USRE39021E1 - Hydantoin-enhanced halogen efficacy in pulp and paper applications - Google Patents

Hydantoin-enhanced halogen efficacy in pulp and paper applications Download PDF

Info

Publication number
USRE39021E1
USRE39021E1 US10/044,594 US4459402A USRE39021E US RE39021 E1 USRE39021 E1 US RE39021E1 US 4459402 A US4459402 A US 4459402A US RE39021 E USRE39021 E US RE39021E
Authority
US
United States
Prior art keywords
slimicide
hydrogen compound
system
method
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/044,594
Inventor
Philip G. Sweeny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza Inc
Original Assignee
Lonza Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US08323459 priority Critical patent/US5565109B1/en
Application filed by Lonza Inc filed Critical Lonza Inc
Priority to US10/044,594 priority patent/USRE39021E1/en
Application granted granted Critical
Publication of USRE39021E1 publication Critical patent/USRE39021E1/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23259288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE39021(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • D21H21/04Slime-control agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES, AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Abstract

Free halogen sources (e.g., sodium hypochlorite and chlorine) added as slimicides in high organic component process streams such as pulp and paper processing are rendered more efficacious by the addition of selected N-hydrogen compounds (namely, 5,5-dimethylhydantoin, 5-ethyl-5-methylhydantoin, cyanuric acid, succinimide, urea, 4,4-dimethyl-2-oxazolidinone, and glycouril) to the process stream. The latter compounds may be added to the process stream before or after the slimicide is added or combined with the slimicide and added directly thereto. The direct use of halogenated hydantoins has also been found to provide improved efficacy relative to free halogen sources. In addition, absorbable organic halogen by-products are reduced.

Description

BACKGROUND OF THE INVENTION

Sodium hypochlorite and chlorine gas are commonly used as circulating water slimicides. Upon reaction with organic system components, these materials can produce adsorbable organic halogen (AOX) by-products which are environmentally undesirable. In addition, the bactericidal efficacy of these materials is substantially reduced in high organic component systems because of rapid reactions of free halogen with organic materials. In high organic component recirculating waters such as pulp and paper processing and oil field applications, these deleterious effects are pronounced.

U.S. Pat. No. 3,328,294 teaches reaction of sulfamic acid with hypochlorite solutions, forming N-chlorosulfamate solutions which are used to disinfect paper-processing streams. The stated advantage is reduced reactions with paper-processing components. Enhanced biocidal efficacy is demonstrated over a non-oxidizing biocide containing N-methyldithiocarbamate and cyanodithioimidocarbonate with bacterial concentrations of 103 cfu/ml being achieved at residual chlorine concentrations of 1.6 ppm as Cl2. Unfortunately, as a practical matter, N-chlorosulfamic acid provides reduced biocidal efficacy relative to hypochlorite, thus limiting its usefulness as a papermaking slimicide.

U.S. Pat. No. 3,749,672 teaches the use of N-hydrogen materials to formulate bleaching solutions with enhanced stability to spontaneous decomposition. The claimed formulations contains (A) to hypohalite, (B) an N-hydrogen compound, (C) N-halo relation product of (A) with (B) at concentrations of 1.0×10−3 to 1.0 molar, and (D) a buffer to maintain pH 4-11. The preferred compositions are liquid formulations containing a phosphate buffer, sulfamic acid and sodium hypochlorite buffered at pH 10. Use of such formulations containing the N-hydrogen compounds is discussed, as is fighting microorganisms in paper mills. The essence of the invention is the production of stable formulations which can be handled and shipped without the loss of active halogen. This is effected by the incorporation of a buffer. The invention is not concerned with the on-site combination of hypochlorite-containing solutions or process streams with N-hydrogen compounds, but only with shelf-stable formulations.

While this patent teaches reduced yellowing when the formulations are used as bleaches, neither the reduction of AOX nor the unexpected biocidal activity enhancement of active halogen by N-hydrogen compounds in pulp slurries is revealed.

BRIEF DESCRIPTION OF THE INVENTION

It has been discovered that selected N-hydrogen compounds and their chlorinated derivatives, such as 5,5-dimethylhydantoin (DMH), dramatically improve the bactericidal efficacy of hypochlorite solutions in pulp slurries, significantly reducing the amount of hypochlorite required to achieve biological control. Minimization of chlorine usage reduces the predisposition for AOX formation, as well as enhancing cost-effectiveness.

The efficacy is believed to result from the conversion of free halogen to combined halogen by DMH. DMH effectively increases the lifetime of active halogen, thereby increasing biocidal efficacy. Such action increases cost effectiveness and reduces AOX formation.

In contrast to the teaching of U.S. Pat. No. 3,749,672, the subject invention avoids the need to preformulate the constituents off-site and to buffer the solution. On-site formulation of active halogen:N-hydrogen mixtures allows for site-specific stoichiometric optimization in the system recirculation water. The relative stabilities of active halogen and N-hydrogen compounds in recirculation systems is site-specific, since they depend on such factors as composition, temperature, and degree of recycle. Modification of the active halogen:N-hydrogen ratio is not possible with the preformulated solutions of the prior art. Secondly, on-site formulation eliminates the expense and burdens of adding a buffer.

