or indirectly enhances the therapeutic effects of the cells.
- the DNA carried by the cells can be any DNA that allows the cells t exert a therapeutic effect that the cells would not exert.
- suitable DNA which can be used for genetically engineering, f r example, bl od cells, include those that encode cytokines such as tumor necrosis factor (TNF), interleukins (for example, interleukins 1-12), interferons ( ⁇ , ⁇ , ⁇ -interferons). T-cell receptor proteins and the Fc receptors for antigen-binding domains of antibodies, such as immunoglobulins.
- the inserted gases are marker genes which permit determination of the traffic and survival of the transformed cells in vivo.
- marker genes include the neomycin resistance (neoR) gene, multi-drug resistant gene, thymidine kinase genes, ⁇ -galactosidase, dehydrofolate reductase (DHFR) and chloroamphenicol acetyl transferase.
- RNA DNA
- the cells may be genetically engineered in vitro or in vivo.
- cells may be removed from a patient; genetically engineered in vitro with DNA (RNA) encoding the therapeutic agent, with such genetically engineered cells being readministered to the patient.
- RNA DNA
- Such a treating procedure is sometimes referred to as an ex vivo treatment.
- DNA (RNA) encoding the therapeutic agent may be administered to the patient for delivery of the DNA in vivo to the targeted cells.
- RNA e.g., a retroviral or other viral vector; liposomes etc.
- a patient is provided with human primary cells which are genetically engineered with DNA (RNA) encoding a therapeutic agent whereby such therapeutic agent may be expressed in vivo.
- RNA DNA
- such genetically engineered cells may be provided by administering to the patient cells which have been genetically engineered ex vivo or by administering the DNA (RNA) as part of a delivery system for genetically engineering targeted cells in vivo.
- RNA DNA
- a composition comprising (i) primary human cells genetically engineered with DNA (RNA) encoding a therapeutic agent and (ii) a pharmaceutically acceptable carrier suitable for administration to a patient.
- the primary human cells are primary human nucleated blood cells.
- the carrier may be a liquid carrier (for example, a saline solution) or a solid carrier, e.g., an implant.
- the engineered cells may be introduced, e.g., intravenously, sub-cutaneously, intramuscularly, intraperitoneally, intralesionaly, etc.
- FIG. 1A dem nstrates by assay for function nal enzyme that murine 14.1-T cells containing an inserted SAX vector express high levels of the neomycin resistant (neoR) gene product, aeomycin phosphotranferase (NPT).
- FIG. 1B demonstrates the expression f human adenosine deaminase (hADA), also encoded by the SAX vector inserted in the murine 14.1-T cells.
- hADA human adenosine deaminase
- FIG. 2 shows the proliferative response of murine splenic lymphocytes and 14.1-T cells to stimulation with phytohemagglutinin and IL-2and the effect of G418 on this proliferati n.
- FIG. 3A demonstrates that human N2-transduced TIL expresses sufficient NPT to become resistant to the toxic effects of G418 on cellular proliferation.
- FIG. 3B shows growth curves of human N2-transduced and untreated TIL for the 30 day period following gene insertions;
- FIG. 4 demonstrates absolute Blood T Cell levels of patient # 1 receiving ADA gene therapy in accordance with the procedure of Example 4.
- the bar portion of the figure is the transduced T-cells infused at the day indicated;
- FIG. 5 demonstrates the ADA enzyme activity of patient # 1 during treatment.
- the present invention relates to the use of primary human cells as cellular vehicles for gene transfer.
- the genes can be any gene having clinical usefulness, for example, therapeutic or marker genes.
- the primary human cells are blood cells.
- blood cells as used herein is meant to include all forms of nucleated blood cells as well as progenitors and precursors thereof, as hereinabove described.
- the invention is directed to a method of enhancing the therapeutic effects of human primary cells, preferably blood cells, that are infused in a patient, comprising: (i) inserting into the human primary cells of a patient a DNA (RNA) segment encoding a product that enhances the therapeutic effects of the human primary cells; and (ii) introducing cells resulting from step (1) into the patient.
- the gene can be inserted into the human primary cells using any gene transfer procedures, for example, retroviral-mediated gene transfer, electroporation, calcium phosphate mediated transfection, microinjection or proteoliposomes.
- Other vectors can be used besides retroviral vectors, including those derived from DNA viruses and other RNA viruses.
- an RNA virus such as virus includes RNA which encodes the desired agent, with the human primary cells which are genetically engineered with such RNA virus thus being provided with DNA encoding the agent.
- a method of enhancing the therapeutic effects of blood cells, that are infused in a patient comprising: (i) inserting into the blood cells of a patient a DNA (RNA) segment encoding a product that enhances the therapeutic effects of the blood cells; and (ii) introducing cells resulting from step (i) into the patient under conditions such that the cells resulting from step (i) “target” to a tissue site.
- the cells are not “targeted” and function as a systemic therapeutic.
- the genes are inserted in such a manner that the patient's transformed blood cell will produce the agent in the patient's body.
- the specificity of the blood cells f r the antigen is n t lost when the cell produces the product.
- DNA (RNA) may be inserted into the blood cells of a patient, in vivo, by administering such DNA (RNA) in a vehicle which targets such blood cells.
- the method of the invention can-be used, for example, in the treatment of cancer in a human by inserting into human primary cells, such as, f r example, blood cells, which specifically “target” to a tumor and which have been removed from a cancer patient and expanded in culture, genes that enhance the anti-tumor effects of the blood cells.
- human primary cells such as, f r example, blood cells, which specifically “target” to a tumor and which have been removed from a cancer patient and expanded in culture, genes that enhance the anti-tumor effects of the blood cells.
- the blood cells can be expanded in number before or after insertion of the genes.
- the method of gene transfer in the blood cells is as described above.
- the procedure is performed in such a manner that upon injection into the patient, the transformed blood cells will produce the agent in the patient's body, preferably at the site of the tumor itself.
- the gene carried by the blood cells can be any gene which directly or indirectly enhances the therapeutic effects, of the blood cells.
- the gene carried by the blood cells can be any gene which allows the blood cells to exert a therapeutic effect that it would not ordinarily have, such as a gene encoding a clotting factor useful in the treatment of hemophilia.
- the gene can encode one or more products having therapeutic effects. Examples of suitable genes include those that encode cytokines such as TNF, interleukins (interleukins 1-12), interferons ( ⁇ , ⁇ , ⁇ -interferons), T-cell receptor proteins and Fc receptors for antigen-binding domains of antibodies, such as immunoglobulins.
- suitable genes include genes that modify blood cells to “target” to a site in the body to which the blood cells would not ordinarily “target,” thereby making possible the use of the blood cell's therapeutic properties at that site.
- blood cells such as TIL can be modified, for example, by introducing a Fab portion of a monoclonal antibody into the cells, thereby enabling the cells to recognize a chosen antigen.
- blood cells having therapeutic properties can be used to target, for example, a tumor, that the blood cells would not normally target to.
- Other genes useful in cancer therapy can be used to encode chemotactic factors which cause an inflammatory response at a specific site, thereby having a therapeutic effect.
- genes encoding soluble CD4 which is used in the treatment of AIDS and genes encoding ⁇ -antitrypsin, which is useful in the treatment of emphysema caused by ⁇ -antitrypsin deficiency.
- the gene therapy of the present invention is useful in the treatment of a variety of diseases including but not limited to adenosine deaminase deficiency, sickle cell anemia, thalassemia, hemophilia, diabetes, ⁇ -antitrypsin deficiency, brain disorders such as Alzheimer's disease, and other illnesses such as growth disorders and heart diseases, for example, those caused by alterations in the way cholesterol is metabolized and defects of the immune system.
- diseases including but not limited to adenosine deaminase deficiency, sickle cell anemia, thalassemia, hemophilia, diabetes, ⁇ -antitrypsin deficiency, brain disorders such as Alzheimer's disease, and other illnesses such as growth disorders and heart diseases, for example, those caused by alterations in the way cholesterol is metabolized and defects of the immune system.
- a method of detecting the presence of human primary cells comprising (i) inserting into human primary cells removed from the patient a DNA (RNA) segment encoding the marker under conditions such that the marker is present in the blood cells; (ii) introducing cells resulting from step (i) into the patient; (iii) removing from the patient an aliquote f tissue (which can be, for example, normal tissue, cancerous tissue, blood, lymph nodes, etc.) including cells resulting from step (ii) and their progeny; and (iv) determining the quantity of the cells resulting from step (ii) and their progeny, in said aliquot.
- human primary cells such as, for example, blood cells containing a marker present in a patient
- the present invention comprises a method f detecting the presence f blood cells containing a marker, present at a site in a patient, to which site the blood cells “targets”, c mprising (i) inserting into blood cells removed from the patient that are specific for an antigen (either known or unknown) present at the site and that target to site, a DNA segment encoding the marker under conditions such that the marker is present in the blood cells, (ii) introducing cells resulting from step (i) into the patient under conditions such that cells resulting from step (ii) can be found at the site; (iii) removing from the patient an aliquot of tissue from the site, which aliquote includes cells resulting from step (ii) and their progeny; and (iv) determining the quantity of the cells resulting from step (ii) and their progeny, in said aliquot.
- the marker gene can be, for example, inserted into blood cells which specifically “target” to a tumor in order to determine the traffic and survival of the transformed blood cells in vivo.
- the transformed blood cells circulate through the body, rather than targeting to a particular tissue site.
- the marker gene can be any gene which is different from the genes in the blood cell into which the marker gene is inserted.
- marker genes include neoR, multi-drug resistant gene, thymidine kinase gene, ⁇ -galactosidase, dehydrofolate reductase (DHFR) and chloroamphenicol acetyl transferase.
- the marker gene can be inserted into a human primary cell, such as a blood cell, together with a therapeutic gene or separately.
- the marker gene and the therapeutic gene may also be one and the same.
- the retroviral gene transfer vector SAX (P. W. Kantoff, et al, PNAS 83:6563 (1986)) was used to insert the genes for human adenosine deaminase (hADA) and neomycin resistance (neoR) into the murine T cell line 14.1
- SAX is a moloney virus based vector with the neoR gene promoted from the retroviral LTR and the hADA gene promoted from an internal SV40 promoter.
- the 14.1 T cell line was derived from the draining lymph nodes of a BIO.D2 mouse previously immunized with sperm whale myoglobin (SWM) by repeated cycles of antigen stimulation of these lymphocytes in tissue culture (I. Berkower, et al., J. Immunol. 135:2628 (1985)). These 14.1 T-cells proliferate when challenged with SWM in the presence of histocompatible antigen-presenting cells (without exogenous IL-2) or when stimulated with PHA and rIL-2 in vitro. An average of 20% of the 14.1-T cells achieved stable insertion of the SAX vector after a supernatant infection protocol (P. W. Kantoff, et al, PNAS 83:6563 (1986)).
- FIG. 1A demonstrates by assay for functional enzyme that the cells containing the inserted SAX vector are expressing high levels of the neoR gene product, neomycin phosph transferase (NPT).
- FIG. 1B demonstrates expression of human adenosine deaminase (hADA), also encoded by the SAX vector inserted in these T cells.
- hADA human adenosine deaminase
- a thymic nude mice were then injected intraperitoneally with 20 ⁇ 10 6 14.1SAX T-cells and immunized with 100 ⁇ g soluble SWM. Athymic recipients were chosen for these experiments because they have very little endogenous Te cell activity and therefore any T cells recovered from these mice at a later date should represent the original injected 14.1 SAX cells or their progeny.
- FIG. 2 shows the proliferative response of splenic lymphocytes and 14.1 cells to stimulation with phytohemagglutinin and IL-2 and the effect of G418 on this proliferation. While control nude mouse splenocytes did proliferate modesty to PHA+IL-2, this response was abolished by low concentrations of G418.
- TIL tumor infiltrating lymphocytes
- TIL therapy many issues remain to be clarified including a more complete understanding of the features of individual TIL preparations which correlate with clinical antitum r effects, the in vivo distribution and time of persistence f TTL after infusion, and whether distinct TIL functional phenotypes localize in the body in ways which will permit prediction of their clinical efficacy.
- a gene label will also equally mark progeny cells derived by continued proliferation of the originally labelled cell population as occurs when TIL proliferation is driven by IL-2 infusions given to the patient.
- the target cell acquires resistance to the neomycin analog G418 which permits, as we have shown for mouse 14.1SAXT-cells, the selective recovery of the gene-marked cells by regrowth of recovered cells in the presence of G418. With recovery, the cells from different sites could then be analyzed for their functional phenotypes and potential correlations with clinical efficacy.
- N2 contains the gene neoR promoted by the retroviral LTR and has been used extensively by the inventors in studies of bone marrow gene-transfer in mide and primates during the past 5 years (M. E. Egitis, et al, Science 230:1396 (1985); D. Kohn, et al, Blood Cells 13:285-298 (1987)); P. W. Kantoff, et al, J. Exp. Med.
- 3B shows growth curves of N2-transduced and untreated TIL for the 30 day period following gene insertion. Growth of the N2-transduced TIL population as a whole slows initially when G418 is added to the culture (not shown, but resumes exponential expansion as growth of the NeoR-expressing G418-resistant subpopulation becomes established. After completion of selection, the N2-transduced cells as a rule grew at a rate comparable to that of TIL not transduced with the neoR gene.
- TIL transduced with N2 and selected with 0.3 mg/ml G418 for 10-14 days were compared with non-transduced TIL from 6 patients with methastatic malignant melanoma. These populations were analyzed for their surface membrane phenotype as revealed by FACS analysis of 1 ⁇ 10 6 TIL stained monoclonal antibodies. Antibodies to CD4(Leu 3) and CD8 (Leu 2) were used on populations and the percentage of the cells positive for each determinant are shown.
- TIL constitutive cytotoxic function of each TIL population was determined for autologous tumor targets (auto) and the NK sensitive target K562 (NK) as well as for allogeneic tumor and sensitive target cells (not shown) by a standard 4 hour 56 Cr release assay at E:T ratios of 40:1, 15:1, and 4.5:1. Data shows target lysis at the 40:1 E:T ratio.
- TIL isolated from different individual donors have different phenotypic profiles as determined by various cell membrane determinants (CD4, CD8, etc.) and different levels of cytotoxic activity toward autologous tumor and other target cell types.
- Human TIL of both major phenotypic subgroups (CD4 and CD8) were readily transduced by the N2 vector and expressed G418 resistance.
- TIL transduced and selected TIL populations
- Some transduced and selected TIL populations showed more drift in their phenotypic composition than others, and as expected with more prolonged culture, all of the TIL populations became progressively oligoclonal whether or not they had been transduced with N2 (not shown).
- TIL are often cytolytic for autologous tumor cells but not other target cell types in vitro.
- TIL isolated from two were cytolytic to autologous tumor cells, but not alleogeneic melanoma tumor cells, NK (K562) or LAK (Daudi) sensitive targets.
- the functional cytotoxic activity profile of the TIL was unaffected by N2 transduction and G418 selection, even in those TIL populations showing some drift in T cell subset composition measured by surface membrane antigen phenotype.
- murine 14.1-T cells containing an inserted SAX vector express high levels of the neoR gene product, NPT, as well as expressing hADA.
- the SAX-transdermal 14.1 cells were placed under selection with 0.3 mg/ml G418 for 14 days.
- the SAX-transduced G418 selected cells were then expanded by repeated 14 day cycles of antigen stimulation and rest on syngeneic feeder cells. Lysates from the G418-selected 14.1 population were prepared and assayed for the presence of NPT by measuring the phosphorylation of kanamycin with P32 labelled ATP after separation of NPT from endogenous phosphotransferases on a non-denaturing polyacrylamide gel (B. Reiss, et al, Gene 30:211 (1984)).
- the 14.1 cells containing the inserted SAX vector expresses high levels of NPT.
- Lysates of the 14.1 cells were separated by electrophoresis on cellulose acetate (B. Lira, et al, Molecular Cellular Biol. 7:3459 (1987)) which was then stained for the presence of the murine and human isozymes of ADA (FIG. 1 B).
- the human T cell line CEM was included as a control for the migration of hADA.
- FIG. 1B demonstrates the expression of hADA.
- the following experiment was performed in order to demonstrate the continued expression of a transferred gene in gene modified T-cells. Specifically, the effect of G418 on the proliferative response of murine splenic lymphocytes and 14.1-T cells to stimulation with phytohemagglutinin and IL-2 was studied.
- FIG. 2 shows, as the mean of triplicate cultures, the proliferative response of the murine splenic lymphocytes and 14.1-T cells to stimulation with phytohemaglutimin and IL-2 and the effect on G418 on this proliferation.
- a review of the figure shows that while control nude in use splenic lymphocytes proliferated modestly to PHA+IL-2, this response was abolished by low concentrati ns of G418.
- the untreated TIL (no vector) was compared with TIL which had been transduced with N2 and selected with G418 (N2+G418) and with an N2-transduced TIL population which had not been further selected in G418 (N2). Proliferative was measured by 3H-thymidine incorporation as described in Example 2.
- FIG. 3B shows the growth curves of the N2-transduced and the untreated TIL for the 30 day period following gene insertion. These results were obtained using the following procedure.
- TIL from patent 1 were grown from a tumor biopsy as described (Tobalian et al, J. Immune Method 138:4006-4011 (1987)) and then an aliquot was transduced with the N2 vector by two 4-hour exposures to viral supernatant (note: LNL 6 is identical to N2 except that LNL6 has several additional safety features). Forty-eight hours later the transduced population was placed under selection for 10 days with 0.3 mg/ml G418. Non-transduced TIL exposed to this selection protocol were all dead by day 10. Growth of the N2-transduced TIL population allowed when placed in G418, but resumed at an exponential rate while still under selection as the cells expressing the neoR gene became dominant by day 10. TIL cultures were fed and split as required (1-2 times per week) and the cumulative cell total calculated when the running total reached >10 6 cells to that larger numbers of cells would not have to be maintained in culture.
- the N2 - treated TIL population expressed the inserted gene sufficiently to permit growth in 0.3 mg/ml G418.
- the N2-transduced cells at a rule grew at a rate comparable to that of TIL not transduced with the neoR gene.
- the TNF-NeoR vector is constructed by modifying the Monkey murine leukemia vector.
- the TNF gene containing water, LT125N was constructed from the vector LXSN (Miller AD and Rossman G., 1989, Biotechniques 7:980-990.), usign the entire 233 amino acid sequence encoding cDNA f the natural TNF genes (Pennies, et al, 1984, Nature 312, 724-729, Wang, et al, Science 228, 149-154).
- the ribosome binding site used upstread of the TNF gene was a syntehtic one, a consensus sequence f r translation initiation based on Kozak's rules (Kozak, Nucle. Acids Res. 12, 857-872 (1984) and having the nucleotide sequence 5′ TTCCGCAGCAGCCCGCCACC3′.
- the vectors construct was packaged using the PA317 packaging cell line (Miller et al., Mol. Cell Biol. 6, 2895-2902 (1986)).
- Retroviral vector supernatant is produced by harvesting the cell culture medium from the PA317 packaging line developed by Dr. A. Dusty Miller. This line has been extensively characterized and was used by us in our previous studies of the infusion of TIL modified by the N2 vector.
- the TNF-Neo vector preparations from PA317 are extensively tested to assure that no detectable replication competent virus is present. Tests for replication-competent virus are conducted on both the vector supernatant and on the TIL after transduction. The follwoing tests are run on the producer line and/or the viral supernatant:
- the viral titer is determined on 3T3 cells. Viral preparations with titers greater than 5 ⁇ 10 4 colony forming units/ml are used.
- TNF production by the product line is measured and should be significantly above baseline control values.
- TNF is assayed using standard biologic assays on the L929 amino cell line (Asher et al. J. Immunol 138:963-974, 1987) or by ELISA assay (R&D Systems, Minneapolis, Minn.).
- Sterility of the producer line and the supernatant is assured by testing for aerobic and anaerobic bacteria, fungus and for mycoplasma.
- Viral testing is performed including:
- Electron microscopy is performed to assure the absence of adventitions agents.
- Sterility is assured by testing for aerobic anaerobic bacteria, fungus and mycoplasma.
- Reverse transcriptase assay must be negative.
- TNF protein assay to assure the production of TNF.
- Cells must be producing at least 100 pg TNF/10 6 cells/24 hours.
- IL-2 will be withdrawn from the culture medium of an aliqu t f r at least one week to assure that cells do n t exhibit auton mous growth in the absence f IL-2.
- peripheral blood lymphocytes are collected by leukapheresis for four hours. These are Ficoll-Hypaque separated and the mononuclear cells from the interface, washed in saline, and placed in culture in roller bottles at 10 6 cells/ml. Half are placed into AIM-V (a serum free medium, Gibco Laboratories) with 6000 IU/ml IL-2 (Cetus), and Half are placed into RPMI supplemented with 2% type-compatible human serum, penicillin (unless the patient is allergic), gentamicin, and 600 IU/ml IL-2. After 3 to 4days cells are centrifuged and the supernatants are collected and filtered. These are referred to as LAK supernatants.
- AIM-V a serum free medium, Gibco Laboratories
- 6000 IU/ml IL-2 Cetus
- RPMI RPMI supplemented with 2% type-compatible human serum, penicillin (unless the patient is allergic), gentamicin
- the specimen(s) is transported to the laboratory in a sterile container and placed on a sterile dissection board in a laminar flow hood.
- a small reprensentative portion is taken for pathologic analysis, and the rest is minced into pieces roughly 4 mm in diameter.
- These are placed into an enzyme solution of collagenase, DNAse type I, and hyaluronidase type V for overnight digestion at room temperature.
- the resulting suspension is filtered through a wire mesh to remove any large debris, washed in saline, and placed on Ficoll-Hypaque gradients.
- the interface containing viable lymphocytes and tumor cells is collected and washed in saline, and a portion is frozen for subsequent use as targets.
- TIL cultures are initiated at 5 ⁇ 10 5 ml viable cells (tumor plus lymphocytes) in 80% fresh medium/20% LAK supernatants.
- the fresh medium is AIM-V supplemented with penicillin, fungizone, and 6000 IU/ml IL-2; for the other half, the fresh medium is RPMI supplemented with 10% human serum, penicillin, gentamicin, fungizone, and 6000 IU/ml IL-2.
- the cultures are placed into 6-well tissue culture dishes and incubated at 37° in humidified incubators with 5% CO 2 .
- lymphocyte density is not much increased at the end of seven days in culture, and the cultures are collected, centrifugal, and resuspended at 5 ⁇ 10 5 total viable cells/ml in newly prepared 80%/20% medium mixtures of the same type. Occasionally a culture will have increased lymphocyte density and need medium replenishment prior to seven days.
- TIL are subcultured by dilution when the density is between 1.5 ⁇ 10 6 and 2.5 ⁇ 10 6 cells per ml; densities of subcultures are established between 3 ⁇ 10 5 and 6 ⁇ 10 5 ml. Cultures are kept in 6-well dishes when the volume is less than 1 liter, and transferred to 3 liter polyolefins bags (Fenwall) when the volume reaches one liter.
- the subculture from bags are accomplished with Fluid Fill/Weight Units (Fenwall), which are programmed to pump prescribed weights of TIL culture and fresh medium into a new bag.
- Fluid Fill/Weight Units Frawall
- the fresh medium used in AIM-5 When subculture volumes exceed 3 liters, the fresh medium used in AIM-5. Cultures growing in serum-containing medium are thus diluted into AIMW, and no further LAK supernatant is added to cultures growing in serum-containing or serum-free medium.
- Tumor-infiltrating lymphocytes are transduced when the total number of lymphocytes is about 1-5 ⁇ 10 8 or higher. Up t one-half f the TIL culture is centrifuged, the medium is saved, and the cells are resuspended in Viral Supernatant with 5 ug/ml protamine. Multiplicities of infection are about 1.5 to 10. The cells in Vital Supernatant are placed int 800 ml tissue culture flasks at 200 ml/flask and incubated at 37° f r 2 hours. During incubati n, the flasks are agitated every 15 minutes to resuspend the cells. The original medium is centrifuged to remove any remaining cells and decanted into new containers.
- the cells are centrifuged and resuspended in the original cleared medium. If the density is such that subculturing is necessary, the cells are diluted slightly to a density of about 10 6 /ml and placed into fresh 6-well tissue dishes for continued incubation. The following day, the above transduction procedure is repeated. If the cell density at the conclusion of this second transduction is such that subculturing is necessary, the cells are diluted to 5 ⁇ 10 5 /ml for continued incubation.
- TIL When TIL are to be selected to G418, the TIL are cultured for 3 to 5 days after the second transduction and then G418 is added directly to the culture bags to a final concentration of 300 ug/ml G418. After 10 to 20 days the cells are washed and resuspended at 3 to 6 ⁇ 10 5 cells/ml in fresh medium not containing G418 and then cultured as described above.
- TILs When the total TILs for a patient are ready for harvest, 5 ⁇ 10 6 cells are taken for cytological examination. Cytospins are examined for the presence of remaining tumor. At least 200 cells are studied and therapy proceeds only when no tumor cells are found. Other TIL samples are taken for characterization of cells surface markers and for assessment of cytotoxicity. Briefly, TILs are stained with fluorescent-labeled antibodies (Leu2, Leu3, Leu4, Lue7, Leu11, Leu15, Leu19, LeuM3, HLADR, and Tac). Chromium release assays are performed with K562, Daudi, autologous tumor, and allogeneic tumor targets.
- the TILs are collected in two or more batches by continuous flow centrifugation. Some of the TILs are then cryopreserved for future use in 10 10 cell aliquots.
- TIL for infusion TIL are reharvested.
- one liter of saline for injection is pumped through the collection chamber and the centrifuge is stopped.
- TILs are resuspended in the collection bag, the centrifuge is started again, and another liter of saline is pumped through to fully wash the TILs free of tissue culture medium components.
- the cells are then filtered through a platelet administration set into 600 ml transfer packs (Fenwall) and 50 ml of 25% albumin and 450,000 IU of IL-2 are added to the 200 to 300 ml volume of cells in saline.
- the TIL are infused over 30 to 60 minutes through a central venous catheter.
- TNF-TIL TNF-modified TIL
- Fresh peripheral blood mononuclear cells are separated from the red cells and neutrophils by Ficoll-Hypaque density gradient centrifugation. The MNCs are then washed, counted and cultured at approximately 1 ⁇ 10 6 cells/well in 24-well tissue culture plates in AIM-V which consists of AIM-V (GIBCO) with 2 mM glutamine, 50 U/ml penicillin, 50 ⁇ g/ml streptomycin, 2.5 ⁇ g/ml Fungizone and 25-1,000 U/ml f IL-2 (Cetus). At the initial plating, 10 ng/ml OKT3 (Ortho) monoclonal antibody is added to each well. The cells are cultured at 37° C. in a humidified incubator with 5% CO.
- AIM-V which consists of AIM-V (GIBCO) with 2 mM glutamine, 50 U/ml penicillin, 50 ⁇ g/ml streptomycin, 2.5 ⁇ g/ml Fungizone and
- LASN vector Bood, V L 72(2) pages 876-811 2 ml.
- LASN vector-containing supernatant contianing protamine 5-10 ⁇ g/ml and up to 1,000 U/ml IL-2 are added to the wells after aspirating off the top half of the medium. This is repeated 1-2 times daily for a period of up to 7 days. After the final exposure to retroviral vector the cells are fed with fresh AIM-V and cultured another 2-7 days to permit the cultures to return to exponential growth.
- T cells Approximately 80% of the culture 0.1-2.5 ⁇ 10 10 T cells are infused into the patient and the remaining cells cryopreserved for future use or returned to culture for studying growth and selection procedures, phenotype analysis, T cell repertoire analysis and percentage of cells demonstrating vector integration.
- the transduced cells are harvested, washed, and resuspended in normal saline.
- the final cell preparation is filtered through a platelet filter and transferred into a syrinige or transfusion pack for infusion.
- a test dose of 5% of the total volume is infused by peripheral vein followed by an observation period of 5-10 min.
- Transduced cells were administered to patient # 1 in the amounts and at the times shown in FIG. 4 .
- the ADA enzyme levels of patient # 1 are shown in FIG. 5 .
- the TNF-NeoR vector was constructed as in Example 4, and retroviral vector supernatant is prepared and tested as disclosed therein.
- Tumor cell lines are established in tissue culture from tumor fragments or single cell suspensions using standard tissue culture techniques. (Topalian, et al., J. Immunol, Vol. 144, pgs. 4487-4495 (1990)). Tumor and normal tissue are obtained immediately after surgery.
- the tumors were minced into 1 mm 3 fragments and dissociated with agitation in serum free DMEM (Dulbecco Modified Eagle Medium)(Bio-fluids) containing 2 mM glutamine, 0.1 mg/ml hyaluronidase, 0.01 mg/ml DNase I an d0.1 mg/ml collagenase for 3 hours at room temperature.
- DMEM Denbecco Modified Eagle Medium
- the cell suspension was then centrifuged at 800 g for 5 minutes and the pellet resuspended in a culture medium consisting of 5 ml of DMEM high glucose (4.5 g/l) with penicillin and glutamine supplemented with 10% fetal calf serum.
- the cells were either centrifuged prior to being frozen in 90% FCS, 10% DMSO at ⁇ 80° C., or plated in appropriate dishes or culture flasks in culture medium. Plated cells were incubated at 37° C. in a humidified atmosphere of 5% CO 2 and 95% air. Within 48 hrs, the culture medium was changed in order to remove all non-attached material. Subsequently, cultures were incubated for a period of 6 to 8 days without medium change. The tum rs grow as adherent monolayers in tissue culture flasks (Falcon #3028; 175 cm ⁇ 2 ; 750 ml) containing about 50 ml of medium.
- the medium When the cells are actively growing and not yet confluent the medium will be poured off and 30-50 ml of medium containing the retroviral supernatant with 5 ⁇ g/ml protamine will be added to the flask. Cornetta, et al., J. Virol. Meth., Vol. 23, Pgs. 186-194 (1989). The flasks will be incubated at 37° C. for six hours at which time the medium will be changed. This procedures will be repeated up to three times. After 24 to 48 hours medium containing 300 ⁇ g/ml G418 is added directly to the flask and the ells will be grown and subcultured for 7 to 14 days in G418 containing medium. The G418 concentrations may be raised to 1 mg/ml depending on the health of the culture.
- Sterility will be assured by testing for aerobic and anaerobic bacteria, fungus and mycoplasma.
- TNF protein assay to assure the production of TNF.
- Cells must be producing at least 100 pg TNF/10 6 cells/24 hours.
- Gene-modified tumor cells are harvested from the culture flasks by exposure to 0.25% versene (EDTA) for 10 minutes. The cells are washed three times by suspension in 50 mls normal saline and centrifugation. The final cell pellet will be suspended in normal saline and counted. 2 ⁇ 10 8 viable cells in 1 ml normal saline are injected subcutaneously just beneath the skin in the anterior mid thigh and the overlying skin marked with a tatoo dot. If 2 ⁇ 10 8 cells are not available, fewer may be given but not less than 2 ⁇ 10 7 cells will be injected.
- EDTA 0.25% versene
- the patient will receive two intradermal injections (separated by 1 cm) of 2 ⁇ 10 7 gene modified tumor cells in 0.1 ml normal saline and these sites also marked by a tatoo dot. These sites are monitored weekly by a physician.
- the patient undergoes excisional biopsy of superficial inguinal lymph nodes (without formal dissection) in the area draining the inoculation site for growth of lymphocytes. If tumor grows at any of these sites they will be excised when they reach 1 to 2 cm for growth of TIL. If no tumor growth is evident that the sites of tumor injection will be excisionally biopsied at 8 weeks after injection of pathologic analysis.
- peripheral blood lymphocytes are collected by leukapheresis for four hours, are processed, and then cultured as described in Example 4.
- TIL tumor necrosis virus
- a patient's condition has deteriorated to an unacceptable level, or if the patient has developed significant cardiac, renal, pulmonary, or hematologic dysfunction, then the patient will not receive the infusion of TIL or of IL-2 as described hereinbelow.
- lymphocytes f r a patient are ready f r harvest
- 5 ⁇ 10 6 cells are taken from cyt 1 gical examination. Cytospins are examined f r the presence f remaining tum r. At least 200 cells are studied and therapy proceeds only when no tumor cells are found.
- Other lymphocyte samples are taken f r characterization of cell surface markers and for assessment of cytotoxicity. (Berd, et al., Cancer Res., Vol. 46, pgs. 2572-2577 (1986)). Briefly, lymphocytes are stained with fluorescent-labeled antibodies (Leu2, Leu3, Lue4, Lye7, Lue11, Leu5, Leu9, LeuM3, HLADDR and Tac). Chromium release assays are performed with K562, Daudi autologous tumor, and allogeneic tumor targets.
- TIL infusion TIL
- saline for injection is pumped through the collection chamber and the centrifuge is stopped. Lymphocytes are resuspended in the collection bag, the centrifuge is started again, and another liter of saline is pumped through to wash fully the TIL's free of tissue culture medium components.
- the cells are then filtered through a platelet administration set into 600 ml transfer packs (Fenwal), and 50 ml of 25% albumin and 450,000 IU of IL-2 are added to the 200 to 300 ml volume of cells in saline.
- the TIL are infused over 30 to 60 minutes through a central venous catheter.
- the recombinant IL-2 used in this trial is provided by the Division of Cancer Treatment, National Cancer Institute (supplied by Cetus Corporation, Emeryville, Calif.) and will be administered exactly as specified in Rosenberg, et al., New Engl. J. Med., Vol. 323, pgs. 570-578 (1990).
- the IL-2 is provided as a lyophilized powder and will be reconstituted with 1.2 ml/vial. Each vial contains approximately 1.2 mg of IL-2 (specific activity 18 ⁇ 10 6 IV/mg). Less than 0.04 ng of endotoxin are present per vial as measured by the limulus amebocyte assay.
- Each vial also contains 5% mannitol and approximately 130-230 ⁇ g of sodium dodecyl sulfate/mg of IL-2.
- the IL-2 is diluted in 50 ml of normal saline containing 5% human serum albumin, and is infused intravenously at a dose of 720,000 IU/kg over a 15 minute period every 8 hr, beginning from two to 24 hr after the TIL infusion.
- IL-2 will be given for up to five consecutive days as tolerated. Under no circumstances is more than 15 doses of IL-2 be administered. Doses may be skipped depending on patient tolerance. Doses will be skipped if patients reach grade III or grade IV toxicity. If this toxicity is easily reversed by supportive measures then additional doses may be given.
- Patients may receive concomitant medications to control side effects.
- the patients may be given acetaminophen (650 mg every 4 hours), indomethacin (50-75 mg every 6 hours), and ranitidine (150 mg every 12 hours) throughout the course of the treatment.
- Patients may also receive intranveous meperidine (25-50 mg) to control chills if they occur.
- Hydroxyzine hydrochloride may be given (25 mg every 6 hours) to treat pruitia, if present.
- Example 6 the procedure of Example 6 were again followed, except that the vector employed to generate vector particles and retroviral vector supernatant, was the IL-2-NeoR vector.
- This vector was constructed from the vector LXSN (Miller, et al, 1989), and contains the Il-2 gene.
- LXSN Miller, et al, 1989
- primary human cells which may be genetically engineered in accordance with the present invention include, but are not limited to, endothelial cells, epithelial cells, keratinocytes, stem cells, hepatocytes, connective tissue cells, fibroblasts, mesenchymal cells, msothelial cells, and parenchymal cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Primary human cells which are genetically engineered with DNA (RNA) encoding a marker or therapeutic which is expressed to be expressed in vivo. Such engineered cells may be used in gene therapy.
Description
This is a continuation of application Ser. No. 904,662, filed Sep. 8, 1992, now abandoned, which is a continuation-in-part of U.S. application Ser. No. 868,794, filed Apr. 15, 1992, abandoned, which is a continuation-in-part of U.S. Ser. No. 807,446, filed Dec. 13, 1991, abandoned, which is a continuation-in-part of U.S. Ser. No. 365,567, abandoned.
1. Field of the Invention
This invention relates to the use of primary human cells as vehicles for human gene transfer. More particularly, this invention relates to the use of human cells (such as, for example, but not limited to, human blood cells) as vehicles for the transfer of human genes encoding therapeutic agents and/or genes encoding detectable markers.
2. Background Information
Retroviral-mediated gene transfer is a new therapeutic approach for the treatment of human disease (W. F. Anderson, Science 226:401 (1984)). Initial attention has centered on candidate diseases affecting the bone marrow such as the hemoglobinopathies and severe combined immunodeficiency. Early attempts at bone marrow gone transfer in large mammals and primates were only partially successful. As an additional approach, specific blood cells, for example lymphocytes, have been used. Lymphocytes have several features which make them potentially attractive cellular vehicles for gene therapy (K. Culver, et al., J. Cellular Biochemistry Suppl. 12B:171 (1988); R. M. Blaese, et al, Clin. Research 37:599A (1989)).
Lymphocytes are readily available from peripheral blood as a single cell suspensions and they are easily manipulated in tissue culture where the availability of recombinant growth-factors such as rIL-2 permits their expansion by thousands of fold. This adaptability to tissue culture allows serial attempts at gene insertion, selection procedures and time to test for gene expression and other properties of the gene-transduced cells prior to their return to the patient. Long-lived antigen-specific memory lymphocytes proliferate when exposed to their appropriate antigen and thus the population of gene-treated lymphocytes can be selectively and specifically expanded in vivo by immunization of the host. Finally, some populations of antigen-specific lymphocytes “target” to sites in the body containing deposits of antigen. Therefore, it is expected that gene-treated antigen-specific lymphocytes can be used to deliver specific gene products directly to the site of pathology, such as a tumor, in a treated patient. For example, clinical studies with systemically administered recombinant cytokines alone and in conjunction with tumor infiltrating lymphocytes of certain cancers (S. A. Rosenberg, et al, New Engl. J. Med. 318:889 (1987); S. A. Rosenberg, et al., J. Natl. Cancer Institute 80:1393-1397 (1988)). It is expected that TIL transduced with genes promoting secretion of such a cytokine and using the TILs wn unique antigen-specific recept rs to target them to deposits f tumor will permit greater antitumor effect with less systemic toxicity.
In accordance with an aspect of the present invention, there is provided primary human cells which are genetically engineered with DNA (RNA) which encodes a therapeutic agent of interest, and the genetically engineered cells are employed as a therapeutic agent. (The term “therapeutic,” as used herein, includes treatment and/or prophylaxis).
A primary cell is one which will not have indefinite growth in culture, i.e., the cells has not been manipulated or transformed to provide for indefinite growth in culture.
The DNA (RNA) which is used for transducing the human cells may be one whose expression product is secreted from the cells. In another embodiment, the DNA (RNA) cures a genetic deficiency of the cells and the expression product is not secreted from the cells (for example, the expression product of DNA encoding ADA is not secreted from the cells).
The human cells may also be genetically engineering with DNA (RNA) which functions as a marker, as hereinafter described in more detail.
Thus, in accordance with another aspect of the present invention, there are provided primary human cells which are genetically engineered to include DNA which encodes a marker or therapeutic, with such cells expressing the encoded product in vivo.
In one embodiment, the invention is directed to a method of enhancing the therapeutic effects of human primary cells. For example, there is provided a method of enhancing the therapeutic effects of human primary cells which specifically “target” to a tissue site in a patient, whereby DNA (RNA) which encodes an agent that enhances the therapeutic effects is inserted in the cells. The tissue site can be, for example, a tumor. The DNA (RNA) produces the agent in the patient's body, and in accordance with such embodiment the agent is expressed at the tissue site itself. Similarly, as hereinabove indicated, primary human cells which are genetically engineered need not be targeted to a specific site and in accordance with the invention, such engineered primary human cells function as a systemic therapeutic; e.g., a desired therapeutic agent can be expressed and secreted from the cells systemically.
In one embodiment, the primary human cells may be primary human nucleated blood cells or primary human tumor cells.
In a preferred embodiment, the primarily human cells are primary human nucleated blood cells.
The primary human blood cell which can be used in the present invention include leukocytes, granulocytes, monocytes, macrophages, lymphocytes, immature forms of each of the previous cells (as well as immature erythroblasts) (CD34+cells) and totipotent stem cells.
In one embodiment, human cells, preferably blood cells, which are genetically engineering are cells which are targeted to a specific site; for example, the cells can be tumor infiltrating lymphocytes (TIL cells). In such case, the engineered cells function as a therapeutic at such site. In another aspect, the cells are n t cells which are targeted to a specific site and in such aspect such cells function as a systemic therapeutic.
The DNA carried by the cells can be any DNA having clinical usefulness, for example, any DNA that directly or indirectly enhances the therapeutic effects of the cells. Alternatively, the DNA carried by the cells can be any DNA that allows the cells t exert a therapeutic effect that the cells would not exert. Examples of suitable DNA, which can be used for genetically engineering, f r example, bl od cells, include those that encode cytokines such as tumor necrosis factor (TNF), interleukins (for example, interleukins 1-12), interferons (α,β,γ-interferons). T-cell receptor proteins and the Fc receptors for antigen-binding domains of antibodies, such as immunoglobulins.
In another embodiment, the inserted gases are marker genes which permit determination of the traffic and survival of the transformed cells in vivo. Examples of such maker genes include the neomycin resistance (neoR) gene, multi-drug resistant gene, thymidine kinase genes, β-galactosidase, dehydrofolate reductase (DHFR) and chloroamphenicol acetyl transferase.
Thus, in accordance with another embodiment, there is provided a process for treating a patient with a therapeutic agent by providing the patient with primary human cells, preferably nucleated blood cells, genetically engineered with DNA (RNA) encoding such therapeutic agent.
The cells may be genetically engineered in vitro or in vivo. For example, cells may be removed from a patient; genetically engineered in vitro with DNA (RNA) encoding the therapeutic agent, with such genetically engineered cells being readministered to the patient. Such a treating procedure is sometimes referred to as an ex vivo treatment.
Alternatively, DNA (RNA) encoding the therapeutic agent may be administered to the patient for delivery of the DNA in vivo to the targeted cells. Such may be accomplished by the use of a variety of delivery systems, e.g., a retroviral or other viral vector; liposomes etc.
Thus, in accordance with another embodiment, a patient is provided with human primary cells which are genetically engineered with DNA (RNA) encoding a therapeutic agent whereby such therapeutic agent may be expressed in vivo. As hereinabove indicated, such genetically engineered cells may be provided by administering to the patient cells which have been genetically engineered ex vivo or by administering the DNA (RNA) as part of a delivery system for genetically engineering targeted cells in vivo.
In accordance with another embodiment, there are provided primary human cells genetically engineered with DNA (RNA) encoding a therapeutic agent.
In accordance with a further aspect of the present invention, there is provided a composition comprising (i) primary human cells genetically engineered with DNA (RNA) encoding a therapeutic agent and (ii) a pharmaceutically acceptable carrier suitable for administration to a patient. Preferably, the primary human cells are primary human nucleated blood cells. The carrier may be a liquid carrier (for example, a saline solution) or a solid carrier, e.g., an implant. In employing a liquid carrier, the engineered cells may be introduced, e.g., intravenously, sub-cutaneously, intramuscularly, intraperitoneally, intralesionaly, etc.
As indicated above, the present invention relates to the use of primary human cells as cellular vehicles for gene transfer. The genes can be any gene having clinical usefulness, for example, therapeutic or marker genes. Preferably, the primary human cells are blood cells. The term “blood cells” as used herein is meant to include all forms of nucleated blood cells as well as progenitors and precursors thereof, as hereinabove described.
In one embodiment, the invention is directed to a method of enhancing the therapeutic effects of human primary cells, preferably blood cells, that are infused in a patient, comprising: (i) inserting into the human primary cells of a patient a DNA (RNA) segment encoding a product that enhances the therapeutic effects of the human primary cells; and (ii) introducing cells resulting from step (1) into the patient. The gene can be inserted into the human primary cells using any gene transfer procedures, for example, retroviral-mediated gene transfer, electroporation, calcium phosphate mediated transfection, microinjection or proteoliposomes. Other vectors can be used besides retroviral vectors, including those derived from DNA viruses and other RNA viruses. As should be apparent when using an RNA virus, such as virus includes RNA which encodes the desired agent, with the human primary cells which are genetically engineered with such RNA virus thus being provided with DNA encoding the agent.
More specifically, there is provided a method of enhancing the therapeutic effects of blood cells, that are infused in a patient, comprising: (i) inserting into the blood cells of a patient a DNA (RNA) segment encoding a product that enhances the therapeutic effects of the blood cells; and (ii) introducing cells resulting from step (i) into the patient under conditions such that the cells resulting from step (i) “target” to a tissue site. In the alternative, as previously described the cells are not “targeted” and function as a systemic therapeutic. The genes are inserted in such a manner that the patient's transformed blood cell will produce the agent in the patient's body. In the case of antigen-specific blood cells which are specific for an antigen present at the tissue site, the specificity of the blood cells f r the antigen is n t lost when the cell produces the product.
Alternatively, as hereinbefore indicated, DNA (RNA) may be inserted into the blood cells of a patient, in vivo, by administering such DNA (RNA) in a vehicle which targets such blood cells.
The method of the invention can-be used, for example, in the treatment of cancer in a human by inserting into human primary cells, such as, f r example, blood cells, which specifically “target” to a tumor and which have been removed from a cancer patient and expanded in culture, genes that enhance the anti-tumor effects of the blood cells. The blood cells can be expanded in number before or after insertion of the genes. The method of gene transfer in the blood cells is as described above. Thus, the procedure is performed in such a manner that upon injection into the patient, the transformed blood cells will produce the agent in the patient's body, preferably at the site of the tumor itself.
The gene carried by the blood cells can be any gene which directly or indirectly enhances the therapeutic effects, of the blood cells. The gene carried by the blood cells can be any gene which allows the blood cells to exert a therapeutic effect that it would not ordinarily have, such as a gene encoding a clotting factor useful in the treatment of hemophilia. The gene can encode one or more products having therapeutic effects. Examples of suitable genes include those that encode cytokines such as TNF, interleukins (interleukins 1-12), interferons (α, β, γ-interferons), T-cell receptor proteins and Fc receptors for antigen-binding domains of antibodies, such as immunoglobulins.
Additional examples of suitable genes include genes that modify blood cells to “target” to a site in the body to which the blood cells would not ordinarily “target,” thereby making possible the use of the blood cell's therapeutic properties at that site. In this fashion, blood cells such as TIL can be modified, for example, by introducing a Fab portion of a monoclonal antibody into the cells, thereby enabling the cells to recognize a chosen antigen. Likewise, blood cells having therapeutic properties can be used to target, for example, a tumor, that the blood cells would not normally target to. Other genes useful in cancer therapy can be used to encode chemotactic factors which cause an inflammatory response at a specific site, thereby having a therapeutic effect. Other examples of suitable genes include genes encoding soluble CD4 which is used in the treatment of AIDS and genes encoding α-antitrypsin, which is useful in the treatment of emphysema caused by α-antitrypsin deficiency.
The gene therapy of the present invention is useful in the treatment of a variety of diseases including but not limited to adenosine deaminase deficiency, sickle cell anemia, thalassemia, hemophilia, diabetes, α-antitrypsin deficiency, brain disorders such as Alzheimer's disease, and other illnesses such as growth disorders and heart diseases, for example, those caused by alterations in the way cholesterol is metabolized and defects of the immune system.
In still another embodiment, there is prodded a method of detecting the presence of human primary cells, such as, for example, blood cells containing a marker present in a patient, comprising (i) inserting into human primary cells removed from the patient a DNA (RNA) segment encoding the marker under conditions such that the marker is present in the blood cells; (ii) introducing cells resulting from step (i) into the patient; (iii) removing from the patient an aliquote f tissue (which can be, for example, normal tissue, cancerous tissue, blood, lymph nodes, etc.) including cells resulting from step (ii) and their progeny; and (iv) determining the quantity of the cells resulting from step (ii) and their progeny, in said aliquot.
M re specifically, the present invention comprises a method f detecting the presence f blood cells containing a marker, present at a site in a patient, to which site the blood cells “targets”, c mprising (i) inserting into blood cells removed from the patient that are specific for an antigen (either known or unknown) present at the site and that target to site, a DNA segment encoding the marker under conditions such that the marker is present in the blood cells, (ii) introducing cells resulting from step (i) into the patient under conditions such that cells resulting from step (ii) can be found at the site; (iii) removing from the patient an aliquot of tissue from the site, which aliquote includes cells resulting from step (ii) and their progeny; and (iv) determining the quantity of the cells resulting from step (ii) and their progeny, in said aliquot. The marker gene can be, for example, inserted into blood cells which specifically “target” to a tumor in order to determine the traffic and survival of the transformed blood cells in vivo. Alternatively, the transformed blood cells circulate through the body, rather than targeting to a particular tissue site.
The marker gene can be any gene which is different from the genes in the blood cell into which the marker gene is inserted. Examples of such marker genes include neoR, multi-drug resistant gene, thymidine kinase gene, β-galactosidase, dehydrofolate reductase (DHFR) and chloroamphenicol acetyl transferase.
The marker gene can be inserted into a human primary cell, such as a blood cell, together with a therapeutic gene or separately. The marker gene and the therapeutic gene may also be one and the same.
To initially test the feasibility of using lymphocytes for gene transfer, the retroviral gene transfer vector SAX (P. W. Kantoff, et al, PNAS 83:6563 (1986)) was used to insert the genes for human adenosine deaminase (hADA) and neomycin resistance (neoR) into the murine T cell line 14.1 SAX is a moloney virus based vector with the neoR gene promoted from the retroviral LTR and the hADA gene promoted from an internal SV40 promoter. The 14.1 T cell line was derived from the draining lymph nodes of a BIO.D2 mouse previously immunized with sperm whale myoglobin (SWM) by repeated cycles of antigen stimulation of these lymphocytes in tissue culture (I. Berkower, et al., J. Immunol. 135:2628 (1985)). These 14.1 T-cells proliferate when challenged with SWM in the presence of histocompatible antigen-presenting cells (without exogenous IL-2) or when stimulated with PHA and rIL-2 in vitro. An average of 20% of the 14.1-T cells achieved stable insertion of the SAX vector after a supernatant infection protocol (P. W. Kantoff, et al, PNAS 83:6563 (1986)). The population of SAX-transduced 14.1-T cells was selected in the neomycin analog G418 so that all cells were expressing the introduced genes and were then expanded by repeated cycles of antigen stimulation to obtain large numbers of transduced cells. FIG. 1A demonstrates by assay for functional enzyme that the cells containing the inserted SAX vector are expressing high levels of the neoR gene product, neomycin phosph transferase (NPT). FIG. 1B demonstrates expression of human adenosine deaminase (hADA), also encoded by the SAX vector inserted in these T cells. The SAX-transduced, expanded population of 14.1 cells (14.1SAX) were functionally unchanged except f r the gene insertion and its expressi n which provides for G418 resistance, the cells remained responsive to SWM in vitro.
A thymic nude mice were then injected intraperitoneally with 20×106 14.1SAX T-cells and immunized with 100 μg soluble SWM. Athymic recipients were chosen for these experiments because they have very little endogenous Te cell activity and therefore any T cells recovered from these mice at a later date should represent the original injected 14.1 SAX cells or their progeny.
Thirty-seven days after intraperitoneal injection of the 14.1SAX-T cells, spleens from recipient athymic mice were removed and tested to determine if any cells expressing the introduced genes could be detected by demonstrating G418 resistance and hADA. FIG. 2 shows the proliferative response of splenic lymphocytes and 14.1 cells to stimulation with phytohemagglutinin and IL-2 and the effect of G418 on this proliferation. While control nude mouse splenocytes did proliferate modesty to PHA+IL-2, this response was abolished by low concentrations of G418. By contrast, PHA and IL-2 responsive lymphocytes recovered from the spleens of nude mice injected with 14.1SAX-T cells 37 days earlier remained resistant to G418, indicating persistence of the transferred 14.1 cells as well as continued expression of the introduced neoR gene. These G418-resistant recovered T cells were further expanded in IL-2, tested for expression of the hADA isozymes by cellulose acetate electrophoresis and were found to be expressing the product of this introduced gene as well. Thus, antigen-specific T cells maintained in tissue culture and transduced with foreign genes by retroviral-mediated gene transfer were able to survive and express the introduced genes for at least 37 days when reinjected into an intact host animal.
Because of the success in demonstrating that cultured T lymphocytes carrying inserted foreign genes could survive for prolonged periods of time in mice and continue to express the inserted genes, situations were investigated where the technique might be used in mass. S. A. Rosenberg, et al, Science 223:1318 (1986) have shown that the treatment of experimental cancer with T lymphocytes which have been isolated directly from the tumor and expanded in culture with rIL-2 can cause tumor regression . Techniques for growing the tumor infiltrating lymphocytes (TIL) from human cancers have been developed and the functional and phenotypic properties of these cells have been extremely characterized (L. M. Muul, et al, J. Immunol. 138:989 (1987); S, Topalian et al, J. Immunol. Meth. 102:127 (1987); A. Belldegrum, et al, Cancer Res. 48:206 (1988)). In the initial clinical studies using human TIL along with intravenous infusion of rIL-2 in 20 patients with advanced metastatic melanoma, objective remissions with at least 50% reduction of tumor burden were seen in 55% of the patients (S. A. Rosenberg et al, N. Engl. J. Med. 319:1676 (1988)). These were patients who had failed air conventional forms of cancer treatment and thus TIL therapy is expected to open a significant new direction in the treatment of cancer.
At this state in the development of TIL therapy, many issues remain to be clarified including a more complete understanding of the features of individual TIL preparations which correlate with clinical antitum r effects, the in vivo distribution and time of persistence f TTL after infusion, and whether distinct TIL functional phenotypes localize in the body in ways which will permit prediction of their clinical efficacy.
Trafficking studies using radionuclides as cell labels have shown that TIL from some patents do appear to specifically accumulate in areas of tumor within the first few days, alth ugh these studies have been limited by the short half-life of the clinically acceptable isotopes (2.8 days for In) and the high rate f spontaneous release of the isotope from the TIL (B. Fisher, et al, J. Clin. Oncol. 7:250 (1989)). Genes used as labels could potentially solve several of the problems associated with radionucleotide labels. Genes become stably integrated into the genome of the target cell and then will be completely destroyed when the cell dies so that any detected label should only be associated with the original marked cell or its progeny. In contrast to radionuclide tags which become diluted as cell proliferate, a gene label will also equally mark progeny cells derived by continued proliferation of the originally labelled cell population as occurs when TIL proliferation is driven by IL-2 infusions given to the patient. An important characteristic that is unique to the use of genes as cell labels in their ability to introduce an entirely new functional property to the target cell. With the gene neoR, for example, the target cell acquires resistance to the neomycin analog G418 which permits, as we have shown for mouse 14.1SAXT-cells, the selective recovery of the gene-marked cells by regrowth of recovered cells in the presence of G418. With recovery, the cells from different sites could then be analyzed for their functional phenotypes and potential correlations with clinical efficacy.
To explore the possibility that inserted genes might be used to label TIL, cultured TIL from 6 patients with metastatic malignant melanoma were studied using the retroviral vector N2, which vector was described by (D. Armentano, et al, J. Virology 61:1647 (1987)). N2 contains the gene neoR promoted by the retroviral LTR and has been used extensively by the inventors in studies of bone marrow gene-transfer in mide and primates during the past 5 years (M. E. Egitis, et al, Science 230:1396 (1985); D. Kohn, et al, Blood Cells 13:285-298 (1987)); P. W. Kantoff, et al, J. Exp. Med. 166:219 (1987)). Human TIL were efficiently transduced with N2 by exposure to viral supernatant produced by the amphotrophic packaging cell line PA317 which package cell line was described by (A. D. Miller, et al, Molecular Cellular Biol. 6:2895 (1986)). The N2-TRANSDUCED TIL expressed sufficient neomycin phosphotransferase (NPT) to become resistant to the toxic effects of G418 on cellular proliferation as demonstrated in FIG. 3A. On average, 10-15% of the N2-treated TIL population grew in G418 while >99% of the untreated TIL died. After 10 days of selection in 0.3 mg/ml G418, the surviving N2-treated population was G418 resistant. FIG. 3B shows growth curves of N2-transduced and untreated TIL for the 30 day period following gene insertion. Growth of the N2-transduced TIL population as a whole slows initially when G418 is added to the culture (not shown, but resumes exponential expansion as growth of the NeoR-expressing G418-resistant subpopulation becomes established. After completion of selection, the N2-transduced cells as a rule grew at a rate comparable to that of TIL not transduced with the neoR gene.
To further characterize these cells and to study possible differences between th gene-transduced and non-transduced TIL, studies of the cell membrane phenotype and the constitutive cytotoxic properties f the tw cell rpus have been performed (see Table 1 below).
TABLE 1 |
CHARACTERISTICS OF N2-TRANSDUCED AND |
NON-TRANSDUCED TIL |
N2-transduced and G418 | ||
Untreated TIL | Selected |
Phenotype | Cytotoxicity | Phenotype | Cytotoxicity | |
% Positive | % 56Cr Release | % Positive | % 56Cr Release |
Patient | CD4 | CD8 | Auto | NK | CD4 | | Auto | NK | |
1 | 0 | 97.9 | 0 | 0 | 0 | 98.7 | 0 | 0 |
2 | 81.8 | 3.9 | 0 | 0 | 88.6 | 1.4 | 0 | 0 |
3 | 30.7 | 60.5 | 26.4 | 0 | 6.9 | 82.2 | 26.1 | 4.7 |
4 | 76.5 | 13.7 | 0 | 0 | 30.5 | 68.6 | 0 | 0 |
5 | 0.1 | 97.7 | 22.5 | 0 | 0.7 | 98.2 | 25.5 | 0 |
6 | 8.9 | 94.7 | 4 | 0 | 5.4 | 95.0 | 2 | 0 |
TIL transduced with N2 and selected with 0.3 mg/ml G418 for 10-14 days were compared with non-transduced TIL from 6 patients with methastatic malignant melanoma. These populations were analyzed for their surface membrane phenotype as revealed by FACS analysis of 1×106 TIL stained monoclonal antibodies. Antibodies to CD4(Leu 3) and CD8 (Leu 2) were used on populations and the percentage of the cells positive for each determinant are shown. Constitutive cytotoxic function of each TIL population was determined for autologous tumor targets (auto) and the NK sensitive target K562 (NK) as well as for allogeneic tumor and sensitive target cells (not shown) by a standard 4 hour 56Cr release assay at E:T ratios of 40:1, 15:1, and 4.5:1. Data shows target lysis at the 40:1 E:T ratio. TIL isolated from different individual donors have different phenotypic profiles as determined by various cell membrane determinants (CD4, CD8, etc.) and different levels of cytotoxic activity toward autologous tumor and other target cell types. Human TIL of both major phenotypic subgroups (CD4 and CD8) were readily transduced by the N2 vector and expressed G418 resistance. Some transduced and selected TIL populations (patients 3 and 4) showed more drift in their phenotypic composition than others, and as expected with more prolonged culture, all of the TIL populations became progressively oligoclonal whether or not they had been transduced with N2 (not shown). TIL are often cytolytic for autologous tumor cells but not other target cell types in vitro. Of this group of six patients, TIL isolated from two were cytolytic to autologous tumor cells, but not alleogeneic melanoma tumor cells, NK (K562) or LAK (Daudi) sensitive targets. The functional cytotoxic activity profile of the TIL was unaffected by N2 transduction and G418 selection, even in those TIL populations showing some drift in T cell subset composition measured by surface membrane antigen phenotype.
The present invention will be illustrated in detail in the following examples. These examples are included for illustrative purposes and should not be considered to limit the present invention.
The following experiment demonstrates that murine 14.1-T cells containing an inserted SAX vector express high levels of the neoR gene product, NPT, as well as expressing hADA.
Long term cultures of the murine T cell line 14.1 were maintained by repeated cycles of stimulation with 4.0 μM SWM in the presence of fresh irradiated (3000 R) B10.D2 spleen cells as antigen-presenting cells. Four days after antigen stimulation, the cultures were fed with complete fresh medium and placed n irradiated syngeneic spleen cells f r a 10 day rest phase. No ex gen us IL-2 was used with this T cell line. T introduce ex genous genes int these 14.1-T cells, 3 days after antigen stimulation the proliferating activated 14.1 cells were exposed to SAX supernatant (MOI=5) in the presence of 8 μg/ml polybrene for two sequential 4 hour incubation.
Twenty-four hours later the SAX-transdermal 14.1 cells were placed under selection with 0.3 mg/ml G418 for 14 days. The SAX-transduced G418 selected cells were then expanded by repeated 14 day cycles of antigen stimulation and rest on syngeneic feeder cells. Lysates from the G418-selected 14.1 population were prepared and assayed for the presence of NPT by measuring the phosphorylation of kanamycin with P32 labelled ATP after separation of NPT from endogenous phosphotransferases on a non-denaturing polyacrylamide gel (B. Reiss, et al, Gene 30:211 (1984)).
As shown in FIG. 1A , the 14.1 cells containing the inserted SAX vector expresses high levels of NPT.
Lysates of the 14.1 cells were separated by electrophoresis on cellulose acetate (B. Lira, et al, Molecular Cellular Biol. 7:3459 (1987)) which was then stained for the presence of the murine and human isozymes of ADA (FIG. 1B). The human T cell line CEM was included as a control for the migration of hADA.
The results are shown in FIG. 1B which demonstrates the expression of hADA.
The following experiment was performed in order to demonstrate the continued expression of a transferred gene in gene modified T-cells. Specifically, the effect of G418 on the proliferative response of murine splenic lymphocytes and 14.1-T cells to stimulation with phytohemagglutinin and IL-2 was studied.