In another embodiment of the instant invention, it has been discovered that certain halogenated N-hydrogen compounds per se also serve as outstanding slimicides for the treatment of circulating water containing organic matter such as in the pulp and paper industry. These compounds show enhanced efficacy over the hypochlorite in these applications. This result is particularly surprising since organic matter, generally over 0.2 wt. % and frequently over 0.5 wt. %, would be expected to interfere with the biocidal efficacy of such compounds. Typically these processing streams have from 0.2 to 3 wt. % organic matter, most frequently from 0.5 to 2 wt. %, comprised of approximately 95-99% pulp fiber as well as additional materials such as sizing rosin and starch.

The N-halohydantoin compounds useful in this embodiment of the invention have the formula:

Figure USRE039021-20060321-C00001

R1 and R2 are independently selected from hydrogen and alkyl groups (having from 1 to 12 carbons), and X1 and X2 are independently selected from bromine, chlorine and hydrogen, at least one of X1 and X2 being halogen, with the proviso that, when X1 or X2 is bromine, R1 is methyl and R2 is ethyl. In preferred embodiments, R1 is methyl and R2 is either methyl or ethyl. Preferred halohydantoins include 1,3-dichloro-5,5-dimethylhydantoin; 1-chloro- 5,5-dimethylhydantoin; and dibromo- and bromochloroethylmethylhydantoins; and combinations of these derivatives. Another preferred embodiment includes a mixture of chloro derivatives of 5-ethyl-5-methylhydantoin, such as the mixtures currently sold under the trade name Dantochlor®. The amount of the N-halohydantoin compound used in the recirculating water is broadly from 0.2 to 30 ppm, preferably from 0.5 to 5.0.

DETAILED DESCRIPTION OF THE INVENTION

The effective form of combined halogen can be generated: a) in situ by the addition of hydantoin to pulp slurries prior to or shortly after hypochlorite injection, b) by mixing DMH and free chlorine solutions prior to pulp slurry injection, or c) by direct feeding of halogenated hydantoins.

In addition to DMH, other N-hydrogen compounds, analogously to DMH, may be used. These include 5,5-dimethylhydantoin, glycouril, sulfamide, trisulfamide, p-toluene-sulfonamide, melamine, sodium triamidometaphosphate, 5,5-alkylhydantoins, methanesulfonamide, barbituric acid, 5-methyluracil, imidazoline, pyrrolidone, acetanilide, acetamide, N-ethylacetamide, phthalimide, benzamide, succinimide, cyanamide, urea, N-methylolurea, N-methylurea, acetylurea, biuret, methyl allophanate, methyl carbamate, phthalohydrazide, pyrrole, indole, formamide, N-methylformamide, dicyandiamide, ethyl carbamate, 1,3-dimethylbiuret, methyl phenyl biuret, 4,4-dimethyl-2-oxazolidinone, 6-methyluracil, 2-imidoazolidone, ethylene urea, 2-pyrimidone, N-ethylacetamide, azetidin-2-one, 2-pyrrolidone, caprolactam, phenyl sulfinimide, phenyl sulfinimidylamide, diphenyl sulfonimide, dimethyl sulfinimine, isothiazolene-1,1-dioxide, orthophosphoryl triamide, pyrophosphoryl triamide, phenyl phosphoryl-bis dimethyl amide, boric acid amide, hydantoin, and pyrrole. Expressly excluded is sulfamic acid, as its properties have been found to be inadequate for the purposes of the invention.

DMH and cyanuric acid enhance efficacy; however, the latter does not mitigate halogen consumption as well as DMH. While all N-hydrogen compounds (e.g., hydantoins, glycouril, sulfonamides, imides, oxazolidinones, amides, amino acids) appear to enhance free halogen efficacy and mitigate halogen consumption to varying degrees, the sulfamic acid described in U.S. Pat. No. 3,328,294 is clearly inferior to the compounds claimed herein. Hydantoins and cyanuric acid are preferred.

A wide variety of “free halogen sources” can be improved by applying the teaching of the instant invention. These include alkali metal and alkaline earth metal hypochlorites such as the lithium, sodium, potassium, calcium, and magnesium compounds, chlorine gas, bromine, bromine chloride, halogenated cyanurates such as trichlorcyanuric acid and sodium dichlorocyanurate, and dihalogenated hydantoins, and mixtures of such with sodium bromide.

The optimum amount of the N-hydrogen compound used is that needed to convert all free halogen to the combined form. This corresponds to a 1:1 molar ratio of halogen (based on the moles of free halogen) to hydantoin; however, concentrations as low as those producing a 2.6:1 halogen to DMH ratio have been shown to be effective. Any amount of N-hydrogen compound should provide some level of efficacy enhancement, while greater amounts of hydantoin do not reduce biocidal efficacy. A range corresponding to 0.1:1 to 10:1 halogen to N-hydrogen compound ratio broadly covers the invention. Halogen to DMH ratios of 0.1:1 to 10:1 correspond to hydantoin dosages of from 0.02 to 180 ppm.

Typically active halogen concentrations of 0.1-10 ppm as Cl2 are employed in the pulp media. Amounts of 1 to 3 ppm are preferred.