Cultures of 14.1-T cells, 14.1SAX transduced T cells, splenic lymphocytes from nude mice and splenic lymphocytes recovered from nude mice that had been given an intraperitioneal injection of 20×10614.1SAX T cells 37 days earlier were established with 2×105 cells/ml in flat bottom microculture trays using medium and culture conditions previously described (L. Berkower, et al, J. Immunol. 135:2628 (1985) Proliferation in response to stimulation with 5 μg/ml PHA (Wellcome) and 100 n/ml rIL-2(Cetus Corporation) was measured as the incorporation of 3H thymidine into cellular DNA following an overnight pulse with 0.4 μCl added after 72 hours of culture. G418 prepared as the concentrations of active drug indicated (FIG. 2 ) was added at the initiation of culture. Cultures were harvested for scintillation counting using a Sakron TM cell harvesting system.
The experiment described bel w was perf rmed in order to verify that human N2-transduced TIL expresses sufficient NPT to become resistant to the toxic effects of G418 on cellular proliferation.
TIL grows from a tumor biopsy obtained from a patient with metastatic malignant melanoma were exposed to two sequential 4 hour exposure to N2 supernatant (average viral titer 106/ml, MOI=2) in the presence of 5 μg/ml protamine sulfate (K. Kornetta, et al, J. Viorol. Meth. 23:187 (1989)). Twenty-four hours later an aliquot was removed and placed under selection in 0.3 mg/ml G418 for 10 days. The cells were then to grown without G418 for two weeks and then were tested for the effect of various concentrations of G418 on their proliferative response to 1000 u/ml IL-2.
The untreated TIL (no vector) was compared with TIL which had been transduced with N2 and selected with G418 (N2+G418) and with an N2-transduced TIL population which had not been further selected in G418 (N2). Proliferative was measured by 3H-thymidine incorporation as described in Example 2.
The results are shown in FIG. 3A , wherein it may be seen that, on average, 10-15% of the N2-treated TIL population grew in G418 while >99% of the untreated TIL died After 10 days of selection in 0.3 mg/ml G418, the surviving N2 treated population was G418 resistant.
TIL from patent 1 were grown from a tumor biopsy as described (Tobalian et al, J. Immune Method 138:4006-4011 (1987)) and then an aliquot was transduced with the N2 vector by two 4-hour exposures to viral supernatant (note: LNL 6 is identical to N2 except that LNL6 has several additional safety features). Forty-eight hours later the transduced population was placed under selection for 10 days with 0.3 mg/ml G418. Non-transduced TIL exposed to this selection protocol were all dead by day 10. Growth of the N2-transduced TIL population allowed when placed in G418, but resumed at an exponential rate while still under selection as the cells expressing the neoR gene became dominant by day 10. TIL cultures were fed and split as required (1-2 times per week) and the cumulative cell total calculated when the running total reached >106 cells to that larger numbers of cells would not have to be maintained in culture.
In this example, about 15% of the N2 - treated TIL population expressed the inserted gene sufficiently to permit growth in 0.3 mg/ml G418. After completion of selection, the N2-transduced cells at a rule grew at a rate comparable to that of TIL not transduced with the neoR gene.
The TNF-NeoR vector is constructed by modifying the Monkey murine leukemia vector.
Construction f TNF vector
The TNF gene containing water, LT125N, was constructed from the vector LXSN (Miller AD and Rossman G., 1989, Biotechniques 7:980-990.), usign the entire 233 amino acid sequence encoding cDNA f the natural TNF genes (Pennies, et al, 1984, Nature 312, 724-729, Wang, et al, Science 228, 149-154). The ribosome binding site used upstread of the TNF gene was a syntehtic one, a consensus sequence f r translation initiation based on Kozak's rules (Kozak, Nucle. Acids Res. 12, 857-872 (1984) and having the nucleotide sequence 5′ TTCCGCAGCAGCCCGCCACC3′. The vectors construct was packaged using the PA317 packaging cell line (Miller et al., Mol. Cell Biol. 6, 2895-2902 (1986)).
Retroviral vector supernatant is produced by harvesting the cell culture medium from the PA317 packaging line developed by Dr. A. Dusty Miller. This line has been extensively characterized and was used by us in our previous studies of the infusion of TIL modified by the N2 vector. The TNF-Neo vector preparations from PA317 are extensively tested to assure that no detectable replication competent virus is present. Tests for replication-competent virus are conducted on both the vector supernatant and on the TIL after transduction. The follwoing tests are run on the producer line and/or the viral supernatant:
1) The viral titer is determined on 3T3 cells. Viral preparations with titers greater than 5×104 colony forming units/ml are used.
2) Southern blots are run on the producer line to detect the TNF gene.
3) TNF production by the product line is measured and should be significantly above baseline control values. TNF is assayed using standard biologic assays on the L929 amino cell line (Asher et al. J. Immunol 138:963-974, 1987) or by ELISA assay (R&D Systems, Minneapolis, Minn.).
4) Sterility of the producer line and the supernatant is assured by testing for aerobic and anaerobic bacteria, fungus and for mycoplasma.
5) Viral testing is performed including:
-
- a. MAP test
- b. LCM virus
- c. Thymic agent
- d. S+L—assay for ecotropic virus
- e. S+L—for xenotropic virus.
- f. S+L—for amphotropic virus.
- g. 3T3 amplification.
6) Electron microscopy is performed to assure the absence of adventitions agents.
Following transduction and growth of the TIL population the following tests are performed on the TIL prior to infusion into patients.
1) Cell viability is greater than 70% as tested by trypan blue dye exclusion.
2) Cytologic analysis is performed on over 200 cells prior to infusion to assure that tumor cells are absent.
3) Sterility is assured by testing for aerobic anaerobic bacteria, fungus and mycoplasma.
4) S+L—assay including 3T3 amplification must be negative.
5) PCR assay for the absence of 4070A envelope gene must be negative.
6) Reverse transcriptase assay must be negative.
7) S uthern blots run on the transduced TIL to assure that intact provirus is present.
8) TNF protein assay to assure the production of TNF. Cells must be producing at least 100 pg TNF/106 cells/24 hours.
9) IL-2 will be withdrawn from the culture medium of an aliqu t f r at least one week to assure that cells do n t exhibit auton mous growth in the absence f IL-2.
10) Cyt toxicity against the autol gous and at least tw other targets are tested. The phenotype of the cells as tested by fluorescence activated cell sorting analysis.
At least tw days prior to surgery, peripheral blood lymphocytes are collected by leukapheresis for four hours. These are Ficoll-Hypaque separated and the mononuclear cells from the interface, washed in saline, and placed in culture in roller bottles at 106 cells/ml. Half are placed into AIM-V (a serum free medium, Gibco Laboratories) with 6000 IU/ml IL-2 (Cetus), and Half are placed into RPMI supplemented with 2% type-compatible human serum, penicillin (unless the patient is allergic), gentamicin, and 600 IU/ml IL-2. After 3 to 4days cells are centrifuged and the supernatants are collected and filtered. These are referred to as LAK supernatants.
Immediately upon tumor resection, the specimen(s) is transported to the laboratory in a sterile container and placed on a sterile dissection board in a laminar flow hood. A small reprensentative portion is taken for pathologic analysis, and the rest is minced into pieces roughly 4 mm in diameter. These are placed into an enzyme solution of collagenase, DNAse type I, and hyaluronidase type V for overnight digestion at room temperature. The resulting suspension is filtered through a wire mesh to remove any large debris, washed in saline, and placed on Ficoll-Hypaque gradients. The interface containing viable lymphocytes and tumor cells is collected and washed in saline, and a portion is frozen for subsequent use as targets.
TIL cultures are initiated at 5×105 ml viable cells (tumor plus lymphocytes) in 80% fresh medium/20% LAK supernatants. For half the cells, the fresh medium is AIM-V supplemented with penicillin, fungizone, and 6000 IU/ml IL-2; for the other half, the fresh medium is RPMI supplemented with 10% human serum, penicillin, gentamicin, fungizone, and 6000 IU/ml IL-2. The cultures are placed into 6-well tissue culture dishes and incubated at 37° in humidified incubators with 5% CO2.
Usually the lymphocyte density is not much increased at the end of seven days in culture, and the cultures are collected, centrifugal, and resuspended at 5×105 total viable cells/ml in newly prepared 80%/20% medium mixtures of the same type. Occasionally a culture will have increased lymphocyte density and need medium replenishment prior to seven days. After this first passage, TIL are subcultured by dilution when the density is between 1.5×106 and 2.5×106 cells per ml; densities of subcultures are established between 3×105 and 6×105 ml. Cultures are kept in 6-well dishes when the volume is less than 1 liter, and transferred to 3 liter polyolefins bags (Fenwall) when the volume reaches one liter. The subculture from bags are accomplished with Fluid Fill/Weight Units (Fenwall), which are programmed to pump prescribed weights of TIL culture and fresh medium into a new bag. When subculture volumes exceed 3 liters, the fresh medium used in AIM-5. Cultures growing in serum-containing medium are thus diluted into AIMW, and no further LAK supernatant is added to cultures growing in serum-containing or serum-free medium.
Tumor-infiltrating lymphocytes are transduced when the total number of lymphocytes is about 1-5×108 or higher. Up t one-half f the TIL culture is centrifuged, the medium is saved, and the cells are resuspended in Viral Supernatant with 5 ug/ml protamine. Multiplicities of infection are about 1.5 to 10. The cells in Vital Supernatant are placed int 800 ml tissue culture flasks at 200 ml/flask and incubated at 37° f r 2 hours. During incubati n, the flasks are agitated every 15 minutes to resuspend the cells. The original medium is centrifuged to remove any remaining cells and decanted into new containers. At the end of 2 hours, the cells are centrifuged and resuspended in the original cleared medium. If the density is such that subculturing is necessary, the cells are diluted slightly to a density of about 106/ml and placed into fresh 6-well tissue dishes for continued incubation. The following day, the above transduction procedure is repeated. If the cell density at the conclusion of this second transduction is such that subculturing is necessary, the cells are diluted to 5×105/ml for continued incubation.
When TIL are to be selected to G418, the TIL are cultured for 3 to 5 days after the second transduction and then G418 is added directly to the culture bags to a final concentration of 300 ug/ml G418. After 10 to 20 days the cells are washed and resuspended at 3 to 6×105 cells/ml in fresh medium not containing G418 and then cultured as described above.
When the total TILs for a patient are ready for harvest, 5×106 cells are taken for cytological examination. Cytospins are examined for the presence of remaining tumor. At least 200 cells are studied and therapy proceeds only when no tumor cells are found. Other TIL samples are taken for characterization of cells surface markers and for assessment of cytotoxicity. Briefly, TILs are stained with fluorescent-labeled antibodies (Leu2, Leu3, Leu4, Lue7, Leu11, Leu15, Leu19, LeuM3, HLADR, and Tac). Chromium release assays are performed with K562, Daudi, autologous tumor, and allogeneic tumor targets.
When the total cell number reaches about 2×1011 cells the TILs are collected in two or more batches by continuous flow centrifugation. Some of the TILs are then cryopreserved for future use in 1010 cell aliquots.
For infusion TIL are reharvested. At the time of cell collection, one liter of saline for injection is pumped through the collection chamber and the centrifuge is stopped. TILs are resuspended in the collection bag, the centrifuge is started again, and another liter of saline is pumped through to fully wash the TILs free of tissue culture medium components. The cells are then filtered through a platelet administration set into 600 ml transfer packs (Fenwall) and 50 ml of 25% albumin and 450,000 IU of IL-2 are added to the 200 to 300 ml volume of cells in saline. The TIL are infused over 30 to 60 minutes through a central venous catheter.
Patients receive either LNL-6 modified TIL or TNF-modified TIL (TNF-TIL).
Fresh peripheral blood mononuclear cells (MNCS) are separated from the red cells and neutrophils by Ficoll-Hypaque density gradient centrifugation. The MNCs are then washed, counted and cultured at approximately 1×106 cells/well in 24-well tissue culture plates in AIM-V which consists of AIM-V (GIBCO) with 2 mM glutamine, 50 U/ml penicillin, 50 μg/ml streptomycin, 2.5 μg/ml Fungizone and 25-1,000 U/ml f IL-2 (Cetus). At the initial plating, 10 ng/ml OKT3 (Ortho) monoclonal antibody is added to each well. The cells are cultured at 37° C. in a humidified incubator with 5% CO.
Growth, Transduction and Selection of ADA-Deficient T Lymphocytes
Once the T lymphocytes have begun to proliferate (usually 24-96 hr after initial n at the culture) the cells are transduced by use of LASN vector (Blood, V L 72(2) pages 876-81) 2 ml. LASN vector-containing supernatant (contianing protamine 5-10 μg/ml and up to 1,000 U/ml IL-2) are added to the wells after aspirating off the top half of the medium. This is repeated 1-2 times daily for a period of up to 7 days. After the final exposure to retroviral vector the cells are fed with fresh AIM-V and cultured another 2-7 days to permit the cultures to return to exponential growth. Approximately 80% of the culture 0.1-2.5×1010 T cells are infused into the patient and the remaining cells cryopreserved for future use or returned to culture for studying growth and selection procedures, phenotype analysis, T cell repertoire analysis and percentage of cells demonstrating vector integration.
An aliquot of the cells infused into the patient is saved for subsequent Southern analysis on the DNA from the cultured cells after digestion with a restriction endonuclease which does not cut within the vector sequence to determine whether the gene-modified cells are polyclonal with respect to retroviral insertion.
Reinfusion of hADA Transduced T Lymphocytes
The transduced cells are harvested, washed, and resuspended in normal saline. The final cell preparation is filtered through a platelet filter and transferred into a syrinige or transfusion pack for infusion. A test dose of 5% of the total volume is infused by peripheral vein followed by an observation period of 5-10 min.
Transduced cells were administered to patient # 1 in the amounts and at the times shown in FIG. 4. The ADA enzyme levels of patient # 1 are shown in FIG. 5.
For purposes of completing this disclosure, the entire contents of the references cited herein are hereby incorporated by references and relied upon.
The TNF-NeoR vector was constructed as in Example 4, and retroviral vector supernatant is prepared and tested as disclosed therein.
A. Preparation of Gene-Modified Tumor Cells.
Tumor cell lines are established in tissue culture from tumor fragments or single cell suspensions using standard tissue culture techniques. (Topalian, et al., J. Immunol, Vol. 144, pgs. 4487-4495 (1990)). Tumor and normal tissue are obtained immediately after surgery.
The tumors were minced into 1 mm3 fragments and dissociated with agitation in serum free DMEM (Dulbecco Modified Eagle Medium)(Bio-fluids) containing 2 mM glutamine, 0.1 mg/ml hyaluronidase, 0.01 mg/ml DNase I an d0.1 mg/ml collagenase for 3 hours at room temperature. The cell suspension was then centrifuged at 800 g for 5 minutes and the pellet resuspended in a culture medium consisting of 5 ml of DMEM high glucose (4.5 g/l) with penicillin and glutamine supplemented with 10% fetal calf serum. The cells were either centrifuged prior to being frozen in 90% FCS, 10% DMSO at −80° C., or plated in appropriate dishes or culture flasks in culture medium. Plated cells were incubated at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. Within 48 hrs, the culture medium was changed in order to remove all non-attached material. Subsequently, cultures were incubated for a period of 6 to 8 days without medium change. The tum rs grow as adherent monolayers in tissue culture flasks (Falcon #3028; 175 cm−2; 750 ml) containing about 50 ml of medium. When the cells are actively growing and not yet confluent the medium will be poured off and 30-50 ml of medium containing the retroviral supernatant with 5 μg/ml protamine will be added to the flask. Cornetta, et al., J. Virol. Meth., Vol. 23, Pgs. 186-194 (1989). The flasks will be incubated at 37° C. for six hours at which time the medium will be changed. This procedures will be repeated up to three times. After 24 to 48 hours medium containing 300 μg/ml G418 is added directly to the flask and the ells will be grown and subcultured for 7 to 14 days in G418 containing medium. The G418 concentrations may be raised to 1 mg/ml depending on the health of the culture.
B. Tests on the Transduced Tumor Population.
The following tests are performed on the tumor cells prior to injection into patients.
1) Call viability will be greater than 70% as tested by trypan dye exclusion.
2) Sterility will be assured by testing for aerobic and anaerobic bacteria, fungus and mycoplasma.
3) S+/L—assay must be negative.
4) Souther blot or PCR analysis will be run on the transduced tumor to assure that proviral sequences are present.
5) TNF protein assay to assure the production of TNF. Cells must be producing at least 100 pg TNF/106 cells/24 hours.
C. Injection of Tumor Cells.
Gene-modified tumor cells are harvested from the culture flasks by exposure to 0.25% versene (EDTA) for 10 minutes. The cells are washed three times by suspension in 50 mls normal saline and centrifugation. The final cell pellet will be suspended in normal saline and counted. 2×108 viable cells in 1 ml normal saline are injected subcutaneously just beneath the skin in the anterior mid thigh and the overlying skin marked with a tatoo dot. If 2×108 cells are not available, fewer may be given but not less than 2×107 cells will be injected. About 3 cm lateral or vertical to this injection the patient will receive two intradermal injections (separated by 1 cm) of 2×107 gene modified tumor cells in 0.1 ml normal saline and these sites also marked by a tatoo dot. These sites are monitored weekly by a physician. At three weeks the patient undergoes excisional biopsy of superficial inguinal lymph nodes (without formal dissection) in the area draining the inoculation site for growth of lymphocytes. If tumor grows at any of these sites they will be excised when they reach 1 to 2 cm for growth of TIL. If no tumor growth is evident that the sites of tumor injection will be excisionally biopsied at 8 weeks after injection of pathologic analysis.
D. Growth of Lymphocytes.
At least two days prior to surgery, peripheral blood lymphocytes are collected by leukapheresis for four hours, are processed, and then cultured as described in Example 4.
If, during the growth TIL, a patient's condition has deteriorated to an unacceptable level, or if the patient has developed significant cardiac, renal, pulmonary, or hematologic dysfunction, then the patient will not receive the infusion of TIL or of IL-2 as described hereinbelow.
When the total lymphocytes f r a patient are ready f r harvest, 5×106 cells are taken from cyt 1 gical examination. Cytospins are examined f r the presence f remaining tum r. At least 200 cells are studied and therapy proceeds only when no tumor cells are found. Other lymphocyte samples are taken f r characterization of cell surface markers and for assessment of cytotoxicity. (Berd, et al., Cancer Res., Vol. 46, pgs. 2572-2577 (1986)). Briefly, lymphocytes are stained with fluorescent-labeled antibodies (Leu2, Leu3, Lue4, Lye7, Lue11, Leu5, Leu9, LeuM3, HLADDR and Tac). Chromium release assays are performed with K562, Daudi autologous tumor, and allogeneic tumor targets.
To infuse the lymphocytes, they are thawed and grown for one to three additional weeks using the same procedures hereinabove described. For infusion TIL are reharvested. At the time of cell collection, one liter of saline for injection is pumped through the collection chamber and the centrifuge is stopped. Lymphocytes are resuspended in the collection bag, the centrifuge is started again, and another liter of saline is pumped through to wash fully the TIL's free of tissue culture medium components. The cells are then filtered through a platelet administration set into 600 ml transfer packs (Fenwal), and 50 ml of 25% albumin and 450,000 IU of IL-2 are added to the 200 to 300 ml volume of cells in saline. The TIL are infused over 30 to 60 minutes through a central venous catheter.
E. Administration of Interleukin-2.
The recombinant IL-2 used in this trial is provided by the Division of Cancer Treatment, National Cancer Institute (supplied by Cetus Corporation, Emeryville, Calif.) and will be administered exactly as specified in Rosenberg, et al., New Engl. J. Med., Vol. 323, pgs. 570-578 (1990). The IL-2 is provided as a lyophilized powder and will be reconstituted with 1.2 ml/vial. Each vial contains approximately 1.2 mg of IL-2 (specific activity 18×106IV/mg). Less than 0.04 ng of endotoxin are present per vial as measured by the limulus amebocyte assay. Each vial also contains 5% mannitol and approximately 130-230 μg of sodium dodecyl sulfate/mg of IL-2. Following reconstitution the IL-2 is diluted in 50 ml of normal saline containing 5% human serum albumin, and is infused intravenously at a dose of 720,000 IU/kg over a 15 minute period every 8 hr, beginning from two to 24 hr after the TIL infusion. IL-2 will be given for up to five consecutive days as tolerated. Under no circumstances is more than 15 doses of IL-2 be administered. Doses may be skipped depending on patient tolerance. Doses will be skipped if patients reach grade III or grade IV toxicity. If this toxicity is easily reversed by supportive measures then additional doses may be given.
Patients may receive concomitant medications to control side effects. For example, the patients may be given acetaminophen (650 mg every 4 hours), indomethacin (50-75 mg every 6 hours), and ranitidine (150 mg every 12 hours) throughout the course of the treatment. Patients may also receive intranveous meperidine (25-50 mg) to control chills if they occur. Hydroxyzine hydrochloride may be given (25 mg every 6 hours) to treat pruitia, if present.
In this example, the procedure of Example 6 were again followed, except that the vector employed to generate vector particles and retroviral vector supernatant, was the IL-2-NeoR vector. This vector was constructed from the vector LXSN (Miller, et al, 1989), and contains the Il-2 gene. Upon construction f the IL-2NeoR vector and the generation f vector particles and retroviral vector supernatants, that protocols for preparing gene-modified tumor cells and for treatment of patients with such cells, described in Example 6, were then followed.
Although the present invention has been described in particular with respect to genetically engineering primary human nucleated blood cells, and primary human tumor cells, it is to be understood that within the scope of the present invention, one may genetically engineer other human primary cells. Other primary human cells which may be genetically engineered in accordance with the present invention include, but are not limited to, endothelial cells, epithelial cells, keratinocytes, stem cells, hepatocytes, connective tissue cells, fibroblasts, mesenchymal cells, msothelial cells, and parenchymal cells.
While the invention has been described with respect to certain specific embodiment, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the invention. It is intended, therefore, by the appended claims to cover all such modification and changes as fall within the true spirit and scope of the invention.
Claims (20)
1. A process for providing a human with a therapeutic protein comprising:
introducing human cells int a human, said human cells having been treated in vitro to insert therein a DNA segment encoding a therapeutic protein said human cells expressing in vivo in said human a therapeutically effective amount of said therapeutic protein.
2. The process of claim 1 wherein said cells are blood cells.
3. The process of claim 1 wherein said cells are leukocytes.
4. The process of claim 1 wherein said cells are lymphocytes.
5. The process of claim 1 wherein said cells are T-lymphocytes.
6. The process of claim 1 wherein said cells are TIL cells.
7. The process of claim 1 wherein said cells are B-lymphocytes.
8. The process of any one of claims 1-7 wherein said DNA segment has been inserted into said cells in vitro by a viral vector.
9. The process of claim 8 wherein said viral vector is a retroviral vector.
10. The process of any one of claims 1-7 wherein the DNA segment encodes a cytokine.
11. The process of claim 10 wherein the cytokine is TNF.
12. The process of claim 10 wherein the cytokine is an interleukin.
13. The process of claim 10 wherein said DNA segment has been inserted into said cells in vitro by a viral vector.
14. The process f claim 13 wherein said viral vector is a retroviral vector.
15. A process for providing a human with a therapeutic protein comprising:
introducing autologous human cells into a human, said autologous human cells having been treated in vitro to insert therein a DNA segment encoding a therapeutic protein, said autologous human cells expressing in vivo in said human a therapeutically effective amount of said therapeutic protein, wherein said therapeutic protein is an interleukin, wherein the autologous human cells are T lymphocytes.
16. The process of claim 15 , wherein said cells are tumor infiltrating lymphocytes (TIL).
17. The process of claim 15 or 16 , wherein said DNA segment has been inserted into said cells in vitro by a viral vector.
18. The process of claim 17 , wherein said viral vector is a retroviral vector.
19. The process of claim 15 , wherein the interleukin is selected from the group consisting of IL- 1, IL- 2, IL- 3, IL- 4, IL- 5, IL- 6, IL- 7, IL- 8, IL- 9, IL- 10, IL- 11, and IL- 12.