To more fully describe the subject invention, attention is directed to the following examples:

EXAMPLE 1

The addition of 5,5-dimethylhydantoin (DMH) to sodium hypochlorite solutions enhances the biocidal activity of sodium hypochlorite. The conditions of this experiment were a modification of ASTM E 600-91. Two biocide solutions were evaluated: NaOCl and NaOCl mixed with DMH in a 0.25:1 molar ratio. The NaOCl and the DMH were mixed prior to pulp introduction. The biocides were introduced to the pulp slurry 10 minutes prior to inoculation with 2×106 cfu/ml P. Aeruginosa and E. Aerogenes. The pulp slurry consisted of 1.3% ground aspen wood pulp and 200 ppm rosin adjusted to pH=5.0-5.5 with aluminum sulfate. Bacteria populations were measured 3 hours after pulp slurry inoculation. Final total halogen concentrations were measured at the time of bacterial population plating by sample centrifuging followed by standard DPD analyses. Biocides were neutralized with sodium thiosulfate prior to plating. The results are set forth in Table 1:

TABLE 1
Effect of DMH on NaOCl/Bactericidal Efficacy
Total Halogen: Final
(ppm as Cl2) % Residual Bacteria
System Sample Initial Final Halogen (cfu/ml)
NaOCl A 10 0.08 0.8 ≦103
B 7.5 0.04 0.5 ≦103
C 5.0 0.00 0 ≦103
D 3.0 0.00 0 104
E 1.0 0.00 0 105
NaOCl:DMH F 10 5.2 52 ≦103
(0.25:1 mole ratio) G 7.5 4.1 55 ≦103
H 5.0 2.8 56 ≦103
I 3.0 1.1 37 103
J 1.0 0.5 50 ≦103

DMH significantly enhanced the bactericidal efficacy of NaOCl. In the presence of DMH 1 ppm halogen produced bacteria reduction equivalent to that of 5 ppm halogen when used alone. This is a fivefold increase in efficacy.

DMH also reduced active halogen loss, reducing the predisposition for AOX formation. In the absence of DMH essentially all active halogen was consumed, while up to 56% remained when the DMH was present.

EXAMPLE 2

NaOCl efficacy was also enhanced by DMH upon NaOCl addition to DMH-treated slurries. Prereaction of DMH with NaOCl as described in Example 1 was not required. The conditions of this experiment were in other respects the same as Example 1. The molar ratio in the pulp slurry was 1:1 NaOCl to DMH. The results are reported in the table below:

TABLE 2
Effect of DMH-Treated Pulp on NaOCl/Bactericidal Efficacy
Total Halogen: Final
(ppm as Cl2) % Residual Bacteria
System Sample Initial Final Halogen (cfu/ml)
NaOCl A 15 0.11 0.7 <103
B 10 0.04 0.4 <103
C 7.5 0.06 0.5 <103
D 5 0.02 0.4 104
E 3 0.00 0.0 105
NaOCl:DMH F 1 0.00 0.0 106
(1:1 mole ratio) G 15 1.88 12.5 <103
H 10 0.88 8.8 <103
I 7.5 0.41 5.5 <103
J 5 0.16 3.2 <104
K 3 0.05 1.7 104
L 1 0.00 0.0 104

Again bactericidal efficacy was significantly increased by the presence of DMH. In the presence of DMH a 2 log reduction in bacteria concentration was achieved with an initial halogen concentration of 3 ppm, while 5 ppm was required in its absence: a twofold increase in efficacy.

The consumption of active halogen by the pulp medium was again mitigated by the presence of DMH.

EXAMPLE 3

DMH efficacy enhancement against preinoculated samples was also demonstrated. The conditions were the same as Example 1 except that the pulp was inoculated with bacteria 5 minutes prior to biocide introduction as opposed to 10 minutes after. Also the NaOCl to DMH mole ratio was increased from 0.25:1 to 1:1. The results are shown in Table 3:

TABLE 3
Effect of DMH on NaOCl Bactericidal Efficacy in Preinoculated
Samples
Pulp Slurry Bactericidal Efficacy
Total Halogen Final
(ppm as Cl2) % Residual Bacteria
System Initial Final Halogen (cfu/ml)
NaOCl 16.3 0.34 2.1 <103
3.4 0.03 1.0 <103
0.8 0.01 1.3 104
NaOCl:(1:1 mole ratio) 15.0 3.6 24 <103
3.2 1.5 47 <103
0.8 0.3 38 103

DMH again enhanced efficacy. In its presence a 3 log reduction was effected at a dosage of 0.8 ppm halogen (as compared to no reduction at 0.8 ppm in its absence). Active halogen consumption was again mitigated in the presence of DMH.

EXAMPLE 4

The effectiveness of DMH to mitigate halogen consumption was demonstrated at NaOCl to DMH molar ratios of 0.6:1 to 2.6:1. The experimental conditions were the same as those of Example 2, except that the pulp slurry was not inoculated with bacteria. The results are shown in the table below:

TABLE 4
Effect of NaOCl:DMH Molar ratio on Halogen Consumption
Total Halogen
NaOCl:DMH (ppm as Cl2) % Residual
Mole Ratio Initial Final Halogen
0 25.6 0.11 0.4
2.6:1 25.6 6.4 25
1.3:1 25.6 7.6 30
0.6:1 25.6 7.5 29

DMH concentrations as low as those producing NaOCl to DMH ratios of 2.6:1 reduced pulp slurry halogen consumption. As bactericidal efficacy of DMH treated systems was observed to correlate with residual total halogen concentration (see Examples 1 and 2), DMH is expected to enhance hypochlorite biocidal activity at DMH concentrations at least as low as those which provide NaOCl to DMH ratios of 2.6:1.

EXAMPLE 5

The activity of hydantoins was demonstrated to be greater than sulfamic acid and similar to cyanuric acid. The conditions were the same as those of Example 1. The molar ratio of the NaOCl to N-hydrogen compound was 1:1. The results are shown in Table 5:

TABLE 5
Effect of Cyanuric Acid, Sulfamic Acid and MEH on Bactericidal
Efficacy
Total Halogen Final
(ppm as Cl2) % Residual Bacteria
System Sample Initial Final Halogen (cfu/ml)
NaOCl 5099:46 5.0 0.03 0.6 105
A 3.0 0.02 0.7 105
B 1.0 0.00 0.0 106
NaOCl:Sulfamic C 5.0 3.8 76 105
Acid D 3.0 2.5 83 105
E 1.0 0.6 60 106
NaOCl:Cyanuric F 5.0 0.21 4.2 103
Acid G 3.0 0.03 1.0 103
H 1.0 0.00 0.0 106
NaOCl:MEH I 5.0 2.4 48 103
J 3.0 0.2 7 104
K 1.0 0.03 3 105

Sulfamic acid produced no efficacy enhancement over sodium hypochlorite alone. In contrast, 5-ethyl-5-methylhydantoin (MEH) dramatically increased NaOCl efficacy, providing a 3 log reduction at 5 ppm halogen as opposed to a 1 log reduction in its absence. Cyanuric acid provided similar efficacy enhancement to MEH.

Of the two components which provided efficacy enhancement, MEH and cyanuric acid, MEH provided the greatest mitigation of halogen decomposition; thus it is expected that MEH would provide the greatest reduction in AOX formation. In this aspect MEH would be preferred over cyanuric acid.

EXAMPLE 6

The conditions in this experiment were the same as in Example 1 except the initial total halogen concentration with respect to typical microbiological concentration was increased to about 70 ppm as Cl2 to produce detectable levels of AOX. The results are shown in Table 6:

TABLE 6
Effluent AOX Analyses
Initial Total Halogen Effluent AOX
Composition (ppm as Cl2) (ppm)
NaOCl 74 5.8
NaOCl:DMH 69 3.7

DMH reduced the AOX of NaOCl-treated pulp slurry effluent by 36%.

EXAMPLE 7

This example shows the surprising efficacy of an N-halohydantoin compound as a bactericide as compared to the conventionally used sodium hypochlorite. Specifically, Dantochlor®, a commercial halogenated hydantoin containing predominantly dichlorodimethylhydantoin and dichloroethylmethylhydantoin was used. The conditions were the same as those of Example 1. Table 7 shows the results:

TABLE 7
Efficacy of N-Halohydantoin Compound
Total Halogen: Final
(ppm as Cl2) % Residual Bacteria
System Sample Initial Final Halogen (cfu/ml)
NaOCl I 7.5 0.05 1 ≦103
J 5.0 0.02 0.4 ≦103
Dantochlor K 3.0 0.00 0 104
E 7.5 4.2 56 ≦103
F 5.0 3.4 68 ≦103
G 3.0 1.1 36 ≦103
H 1.0 0.83 83 ≦103

As can be seen from the data, Dantochlor showed a fivefold efficacy increase over sodium hypochlorite, providing a greater than 3 log reduction at 1 ppm initial halogen compared to 5 ppm for sodium hypochlorite. Additionally, the consumption of active halogen by the pulp medium was much less where the Dantochlor was used relative to sodium hypochlorite.

Claims (16)