20. The process of claim 19 , wherein the interleukin is IL- 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/701,022 USRE39788E1 (en) | 1989-06-14 | 2003-11-04 | Gene therapy |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36556789A | 1989-06-14 | 1989-06-14 | |
US80744691A | 1991-12-13 | 1991-12-13 | |
US86879492A | 1992-04-15 | 1992-04-15 | |
US90466292A | 1992-09-08 | 1992-09-08 | |
US08/220,175 US5399346A (en) | 1989-06-14 | 1994-03-30 | Gene therapy |
US10/701,022 USRE39788E1 (en) | 1989-06-14 | 2003-11-04 | Gene therapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/220,175 Reissue US5399346A (en) | 1989-06-14 | 1994-03-30 | Gene therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39788E1 true USRE39788E1 (en) | 2007-08-21 |
Family
ID=27502997
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/220,175 Ceased US5399346A (en) | 1989-06-14 | 1994-03-30 | Gene therapy |
US10/701,022 Expired - Lifetime USRE39788E1 (en) | 1989-06-14 | 2003-11-04 | Gene therapy |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/220,175 Ceased US5399346A (en) | 1989-06-14 | 1994-03-30 | Gene therapy |
Country Status (1)
Country | Link |
---|---|
US (2) | US5399346A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080131415A1 (en) * | 2006-11-30 | 2008-06-05 | Riddell Stanley R | Adoptive transfer of cd8 + t cell clones derived from central memory cells |
US20080175845A1 (en) * | 2006-06-15 | 2008-07-24 | Targeted Genetics Corporation | Methods for treating target joints in inflammatory arthritis using AAV vectors encoding a TNF antagonist |
US20090123441A1 (en) * | 2007-10-08 | 2009-05-14 | Intrexon Corporation | Engineered Dendritic Cells and Uses for the Treatment of Cancer |
US11111493B2 (en) | 2018-03-15 | 2021-09-07 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
Families Citing this family (953)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3681787D1 (en) * | 1985-07-05 | 1991-11-07 | Whitehead Biomedical Inst | EXPRESSION OF FOREIGN GENETIC MATERIAL IN EPITHELIC CELLS. |
US6150328A (en) * | 1986-07-01 | 2000-11-21 | Genetics Institute, Inc. | BMP products |
US6048729A (en) * | 1987-05-01 | 2000-04-11 | Transkaryotic Therapies, Inc. | In vivo protein production and delivery system for gene therapy |
US6093699A (en) * | 1987-07-09 | 2000-07-25 | The University Of Manitoba | Method for gene therapy involving suppression of an immune response |
EP0633318A1 (en) * | 1987-09-11 | 1995-01-11 | Whitehead Institute For Biomedical Research | Transduced fibroblasts and uses therefor |
US5674722A (en) * | 1987-12-11 | 1997-10-07 | Somatix Therapy Corporation | Genetic modification of endothelial cells |
US6544771B1 (en) | 1987-12-11 | 2003-04-08 | Cell Genesys, Inc. | Retroviral gene therapy vectors and therapeutic methods based thereon |
US6001350A (en) * | 1987-12-11 | 1999-12-14 | Somatix Therapy Corp | Genetic modification of endothelial cells |
US6140111A (en) * | 1987-12-11 | 2000-10-31 | Whitehead Institute For Biomedical Research | Retroviral gene therapy vectors and therapeutic methods based thereon |
US5580776A (en) * | 1988-02-05 | 1996-12-03 | Howard Hughes Medical Institute | Modified hepatocytes and uses therefor |
EP0732397A3 (en) | 1988-02-05 | 1996-10-23 | Whitehead Institute For Biomedical Research | Modified hepatocytes and uses therefor |
US5716826A (en) * | 1988-03-21 | 1998-02-10 | Chiron Viagene, Inc. | Recombinant retroviruses |
US5662896A (en) | 1988-03-21 | 1997-09-02 | Chiron Viagene, Inc. | Compositions and methods for cancer immunotherapy |
US6569679B1 (en) | 1988-03-21 | 2003-05-27 | Chiron Corporation | Producer cell that generates adenoviral vectors encoding a cytokine and a conditionally lethal gene |
US5997859A (en) * | 1988-03-21 | 1999-12-07 | Chiron Corporation | Method for treating a metastatic carcinoma using a conditionally lethal gene |
US6133029A (en) * | 1988-03-21 | 2000-10-17 | Chiron Corporation | Replication defective viral vectors for infecting human cells |
US5650148A (en) * | 1988-12-15 | 1997-07-22 | The Regents Of The University Of California | Method of grafting genetically modified cells to treat defects, disease or damage of the central nervous system |
ATE219519T1 (en) * | 1989-01-23 | 2002-07-15 | Chiron Corp | RECOMBINANT THERAPIES FOR INFECTIONS AND HYPERPROLIFERATIVE DISORDERS |
EP0497922B1 (en) * | 1989-10-24 | 2002-01-30 | Chiron Corporation | Infective protein delivery system |
US6027722A (en) * | 1990-10-25 | 2000-02-22 | Nature Technology Corporation | Vectors for gene transfer |
US5747469A (en) * | 1991-03-06 | 1998-05-05 | Board Of Regents, The University Of Texas System | Methods and compositions comprising DNA damaging agents and p53 |
WO1993002556A1 (en) * | 1991-07-26 | 1993-02-18 | University Of Rochester | Cancer therapy utilizing malignant cells |
US5529774A (en) | 1991-08-13 | 1996-06-25 | The Regents Of The University Of California | In vivo transfer of the HSV-TK gene implanted retroviral producer cells |
US20080070842A1 (en) * | 1991-11-04 | 2008-03-20 | David Israel | Recombinant bone morphogenetic protein heterodimers, compositions and methods of use |
KR100259827B1 (en) * | 1991-11-04 | 2000-06-15 | 브루스 엠. 에이센, 토마스 제이 데스로저 | Recombinant bone morphogenetic protein heterodimers |
NZ245015A (en) * | 1991-11-05 | 1995-12-21 | Transkaryotic Therapies Inc | Delivery of human growth hormone through the administration of transfected cell lines encoding human growth hormone, which are physically protected from host immune response; the transfected cells and their production |
US6692737B1 (en) | 1991-11-05 | 2004-02-17 | Transkaryotic Therapies, Inc. | In vivo protein production and delivery system for gene therapy |
US6063630A (en) | 1991-11-05 | 2000-05-16 | Transkaryotic Therapies, Inc. | Targeted introduction of DNA into primary or secondary cells and their use for gene therapy |
US6054288A (en) * | 1991-11-05 | 2000-04-25 | Transkaryotic Therapies, Inc. | In vivo protein production and delivery system for gene therapy |
WO1993010218A1 (en) * | 1991-11-14 | 1993-05-27 | The United States Government As Represented By The Secretary Of The Department Of Health And Human Services | Vectors including foreign genes and negative selective markers |
WO1993017715A1 (en) * | 1992-03-05 | 1993-09-16 | Board Of Regents, The University Of Texas System | Diagnostic and/or therapeutic agents, targeted to neovascular endothelial cells |
US5660827A (en) * | 1992-03-05 | 1997-08-26 | Board Of Regents, The University Of Texas System | Antibodies that bind to endoglin |
US6749853B1 (en) | 1992-03-05 | 2004-06-15 | Board Of Regents, The University Of Texas System | Combined methods and compositions for coagulation and tumor treatment |
US6093399A (en) * | 1992-03-05 | 2000-07-25 | Board Of Regents, The University Of Texas System | Methods and compositions for the specific coagulation of vasculature |
US6036955A (en) * | 1992-03-05 | 2000-03-14 | The Scripps Research Institute | Kits and methods for the specific coagulation of vasculature |
US6004555A (en) * | 1992-03-05 | 1999-12-21 | Board Of Regents, The University Of Texas System | Methods for the specific coagulation of vasculature |
US5965132A (en) * | 1992-03-05 | 1999-10-12 | Board Of Regents, The University Of Texas System | Methods and compositions for targeting the vasculature of solid tumors |
US6087323A (en) * | 1992-04-03 | 2000-07-11 | Cambridge Neuroscience, Inc. | Use of neuregulins as modulators of cellular communication |
US6531124B1 (en) | 1992-07-10 | 2003-03-11 | Transkaryotic Therapies, Inc. | In vivo production and delivery of insulinotropin for gene therapy |
US6670178B1 (en) | 1992-07-10 | 2003-12-30 | Transkaryotic Therapies, Inc. | In Vivo production and delivery of insulinotropin for gene therapy |
US5747323A (en) * | 1992-12-31 | 1998-05-05 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Retroviral vectors comprising a VL30-derived psi region |
ES2210249T3 (en) * | 1993-02-17 | 2004-07-01 | Sloan-Kettering Institute For Cancer Research | ALOGENIC VACCINE AND METHOD FOR SYNTHESIS. |
US5654186A (en) * | 1993-02-26 | 1997-08-05 | The Picower Institute For Medical Research | Blood-borne mesenchymal cells |
WO1994020608A1 (en) | 1993-03-12 | 1994-09-15 | Creighton University | Improved vectors for gene therapy |
US7393682B1 (en) | 1993-03-19 | 2008-07-01 | The Johns Hopkins University School Of Medicine | Polynucleotides encoding promyostatin polypeptides |
US6340674B1 (en) | 1993-03-26 | 2002-01-22 | Thomas Jefferson University | Method of inhibiting the proliferation and causing the differentiation of cells with IGF-1 receptor antisense oligonucleotides |
US5645829A (en) * | 1993-06-18 | 1997-07-08 | Beth Israel Hospital Association | Mesothelial cell gene therapy |
US5830463A (en) * | 1993-07-07 | 1998-11-03 | University Technology Corporation | Yeast-based delivery vehicles |
AU7404994A (en) * | 1993-07-30 | 1995-02-28 | Regents Of The University Of California, The | Endocardial infusion catheter |
AU7477394A (en) * | 1993-07-30 | 1995-03-27 | University Of Medicine And Dentistry Of New Jersey | Efficient gene transfer into primary lymphocytes |
US6652850B1 (en) | 1993-09-13 | 2003-11-25 | Aventis Pharmaceuticals Inc. | Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity |
US6291206B1 (en) * | 1993-09-17 | 2001-09-18 | Genetics Institute, Inc. | BMP receptor proteins |
EP0729511A1 (en) | 1993-11-18 | 1996-09-04 | Chiron Corporation | Compositions and methods for utilizing conditionally lethal genes |
US5591625A (en) * | 1993-11-24 | 1997-01-07 | Case Western Reserve University | Transduced mesenchymal stem cells |
US6190655B1 (en) * | 1993-12-03 | 2001-02-20 | Immunex Corporation | Methods of using Flt-3 ligand for exogenous gene transfer |
CA2176942C (en) * | 1993-12-07 | 2011-11-01 | Anthony J. Celeste | Bmp-12, bmp-13 and tendon-inducing compositions thereof |
AU1513495A (en) * | 1993-12-14 | 1995-07-03 | University Of Pittsburgh | Systemic gene treatment of connective tissue diseases |
US20040161416A1 (en) * | 1993-12-14 | 2004-08-19 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Systemic gene treatment of connective tissue diseases |
WO1995019369A1 (en) * | 1994-01-14 | 1995-07-20 | Vanderbilt University | Method for detection and treatment of breast cancer |
US6451578B1 (en) | 1994-02-14 | 2002-09-17 | Abbott Laboratories | Non-A, non-B, non-C, non-D, non-E hepatitis reagents and methods for their use |
US5843450A (en) * | 1994-02-14 | 1998-12-01 | Abbott Laboratories | Hepatitis GB Virus synthetic peptides and uses thereof |
US6720166B2 (en) | 1994-02-14 | 2004-04-13 | Abbott Laboratories | Non-a, non-b, non-c, non-c, non-d, non-e hepatitis reagents and methods for their use |
US6558898B1 (en) | 1994-02-14 | 2003-05-06 | Abbott Laboratories | Non-A, non-B, non-C, non-D, non-E hepatitis reagents and methods for their use |
US6586568B1 (en) | 1994-02-14 | 2003-07-01 | Abbott Laboratories | Non-A, non-B, non-C, non-D, non-E hepatitis reagents and methods for their use |
US6156495A (en) * | 1994-02-14 | 2000-12-05 | Abbott Laboratories | Hepatitis GB virus recombinant proteins and uses thereof |
US5981172A (en) * | 1994-02-14 | 1999-11-09 | Abbott Laboratories | Non-A, non-B, non-C, non-D, non-E Hepatitis reagents and methods for their use |
US6051374A (en) * | 1994-02-14 | 2000-04-18 | Abbott Laboratories | Non-A, non-B, non-C, non-D, non-E hepatitis reagents and methods for their use |
GB9402857D0 (en) | 1994-02-15 | 1994-04-06 | Isis Innovation | Targeting gene therapy |
US7294331B2 (en) * | 1994-03-07 | 2007-11-13 | Immunex Corporation | Methods of using flt3-ligand in hematopoietic cell transplantation |
US6984379B1 (en) * | 1994-04-08 | 2006-01-10 | Children's Hospital of LosAngeles | Gene therapy by administration of genetically engineered CD34+ cells obtained from cord blood |
IL109558A (en) * | 1994-05-04 | 2004-08-31 | Yissum Res Dev Co | Sv40-derived dna constructs comprising exogenous dna sequences |
US5714353A (en) * | 1994-05-24 | 1998-02-03 | Research Corporation Technologies, Inc. | Safe vectors for gene therapy |
US5888814A (en) * | 1994-06-06 | 1999-03-30 | Chiron Corporation | Recombinant host cells encoding TNF proteins |
US5891633A (en) * | 1994-06-16 | 1999-04-06 | The United States Of America As Represented By The Department Of Health And Human Services | Defects in drug metabolism |
US6207646B1 (en) * | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20030026782A1 (en) * | 1995-02-07 | 2003-02-06 | Arthur M. Krieg | Immunomodulatory oligonucleotides |
US6309853B1 (en) | 1994-08-17 | 2001-10-30 | The Rockfeller University | Modulators of body weight, corresponding nucleic acids and proteins, and diagnostic and therapeutic uses thereof |
US6350730B1 (en) | 1994-08-17 | 2002-02-26 | The Rockefeller University | OB polypeptides and modified forms as modulators of body weight |
US6124448A (en) * | 1994-08-17 | 2000-09-26 | The Rockfeller University | Nucleic acid primers and probes for the mammalian OB gene |
US6471956B1 (en) | 1994-08-17 | 2002-10-29 | The Rockefeller University | Ob polypeptides, modified forms and compositions thereto |
US6048837A (en) * | 1994-08-17 | 2000-04-11 | The Rockefeller University | OB polypeptides as modulators of body weight |
US6001968A (en) * | 1994-08-17 | 1999-12-14 | The Rockefeller University | OB polypeptides, modified forms and compositions |
US6124439A (en) * | 1994-08-17 | 2000-09-26 | The Rockefeller University | OB polypeptide antibodies and method of making |
US5827642A (en) * | 1994-08-31 | 1998-10-27 | Fred Hutchinson Cancer Research Center | Rapid expansion method ("REM") for in vitro propagation of T lymphocytes |
US6911216B1 (en) | 1994-10-12 | 2005-06-28 | Genzyme Corporation | Targeted delivery via biodegradable polymers |
US5714170A (en) | 1994-11-16 | 1998-02-03 | Thomas Jefferson University | Method of inducing resistance to tumor growth |
US5980886A (en) * | 1994-12-14 | 1999-11-09 | University Of Washington | Recombinant vectors for reconstitution of liver |
US6107027A (en) * | 1994-12-14 | 2000-08-22 | University Of Washington | Ribozymes for treating hepatitis C |
US5843742A (en) * | 1994-12-16 | 1998-12-01 | Avigen Incorporated | Adeno-associated derived vector systems for gene delivery and integration into target cells |
EP0801526A4 (en) * | 1994-12-30 | 1999-12-01 | Univ Jefferson | Gene transduction system |
US5766899A (en) * | 1995-02-27 | 1998-06-16 | Board Of Regents , The University Of Texas System | Targeted nucleic acid delivery into liver cells |
US5681744A (en) * | 1995-03-17 | 1997-10-28 | Greenstein; Robert J. | Delivery and expression of heterologus genes using upstream enhancer regions of mammalian gene promoters |
US6531455B1 (en) | 1995-03-24 | 2003-03-11 | The Regents Of The University Of California | Delivery of polynucleotides by secretory gland expression |
US5837693A (en) * | 1995-03-24 | 1998-11-17 | The Regents Of The University Of California | Intravenous hormone polypeptide delivery by salivary gland expression |
US5885971A (en) * | 1995-03-24 | 1999-03-23 | The Regents Of The University Of California | Gene therapy by secretory gland expression |
US5830755A (en) * | 1995-03-27 | 1998-11-03 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | T-cell receptors and their use in therapeutic and diagnostic methods |
WO1996034109A1 (en) * | 1995-04-25 | 1996-10-31 | Vical Incorporated | Single-vial formulations of dna/lipid complexes |
US7069634B1 (en) | 1995-04-28 | 2006-07-04 | Medtronic, Inc. | Method for manufacturing a catheter |
DE69634563T2 (en) * | 1995-05-04 | 2006-02-16 | The United States Of America As Representend By The Secretary Of The Navy | IMPROVED METHODS FOR TRANSFECTION OF T CELLS |
US6692964B1 (en) * | 1995-05-04 | 2004-02-17 | The United States Of America As Represented By The Secretary Of The Navy | Methods for transfecting T cells |
US7067318B2 (en) * | 1995-06-07 | 2006-06-27 | The Regents Of The University Of Michigan | Methods for transfecting T cells |
US5688915A (en) * | 1995-06-01 | 1997-11-18 | The University Of Medicine And Dentistry Of New Jersey | Long term maintenance of lymphocytes in vitro |
US5993800A (en) * | 1995-06-05 | 1999-11-30 | Bristol-Myers Squibb Company | Methods for prolonging the expression of a heterologous gene of interest using soluble CTLA4 molecules and an antiCD40 ligand |
US5759776A (en) * | 1995-06-05 | 1998-06-02 | California Pacific Medical Center | Targets for breast cancer diagnosis and treatment |
WO1998008090A1 (en) * | 1995-06-06 | 1998-02-26 | Epigen, Inc. | Anti-idiotypic antibodies to an epiglycanin |
EP0830368A1 (en) | 1995-06-07 | 1998-03-25 | Genta Incorporated | Novel carbamate-based cationic lipids |
US6511811B1 (en) | 1995-06-07 | 2003-01-28 | The Regents Of The University Of California | Protein kinase C antagonist related to insulin receptor |
US5869040A (en) * | 1995-06-07 | 1999-02-09 | Biogen, Inc | Gene therapy methods and compositions |
US5629159A (en) * | 1995-06-07 | 1997-05-13 | California Institute Of Technology | Immortalization and disimmortalization of cells |
US5990388A (en) * | 1995-06-07 | 1999-11-23 | Research Corporation Technologies, Inc. | Resistance to viruses and viroids in transgenic plants and animals expressing dsRNA-binding protein |
WO1996040212A1 (en) * | 1995-06-07 | 1996-12-19 | Sloan-Kettering Institute For Cancer Research | Retrovirus vectors for expression of cii-ta and activation of hla class ii gene expression and uses thereof |
CN1203632A (en) | 1995-07-17 | 1998-12-30 | 德克萨斯州立大学董事会 | P16 expression constructs and their application in cancer therapy |
US7163925B1 (en) | 1995-07-17 | 2007-01-16 | Board Of Regents, The University Of Texas System | p16 expression constructs and their application in cancer therapy |
US20020182730A1 (en) * | 1995-07-26 | 2002-12-05 | Micheal L. Gruenberg | Autologous immune cell therapy: cell compositions, methods and applications to treatment of human disease |
AU6410596A (en) * | 1995-07-31 | 1997-02-26 | Centre De Recherche De L'hopital Sainte-Justine | Cytidine deaminase cdna as a positive selectable marker for ene transfer, gene therapy and protein synthesis |
US5807670A (en) * | 1995-08-14 | 1998-09-15 | Abbott Laboratories | Detection of hepatitis GB virus genotypes |
US5955318A (en) * | 1995-08-14 | 1999-09-21 | Abbott Laboratories | Reagents and methods useful for controlling the translation of hepatitis GBV proteins |
US5770720A (en) * | 1995-08-30 | 1998-06-23 | Barnes-Jewish Hospital | Ubiquitin conjugating enzymes having transcriptional repressor activity |
US6482803B1 (en) | 1995-09-01 | 2002-11-19 | Board Of Regents, The University Of Texas System | Modification of mutated P53 gene in tumors by retroviral delivery of ribozyme A |
GB9519299D0 (en) * | 1995-09-21 | 1995-11-22 | Farrar Gwyneth J | Genetic strategy |
US5922583A (en) * | 1995-10-17 | 1999-07-13 | Biostar Inc. | Methods for production of recombinant plasmids |
US20030190753A1 (en) * | 1995-11-09 | 2003-10-09 | Nature Technology Corporation | Vectors for gene transfer |
EA003195B1 (en) | 1995-11-13 | 2003-02-27 | Такара Сузо Ко., Лтд. | Method for gene transfer into target cells with retrovirus |
US5986170A (en) * | 1995-11-13 | 1999-11-16 | Corixa Corporation | Murine model for human carcinoma |
JP2000500654A (en) * | 1995-11-14 | 2000-01-25 | トーマス・ジェファーソン・ユニバーシティ | Induced resistance to tumor growth by soluble IGF-1 receptor |
US5888767A (en) * | 1996-11-27 | 1999-03-30 | The Johns Hopkins University School Of Medicine | Method of using a conditionally replicating viral vector to express a gene |
US5753490A (en) * | 1995-11-28 | 1998-05-19 | Clinical Technologies, Inc. | Recombinant HIV and modified packaging cells and method for treating acquired immune deficiency syndrome |
US6063374A (en) * | 1995-11-28 | 2000-05-16 | Clinical Technologies, Inc. | Recombinant HIV and modified packaging cells and method for using |
US6033674A (en) | 1995-12-28 | 2000-03-07 | Johns Hopkins University School Of Medicine | Method of treating cancer with a tumor cell line having modified cytokine expression |
US6991787B1 (en) * | 1995-12-29 | 2006-01-31 | Alg Company | Methods of preparing bone marrow stromal cells for use in gene therapy |
AU1754497A (en) * | 1996-01-16 | 1997-08-11 | Board Of Trustees Of The Leland Stanford Junior University | Compositions and their uses for transfer of down-regulatory genes into cells associated with inflammatory responses |
US6087129A (en) | 1996-01-19 | 2000-07-11 | Betagene, Inc. | Recombinant expression of proteins from secretory cell lines |
US6110707A (en) * | 1996-01-19 | 2000-08-29 | Board Of Regents, The University Of Texas System | Recombinant expression of proteins from secretory cell lines |
US6051218A (en) * | 1996-02-02 | 2000-04-18 | The Regents Of The University Of California | Tumor radiosensitization using gene therapy |
JP2001503963A (en) * | 1996-02-06 | 2001-03-27 | イーライ・リリー・アンド・カンパニー | Diabetes treatment |
US5891857A (en) * | 1996-02-20 | 1999-04-06 | Vanderbilt University | Characterized BRCA1 and BRCA2 proteins and screening and therapeutic methods based on characterized BRCA1 and BRCA2 proteins |
US5789201A (en) * | 1996-02-23 | 1998-08-04 | Cocensys, Inc. | Genes coding for bcl-y a bcl-2 homologue |
US20030069195A1 (en) * | 1996-03-01 | 2003-04-10 | Farrar Gwenyth Jane | Suppression of polymorphic alleles |
US6316257B1 (en) | 1996-03-04 | 2001-11-13 | Targeted Genetics Corporation | Modified rapid expansion methods (“modified-REM”) for in vitro propagation of T lymphocytes |
GB9606961D0 (en) | 1996-04-02 | 1996-06-05 | Farrar Gwyneth J | Genetic strategy III |
US8551970B2 (en) * | 1996-04-02 | 2013-10-08 | Optigen Patents Limited | Genetic suppression and replacement |
US7026116B1 (en) | 1996-04-04 | 2006-04-11 | Bio-Rad Laboratories, Inc. | Polymorphisms in the region of the human hemochromatosis gene |
US6140305A (en) * | 1996-04-04 | 2000-10-31 | Bio-Rad Laboratories, Inc. | Hereditary hemochromatosis gene products |
US6723531B2 (en) * | 1996-04-05 | 2004-04-20 | The Salk Institute For Biological Studies | Method for modulating expression of exogenous genes in mammalian systems, and products related thereto |
US5776683A (en) * | 1996-07-11 | 1998-07-07 | California Pacific Medical Center | Methods for identifying genes amplified in cancer cells |
AU2557097A (en) | 1996-04-17 | 1997-11-07 | Board Of Regents, The University Of Texas System | Enhanced expression of transgenes |
US5846220A (en) | 1996-04-30 | 1998-12-08 | Medtronic, Inc. | Therapeutic method for treatment of Alzheimer's disease |
US7189222B2 (en) | 1996-04-30 | 2007-03-13 | Medtronic, Inc. | Therapeutic method of treatment of alzheimer's disease |
WO1997044356A2 (en) | 1996-05-08 | 1997-11-27 | Biogen, Inc. | RET LIGAND (RetL) FOR STIMULATING NEURAL AND RENAL GROWTH |
US6027721A (en) * | 1996-05-20 | 2000-02-22 | Cytotherapeutics, Inc. | Device and method for encapsulated gene therapy |
US6849399B1 (en) | 1996-05-23 | 2005-02-01 | Bio-Rad Laboratories, Inc. | Methods and compositions for diagnosis and treatment of iron misregulation diseases |
US8323963B2 (en) * | 1996-05-29 | 2012-12-04 | University Of Southern California | Construction and use of genes encoding pathogenic epitopes for treatment of autoimmune disease |
US6274136B1 (en) * | 1996-05-29 | 2001-08-14 | University Of Southern California | Construction and use of genes encoding pathogenic epitopes for treatment of autoimmune disease |
US6015828A (en) * | 1996-05-31 | 2000-01-18 | Cuppoletti; John | Chemical modification of chloride channels as a treatment for cystic fibrosis and other diseases |
US6132989A (en) * | 1996-06-03 | 2000-10-17 | University Of Washington | Methods and compositions for enhanced stability of non-adenoviral DNA |
US20030198626A1 (en) * | 2002-04-22 | 2003-10-23 | Antigen Express, Inc. | Inhibition of Ii expression in mammalian cells |
US20060008448A1 (en) * | 1996-06-11 | 2006-01-12 | Minzhen Xu | Inhibition of li expression in mammalian cells |
US5869037A (en) * | 1996-06-26 | 1999-02-09 | Cornell Research Foundation, Inc. | Adenoviral-mediated gene transfer to adipocytes |
US6093816A (en) | 1996-06-27 | 2000-07-25 | Isis Pharmaceuticals, Inc. | Cationic lipids |
WO1998000544A2 (en) * | 1996-06-28 | 1998-01-08 | Dendreon Corporation | Growth arrest gene compositions and methods |
US5951975A (en) * | 1996-06-28 | 1999-09-14 | University Of Pittsburgh | Induction of CTLs specific for natural antigens by cross priming immunization |
US6277368B1 (en) | 1996-07-25 | 2001-08-21 | The Regents Of The University Of California | Cancer immunotherapy using autologous tumor cells combined with cells expressing a membrane cytokine |
US6057102A (en) * | 1996-08-08 | 2000-05-02 | The Aaron Diamond Aids Research Center | HIV coreceptor mutants |
EP0929318B1 (en) | 1996-08-16 | 2004-11-24 | The Johns Hopkins University School Of Medicine | Melanoma cell lines expressing shared immunodominant melanoma antigens and methods of using same |
US6544523B1 (en) | 1996-11-13 | 2003-04-08 | Chiron Corporation | Mutant forms of Fas ligand and uses thereof |
US5980898A (en) | 1996-11-14 | 1999-11-09 | The United States Of America As Represented By The U.S. Army Medical Research & Material Command | Adjuvant for transcutaneous immunization |
US20060002949A1 (en) * | 1996-11-14 | 2006-01-05 | Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. | Transcutaneous immunization without heterologous adjuvant |
US20060002959A1 (en) * | 1996-11-14 | 2006-01-05 | Government Of The United States | Skin-sctive adjuvants for transcutaneous immuization |
US6797276B1 (en) | 1996-11-14 | 2004-09-28 | The United States Of America As Represented By The Secretary Of The Army | Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response |
US6087174A (en) * | 1996-12-26 | 2000-07-11 | Johns Hopkins University, School Of Medicine | Growth medium for primary pancreatic tumor cell culture |
EP1961820B1 (en) | 1997-01-27 | 2012-11-28 | Ludwig Institute for Cancer Research Ltd | Vaccine composition comprising LAGE-1 tumor associated nucleic acids or LAGE-1 polypeptides |
CA2196496A1 (en) | 1997-01-31 | 1998-07-31 | Stephen William Watson Michnick | Protein fragment complementation assay for the detection of protein-protein interactions |
WO1998038326A1 (en) | 1997-02-28 | 1998-09-03 | Nature Technology Corporation | Self-assembling genes, vectors and uses thereof |
US5969102A (en) | 1997-03-03 | 1999-10-19 | St. Jude Children's Research Hospital | Lymphocyte surface receptor that binds CAML, nucleic acids encoding the same and methods of use thereof |
US6463933B1 (en) | 1997-03-25 | 2002-10-15 | Morris Laster | Bone marrow as a site for transplantation |
US5866412A (en) * | 1997-03-27 | 1999-02-02 | Millennium Pharmaceuticals, Inc. | Chromosome 18 marker |
US5914394A (en) * | 1997-03-27 | 1999-06-22 | Millenium Pharmaceuticals, Inc. | Methods and compositions for the diagnosis and treatment of neuropsychiatric disorders |
US5939316A (en) * | 1997-03-27 | 1999-08-17 | Millennium Pharmaceuticals, Inc. | Chromosome 18 marker |
US5955355A (en) * | 1997-03-27 | 1999-09-21 | Millennium Pharmaceuticals, Inc. | Chromosome 18 marker |
US6218597B1 (en) | 1997-04-03 | 2001-04-17 | University Technology Corporation | Transgenic model and treatment for heart disease |
DE69838061T2 (en) * | 1997-04-18 | 2008-03-13 | Biogen Idec Ma Inc., Cambridge | TYPE II TGF-BETA RECEPTOR / IMMUNOGLOBULIN CONSTANT DOMAIN FUSION PROTEINS |
EP0979290A2 (en) * | 1997-04-28 | 2000-02-16 | Aventis Pharma S.A. | Adenovirus-mediated intratumoral delivery of an angiogenesis antagonist for the treatment of tumors |
US6004798A (en) * | 1997-05-14 | 1999-12-21 | University Of Southern California | Retroviral envelopes having modified hypervariable polyproline regions |
CA2205076A1 (en) | 1997-05-14 | 1998-11-14 | Jim Hu | Episomal expression cassettes for gene therapy |
US6541036B1 (en) | 1997-05-29 | 2003-04-01 | Thomas Jefferson University | Treatment of tumors with oligonucleotides directed to insulin-like growth factor-I receptors (IGF-IR) |