1. A method of enhancing the efficacy of a free halogen-generating slimicide and reducing organic halogen by-products in an organic matter-containing circulating water system which comprises adding an N-hydrogen compound selected from the group consisting of p-toluene-sulfonamide, dimethylhydantoin, methylethylhydantoin, cyanuric acid, succinimide, urea, 4,4-dimethyl-2-oxazolidinone, and glycouril, directly to said system before or after the addition of the slimicide or with said slimicide in a mixture consisting essentially of the slimicide and said compound; wherein the N-hydrogen compound is added at a ratio sufficient to maintain a 0.1:1 to 10:1 mole ratio of slimicide to N-hydrogen compound in the circulating system, wherein at least 0.2 weight percent of said organic matter is present in said system, wherein the slimicide is chlorine gas, bromine, bromine chloride, an alkali metal or alkaline earth metal hypohalite, a halogenated hydantoin, a halogenated cyanurate, or halogenated cyanuric acid, and wherein said mixture of the N-hydrogen compound and the slimicide is present in said system in a slimicidally effective amount.
2. The method of claim 1 wherein the mixture of the slimicide and the N-hydrogen compound is formed just prior to the addition to said circulating water system.
3. The method of claim 1 wherein the slimicide is chlorine gas or sodium hypochlorite.
4. The method of claim 1 wherein from 0.1 to 10 ppm of active slimicide (expressed as Cl2) is maintained in the circulating water system.
5. The method of claim 1 wherein the circulating water system is used in pulp and paper processing or oil field applications.
6. The method of claim 1 wherein said organic matter is present in said system at from about 0.5 to about 3 weight percent.
7. The method of claim 1 wherein said organic matter is from about 95 to about 99 percent wood fiber.
8. The method of claim 1 wherein said slimicide is a halogenated hydantoin of the formula:
Figure USRE039021-20060321-C00002
wherein R1 and R2 are independently selected from the group consisting of lower alkyl having 1 to 12 carbon atoms, and wherein X1 and X2 are independently selected from the group consisting of bromine, chlorine and hydrogen, and at least one of X1 and X2 being bromine or chlorine.
9. The method of claim 8 wherein said organic matter is from about 95 to about 99 percent wood fiber.
10. The method of claim 8 wherein said organic matter is present in said system at from about 0.5 to about 3 weight percent.
11. The method of claim 8 wherein the halogenated hydantoin contains bromochlorodimethylhydantoin.
12. The method of claim 8 wherein the halogenated hydantoin is a mixture of dichlorodimethylhydantoin and dichloroethylmethylhydantoin.
13. A method of enhancing the efficacy of a free halogen-generating slimicide and reducing organic halogen by-products in an organic matter-containing circulating water system which comprises adding an N-hydrogen compound selected from the group consisting of p-toluene-sulfonamide dimethylhydantoin, methylethylhydantoin, cyanuric acid, succinimide, urea, 4,4-dimethyl-2-oxazolidinone, and glycouril, directly to said system before or after the addition of the slimicide or with said slimicide in a mixture consisting essentially of the slimicide and said compound; wherein the N-hydrogen compound is added at a ratio sufficient to maintain a 0.1:1 to 10:1 mole ratio of slimicide to N-hydrogen compound in the circulating system; and wherein at least 0.2 weight percent of said organic matter is present in said system, wherein said slimicide is a halogenated hydantoin of the formula:
Figure USRE039021-20060321-C00003
wherein R1 and R2 are independently selected from the group consisting of lower alkyl having 1 to 12 carbon atoms, wherein X1 and X2 are independently selected from the group consisting of bromine and chlorine, and wherein the mixture of the N-hydrogen compound and the slimicide is present in said system in a slimicidally effective amount.
14. In a process for making paper from pulp fiber wherein from 0.2 to 3 weight percent of organic matter comprising from 95 to 99 weight percent pulp fiber is maintained in a circulating water slurry in the presence of sizing, the improvement of performing said process in the presence of a slimicidally effective amount of an N-hydrogen compound and a slimicide in a molar ratio of from 0.1:1 to 10:1 in said circulating water slurry; wherein said N-hydrogen compound is p-toluenesulfonamide, dimethylhydantoin, methylethylhydantoin, cyanuric acid, succinimide, urea, 4,4 -dimethyl- 2 -oxazolidinone, or glycouril and said slimicide is chlorine gas, bromine, bromine chloride, an alkali metal or alkaline earth metal hypohalite, a halogenated hydantoin, a halogenated cyanurate, or halogenated cyanuric acid and the amount of the N-hydrogen compound present in said circulating water slurry is sufficient to enhance the biocidal efficacy of the slimicide and reduce absorbable organic halogen (AOX) by-product formation, wherein the N-hydrogen compound is directly added to the slurry before or after the addition of the slimicide or with the slimicide in a mixture consisting essentially of the slimicide and the N-hydrogen compound.
15. The papermaking process of claim 14 wherein the slurry is at a pH of from about 5.0 to 5.5.
16. In a process for making paper from pulp fiber wherein from 0.2 to 3 weight percent of organic matter comprising from 95 to 99 weight percent pulp fiber is maintained in a circulating water slurry in the presence of sizing, the improvement of performing said process in the presence of a slimicidally effective amount of an N-hydrogen compound and a slimicide in a molar ratio of from 0.1:1 to 10:1 in said circulating water slurry; wherein said N-hydrogen compound is p-toluenesulfonamide, dimethylhydantoin, methylethylhydantoin, cyanuric acid, succinimide, urea, 4,4 -dimethyl- 2 -oxazolidinone, or glycouril and said slimicide is a halogenated hydantoin of the formula
Figure USRE039021-20060321-C00004
wherein R 1 and R 2 are independently selected from the group consisting of lower alkyl having 1 to 12 carbon atoms, wherein X 1 and X 2 are independently selected from the group consisting of bromine and chlorine, and the amount of the N-hydrogen compound present in said circulating water slurry is sufficient to enhance the biocidal efficacy of the slimicide and reduce absorbable organic halogen (AOX) by-product formation, wherein the N-hydrogen compound is directly added to the slurry before or after the addition of the slimicide or with the slimicide in a mixture consisting essentially of the slimicide and the N-hydrogen compound.
US10/044,594 1994-10-14 2002-01-10 Hydantoin-enhanced halogen efficacy in pulp and paper applications Expired - Lifetime USRE39021E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08323459 US5565109B1 (en) 1994-10-14 1994-10-14 Hydantoin-enhanced halogen efficacy in pulp and paper applications
US10/044,594 USRE39021E1 (en) 1994-10-14 2002-01-10 Hydantoin-enhanced halogen efficacy in pulp and paper applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/044,594 USRE39021E1 (en) 1994-10-14 2002-01-10 Hydantoin-enhanced halogen efficacy in pulp and paper applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08323459 Reissue US5565109B1 (en) 1994-10-14 1994-10-14 Hydantoin-enhanced halogen efficacy in pulp and paper applications

Publications (1)

Publication Number Publication Date
USRE39021E1 true USRE39021E1 (en) 2006-03-21

Family

ID=23259288

Family Applications (2)

Application Number Title Priority Date Filing Date
US08323459 Expired - Lifetime US5565109B1 (en) 1994-10-14 1994-10-14 Hydantoin-enhanced halogen efficacy in pulp and paper applications
US10/044,594 Expired - Lifetime USRE39021E1 (en) 1994-10-14 2002-01-10 Hydantoin-enhanced halogen efficacy in pulp and paper applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08323459 Expired - Lifetime US5565109B1 (en) 1994-10-14 1994-10-14 Hydantoin-enhanced halogen efficacy in pulp and paper applications

Country Status (9)