US6391852B1 (en) | 1997-06-13 | 2002-05-21 | Bio-Rad Laboratories, Inc. | Methods and compositions for diagnosis and treatment of iron overload diseases and iron deficiency diseases |
US6300488B1 (en) | 1997-07-10 | 2001-10-09 | The Salk Institute For Biological Studies | Modified lepidopteran receptors and hybrid multifunctional proteins for use in transcription and regulation of transgene expression |
AU8505898A (en) * | 1997-07-22 | 1999-02-16 | Genitrix, Llc | Nucleic acid compositions and methods of introducing nucleic acids into cells |
US6891082B2 (en) | 1997-08-01 | 2005-05-10 | The Johns Hopkins University School Of Medicine | Transgenic non-human animals expressing a truncated activintype II receptor |
US6331388B1 (en) | 1997-10-17 | 2001-12-18 | Wisconsin Alumni Research Foundation | Immune response enhancer |
US6875606B1 (en) * | 1997-10-23 | 2005-04-05 | The United States Of America As Represented By The Department Of Veterans Affairs | Human α-7 nicotinic receptor promoter |
US20040258703A1 (en) * | 1997-11-14 | 2004-12-23 | The Government Of The Us, As Represented By The Secretary Of The Army | Skin-active adjuvants for transcutaneous immunization |
US7179892B2 (en) | 2000-12-06 | 2007-02-20 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
TWI239847B (en) | 1997-12-02 | 2005-09-21 | Elan Pharm Inc | N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease |
US7964192B1 (en) | 1997-12-02 | 2011-06-21 | Janssen Alzheimer Immunotherapy | Prevention and treatment of amyloidgenic disease |
US6177410B1 (en) | 1997-12-05 | 2001-01-23 | Vanderbilt University | Therapeutic methods for prostate cancer |
ES2221717T3 (en) * | 1997-12-08 | 2005-01-01 | Emd Lexigen Research Center Corp. | USEFUL HETERODIMERAS FUSION PROTEINS FOR DIRECTED IMMUNOTHERAPY AND GENERAL IMMUNOSTIMULATION. |
US6331412B1 (en) * | 1998-01-29 | 2001-12-18 | University Of Ottawa | Methods and compounds for modulating male fertility |
US20030105294A1 (en) * | 1998-02-25 | 2003-06-05 | Stephen Gillies | Enhancing the circulating half life of antibody-based fusion proteins |
AU760794B2 (en) | 1998-03-10 | 2003-05-22 | Regents Of The University Of California, The | Methods and tools for identifying compounds which modulate atherosclerosis by impacting LDL-proteoglycan binding |
CA2245224A1 (en) * | 1998-08-14 | 2000-02-14 | Jiang-Hong Giong | Chemokine receptor antagonists and chemotherapeutics |
CA2305787A1 (en) * | 2000-05-09 | 2001-11-09 | The University Of British Columbia | Cxcr4 antagonist treatment of hematopoietic cells |
DE69914463T2 (en) * | 1998-03-13 | 2004-11-11 | The University Of British Columbia, Vancouver | THERAPEUTIC CHEMOKINE RECEPTOR ANTAGONISTS |
AUPP249298A0 (en) * | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
US7157083B2 (en) * | 1998-04-17 | 2007-01-02 | Surrogate Pharmaceutical Pathways, Llc | Compositions and methods for treating retroviral infections |
US6461606B1 (en) * | 1998-04-24 | 2002-10-08 | University Of Florida Research Foundation | Materials and methods for gene therapy |
US6225456B1 (en) | 1998-05-07 | 2001-05-01 | University Technololy Corporation | Ras suppressor SUR-5 |
US6548290B1 (en) | 1998-05-13 | 2003-04-15 | President And Fellows Of Harvard College | Geminin gene and protein |
US6333318B1 (en) | 1998-05-14 | 2001-12-25 | The Salk Institute For Biological Studies | Formulations useful for modulating expression of exogenous genes in mammalian systems, and products related thereto |
US6506889B1 (en) | 1998-05-19 | 2003-01-14 | University Technology Corporation | Ras suppressor SUR-8 and related compositions and methods |
ES2324540T3 (en) | 1998-05-27 | 2009-08-10 | Genzyme Corporation | AAV VECTORS FOR THE MANUFACTURE OF MEDICINES FOR THE ADMINISTRATION POTENTIATED BY CONVECTION. |
US6197947B1 (en) | 1998-06-01 | 2001-03-06 | The Rockefeller University | Translation initiation factor 4AIII and methods of use thereof |
US5973119A (en) | 1998-06-05 | 1999-10-26 | Amgen Inc. | Cyclin E genes and proteins |
US20040247662A1 (en) * | 1998-06-25 | 2004-12-09 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
US20030022854A1 (en) | 1998-06-25 | 2003-01-30 | Dow Steven W. | Vaccines using nucleic acid-lipid complexes |
US6693086B1 (en) * | 1998-06-25 | 2004-02-17 | National Jewish Medical And Research Center | Systemic immune activation method using nucleic acid-lipid complexes |
AU764686B2 (en) | 1998-08-28 | 2003-08-28 | Duke University | Adenoviruses deleted in the IVa2, 100K, polymerase and/or preterminal protein sequences |
DK1115862T3 (en) | 1998-09-23 | 2009-11-16 | Zymogenetics Inc | Cytokine receptor Zalpha11 |
US6344541B1 (en) * | 1998-09-25 | 2002-02-05 | Amgen Inc. | DKR polypeptides |
US6135976A (en) | 1998-09-25 | 2000-10-24 | Ekos Corporation | Method, device and kit for performing gene therapy |
US6221349B1 (en) | 1998-10-20 | 2001-04-24 | Avigen, Inc. | Adeno-associated vectors for expression of factor VIII by target cells |
US6200560B1 (en) * | 1998-10-20 | 2001-03-13 | Avigen, Inc. | Adeno-associated virus vectors for expression of factor VIII by target cells |
US6468793B1 (en) | 1998-10-23 | 2002-10-22 | Florida State University Research Foundation | CFTR genes and proteins for cystic fibrosis gene therapy |
AU1331100A (en) | 1998-10-29 | 2000-05-22 | Dana-Farber Cancer Institute | Cancer immunotheraphy and diagnosis using universal tumor associated antigens, including htert |
US7399751B2 (en) * | 1999-11-04 | 2008-07-15 | Sertoli Technologies, Inc. | Production of a biological factor and creation of an immunologically privileged environment using genetically altered Sertoli cells |
US20030148929A1 (en) * | 1998-11-18 | 2003-08-07 | Hisamitsu Pharmaceutical Co., Inc. | Nucleic acid carriers and pharmaceutical compositions for gene therapy |
US6773911B1 (en) * | 1998-11-23 | 2004-08-10 | Amgen Canada Inc. | Apoptosis-inducing factor |
WO2000034474A2 (en) | 1998-12-07 | 2000-06-15 | Zymogenetics, Inc. | Growth factor homolog zvegf3 |
US6441156B1 (en) | 1998-12-30 | 2002-08-27 | The United States Of America As Represented By The Department Of Health And Human Services | Calcium channel compositions and methods of use thereof |
WO2000040614A2 (en) | 1998-12-30 | 2000-07-13 | Beth Israel Deaconess Medical Center, Inc. | Characterization of the soc/crac calcium channel protein family |
US7063959B1 (en) * | 1998-12-30 | 2006-06-20 | Beth Israel Deaconess Medical Center, Inc. | Compositions of the SOC/CRAC calcium channel protein family |
JP2002533124A (en) | 1998-12-31 | 2002-10-08 | カイロン コーポレイション | Improved expression of HIV polypeptide and generation of virus-like particles |
US7935805B1 (en) | 1998-12-31 | 2011-05-03 | Novartis Vaccines & Diagnostics, Inc | Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof |
US6727224B1 (en) * | 1999-02-01 | 2004-04-27 | Genetics Institute, Llc. | Methods and compositions for healing and repair of articular cartilage |
AU773954B2 (en) | 1999-02-03 | 2004-06-10 | Amgen, Inc. | Novel Polypeptides involved in immune response |
AU779387B2 (en) * | 1999-02-09 | 2005-01-20 | Lexicon Pharmaceuticals, Inc. | Human uncoupling proteins and polynucleotides encoding the same |
US6495376B1 (en) | 1999-02-18 | 2002-12-17 | Beth Israel Deaconess Medical Center | Methods and compositions for regulating protein-protein interactions |
AU3731400A (en) | 1999-03-05 | 2000-09-21 | Trustees Of University Technology Corporation, The | Methods and compositions useful in inhibiting apoptosis |
US6849605B1 (en) * | 1999-03-05 | 2005-02-01 | The Trustees Of University Technology Corporation | Inhibitors of serine protease activity, methods and compositions for treatment of viral infections |
WO2000051623A2 (en) | 1999-03-05 | 2000-09-08 | The Trustees Of University Technology Corporation | Inhibitors of serine protease activity, methods and compositions for treatment of nitric oxide-induced clinical conditions |
WO2000051625A1 (en) * | 1999-03-05 | 2000-09-08 | The Trustees Of University Technology Corporation | Inhibitors of serine protease activity, methods and compositions for treatment of herpes viruses |
ATE377076T1 (en) | 1999-03-09 | 2007-11-15 | Zymogenetics Inc | HUMAN CYTOKINE AS A LIGAND OF THE ZALPHA RECEPTOR AND ITS USES |
AU3770800A (en) | 1999-03-26 | 2000-10-16 | Amgen, Inc. | Beta secretase genes and polypeptides |
EP2368575B1 (en) * | 1999-04-08 | 2014-10-01 | Intercell USA, Inc. | Dry formulation for transcutaneous immunization |
US6451319B1 (en) * | 1999-04-09 | 2002-09-17 | Schering-Plough Veterinary Corporation | Recombinant and mutant adenoviruses |
US6299882B1 (en) | 1999-04-09 | 2001-10-09 | Schering Corporation | UL54.5 of Marek's disease virus (MDV) |
US6328762B1 (en) * | 1999-04-27 | 2001-12-11 | Sulzer Biologics, Inc. | Prosthetic grafts |
US7270969B2 (en) | 1999-05-05 | 2007-09-18 | Phylogica Limited | Methods of constructing and screening diverse expression libraries |
WO2000069913A1 (en) * | 1999-05-19 | 2000-11-23 | Lexigen Pharmaceuticals Corp. | EXPRESSION AND EXPORT OF INTERFERON-ALPHA PROTEINS AS Fc FUSION PROTEINS |
US7166573B1 (en) * | 1999-05-28 | 2007-01-23 | Ludwig Institute For Cancer Research | Breast, gastric and prostate cancer associated antigens and uses therefor |
EP1939300A1 (en) | 1999-05-28 | 2008-07-02 | Targeted Genetics Corporation | Methods and compositions for lowering the level of tumor necrosis factor (TNF) in TNF-associated disorders |
DE60040147D1 (en) * | 1999-05-28 | 2008-10-16 | Targeted Genetics Corp | METHODS AND COMPOSITIONS FOR REDUCING TUMOR NEKROSIS FACTOR MIRROR (TNF) IN TNF ASSOCIATED DISEASES |
UA81216C2 (en) | 1999-06-01 | 2007-12-25 | Prevention and treatment of amyloid disease | |
US6346382B1 (en) | 1999-06-01 | 2002-02-12 | Vanderbilt University | Human carbamyl phosphate synthetase I polymorphism and diagnostic methods related thereto |
US9486429B2 (en) | 1999-06-01 | 2016-11-08 | Vanderbilt University | Therapeutic methods employing nitric oxide precursors |
US6696272B1 (en) | 1999-06-02 | 2004-02-24 | Hsc Research & Development Limited Partnership | Products and methods for gaucher disease therapy |
ES2364086T3 (en) | 1999-07-07 | 2011-08-24 | Zymogenetics, Inc. | HUMAN CYTOKIN RECEPTOR. |
SK782002A3 (en) | 1999-07-21 | 2003-08-05 | Lexigen Pharm Corp | FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens |
CN1235911C (en) * | 1999-08-09 | 2006-01-11 | 利思进药品公司 | Multiple cytokine-antibody complexes |
EP1916258B1 (en) | 1999-08-09 | 2014-04-23 | Targeted Genetics Corporation | Enhancement of expression of a single-stranded, heterologous nucleotide sequence from recombinant viral vectors by designing the sequence such that it forms intrastrand base pairs |
DE60039766D1 (en) * | 1999-08-09 | 2008-09-18 | Targeted Genetics Corp | TEROLOGIC NUCLEOTIDE SEQUENCE FROM A RECOMBINANT VIRAL VECTOR BY STRUCTURE OF THE SEQUENCE IN A WAY THAT BASE COUNTERATIONS ARISE WITHIN THE SEQUENCE |
EP2267029B1 (en) | 1999-09-03 | 2016-06-15 | The Brigham And Women's Hospital, Inc. | Methods and compositions for treatment of inflammatory disease using Cadherin-11 modulating agents |
US7459540B1 (en) | 1999-09-07 | 2008-12-02 | Amgen Inc. | Fibroblast growth factor-like polypeptides |
US6432409B1 (en) * | 1999-09-14 | 2002-08-13 | Antigen Express, Inc. | Hybrid peptides modulate the immune response |
US20030235594A1 (en) * | 1999-09-14 | 2003-12-25 | Antigen Express, Inc. | Ii-Key/antigenic epitope hybrid peptide vaccines |
US9289487B2 (en) * | 1999-09-14 | 2016-03-22 | Antigen Express, Inc. | II-key/antigenic epitope hybrid peptide vaccines |
US6900043B1 (en) * | 1999-09-21 | 2005-05-31 | Amgen Inc. | Phosphatases which activate map kinase pathways |
AU782326B2 (en) | 1999-10-12 | 2005-07-21 | Lexicon Pharmaceuticals, Inc. | Human LDL receptor family proteins and polynucleotides encoding the same |
DE60012557T2 (en) | 1999-10-15 | 2005-08-04 | Genetics Institute, LLC, Cambridge | HYALURONIC ACID COMPOSITIONS FOR THE DISPOSAL OF OSTEOGENIC PROTEINS |
US7057015B1 (en) | 1999-10-20 | 2006-06-06 | The Salk Institute For Biological Studies | Hormone receptor functional dimers and methods of their use |
US6558932B1 (en) | 1999-11-05 | 2003-05-06 | The General Hospital Corp. | Gridlock nucleic acid molecules, polypeptides, and diagnostic and therapeutic methods |
US20050202538A1 (en) * | 1999-11-12 | 2005-09-15 | Merck Patent Gmbh | Fc-erythropoietin fusion protein with improved pharmacokinetics |
WO2001036489A2 (en) | 1999-11-12 | 2001-05-25 | Merck Patent Gmbh | Erythropoietin forms with improved properties |
WO2001036431A1 (en) | 1999-11-15 | 2001-05-25 | Parker Hughes Institute | Diamino platinum (ii) antitumor complexes |
US6589992B2 (en) | 1999-11-30 | 2003-07-08 | Parker Hughes Institute | Inhibiting collagen-induced platelet aggregation |
US6241710B1 (en) | 1999-12-20 | 2001-06-05 | Tricardia Llc | Hypodermic needle with weeping tip and method of use |
EP1242600B1 (en) | 1999-12-23 | 2010-03-03 | ZymoGenetics, Inc. | Cytokine zcyto18 |
AU4314801A (en) | 2000-02-11 | 2001-08-20 | Lexigen Pharm Corp | Enhancing the circulating half-life of antibody-based fusion proteins |
US6841362B1 (en) | 2000-02-29 | 2005-01-11 | The Trustees Of Columbia University In The City Of New York | Melanoma differentiation associated gene-7 promoter and uses thereof |
US7229822B1 (en) * | 2000-02-29 | 2007-06-12 | Univ Columbia | Melanoma differentation associated gene-5 and vectors and cells containing same |
US20050239061A1 (en) * | 2000-03-01 | 2005-10-27 | Marshall William S | Identification and use of effectors and allosteric molecules for the alteration of gene expression |
US20040002068A1 (en) | 2000-03-01 | 2004-01-01 | Corixa Corporation | Compositions and methods for the detection, diagnosis and therapy of hematological malignancies |
US7514239B2 (en) | 2000-03-28 | 2009-04-07 | Amgen Inc. | Nucleic acid molecules encoding beta-like glycoprotein hormone polypeptides and heterodimers thereof |
GB0018307D0 (en) | 2000-07-26 | 2000-09-13 | Aventis Pharm Prod Inc | Polypeptides |
US20050059584A1 (en) * | 2002-08-16 | 2005-03-17 | Ahmed Merzouk | Novel chemokine mimetics synthesis and their use |
US7368425B2 (en) * | 2006-03-24 | 2008-05-06 | Chemokine Therapeutics Corp. | Cyclic peptides for modulating growth of neo-vessels and their use in therapeutic angiogenesis |
CA2335109A1 (en) * | 2000-04-12 | 2001-10-12 | Chemokine Therapeutics Corporation | Cxcr4 agonist treatment of hematopoietic cells |
US7378098B2 (en) * | 2000-04-12 | 2008-05-27 | The University Of British Columbia | CXC chemokine receptor 4 agonist peptides |
EP1702983A3 (en) | 2000-04-13 | 2007-01-10 | Medical University of South Carolina | Tissue-specific and pathogen-specific toxic agents, ribozymes, DNAzymes and antisense oligonucleotides and methods of use thereof |
AU2001255379A1 (en) | 2000-04-14 | 2001-10-30 | The Uab Research Foundation | Poliovirus replicons encoding therapeutic agents and uses thereof |
CA2407309C (en) * | 2000-04-28 | 2011-08-02 | Xiao Xiao | Dna sequences encoding dystrophin minigenes and methods of use thereof |
US20020115642A1 (en) * | 2000-05-02 | 2002-08-22 | Chan Ming Fai | Beta-lactam antibiotics |
ES2531552T3 (en) | 2000-05-10 | 2015-03-17 | Mayo Foundation For Medical Education And Research | Human IgM antibodies with the ability to induce remyelination and diagnostic and therapeutic uses thereof, particularly in the central nervous system |
US7585497B2 (en) * | 2000-05-17 | 2009-09-08 | Oregon Health & Science University | Induction of apoptosis and cell growth inhibition by protein 4.33 |
US6790667B1 (en) | 2000-05-30 | 2004-09-14 | Lexicon Genetics Incorporated | Human mitochondrial proteins and polynucleotides encoding the same |
EP2258725A3 (en) | 2000-06-26 | 2014-09-17 | ZymoGenetics, L.L.C. | Cytokine receptor zcytor17 |
DE60137223D1 (en) | 2000-06-28 | 2009-02-12 | Amgen Inc | THYMUS-STROMA LYMPHOPOIETIN RECEPTOR MOLECULES AND THEIR USE |
AU7172901A (en) * | 2000-06-29 | 2002-01-14 | Lexigen Pharm Corp | Enhancement of antibody-cytokine fusion protein mediated immune responses by combined treatment with immunocytokine uptake enhancing agents |
EP1303502A2 (en) * | 2000-07-06 | 2003-04-23 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Tetrahydrobenzothiazole analogues as neuroprotective agents |
US6719970B1 (en) * | 2000-07-10 | 2004-04-13 | Alkermes Controlled Therapeutics, Inc. | Method of generating cartilage |
WO2002031115A2 (en) | 2000-10-11 | 2002-04-18 | Viron Therapeutics, Inc. | Nucleic acid molecules and polypeptides for immune modulation |
EP1325751A4 (en) * | 2000-10-11 | 2005-05-04 | Daiichi Seiyaku Co | Novel drugs for liver diseases |
AU784975B2 (en) | 2000-10-11 | 2006-08-10 | Sumitomo Chemical Company, Limited | DNA-binding protein YB-1-containing collagen accumulation inhibitors |
US6949379B2 (en) * | 2000-10-20 | 2005-09-27 | Canji, Inc. | Aptamer-mediated regulation of gene expression |
EP1666595A1 (en) | 2000-10-26 | 2006-06-07 | Beth Israel Deaconess Medical Center, Inc. | GAB2 (P97) gene and methods of use thereof |
AU2002232593A1 (en) * | 2000-10-27 | 2002-05-06 | Oregon Health And Science University | Novel mutant igbp-3 molecules that do not bind to igfs, but retain their ability to functionally bind igfbp-3 receptor |
US7060442B2 (en) * | 2000-10-30 | 2006-06-13 | Regents Of The University Of Michigan | Modulators on Nod2 signaling |
US7385023B1 (en) | 2000-11-15 | 2008-06-10 | Trustees Of Boston University | Cancer immunotherapy and diagnosis using cytochrome P450 1B1 |
JP4520631B2 (en) * | 2000-11-22 | 2010-08-11 | 松本油脂製薬株式会社 | Durable water permeability-imparting agent and its fiber |
CA2429599A1 (en) | 2000-11-28 | 2002-06-06 | Amgen Inc. | Use of b7rp1 antagonists in ige-mediated disorders |
US20040034045A1 (en) * | 2000-11-29 | 2004-02-19 | Parker Hughes Institute | Inhibitors of thrombin induced platelet aggregation |
US20030082233A1 (en) * | 2000-12-01 | 2003-05-01 | Lyons Karen M. | Method and composition for modulating bone growth |
TWI255272B (en) | 2000-12-06 | 2006-05-21 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
JP4394878B2 (en) | 2000-12-08 | 2010-01-06 | ライフ テクノロジーズ コーポレーション | Methods and compositions for nucleic acid molecule synthesis using multiple recognition sites |
DK1355918T5 (en) | 2000-12-28 | 2012-02-20 | Wyeth Llc | Recombinant protective protein of streptococcus pneumoniae |
WO2002053701A2 (en) | 2000-12-29 | 2002-07-11 | Vanderbilt University | Epididymal lipocalin gene and uses thereof |
CA2434546C (en) | 2001-01-12 | 2012-09-11 | Chiron Corporation | Induction of immune response by a replication-defective venezuelan equine encephalitis-sindbis chimeric virus replicon particle encoding an antigen |
EP1363676B1 (en) * | 2001-01-22 | 2007-03-28 | Biogen Idec MA Inc. | Method of enhancing delivery of a therapeutic nucleic acid |
WO2002064162A2 (en) * | 2001-02-13 | 2002-08-22 | Government Of The United States, As Represented By The Secretary Of The Army | Vaccine for transcutaneous immunization |
PT1366067E (en) * | 2001-03-07 | 2012-11-29 | Merck Patent Gmbh | Expression technology for proteins containing a hybrid isotype antibody moiety |
US7723111B2 (en) * | 2001-03-09 | 2010-05-25 | The United States Of America As Represented By The Department Of Health And Human Services | Activated dual specificity lymphocytes and their methods of use |
FR2821947B1 (en) * | 2001-03-12 | 2003-05-16 | Canon Kk | METHOD AND DEVICE FOR VALIDATING IMAGE DEFINING PARAMETERS |
AU2002306709A1 (en) * | 2001-03-14 | 2002-09-24 | Replicon Technologies, Inc. | Oncolytic rna replicons |
US6613534B2 (en) | 2001-03-20 | 2003-09-02 | Wake Forest University Health Sciences | MAP-2 as a determinant of metastatic potential |
US20030026791A1 (en) * | 2001-03-27 | 2003-02-06 | Laurent Humeau | Conditionally replicating vectors for inhibiting viral infections |
US6992174B2 (en) | 2001-03-30 | 2006-01-31 | Emd Lexigen Research Center Corp. | Reducing the immunogenicity of fusion proteins |
CA2443493A1 (en) * | 2001-04-13 | 2002-10-24 | Wyeth | Surface proteins of streptococcus pyogenes |
US20070128229A1 (en) * | 2002-04-12 | 2007-06-07 | Wyeth | Surface proteins of Streptococcus pyogenes |
US7534444B2 (en) | 2001-04-17 | 2009-05-19 | Novattis Vaccines And Diagnostics, Inc. | Molecular mimetics of meningococcal B epitopes which elicit functionally active antibodies |
US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
US7629309B2 (en) | 2002-05-29 | 2009-12-08 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
EP1974752B1 (en) | 2001-04-30 | 2012-09-26 | BioMarin Pharmaceutical Inc. | Subcellular targeting of therapeutic proteins |
MXPA03009924A (en) * | 2001-05-03 | 2004-01-29 | Merck Patent Gmbh | Recombinant tumor specific antibody and use thereof. |
EP2116259B1 (en) | 2001-05-24 | 2012-01-25 | ZymoGenetics, Inc. | TACI-immunoglobulin fusion proteins |
CA2449008A1 (en) * | 2001-06-01 | 2002-12-12 | Wyeth | Compositions and methods for systemic administration of sequences encoding bone morphogenetic proteins |
TWI267378B (en) * | 2001-06-08 | 2006-12-01 | Wyeth Corp | Calcium phosphate delivery vehicles for osteoinductive proteins |
AU2002320314A1 (en) | 2001-07-05 | 2003-01-21 | Chiron, Corporation | Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof |
JP4302513B2 (en) | 2001-07-05 | 2009-07-29 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | Polynucleotides encoding antigenic type B HIV polypeptides and / or antigenic type C HIV polypeptides, polypeptides thereof and uses thereof |
US20060275262A1 (en) * | 2001-07-26 | 2006-12-07 | Mathis James M | Conditionally replicating viruses and methods for cancer virotherapy |
WO2003015800A1 (en) | 2001-08-09 | 2003-02-27 | Ivoclar Vivadent, Inc. | Tissue implants and methods for making and using same |
US7419957B2 (en) * | 2001-08-22 | 2008-09-02 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Peptides of melanoma antigen and their use in diagnostic, prophylactic and therapeutic methods |
US20030134341A1 (en) * | 2001-09-19 | 2003-07-17 | Medcell Biologics, Llc. | Th1 cell adoptive immunotherapy |
US20030134415A1 (en) * | 2001-09-19 | 2003-07-17 | Gruenberg Micheal L. | Th1 cell adoptive immunotherapy |
US7582425B2 (en) * | 2001-09-21 | 2009-09-01 | The Regents Of The University Of Michigan | Atlastin |
US7108975B2 (en) * | 2001-09-21 | 2006-09-19 | Regents Of The University Of Michigan | Atlastin |
US20040023910A1 (en) * | 2001-09-28 | 2004-02-05 | Zhiming Zhang | Use of cyr61 in the treatment and diagnosis of human uterine leiomyomas |
AU2002343475A1 (en) | 2001-10-03 | 2003-04-14 | Selective Genetics, Inc. | Traversal of nucleic acid molecules through a fluid space and expression in repair cells |
AR045702A1 (en) | 2001-10-03 | 2005-11-09 | Chiron Corp | COMPOSITIONS OF ASSISTANTS. |
MX339524B (en) | 2001-10-11 | 2016-05-30 | Wyeth Corp | Novel immunogenic compositions for the prevention and treatment of meningococcal disease. |
ES2380612T3 (en) | 2001-10-15 | 2012-05-16 | Engeneic Molecular Delivery Pty Ltd. | Intact mini cells as vectors for DNA transfer and gene therapy in vitro and in vivo |
US20030072761A1 (en) * | 2001-10-16 | 2003-04-17 | Lebowitz Jonathan | Methods and compositions for targeting proteins across the blood brain barrier |
WO2003037376A1 (en) * | 2001-11-02 | 2003-05-08 | Kensuke Egashira | Preventives and/or remedies for post-transplant arteriosclerosis as rejection of organ transplant |
CN100534436C (en) | 2001-11-21 | 2009-09-02 | 利兰·斯坦福青年大学托管委员会 | Polynucleotide therapy |
ES2381025T3 (en) * | 2001-12-04 | 2012-05-22 | Merck Patent Gmbh | Immunocytokines with modulated selectivity |
US7049121B2 (en) * | 2001-12-20 | 2006-05-23 | Applied Molecular Evolution | Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use |
US6989261B2 (en) * | 2001-12-20 | 2006-01-24 | Eli Lilly And Company | Butyrylcholinesterase variant polypeptides with increased catalytic efficiency and methods of use |
RU2360923C2 (en) | 2002-01-18 | 2009-07-10 | Займоджинетикс, Инк. | Novel ligand of cytokine receptor zcytor17 |
US7494804B2 (en) | 2002-01-18 | 2009-02-24 | Zymogenetics, Inc. | Polynucleotide encoding cytokine receptor zcytor17 multimer |
US20040009937A1 (en) * | 2002-01-31 | 2004-01-15 | Wei Chen | Methods and composition for delivering nucleic acids and/or proteins to the respiratory system |
US20040043003A1 (en) * | 2002-01-31 | 2004-03-04 | Wei Chen | Clinical grade vectors based on natural microflora for use in delivering therapeutic compositions |
US20050075298A1 (en) * | 2002-01-31 | 2005-04-07 | Wei Chen | Methods and composition for delivering nucleic acids and/or proteins to the intestinal mucosa |
US20040025194A1 (en) * | 2002-02-22 | 2004-02-05 | Board Of Trustees Of The University Of Illinois | Beta chain-associated regulator of apoptosis |
US7662924B2 (en) * | 2002-02-22 | 2010-02-16 | The Board Of Trustees Of The University Of Illinois | Beta chain-associated regulator of apoptosis |
US20030175272A1 (en) * | 2002-03-07 | 2003-09-18 | Medcell Biologics, Inc. | Re-activated T-cells for adoptive immunotherapy |
AU2003267949A1 (en) * | 2002-03-15 | 2003-12-31 | U.S. Government As Represented By The Department Of Veterans Affairs | Methods and compositions using cellular asialodeterminants and glycoconjugates for targeting cells to tissues and organs |
DE10213780A1 (en) * | 2002-03-22 | 2003-11-27 | Orthogen Ag | Process and means for the production of therapeutically interesting blood compositions |
JP2005530716A (en) * | 2002-03-27 | 2005-10-13 | アメリカ合衆国 | Methods for treating cancer in humans |
WO2003092594A2 (en) * | 2002-04-30 | 2003-11-13 | Duke University | Adeno-associated viral vectors and methods for their production from hybrid adenovirus and for their use |
EA008354B1 (en) * | 2002-05-17 | 2007-04-27 | Уайз | Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins |
CA2484000A1 (en) | 2002-05-24 | 2003-12-04 | Schering Corporation | Neutralizing human anti-igfr antibody |
CN1671425B (en) * | 2002-06-19 | 2013-07-10 | 大学保健网 | ACE2 activation for treatment of heart, lung and kidney disease and hypertension |
US20040009158A1 (en) * | 2002-07-11 | 2004-01-15 | Washington University | Promotion of neovascularization using bone marrow-derived endothelial-progenitor cells |
EP1563058A4 (en) * | 2002-07-12 | 2005-12-28 | Univ Singapore | Hemangioblast progenitor cells |
US20040052771A1 (en) * | 2002-07-12 | 2004-03-18 | Lim Sai Kiang | Hemangioblast progenitor cells |
US7785608B2 (en) * | 2002-08-30 | 2010-08-31 | Wyeth Holdings Corporation | Immunogenic compositions for the prevention and treatment of meningococcal disease |
US7179645B2 (en) * | 2002-09-24 | 2007-02-20 | Antigen Express, Inc. | Ii-Key/antigenic epitope hybrid peptide vaccines |
EP1556072B1 (en) | 2002-09-17 | 2010-05-19 | Antigen Express, Inc. | Ii-KEY/ANTIGENIC EPITOPE HYBRID PEPTIDE VACCINES |
AU2003275240A1 (en) * | 2002-09-24 | 2004-04-23 | Massachusetts Institute Of Technology | Methods and compositions for soluble cpg15 |
WO2004032867A2 (en) * | 2002-10-09 | 2004-04-22 | Tolerrx, Inc. | Molecules preferentially associated with effector t cells or regulatory t cells and methods of their use |
AU2003269557A1 (en) | 2002-10-18 | 2004-05-04 | Lg Life Sciences Ltd. | Gene families associated with cancers |
US6863731B2 (en) * | 2002-10-18 | 2005-03-08 | Controls Corporation Of America | System for deposition of inert barrier coating to increase corrosion resistance |
US8076318B2 (en) * | 2002-10-24 | 2011-12-13 | Albert Einstein College Of Medicine Of Yeshiva University | Caged ligands and uses thereof |
TW200509968A (en) | 2002-11-01 | 2005-03-16 | Elan Pharm Inc | Prevention and treatment of synucleinopathic disease |
US8506959B2 (en) | 2002-11-01 | 2013-08-13 | Neotope Biosciences Limited | Prevention and treatment of synucleinopathic and amyloidogenic disease |
NZ540194A (en) | 2002-11-08 | 2008-07-31 | Ablynx Nv | Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor |
EP2267032A3 (en) | 2002-11-08 | 2011-11-09 | Ablynx N.V. | Method of administering therapeutic polypeptides, and polypeptides therefor |
CA2507249A1 (en) | 2002-11-21 | 2004-06-10 | Bayhill Therapeutics, Inc. | Methods and immune modulatory nucleic acid compositions for preventing and treating disease |
EP1581253A4 (en) * | 2002-12-04 | 2007-02-14 | Applied Molecular Evolution | Butyrylcholinesterase variants that alter the activity of chemotherapeutic agents |
WO2004055056A1 (en) * | 2002-12-17 | 2004-07-01 | Merck Patent Gmbh | Humanized antibody (h14.18) of the mouse 14.18 antibody binding to gd2 and its fusion with il-2 |
WO2004060911A2 (en) * | 2002-12-30 | 2004-07-22 | Amgen Inc. | Combination therapy with co-stimulatory factors |
JP2006517789A (en) | 2003-01-10 | 2006-08-03 | アブリンクス エン.ヴェー. | Therapeutic polypeptides, homologues thereof, fragments thereof, and use in modulating platelet-mediated aggregation |
US20050048041A1 (en) * | 2003-01-13 | 2005-03-03 | Rao Mahendra S. | Persistent expression of candidate molecule in proliferating stem and progenitor cells for delivery of therapeutic products |
CA2802143C (en) | 2003-01-14 | 2018-06-19 | Dana-Farber Cancer Institute | Sparc encoding polynucleotide as a cancer therapy sensitizer |
CA2515708A1 (en) | 2003-02-11 | 2004-08-26 | Transkaryotic Therapies, Inc. | Diagnosis and treatment of multiple sulfatase deficiency and other sulfatase deficiencies |
US20070066548A1 (en) * | 2003-03-14 | 2007-03-22 | Albert Einstein College Of Medicine Of Yeshiva University | Globin variant gene methods and compositions |
WO2004094596A2 (en) * | 2003-04-16 | 2004-11-04 | Wyeth Holdings Corporation | Novel immunogenic compositions for the prevention and treatment of meningococcal disease |
US20040220242A1 (en) * | 2003-05-02 | 2004-11-04 | Leland Shapiro | Inhibitors of serine protease activity, methods and compositions for treatment of nitric oxide induced clinical conditions |
CN100581621C (en) | 2003-05-16 | 2010-01-20 | 拉瓦勒大学 | CNS chloride modulation and uses thereof |
WO2006031210A1 (en) | 2003-05-29 | 2006-03-23 | Board Of Regents, The University Of Texas Systems | Jabi as a prognostic marker and a therapeutic target for human cancer |
AU2004245175C1 (en) | 2003-06-10 | 2010-03-18 | Biogen Ma Inc. | Improved secretion of neublastin |
EP1641491B1 (en) * | 2003-06-11 | 2008-01-02 | University of Chicago | Increased t-cell tumor infiltration by mutant light |
US7811983B2 (en) * | 2003-06-11 | 2010-10-12 | The University Of Chicago | Increased T-cell tumor infiltration and eradication of metastases by mutant light |
WO2005017109A2 (en) * | 2003-06-30 | 2005-02-24 | Massachusetts Institute Of Technology | Nucleic acids and polypeptides required for cell survival in the absence of rb |
US20050118145A1 (en) * | 2003-07-03 | 2005-06-02 | Jannette Dufour | Compositions containing sertoli cells and myoid cells and use thereof in cellular transplants |
ATE478963T1 (en) | 2003-07-03 | 2010-09-15 | Univ New Jersey Med | GENES AS DIAGNOSTIC TOOLS FOR AUTISM |
US20050013812A1 (en) * | 2003-07-14 | 2005-01-20 | Dow Steven W. | Vaccines using pattern recognition receptor-ligand:lipid complexes |
US20060035242A1 (en) | 2004-08-13 | 2006-02-16 | Michelitsch Melissa D | Prion-specific peptide reagents |
EP3192872A1 (en) | 2003-08-26 | 2017-07-19 | The Regents of the University of Colorado, a body corporate | Inhibitors of serine protease activity and their use in methods and compositions for treatment of bacterial infections |
US20050069521A1 (en) * | 2003-08-28 | 2005-03-31 | Emd Lexigen Research Center Corp. | Enhancing the circulating half-life of interleukin-2 proteins |
PL1675608T3 (en) * | 2003-09-12 | 2007-11-30 | Wyeth Corp | Injectable calcium phosphate solid rods for delivery of osteogenic proteins |
US20050187175A1 (en) * | 2003-09-30 | 2005-08-25 | Elly Nedivi | Methods and compositions for CPG15-2 |
NZ547185A (en) | 2003-10-20 | 2009-03-31 | Nsgene As | In vivo gene therapy of parkinson's disease |
US20130266551A1 (en) | 2003-11-05 | 2013-10-10 | St. Jude Children's Research Hospital, Inc. | Chimeric receptors with 4-1bb stimulatory signaling domain |
US7435596B2 (en) | 2004-11-04 | 2008-10-14 | St. Jude Children's Research Hospital, Inc. | Modified cell line and method for expansion of NK cell |
DE60334645D1 (en) | 2003-11-07 | 2010-12-02 | Ablynx Nv | CAMELIDAE HEAVY CHAIN ANTIBODIES VHHS AGAINST EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) AND ITS USE |
EP3279328A1 (en) | 2003-11-14 | 2018-02-07 | Children's Medical Center Corporation | Self-cleaving ribozymes and uses thereof |
WO2005063820A2 (en) | 2003-12-30 | 2005-07-14 | Merck Patent Gmbh | Il-7 fusion proteins |
CN1902222A (en) * | 2003-12-31 | 2007-01-24 | 默克专利有限公司 | Fc-erythropoietin fusion protein with improved pharmacokinetics |
DK1706428T3 (en) | 2004-01-22 | 2009-11-30 | Merck Patent Gmbh | Anti-cancer antibodies with reduced complement fixation |
US7432057B2 (en) * | 2004-01-30 | 2008-10-07 | Michigan State University | Genetic test for PSE-susceptible turkeys |
US20050244400A1 (en) * | 2004-02-10 | 2005-11-03 | Zystor Therapeutics, Inc. | Acid alpha-glucosidase and fragments thereof |
US20050181035A1 (en) * | 2004-02-17 | 2005-08-18 | Dow Steven W. | Systemic immune activation method using non CpG nucleic acids |
AU2005214091B2 (en) * | 2004-02-24 | 2010-08-12 | Abbvie B.V. | Method for determining the risk of developing a neurological disease |
WO2005095450A2 (en) | 2004-03-30 | 2005-10-13 | Nsgene A/S | Therapeutic use of a growth factor, nsg33 |
EP1758999B1 (en) | 2004-06-22 | 2011-03-09 | The Board Of Trustees Of The University Of Illinois | METHODS OF INHIBITING TUMOR CELL PROLIFERATION WITH FOXM1 siRNA |
US20060013772A1 (en) * | 2004-06-30 | 2006-01-19 | University Of Vermont And State Agricultural College | Method and device to recover diagnostic and therapeutic agents |
WO2006014422A2 (en) | 2004-07-06 | 2006-02-09 | The Trustees Of Columbia University In The City Of New York | Polynucleotide encoding a trim-cyp polypeptide, compositions thereof, and methods of using same |
US7604798B2 (en) * | 2004-07-15 | 2009-10-20 | Northwestern University | Methods and compositions for importing nucleic acids into cell nuclei |
CA2579574A1 (en) | 2004-07-23 | 2007-01-04 | The University Of North Carolina At Chapel Hill | Methods and materials for determining pain sensitivity and predicting and treating related disorders |
WO2006013462A2 (en) * | 2004-07-30 | 2006-02-09 | Nsgene A/S | Growth factors nsg28, nsg30, and nsg32 |
US20090035784A1 (en) * | 2004-07-30 | 2009-02-05 | Mount Sinai School Of Medicine Of New York University | Npc1l1 and npc1l1 inhibitors and methods of use thereof |
US20060063208A1 (en) | 2004-08-02 | 2006-03-23 | Woolf Clifford J | DRG11-responsive (DRAGON) gene and uses thereof |
MX2007001679A (en) | 2004-08-09 | 2007-05-23 | Elan Pharm Inc | Prevention and treatment of synucleinopathic and amyloidogenic disease. |
EP1786473A4 (en) * | 2004-08-11 | 2008-11-19 | Cedars Sinai Medical Center | Treatment of parkinson's disease and related disorders |
EP2338524B1 (en) | 2004-08-12 | 2013-05-22 | Cedars-Sinai Medical Center | Combined gene therapy for the treatment of macroscopic gliomas |
WO2006024020A2 (en) | 2004-08-27 | 2006-03-02 | Novartis Vaccines And Diagnostics Inc. | Hcv non-structural protein mutants and uses thereof |
EP1802326A2 (en) * | 2004-09-09 | 2007-07-04 | Stryker Corporation | Methods for treating bone tumors using bone morphogenic proteins |
EP1846559A4 (en) | 2004-09-11 | 2008-02-27 | Joseph D Mosca | Tumor-derived biological antigen presenting particles |
US20060063187A1 (en) * | 2004-09-15 | 2006-03-23 | Hotamisligil Gokhan S | Modulation of XBP-1 activity for treatment of metabolic disorders |
US7635754B2 (en) * | 2004-09-22 | 2009-12-22 | Aerovance, Inc. | Interleukin-9 and interleukin-4 chimeric antagonist muteins and methods of using same |
BRPI0518151A2 (en) * | 2004-10-13 | 2009-06-16 | Ablynx Nv | polypeptides against amyloid-beta, nucleic acid encoding such polypeptide, composition comprising such polypeptide, method for producing a polypeptide and use thereof |
WO2006044984A1 (en) * | 2004-10-18 | 2006-04-27 | Mount Sinai School Of Medicine Of New York University | Inhibition of tumor growth and metastasis by atf2-derived peptides |
WO2006050394A2 (en) | 2004-11-01 | 2006-05-11 | Novartis Vaccines And Diagnostics Inc. | Combination approaches for generating immune responses |
CA2591297C (en) * | 2004-12-09 | 2015-01-13 | Stephen D. Gillies | Il-7 variants with reduced immunogenicity |
TW200714289A (en) * | 2005-02-28 | 2007-04-16 | Genentech Inc | Treatment of bone disorders |
WO2006099574A2 (en) * | 2005-03-16 | 2006-09-21 | Tai June Yoo | Cockroach allergen gene expression and delivery systems and uses |
KR100775958B1 (en) * | 2005-03-30 | 2007-11-13 | 김정문 | Non-activated Polypeptides Having a Function of Tissue Regeneration and Method for Preparing the Same |
EP1863518A2 (en) * | 2005-03-30 | 2007-12-12 | Wyeth | Methods for stimulating hair growth by administering bmps |
EP1863850B1 (en) * | 2005-03-30 | 2009-09-23 | Jung Moon Kim | Non-activated polypeptides having a function of tissue regeneration and method for preparing the same |
WO2006118547A1 (en) | 2005-04-29 | 2006-11-09 | Agency For Science, Technology And Research | Hyperbranched polymers and their applications |
SI1888641T1 (en) | 2005-05-18 | 2012-05-31 | Ablynx Nv | Serum albumin binding proteins |
WO2006122825A2 (en) | 2005-05-20 | 2006-11-23 | Ablynx Nv | Single domain vhh antibodies against von willebrand factor |
US20090209621A1 (en) | 2005-06-03 | 2009-08-20 | The Johns Hopkins University | Compositions and methods for decreasing microrna expression for the treatment of neoplasia |
US20100129288A1 (en) * | 2005-06-28 | 2010-05-27 | Elior Peles | Gliomedin, Fragments Thereof and Methods of Using Same |
US7858590B2 (en) * | 2005-08-11 | 2010-12-28 | Cedars-Sinai Medical Center | Treatment of parkinson's disease and related disorders |
US20070104689A1 (en) * | 2005-09-27 | 2007-05-10 | Merck Patent Gmbh | Compositions and methods for treating tumors presenting survivin antigens |
PL1948798T3 (en) | 2005-11-18 | 2015-12-31 | Glenmark Pharmaceuticals Sa | Anti-alpha2 integrin antibodies and their uses |
EP1969001A2 (en) | 2005-11-22 | 2008-09-17 | Novartis Vaccines and Diagnostics, Inc. | Norovirus and sapovirus antigens |
US20090074733A1 (en) * | 2005-12-09 | 2009-03-19 | Medin Jeffrey A | Thymidylate kinase mutants and uses thereof |
US20090068158A1 (en) * | 2005-12-09 | 2009-03-12 | Medin Jeffrey A | Thymidylate kinase mutants and uses thereof |
US20080124303A1 (en) * | 2005-12-12 | 2008-05-29 | Cavit Sciences, Inc | Methods and compositions for treatment of viral infections |
WO2007076933A1 (en) | 2005-12-30 | 2007-07-12 | Merck Patent Gmbh | Interleukin-12p40 variants with improved stability |
ES2426468T3 (en) | 2005-12-30 | 2013-10-23 | Merck Patent Gmbh | Anti-CD19 antibodies with reduced immunogenicity |
US20090191597A1 (en) * | 2006-01-20 | 2009-07-30 | Asklepios Biopharmaceutical, Inc. | Enhanced production of infectious parvovirus vectors in insect cells |
TW200738752A (en) | 2006-01-31 | 2007-10-16 | Bayer Schering Pharma Ag | Modulation of MDL-1 activity for treatment of inflammatory disease |
WO2007095113A2 (en) * | 2006-02-10 | 2007-08-23 | Massachusetts Institute Of Technology | Cpg15 and cpg15-2 compounds and inhibitors as insulin receptor and insulin-like growth factor receptor agonists and antagonists |
AU2007219615B2 (en) | 2006-03-03 | 2013-11-28 | Promis Neurosciences Inc. | Methods and compositions to treat and detect misfolded-SOD1 mediated diseases |
WO2007120811A2 (en) | 2006-04-14 | 2007-10-25 | Advanced Cell Technology, Inc. | Hemangio-colony forming cells |
JP2009538924A (en) | 2006-06-01 | 2009-11-12 | エラン ファーマシューティカルズ,インコーポレイテッド | A neuroactive fragment of APP |
KR100954322B1 (en) | 2006-06-14 | 2010-04-21 | 주식회사 엘지생명과학 | Gene familyLBFL313 associated with pancreatic cancer |
WO2008042436A2 (en) | 2006-10-03 | 2008-04-10 | Biogen Idec Ma Inc. | Biomarkers and assays for the treatment of cancer |
PL2068921T3 (en) | 2006-10-19 | 2014-12-31 | Csl Ltd | High affinity antibody antagonists of interleukin-13 receptor alpha 1 |
US8613925B2 (en) | 2006-10-19 | 2013-12-24 | Csl Limited | Anti-IL-13Rα1 antibodies and their uses thereof |
EP2099523A2 (en) * | 2006-11-13 | 2009-09-16 | ZyStor Therapeutics , Inc. | Methods for treating pompe disease |
US9156914B2 (en) | 2006-12-19 | 2015-10-13 | Ablynx N.V. | Amino acid sequences directed against a metalloproteinase from the ADAM family and polypeptides comprising the same for the treatment of ADAM-related diseases and disorders |
EP2115004A2 (en) | 2006-12-19 | 2009-11-11 | Ablynx N.V. | Amino acid sequences directed against gpcrs and polypeptides comprising the same for the treatment of gpcr-related diseases and disorders |
US20090048146A1 (en) * | 2006-12-21 | 2009-02-19 | Alcon, Inc. | Use of agents that upregulate crystallin expression in the retina and optic nerve head |
AR064642A1 (en) * | 2006-12-22 | 2009-04-15 | Wyeth Corp | POLINUCLEOTIDE VECTOR THAT INCLUDES IT RECOMBINATING CELL THAT UNDERSTANDS THE VECTOR POLYPEPTIDE, ANTIBODY, COMPOSITION THAT UNDERSTANDS THE POLINUCLEOTIDE, VECTOR, RECOMBINATING CELL POLYPEPTIDE OR ANTIBODY, USE OF THE COMPOSITION AND A COMPOSITION AND A METHOD |
JP5829377B2 (en) * | 2007-02-06 | 2015-12-09 | ジュン ヨー,タイ | Treatment and prevention of neurodegenerative diseases using gene therapy |
WO2008098183A2 (en) * | 2007-02-08 | 2008-08-14 | The University Of Chicago | Combination therapy for treating cancer |
CA2678572C (en) | 2007-02-16 | 2012-10-30 | University Of Florida Research Foundation Inc. | Mitochondrial targeting and import of a virus to deliver a nucleic acid |
HUE043966T2 (en) | 2007-02-23 | 2019-09-30 | Prothena Biosciences Ltd | Prevention and treatment of synucleinopathic and amyloidogenic disease |
PL2118300T3 (en) | 2007-02-23 | 2015-11-30 | Prothena Biosciences Ltd | Prevention and treatment of synucleinopathic and amyloidogenic disease |
EP2139908A4 (en) * | 2007-03-12 | 2011-02-16 | Antigen Express Inc | Li-rnai involved li suppression in cancer immunotherapy |
CA2584494A1 (en) * | 2007-03-27 | 2008-09-27 | Jeffrey A. Medin | Vector encoding therapeutic polypeptide and safety elements to clear transduced cells |
EP2141997B1 (en) | 2007-03-30 | 2012-10-31 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes |
WO2008124768A1 (en) | 2007-04-09 | 2008-10-16 | The General Hospital Corporation | Hemojuvelin fusion proteins and uses thereof |
EP3492596A1 (en) | 2007-04-09 | 2019-06-05 | University of Florida Research Foundation, Inc. | Raav vector compositions having tyrosine-modified capsid proteins and methods for use |
WO2009014565A2 (en) | 2007-04-26 | 2009-01-29 | Ludwig Institute For Cancer Research, Ltd. | Methods for diagnosing and treating astrocytomas |
CA2723320C (en) | 2007-05-04 | 2019-06-11 | University Health Network | Il-12 immunotherapy for cancer |
CA2690281A1 (en) | 2007-05-11 | 2008-11-20 | The Johns Hopkins University | Biomarkers for melanoma |
ES2433967T3 (en) | 2007-05-14 | 2013-12-13 | The University Of Chicago | Antibody-LIGHT fusion products as cancer therapeutic products |
WO2008142693A2 (en) * | 2007-05-22 | 2008-11-27 | Yeda Research And Development Co. Ltd. | Regulation of myelination by nectin-like (necl) molecules |
GB0710529D0 (en) | 2007-06-01 | 2007-07-11 | Circassia Ltd | Vaccine |
US8889622B2 (en) * | 2007-07-25 | 2014-11-18 | Washington University | Methods of inhibiting seizure in a subject |
WO2009018250A2 (en) * | 2007-07-30 | 2009-02-05 | University Of Iowa Research Foundation | Use of rpa4 and rpa4/rpa32 hybrid polypeptides for modulating cell proliferation |
AU2008288283B2 (en) | 2007-08-15 | 2013-01-31 | Circassia Limited | Peptides for desensibilization against allergens |
US9040051B2 (en) | 2007-10-02 | 2015-05-26 | Universitaet Zu Koeln | Marker genes for regulatory T cells from human blood |
EA201000343A1 (en) | 2007-10-04 | 2011-10-31 | Займодженетикс, Инк. | MEMBER OF THE FAMILY B7, zB7H6 AND RELATED COMPOSITIONS AND METHODS |
WO2009078799A1 (en) | 2007-12-17 | 2009-06-25 | Marfl Ab | New vaccine for the treatment of mycobacterium related disorders |
EP2077119A1 (en) * | 2007-12-21 | 2009-07-08 | Apeiron Biologics Forschungs- und Entwicklungsgesellschaft M.B.H. | Treatment of fibrosis and liver diseases |
EP2237803B1 (en) | 2007-12-28 | 2015-07-01 | Prothena Biosciences Limited | Treatment and prophylaxis of amyloidosis |
US8591888B2 (en) | 2008-01-11 | 2013-11-26 | Synovex Corporation | Cadherin-11 EC1 domain antagonists for treating inflammatory joint disorders |
BRPI0906606A2 (en) * | 2008-01-31 | 2015-07-14 | Univ Vanderbilt | Therapeutic treatment for lung conditions. |
SG196863A1 (en) * | 2008-01-31 | 2014-02-13 | Univ Vanderbilt | Methods and compositions for treatment for coronary and arterial aneurysmal subarachnoid hemorrhage |
KR20110009095A (en) | 2008-03-03 | 2011-01-27 | 더 유니버시티 오브 마이애미 | Allogeneic cancer cell-based immunotherapy |
EP2257569B1 (en) | 2008-03-13 | 2014-10-01 | Agriculture Victoria Services PTY Limited | Vectors for expression of antimicrobial peptides in mammary gland |
JP2011515399A (en) | 2008-03-20 | 2011-05-19 | ユニバーシティー オブ マイアミ | Heat shock protein GP96 vaccination and method using the same |
US8568709B2 (en) * | 2008-03-20 | 2013-10-29 | University Health Network | Thymidylate kinase fusions and uses thereof |
AU2009235467A1 (en) | 2008-04-07 | 2009-10-15 | Ablynx Nv | Single variable domains against the Notch pathways |
EP3062106B1 (en) | 2008-04-16 | 2020-11-11 | The Johns Hopkins University | Method for determining androgen receptor variants in prostate cancer |
CA2722693C (en) | 2008-05-06 | 2023-03-21 | Advanced Cell Technology, Inc. | Hemangio colony forming cells and non-engrafting hemangio cells |
CN102083960B (en) | 2008-05-06 | 2014-12-03 | 先进细胞技术公司 | Methods for producing enucleated erythroid cells derived from pluripotent stem cells |
AU2009244148B2 (en) * | 2008-05-07 | 2014-10-09 | Biomarin Pharmaceutical Inc. | Lysosomal targeting peptides and uses thereof |
US20090291073A1 (en) * | 2008-05-20 | 2009-11-26 | Ward Keith W | Compositions Comprising PKC-theta and Methods for Treating or Controlling Ophthalmic Disorders Using Same |
US7914798B2 (en) | 2008-06-20 | 2011-03-29 | Wyeth Llc | Compositions and methods of use of ORF1358 from beta-hemolytic streptococcal strains |
US20120058105A1 (en) | 2008-06-27 | 2012-03-08 | Martin Kean Chong Ng | Method of treatment of vascular complications |
DK2153841T4 (en) | 2008-08-15 | 2016-02-15 | Circassia Ltd | Vaccine comprising Amb a 1 peptides for use in the treatment of ambrosieallergi |
EP2346904B1 (en) | 2008-10-29 | 2017-04-12 | China Synthetic Rubber Corporation | Methods and agents for the diagnosis and treatment of hepatocellular carcinoma |
JP2012507299A (en) * | 2008-10-31 | 2012-03-29 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | LIGHT target molecule and use thereof |
ES2648231T3 (en) | 2008-11-05 | 2017-12-29 | Wyeth Llc | Multi-component immunogenic composition for the prevention of beta hemolytic streptococcal disease (EBH) |
US8835617B2 (en) | 2008-11-06 | 2014-09-16 | The Trustees Of Columbia University In The City Of New York | Polynucleotides encoding a human TRIM-Cyp fusion polypeptide, compositions thereof, and methods of using same |
AU2010203223B9 (en) * | 2009-01-05 | 2015-10-08 | Epitogenesis Inc. | Adjuvant compositions and methods of use |
EP2389191A2 (en) | 2009-01-23 | 2011-11-30 | NsGene A/S | Expression of neuropeptides in mammalian cells |
JP2012516357A (en) | 2009-01-29 | 2012-07-19 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Methods for distributing high levels of therapeutic agents throughout the cortex to treat neurological disorders |
PL2393830T3 (en) | 2009-02-05 | 2015-07-31 | Circassia Ltd | Grass peptides for vaccine |
WO2010093784A2 (en) | 2009-02-11 | 2010-08-19 | The University Of North Carolina At Chapel Hill | Modified virus vectors and methods of making and using the same |
EP2221066A1 (en) | 2009-02-18 | 2010-08-25 | Sanofi-Aventis | Use of VgII3 activity modulator for the modulation of adipogenesis |
CN105399828B (en) | 2009-04-10 | 2021-01-15 | 埃博灵克斯股份有限公司 | Improved amino acid sequences directed against IL-6R and polypeptides comprising the same for the treatment of IL-6R related diseases and disorders |
HRP20212024T1 (en) | 2009-05-02 | 2022-04-01 | Genzyme Corporation | Gene therapy for neurodegenerative disorders |
NZ597314A (en) | 2009-06-05 | 2013-07-26 | Ablynx Nv | Monovalent, bivalent and trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections |
US8785168B2 (en) | 2009-06-17 | 2014-07-22 | Biomarin Pharmaceutical Inc. | Formulations for lysosomal enzymes |
US8455191B2 (en) | 2009-08-28 | 2013-06-04 | Miami University | Cell transdifferentiation into brown adipocytes |
US20120283115A1 (en) | 2009-08-31 | 2012-11-08 | Ludwig Institute For Cancer Research Ltd. | Seromic analysis of ovarian cancer |
GB0915794D0 (en) | 2009-09-09 | 2009-10-07 | Ucl Business Plc | Screening method and treatment |
WO2011032100A1 (en) | 2009-09-11 | 2011-03-17 | Government Of The U.S.A., As Represented By The Secretary, Department Of Health And Human Services | Inhibitors of kshv vil6 and human il6 |
US20110117113A1 (en) | 2009-10-09 | 2011-05-19 | Gerald Beste | Immunoglobulin single variable domain directed against human cxcr4 and other cell associated proteins and methods to generate them |
EP2498825B1 (en) | 2009-11-09 | 2017-03-29 | Genepod Therapeutics Ab | Novel viral vector construct for neuron specific continuous dopa synthesis in vivo |
WO2011064382A1 (en) | 2009-11-30 | 2011-06-03 | Ablynx N.V. | Improved amino acid sequences directed against human respiratory syncytial virus (hrsv) and polypeptides comprising the same for the prevention and/or treatment of respiratory tract infections |
US9872905B2 (en) | 2009-12-01 | 2018-01-23 | President And Fellows Of Harvard College | Modulation of NK cell antigen specific effector activity by modulation of CXCR6 (CD186) |
US8962807B2 (en) | 2009-12-14 | 2015-02-24 | Ablynx N.V. | Single variable domain antibodies against OX40L, constructs and therapeutic use |
CN102802658A (en) | 2009-12-21 | 2012-11-28 | 台湾东洋药品工业股份有限公司 | Methods and compositions related to reduced met phosphorylation by leukocyte cell-derived chemotaxin 2 in tumor cells |
WO2011083140A1 (en) | 2010-01-08 | 2011-07-14 | Ablynx Nv | Immunoglobulin single variable domain directed against human cxcr4 |
WO2011088081A1 (en) | 2010-01-12 | 2011-07-21 | The University Of North Carolina At Chapel Hill | Restrictive inverted terminal repeats for viral vectors |
US9120855B2 (en) | 2010-02-10 | 2015-09-01 | Novartis Ag | Biologic compounds directed against death receptor 5 |
GB201002559D0 (en) | 2010-02-15 | 2010-03-31 | Circassia Ltd | Birch peptides for vaccine |
GB201004475D0 (en) | 2010-03-17 | 2010-05-05 | Isis Innovation | Gene silencing |
EP2552962B1 (en) | 2010-03-26 | 2016-03-23 | Ablynx N.V. | Immunoglobulin single variable domains directed against cxcr7 |
CA2805267C (en) | 2010-05-04 | 2019-07-30 | The Brigham And Women's Hospital, Inc. | Detection and treatment of fibrosis |
EP3546483A1 (en) | 2010-05-20 | 2019-10-02 | Ablynx N.V. | Biological materials related to her3 |
WO2011146938A1 (en) | 2010-05-21 | 2011-11-24 | NanoOncology, Inc. | Reagents and methods for treating cancer |
EP2580238A1 (en) | 2010-06-09 | 2013-04-17 | Zymogenetics, Inc. | Dimeric vstm3 fusion proteins and related compositions and methods |
LT2593128T (en) | 2010-07-15 | 2018-06-25 | Adheron Therapeutics, Inc. | Humanized antibodies targeting the ec1 domain of cadherin-11 and related compositions and methods |
GB201014026D0 (en) | 2010-08-20 | 2010-10-06 | Ucl Business Plc | Treatment |
CA2808975C (en) | 2010-08-23 | 2018-10-30 | Wyeth Llc | Stable formulations of neisseria meningitidis rlp2086 antigens |
WO2012025759A2 (en) | 2010-08-26 | 2012-03-01 | Isis Innovation Limited | Method |
EP3056212B1 (en) | 2010-09-10 | 2019-04-03 | Wyeth LLC | Non-lipidated variants of neisseria meningitidis orf2086 antigens |
EP2621953B1 (en) | 2010-09-30 | 2017-04-05 | Ablynx N.V. | Biological materials related to c-met |
AU2011307488B2 (en) | 2010-10-01 | 2015-08-20 | Hoba Therapeutics Aps | Use of meteorin for the treatment of allodynia, hyperalgesia, spontaneous pain and phantom pain |
KR101470908B1 (en) * | 2010-10-07 | 2014-12-09 | 가톨릭대학교 산학협력단 | Anticancer immunotherapeutic agent |
WO2012051301A1 (en) | 2010-10-12 | 2012-04-19 | President And Fellows Of Harvard College | Methods for identifying modulators of triglyceride metabolism, for modulating triglyceride metabolism and for identifying subjects at risk for abnormal triglyceride metabolism |
US20130273093A1 (en) | 2010-10-18 | 2013-10-17 | Peter Charles Leonard Beverley | Method for Immunising a Subject against Mycobacterium Tuberculosis or Mycobacterium Bovis |
US8815942B2 (en) | 2010-10-20 | 2014-08-26 | The Royal Institution For The Advancement Of Learning/Mcgill University | Combination therapy and uses thereof for treatment and prevention of parasitic infection and disease |
MX343085B (en) | 2010-11-08 | 2016-10-24 | Novartis Ag | Cxcr2 binding polypeptides. |
US9072766B2 (en) | 2010-11-18 | 2015-07-07 | Beth Israel Deaconess Medical Center, Inc. | Methods of treating obesity by inhibiting nicotinamide N-methyl transferase (NNMT) |
DK3214091T3 (en) | 2010-12-09 | 2019-01-07 | Univ Pennsylvania | USE OF CHEMICAL ANTIGEN RECEPTOR MODIFIED T CELLS FOR TREATMENT OF CANCER |
WO2012094511A2 (en) | 2011-01-05 | 2012-07-12 | Rhode Island Hospital | Compositions and methods for the treatment of orthopedic disease or injury |
WO2012095548A2 (en) | 2011-01-13 | 2012-07-19 | Centro De Investigación Biomédica En Red De Enfermedades Neurodegenerativas (Ciberned) | Compounds for treating neurodegenerative disorders |
US9402865B2 (en) | 2011-01-18 | 2016-08-02 | The Trustees Of The University Of Pennsylvania | Compositions and methods for treating cancer |
WO2012109238A2 (en) | 2011-02-07 | 2012-08-16 | President And Fellows Of Harvard College | Methods for increasing immune responses using agents that directly bind to and activate ire-1 |
US9409953B2 (en) | 2011-02-10 | 2016-08-09 | The University Of North Carolina At Chapel Hill | Viral vectors with modified transduction profiles and methods of making and using the same |
US20150158948A9 (en) | 2011-03-28 | 2015-06-11 | Francis Descamps | Bispecific anti-cxcr7 immunoglobulin single variable domains |
US20140155469A1 (en) | 2011-04-19 | 2014-06-05 | The Research Foundation Of State University Of New York | Adeno-associated-virus rep sequences, vectors and viruses |
UA117218C2 (en) | 2011-05-05 | 2018-07-10 | Мерк Патент Гмбх | Amino acid sequences directed against il-17a, il-17f and/or il17-a/f and polypeptides comprising the same |
US9880151B2 (en) | 2011-05-23 | 2018-01-30 | Phylogica Limited | Method of determining, identifying or isolating cell-penetrating peptides |
CN103717235A (en) | 2011-06-24 | 2014-04-09 | 埃皮托吉尼西斯有限公司 | Pharmaceutical compositions, comprising a combination of select carriers, vitamins, tannins and flavonoids as antigen-specific immuno-modulators |
SI2751279T1 (en) | 2011-08-31 | 2018-01-31 | St. Jude Children's Research Hospital | Methods and compositions to detect the level of lysosomal exocytosis activity and methods of use |
CN104105501B (en) | 2011-09-05 | 2017-10-20 | 霍巴治疗公司 | Allodynia, hyperalgia, the treatment of spontaneous pain and phantom pain |
JP2014528715A (en) | 2011-09-15 | 2014-10-30 | ロサンゼルス バイオメディカル リサーチ インスティテュート アットハーバー− ユーシーエルエー メディカル センター | Immunotherapy and diagnosis of mucormycosis using CotH |
CA2848740A1 (en) | 2011-09-16 | 2013-03-21 | Mingxing Wang | Amphiphilic cationic polymers for the delivery of therapeutic agents |
KR102130439B1 (en) | 2011-09-19 | 2020-07-07 | 악손 뉴로사이언스 에스이 | Protein-based therapy and diagnosis of tau-mediated pathology in alzheimer's disease |
WO2013044225A1 (en) | 2011-09-22 | 2013-03-28 | The Trustees Of The University Of Pennsylvania | A universal immune receptor expressed by t cells for the targeting of diverse and multiple antigens |
CA2850261C (en) | 2011-09-30 | 2021-04-20 | Ablynx Nv | C-met immunoglobulin single variable domains |