Country Link
US (2) US5565109B1 (en)
EP (1) EP0785909B1 (en)
AT (1) AT237560T (en)
AU (1) AU692323C (en)
CA (1) CA2202631C (en)
DE (2) DE69530401T2 (en)
NO (1) NO315512B1 (en)
NZ (1) NZ295586A (en)
WO (1) WO1996011882A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2165981A1 (en) 2008-08-21 2010-03-24 Lonza, Inc. Antimicrobial water treatment
US20100297349A1 (en) * 2009-05-22 2010-11-25 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20100314319A1 (en) * 2009-05-18 2010-12-16 Bei Yin Halogenated amides as biocides for biofilm control
US20100314316A1 (en) * 2009-05-18 2010-12-16 Bei Yin Halogenated amides as biocides for treating water systems containing reducing agents
US20100314318A1 (en) * 2009-05-18 2010-12-16 Gartner Charles D Halogenated amide biocidal compounds and methods for treating water systems at near neutral to high ph
US20100331416A1 (en) * 2009-06-26 2010-12-30 Jerusik Russell J Use of Monochlorourea to Treat Industrial Waters
US9241484B2 (en) 2011-03-25 2016-01-26 Dow Global Technologies Llc Compositions of dibromomalonamide and their use as biocides

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888428A (en) * 1992-10-30 1999-03-30 Great Lakes Chemical Corporation Methods for generating residual disinfectants during the ozonization of water
US5565109B1 (en) * 1994-10-14 1999-11-23 Lonza Ag Hydantoin-enhanced halogen efficacy in pulp and paper applications
EP0742317A1 (en) * 1995-05-10 1996-11-13 Calgon Corporation Method for inhibiting microbial growth in paper process systems
JP3098041B2 (en) * 1995-12-07 2000-10-10 ザ、プロクター、エンド、ギャンブル、カンパニー Process of bleaching composition
US6037318A (en) * 1996-05-15 2000-03-14 The Procter & Gamble Company Process for manufacturing bleaching compositions comprising chlorine and bromine sources and product thereof
US6017431A (en) * 1997-07-17 2000-01-25 Ppg Industries Ohio, Inc. Cationic electrodepositable coating composition and bath thereof and process for retarding the growth of bacteria for such a bath
US5814233A (en) * 1997-11-10 1998-09-29 Great Lakes Chemical Corporation Compositions and methods for treating water
US6007726A (en) * 1998-04-29 1999-12-28 Nalco Chemical Company Stable oxidizing bromine formulations, methods of manufacture thereof and methods of use for microbiofouling control
US8414932B2 (en) 1998-06-01 2013-04-09 Albemarie Corporation Active bromine containing biocidal compositions and their preparation
US6068861A (en) 1998-06-01 2000-05-30 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
US6669904B1 (en) * 1999-03-31 2003-12-30 Ondeo Nalco Company Stabilized bromine solutions, method of making and uses thereof for biofouling control
US6471974B1 (en) * 1999-06-29 2002-10-29 S.C. Johnson & Son, Inc. N-chlorosulfamate compositions having enhanced antimicrobial efficacy
US6478972B1 (en) * 1999-12-13 2002-11-12 Acculab Co., Ltd. Method of controlling microbial fouling
US6809205B1 (en) 2000-01-18 2004-10-26 Albemarle Corporation Process for producing N-halogenated organic compounds
US6680070B1 (en) 2000-01-18 2004-01-20 Albemarle Corporation Particulate blends and compacted products formed therefrom, and the preparation thereof
US7371397B2 (en) * 2000-01-18 2008-05-13 Albemarle Corporation Methods for microbiological control in aqueous systems
US6508954B1 (en) 2000-01-18 2003-01-21 Albemarle Corporation 1,3-dibromo-5,5-dimethylhydantoin of enhanced properties
US7999118B2 (en) * 2000-01-18 2011-08-16 Albemarle Corporation Process for producing N-halogenated hydantoins
US6448410B1 (en) 2000-01-18 2002-09-10 Albemarle Corporation Production of compacted biocidal agent from particulate biocidal agent without using a binder
US20050049420A1 (en) * 2000-01-18 2005-03-03 Elnagar Hassan Y. Process for producing N-halogenated organic compounds
US6495698B1 (en) 2000-01-18 2002-12-17 Albemarle Corporation Binder-free compacted forms of 1,3-dihalo-5,5-dimethylhydantoins
US6565868B1 (en) 2000-01-18 2003-05-20 Albemarle Corporation Methods for microbiological control in aqueous systems
US7579018B2 (en) * 2000-01-18 2009-08-25 Albemarle Corporation Microbiological control in aqueous systems
US6638959B2 (en) 2000-01-18 2003-10-28 Albemarle Corporation Microbiological control in aqueous systems
US6429181B2 (en) 2000-01-31 2002-08-06 Lonza Inc. Partially halogenated hydantoins in papermaking applications
KR20020092981A (en) * 2000-03-13 2002-12-12 바이오랩 서비시즈, 인코포레이티드 Rapidly-dissolving halogenated hydantoin powders having improved flow, reduced dust, improved wetability, and increased bulk densities
ES2383955T3 (en) 2000-06-08 2012-06-27 Lonza Inc. Aldehyde donors for stabilization of peroxides in papermaking applications
US6908636B2 (en) 2001-06-28 2005-06-21 Albermarle Corporation Microbiological control in poultry processing
WO2003016450A1 (en) * 2001-08-14 2003-02-27 Lonza Inc. Laundry sanitizer containing partially halogenated hydantoins
US6749758B2 (en) * 2001-12-05 2004-06-15 Albemarle Corporation Methods and systems for uniform-control of bromine concentrations in water
US20040010024A1 (en) * 2002-07-10 2004-01-15 Howarth Jonathan N. Particulate blends and compacted products formed therefrom, and the preparation thereof
US6965035B1 (en) 2002-07-25 2005-11-15 Albemarle Corp Compacted forms of halogenated hydantoins
WO2004060818A1 (en) 2002-12-20 2004-07-22 Lonza Inc. Method for removal of biofilm
US20040167052A1 (en) * 2003-02-21 2004-08-26 Sturick James M. Preparation of microbiocidal solutions
US7901276B2 (en) 2003-06-24 2011-03-08 Albemarle Corporation Microbiocidal control in the processing of meat-producing four-legged animals
CA2553323C (en) * 2004-01-14 2014-04-08 A.Y. Laboratories Ltd. Biocides and apparatus
US7204931B2 (en) * 2004-07-16 2007-04-17 Truox, Inc. Stable composition with enhanced biocidal and virucidal effect
US20060089285A1 (en) * 2004-10-21 2006-04-27 Ahmed Fahim U Stabilized chlorine bleach in alkaline detergent composition and method of making and using the same
MX2007008152A (en) * 2005-01-03 2007-09-12 Univ Texas Method for transformation of conventional and commercially important polymers into durable and rechargeable antimicrobial polymeric materials.
US9061926B2 (en) * 2005-07-15 2015-06-23 Nalco Company Synergistic composition and method for inhibiting growth of microorganisms
US20070062661A1 (en) * 2005-09-16 2007-03-22 Boettcher Jennifer A Process for repulping wet-strength broke
EP1959735A1 (en) 2005-12-01 2008-08-27 Solution Biosciences, Inc. Microbiocidal control in the processing of meat-producing four-legged animals
US7776363B2 (en) 2006-01-27 2010-08-17 Nalco Company Suppressing microbial growth in pulp and paper
US20070196359A1 (en) * 2006-02-23 2007-08-23 Minntech Corporation Halosuccinimide biocide
JP5670334B2 (en) * 2008-09-26 2015-02-18 ロンザ インコーポレイテッド Synergy of peroxide disinfectant composition
BR112012001916A2 (en) * 2009-07-27 2016-03-15 Lonza Ag stabilized solutions of active halogen
JP5643117B2 (en) * 2011-01-07 2014-12-17 ケイ・アイ化成株式会社 Algaecides, fungicides and algaecides and sterilization method
CN103053613A (en) 2011-10-21 2013-04-24 纳尔科公司 Improved biological control by using chlorine-stabilizing agent mixture
US9265259B2 (en) 2011-10-21 2016-02-23 Nalco Company Use of sulfamic acid or its salts as stabilizers especially in combination with ammonium salt and/or ammine for bleach or other halogen containing biocides in the paper area
KR20150036485A (en) 2012-07-12 2015-04-07 솔레니스 테크놀러지스 케이맨, 엘.피. Electrochemical generation of chlorinated urea derivatives
US9908796B2 (en) 2012-10-23 2018-03-06 Ecolab Usa Inc. Use of oxidizing and non-oxidizing biocides for control of bacteria tolerant to stabilized-oxidant treatment
US10118849B2 (en) 2013-04-26 2018-11-06 Arch Chemicals, Inc. Method and kit for treating recreational water
RU2574052C2 (en) * 2013-10-02 2016-01-27 Общество с ограниченной ответственностью "Банмарк" Method of inhibiting microorganisms in pulp and paper industry