CA3077804C (en) | 2012-01-09 | 2023-07-25 | Serpin Pharma, Llc | Peptides and methods of using same |
WO2013106358A1 (en) | 2012-01-10 | 2013-07-18 | Hussain M Mahmood | Method of treating hyperlipidemia and atherosclerosis with mir-30c |
MX2014010181A (en) | 2012-02-22 | 2015-03-20 | Univ Pennsylvania | Use of icos-based cars to enhance antitumor activity and car persistence. |
US9783591B2 (en) | 2012-02-22 | 2017-10-10 | The Trustees Of The University Of Pennsylvania | Use of the CD2 signaling domain in second-generation chimeric antigen receptors |
EP2817318A4 (en) | 2012-02-22 | 2016-04-27 | Univ Pennsylvania | Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer |
CN107056901B (en) | 2012-03-09 | 2021-05-07 | 辉瑞公司 | Meningococcal compositions and methods thereof |
SA115360586B1 (en) | 2012-03-09 | 2017-04-12 | فايزر انك | Neisseria meningitidis compositions and methods thereof |
JP2015516400A (en) | 2012-04-24 | 2015-06-11 | ユニバーシティー オブ マイアミUniversity Of Miami | Perforin 2 protection against invasive and multi-drug resistant pathogens |
US9328174B2 (en) | 2012-05-09 | 2016-05-03 | Novartis Ag | Chemokine receptor binding polypeptides |
US9050296B2 (en) | 2012-07-03 | 2015-06-09 | Maine Medical Center | Methods for treating metabolic syndrome with Cthrc1 polypeptide |
JP2015524255A (en) | 2012-07-13 | 2015-08-24 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Method for enhancing the activity of CART cells by co-introducing bispecific antibodies |
KR20210149195A (en) | 2012-07-13 | 2021-12-08 | 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 | Methods of assessing the suitability of transduced T cells for administration |
WO2014039513A2 (en) | 2012-09-04 | 2014-03-13 | The Trustees Of The University Of Pennsylvania | Inhibition of diacylglycerol kinase to augment adoptive t cell transfer |
EP3738974A1 (en) | 2012-09-28 | 2020-11-18 | The University of North Carolina at Chapel Hill | Aav vectors targeted to oligodendrocytes |
NZ746914A (en) | 2012-10-02 | 2020-03-27 | Memorial Sloan Kettering Cancer Center | Compositions and methods for immunotherapy |
WO2014055771A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Human alpha-folate receptor chimeric antigen receptor |
AU2013204200B2 (en) | 2012-10-11 | 2016-10-20 | Brandeis University | Treatment of amyotrophic lateral sclerosis |
WO2014074785A1 (en) | 2012-11-08 | 2014-05-15 | Ludwig Institute For Cancer Research Ltd. | Methods of predicting outcome and treating breast cancer |
AU2013344375B2 (en) | 2012-11-16 | 2017-09-14 | Transposagen Biopharmaceuticals, Inc. | Site-specific enzymes and methods of use |
WO2014107739A1 (en) | 2013-01-07 | 2014-07-10 | Eleven Biotherapeutics, Inc. | Antibodies against pcsk9 |
US9394368B2 (en) | 2013-02-20 | 2016-07-19 | Novartis Ag | Treatment of cancer using humanized anti-EGFRvIII chimeric antigen receptor |
EP2958942B1 (en) | 2013-02-20 | 2020-06-03 | Novartis AG | Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells |
AU2014223601B9 (en) | 2013-02-26 | 2020-04-23 | Memorial Sloan-Kettering Cancer Center | Compositions and methods for immunotherapy |
US8957044B2 (en) | 2013-03-01 | 2015-02-17 | Wake Forest University Health Sciences | Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM) |
CA2903716C (en) | 2013-03-08 | 2019-04-09 | Pfizer Inc. | Immunogenic fusion polypeptides |
CA2940513C (en) | 2013-03-11 | 2023-08-15 | University Of Florida Research Foundation, Inc. | Delivery of card protein as therapy for ocular inflammation |
DK2968470T3 (en) | 2013-03-12 | 2021-02-01 | Massachusetts Gen Hospital | MODIFIED MULER INHIBITANT SUBSTANCE (MIS) PROTEINS AND USES THEREOF FOR THE TREATMENT OF DISEASES |
EP2968526A4 (en) | 2013-03-14 | 2016-11-09 | Abbott Lab | Hcv antigen-antibody combination assay and methods and compositions for use therein |
MX2015012825A (en) | 2013-03-14 | 2016-06-10 | Abbott Lab | Hcv core lipid binding domain monoclonal antibodies. |
JP2016512241A (en) | 2013-03-14 | 2016-04-25 | アボット・ラボラトリーズAbbott Laboratories | HCVNS3 recombinant antigen for improved antibody detection and mutants thereof |
MX2015012274A (en) | 2013-03-14 | 2016-06-02 | Univ Maryland | Androgen receptor down-regulating agents and uses thereof. |
EP3517612A1 (en) | 2013-03-15 | 2019-07-31 | The University of North Carolina At Chapel Hill | Synthetic adeno-associated virus inverted terminal repeats |
CA2907184C (en) | 2013-03-15 | 2022-12-06 | Sutter West Bay Hospitals | Falz for use as a target for therapies to treat cancer |
SG11201507688VA (en) | 2013-03-15 | 2015-10-29 | Sloan Kettering Inst Cancer | Compositions and methods for immunotherapy |
WO2014144229A1 (en) | 2013-03-15 | 2014-09-18 | The University Of North Carolina At Chapel Hill | Methods and compositions for dual glycan binding aav vectors |
UY35468A (en) | 2013-03-16 | 2014-10-31 | Novartis Ag | CANCER TREATMENT USING AN ANTI-CD19 CHEMERIC ANTIGEN RECEIVER |
EP2978442B1 (en) | 2013-03-29 | 2020-03-18 | The Regents of the University of Colorado, a body corporate | Alpha 1 antitrypsin of use for preparing a subject for transplant |
PT2981607T (en) | 2013-04-03 | 2020-11-20 | Memorial Sloan Kettering Cancer Center | Effective generation of tumor-targeted t-cells derived from pluripotent stem cells |
US9644215B2 (en) | 2013-04-12 | 2017-05-09 | The General Hospital Corporation | AAV1-caspase gene therapy induced pyroptosis for the treatment of tumors |
WO2014191630A2 (en) | 2013-05-28 | 2014-12-04 | Helsingin Yliopisto | Non-human animal model encoding a non-functional manf gene |
EP3008191A2 (en) | 2013-06-13 | 2016-04-20 | Shire Human Genetic Therapies, Inc. | Messenger rna based viral production |
WO2015031686A1 (en) | 2013-08-30 | 2015-03-05 | Amgen Inc. | High titer recombinant aav vector production in adherent and suspension cells |
RU2662968C2 (en) | 2013-09-08 | 2018-07-31 | Пфайзер Инк. | Immunogenic composition for neisseria meningitidis (options) |
CN105764926A (en) | 2013-09-24 | 2016-07-13 | 梅迪塞纳医疗股份有限公司 | Interleukin-4 receptor-binding fusion proteins and uses thereof |
US10781242B2 (en) | 2013-09-24 | 2020-09-22 | Medicenna Therapeutics Inc. | Interleukin-2 fusion proteins and uses thereof |
WO2015048331A1 (en) | 2013-09-25 | 2015-04-02 | Cornell University | Compounds for inducing anti-tumor immunity and methods thereof |
AU2014331938A1 (en) | 2013-10-09 | 2016-04-28 | University Of Miami | Perforin-2 activators and inhibitors as drug targets for infectious disease and gut inflammation |
WO2015058018A1 (en) | 2013-10-17 | 2015-04-23 | National University Of Singapore | Chimeric receptor that triggers antibody-dependent cell cytotoxicity against multiple tumors |
JP6317440B2 (en) | 2013-10-29 | 2018-04-25 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Methods and compositions for inhibiting oxidative stress |
US11135269B2 (en) | 2013-12-11 | 2021-10-05 | The General Hospital Corporation | Use of mullerian inhibiting substance (MIS) proteins for contraception and ovarian reserve preservation |
CA2931684C (en) | 2013-12-19 | 2024-02-20 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
WO2015112626A1 (en) | 2014-01-21 | 2015-07-30 | June Carl H | Enhanced antigen presenting ability of car t cells by co-introduction of costimulatory molecules |
US11053291B2 (en) | 2014-02-19 | 2021-07-06 | University Of Florida Research Foundation, Incorporated | Delivery of Nrf2 as therapy for protection against reactive oxygen species |
WO2015124546A1 (en) | 2014-02-19 | 2015-08-27 | Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii- Cnic | Aav vectors for the treatment of ischemic and non-ischemic heart disease |
US20170335281A1 (en) | 2014-03-15 | 2017-11-23 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
EP3122872B1 (en) | 2014-03-27 | 2019-07-03 | The Salk Institute for Biological Studies | Compositions and methods for treating type 1 and type 2 diabetes and related disorders |
IL307423A (en) | 2014-04-07 | 2023-12-01 | Novartis Ag | Treatment of cancer using anti-cd19 chimeric antigen receptor |
AU2015259877B2 (en) | 2014-05-15 | 2021-02-25 | National University Of Singapore | Modified natural killer cells and uses thereof |
WO2015179404A1 (en) | 2014-05-19 | 2015-11-26 | The Johns Hopkins University | Methods for identifying androgen receptor splice variants in subjects having castration resistant prostate cancer |
EP4166148A1 (en) | 2014-06-06 | 2023-04-19 | Memorial Sloan-Kettering Cancer Center | Mesothelin-targeted chimeric antigen receptors and uses thereof |
EP3155128B1 (en) | 2014-06-10 | 2019-05-15 | Erasmus University Medical Center Rotterdam | Methods for characterizing alternatively or aberrantly spliced mrna isoforms |
WO2015189429A1 (en) | 2014-06-13 | 2015-12-17 | Universidade De Santiago De Compostela | Nanoparticulate systems for use in gene transfer or gene delivery |
NL2013661B1 (en) | 2014-10-21 | 2016-10-05 | Ablynx Nv | KV1.3 Binding immunoglobulins. |
EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
JP2017522895A (en) | 2014-07-31 | 2017-08-17 | ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ オクラホマ | High isomerohydrolase activity mutant of mammalian RPE65 |
WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
CN112410363A (en) | 2014-08-19 | 2021-02-26 | 诺华股份有限公司 | anti-CD 123 Chimeric Antigen Receptor (CAR) for cancer therapy |
JP6860476B2 (en) | 2014-08-25 | 2021-04-14 | ザ ジョンズ ホプキンズ ユニヴァーシティー | Methods and Compositions for Prostate Cancer Treatment |
KR102500531B1 (en) | 2014-09-04 | 2023-02-17 | 메모리얼 슬로안 케터링 캔서 센터 | Globin gene therapy for treating hemoglobinopathies |
SG10201902168PA (en) | 2014-09-09 | 2019-04-29 | Unum Therapeutics | Chimeric receptors and uses thereof in immune therapy |
US10577417B2 (en) | 2014-09-17 | 2020-03-03 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
WO2016044707A1 (en) | 2014-09-18 | 2016-03-24 | Cedars-Sinai Medical Center | Compositions and methods for treating fibrosis |
RU2743657C2 (en) | 2014-10-08 | 2021-02-20 | Новартис Аг | Biomarkers predicting a therapeutic response to therapy with a chimeric antigen receptor, and use thereof |
NZ731673A (en) | 2014-11-21 | 2024-07-26 | Univ North Carolina Chapel Hill | Aav vectors targeted to the central nervous system |
US20180334490A1 (en) | 2014-12-03 | 2018-11-22 | Qilong H. Wu | Methods for b cell preconditioning in car therapy |
KR20240130831A (en) | 2014-12-05 | 2024-08-29 | 메모리얼 슬로안 케터링 캔서 센터 | Chimeric antigen receptors targeting b-cell maturation antigen and uses thereof |
JP7174522B2 (en) | 2014-12-05 | 2022-11-17 | メモリアル スローン ケタリング キャンサー センター | Chimeric antigen receptor targeting Fc receptor-like 5 and uses thereof |
SG11201704552TA (en) | 2014-12-05 | 2017-07-28 | Memorial Sloan Kettering Cancer Center | Antibodies targeting g-protein coupled receptor and methods of use |
SI3227339T1 (en) | 2014-12-05 | 2022-02-28 | Memorial Sloan-Kettering Cancer Center | Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof |
JP6938377B2 (en) | 2015-01-14 | 2021-09-22 | ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | Methods and compositions for targeting gene transfer |
MA41349A (en) | 2015-01-14 | 2017-11-21 | Univ Temple | RNA-GUIDED ERADICATION OF HERPES SIMPLEX TYPE I AND OTHER ASSOCIATED HERPES VIRUSES |
GB201501004D0 (en) | 2015-01-21 | 2015-03-04 | Cancer Rec Tech Ltd | Inhibitors |
US11161907B2 (en) | 2015-02-02 | 2021-11-02 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
AU2016215124B2 (en) | 2015-02-06 | 2020-08-06 | The University Of North Carolina At Chapel Hill | Optimized human clotting Factor VIII gene expression cassettes and their use |
WO2016132294A1 (en) | 2015-02-19 | 2016-08-25 | Pfizer Inc. | Neisseria meningitidis compositions and methods thereof |
JP6495468B2 (en) | 2015-02-27 | 2019-04-03 | ソーク インスティチュート フォー バイオロジカル スタディーズ | Reprogramming precursor composition and method of use thereof |
MA41629A (en) | 2015-03-04 | 2018-01-09 | Center For Human Reproduction | COMPOSITIONS AND METHODS OF USE OF ANTI-MÜLLERIAN HORMONE FOR THE TREATMENT OF INFERTILITY |
CN114478791A (en) | 2015-04-03 | 2022-05-13 | 优瑞科生物技术公司 | Constructs targeting AFP peptide/MHC complexes and uses thereof |
SG11201708191XA (en) | 2015-04-08 | 2017-11-29 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
EP4194001A1 (en) | 2015-04-22 | 2023-06-14 | Cedars-Sinai Medical Center | Enterically delivered bitter oligopeptides for the treatment for type 2 diabetes and obesity |
WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
WO2016174652A1 (en) | 2015-04-30 | 2016-11-03 | Technion Research & Development Foundation Limited | Chimeric antigen receptors and methods of their use |
EP4088732A1 (en) | 2015-05-01 | 2022-11-16 | The Regents of The University of California | Glycan-dependent immunotherapeutic molecules |
DK3288379T3 (en) | 2015-05-01 | 2022-02-07 | Univ Michigan Regents | PEPTIME COMPOSITIONS AND METHODS OF APPLICATION |
CN114634943A (en) | 2015-05-18 | 2022-06-17 | T细胞受体治疗公司 | Compositions and methods for reprogramming TCRs using fusion proteins |
IL274151B (en) | 2015-05-21 | 2022-07-01 | Harpoon Therapeutics Inc | Trispecific binding proteins and methods of use |
KR102637402B1 (en) | 2015-06-17 | 2024-02-15 | 포세이다 테라퓨틱스, 인크. | Compositions and methods for inducing proteins to specific loci in the genome |
US10550379B2 (en) | 2015-06-29 | 2020-02-04 | The Board Of Trustees Of The Leland Stanford Junior University | Degron fusion constructs and methods for controlling protein production |
EP3328994A4 (en) | 2015-07-31 | 2019-04-17 | Memorial Sloan-Kettering Cancer Center | Antigen-binding proteins targeting cd56 and uses thereof |
CA2992511A1 (en) | 2015-08-03 | 2017-02-09 | Myodopa Limited | Systemic synthesis and regulation of l-dopa |
CN113429455A (en) | 2015-08-28 | 2021-09-24 | 赛品制药有限责任公司 | Methods for disease treatment |
EP3344996A2 (en) | 2015-09-03 | 2018-07-11 | The Trustees Of The University Of Pennsylvania | Biomarkers predictive of cytokine release syndrome |
US11242375B2 (en) | 2015-09-04 | 2022-02-08 | Memorial Sloan Kettering Cancer Center | Immune cell compositions and methods of use |
CA2996420A1 (en) | 2015-09-28 | 2017-04-06 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
IL258405B (en) | 2015-10-23 | 2022-09-01 | Eureka Therapeutics Inc | Antibody/t-cell receptor chimeric constructs and uses thereof |
CA3006759A1 (en) | 2015-11-30 | 2017-06-08 | The Regents Of The University Of California | Tumor-specific payload delivery and immune activation using a human antibody targeting a highly specific tumor cell surface antigen |
MY197441A (en) | 2015-12-04 | 2023-06-19 | Memorial Sloan Kettering Cancer Center | Antibodies targeting fc receptor-like 5 and method of use |
US10590169B2 (en) | 2015-12-09 | 2020-03-17 | Virogin Biotech Canada Ltd | Compositions and methods for inhibiting CD279 interactions |
AU2016366226B2 (en) | 2015-12-09 | 2023-06-01 | Memorial Sloan Kettering Cancer Center | Immune cell compositions and methods of using same |
BR112018011881A2 (en) | 2015-12-14 | 2018-12-04 | The University Of North Carolina At Chapel Hill | modified capsid proteins for increased release of parvovirus vectors |
US11441146B2 (en) | 2016-01-11 | 2022-09-13 | Christiana Care Health Services, Inc. | Compositions and methods for improving homogeneity of DNA generated using a CRISPR/Cas9 cleavage system |
US11116850B2 (en) | 2016-02-22 | 2021-09-14 | The University Of North Carolina At Chapel Hill | AAV-IDUA vector for treatment of MPS I-associated blindness |
WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
EP3426804A4 (en) | 2016-03-11 | 2020-03-25 | The Brigham and Women's Hospital, Inc. | Compositions and methods for treating chemotherapy resistant cancer |
CA3018382A1 (en) | 2016-03-29 | 2017-10-05 | University Of Southern California | Chimeric antigen receptors targeting cancer |
ES2933961T3 (en) | 2016-04-15 | 2023-02-15 | Memorial Sloan Kettering Cancer Center | Transgenic T Cells and Chimeric Antigen Receptor T Cell Compositions and Related Methods |
SI3443096T1 (en) | 2016-04-15 | 2023-07-31 | Novartis Ag | Compositions and methods for selective expression of chimeric antigen receptors |
EP4273248A3 (en) | 2016-05-20 | 2024-01-10 | Braingene AB | Destabilising domains for conditionally stabilising a protein |
WO2017201488A1 (en) | 2016-05-20 | 2017-11-23 | Harpoon Therapeutics, Inc. | Single domain serum albumin binding protein |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
AU2017269364B2 (en) | 2016-05-25 | 2023-08-31 | Salk Institute For Biological Studies | Compositions and methods for organoid generation and disease modeling |
EP3464375A2 (en) | 2016-06-02 | 2019-04-10 | Novartis AG | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
RU2764919C2 (en) | 2016-06-13 | 2022-01-24 | Дзе Юниверсити Оф Норт Каролина Эт Чепел Хилл | Optimized cln1 genes and expression cassettes, and their application |
US10183058B2 (en) | 2016-06-17 | 2019-01-22 | Nymox Corporation | Method of preventing or reducing the progression of prostate cancer |
CA2971303A1 (en) | 2016-06-21 | 2017-12-21 | Bamboo Therapeutics, Inc. | Optimized mini-dystrophin genes and expression cassettes and their use |
MX2019000088A (en) | 2016-06-27 | 2019-08-29 | Broad Inst Inc | Compositions and methods for detecting and treating diabetes. |
WO2018001858A1 (en) | 2016-06-27 | 2018-01-04 | University Of Copenhagen | Tailored assembly of a modular bud polypeptide |
JP2018035137A (en) | 2016-07-13 | 2018-03-08 | マブイミューン ダイアグノスティックス エイジーMabimmune Diagnostics Ag | Novel anti-fibroblast activated protein (FAP) binding agent and use thereof |
US20190336504A1 (en) | 2016-07-15 | 2019-11-07 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
AU2017299854A1 (en) | 2016-07-18 | 2019-01-31 | Helix Biopharma Corp. | CAR immune cells directed to carcinoembryonic antigen related cell adhesion molecule 6 to treat cancer |
RU2019103384A (en) | 2016-07-26 | 2020-08-26 | Дзе Юниверсити Оф Норт Каролина Эт Чепел Хилл | VECTOR-MEDIATED IMMUNOLOGICAL EYE TOLERANCE |
US10172910B2 (en) | 2016-07-28 | 2019-01-08 | Nymox Corporation | Method of preventing or reducing the incidence of acute urinary retention |
BR112019001570A2 (en) | 2016-07-28 | 2019-07-09 | Novartis Ag | chimeric antigen receptor combination therapies and pd-1 inhibitors |
EP3490590A2 (en) | 2016-08-01 | 2019-06-05 | Novartis AG | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
CA3032498A1 (en) | 2016-08-02 | 2018-02-08 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
WO2018044866A1 (en) | 2016-08-30 | 2018-03-08 | Memorial Sloan Kettering Cancer Center | Immune cell compositions and methods of use for treating viral and other infections |
US10532081B2 (en) | 2016-09-07 | 2020-01-14 | Nymox Corporation | Method of ameliorating or preventing the worsening or the progression of symptoms of BPH |
CN117866991A (en) | 2016-10-07 | 2024-04-12 | 诺华股份有限公司 | Chimeric antigen receptor for the treatment of cancer |
JP7217970B2 (en) | 2016-10-07 | 2023-02-06 | ティーシーアール2 セラピューティクス インク. | Compositions and methods for reprogramming T-cell receptors using fusion proteins |
US10172933B2 (en) | 2016-10-31 | 2019-01-08 | The United States Of America, As Represented By The Secretary Of Agriculture | Mosaic vaccines for serotype a foot-and-mouth disease virus |
CA3044593A1 (en) | 2016-11-22 | 2018-05-31 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
CA3044729A1 (en) | 2016-11-23 | 2018-05-31 | Harpoon Therapeutics, Inc. | Psma targeting trispecific proteins and methods of use |
EA201991168A1 (en) | 2016-11-23 | 2019-12-30 | Харпун Терапьютикс, Инк. | PROTEIN BINDING PROSTATIC SPECIFIC MEMBRANE ANTIGEN |
CN110234343A (en) | 2016-12-21 | 2019-09-13 | T细胞受体治疗公司 | Engineered T cell for treating cancer |
EP3568470B1 (en) | 2017-01-10 | 2022-07-06 | Christiana Care Health Services, Inc. | Methods for in vitro site-directed mutagenesis using gene editing technologies |
EP3568468A4 (en) | 2017-01-12 | 2020-12-30 | Eureka Therapeutics, Inc. | Constructs targeting histone h3 peptide/mhc complexes and uses thereof |
EP3574005B1 (en) | 2017-01-26 | 2021-12-15 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
CN110234658B (en) | 2017-01-31 | 2024-03-12 | 辉瑞大药厂 | Neisseria meningitidis compositions and methods of use thereof |
CN108395482B (en) | 2017-02-08 | 2021-02-05 | 西比曼生物科技(香港)有限公司 | Construction of targeting CD20 antigen chimeric antigen receptor and activity identification of engineered T cell thereof |
WO2018148667A1 (en) | 2017-02-10 | 2018-08-16 | Memorial Sloan-Kettering Cancer Center | Reprogramming cell aging |
US11597911B2 (en) | 2017-02-27 | 2023-03-07 | Life Technologies Corporation | Expansion of populations of T cells by the use of modified serum free media |
WO2018160754A2 (en) | 2017-02-28 | 2018-09-07 | Harpoon Therapeutics, Inc. | Inducible monovalent antigen binding protein |
WO2018161092A1 (en) | 2017-03-03 | 2018-09-07 | New York University | Induction and enhancement of antitumor immunity involving virus vectors expressing multiple epitopes of tumor associated antigens and immune checkpoint inhibitors or proteins |
EP3592368A1 (en) | 2017-03-08 | 2020-01-15 | Memorial Sloan Kettering Cancer Center | Immune cell compositions and methods of use |
IL268891B2 (en) | 2017-03-15 | 2024-09-01 | Univ North Carolina Chapel Hill | Polyploid adeno-associated virus vectors and methods of making and using the same |
CN117384929A (en) | 2017-03-27 | 2024-01-12 | 新加坡国立大学 | Polynucleotide encoding chimeric receptor expressed by cell |
MX2019011570A (en) | 2017-03-27 | 2019-11-18 | Nat Univ Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells. |
US10934336B2 (en) | 2017-04-13 | 2021-03-02 | The Trustees Of The University Of Pennsylvania | Use of gene editing to generate universal TCR re-directed T cells for adoptive immunotherapy |
US11613573B2 (en) | 2017-04-26 | 2023-03-28 | Eureka Therapeutics, Inc. | Chimeric antibody/T-cell receptor constructs and uses thereof |
US11447564B2 (en) | 2017-04-26 | 2022-09-20 | Eureka Therapeutics, Inc. | Constructs specifically recognizing glypican 3 and uses thereof |
US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
BR112019023856A2 (en) | 2017-05-12 | 2020-06-09 | Harpoon Therapeutics Inc | triespecific proteins targeting msln and methods of use |
WO2018209298A1 (en) | 2017-05-12 | 2018-11-15 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
WO2018220236A1 (en) | 2017-06-02 | 2018-12-06 | Merck Patent Gmbh | Polypeptides binding adamts5, mmp13 and aggrecan |
MX2019014448A (en) | 2017-06-02 | 2020-02-10 | Merck Patent Gmbh | Mmp13 binding immunoglobulins. |
BR112019024333A2 (en) | 2017-06-02 | 2020-07-28 | Merck Patent Gmbh | adamts binding immunoglobulins |
TW202413408A (en) | 2017-06-02 | 2024-04-01 | 比利時商艾伯林克斯公司 | Aggrecan binding immunoglobulins |
EP3638295A1 (en) | 2017-06-13 | 2020-04-22 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
US20210145828A1 (en) | 2017-06-29 | 2021-05-20 | Rutgers, The State University Of New Jersey | Compositions And Methods Targeting G12 Signaling For Bronchodilator Therapy |
CN111032074A (en) | 2017-07-03 | 2020-04-17 | 斯特拉斯堡大学 | MTMR2-S polypeptide for use in the treatment of myopathy |
GB201710973D0 (en) | 2017-07-07 | 2017-08-23 | Avacta Life Sciences Ltd | Scaffold proteins |
CN109456943A (en) | 2017-09-06 | 2019-03-12 | 亘喜生物科技(上海)有限公司 | Universal Chimeric antigen receptor T cell technology of preparing |
WO2019055853A1 (en) | 2017-09-15 | 2019-03-21 | Life Technologies Corporation | Compositions and methods for culturing and expanding cells |
EP3684421A4 (en) | 2017-09-18 | 2021-08-04 | Children's Hospital Medical Center | A strong insulator and uses thereof in gene delivery |
MX2020003046A (en) | 2017-09-19 | 2020-10-12 | Univ British Columbia | Anti-hla-a2 antibodies and methods of using the same. |
CN111448216B (en) | 2017-09-20 | 2023-11-07 | 英属哥伦比亚大学 | Novel anti-HLA-A 2 antibodies and uses thereof |
CN109554348A (en) | 2017-09-27 | 2019-04-02 | 亘喜生物科技(上海)有限公司 | It can induce the engineering immunocyte of secretion anti-cd 47 antibody |
US20200271657A1 (en) | 2017-10-04 | 2020-08-27 | Opko Pharmaceuticals, Llc | Articles and methods directed to personalized therapy of cancer |
CR20200195A (en) | 2017-10-13 | 2020-08-14 | Harpoon Therapeutics Inc | B cell maturation antigen binding proteins |
EP3694529B1 (en) | 2017-10-13 | 2024-06-26 | Harpoon Therapeutics, Inc. | Trispecific proteins and methods of use |
EP4124658A3 (en) | 2017-10-16 | 2023-04-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
US20200237799A1 (en) | 2017-10-16 | 2020-07-30 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
WO2019089798A1 (en) | 2017-10-31 | 2019-05-09 | Novartis Ag | Anti-car compositions and methods |
EP3707265A4 (en) | 2017-11-07 | 2021-09-01 | The University of North Carolina at Chapel Hill | Optimized aga genes and expression cassettes and their use |
WO2019092251A1 (en) | 2017-11-11 | 2019-05-16 | Universite De Strasbourg | Compositions and method for the treatment of x-linked centronuclear myopathy |
JP2021502829A (en) | 2017-11-14 | 2021-02-04 | メモリアル スローン ケタリング キャンサー センター | Immune-responsive cells secreting IL-36 and their use |
EP3710040A1 (en) | 2017-11-15 | 2020-09-23 | Novartis AG | Bcma-targeting chimeric antigen receptor, cd19-targeting chimeric antigen receptor, and combination therapies |
EP3717907A1 (en) | 2017-11-30 | 2020-10-07 | Novartis AG | Bcma-targeting chimeric antigen receptor, and uses thereof |
EP3720509A4 (en) | 2017-12-06 | 2021-12-08 | Memorial Sloan-Kettering Cancer Center | Globin gene therapy for treating hemoglobinopathies |
WO2019126578A1 (en) | 2017-12-20 | 2019-06-27 | Poseida Therapeutics, Inc. | Compositions and methods for directing proteins to specific loci in the genome |
US20210061875A1 (en) | 2017-12-29 | 2021-03-04 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Compositions and methods for treating autoimmune disease |
TW201930591A (en) | 2018-01-08 | 2019-08-01 | 瑞士商諾華公司 | Immune-enhancing RNAs for combination with chimeric antigen receptor therapy |
CA3090249A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
WO2019152868A1 (en) | 2018-02-01 | 2019-08-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus (hsv) related keratitis |
BR112020016138A2 (en) | 2018-02-11 | 2020-12-15 | Memorial Sloan-Kettering Cancer Center | T-CELL RECEPTORS NOT RESTRICTED TO HLA AND USES OF THE SAME |
EP3752532A1 (en) | 2018-02-12 | 2020-12-23 | Diabetes-Free, Inc. | Improved antagonistic anti-human cd40 monoclonal antibodies |
WO2019160956A1 (en) | 2018-02-13 | 2019-08-22 | Novartis Ag | Chimeric antigen receptor therapy in combination with il-15r and il15 |
WO2019161133A1 (en) | 2018-02-15 | 2019-08-22 | Memorial Sloan Kettering Cancer Center | Foxp3 targeting agent compositions and methods of use for adoptive cell therapy |
US12097257B2 (en) | 2018-03-05 | 2024-09-24 | New York University | Induction and enhancement of antitumor immunity involving Sindbis virus vectors expressing immune checkpoint proteins |
MX2020009514A (en) | 2018-03-14 | 2020-12-07 | Beijing Xuanyi Pharmasciences Co Ltd | Anti-claudin 18.2 antibodies. |
WO2019175380A2 (en) | 2018-03-16 | 2019-09-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antigenic peptides deriving from secretogranin v and uses thereof for the diagnosis and treatment of type 1 diabetes |
WO2019175381A1 (en) | 2018-03-16 | 2019-09-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antigenic peptides deriving from pcsk2 and uses thereof for the diagnosis and treatment of type 1 diabetes |
US12098179B2 (en) | 2018-03-16 | 2024-09-24 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Antigenic peptides deriving from urocortin 3 and uses thereof for the diagnosis and treatment of type 1 diabetes |
SG11202009542PA (en) | 2018-03-29 | 2020-10-29 | Genentech Inc | Modulating lactogenic activity in mammalian cells |
SG11202009451VA (en) | 2018-04-03 | 2020-10-29 | Stridebio Inc | Antibody-evading virus vectors |
MX2020010464A (en) | 2018-04-03 | 2021-01-29 | Antibody-evading virus vectors. | |
CA3094465A1 (en) | 2018-04-03 | 2019-10-10 | Stridebio, Inc. | Virus vectors for targeting ophthalmic tissues |