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328294A (en) * 1966-09-19 1967-06-27 Mead Corp Process for control of micro-organisms in process streams
US3749672A (en) * 1971-04-19 1973-07-31 Du Pont Stabilized solutions of n-halo compounds
GB1358617A (en) * 1971-12-07 1974-07-03 Alsace Mines Potasse Stabilization of aqueous solutions of bromine
JPS5631492A (en) * 1979-08-22 1981-03-30 Nitto Chem Ind Co Ltd Stabilization of residual chlorine
US4297224A (en) * 1980-06-04 1981-10-27 Great Lakes Chemical Corporation Method for the control of biofouling in recirculating water systems
US4427692A (en) * 1981-12-15 1984-01-24 Glyco, Inc. Agglomerated halo-hydantoins
US4537697A (en) * 1983-12-16 1985-08-27 Glyco, Inc. Method of enhancing solubility of halogenated hydantoins
US4698165A (en) * 1985-10-18 1987-10-06 Glyco Inc. Shock treatment of aqueous systems
US4925866A (en) * 1986-10-31 1990-05-15 Great Lakes Chemical Corporation Method for controlling plant diseases and microoganisms in the presence of plants
WO1996010541A1 (en) 1994-10-03 1996-04-11 Weinstock, David Method of treating liquids to inhibit growth of living organisms
US5565109A (en) * 1994-10-14 1996-10-15 Lonza Inc. Hydantoin-enhanced halogen efficacy in pulp and paper applications

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328294A (en) * 1966-09-19 1967-06-27 Mead Corp Process for control of micro-organisms in process streams
US3749672A (en) * 1971-04-19 1973-07-31 Du Pont Stabilized solutions of n-halo compounds
GB1358617A (en) * 1971-12-07 1974-07-03 Alsace Mines Potasse Stabilization of aqueous solutions of bromine
JPS5631492A (en) * 1979-08-22 1981-03-30 Nitto Chem Ind Co Ltd Stabilization of residual chlorine
US4297224A (en) * 1980-06-04 1981-10-27 Great Lakes Chemical Corporation Method for the control of biofouling in recirculating water systems
US4427692A (en) * 1981-12-15 1984-01-24 Glyco, Inc. Agglomerated halo-hydantoins
US4537697A (en) * 1983-12-16 1985-08-27 Glyco, Inc. Method of enhancing solubility of halogenated hydantoins
US4698165A (en) * 1985-10-18 1987-10-06 Glyco Inc. Shock treatment of aqueous systems
US4925866A (en) * 1986-10-31 1990-05-15 Great Lakes Chemical Corporation Method for controlling plant diseases and microoganisms in the presence of plants
US6132628A (en) 1994-10-02 2000-10-17 A.Y. Laboratories Ltd. Method of treating liquids to inhibit growth of living organisms
WO1996010541A1 (en) 1994-10-03 1996-04-11 Weinstock, David Method of treating liquids to inhibit growth of living organisms
US5976386A (en) 1994-10-03 1999-11-02 A.Y. Laboratories Ltd. Method and apparatus for treating liquids to inhibit growth of living organisms
US5565109A (en) * 1994-10-14 1996-10-15 Lonza Inc. Hydantoin-enhanced halogen efficacy in pulp and paper applications
US5565109B1 (en) * 1994-10-14 1999-11-23 Lonza Ag Hydantoin-enhanced halogen efficacy in pulp and paper applications

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chemical Abstract No. 30168q, 1990. *
Feb. 1, 1982, 1982 Annual Meeting of Cooling Tower Institute Article, (Matson). *
Feb. 28, 1997, Label for Lonza, Inc.'s DANTOBROM, EPA Reg. No. 6836-115. *
Feb. 28, 1997, Label for Lonza, Inc.'s DANTOBROM, EPA Reg. No. 6836-117. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2165981A1 (en) 2008-08-21 2010-03-24 Lonza, Inc. Antimicrobial water treatment
US20100314319A1 (en) * 2009-05-18 2010-12-16 Bei Yin Halogenated amides as biocides for biofilm control
US20100314316A1 (en) * 2009-05-18 2010-12-16 Bei Yin Halogenated amides as biocides for treating water systems containing reducing agents
US20100314318A1 (en) * 2009-05-18 2010-12-16 Gartner Charles D Halogenated amide biocidal compounds and methods for treating water systems at near neutral to high ph
US20100297349A1 (en) * 2009-05-22 2010-11-25 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20100331416A1 (en) * 2009-06-26 2010-12-30 Jerusik Russell J Use of Monochlorourea to Treat Industrial Waters
US8420012B2 (en) 2009-06-26 2013-04-16 Hercules Incorporated Use of monochlorourea to treat industrial waters
US9241484B2 (en) 2011-03-25 2016-01-26 Dow Global Technologies Llc Compositions of dibromomalonamide and their use as biocides

Also Published As

Publication number Publication date
US5565109A (en) 1996-10-15
DE69530401D1 (en) 2003-05-22
EP0785909B1 (en) 2003-04-16
EP0785909A4 (en) 1998-02-25
NO315512B1 (en) 2003-09-15
AU692323C (en) 2001-07-19
CA2202631C (en) 2002-09-10
DE69530401T2 (en) 2004-01-08
AU3896895A (en) 1996-05-06
NO971667A (en) 1997-06-02
CA2202631A1 (en) 1996-04-25
NO971667D0 (en) 1997-04-11
AU692323B2 (en) 1998-06-04
NZ295586A (en) 1999-03-29
WO1996011882A1 (en) 1996-04-25
US5565109B1 (en) 1999-11-23
AT237560T (en) 2003-05-15
EP0785909A1 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5658467A (en) Method and composition for inhibiting growth of microorganisms including peracetic acid and a non-oxidizing biocide
DE69233103T2 (en) Methods and means for disinfecting water
US5264136A (en) Methods for generating residual disinfectants during the ozonization of water
US5800732A (en) All-in-one treatment agent for cooling water
US3147219A (en) Process of disinfecting water
US4780216A (en) Calcium hypochlorite sanitizing compositions
CN1325388C (en) Synergistic biocidal mixtures
US6869620B2 (en) Production of concentrated biocidal solutions
CA2363021C (en) Stable oxidizing bromine formulations, method of manufacture and uses thereof for biofouling control
AU717894B2 (en) Stabilized alkali or alkaline earth metal hypobromite and process for its production
AU675526B2 (en) Halogen compositions for water treatment and method of preparation thereof
CA2065343C (en) Process for disinfecting hard surfaces with chlorine dioxide
US5057612A (en) N,n&#39;-dihaloimidazolidin-4-ones
US5683654A (en) Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
EP1487266B1 (en) A method of preparing a biocide comprising stabilized hypochlorite and a bromide ion source and a method of controlling microbial fouling using the same
CA2455446C (en) Stabilized bromine solutions, method of making and uses thereof for biofouling control
US4698165A (en) Shock treatment of aqueous systems
US6423267B1 (en) Stable oxidizing bromine formulations, method of manufacture and uses thereof for biofouling control
EP0913091B1 (en) Composition and method for inhibiting the growth of microorganisms including stabilized sodium hypobromite and isothiazolones
US5795487A (en) Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
US6120698A (en) Balanced water purification composition
US4681948A (en) N,N&#39;dihalo-2-imidazolidinones
US6303038B1 (en) Solid mixtures of dialkylhydantoins and bromide ion sources for water sanitization
US6641828B1 (en) Methods for microbiological control in aqueous systems
JP4713081B2 (en) Control of biofilm production in industrial process waters

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12

CC Certificate of correction