CN116514995A (en) | 2018-04-12 | 2023-08-01 | 上海赛比曼生物科技有限公司 | Chimeric antigen receptor targeting BCMA and preparation method and application thereof |
WO2019196087A1 (en) | 2018-04-13 | 2019-10-17 | Syz Cell Therapy Co. | Methods of cancer treatment using tumor antigen-specific t cells |
WO2019196088A1 (en) | 2018-04-13 | 2019-10-17 | Syz Cell Therapy Co. | Methods of obtaining tumor-specific t cell receptors |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
US20210396739A1 (en) | 2018-05-01 | 2021-12-23 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
WO2019217512A1 (en) | 2018-05-08 | 2019-11-14 | Life Technologies Corporation | Compositions and methods for culturing and expanding cells |
WO2019217837A1 (en) | 2018-05-11 | 2019-11-14 | Memorial Sloan-Kettering Cancer Center | T cell receptors targeting pik3ca mutations and uses thereof |
WO2019217831A1 (en) | 2018-05-11 | 2019-11-14 | Memorial Sloan-Kettering Cancer Center | Methods for identifying antigen-specific t cell receptors |
WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
WO2019241324A1 (en) | 2018-06-12 | 2019-12-19 | The University Of North Carolina At Chapel Hill | Synthetic liver-tropic adeno-associated virus capsids and uses thereof |
JP7438988B2 (en) | 2018-06-13 | 2024-02-27 | ノバルティス アーゲー | BCMA chimeric antigen receptor and its use |
AU2019288136A1 (en) | 2018-06-18 | 2021-01-07 | Eureka Therapeutics, Inc. | Constructs targeting prostate-specific membrane antigen (PSMA) and uses thereof |
EP3814513A4 (en) | 2018-06-28 | 2022-04-13 | The University of North Carolina at Chapel Hill | Optimized cln5 genes and expression cassettes and their use |
WO2020010035A1 (en) | 2018-07-02 | 2020-01-09 | Voyager Therapeutics, Inc. | Cannula system |
AU2019299861A1 (en) | 2018-07-02 | 2021-01-14 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis and disorders associated with the spinal cord |
AU2019299439A1 (en) | 2018-07-03 | 2021-01-21 | Sotio, LLC | Chimeric receptors in combination with trans metabolism molecules enhancing glucose import and therapeutic uses thereof |
GB201811382D0 (en) | 2018-07-11 | 2018-08-29 | Taylor John Hermon | Vaccine |
BR112021001568A2 (en) | 2018-08-10 | 2021-05-04 | The University Of North Carolina At Chapel Hill | optimized cln7 genes and expression cassettes and their use |
AU2019321540A1 (en) | 2018-08-14 | 2021-02-11 | Sotio, LLC | Chimeric antigen receptor polypeptides in combination with trans metabolism molecules modulating Krebs cycle and therapeutic uses thereof |
EP3844192A1 (en) | 2018-08-30 | 2021-07-07 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
AU2019346466A1 (en) | 2018-09-25 | 2021-05-20 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
CN114957475B (en) | 2018-09-26 | 2023-06-20 | 福州拓新天成生物科技有限公司 | anti-B7-H3 monoclonal antibodies and their use in cell therapy |
WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
EP3856779A1 (en) | 2018-09-28 | 2021-08-04 | Novartis AG | Cd22 chimeric antigen receptor (car) therapies |
WO2020081929A1 (en) | 2018-10-19 | 2020-04-23 | University Of Rochester | Immune modulators in combination with radiation treatment for advanced pancreatic cancer |
KR20210082205A (en) | 2018-10-22 | 2021-07-02 | 유니버시티 오브 로체스터 | Genome editing by induced heterologous DNA insertion using a retroviral integrase-Cas9 fusion protein |
WO2020102454A1 (en) | 2018-11-13 | 2020-05-22 | Regents Of The University Of Minnesota | Cd40 targeted peptides and uses thereof |
KR20210101235A (en) | 2018-11-16 | 2021-08-18 | 메모리얼 슬로안 케터링 캔서 센터 | Antibodies to mucin-16 and methods of use thereof |
WO2020140007A1 (en) | 2018-12-28 | 2020-07-02 | University Of Rochester | Gene therapy for best1 dominant mutations |
KR20210126014A (en) | 2019-01-14 | 2021-10-19 | 유니버시티 오브 로체스터 | Nuclear RNA cleavage and polyadenylation targeted with CRISPR-Cas |
GB201900858D0 (en) | 2019-01-22 | 2019-03-13 | Price Nicola Kaye | Receptors providing targeted costimulation for adoptive cell therapy |
US20220088075A1 (en) | 2019-02-22 | 2022-03-24 | The Trustees Of The University Of Pennsylvania | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
EP3773918A4 (en) | 2019-03-05 | 2022-01-05 | Nkarta, Inc. | Cd19-directed chimeric antigen receptors and uses thereof in immunotherapy |
RU2742000C2 (en) | 2019-03-13 | 2021-02-01 | Общество С Ограниченной Ответственностью "Анабион" | Isolated alternative intracellular signalling domain of chimeric antigen receptor and chimeric antigen receptor including it |
JP7379654B2 (en) | 2019-03-15 | 2023-11-14 | カーティザン セラピューティクス,インコーポレーテッド | Anti-BCMA chimeric antigen receptor |
US20220184176A1 (en) | 2019-03-20 | 2022-06-16 | Centre National De La Recherche Scientifique | Amphiphysin / bin1 for the treatment of autosomal dominant centronuclear myopathy |
AR118465A1 (en) | 2019-03-21 | 2021-10-06 | Stridebio Inc | RECOMBINANT ADENO-ASSOCIATED VIRUS VECTORS |
CN111793627A (en) | 2019-04-08 | 2020-10-20 | 中国科学院上海生命科学研究院 | RNA fixed-point editing by utilizing artificially constructed RNA editing enzyme and related application |
EP3957325A4 (en) | 2019-04-19 | 2023-01-04 | Chugai Seiyaku Kabushiki Kaisha | Chimeric receptor recognizing modification site of antibody |
EP3959232B1 (en) | 2019-04-24 | 2024-10-16 | University of Massachusetts | Aav capsid chimeric antigen receptors and uses thereof |
EP3959320A1 (en) | 2019-04-24 | 2022-03-02 | Novartis AG | Compositions and methods for selective protein degradation |
AU2020263392A1 (en) | 2019-04-26 | 2021-10-28 | The University Of North Carolina At Chapel Hill | Methods and compositions for dual glycan binding AAV2.5 vector |
SG11202111130SA (en) | 2019-04-30 | 2021-11-29 | Senti Biosciences Inc | Chimeric receptors and methods of use thereof |
KR20220005050A (en) | 2019-05-01 | 2022-01-12 | 팩트 파마, 인크. | Compositions and methods for the treatment of cancer using TET2 engineered T cell therapy |
US20220202864A1 (en) | 2019-05-07 | 2022-06-30 | Gracell Biotechnologies (Shanghai) Co., Ltd. | Bcma-targeting engineered immune cell and use thereof |
CN113784732B (en) | 2019-05-07 | 2024-03-22 | 亘喜生物科技(上海)有限公司 | Engineered immune cells targeting BCMA and uses thereof |
EP4023230A4 (en) | 2019-06-05 | 2023-11-15 | Chugai Seiyaku Kabushiki Kaisha | Antibody cleavage site-binding molecule |
EP3990030A1 (en) | 2019-06-27 | 2022-05-04 | Pfizer Inc. | Methods of treating duchenne muscular dystrophy using aav mini-dystrophin gene therapy |
US20220380800A1 (en) | 2019-07-02 | 2022-12-01 | M6P Therapeutics (Switzerland) Llc | Vector compositions and methods of using same for treatment of lysosomal storage disorders |
WO2021016453A1 (en) | 2019-07-23 | 2021-01-28 | University Of Rochester | Targeted rna cleavage with crispr-cas |
CN112300997A (en) | 2019-08-01 | 2021-02-02 | 上海赛比曼生物科技有限公司 | Universal CAR-T cell and preparation and application thereof |
EP4013788A1 (en) | 2019-08-12 | 2022-06-22 | Purinomia Biotech, Inc. | Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells |
WO2021072218A1 (en) | 2019-10-10 | 2021-04-15 | Pact Pharma, Inc. | Method of treating immunotherapy non-responders with an autologous cell therapy |
TW202128775A (en) | 2019-10-16 | 2021-08-01 | 英商阿法克塔生命科學有限公司 | Pd-l1 inhibitor - tgfβ inhibitor bispecific drug moieties |
CA3157700A1 (en) | 2019-10-17 | 2021-04-22 | Stridebio, Inc. | Adeno-associated viral vectors for treatment of niemann-pick disease type c |
CN110760007B (en) | 2019-11-21 | 2022-08-26 | 博生吉医药科技(苏州)有限公司 | CD7-CAR-T cell and preparation and application thereof |
CN114945382A (en) | 2019-11-26 | 2022-08-26 | 诺华股份有限公司 | CD19 and CD22 chimeric antigen receptors and uses thereof |
US20230078498A1 (en) | 2020-02-07 | 2023-03-16 | University Of Rochester | Targeted Translation of RNA with CRISPR-Cas13 to Enhance Protein Synthesis |
US20230073250A1 (en) | 2020-02-07 | 2023-03-09 | University Of Rochester | Ribozyme-mediated RNA Assembly and Expression |
EP4106806A4 (en) | 2020-02-21 | 2024-07-24 | Harpoon Therapeutics Inc | Flt3 binding proteins and methods of use |
EP4110823A1 (en) | 2020-02-26 | 2023-01-04 | A2 Biotherapeutics, Inc. | Polypeptides targeting mage-a3 peptide-mhc complexes and methods of use thereof |
WO2021170067A1 (en) | 2020-02-28 | 2021-09-02 | 上海复宏汉霖生物技术股份有限公司 | Anti-cd137 construct and use thereof |
EP4110826A4 (en) | 2020-02-28 | 2024-08-14 | Shanghai Henlius Biotech Inc | Anti-cd137 constructs, multispecific antibody and uses thereof |
WO2021194915A1 (en) | 2020-03-23 | 2021-09-30 | The University Of North Carolina At Chapel Hill | Aav-naglu vectors for treatment of mucopolysaccharidosis iiib |
MX2022011805A (en) | 2020-03-24 | 2023-01-11 | Generation Bio Co | Non-viral dna vectors and uses thereof for expressing factor ix therapeutics. |
CN115667531A (en) | 2020-03-24 | 2023-01-31 | 世代生物公司 | Non-viral DNA vectors and their use for expressing Gaucher (Gaucher) therapeutics |
CN115315512A (en) | 2020-03-26 | 2022-11-08 | 基因泰克公司 | Modified mammalian cells with reduced host cell proteins |
EP4127170A1 (en) | 2020-03-27 | 2023-02-08 | University of Rochester | Crispr-cas13 crrna arrays |
WO2021195519A1 (en) | 2020-03-27 | 2021-09-30 | University Of Rochester | Targeted destruction of viral rna by crispr-cas13 |
CN113527507A (en) | 2020-04-16 | 2021-10-22 | 上海赛比曼生物科技有限公司 | Chimeric antigen receptor targeting CD22 and preparation method and application thereof |
WO2021226513A1 (en) | 2020-05-08 | 2021-11-11 | President And Fellows Of Harvard College | Methods for treating inflammatory and autoimmune disorders |
US20230212231A1 (en) | 2020-05-26 | 2023-07-06 | Institut National De La Santé Et De La Recherche Médicale (Inserm) | Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) polypeptides and uses thereof for vaccine purposes |
EP4157881A4 (en) | 2020-05-27 | 2024-10-09 | Staidson Beijing Biopharmaceuticals Co Ltd | Antibodies specifically recognizing nerve growth factor and uses thereof |
WO2021247995A2 (en) | 2020-06-04 | 2021-12-09 | Voyager Therapeutics, Inc. | Compositions and methods of treating neuropathic pain |
EP4161552A1 (en) | 2020-06-05 | 2023-04-12 | The Broad Institute, Inc. | Compositions and methods for treating neoplasia |
GB202101299D0 (en) | 2020-06-09 | 2021-03-17 | Avacta Life Sciences Ltd | Diagnostic polypetides and methods |
KR20230024967A (en) | 2020-06-11 | 2023-02-21 | 노파르티스 아게 | ZBTB32 Inhibitors and Uses Thereof |
KR20230026491A (en) | 2020-06-24 | 2023-02-24 | 제넨테크, 인크. | Apoptosis resistant cell lines |
EP4182455A1 (en) | 2020-07-15 | 2023-05-24 | University of Rochester | Targeted rna cleavage with dcasl3-rnase fusion proteins |
US20230257713A1 (en) | 2020-07-16 | 2023-08-17 | Shanghai Jiaotong University | Immunotherapy method of targeted chemokine and cytokine delivery by mesenchymal stem cell |
IL299886A (en) | 2020-07-17 | 2023-03-01 | Instil Bio Uk Ltd | Receptors providing targeted costimulation for adoptive cell therapy |
AU2021310467A1 (en) | 2020-07-17 | 2023-03-09 | Instil Bio (Uk) Limited | Chimeric molecules providing targeted costimulation for adoptive cell therapy |
JPWO2022025220A1 (en) | 2020-07-31 | 2022-02-03 | ||
EP4200408A1 (en) | 2020-08-19 | 2023-06-28 | Sarepta Therapeutics, Inc. | Adeno-associated virus vectors for treatment of rett syndrome |
WO2022093769A1 (en) | 2020-10-28 | 2022-05-05 | The University Of North Carolina At Chapel Hill | Methods and compositions for dual glycan binding aav2.5 vector |
AU2021369480A1 (en) | 2020-10-28 | 2023-04-20 | The University Of North Carolina At Chapel Hill | Methods and compositions for dual glycan binding AAV2.5 vector |
US20240033358A1 (en) | 2020-11-13 | 2024-02-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
WO2022101463A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death |
CN114525306A (en) | 2020-11-23 | 2022-05-24 | 博生吉医药科技(苏州)有限公司 | Preparation method and application of CD7-CAR-T cell |
TW202237639A (en) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
TW202237638A (en) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
TW202241935A (en) | 2020-12-18 | 2022-11-01 | 美商世紀治療股份有限公司 | Chimeric antigen receptor system with adaptable receptor specificity |
EP4271482A2 (en) | 2020-12-31 | 2023-11-08 | Alamar Biosciences, Inc. | Binder molecules with high affinity and/ or specificity and methods of making and use thereof |
CN114763381A (en) | 2021-01-13 | 2022-07-19 | 博生吉医药科技(苏州)有限公司 | B7-H3 chimeric antigen receptor modified T cell and application thereof |
TW202242124A (en) | 2021-01-14 | 2022-11-01 | 美商史崔德生物公司 | Aav vectors targeting t-cells |
MX2023007788A (en) | 2021-01-24 | 2023-11-17 | Michael David Forrest | Inhibitors of atp synthase - cosmetic and therapeutic uses. |
GB2603166A (en) | 2021-01-29 | 2022-08-03 | Thelper As | Therapeutic and Diagnostic Agents and Uses Thereof |
CN118146395A (en) | 2021-02-08 | 2024-06-07 | 浙江大学 | Chimeric antigen receptor using endogenous protein molecules to replace single domain antibodies |
KR20230167397A (en) | 2021-04-08 | 2023-12-08 | 얀센 바이오테크 인코포레이티드 | Materials and methods for engineering enhanced stem cell-like memory T cells |
CA3216491A1 (en) | 2021-04-16 | 2022-10-20 | Asklepios Biopharmaceutical, Inc. | Rational polyploid aav virions that cross the blood brain barrier and elicit reduced humoral response |
KR20230173164A (en) | 2021-04-19 | 2023-12-26 | 제넨테크, 인크. | modified mammalian cells |
KR20240000580A (en) | 2021-04-23 | 2024-01-02 | 유니버시티 오브 로체스터 | Genome editing and treatment method by direct non-homologous DNA insertion using retroviral integrase-Cas fusion protein |
CN117881786A (en) | 2021-04-27 | 2024-04-12 | 世代生物公司 | Non-viral DNA vectors expressing therapeutic antibodies and uses thereof |
WO2022232286A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof |
KR20240006581A (en) | 2021-05-06 | 2024-01-15 | 호바 세라퓨틱스 에이피에스 | Prevention and treatment of chemotherapy-induced neuropathic pain |
WO2022234003A1 (en) | 2021-05-07 | 2022-11-10 | Avacta Life Sciences Limited | Cd33 binding polypeptides with stefin a protein |
JP2024521107A (en) | 2021-05-21 | 2024-05-28 | ジェネンテック, インコーポレイテッド | Modified cells for producing recombinant products of interest |
WO2022254337A1 (en) | 2021-06-01 | 2022-12-08 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
CN115477704B (en) | 2021-06-16 | 2024-02-23 | 四川大学华西医院 | Preparation and application of chimeric antigen receptor immune cells constructed based on LOX1 |
CN115477705B (en) | 2021-06-16 | 2024-02-23 | 四川大学华西医院 | Preparation and application of chimeric antigen receptor immune cells constructed based on granzyme B |
US11945876B2 (en) | 2021-06-16 | 2024-04-02 | Instil Bio (Uk) Limited | Receptors providing targeted costimulation for adoptive cell therapy |
EP4355785A1 (en) | 2021-06-17 | 2024-04-24 | Amberstone Biosciences, Inc. | Anti-cd3 constructs and uses thereof |
EP4363059A1 (en) | 2021-06-29 | 2024-05-08 | Flagship Pioneering Innovations V, Inc. | Immune cells engineered to promote thanotransmission and uses thereof |
TW202317633A (en) | 2021-07-08 | 2023-05-01 | 美商舒泰神(加州)生物科技有限公司 | Antibodies specifically recognizing tnfr2 and uses thereof |
CN115812082A (en) | 2021-07-14 | 2023-03-17 | 舒泰神(北京)生物制药股份有限公司 | Antibody specifically recognizing CD40 and application thereof |
EP4370213A1 (en) | 2021-07-16 | 2024-05-22 | Instil Bio (Uk) Limited | Chimeric molecules providing targeted costimulation for adoptive cell therapy |
WO2023049933A1 (en) | 2021-09-27 | 2023-03-30 | Sotio Biotech Inc. | Chimeric receptor polypeptides in combination with trans metabolism molecules that re-direct glucose metabolites out of the glycolysis pathway and therapeutic uses thereof |
CN115873802A (en) | 2021-09-29 | 2023-03-31 | 亘喜生物科技(上海)有限公司 | Chimeric antigen receptor immune cell and preparation method and application thereof |
MX2024003778A (en) | 2021-09-30 | 2024-04-10 | Akouos Inc | Compositions and methods for treating kcnq4-associated hearing loss. |
WO2023057567A1 (en) | 2021-10-07 | 2023-04-13 | Avacta Life Sciences Limited | Pd-l1 binding affimers |
TW202332694A (en) | 2021-10-07 | 2023-08-16 | 英商阿凡克塔生命科學公司 | Serum half-life extended pd-l1 binding polypeptides |
CA3234811A1 (en) | 2021-10-20 | 2023-04-27 | Steven Goldman | Rejuvenation treatment of age-related white matter loss |
CA3236365A1 (en) | 2021-11-02 | 2023-05-11 | University Of Rochester | Tcf7l2 mediated remyelination in the brain |
WO2023081813A1 (en) | 2021-11-05 | 2023-05-11 | St. Jude Children's Research Hospital, Inc. | Zip cytokine receptors |
WO2023081894A2 (en) | 2021-11-08 | 2023-05-11 | St. Jude Children's Research Hospital, Inc. | Pre-effector car-t cell gene signatures |
CN116102658A (en) | 2021-11-09 | 2023-05-12 | 四川大学华西医院 | Preparation and application of chimeric antigen receptor immune cells constructed based on GAS6 |
CN118488969A (en) | 2021-11-16 | 2024-08-13 | 舒迪安生物技术公司 | Treatment of patients with myxoid/round cell liposarcoma |
WO2023091954A2 (en) | 2021-11-19 | 2023-05-25 | The Trustees Of The University Of Pennsylvania | Engineered pan-leukocyte antigen cd45 to facilitate car t cell therapy |
EP4445911A1 (en) | 2021-12-06 | 2024-10-16 | Beijing SoloBio Genetechnology Co., Ltd. | Bispecific antibody that specifically binds to klebsiella pneumoniae o2 and o1 antigens, and composition |
AU2022405685A1 (en) | 2021-12-10 | 2024-07-11 | Hoba Therapeutics Aps | Treatment of nociceptive pain |
EP4456910A1 (en) | 2021-12-28 | 2024-11-06 | Mnemo Therapeutics | Immune cells with inactivated suv39h1 and modified tcr |
WO2023139269A1 (en) | 2022-01-21 | 2023-07-27 | Mnemo Therapeutics | Modulation of suv39h1 expression by rnas |
GB202201137D0 (en) | 2022-01-28 | 2022-03-16 | Thelper As | Therapeutic and diagnostic agents and uses thereof |
TW202342759A (en) | 2022-02-04 | 2023-11-01 | 美商史崔德生物公司 | Recombinant adeno-associated virus vectors, and methods of use thereof |
AU2023235112A1 (en) | 2022-03-14 | 2024-10-17 | Generation Bio Co. | Heterologous prime boost vaccine compositions and methods of use |
WO2023202967A1 (en) | 2022-04-19 | 2023-10-26 | F. Hoffmann-La Roche Ag | Improved production cells |
EP4279085A1 (en) | 2022-05-20 | 2023-11-22 | Mnemo Therapeutics | Compositions and methods for treating a refractory or relapsed cancer or a chronic infectious disease |
WO2023223292A1 (en) | 2022-05-20 | 2023-11-23 | Takeda Pharmaceutical Company Limited | Methods of producing engineered immune cells |
WO2023223291A1 (en) | 2022-05-20 | 2023-11-23 | Takeda Pharmaceutical Company Limited | Methods of producing engineered immune cells |
WO2023232961A1 (en) | 2022-06-03 | 2023-12-07 | F. Hoffmann-La Roche Ag | Improved production cells |
WO2023240182A1 (en) | 2022-06-08 | 2023-12-14 | St. Jude Children's Research Hospital, Inc. | Disruption of kdm4a in t cells to enhance immunotherapy |
TW202417503A (en) | 2022-07-19 | 2024-05-01 | 美商舒泰神(加州)生物科技有限公司 | Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof |
WO2024040208A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered immune cells with chimeric receptor polypeptides in combination with multiple trans metabolism molecules and therapeutic uses thereof |
WO2024040207A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered natural killer (nk) cells with chimeric receptor polypeptides in combination with trans metabolism molecules and therapeutic uses thereof |
WO2024040222A1 (en) | 2022-08-19 | 2024-02-22 | Generation Bio Co. | Cleavable closed-ended dna (cedna) and methods of use thereof |
WO2024059787A1 (en) | 2022-09-16 | 2024-03-21 | St. Jude Children's Research Hospital, Inc. | Disruption of asxl1 in t cells to enhance immunotherapy |
WO2024062138A1 (en) | 2022-09-23 | 2024-03-28 | Mnemo Therapeutics | Immune cells comprising a modified suv39h1 gene |
WO2024079662A1 (en) | 2022-10-11 | 2024-04-18 | Meiragtx Uk Ii Limited | Upf1 expression constructs |
WO2024079530A2 (en) | 2022-10-11 | 2024-04-18 | Meiragtx Uk Ii Limited | Nucleic acid regulatory elements for gene expression in the muscle and methods of use |
WO2024083843A1 (en) | 2022-10-18 | 2024-04-25 | Confo Therapeutics N.V. | Amino acid sequences directed against the melanocortin 4 receptor and polypeptides comprising the same for the treatment of mc4r-related diseases and disorders |
WO2024091824A1 (en) | 2022-10-26 | 2024-05-02 | Ada Forsyth Institute, Inc. | Differentiation and reprogramming of chondrocyte |
WO2024123797A1 (en) | 2022-12-06 | 2024-06-13 | The Broad Institute, Inc. | Compositions and methods for modulating neuronal excitability |
WO2024124019A2 (en) | 2022-12-07 | 2024-06-13 | Ginkgo Bioworks, Inc. | Aav vectors targeting hematopoietic stem cells |
WO2024134434A1 (en) | 2022-12-19 | 2024-06-27 | Takeda Pharmaceutical Company Limited | Method for producing car-t cells |
WO2024133600A1 (en) | 2022-12-20 | 2024-06-27 | Nanocell Therapeutics B.V. | Integrating and self-inactivating viral vectors and constructs and uses thereof |
WO2024151958A1 (en) | 2023-01-13 | 2024-07-18 | The Broad Institute, Inc. | Compositions and methods for treating sensory processing abnormalities |
WO2024163747A2 (en) | 2023-02-02 | 2024-08-08 | University Of Rochester | Competitive replacement of glial cells |
WO2024196855A2 (en) | 2023-03-17 | 2024-09-26 | University Of Rochester | Ribozyme-mediated rna assembly and expression |
WO2024215989A1 (en) | 2023-04-14 | 2024-10-17 | Sotio Biotech Inc. | ENGINEERED IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-2/IL-15 RECEPTOR βγ AGONISTS |
WO2024215987A1 (en) | 2023-04-14 | 2024-10-17 | Sotio Biotech Inc. | IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-15/IL-15Rα CONJUGATES |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987000201A1 (en) | 1985-07-05 | 1987-01-15 | Whitehead Institute For Biomedical Research | Epithelial cells expressing foreign genetic material |
-
1994
- 1994-03-30 US US08/220,175 patent/US5399346A/en not_active Ceased
-
2003
- 2003-11-04 US US10/701,022 patent/USRE39788E1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987000201A1 (en) | 1985-07-05 | 1987-01-15 | Whitehead Institute For Biomedical Research | Epithelial cells expressing foreign genetic material |
Non-Patent Citations (26)
Title |
---|
Anderson et al., Human Gene Therapy, 1, 331-362 (1990). |
Anderson, "Gene Therapy: The Best of Times the Worst of Times," downloaded from the internet on Apr. 5, 2001 at 17:49 hours. |
Anderson, John W., The Nation, Apr. 10, 1989, "Scrambling for BioTech Bucks", pp. 476-478. * |
Anderson, The Nation, pp. 476-478 (Apr. 10, 1989). |
Buden, The Scientist, Jan. 23, 1989, "Controversy Surrounds Gene Therapy Effort", pp. 1-3. * |
Buden, The Scientist, pp. 1-3 (Jan. 23, 1989). |
Cline, Pharmac. Ther., 29, 69-92 (1985). |
Culver et al., J. Cell Biochem., Supp 12(B), 171 (1988). |
Eppstein List of Prior Art References, submitted in Interference No. 104,711. |
Gura, Science, 291, 1692-1697 (2001). |
Kohn et al., J. Cell Biochem., Supp. 12(B), 178 (1988). |
Marshall, Science, 288, 951-957 (2000). |
Morgan et al., Science, 237, 1476-1479 (1987). |
Morgan List of Prior Art Reference, submitted in Interference No. 104,712. |
Palmer et al., Proc. Natl. Acad. Sci. USA, 84, 1055-1059 (1987). |
Rosenberg et al., New Engl. J. Med., 323, 570-578 (1990). |
Rosenberg, "Gene Therapy of Patients with Advanced Cancer Using Tumor Infiltrating Lymphocytes Transduced with the Gene Coding for Tumor Necrosis Factor," Jul. 6, 1990. |
Selden et al., N. Eng. J. Med., 318(20): 1337-1338. |
Selden, N. Eng. J. Med., vol. 318, No. 20, pp. 1337-1338. * |
Siegel, Los Angeles Times, Dec. 13, 1987, "Egos, Prizes on the Line for Scientists", pp. 1, 37-40. * |
Siegel, Los Angeles Times, Dec. 14, 1987, "Desire to be First Colors Gene Studies" pp. 1,22-25. * |
Siegel, Los Angeles Times, pp. 1, 22-25 (Dec. 14, 1987). |
Siegel, Los Angeles Times, pp. 1, 37-40 (Dec. 13, 1987). |
Thompson, Time, Jun. 7, 1993 "The First Kids With New Gene" pp. 50-53. * |
Thompson, Time, pp. 50-53 (Jun. 7, 1993). |
Weiss, "New Rule for Gene Therapy Tests Proposed," downloaded from the internet on Jan. 18, 2001 at 06:52 hours. |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080175845A1 (en) * | 2006-06-15 | 2008-07-24 | Targeted Genetics Corporation | Methods for treating target joints in inflammatory arthritis using AAV vectors encoding a TNF antagonist |
US20080131415A1 (en) * | 2006-11-30 | 2008-06-05 | Riddell Stanley R | Adoptive transfer of cd8 + t cell clones derived from central memory cells |
US10400215B2 (en) | 2006-11-30 | 2019-09-03 | City of Home | Adoptive transfer of CD8+ T cell clones derived from central memory cells |
US10968431B2 (en) | 2006-11-30 | 2021-04-06 | City Of Hope | Adoptive transfer of CD8+ T cell clones derived from central memory cells |
US20090123441A1 (en) * | 2007-10-08 | 2009-05-14 | Intrexon Corporation | Engineered Dendritic Cells and Uses for the Treatment of Cancer |
US11111493B2 (en) | 2018-03-15 | 2021-09-07 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
US11421228B2 (en) | 2018-03-15 | 2022-08-23 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
US11608500B2 (en) | 2018-03-15 | 2023-03-21 | KSQ Therapeutics, Inc. | Gene-regulating compositions and methods for improved immunotherapy |
Also Published As
Publication number | Publication date |
---|---|
US5399346A (en) | 1995-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39788E1 (en) | Gene therapy | |
JP5312721B2 (en) | CD19-specific redirecting immune cells | |
US6544787B1 (en) | Non-myeloablative/lymphoablative conditioning regimen to induce patient anti-donor unresponsiveness in stem cell transplantation | |
JP2020502048A (en) | Anti-BCMA CAR T cell composition | |
JPH07503455A (en) | Lymphokine gene therapy for cancer | |
Rosenberg et al. | Immunization of Cancer Patients Using Autologous Cancer Cells Modified by Insertion of the Gene for Tumor Necrosis Factor (National Institutes of Health) | |
CN111918963A (en) | CD3 negative cell population expressing chemokine receptor and cell adhesion molecule and its use and preparation method | |
CA2977836A1 (en) | Compositions and methods of treating cancer | |
JPH10510842A (en) | How to increase hematopoietic cells | |
WO2022222846A1 (en) | Chimeric antigen receptor targeting cd19, preparation method therefor and use thereof | |
JP7046016B2 (en) | HERV-E reactive T cell receptor and usage | |
AU719930B2 (en) | Prevention of graft-versus-host disease with T-cells including polynucleotides encoding negative selective markers | |
JPH11514209A (en) | Highly efficient ex vivo transduction of hematopoietic stem cells with recombinant retrovirus preparations | |
JP3541950B2 (en) | Use of modified TALL-104 cells to treat cancer and viral diseases | |
US5702702A (en) | Modified cytotoxic tall cell line and compositions and methods for manufacture and use thereof as therapeutic reagents for cancer | |
KR20030081056A (en) | Activated lymphocytes by HLA-coincided others for prevention and treatment of tumors, infection symptoms and autoimmune diseases, treatment method using the lymphocytes, formulation containing the lymphocytes as main component, method of manufacturing the formulation, and kit for preparing the formulation | |
WO1991018972A1 (en) | Culturing bone marrow cells for adoptive immunotherapy | |
US20020034495A1 (en) | Gene therapy | |
Rosenberg et al. | TNF/TIL Human Gene Therapy Clinical Protocol: Original Protocol, April 23, 1990 | |
Lotze et al. | The Treatment of Patients with Melanoma Using Interleukin-2, Interleukin-4 and Tumor Infiltrating Lymphocytes. University of Pittsburgh | |
JP2002506980A (en) | Novel complementary receptor-ligand pairs and adoptive immunotherapy using the same | |
Freedman et al. | Use of a Retroviral Vector to Study the Trafficking Patterns of Purified Ovarian Tumor Infiltrating Lymphocytes (TIL) Used in Intraperitoneal Adoptive Immunotherapy of Ovarian Cancer Patients. A Pilot Study. University of Texas MD Anderson Cancer Center, Houston, Texas | |
WO1995029704A1 (en) | Cell lines obtained by in vivo migration and by fusion with autoimmune cells | |
Favrot et al. | Treatment of Patients with Advanced Cancer Using Tumor Infiltrating Lymphocytes Transduced with the Gene of Resistance to Neomycin. Centre Léon Bérard, Lyon, France | |
Klein | Novel cellular therapies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |