Connect public, paid and private patent data with Google Patents Public Datasets

Method for controlling configuration of laser induced breakdown and ablation

Download PDF

Info

Publication number
USRE37585E1
USRE37585E1 US09366685 US36668599A USRE37585E US RE37585 E1 USRE37585 E1 US RE37585E1 US 09366685 US09366685 US 09366685 US 36668599 A US36668599 A US 36668599A US RE37585 E USRE37585 E US RE37585E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
pulse
laser
width
breakdown
beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09366685
Inventor
Gérard Mourou
Detao Du
Subrata K. Dutta
Victor Elner
Ron Kurtz
Paul R. Lichter
Xinbing Liu
Peter P. Pronko
Jeffrey A. Squier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
AMO Development LLC
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0054Working by transmitting the laser beam within the workpiece
    • B23K26/0057Working by transmitting the laser beam within the workpiece by modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2201/00Articles made by soldering, welding or cutting by applying heat locally
    • B23K2201/36Electric or electronic devices
    • B23K2201/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2203/00Materials to be soldered, welded or cut
    • B23K2203/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2203/00Materials to be soldered, welded or cut
    • B23K2203/08Non-ferrous metals or alloys
    • B23K2203/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2203/00Materials to be soldered, welded or cut
    • B23K2203/50Inorganic material, e.g. metals, not provided for in B23K2203/02 – B23K2203/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2203/00Materials to be soldered, welded or cut
    • B23K2203/50Inorganic material, e.g. metals, not provided for in B23K2203/02 – B23K2203/26
    • B23K2203/54Glass

Abstract

In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (Fth) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused to a point at or beneath the surface of a material where laser induced breakdown is desired.
The beam may be used in combination with a mask in the beam path. The beam or mask may be moved in the x, y, and Z directions to produce desired features. The technique can produce features smaller than the spot size and Rayleigh range due to enhanced damage threshold accuracy in the short pulse regime.

Description

GOVERNMENT RIGHTS

This invention was made with government support provided by the Office of Naval Research and the National Science Foundation under the terms of No. STC PHY 8920108. The government has certain rights in the invention.

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,656,186. The reissue applications are application numbers 09/366,685 (the present application), which has divisional applications 09/775,069 and 09/775,106.

FIELD OF THE INVENTION

This invention relates generally to methods utilizing lasers for modifying internal and external surfaces of material such as by ablation or changing properties in structure of materials. This invention may be used for a variety of materials.

BACKGROUND OF THE INVENTION

Laser induced breakdown of a material causes chemical and physical changes, chemical and physical breakdown, disintegration, ablation, and vaporization. Lasers provide good control for procedures which require precision such as inscribing a micro pattern. Pulsed rather than continuous beams are more effective for many procedures, including medical procedures. A pulsed laser beam comprises bursts or pulses of light which are of very short duration, for example, on the order of 10 nanoseconds in duration or less. Typically, these pulses are separated by periods of quiescence. The peak power of each pulse is relatively high often on the order of gigawatts and capable of intensity on the order of 1013 w/cm2. Although the laser beam is focused onto an area having a selected diameter, the effect of the beam extends beyond the focused area or spot to adversely affect peripheral areas adjacent to the spot. Sometimes the peripheral area affected is several times greater than the spot itself. This presents a problem, particularly where tissue is affected in a medical procedure. In the field of laser machining, current lasers using nanosecond pulses cannot produce features with a high degree of precision and control, particularly when nonabsorptive wavelengths are used.

It is a general object to provide a method to localize laser induced breakdown. Another object is to provide a method to induce breakdown in a preselected pattern in a material or on a material.

SUMMARY OF THE INVENTION

In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (Fth) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused to a point at or beneath the surface of a material where laser induced breakdown is desired.

In one aspect, the invention may be understood by further defining the predetermined laser pulse width as follows: the relationship between fluence breakdown threshold and laser pulse defines a curve having a first portion spanning a range of relatively long (high) pulse width where fluence breakdown threshold (Fth) varies with the square root of pulse width (T1/2). The curve has a second portion spanning a range of short (low) pulse width relative to the first portion. The proportionality between fluence breakdown threshold and pulse width differ in the first and second portions of the curve and the predetermined pulse width is that point along the curve between its first and second portions. In other words, the predetermined pulse width is the point where the Fth versus τp relationship no longer applies, and, of course, it does not apply for pulse widths shorter than the predetermined pulse width.

The scaling of fluence breakdown threshold (Fth) as a function of pulse width (T) is expressed as Fth proportional to the square root of (T1/2) is demonstrated in the pulse width regime to the nanosecond range. The invention provides methods for operating in pulse widths to the picosecond and femtosecond regime where we have found that the breakdown threshold (Fth) does not vary with the square root of pulse width (T1/2).

Pulse width duration from nanosecond down to the femtosecond range is accomplished by generating a short optical pulse having a predetermined duration from an optical oscillator. Next the short optical pulse is stretched in time by a factor of between about 500 and 10,000 to produce a timed stretched optical pulse to be amplified. Then, the time stretched optical pulse is amplified in a solid state amplifying media. This includes combining the time stretched optical pulse with an optical pulse generated by a second laser used to pump the solid state amplifying media. The amplified pulse is then recompressed back to its original pulse duration.

In one embodiment, a laser oscillator generates a very short pulse on the order of 10 to 100 femtoseconds at a relatively low energy, on the order of 0.001 to 10 nanojoules. Then, it is stretched to approximately 100 picoseconds to 1 nanosecond and 0.001 to 10 nanojoules. Then, it is amplified to typically on the order of 0.001 to 1.000 millijoules and 100 picoseconds to 1 nanosecond and then recompressed. In its final state it is 10 to 200 femtoseconds and 0.001 to 1.000 millijoules. Although the system for generating the pulse may vary, it is preferred that the laser medium be sapphire which includes a titanium impurity responsible for the lasing action.

In one aspect, the method of the invention provides a laser beam which defines a spot that has a lateral gaussian profile characterized in that fluence at or near the center of the beam spot is greater than the threshold fluence whereby the laser induced breakdown is ablation of an area within the spot. The maximum intensity is at the very center of the beam waist. The beam waist is the point in the beam where wave-front becomes a perfect plane; that is, its radius of curvature is infinite. This center is at radius R=0 in the x-y axis and along the Z axis, Z=0. This makes it possible to damage material in a very small volume Z=0, R=0. Thus it is possible to make features smaller than spot size in the x-y focal plane and smaller than the Rayleigh range (depth of focus) in the Z axis. It is preferred that the pulse width duration be in the femtosecond range although pulse duration of higher value may be used so long as the value is less than the pulse width defined by an abrupt or discernable change in slope of fluence breakdown threshold versus laser beam pulse width.

In another aspect, a diaphragm, disk, or mask is placed in the path of the beam to block at least a portion of the beam to cause the beam to assume a desired geometric configuration. In still further aspects, desired beam configurations are achieved by varying beam spot size or through Fourier Transform (FT) pulse shaping to cause a special frequency distribution to provide a geometric shape.

It is preferred that the beam have an energy in the range of 10 nJ (nanojoules) to 1 millijoule and that the beam have a fluence in the range of 0.1 J/cm2 to 100 J/cm2 (joules per centimeter square). It is preferred that the wavelength be in a range of 200 nm (nanometer) to 1 μm (micron).

Advantageously, the invention provides a new method for determining the optimum pulse width duration regime for a specific material and a procedure for using such regime to produce a precisely configured cut or void in or on a material. For a given material the regime is reproducible by the method of the invention. Advantageously, very high intensity results from the method with a modest amount of energy and the spot size can be very small. Damage to adjoining area is minimized which is particularly important to human and animal tissue.

These and other object features and advantages of the invention will be become apparent from the following description of the preferred embodiments, claims, and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a laser induced breakdown experimental system which includes a chirped pulse amplification laser system and means for detecting scattered and transmitted energy. If the sample is transparent, then transmitted energy can also be measured.

FIG. 2 is a plot of scattered energy versus incident fluence obtained for an opaque (gold) sample using the system in FIG. 1 operated for 150 femtoseconds (fs) pulse duration.

FIG. 3 is a plot of calculated and experimental values of threshold fluence versus pulse width for gold, with experimental values obtained for the gold sample using the system of FIG. 1 operated at 800 nm wavelength. The arrow shows the point on the plot where the Fth proportional to T1/2 no longer applies, as this relationship only holds for pulse widths down to a certain level as shown by the solid line.

FIG. 4 is a graphical representation of sub-spot size ablation/machining in gold based on arbitrary units and showing Fth the threshold fluence needed to initiate material removal; Rs the spot size of the incident beam and Ra the radius of the ablated hole in the x-y plane.

FIG. 5 is a schematic illustration of a beam intensity profile showing that for laser micro-machining with ultrafast pulse according to the invention, only the peak of the beam intensity profile exceeds the threshold intensity for ablation/machining.

FIG. 6A and B are schematic illustrations of a beam showing the placement of a disk-shaped mask in the beam path.

FIG. 7 is a plot of scattered plasma emission and transmitted laser pulse as a function of incident laser pulse energy for a transparent glass sample, SiO2.

FIG. 8 is a plot of fluence threshold (Fth) versus pulse width (T) for the transparent glass sample of FIG. 7 showing that Fth varying with T1/2 only holds for pulse widths down to a certain level as shown by the solid line. Previous work of others is shown in the long pulse width regime (Squares, Smith Optical Eng 17, 1978 and Triangles. Stokowski, NBS Spec Bul 541, 1978).

FIG. 9 is a plot of fluence threshold versus pulse width for corneal tissue, again showing that the proportionality between Fth and pulse width follows the T1/2 relationship only for pulse widths which are relatively long.

FIGS. 10 and 11 are plots of plasma emission versus laser fluence showing that at 170 (FIG. 10) pulse width the Fth is very clearly defined compared to 7 nm (FIG. 11) pulse width where it is very unclear.

FIG. 12 is a plot of impact ionization rate per unit distance determined by experiment and theoretical calculation.

FIGS. 13A and B are schematic illustrations of beam profile along the longitudinal Z axis and sharing precise control of damage—dimension along the Z axis.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1 there is shown an apparatus for performing tests to determine the laser induced breakdown threshold as a function of laser pulse width in the nanosecond to femtosecond range using a chirped-pulse amplification (CPA) laser system. The basic configuration of such a CPA system is described in U.S. Pat. No. 5,235,606 which is assigned to the assignee of the present invention and which has inventors in common with this present application. U.S. Pat. No. 5,235,606 is incorporated herein by reference in its entirety.

Chirped-pulse amplification systems have been described by Jeffrey Squier and Gerard Mourou, two of the joint inventors in the present application, in a publication entitled Laser Focus World published by Pennwell in June of 1992. It is described that CPA systems can be roughly divided into four categories. The first includes the high energy low repetition systems such as ND glass lasers with outputs of several joules but they may fire less than 1 shot per minute. A second category are lasers that have an output of approximately 1 joule and repetition rates from 1 to 20 hertz. The third group consists of millijoule level lasers that operate at rates ranging from 1 to 10 kilohertz. A fourth group of lasers operates at 250 to 350 kilohertz and produces a 1 to 2 microjoules per pulse. In U.S. Pat. No. 5,235,606 several solid state amplifying materials are identified and the invention of U.S. Pat. No. 5,235,606 is illustrated using the Alexandrite. The examples below use Ti:Sapphire and generally follow the basic process of U.S. Pat. No. 5,235,606 with some variations as described below.

The illustrative examples described below generally pertain to pulse energies less than a microjoule and often in the nanojoule range with pulse duration in the range of hundreds of picoseconds or less and the frequency on the order of 1 kilohertz. But these examples are merely illustrative and the invention is not limited thereby.

In a basic scheme for CPA, first a short pulse is generated. Ideally the pulse from the oscillator is sufficiently short so that further pulse compression is not necessary. After the pulse is produced it is stretched by a grating pair arranged to provide positive group velocity dispersion. The amount the pulse is stretched depends on the amount of amplification. Below a millijoule, tens of picoseconds are usually sufficient. A first stage of amplification typically takes place in either a regenerative or a multipass amplifier. In one configuration this consists of an optical resonator that contains the gain media, a Pockels cell, and a thin film polarizer. After the regenerative amplification stage the pulse can either be recompressed or further amplified. The compressor consists of a grating or grating pair arranged to provide negative group velocity dispersion. Gratings are used in the compressor to correspond to those in the stretching stage. More particulars of a typical system are described in U.S. Pat. No. 5,235,606, previously incorporated herein by reference.

An important aspect of the invention is the development of a characteristic curve of fluence breakdown threshold Fth as a function of laser pulse width specific to a material. Then identify on such curve, the point at which there is an abrupt, or distinct and rapid change or at least a discernable change in slope characteristic of the material. In general it is more desirable to operate past this point because of the more precise control of the laser induced breakdown (LIB) or ablation threshold.

EXAMPLE 1 Opaque Material

FIG. 1 shows an experimental setup for determining threshold fluence by determining scattered energy versus incident fluence and by determining threshold fluence versus pulse width. The system includes means for generating a pulsed laser beam as described earlier, and means, typically a lens, for collecting emission from the target to a photomultiplier tube. Change of transmission through a transparent sample is measured with an energy meter.

FIG. 2 shows a plot of data obtained from an absorbing medium which is gold using 150 fs pulse and FIG. 3 shows threshold fluence versus pulse width. The arrow in FIG. 3 identifies the point at which the relationship between the threshold fluence and pulse width varies dramatically.

In experimental conditions with wavelength of 800 nm and 200 fs pulses on gold (FIG. 3), the absorption depth is 275 A with a diffusion length of 50 A. In the case of nanosecond pulses the diffusion length, which is on the order of 10 μm (micron) in diameter, is much longer than the absorption depth, resulting in thermal diffusion being the limiting factor in feature size resolution. Empirical evidence for the existence of these two regimes is as exhibited in FIG. 3. Here both experimental and theoretical ablation thresholds are plotted as a function of pulse width. An arrow at approximately 7 picoseconds pulse width (designated herein as T or τp) delineates the point (or region closely bounding that point) at which the thermal diffusion length (Lth) is equal to the absorption depth (1/a). It is clear that for a smaller size spot a shorter (smaller) pulse is necessary. For spot size on the order of 1000 Å or less, pulse width on the order of 100 femtoseconds or less will be needed. It is clear from the figure that this is the point at which the ablation threshold transitions from a slowly varying or nearly constant value as a function of pulse width to one that is dramatically dependent on pulse time. This result is surprising. It has been demonstrated that the electron thermalization time for laser deposited energy in gold is on the order of, or less than, 500 fs and the electron-lattice interaction time is 1 ps. The consequences of this four ultrafast laser pulses is that the energy is contained within the beam spot. In fact for energies at or near the threshold for ablation, the spatial profile of the laser beam will determine the size and shape of the region being ablated (FIGS. 4 and 5).

Additional experiments were performed to measure the amount of recombination light produced as a function of the fluence impinging on a gold film. The technique involved is based upon the experimental setup previously described. A basic assumption is that the intensity of the light is proportional to the amount of material ablated. In FIG. 4, the material removed is plotted as a function of fluence. A well defined threshold fluence is observed at which material removal is initiated. By having only a small fraction of the gaussian beam where the fluence is greater than the threshold, the ablated region can be restricted to this small area. In FIG. 4, Ra is the radial position on the beam where the fluence is at threshold. Ablation, then, occurs only within a radius Ra. It is evident that by properly choosing the incident fluence, the ablated spot or hole can in principle be smaller than the spot size, Rs. This concept is shown schematically in FIG. 5. Although the data for a 150 fs pulse is shown in FIG. 4, this threshold behavior is exhibited in a wide range of pulse widths. However, sub spot size ablation is not possible in the longer pulse regimes, due to the dominance of thermal diffusion as will be described below.

Additional experiments on opaque materials used a 800 nm Ti:Sapphire oscillator whose pulses were stretched by a grating pair, amplified in a regenerative amplifier operating at 1 kHz, and finally recompressed by another grating pair. Pulse widths from 7 ns to 100 fs were obtained. The beam was focused with a 10× objective, implying a theoretical spot size of 3.0 μm in diameter. A SEM photo-micrograph of ablated holes obtained in a silver film on glass, using a pulse width of 200 fs and a pulse energy of 30 nJ (fluence of 0.4 J/cm2) produced two holes of diameter approximately 0.3 μm in diameter. Similar results have been obtained in aluminum.

These results suggest that by, producing a smaller spot size which is a function of numerical aperture and wavelength, even smaller holes can be machined. We have demonstrated the ability to generate the fourth harmonic (200 nm) using a nonlinear crystal. Thus by using a stronger objective lens along with the 200 nm light, holes with diameters of 200 angstroms could in principle be formed.

These examples show that by using femtosecond pulses the spatial resolution of the ablation/machining process can be considerably less than the wavelength of the laser radiation used to produce it. The ablated holes have an area or diameter less than the area or diameter of the spot size. In the special case of diffraction limited spot size, the ablated hole has a size (diameter) less than the fundamental wavelength size. We have produced laser ablated holes with diameters less than the spot diameter and with diameters 10% or less of the laser beam spot size. For ultrafast pulses in metals the thermal diffusion length, lth=(Dt)1/2 (where D is the thermal diffusivity and t the pulse time), is significantly smaller than the absorption depth (1/a), where a is the absorption coefficient for the radiation.

Those skilled in the art will understand that the basic method of the invention may be utilized in alternative embodiments depending on the desired configurations of the induced breakdown. Examples include, but are not limited to using a mask in the beam path, varying spot size, adjusting focus position by moving the lens, adjusting laser cavity design, Fourier Transform (FT) shaping, using a laser operating mode other than TEMoo, and adjusting the Rayleigh range, the depth of focus or beam waist.

The use of a mask is illustrated in FIG. 6A and B. The basic method consists of placing a mask in the beam path or on the target itself. If it is desired to block a portion of the beam, the mask should be made of an opaque material and be suspended in the beam path (FIG. 6) alternatively, the mask may be placed on the target and be absorptive so as to contour the target to the shape of the mask (FIG. 6B).

The varying spot size is accomplished by varying the laster f/#, varying the focal length of the lens or input beam size to the lens as by adjustable diaphragm.

Operation in other than the TEMoo mode means that higher order transverse modes could be used. This affects the beam and material as follows: the beam need not be circular or gaussian in intensity. The material will be ablated corresponding to the beam shape.

The Rayleigh range (Z axis) may be adjusted by varying the beam diameter, where the focal plane is in the x-y axis.

EXAMPLE 2 Transparent Material

A series of tests were performed on an SiO2 (glass) sample to determine the laser induced breakdown (LIB) threshold as a function of laser pulse width between 150 fs-7 ns, using a CPA laser system. The short pulse laser used was a 10 Hz Ti:Sapphire oscillator amplifier system based on the CPA technique. The laser pulse was focused by an f=25 cm lens inside the SiO2 sample. The Rayleigh length of the focused beam is ˜2 mm. The focused spot size was measured in-situ by a microscope objective lens. The measured spot size FWHM (full width at half max) was 26 μm in diameter in a gaussian mode. The fused silica samples were made from Corning 7940, with a thickness of 0.15 mm. They were optically polished on both sides with a scratch/dig of 20-10. Each sample was cleaned by methanol before the experiment. Thin samples were used in order to avoid the complications of self-focusing of the laser pulses in the bulk. The SiO2 sample was mounted on a computer controlled motorized X-Y translation stage. Each location on the sample was illuminated by the laser only once.

Two diagnostics were used to determine the breakdown threshold Fth. First, the plasma emission from the focal region was collected by a lens to a photomultiplier tube with appropriate filters. Second, the change of transmission through the sample was measured with an energy meter. (See FIG. 1) Visual inspection was performed to confirm the breakdown at a nanosecond pulse duration. FIG. 7 shows typical plasma emission and transmitted light signal versus incident laser energy plots, at a laser pulse width of τp=300 fs. It is worth noting that the transmission changed slowly at around Fth. This can be explained by the temporal and spatial behavior of the breakdown with ultrashort pulses. Due to the spatial variation of the intensity, the breakdown will reach threshold at the center of the focus, and because of the short pulse duration, the generated plasma will stay localized. The decrease in transmitted light is due to the reflection, scattering, and absorption by the plasma. By assuming a gaussian profile in both time and space for the laser intensity, and further assuming that the avalanche takes the entire pulse duration to reach threshold, one can show that the transmitted laser energy Ut as a function of the input energy U is given by

Ut=kU, U≦Uth

Ut=kUth[1+ln(U/Uth)], U>Uth

where k is the linear transmission coefficient. The solid curve in FIG. 7 is plotted using Eq. (1) with Uth as a fitting parameter. In contrast, breakdown caused by nanosecond laser pulses cuts off the transmitted beam near the peak of the pulses, indicating a different temporal and spatial behavior.

FIG. 8 shows the fluence breakdown threshold Fth as a function of laser pulse width. From 7 ns to about 10 ps, the breakdown threshold follows the scaling in the relatively long pulse width regime (triangles and squares) are also shown as a comparison—it can be seen that the present data is consistent with earlier work only in the higher pulse width portion of the curve. When the pulse width becomes shorter than a few picoseconds, the threshold starts to increase. As noted earlier with respect to opaque material (metal), this increased precision at shorter pulse widths is surprising. A large increase in damage threshold accuracy is observed, consistent with the multiphoton avalanche breakdown theory. (See FIGS. 8 and 9). It is possible to make features smaller than spot size in the x-y focal plane and smaller than the Rayleigh range (depth of focus) in the longitudinal direction or Z axis. These elements are essential to making features smaller than spot size or Rayleigh range.

EXAMPLE 3 Tissue

A series of experiments was performed to determine the breakdown threshold of cornea as a function of laser pulse width between 150 fs-7 ns, using a CPA laser system. As noted earlier, in this CPA laser system, laser pulse width can be varied while all other experimental parameters (spot size, wavelength, energy, etc.) remain unchanged. The laser was focused to a spot size (FWHM) of 26 μm in diameter. The plasma emission was recorded as a function of pulse energy in order to determine the tissue damage threshold. Histologic damage was also assessed.

Breakdown thresholds calculated from plasma emission data revealed deviations from the scaling law. Fth α T1/2, as in the case of metals and glass. As shown in FIG. 9, the scaling law of the fluence threshold is true to about 10 ps, and fail when the pulse shortens to less than a few picoseconds. As shown in FIGS. 10 and 11, the ablation or LIB threshold varies dramatically at high (long) pulse width. It is very precise at short pulse width. These results were obtained at 770 nm wavelength. The standard deviation of breakdown threshold measurements decreased markedly with shorter pulses. Analysis also revealed less adjacent histological damage with pulses less than 10 ps.

The breakdown threshold for ultrashort pulses (<10 ps) is less than longer pulses and has smaller standard deviations. Reduced adjacent histological damage to tissue results from the ultrashort laser pulses.

In summary, it has been demonstrated that sub-wavelength holes can be machined into metal surfaces using femtosecond laser pulses. The effect is physically understood in terms of the thermal diffusion length, over the time period of the pulse deposition, being less than the absorption depth of the incident radiation. The interpretation is further based on the hole diameter being determined by the lateral gaussian distribution of the pulse in relation to the threshold for vaporization and ablation.

Laser induced optical breakdown dielectrics consists of three general steps: free electron generation and multiplication, plasma heating and material deformation or breakdown. Avalanche ionization and multiphoton ionization are the two processes responsible for the breakdown. The laser induced breakdown threshold in dielectric material depends on the pulse width of the laser pulses. An empirical scaling law of the fluence breakdown threshold as a function of the pulse width is given by Fth α τp, or alternatively, the intensity breakdown threshold, Ith=Fthp. Although this scaling law applies in the pulse width regime from nanosecond to tens of picoseconds, the invention takes advantage of the heretofore unknown regime where breakdown threshold does not follow the scaling law when suitably short laser pulses are used, such as shorter than 7 picoseconds for gold and 10 picoseconds for SiO2.

While not wishing to be held to any particular theory, it is thought that the ionization process of a solid dielectric illuminated by an intense laser pulse can be described by the general equation

dne(t)/dt=η(E)ne(t)+(dne(t)/dt)Pl—(dne(t)/dt)loss

where ne(t) is the free electron (plasma) density, η(E) is the avalanche coefficient, and E is the electric field strength. The second term on the right hand side is the photoionization contribution, and the third term is the loss due to electron diffusion, recombination, etc. When the pulse width is in the picosecond regime, the loss of the electron is negligible during the duration of the short pulse.

Photoionization contribution can be estimated by the tunneling rate. For short pulses, E˜108 V/cm, the tunneling rate is estimated to be w˜4×109 sec−1, which is small compared to that of avalanche, which is derived below. However, photoionization can provide the initial electrons needed for the avalanche processes at short pulse widths. For example, the data shows at 1 ps, the rms field threshold is about 5×107 V/cm. The field will reach a value of 3.5×107 V/cm (ms) at 0.5 ps before the peak of the pulse, and w˜100 sec−1. During a Δt˜100 fs period the electron density can reach ne˜nt[1−exp(−wΔt)]˜1011 cm−3, where nt˜1022 is the total initial valence band electron density.

Neglecting the last two terms there is the case of an electron avalanche process, with impact ionization by primary electrons driven by the laser field. The electron density is then given by ne(t)=no×exp(n(E)t), where no is the initial free electron density. These initial electrons may be generated through thermal ionization of shallow traps or photoionization. When assisted by photoionization at short pulse regime, the breakdown is more statistical. According to the condition that breakdown occurs when the electron density exceeds nth≅1018 cm−3 and an initial density of no≅1910 cm−3, the breakdown condition is then given by ητp≅18. For the experiment, it is more appropriate to use nth≅1.6×1021 cm−3, the plasma critical density, hence the threshold is reached when ητp≅30. There is some arbitrariness in the definition of plasma density relating to the breakdown threshold. However, the particular choice of plasma density does not change the dependence of threshold as function of pulse duration (the scaling law).

In the experiment, the applied electric field is on the order of a few tens of MV/cm and higher. Under such a high field, the electrons have an average energy of ˜5 eV, and the electron collision time is less than 0.4 fs for electrons with energy U≧5-6 eV. Electrons will make more than one collision during one period of the electric oscillation. Hence the electric field is essentially a dc field to those high energy electrons. The breakdown field at optical frequencies has been shown to correspond to dc breakdown field by the relationship Ermk th(w)=Edc TH(1+w2τ2)1/2, where w is the optical frequency and τ is the collision time.

In dc breakdown, the ionization rate per unit length, α, is used to describe the avalanche process, with η=α(E)vdrift, where vdrift is the drift velocity of electrons. When the electric field is as high as a few MV/cm, the drift velocity of free electrons is saturated and independent of the laser electric field, vdrift≅2×107 cm/s.

The ionization rate per unit length of an electron is just eE/Ui times the probability, P(E), that the electron has an energy ≧Ui, or α(E)=(eE/Ui)P(E). Denoting EkT,Ep, and Ei as threshold fields for electrons to overcome the decelerating effects of thermal, phonon, and ionization scattering, respectively. Then the electric field is negligible, E<EkT, so the distribution is essentially thermal, P(E) is simply exp(−Ui/kT). It has been suggested: P(E)˜exp(−const/E) for EkT<E<Ep; P(E)˜exp(−const/E2) at higher fields (E>Ep). Combining the three cases the expression that satisfies both low and high field limits:

α(E)=(eE/Ui)exp(−Ei/(E(1+E/Ep)+EkT).

This leads to Fth α E2τp˜1/τp, i.e., the fluence threshold will increase for ultrashort laser pulses when E>EpEi is satisfied.

FIG. 12 is a plot of α as a function of the electric field, E. From experimental data, calculated according to ητp=30 and η=avdrift. The solid curve is calculated from the above equation, using Ei=30 MV/cm, Ep=3.2 MV/cm, and EkT=0.01 MV/cm. These parameters are calculated from U=eEl, where U is the appropriate thermal, phonon, and ionization energy, and l is the correspondent energy, relation length (lkT=lp˜5 Å, the atomic spacing, and li≅30 Å). It shows the same saturation as the experimented data. The dashed line is corrected by a factor of 1.7, which results in an excellent fit with the experimental data. This factor of 1.7 is of relatively minor importance, as it can be due to a systematic correction, or because breakdown occurred on the surface first, which could have a lower threshold. The uncertainty of the saturation value of vdrift also can be a factor. The most important aspect is that the shape (slope) of the curve given by the equation provides excellent agreement with the experimental data. Thus, the mechanism of laser induced breakdown in fused silica (Example 2), using pulses as short as 150 fs and wavelength at 780 nm, is likely still dominated by the avalanche process.

Opaque and transparent materials have common characteristics in the curves of FIGS. 3, 8, and 9 each begins with Fth versus T1/2 behavior but then distinct change from that behavior is evident. From the point of deviation, each curve is not necessarily the same since the materials differ. The physical characteristics of each material differ requiring a material specific analysis. In the case of SiO2 (FIG. 8) the energy deposition mechanism is by dielectric breakdown. The optical radiation is releasing electrons by multiphoton ionization (M PI) that are tightly bound and then accelerating them to higher energies by high field of the laser. It is thought that only a small amount of relatively high energy electrons exist prior to the laser action. The electrons in turn collide with other bound electrons and release them in the avalanching process. In the case of metal, free electrons are available and instantly absorbing and redistributing energy. For any material, as the pulses get shorter laser induced breakdown (LIB) or ablation occurs only in the area where the laser intensity exceeds LIB or ablation threshold. There is essentially insufficient time for the surrounding area to react thermally. As pulses get shorter, vapor from the ablated material comes off after the deposition of the pulse, rather than during deposition, because the pulse duration is so short. In summary, by the method of the invention, laser induced breakdown of a material causes thermal-physical changes through ionization, free electron multiplication, dielectric breakdown, plasma formation, other thermal-physical changes in state, such as melting and vaporization, leading to an irreversible change in the material. It was also observed that the laser intensity also varies along the propagation axis (FIG. 13). The beam intensity as a function of R and Z expressed as:

l((Z, R)=lo/(1+Z/ZR)2−exp(−2R2/W2 z)

where ZR is the Rayleigh range and is equal to Z R = πW o 2 λ

Wo is the beam size at the waist (Z=0).

We can see that the highest value of the field is at Z=R=0 at the center of the waist. If the threshold is precisely defined it is possible to damage the material precisely at the waist and have a damaged volume representing only a fraction of the waist in the R direction or in the Z direction. It is very important to control precisely the damage threshold or the laser intensity fluctuation.

For example, if the damage threshold or the laser fluctuations known within 10% that means that on the axis (R=0)

I(O,Z)/Io=1(1=(Z/ZR)2=0.9

damaged volume can be produced at a distance ZR/3 where ZR again is the Rayleigh range. For a beam waist of Wo=λ then Z R = πW o 2 λ = πλ

and the d distance between hole can Z R = πλ 3

as shown in FIG. 13.

The maximum intensity is exactly at the center of the beam waist (Z=0, R=0). For a sharp threshold it is possible to damage transparent, dielectric material in a small volume centered around the origin point (Z=0, R=0). The damage would be much smaller than the beam waist in the R direction. Small cavities, holes, or damage can have dimensions smaller than the Rayleigh range (ZR) in the volume of the transparent, dielectric material. In another variation, the lens can be moved to increase the size of the hole or cavity in the Z direction. In this case, the focal point is essentially moved along the Z axis to increase the longitudinal dimension of the hole or cavity. These features are important to the applications described above and to related applications such as micro machining, integrated circuit manufacture, and encoding data in data storage media.

Advantageously, the invention identifies the regime where breakdown threshold fluence does not follow the scaling law and makes use of such regime to provide greater precision of laser induced breakdown, and to induce breakdown in a preselected pattern in a material or on a material. The invention makes it possible to operate the laser where the breakdown or ablation threshold becomes essentially accurate. The accuracy can be clearly seen by the I-bars along the curves of FIGS. 8 and 9. The I-bars consistently show lesser deviation and correspondingly greater accuracy in the regime at or below the predetermined pulse width.

While this invention has been described in terms of certain embodiment thereof, it is not intended that it be limited to the above description, but rather only to the extent set forth in the following claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined in the appended claims.

Claims (54)

We claim:
1. A method for laser induced breakdown (LIB) of a non-biologic material with a pulsed laser beam, the material being characterized by a relationship of fluence breakdown threshold at which breakdown occurs versus laser pulse width that exhibits a rapid and distinct change in slope at a characteristic laser pulse width, said method comprising the steps of:
a. generating a beam of at least one or more laser pulses in which each pulse has a pulse width equal to or less than said characteristic laser pulse width; and
b. focusing said beam directing said pulse to a point at or beneath the surface of the material.
2. The method according to claim 1 wherein the material is a metal, the pulse width is 10 to 10,000 femtoseconds, and the beam pulse has an energy of 1 nanojoule to 1 microjoule.
3. The method according to claim 1 wherein the spot size is varied within a range of 1 to 100 microns by changing the f number of the laser beam.
4. The method according to claim 1 wherein the spot size is varied within a range of 1 to 100 microns by varying the target position.
5. The method according to claim 1 wherein the material is transparent to radiation emitted by the laser and the pulse width is 10 to 10,000 femtoseconds, the beam pulse has an energy of 10 nanojoules to 1 millijoule.
6. The method according to claim 1 wherein the material is biological tissue, the pulse width is 10 to 10,000 femtoseconds and the beam has an energy of 10 nanojoules to 1 millijoule.
7. A method for laser induced breakdown (LIB) of a material with a pulsed laser beam, the material being characterized by a relationship of fluence breakdown threshold versus laser pulse width that exhibits a rapid and distinct change in slope at a predetermined laser pulse width where the onset of plasma induced breakdown occurs, said method comprising the steps of:
a. generating a beam of one or more laser pulses in which each pulse has a pulse width equal to or less than said predetermined laser pulse width obtained by determining the ablation (LIB) threshold of the material as a function of pulse width and by determining where the ablation (LIB) threshold function is no longer proportional to the square root of pulse width; and
b. focusing said beam to a point at or beneath the surface of the material.
8. The method according to claim 1 wherein the laser beam pulse has an energy in a range of 10 nanojoules to 1 millijoule.
9. The method according to claim 1 wherein the laser beam pulse has a fluence in a range of 100 millijoules per square centimeter to 100 joules per square centimeter.
10. The method according to claim 1 wherein the laser beam pulse defines a spot in or on the material and the LIB causes ablation of an area having a size smaller than the area of the spot.
11. The method according to claim 1 wherein the laser beam pulse has a wavelength in a range of 200 nanometers to 2 microns.
12. The method according to claim 1 wherein the pulse width is in a range of a few picoseconds to femtoseconds.
13. The method according to claim 1 wherein the breakdown includes changes caused by one or more of ionization, free electron multiplication, dielectric breakdown, plasma formation, and vaporization.
14. The method according to claim 1 wherein the breakdown includes plasma formation.
15. The method according to claim 1 wherein the breakdown includes disintegration.
16. The method according to claim 1 wherein the breakdown includes ablation.
17. The method according to claim 1 wherein the breakdown includes vaporization.
18. The method according to claim 1 wherein the spot size is varied by flexible diaphragm to a range of 1 to 100 microns.
19. The method according to claim 1 wherein a mask is placed in the path of the beam to block a portion of the beam to cause the beam to assume a desired geometric configuration.
20. The method according to claim 1 wherein the laser operating mode is non-TEMoo.
21. The method according to claim 1 wherein the laser beam pulse defines a spot and has a lateral gaussian profile characterized in that fluence at or near the center of the beam pulse spot it is greater than the threshold fluence whereby the laser induced breakdown is ablation of an area within the spot.
22. The method according to claim 22 21wherein the spot size is a diffraction limited spot size providing an ablation cavity having a diameter less than the fundamental wavelength size.
23. The method according to claim 1 wherein the characteristic pulse width is obtained by determining the ablation (LIB) threshold of the material as a function of pulse width and determining where the ablation (LIB) threshold function is no longer proportional to the square root of pulse width.
24. A method for laser induced breakdown of a material which comprises:
a. generating a beam of one or more laser pulses in which each pulse has a pulse width equal to or less than a pulse width value corresponding to a change in slope of a curve of fluence breakdown threshold (Fth) as a function of laser pulse width (T), said change occurring at a point between first and second portions of said curve, said first portion spanning a range of relatively long pulse width where Fth varies with the square root of pulse width (T1/2) and said second portion spanning a range of short pulse width relative to said first portion with a Fth versus T slope which differs from that of said first portion; and
b. focusing directing said one or more pulses of said beam to a point at or beneath the surface of the material.
25. The method according to claim 24 and further including:
a. identifying a pulse width start point;
b. focusing directing the laser beam initial start point at or beneath the surface of the material; and
c. scanning said beam along a predetermined path in a transverse direction.
26. The method according to claim 24 and further including:
a. identifying a pulse width start point;
b. focusing directing the laser beam initial start point at or beneath the surface of the material; and
c. scanning said beam along a predetermined path in a longitudinal direction in the material to a depth smaller than the Rayleigh range.
27. The method according to claim 24 wherein the breakdown includes changes caused by one or more of ionization, free electron multiplication, dielectric breakdown, plasma formation, and vaporization.
28. The method according to claim 24 wherein the breakdown includes plasma formation.
29. The method according to claim 24 wherein the breakdown includes disintegration.
30. The method according to claim 24 wherein the breakdown includes ablation.
31. The method according to claim 24 wherein the breakdown includes vaporization.
32. The method according to any one of claims 1, 2, 5 or 24 wherein said beam is obtained by chirped-pulse amplification (CPA) means comprising means for generating a short optical pulse having a predetermined duration; means for stretching such optical pulse in time; means for amplifying such time-stretched optical pulse including solid state amplifying media; and means for recompressing such amplified pulse to its original duration.
33. A method for laser induced breakdown (LIB) of a non-organic material with a pulsed laser beam, the material being characterized by a relationship of fluence breakdown threshold at which breakdown occurs versus laser pulse width that exhibits a rapid and distinct change in slope at a predetermined laser pulse width where the onset of plasma induced breakdown occurs, said method comprising the steps of:
a. generating a beam of at least one or more laser pulses in which each pulse has a pulse width equal to or less than said predetermined laser pulse width; and
b. focusing said beam directing said pulse to a point at or beneath the surface of the material so that the laser beam defines a spot and has a lateral gaussian profile characterized in that fluence at or near the center of the beam spot is greater than the threshold fluence whereby the laser induced breakdown is ablation of an area within the spot.
34. The method according to claim 33 wherein the spot size is a diffraction limited spot size providing an ablation cavity having a diameter less than the fundamental wavelength size.
35. A method for laser induced breakdown (LIB) of a non-biologic material with a pulsed laser beam, the material being characterized by a relationship of fluence breakdown threshold at which breakdown occurs versus laser pulse width that exhibits a rapid and distinct change in slope at a predetermined laser pulse width where the onset of plasma induced breakdown occurs, said method comprising the steps of:
a. generating a beam of at least one or more laser pulses in which each pulse has a pulse width equal to or less than said predetermined laser pulse width; and
b. focusing said beam directing said pulse to a point at or beneath the surface of the material which is biological tissue , the pulse width is 10 to 10,000 femtoseconds and the beam has an energy of 10 nanojoules to 1 millijoule.
36. A method for laser induced breakdown (LIB) of a material by plasma formation with a pulsed laser beam, the material being characterized by a relationship of fluence breakdown threshold at which breakdown occurs versus laser pulse width that exhibits a distinct change in slope at a characteristic laser pulse width, said method comprising the steps of:
a. generating a beam of at least one or more laser pulses in which each pulse has a pulse width equal to or less than said characteristic laser pulse width, said characteristic pulse width being defined by the ablation (LIB) threshold of the material as a function of pulse width where the ablation (LIB) threshold function is no longer proportional to the square root of pulse width; and
b. focusing said beam directing said pulse to a point at or beneath the surface of the material and inducing breakdown by plasma formation in the material.
37. A method for laser induced breakdown of a material which comprises:
a. determining, for a selected material, characteristic curve of fluence breakdown threshold (Fth) as a function of the square root of laser pulse width;
b. identifying a pulse width value on said curve corresponding to a rapid and distinct change in slope of said Fth versus pulse width curve the relationship between the fluence breakdown and the square root of pulse width characteristic of said material;
c. generating a beam of one or more laser pulses, said pulses having a pulse width at or below said pulse width value corresponding to said distinct change in slope; and
d. focusing directing said one or more pulses of said beam to a point at or beneath the surface of the material.
38. The method according to claim 37 and further including:
a. identifying a pulse width start point;
b. focusing directing the laser beam initial start point at or beneath the surface of the material; and
c. scanning said beam along a predetermined path in a transverse direction.
39. The method according to claim 37 and further including:
a. identifying a pulse width start point;
b. focusing directing the laser beam initial start point at or beneath the surface of the material; and
c. scanning said beam along a predetermined path in a longitudinal direction in the material to a depth smaller than the Rayleigh range.
40. The method according to claim 37 wherein the breakdown includes changes caused by one or more of ionization, free electron multiplication, dielectric breakdown, plasma formation, and vaporization.
41. The method according to claim 37 wherein the breakdown includes plasma formation.
42. The method according to claim 37 wherein the breakdown includes disintegration.
43. The method according to claim 37 wherein the breakdown includes ablation.
44. The method according to claim 37 wherein breakdown includes vaporization.
45. The method according to any one of claims 35, or 37 wherein said beam is obtained by chirped-pulse amplification (CPA) means comprising means for generating a short optical pulse having a predetermined duration; means for stretching such optical pulse in time; means for amplifying such time-stretched optical pulse including solid state amplifying media; and means for recompressing such amplified pulse to its original duration.
46. A method for laser induced breakdown (LIB) of a metallic material with a pulsed laser beam, the material being characterized by a relationship of fluence threshold at which breakdown occurs versus laser pulse width that exhibits a distinct change in slope at a characteristic laser pulse width, said method comprising the steps of:
generating at least one laser pulse which has a pulse width equal to or less than said characteristic laser pulse width, said pulse having a width between 10 and 10,000 femtoseconds, and the pulse has an energy of 1 nanojoule to 1 microjoule; and
directing the pulse to a point at or beneath the surface of the material.
47. A method as in claim 46 wherein said beam is obtained by chirped pulse amplification (CPA) means comprising means for generating a short optical pulse having a predetermined duration;
means for stretching such optical pulse in time;
means for amplifying such stretched optical pulse including solid state amplifying media; and
means for recompressing such amplified pulse to its original duration.
48. A method for laser induced breakdown (LIB) of a metallic material transparent to radiation with a pulsed laser beam, the material being characterized by a relationship of fluence threshold at which breakdown occurs versus laser pulse width that exhibits a distinct change in slope at a characteristic laser pulse width, said method comprising the steps of:
generating at least one laser pulse which has a pulse width equal to or less than said characteristic laser pulse width, where the laser pulse width is 10 to 10,000 femtoseconds and the laser pulse has an energy of 10 nanojoules to 1 millijoule; and
directing the pulse to a point at or beneath the surface of the material.
49. A method as in claim 48 wherein said beam is obtained by chirped pulse amplification (CPA) means comprising means for generating a short optical pulse having a predetermined duration;
means for stretching such optical pulse in time;
means for amplifying such stretched optical pulse including solid state amplifying media; and
means for recompressing such amplified pulse to its original duration.
50. A method for laser induced breakdown (LIB) of a metallic material with a pulsed laser beam, the material being characterized by a relationship of fluence threshold at which breakdown occurs versus the square root of laser pulse width that exhibits a distinct change in slope at a characteristic laser pulse width;
determining the ablation (LIB) threshold of the material as a function of pulse width and determining where the ablation (LIB) threshold function is no longer proportional to the square root of pulse width;
generating at least one laser pulse which has a pulse width equal to or less than the characteristic pulse width; and
directing the pulse to a point at or beneath the surface of the material.
51. A method of optimally selecting a pulse width and fluence for a pulsed laser beam such that the pulsed laser induces laser induced breakdown (LIB) of a material, the material being characterized by a relationship of fluence threshold at which breakdown occurs versus the square root of laser pulse width comprising the step of identifying where the relationship between fluence threshold and the square root of pulse width exhibits a distinct change in slope and selecting the pulse width and fluence level associated with the distinct change in slope and directing the pulse at a point at or beneath the surface of the material.
52. The method as in claim 51 wherein the material is non-organic.
53. A method as in claim 51 wherein the material is organic.
54. A method for laser induced breakdown of a material with a pulsed laser beam, the material being characterized by a relationship of fluence threshold at which breakdown occurs versus the square root of laser pulse width that exhibits a distinct change in slope at a characteristic pulse width, said method comprising the steps of:
selecting a pulse width and fluence which is equal to or less than the distinct change in slope;
generating at least one laser pulse which has a pulse width equal to or less than the characteristic laser pulse width and fluence; and
directing said pulse to a point at or beneath the surface of a material.
US09366685 1994-04-08 1999-08-04 Method for controlling configuration of laser induced breakdown and ablation Expired - Lifetime USRE37585E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08224961 US5656186A (en) 1994-04-08 1994-04-08 Method for controlling configuration of laser induced breakdown and ablation
US09366685 USRE37585E1 (en) 1994-04-08 1999-08-04 Method for controlling configuration of laser induced breakdown and ablation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09366685 USRE37585E1 (en) 1994-04-08 1999-08-04 Method for controlling configuration of laser induced breakdown and ablation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08224961 Reissue US5656186A (en) 1994-04-08 1994-04-08 Method for controlling configuration of laser induced breakdown and ablation

Publications (1)

Publication Number Publication Date
USRE37585E1 true USRE37585E1 (en) 2002-03-19

Family

ID=22842948

Family Applications (2)

Application Number Title Priority Date Filing Date
US08224961 Expired - Lifetime US5656186A (en) 1994-04-08 1994-04-08 Method for controlling configuration of laser induced breakdown and ablation
US09366685 Expired - Lifetime USRE37585E1 (en) 1994-04-08 1999-08-04 Method for controlling configuration of laser induced breakdown and ablation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08224961 Expired - Lifetime US5656186A (en) 1994-04-08 1994-04-08 Method for controlling configuration of laser induced breakdown and ablation

Country Status (6)

Country Link
US (2) US5656186A (en)
JP (2) JP3283265B2 (en)
CA (1) CA2186451C (en)
DE (2) DE69500997T2 (en)
EP (1) EP0754103B1 (en)
WO (1) WO1995027587A1 (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090036A1 (en) * 2001-05-10 2002-11-14 Vanderbilt University Method and apparatus for laser ablative modification of dielectric surfaces
US20020167581A1 (en) * 2001-03-29 2002-11-14 Cordingley James J. Methods and systems for thermal-based laser processing a multi-material device
US6489589B1 (en) * 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
US20030062126A1 (en) * 2001-10-03 2003-04-03 Scaggs Michael J. Method and apparatus for assisting laser material processing
US20030151053A1 (en) * 2000-01-10 2003-08-14 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20030222324A1 (en) * 2000-01-10 2003-12-04 Yunlong Sun Laser systems for passivation or link processing with a set of laser pulses
EP1430987A1 (en) * 2002-12-20 2004-06-23 Caterpillar Inc. Laser-induced plasma micromachining
US20040134894A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based system for memory link processing with picosecond lasers
US20040134896A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based method and system for memory link processing with picosecond lasers
US20040188399A1 (en) * 1999-12-28 2004-09-30 Gsi Lumonics Inc. Energy-efficient, laser-based method and system for processing target material
US20040226925A1 (en) * 2003-03-07 2004-11-18 Bo Gu Laser system and method for material processing with ultra fast lasers
US20050064137A1 (en) * 2003-01-29 2005-03-24 Hunt Alan J. Method for forming nanoscale features and structures produced thereby
US20050065502A1 (en) * 2003-08-11 2005-03-24 Richard Stoltz Enabling or blocking the emission of an ablation beam based on color of target
US20050074974A1 (en) * 2003-10-02 2005-04-07 Richard Stoltz Semiconductor manufacturing using optical ablation
US20050171516A1 (en) * 2003-05-20 2005-08-04 Richard Stoltz Man-portable optical ablation system
US20050195726A1 (en) * 2004-02-09 2005-09-08 Jeff Bullington Semiconductor-type processing for solid-state lasers
US20050199599A1 (en) * 2004-03-09 2005-09-15 Xinghua Li Method of fabrication of hermetically sealed glass package
US20050215985A1 (en) * 2003-08-11 2005-09-29 Michael Mielke Method of generating an ultra-short pulse using a high-frequency ring oscillator
US20050226287A1 (en) * 2004-03-31 2005-10-13 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US20050236380A1 (en) * 2003-10-16 2005-10-27 Olympus Corporation Ultrashort pulse laser processing method
WO2005123324A1 (en) 2004-06-08 2005-12-29 Tag Heuer Sa Method of producing a micro- or nano-mechanical part, comprising a femto-laser-assisted ablation step
US6995336B2 (en) 2003-01-29 2006-02-07 The Regents Of The University Of Michigan Method for forming nanoscale features
US20060054604A1 (en) * 2004-09-10 2006-03-16 Saunders Richard J Laser process to produce drug delivery channel in metal stents
US20060064079A1 (en) * 2003-08-11 2006-03-23 Richard Stoltz Ablative material removal with a preset removal rate or volume or depth
US20060091125A1 (en) * 2004-11-03 2006-05-04 Intel Corporation Laser micromachining method
US20060126679A1 (en) * 2004-12-13 2006-06-15 Brennan James F Iii Bragg fibers in systems for the generation of high peak power light
US20060141681A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060195076A1 (en) * 2005-01-10 2006-08-31 Blumenkranz Mark S Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US20060191884A1 (en) * 2005-01-21 2006-08-31 Johnson Shepard D High-speed, precise, laser-based material processing method and system
US20060249816A1 (en) * 2005-05-05 2006-11-09 Intel Corporation Dual pulsed beam laser micromachining method
US20070064304A1 (en) * 2005-09-22 2007-03-22 Brennan James Francis Iii Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system
WO2006069448A3 (en) * 2004-12-30 2007-03-22 R J Dwayne Miller Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation
US20070110354A1 (en) * 2005-11-16 2007-05-17 Raydiance, Inc. Method and apparatus for optical isolation in high power fiber-optic systems
US20070199927A1 (en) * 1999-12-28 2007-08-30 Bo Gu Laser-based method and system for removing one or more target link structures
US20070253455A1 (en) * 2006-04-26 2007-11-01 Stadler Andrew D Intelligent Laser Interlock System
US20080058777A1 (en) * 2006-09-05 2008-03-06 Intralase Corp. System and method for resecting corneal tissue using non-continuous initial incisions
US20080058841A1 (en) * 2006-09-05 2008-03-06 Kurtz Ronald M System and method for marking corneal tissue in a transplant procedure
WO2008030698A2 (en) 2006-09-05 2008-03-13 Amo Development, Llc System and method for resecting corneal tissue
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077239A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US7391557B1 (en) * 2003-03-28 2008-06-24 Applied Photonics Worldwide, Inc. Mobile terawatt femtosecond laser system (MTFLS) for long range spectral sensing and identification of bioaerosols and chemical agents in the atmosphere
US20080187684A1 (en) * 2007-02-07 2008-08-07 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
US20080281413A1 (en) * 2007-03-13 2008-11-13 William Culbertson Method and apparatus for creating incisions to improve intraocular lens placement
US20080319428A1 (en) * 2006-11-10 2008-12-25 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
US7474919B2 (en) 2002-08-29 2009-01-06 The Regents Of The University Of Michigan Laser-based method and system for enhancing optical breakdown
US20090045179A1 (en) * 2007-08-15 2009-02-19 Ellen Marie Kosik Williams Method and system for cutting solid materials using short pulsed laser
US20090118716A1 (en) * 2007-11-07 2009-05-07 Intralase, Inc. System and method for scanning a pulsed laser beam
US20090126870A1 (en) * 2007-11-19 2009-05-21 Advanced Medical Optics, Inc. Method of making sub-surface photoalterations in a material
US20090137991A1 (en) * 2007-09-18 2009-05-28 Kurtz Ronald M Methods and Apparatus for Laser Treatment of the Crystalline Lens
US20090137988A1 (en) * 2007-11-02 2009-05-28 Lensx Lasers, Inc Methods And Apparatus For Improved Post-Operative Ocular Optical Performance
US20090137993A1 (en) * 2007-09-18 2009-05-28 Kurtz Ronald M Methods and Apparatus for Integrated Cataract Surgery
US20090143772A1 (en) * 2007-09-05 2009-06-04 Kurtz Ronald M Laser-Induced Protection Shield in Laser Surgery
US20090149840A1 (en) * 2007-09-06 2009-06-11 Kurtz Ronald M Photodisruptive Treatment of Crystalline Lens
US20090149841A1 (en) * 2007-09-10 2009-06-11 Kurtz Ronald M Effective Laser Photodisruptive Surgery in a Gravity Field
US20090171327A1 (en) * 2007-09-06 2009-07-02 Lensx Lasers, Inc. Photodisruptive Laser Treatment of the Crystalline Lens
US20090177189A1 (en) * 2008-01-09 2009-07-09 Ferenc Raksi Photodisruptive laser fragmentation of tissue
US20090213879A1 (en) * 2006-01-23 2009-08-27 Stadler Andrew D Automated Laser Tuning
US7584756B2 (en) 2004-08-17 2009-09-08 Amo Development, Llc Apparatus and method for correction of aberrations in laser system optics
US20090247997A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc Ophthalmic laser apparatus, system, and method with high resolution imaging
US20090247998A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc System and method of iris-pupil contrast enhancement
US20090247999A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc Corneal implant system, interface, and method
US20090281530A1 (en) * 2005-06-13 2009-11-12 Technolas Perfect Vision Gmbh Messerschmittstrasse 1+3 Method for treating an organic material
US20090289382A1 (en) * 2008-05-22 2009-11-26 Raydiance, Inc. System and method for modifying characteristics of a contact lens utilizing an ultra-short pulsed laser
US20090323740A1 (en) * 2006-01-23 2009-12-31 Stadler Andrew D Systems And Methods For Control Of Ultra Short Pulse Amplification
US20090326650A1 (en) * 2008-06-27 2009-12-31 Amo Development, Llc Intracorneal inlay, system, and method
US20100038825A1 (en) * 2006-12-21 2010-02-18 Mcdonald Joel P Methods of forming microchannels by ultrafast pulsed laser direct-write processing
US20100040095A1 (en) * 2008-08-18 2010-02-18 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
WO2010022985A1 (en) * 2008-08-29 2010-03-04 Starmedtec Gmbh Multifunctional laser device
WO2010036859A1 (en) 2008-09-26 2010-04-01 Amo Development Llc Laser modification of intraocular lens
US20100130966A1 (en) * 2008-11-21 2010-05-27 Advanced Medical Optics, Inc. Apparatus, System and Method for Precision Depth Measurement
US20100127190A1 (en) * 2008-11-26 2010-05-27 Fei Company Charged particle beam masking for laser ablation micromachining
US20100135341A1 (en) * 2007-05-04 2010-06-03 Ekspla Ltd. Multiple Output Repetitively Pulsed Laser
US20100133246A1 (en) * 2008-12-01 2010-06-03 Amo Development, Llc System and method for multibeam scanning
US20100163540A1 (en) * 2007-06-14 2010-07-01 Universitat Zu Lubeck Method for Laser Machining Transparent Materials
US7767272B2 (en) 2007-05-25 2010-08-03 Imra America, Inc. Method of producing compound nanorods and thin films
US20100193482A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. laser cutting system
US20100193484A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. Multiple beam laser system for forming stents
US20100193483A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. Laser cutting process for forming stents
WO2010091419A1 (en) 2009-02-09 2010-08-12 Amo Development Llc. System and method for intrastromal refractive correction
EP2236109A1 (en) * 2009-04-02 2010-10-06 SIE AG, Surgical Instrument Engineering System for defining cuts in eye tissue
US20100256965A1 (en) * 2009-04-02 2010-10-07 Christian Rathjen System for defining cuts in eye tissue
US20110031655A1 (en) * 2009-08-10 2011-02-10 Fei Company Gas-assisted laser ablation
US20110118836A1 (en) * 2009-11-18 2011-05-19 Abbott Medical Optics Inc. Mark for intraocular lenses
WO2011032551A3 (en) * 2009-09-18 2011-05-26 Lumera Laser Gmbh Laser beam aligning unit and laser treatment device for treating a material
FR2954720A1 (en) * 2009-12-24 2011-07-01 Commissariat Energie Atomique Laser welding with total penetration of first part with a second part having high thickness, using a focused laser beam, where a sealed vapor gap and a lath are provided at the ends of the first and the second parts
US8150271B1 (en) 2006-03-28 2012-04-03 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
US20120103945A1 (en) * 2008-07-09 2012-05-03 Fei Company Method And Apparatus For Laser Machining
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US8292877B2 (en) 2007-11-07 2012-10-23 Amo Development, Llc. System and method for incising material
WO2012178054A1 (en) 2011-06-23 2012-12-27 Amo Development, Llc Ophthalmic range finding
US8498538B2 (en) 2008-11-14 2013-07-30 Raydiance, Inc. Compact monolithic dispersion compensator
WO2013126653A1 (en) 2012-02-22 2013-08-29 Amo Development, Llc Preformed lens systems and methods
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
US8556511B2 (en) 2010-09-08 2013-10-15 Abbott Cardiovascular Systems, Inc. Fluid bearing to support stent tubing during laser cutting
US8619357B2 (en) 2007-11-30 2013-12-31 Raydiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
US20140030671A1 (en) * 2011-06-01 2014-01-30 Hamamatsu Photonics K.K. Dental therapy apparatus
US8842358B2 (en) 2012-08-01 2014-09-23 Gentex Corporation Apparatus, method, and process with laser induced channel edge
US8884184B2 (en) 2010-08-12 2014-11-11 Raydiance, Inc. Polymer tubing laser micromachining
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US9101446B2 (en) 2008-01-02 2015-08-11 Intralase Corp. System and method for scanning a pulsed laser beam
US9108270B2 (en) 2008-01-02 2015-08-18 Amo Development, Llc System and method for scanning a pulsed laser beam
US9114482B2 (en) 2010-09-16 2015-08-25 Raydiance, Inc. Laser based processing of layered materials
US9295518B2 (en) 2009-07-23 2016-03-29 Koninklijke Philips N.V. Optical blade and hair cutting device
US9359252B1 (en) 2015-07-24 2016-06-07 Corning Incorporated Methods for controlled laser-induced growth of glass bumps on glass articles
US9521949B2 (en) 2011-06-23 2016-12-20 Amo Development, Llc Ophthalmic range finding
US9537042B2 (en) 2013-02-21 2017-01-03 Nlight, Inc. Non-ablative laser patterning
EP3138543A1 (en) 2007-11-07 2017-03-08 Abbott Medical Optics Inc. System and method of interfacing a surgical laser with an eye
US9815141B2 (en) 2011-12-07 2017-11-14 General Atomics Methods and systems for use in laser machining
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking

Families Citing this family (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29505985U1 (en) * 1995-04-06 1995-07-20 Bestenlehrer Alexander Device for machining, in particular for polishing and structuring of any 3D shaped surfaces by means of a laser beam
US6150630A (en) * 1996-01-11 2000-11-21 The Regents Of The University Of California Laser machining of explosives
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
US5761111A (en) * 1996-03-15 1998-06-02 President And Fellows Of Harvard College Method and apparatus providing 2-D/3-D optical information storage and retrieval in transparent materials
US7655002B2 (en) 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
DE69705827D1 (en) * 1996-03-25 2001-08-30 Nippon Sheet Glass Co Ltd Laser manufacturing method for glass substrates, and thus produced diffraction grating
US6022309A (en) * 1996-04-24 2000-02-08 The Regents Of The University Of California Opto-acoustic thrombolysis
US20060095097A1 (en) * 1996-10-30 2006-05-04 Provectus Devicetech, Inc. Treatment of pigmented tissue using optical energy
US7353829B1 (en) 1996-10-30 2008-04-08 Provectus Devicetech, Inc. Methods and apparatus for multi-photon photo-activation of therapeutic agents
US7036516B1 (en) * 1996-10-30 2006-05-02 Xantech Pharmaceuticals, Inc. Treatment of pigmented tissues using optical energy
US6165649A (en) * 1997-01-21 2000-12-26 International Business Machines Corporation Methods for repair of photomasks
US6392683B1 (en) * 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
DE19745294A1 (en) * 1997-10-14 1999-04-15 Biotronik Mess & Therapieg A process for producing finely structured of medical implants
US6268586B1 (en) * 1998-04-30 2001-07-31 The Regents Of The University Of California Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining
FR2781707B1 (en) * 1998-07-30 2000-09-08 Snecma Method for machining by excimer laser holes or forms a variable profile
JP3012926B1 (en) * 1998-09-21 2000-02-28 工業技術院長 Laser micromachining method of transparent material
GB0113167D0 (en) * 1998-12-03 2001-07-25 Universal Crystal Ltd Material processing applications of lasers using optical breakdown
US6333485B1 (en) 1998-12-11 2001-12-25 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed beam
US7649153B2 (en) * 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
US6555781B2 (en) 1999-05-10 2003-04-29 Nanyang Technological University Ultrashort pulsed laser micromachining/submicromachining using an acoustooptic scanning device with dispersion compensation
US6285002B1 (en) 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse
DE10029110B4 (en) * 1999-06-15 2006-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. the same method for material processing and use
US6760973B1 (en) * 1999-06-30 2004-07-13 Canon Kabushiki Kaisha Laser working method and method for producing ink jet recording head
US6693656B1 (en) 1999-06-30 2004-02-17 Canon Kabushiki Kaisha Laser processing method, method for manufacturing ink jet recording head using such method of manufacture, and ink jet recording head manufactured by such method of manufacture
JP2001071168A (en) * 1999-06-30 2001-03-21 Canon Inc Laser beam processing method, production of ink jet recording head using this laser beam processing method and ink jet recording head produced by this production
US6573026B1 (en) 1999-07-29 2003-06-03 Corning Incorporated Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses
US6977137B2 (en) 1999-07-29 2005-12-20 Corning Incorporated Direct writing of optical devices in silica-based glass using femtosecond pulse lasers
WO2001015819A1 (en) * 1999-08-30 2001-03-08 Board Of Regents University Of Nebraska-Lincoln Three-dimensional electrical interconnects
JP2001100145A (en) 1999-09-29 2001-04-13 Sunx Ltd Laser marker
US6796148B1 (en) 1999-09-30 2004-09-28 Corning Incorporated Deep UV laser internally induced densification in silica glasses
JP4774146B2 (en) 1999-12-23 2011-09-14 パナソニック株式会社 Method and apparatus for drilling a smaller pitch than the wavelength by using a laser
US6340806B1 (en) 1999-12-28 2002-01-22 General Scanning Inc. Energy-efficient method and system for processing target material using an amplified, wavelength-shifted pulse train
KR100850262B1 (en) 2000-01-10 2008-08-04 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Laser system and method for processing a memory link with a burst of laser pulses having ultrashort pulse widths
KR100830128B1 (en) 2000-01-10 2008-05-20 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Laser system and method for processing a memory link with a burst of laser pulses having ultrashort pulse widths
US6887804B2 (en) 2000-01-10 2005-05-03 Electro Scientific Industries, Inc. Passivation processing over a memory link
US6552301B2 (en) * 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
CA2397315C (en) * 2000-01-27 2009-07-07 National Research Council Of Canada Method and apparatus for repair of defects in materials with short laser pulses
US6341009B1 (en) 2000-02-24 2002-01-22 Quantronix Corporation Laser delivery system and method for photolithographic mask repair
US6582857B1 (en) * 2000-03-16 2003-06-24 International Business Machines Corporation Repair of masks to promote adhesion of patches
US6433303B1 (en) * 2000-03-31 2002-08-13 Matsushita Electric Industrial Co., Ltd. Method and apparatus using laser pulses to make an array of microcavity holes
US6841788B1 (en) 2000-08-03 2005-01-11 Ascend Instruments, Inc. Transmission electron microscope sample preparation
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Method for producing a laser processing method and a semiconductor chip
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US20040102764A1 (en) * 2000-11-13 2004-05-27 Peter Balling Laser ablation
JP4512786B2 (en) * 2000-11-17 2010-07-28 独立行政法人産業技術総合研究所 Processing method of the glass substrate
US20040089642A1 (en) * 2002-01-15 2004-05-13 Christensen C. Paul Method and system for laser marking a gemstone
DE10106809A1 (en) * 2001-02-14 2002-09-19 Siemens Ag A process for producing a hole in a body, in particular an injection hole in a fuel injector
US20040102765A1 (en) * 2001-03-27 2004-05-27 Karsten Koenig Method for the minimal-to non-invase optical treatment of tissues of the eye and for diagnosis thereof and device for carrying out said method
US6951995B2 (en) * 2002-03-27 2005-10-04 Gsi Lumonics Corp. Method and system for high-speed, precise micromachining an array of devices
DE10125206B4 (en) * 2001-05-14 2005-03-10 Forschungsverbund Berlin Ev Process for the direct microstructuring of materials
GB0116113D0 (en) * 2001-06-30 2001-08-22 Hewlett Packard Co Tilt correction of electronic images
US6566626B2 (en) 2001-07-03 2003-05-20 Laserglass Ltd. Method and apparatus for generating color images in a transparent medium
US6720526B2 (en) 2001-07-31 2004-04-13 Siemens Automotive Corporation Method and apparatus to form dimensionally consistent orifices and chamfers by laser using spatial filters
US6768850B2 (en) 2001-08-16 2004-07-27 Translume, Inc. Method of index trimming a waveguide and apparatus formed of the same
JP2003305585A (en) 2001-09-11 2003-10-28 Seiko Epson Corp Laser beam machining method and machining device
US6577448B2 (en) 2001-09-25 2003-06-10 Siemens Dematic Electronic Assembly Systems, Inc. Laser system by modulation of power and energy
US20040001523A1 (en) * 2001-11-20 2004-01-01 Kevin Holsinger Optimizing power for second laser
US6853655B2 (en) * 2001-11-20 2005-02-08 Spectra Physics, Inc. System for improved power control
US20050078730A1 (en) * 2001-11-20 2005-04-14 Kevin Holsinger Optimizing power for second laser
US7994450B2 (en) * 2002-01-07 2011-08-09 International Business Machines Corporation Debris minimization and improved spatial resolution in pulsed laser ablation of materials
DE10202036A1 (en) * 2002-01-18 2003-07-31 Zeiss Carl Meditec Ag Femtosecond laser system for precise machining of material and tissue
US6864457B1 (en) 2002-02-25 2005-03-08 The Board Of Regents Of The University Of Nebraska Laser machining of materials
US8247731B2 (en) * 2002-02-25 2012-08-21 Board Of Regents Of The University Of Nebraska Laser scribing and machining of materials
US20050109747A1 (en) * 2002-02-25 2005-05-26 Alexander Dennis R. Laser scribing and machining of materials
EP1498216B1 (en) 2002-03-12 2010-12-29 Hamamatsu Photonics K.K. Method of cutting processed object
EP1610364B1 (en) 2003-03-12 2013-02-13 Hamamatsu Photonics K.K. Laser beam machining method
KR100855136B1 (en) 2002-12-03 2008-08-28 하마마츠 포토닉스 가부시키가이샤 Method for cutting semiconductor substrate
ES2639733T3 (en) 2002-03-12 2017-10-30 Hamamatsu Photonics K.K. Substrate dividing method
US20070215575A1 (en) * 2006-03-15 2007-09-20 Bo Gu Method and system for high-speed, precise, laser-based modification of one or more electrical elements
WO2003082507A3 (en) 2002-03-28 2004-07-15 Gsi Lumonics Corp Method and system for high-speed, precise micromachining an array of devices
FR2837733B1 (en) * 2002-03-28 2005-01-14 Centre Nat Etd Spatiales Method and device for removal of a cover layer covering a surface to expose
US6617543B1 (en) * 2002-04-11 2003-09-09 Shih-Sheng Yang Method of making pattern for decorative piece
US6957004B2 (en) * 2002-05-03 2005-10-18 Oplink Communications, Inc. Passive connectivity of waveguides for optical components
US6950591B2 (en) * 2002-05-16 2005-09-27 Corning Incorporated Laser-written cladding for waveguide formations in glass
US20030215872A1 (en) * 2002-05-20 2003-11-20 Clark-Mxr, Inc. Screening apparatus and method for making
US20030215815A1 (en) * 2002-05-20 2003-11-20 Clark William G. Screening method
US6580054B1 (en) * 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
US6960813B2 (en) * 2002-06-10 2005-11-01 New Wave Research Method and apparatus for cutting devices from substrates
US6664501B1 (en) * 2002-06-13 2003-12-16 Igor Troitski Method for creating laser-induced color images within three-dimensional transparent media
US20040017431A1 (en) * 2002-07-23 2004-01-29 Yosuke Mizuyama Laser processing method and laser processing apparatus using ultra-short pulse laser
US6815638B2 (en) * 2002-07-25 2004-11-09 Matsushita Electric Industrial Co., Ltd. Method of determining a minimum pulse width for a short pulse laser system
US7709766B2 (en) * 2002-08-05 2010-05-04 Research Foundation Of The State University Of New York System and method for manufacturing embedded conformal electronics
DE10250015B3 (en) * 2002-10-25 2004-09-16 Universität Kassel Adaptive, feedback controlled material processing with ultra-short laser pulses
US6822190B2 (en) * 2002-12-12 2004-11-23 3M Innovative Properties Company Optical fiber or waveguide lens
FR2852250B1 (en) 2003-03-11 2009-07-24 Jean Luc Jouvin protective sheath cannula, an injection assembly comprising such a sheath and needle equipped with such a sheath
DE60315515T2 (en) 2003-03-12 2007-12-13 Hamamatsu Photonics K.K., Hamamatsu Laser beam processing method
US6777647B1 (en) 2003-04-16 2004-08-17 Scimed Life Systems, Inc. Combination laser cutter and cleaner
US7086931B2 (en) * 2003-04-18 2006-08-08 Tdk Corporation Magnetic head bar holding unit, lapping device, and method of lapping medium-opposing surface of thin-film magnetic head
US20050000952A1 (en) * 2003-05-19 2005-01-06 Harter Donald J. Focusless micromachining
WO2004105100A3 (en) * 2003-05-20 2005-06-30 Peter Delfyett Trains of ablation pulses from multiple optical amplifiers
US7351241B2 (en) 2003-06-02 2008-04-01 Carl Zeiss Meditec Ag Method and apparatus for precision working of material
US7131968B2 (en) * 2003-06-02 2006-11-07 Carl Zeiss Meditec Ag Apparatus and method for opthalmologic surgical procedures using a femtosecond fiber laser
DE10333770A1 (en) * 2003-07-22 2005-02-17 Carl Zeiss Meditec Ag A method for material processing with laser pulses large spectral bandwidth and device for carrying out the method
US7582082B2 (en) 2003-08-04 2009-09-01 Koninklijke Philips Electronics N.V. Device for shortening hairs by means of laser induced optical breakdown effects
US20050167405A1 (en) * 2003-08-11 2005-08-04 Richard Stoltz Optical ablation using material composition analysis
JP4563097B2 (en) * 2003-09-10 2010-10-13 浜松ホトニクス株式会社 Of the semiconductor substrate cutting method
US7170030B2 (en) 2003-09-12 2007-01-30 International Business Machines Corporation Method and apparatus for repair of reflective photomasks
US7049543B2 (en) * 2003-11-07 2006-05-23 The Regents Of The University Of California Method of defining features on materials with a femtosecond laser
DE10354025A1 (en) * 2003-11-19 2005-06-02 Carl Zeiss Jena Gmbh Adapter for mechanically coupling a laser processing apparatus with an object
US7633033B2 (en) 2004-01-09 2009-12-15 General Lasertronics Corporation Color sensing for laser decoating
JP4644797B2 (en) * 2004-01-28 2011-03-02 国立大学法人京都大学 Laser irradiation method and apparatus, microfabrication methods and devices, and thin film forming method and apparatus
US20050191771A1 (en) * 2004-03-01 2005-09-01 Ming Li Ultrafast laser direct writing method for modifying existing microstructures on a submicron scale
DE102004015142B3 (en) * 2004-03-27 2005-12-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A process for the production of optical components
US7491909B2 (en) * 2004-03-31 2009-02-17 Imra America, Inc. Pulsed laser processing with controlled thermal and physical alterations
US8816244B2 (en) * 2004-04-13 2014-08-26 Boston Scientific Scimed, Inc. Inverted stent cutting process
JP4631044B2 (en) * 2004-05-26 2011-02-23 国立大学法人北海道大学 Laser processing method and apparatus
US7985942B2 (en) * 2004-05-28 2011-07-26 Electro Scientific Industries, Inc. Method of providing consistent quality of target material removal by lasers having different output performance characteristics
US7060933B2 (en) * 2004-06-08 2006-06-13 Igor Troitski Method and laser system for production of laser-induced images inside and on the surface of transparent material
US7879410B2 (en) * 2004-06-09 2011-02-01 Imra America, Inc. Method of fabricating an electrochemical device using ultrafast pulsed laser deposition
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
US20060091124A1 (en) * 2004-11-02 2006-05-04 Igor Troitski Method for transformation of color images into point arrangement for production of laser-induced color images inside transparent materials
KR20060040277A (en) 2004-11-05 2006-05-10 엘지.필립스 엘시디 주식회사 Method for cutting of substrate using femtosecond laser
US20060151704A1 (en) * 2004-12-30 2006-07-13 Cordingley James J Laser-based material processing methods, system and subsystem for use therein for precision energy control
US7528342B2 (en) * 2005-02-03 2009-05-05 Laserfacturing, Inc. Method and apparatus for via drilling and selective material removal using an ultrafast pulse laser
US20060175312A1 (en) * 2005-02-10 2006-08-10 Igor Troitski Method and system for production of dynamic laser-induced images inside gaseous medium
US7284396B2 (en) * 2005-03-01 2007-10-23 International Gemstone Registry Inc. Method and system for laser marking in the volume of gemstones such as diamonds
JP2006239730A (en) * 2005-03-02 2006-09-14 Kyoto Univ Machining method using laser ablation, and material machined by the machining method
DE102005014433B3 (en) * 2005-03-24 2006-10-05 Xtreme Technologies Gmbh Method and arrangement for efficient generation of short-wave radiation based on a laser-produced plasma
US20060255020A1 (en) * 2005-05-16 2006-11-16 Igor Troitski Method for production of laser-induced images inside liquids
US7386019B2 (en) 2005-05-23 2008-06-10 Time-Bandwidth Products Ag Light pulse generating apparatus and method
US20060285071A1 (en) * 2005-06-21 2006-12-21 Bausch & Lomb Incorporated Femtosecond laser micromachining of a contact lens and a contact lens manufactured thereby
DE102005032041A1 (en) * 2005-07-08 2007-01-18 Carl Zeiss Jena Gmbh Device and method for changing an optical and / or mechanical property of an implanted in an eye lens
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
DE102005039833A1 (en) * 2005-08-22 2007-03-01 Rowiak Gmbh Apparatus and method for separation of material with laser pulses
US20070045255A1 (en) * 2005-08-23 2007-03-01 Klaus Kleine Laser induced plasma machining with an optimized process gas
US20070045252A1 (en) * 2005-08-23 2007-03-01 Klaus Kleine Laser induced plasma machining with a process gas
US7626138B2 (en) * 2005-09-08 2009-12-01 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
DE102005049281A1 (en) * 2005-10-14 2007-04-19 Carl Zeiss Meditec Ag Apparatus and method for material processing by means of laser radiation
US8553735B2 (en) * 2005-10-14 2013-10-08 Carl Zeiss Meditec Ag Device and method for material processing by means of laser radiation
US20080065052A1 (en) * 2005-10-14 2008-03-13 Carl Zeiss Meditec Ag Device and method for material processing by means of laser radiation
US9072589B2 (en) 2005-11-17 2015-07-07 Wavelight Gmbh Assembly and method for performing surgical laser treatments of the eye
ES2374819T3 (en) * 2005-11-17 2012-02-22 Wavelight Gmbh Willingness to perform surgical eye laser treatments.
US7436866B2 (en) 2005-11-30 2008-10-14 Raydiance, Inc. Combination optical isolator and pulse compressor
JP4804911B2 (en) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 The laser processing apparatus
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US20070173794A1 (en) 2006-01-20 2007-07-26 Frey Rudolph W System and method for treating the structure of the human lens with a laser
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
WO2007145702A3 (en) * 2006-04-10 2008-05-22 Univ Michigan State Laser material processing systems and methods with, in particular, use of a hollow waveguide for broadening the bandwidth of the pulse above 20 nm
US7608308B2 (en) * 2006-04-17 2009-10-27 Imra America, Inc. P-type semiconductor zinc oxide films process for preparation thereof, and pulsed laser deposition method using transparent substrates
US7605343B2 (en) 2006-05-24 2009-10-20 Electro Scientific Industries, Inc. Micromachining with short-pulsed, solid-state UV laser
US8624157B2 (en) 2006-05-25 2014-01-07 Electro Scientific Industries, Inc. Ultrashort laser pulse wafer scribing
US20070272666A1 (en) 2006-05-25 2007-11-29 O'brien James N Infrared laser wafer scribing using short pulses
US20130325105A1 (en) 2006-05-26 2013-12-05 Abbott Cardiovascular Systems Inc. Stents With Radiopaque Markers
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
WO2007149460A3 (en) * 2006-06-20 2008-04-03 William W Chism Method of direct coulomb explosion in laser ablation of semiconductor structures
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
FR2903032B1 (en) * 2006-06-29 2008-10-17 Ecole Polytechnique Etablissem "Method and device for machining of a target by femtosecond laser beam."
US20080006524A1 (en) * 2006-07-05 2008-01-10 Imra America, Inc. Method for producing and depositing nanoparticles
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
WO2008055706A1 (en) 2006-11-10 2008-05-15 Carl Zeiss Meditec Ag Planning device for preparing control data for a treatment device for operatively correcting defective vision, treatment device for operatively correcting defective vision and method for preparing control date therefor
EP2088977B9 (en) 2006-11-10 2016-11-23 Carl Zeiss Meditec AG Device for corrective ophthalmologic surgery and method for generating control data for corrective ophthalmologic surgery
US8202268B1 (en) 2007-03-18 2012-06-19 Lockheed Martin Corporation Method and multiple-mode device for high-power short-pulse laser ablation and CW cauterization of bodily tissues
ES2338051T3 (en) * 2007-03-19 2010-05-03 Wavelight Ag pspservador laser system for refractive eye surgery.
WO2008118365A1 (en) 2007-03-22 2008-10-02 General Lasertronics Corporation Methods for stripping and modifying surfaces with laser-induced ablation
US7885311B2 (en) * 2007-03-27 2011-02-08 Imra America, Inc. Beam stabilized fiber laser
DE102007019814A1 (en) 2007-04-26 2008-10-30 Carl Zeiss Meditec Ag Post-treatment in ophthalmic surgical refraction correction
DE102007019815A1 (en) 2007-04-26 2008-10-30 Carl Zeiss Meditec Ag Corneal transplantation
US8623038B2 (en) * 2007-04-26 2014-01-07 Carl Zeiss Meditec Ag Re-treatment for ophthalmic correction of refraction
US8116341B2 (en) * 2007-05-31 2012-02-14 Electro Scientific Industries, Inc. Multiple laser wavelength and pulse width process drilling
US8710402B2 (en) * 2007-06-01 2014-04-29 Electro Scientific Industries, Inc. Method of and apparatus for laser drilling holes with improved taper
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US20090013527A1 (en) * 2007-07-11 2009-01-15 International Business Machines Corporation Collapsable connection mold repair method utilizing femtosecond laser pulse lengths
EP2826436A3 (en) 2007-09-06 2015-02-25 Alcon LenSx, Inc. Precise targeting of surgical photodisruption
WO2009036098A3 (en) * 2007-09-10 2009-05-07 Lensx Lasers Inc Apparatus, systems and techniques for interfacing with an eye in laser surgery
EP2207595A4 (en) * 2007-10-19 2012-10-24 Lockheed Corp System and method for conditioning animal tissue using laser light
DE102007053283A1 (en) * 2007-11-08 2009-05-14 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective vision of an eye, methods for generating control data for and methods of operating correction of defective vision of an eye
DE102007053281A1 (en) 2007-11-08 2009-05-14 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective vision of an eye, methods for generating control data for and methods of operating correction of defective vision of an eye
WO2009089501A3 (en) * 2008-01-09 2009-10-08 Lensx Lasers, Inc. Ophthalmic surgical systems with automated billing mechanism
DE102008005053A1 (en) 2008-01-18 2009-07-30 Rowiak Gmbh Laser vision correction to the natural eye lens
EP2252426A4 (en) 2008-03-21 2014-08-06 Imra America Inc Laser-based material processing methods and systems
US20090246413A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method for fabricating thin films
US20090246530A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method For Fabricating Thin Films
DE102008017293A1 (en) * 2008-04-04 2009-10-08 Carl Zeiss Meditec Ag A method for generating control data for eye surgery, and ophthalmic surgical treatment apparatus and method
US8199321B2 (en) * 2008-05-05 2012-06-12 Applied Spectra, Inc. Laser ablation apparatus and method
US9028656B2 (en) 2008-05-30 2015-05-12 Colorado State University Research Foundation Liquid-gas interface plasma device
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
EP2308116A2 (en) * 2008-07-24 2011-04-13 Koninklijke Philips Electronics N.V. Device and method for lighting
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
JP5454080B2 (en) 2008-10-23 2014-03-26 住友電気工業株式会社 Laser processing method and laser processing apparatus
WO2010060443A1 (en) * 2008-11-26 2010-06-03 Wavelight Ag System for ophthalmology or dermatology
US8740890B2 (en) * 2008-11-26 2014-06-03 Wavelight Ag Systems and hand pieces for use in ophthalmology or dermatology
DE102009005482A1 (en) 2009-01-21 2010-07-22 Carl Zeiss Meditec Ag Apparatus and method for generating control data for the surgical correction of defective vision of an eye
DE102009009382A1 (en) 2009-02-18 2010-08-19 Carl Zeiss Meditec Ag Control data producing device for controlling treatment device for corrective surgery of defective vision of eye of patient, determines control data such that volumes lying at edge of lamella are ablated or removed according to control data
WO2010098186A1 (en) 2009-02-25 2010-09-02 日亜化学工業株式会社 Semiconductor element manufacturing method
JP2010257730A (en) * 2009-04-24 2010-11-11 Japan Atomic Energy Agency High-pressure discharge lamp and manufacturing method of high-pressure discharge lamp
US9254536B2 (en) * 2009-05-15 2016-02-09 Paul Hoff Method and apparatus for controlled laser ablation of material
US8730570B2 (en) 2009-07-01 2014-05-20 Calmar Optcom, Inc. Optical pulse compressing based on chirped fiber bragg gratings for pulse amplification and fiber lasers
EP2456385B1 (en) 2009-07-24 2015-07-22 Lensar, Inc. System for performing ladar assisted procedures on the lens of an eye
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
CN102647954B (en) 2009-07-24 2016-02-03 能斯雅有限公司 A method of providing a system and method for a laser irradiation pattern of the eye lens
US8262647B2 (en) * 2009-07-29 2012-09-11 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US9504608B2 (en) 2009-07-29 2016-11-29 Alcon Lensx, Inc. Optical system with movable lens for ophthalmic surgical laser
US20110028957A1 (en) * 2009-07-29 2011-02-03 Lensx Lasers, Inc. Optical System for Ophthalmic Surgical Laser
US8267925B2 (en) * 2009-07-29 2012-09-18 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US8435437B2 (en) * 2009-09-04 2013-05-07 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
JP5365799B2 (en) 2009-10-23 2013-12-11 ウシオ電機株式会社 Method for manufacturing a high pressure discharge lamp and a high pressure discharge lamp
US9061369B2 (en) * 2009-11-03 2015-06-23 Applied Spectra, Inc. Method for real-time optical diagnostics in laser ablation and laser processing of layered and structured materials
US9492322B2 (en) 2009-11-16 2016-11-15 Alcon Lensx, Inc. Imaging surgical target tissue by nonlinear scanning
US8506559B2 (en) * 2009-11-16 2013-08-13 Alcon Lensx, Inc. Variable stage optical system for ophthalmic surgical laser
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
EP2531089A4 (en) 2010-02-01 2018-01-03 Lensar Inc Purkinjie image-based alignment of suction ring in ophthalmic applications
US8265364B2 (en) 2010-02-05 2012-09-11 Alcon Lensx, Inc. Gradient search integrated with local imaging in laser surgical systems
US8540173B2 (en) * 2010-02-10 2013-09-24 Imra America, Inc. Production of fine particles of functional ceramic by using pulsed laser
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US9054479B2 (en) * 2010-02-24 2015-06-09 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate
US8953651B2 (en) 2010-02-24 2015-02-10 Alcon Lensx, Inc. High power femtosecond laser with repetition rate adjustable according to scanning speed
US20110206071A1 (en) * 2010-02-24 2011-08-25 Michael Karavitis Compact High Power Femtosecond Laser with Adjustable Repetition Rate
JP5693705B2 (en) 2010-03-30 2015-04-01 イムラ アメリカ インコーポレイテッド Laser-based material processing apparatus and method
EP2554028B1 (en) 2010-03-31 2016-11-23 Colorado State University Research Foundation Liquid-gas interface plasma device
US8834462B2 (en) 2010-06-01 2014-09-16 Covidien Lp System and method for sensing tissue characteristics
US8679394B2 (en) 2010-06-10 2014-03-25 Abbott Cardiovascular Systems Inc. Laser system and processing conditions for manufacturing bioabsorbable stents
US8398236B2 (en) 2010-06-14 2013-03-19 Alcon Lensx, Inc. Image-guided docking for ophthalmic surgical systems
US8845624B2 (en) 2010-06-25 2014-09-30 Alcon LexSx, Inc. Adaptive patient interface
DE102010031348A1 (en) 2010-07-14 2012-01-19 Carl Zeiss Meditec Ag Control data generation for the ophthalmic surgical refractive error treatment
US9532708B2 (en) 2010-09-17 2017-01-03 Alcon Lensx, Inc. Electronically controlled fixation light for ophthalmic imaging systems
US9233025B2 (en) 2010-09-25 2016-01-12 Gregory John Roy Spooner Laser apparatus and method for refractive surgery
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
CN106974614A (en) 2010-10-15 2017-07-25 雷萨公司 System and method of scan controlled illumination of structures within an eye
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
JP5119376B2 (en) * 2010-11-30 2013-01-16 パナソニック株式会社 The photoelectric conversion device and a manufacturing method thereof
US8648277B2 (en) * 2011-03-31 2014-02-11 Electro Scientific Industries, Inc. Laser direct ablation with picosecond laser pulses at high pulse repetition frequencies
US8459794B2 (en) 2011-05-02 2013-06-11 Alcon Lensx, Inc. Image-processor-controlled misalignment-reduction for ophthalmic systems
US9089401B2 (en) 2011-05-06 2015-07-28 Alcon Lensx, Inc. Adjusting ophthalmic docking system
US9622913B2 (en) 2011-05-18 2017-04-18 Alcon Lensx, Inc. Imaging-controlled laser surgical system
US8537866B2 (en) * 2011-05-20 2013-09-17 Calmar Optcom, Inc. Generating laser pulses of narrow spectral linewidth based on chirping and stretching of laser pulses and subsequent power amplification
US8598016B2 (en) * 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
DE102011108645A1 (en) 2011-07-22 2013-01-24 Carl Zeiss Meditec Ag "Post-treatment in ophthalmic surgical correction of refraction"
DE102012014769A1 (en) 2011-07-22 2013-01-24 Carl Zeiss Meditec Ag Planning device for generating control data for treatment device for ophthalmic surgery, has calculating unit for determining cornea-cutting area, where calculating unit defines cornea-cutting area based on data of cutting area
US8939967B2 (en) 2011-08-03 2015-01-27 Alcon Lensx, Inc. Patient interface defogger
US8398238B1 (en) 2011-08-26 2013-03-19 Alcon Lensx, Inc. Imaging-based guidance system for ophthalmic docking using a location-orientation analysis
EP2756562A4 (en) 2011-09-14 2015-06-17 Fianium Inc Methods and apparatus pertaining to picosecond pulsed fiber based lasers
DE102011083928A1 (en) 2011-09-30 2013-04-04 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective vision of an eye, methods for generating control data for and methods of operating correction of defective vision of an eye
CN103843057A (en) 2011-10-12 2014-06-04 Imra美国公司 Apparatus for high contrast optical signaling, and exemplary applications
DE102011085047A1 (en) 2011-10-21 2013-04-25 Carl Zeiss Meditec Ag Production of cuts in a transparent material by means of optical radiation
DE102011085046A1 (en) 2011-10-21 2013-04-25 Carl Zeiss Meditec Ag Generation of sectional areas in a transparent material by means of optical radiation
US9393154B2 (en) 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9066784B2 (en) 2011-12-19 2015-06-30 Alcon Lensx, Inc. Intra-surgical optical coherence tomographic imaging of cataract procedures
US9023016B2 (en) 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures
US8908739B2 (en) 2011-12-23 2014-12-09 Alcon Lensx, Inc. Transverse adjustable laser beam restrictor
US9044304B2 (en) 2011-12-23 2015-06-02 Alcon Lensx, Inc. Patient interface with variable applanation
DE102012202519A1 (en) * 2012-02-17 2013-08-22 Carl Zeiss Microscopy Gmbh Methods and devices for preparation of microscopic samples with the aid of pulsed light
KR20140138134A (en) 2012-02-28 2014-12-03 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Method and apparatus for separation of strengthened glass and articles produced thereby
US9828278B2 (en) 2012-02-28 2017-11-28 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
US20130220982A1 (en) * 2012-02-28 2013-08-29 James W. Thomas Laser ablation for the environmentally beneficial removal of surface coatings
US8852177B2 (en) 2012-03-09 2014-10-07 Alcon Lensx, Inc. Spatio-temporal beam modulator for surgical laser systems
DE102012007272B4 (en) 2012-04-12 2013-10-24 Wavelight Gmbh Laser device and method for the configuration of such a laser device
JP6000700B2 (en) * 2012-07-10 2016-10-05 株式会社ディスコ Laser processing method
DE102012018421A1 (en) 2012-09-14 2014-03-20 Carl Zeiss Meditec Ag Planning device for producing control data for treating device for myopia correction with and without astigmatism of visually impaired patient, has calculating unit determining cornea-cut surface so that surface is formed from partial areas
DE102013218415A1 (en) 2012-09-14 2014-04-10 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102012022081A1 (en) 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Planning device for generating control data for a treatment apparatus for eye surgery, has planning device main portion that is connected to measuring device for measuring position and location of pre-operative sections in planning
DE102012022079A1 (en) 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102012022080A1 (en) 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Eye Surgical Procedure
US20140131195A1 (en) 2012-11-15 2014-05-15 Fei Company Dual Laser Beam System Used With an Electron Microscope and FIB
EP2754524B1 (en) * 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
FR3002687B1 (en) * 2013-02-26 2015-03-06 Soitec Silicon On Insulator Method of treating a structure
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
CN103143841B (en) * 2013-03-08 2014-11-26 西北工业大学 Method for hole machining with picosecond laser
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
DE102013004688A1 (en) 2013-03-13 2014-09-18 Carl Zeiss Meditec Ag Eye Surgical Procedure
US20140263207A1 (en) * 2013-03-15 2014-09-18 Jian Liu Method and Apparatus for Welding Dissimilar Material with a High Energy High Power Ultrafast Laser
DE102013219788A1 (en) 2013-09-30 2015-04-16 Carl Zeiss Meditec Ag Intra-corneal ring
US20150212509A1 (en) * 2014-01-30 2015-07-30 Lasx Industries, Inc. Modelling of Laser Output from a Pulsed Laser to Achieve a Consistent Cutting Process
US9351826B2 (en) 2014-04-13 2016-05-31 Szymon Suckewer Cataract removal using ultra-short pulse lasers
US20160158061A1 (en) * 2014-05-22 2016-06-09 Wavelight Gmbh Technique for setting energy-related laser-pulse parameters
DE102014014565A1 (en) 2014-09-29 2016-03-31 Carl Zeiss Meditec Ag Production of cuts in a transparent material by means of optical radiation
DE102014014567A1 (en) 2014-09-29 2016-03-31 Carl Zeiss Meditec Ag Generation of special cuts in a transparent material by means of optical radiation
DE102014014566A1 (en) 2014-09-29 2016-03-31 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102015218909A1 (en) 2015-09-30 2017-03-30 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102016218564A1 (en) 2015-09-30 2017-03-30 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102016208012A1 (en) 2016-05-10 2017-11-16 Carl Zeiss Meditec Ag Eye Surgical Procedure
DE102016208011A1 (en) 2016-05-10 2017-11-16 Carl Zeiss Meditec Ag Eye Surgical Procedure

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720213A (en) * 1971-02-05 1973-03-13 Coherent Radiation Laser photocoagulator
US4001840A (en) * 1974-10-07 1977-01-04 Precision Instrument Co. Non-photographic, digital laser image recording
US4087672A (en) * 1975-07-08 1978-05-02 United Kingdom Atomic Energy Authority Laser removal of material from workpieces
US4114018A (en) * 1976-09-30 1978-09-12 Lasag Ag Method for ablating metal workpieces with laser radiation
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
US4464761A (en) * 1981-12-18 1984-08-07 Alfano Robert R Chromium-doped beryllium aluminum silicate laser systems
US4579430A (en) * 1982-12-11 1986-04-01 Carl-Zeiss-Stiftung Method and apparatus for forming an image of the ocular fundus
US4630274A (en) * 1983-11-24 1986-12-16 Max-Planck-Geselschaft Zur Foerderung Der Wissenschaften E.V. Method and apparatus for generating short intensive pulses of electromagnetic radiation in the wavelength range below about 100 nm
JPS6293095A (en) * 1985-10-18 1987-04-28 Matsushita Electric Ind Co Ltd Laser beam machine
US4665913A (en) * 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US4675500A (en) * 1983-10-28 1987-06-23 Gretag Aktiengesellschaft Laser processing apparatus with means for selectively varying the transverse mode distribution of the laser beam
US4712543A (en) * 1982-01-20 1987-12-15 Baron Neville A Process for recurving the cornea of an eye
US4727381A (en) * 1984-07-25 1988-02-23 Josef Bille Appartus for, and methods of, inscribing patterns on semiconductor wafers
US4729372A (en) * 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US4732473A (en) * 1984-06-14 1988-03-22 Josef Bille Apparatus for, and methods of, determining the characteristics of semi-conductor wafers
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4764930A (en) * 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4838679A (en) * 1984-06-14 1989-06-13 Josef Bille Apparatus for, and method of, examining eyes
US4839493A (en) * 1984-07-06 1989-06-13 Gerd Herziger Arrangement for machining workpieces by means of a laser beam by building up a plasma that is to be kept within limits
US4848340A (en) * 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
WO1989008529A1 (en) * 1988-03-18 1989-09-21 Max-Planck-Gesellschaft Zur Förderung Der Wissensc Process for ablation of polymer plastics using ultra-short laser pulses
US4881808A (en) * 1988-02-10 1989-11-21 Intelligent Surgical Lasers Imaging system for surgical lasers
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4907586A (en) * 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4925523A (en) * 1988-10-28 1990-05-15 International Business Machines Corporation Enhancement of ultraviolet laser ablation and etching organic solids
US4930505A (en) * 1986-10-04 1990-06-05 Helmut K. Pinsch Gmbh & Co. Method of enhancing the well-being of a living creature
US4942586A (en) * 1989-04-25 1990-07-17 Intelligent Surgical Lasers Inc. High power diode pumped laser
US4988348A (en) * 1989-05-26 1991-01-29 Intelligent Surgical Lasers, Inc. Method for reshaping the cornea
US5062702A (en) * 1990-03-16 1991-11-05 Intelligent Surgical Lasers, Inc. Device for mapping corneal topography
US5093548A (en) * 1989-10-17 1992-03-03 Robert Bosch Gmbh Method of forming high precision through holes in workpieces with a laser beam
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5141506A (en) * 1985-10-22 1992-08-25 York Kenneth K Systems and methods for creating substrate surfaces by photoablation
DE4119024A1 (en) * 1991-06-10 1992-12-17 Technolas Laser Technik Gmbh Device for the gentle and precise photoablation for photorefractive surgery
US5207668A (en) * 1983-11-17 1993-05-04 Visx Incorporated Method for opthalmological surgery
US5208437A (en) * 1990-05-18 1993-05-04 Hitachi, Ltd. Method of cutting interconnection pattern with laser and apparatus thereof
US5219343A (en) * 1983-11-17 1993-06-15 Visx Incorporated Apparatus for performing ophthalmogolical surgery
US5235606A (en) * 1991-10-29 1993-08-10 University Of Michigan Amplification of ultrashort pulses with nd:glass amplifiers pumped by alexandrite free running laser
US5246435A (en) * 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
US5269778A (en) * 1988-11-01 1993-12-14 Rink John L Variable pulse width laser and method of use
US5280491A (en) * 1991-08-02 1994-01-18 Lai Shui T Two dimensional scan amplifier laser
US5289407A (en) * 1991-07-22 1994-02-22 Cornell Research Foundation, Inc. Method for three dimensional optical data storage and retrieval
US5312396A (en) * 1990-09-06 1994-05-17 Massachusetts Institute Of Technology Pulsed laser system for the surgical removal of tissue
US5335258A (en) * 1993-03-31 1994-08-02 The United States Of America As Represented By The Secretary Of The Navy Submicrosecond, synchronizable x-ray source
US5348018A (en) * 1991-11-25 1994-09-20 Alfano Robert R Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy
US5389786A (en) * 1992-10-06 1995-02-14 President Of Nagoya University Method of quantitative determination of defect concentration on surfaces
US5454902A (en) * 1991-11-12 1995-10-03 Hughes Aircraft Company Production of clean, well-ordered CdTe surfaces using laser ablation
US5558789A (en) * 1994-03-02 1996-09-24 University Of Florida Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion
US5984916A (en) * 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720213A (en) * 1971-02-05 1973-03-13 Coherent Radiation Laser photocoagulator
US4001840A (en) * 1974-10-07 1977-01-04 Precision Instrument Co. Non-photographic, digital laser image recording
US4087672A (en) * 1975-07-08 1978-05-02 United Kingdom Atomic Energy Authority Laser removal of material from workpieces
US4114018A (en) * 1976-09-30 1978-09-12 Lasag Ag Method for ablating metal workpieces with laser radiation
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
US4464761A (en) * 1981-12-18 1984-08-07 Alfano Robert R Chromium-doped beryllium aluminum silicate laser systems
US4712543A (en) * 1982-01-20 1987-12-15 Baron Neville A Process for recurving the cornea of an eye
US4579430A (en) * 1982-12-11 1986-04-01 Carl-Zeiss-Stiftung Method and apparatus for forming an image of the ocular fundus
US4675500A (en) * 1983-10-28 1987-06-23 Gretag Aktiengesellschaft Laser processing apparatus with means for selectively varying the transverse mode distribution of the laser beam
US5219343A (en) * 1983-11-17 1993-06-15 Visx Incorporated Apparatus for performing ophthalmogolical surgery
US4665913A (en) * 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US5207668A (en) * 1983-11-17 1993-05-04 Visx Incorporated Method for opthalmological surgery
US4729372A (en) * 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US4630274A (en) * 1983-11-24 1986-12-16 Max-Planck-Geselschaft Zur Foerderung Der Wissenschaften E.V. Method and apparatus for generating short intensive pulses of electromagnetic radiation in the wavelength range below about 100 nm
US4838679A (en) * 1984-06-14 1989-06-13 Josef Bille Apparatus for, and method of, examining eyes
US4732473A (en) * 1984-06-14 1988-03-22 Josef Bille Apparatus for, and methods of, determining the characteristics of semi-conductor wafers
US4839493A (en) * 1984-07-06 1989-06-13 Gerd Herziger Arrangement for machining workpieces by means of a laser beam by building up a plasma that is to be kept within limits
US4727381A (en) * 1984-07-25 1988-02-23 Josef Bille Appartus for, and methods of, inscribing patterns on semiconductor wafers
US4733660A (en) * 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
JPS6293095A (en) * 1985-10-18 1987-04-28 Matsushita Electric Ind Co Ltd Laser beam machine
US5141506A (en) * 1985-10-22 1992-08-25 York Kenneth K Systems and methods for creating substrate surfaces by photoablation
US4930505A (en) * 1986-10-04 1990-06-05 Helmut K. Pinsch Gmbh & Co. Method of enhancing the well-being of a living creature
US4764930A (en) * 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4848340A (en) * 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
US4881808A (en) * 1988-02-10 1989-11-21 Intelligent Surgical Lasers Imaging system for surgical lasers
WO1989008529A1 (en) * 1988-03-18 1989-09-21 Max-Planck-Gesellschaft Zur Förderung Der Wissensc Process for ablation of polymer plastics using ultra-short laser pulses
US4907586A (en) * 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4925523A (en) * 1988-10-28 1990-05-15 International Business Machines Corporation Enhancement of ultraviolet laser ablation and etching organic solids
US5269778A (en) * 1988-11-01 1993-12-14 Rink John L Variable pulse width laser and method of use
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US4942586A (en) * 1989-04-25 1990-07-17 Intelligent Surgical Lasers Inc. High power diode pumped laser
US4988348A (en) * 1989-05-26 1991-01-29 Intelligent Surgical Lasers, Inc. Method for reshaping the cornea
US5093548A (en) * 1989-10-17 1992-03-03 Robert Bosch Gmbh Method of forming high precision through holes in workpieces with a laser beam
US5062702A (en) * 1990-03-16 1991-11-05 Intelligent Surgical Lasers, Inc. Device for mapping corneal topography
US5208437A (en) * 1990-05-18 1993-05-04 Hitachi, Ltd. Method of cutting interconnection pattern with laser and apparatus thereof
US5312396A (en) * 1990-09-06 1994-05-17 Massachusetts Institute Of Technology Pulsed laser system for the surgical removal of tissue
DE4119024A1 (en) * 1991-06-10 1992-12-17 Technolas Laser Technik Gmbh Device for the gentle and precise photoablation for photorefractive surgery
US5289407A (en) * 1991-07-22 1994-02-22 Cornell Research Foundation, Inc. Method for three dimensional optical data storage and retrieval
US5280491A (en) * 1991-08-02 1994-01-18 Lai Shui T Two dimensional scan amplifier laser
US5235606A (en) * 1991-10-29 1993-08-10 University Of Michigan Amplification of ultrashort pulses with nd:glass amplifiers pumped by alexandrite free running laser
US5454902A (en) * 1991-11-12 1995-10-03 Hughes Aircraft Company Production of clean, well-ordered CdTe surfaces using laser ablation
US5348018A (en) * 1991-11-25 1994-09-20 Alfano Robert R Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy
US5246435A (en) * 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
US5389786A (en) * 1992-10-06 1995-02-14 President Of Nagoya University Method of quantitative determination of defect concentration on surfaces
US5335258A (en) * 1993-03-31 1994-08-02 The United States Of America As Represented By The Secretary Of The Navy Submicrosecond, synchronizable x-ray source
US5984916A (en) * 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method
US5558789A (en) * 1994-03-02 1996-09-24 University Of Florida Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
A.M. Malvezzi, N. Bloembergen, and C.Y. Huang, "Time-Resolved Picosecond Optical Measurements of Laser-Excited Graphite", Physical Review Letters, vol. 57, No. 1, 146-149, Jul. 7, 1986.*
B. Frueh, J. Bille, and S. Brown, "Intrastromal Relaxing Excisions in Rabbits with a Picosecond Infrared Laser", Lasers and Light in Opthamology, vol. 4, No. 3/4, pp. 165-168, (1992).*
B. Zysset, J. Fujimoto, and T. Deutsch, "Time-Resolved Measurements of Picosecond Optical Breakdown", Applied Physics B48, 139-147 (1989).*
B. Zysset, J. Fujimoto, C. Puliafito, R. Bingruber, and T. Deutsch, "Picosecond Optical Breakdown: Tissue Effects and Reduction of Collateral Damage", Lasers in Surgery and Medicine 9:192-204 (1989).*
C. LeBlanc, "Realization and Characterization of a High Intensity Femtosecond Laser System Based on all Titanium Doped Sapphire", Annales de Physique, vol. 19, No. 1, Abstract, Feb. 1994.*
C.V. Shank and M.C. Downer, "Femtosecond Dynamics of Highly Excited Semiconductors", Mat. Res. Soc. Symp. Proc., vol. 51, 15-23, 1985.*
C.V. Shank, R. Yen and C. Hirlimann, "Time Resolved Reflectivity Measures of Femtosecond-Optical-Pulse-Induced Phase transitions in Silicon", Physical Review Letters, vol. 50, No. 6, 454-457, Feb. 7, 1983.*
C.V. Shank, R. Yen, and C. Hirlimann, "Femtosecond-Time Resolved Surface Structural Dynamics of Optically Excited Silicon", Physical Review Letters, vol. 51, No. 10, 900-902, Sep. 5, 1983.*
D. Du, X. Lin, G. Korn, J. Squier, and G. Morou, "Laser-Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7 ns to 150 fs", Appl. Phys. letters 64 (23), (Jun. 6, 1994). *
D. Stern, R. Schoenlein, C. Puliafito, E. Dobi, R. Birngruber and J. Fujimoto, "Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 and 625 nm", Arch Opthalmol, vol. 107, (Apr. 1989).*
D.H. Reitzke, X. Wang, H. Ahn, and M.C. Downer, "Femtosecond Laser Melting of Graphite", Physical Review B, vol. 40, No. 17, Dec. 15, 1989.*
F. Muller, K. Mann, R. Simon, J.S. Bernstein, and G.J. Zaal, "A comparative Study of Decomposition of Thin Films by Laser Induced PVD with Femtosecond and Nanosecond Laser Pulses", SPIE vol. 1858, pp. 464-475, 1993.*
G. Mourou, A. Zewail, P. Barbara, and W. Knox, "New Generation of Ultrafast Sources Marked by Higher Powers, Versatility" Optics & Photonics News (Mar. 1994).*
G.L. LeCarpentier et al. "Continuous Wave Laser Ablation of Tissue: Analysis of Thermal and Mechanical Events", IEEE Transactions on Biomedical Engineering, vol. 40, No. 2, 188-200, Feb. 1993.*
H. Cooper, J. Schuman, C. Puliafito, D. McCarthy, W. Woods, N. Friedmann, N. Wang, and C. Lin, "Picosecond Neodymium:Yttrium Lithium Fluoride Laser Sclerectomy", Am. Journal of Opth. 115:221-224, (Feb. 1993).*
H. Kapteyn and M. Murnane, "Femtosecond Lasers: The next Generation", Optics & Photonics News, (Mar. 1994).*
International Search Report Form PCT/ISO/210 Dated Jul. 31, 1995 and Mailed Aug. 4, 1995.*
J. Squier and G. Mourou, "Tunable Solid State Lasers Create Ultrashort Pulses", Laser Focus World, (Jun. 1992).*
J. Squier, F. Salin, and G. Mourou, "100-fs Pulse Generation and Amplification in TiAl2O3", Optics letters, vol. 16, No. 5 (Mar. 1991).*
K. Frederickson, W. White, R. Wheeland, and D. Slaughter, "Precise Ablation of Skin with Reduced Collateral Damage Using the Femtosecond-Pulsed, Terawatt Titanium-Sapphire Laser", Arch Dermatol, vol. 129, (Aug. 1993).*
M.H. Niemz, T.P. Hoppeler, T. Juhasz, and J. Bille, "Intrastromal Ablations for Refractive Corneal Surgery Using Picosecond Infrared Laser Pulses", Lasers and Light in Opthamology, vol. 5, No. 3, pp. 149-155, 1993.*
M.W. Berns et al., "Laser Microsurgery in Cell and Developmental Biology", Science, vol. 213, No. 31, pp. 505-513, Jul. 1981.*
N. Bloembergen, "Laser-Induced Electric Breakdown in Solids", IEEE Journal of Quantum ELectronics, vol. QE-10, No. 3, (Mar. 1974).*
R. Birngruber, C. Puliafito, A. Gawande, W. Lin, R. Schoenlein, and J. Fujimoto, "Femtosecond Laser-Tissue Interactions: Retinal Injury Studies", IEEE Journal of Quantum Electronics, vol. QE-23, No. 10, 1836-1844, Oct. 1987.*
R. Birngruber, C. Puliafito, A. Gawande, W. Lin, R. Schoenlein, and J. Fujimoto, Femtosecond Laser-Tissue Interactions: Retinal Injury Studies, IEEE Log. No. 8716039, (1987).*
R. Remmel, C. Dardenne, and J. Bille, "Intrasomal Tissue Removed Using an Infrared Picosecond Nd:YLF Opthalmic Laser Operating at 1053 nm", Lasers and Light in Opthamology, vol. 4, No. 3/4, 169-173, (1992).*
S. Küper and M. Stuke, "Femtosecond uv Excimer Laser Ablation", Applied Physics B, vol. 44, 199-201, Jun. 7, 1993.*
S. Preuss, M. Späth, Y. Zhang, and M. Stuke, "Time Resolved Dynamics of Subpicosecond Laser Ablation", Applied Physics Letters, vol. 62, No. 23, 3049-3051, Jun. 7, 1993.*
S. Watanabe, R. Anderson, S. Brorson, G. Dalickas, J. Fujimoto, and T. Flotte, "Comparative Studies of Femtosecond to Microsecond Laser Pulses on Selective Pigmented Cell Injury in Skin", Photochemistry and Photobiology vol. 53, No. 6, 757-762, 1991.*

Cited By (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489589B1 (en) * 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
US8253066B2 (en) 1999-12-28 2012-08-28 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US20060086702A1 (en) * 1999-12-28 2006-04-27 Gsi Group Corp Energy-efficient, laser-based method and system for processing target material
US20070199927A1 (en) * 1999-12-28 2007-08-30 Bo Gu Laser-based method and system for removing one or more target link structures
US7838794B2 (en) 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US7750268B2 (en) 1999-12-28 2010-07-06 Gsi Group Corporation Energy efficient, laser-based method and system for processing target material
US7723642B2 (en) 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US7679030B2 (en) 1999-12-28 2010-03-16 Gsi Group Corporation Energy-efficient, laser-based method and system for processing target material
US20040134894A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based system for memory link processing with picosecond lasers
US20040134896A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based method and system for memory link processing with picosecond lasers
US20040188399A1 (en) * 1999-12-28 2004-09-30 Gsi Lumonics Inc. Energy-efficient, laser-based method and system for processing target material
US20060138108A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060138110A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060141681A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060140230A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060138106A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US7671295B2 (en) 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US20060134838A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060138107A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060138109A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20030222324A1 (en) * 2000-01-10 2003-12-04 Yunlong Sun Laser systems for passivation or link processing with a set of laser pulses
US20030151053A1 (en) * 2000-01-10 2003-08-14 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060131288A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060131287A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060131286A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060131285A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060141680A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060138096A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20060131284A1 (en) * 2000-01-10 2006-06-22 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US8338746B2 (en) 2000-01-10 2012-12-25 Electro Scientific Industries, Inc. Method for processing a memory link with a set of at least two laser pulses
US20080284837A1 (en) * 2001-03-29 2008-11-20 Gsi Group Corporation Methods and systems for therma-based laser processing a multi-material device
US8217304B2 (en) 2001-03-29 2012-07-10 Gsi Group Corporation Methods and systems for thermal-based laser processing a multi-material device
US8809734B2 (en) 2001-03-29 2014-08-19 Electron Scientific Industries, Inc. Methods and systems for thermal-based laser processing a multi-material device
US7955906B2 (en) 2001-03-29 2011-06-07 Gsi Group Corporation Methods and systems for thermal-based laser processing a multi-material device
US20060192845A1 (en) * 2001-03-29 2006-08-31 Gsi Lumonics Corporation Methods and systems for thermal-based laser processing a multi-material device
US7955905B2 (en) 2001-03-29 2011-06-07 Gsi Group Corporation Methods and systems for thermal-based laser processing a multi-material device
US20070052791A1 (en) * 2001-03-29 2007-03-08 Gsi Lumonics Corporation Methods and systems for thermal-based laser processing a multi-material device
US20020167581A1 (en) * 2001-03-29 2002-11-14 Cordingley James J. Methods and systems for thermal-based laser processing a multi-material device
WO2002090036A1 (en) * 2001-05-10 2002-11-14 Vanderbilt University Method and apparatus for laser ablative modification of dielectric surfaces
US20070000875A1 (en) * 2001-10-03 2007-01-04 Coherent, Inc. Method and apparatus for assisting laser material processing
US20030062126A1 (en) * 2001-10-03 2003-04-03 Scaggs Michael J. Method and apparatus for assisting laser material processing
US7474919B2 (en) 2002-08-29 2009-01-06 The Regents Of The University Of Michigan Laser-based method and system for enhancing optical breakdown
US6852946B2 (en) 2002-12-20 2005-02-08 Caterpillar Inc Laser-induced plasma micromachining
US20040118823A1 (en) * 2002-12-20 2004-06-24 Groen Cale E. Laser-induced plasma micromachining
EP1430987A1 (en) * 2002-12-20 2004-06-23 Caterpillar Inc. Laser-induced plasma micromachining
US20050064137A1 (en) * 2003-01-29 2005-03-24 Hunt Alan J. Method for forming nanoscale features and structures produced thereby
US20060237405A1 (en) * 2003-01-29 2006-10-26 The Regents Of The University Of Michigan Method for forming nanoscale features
US7560658B2 (en) 2003-01-29 2009-07-14 The Regents Of The University Of Michigan Method for forming nanoscale features
US6995336B2 (en) 2003-01-29 2006-02-07 The Regents Of The University Of Michigan Method for forming nanoscale features
US20080105663A1 (en) * 2003-01-29 2008-05-08 The Regents Of The University Of Michigan Method for forming nanoscale features and structures produced thereby
US6979798B2 (en) 2003-03-07 2005-12-27 Gsi Lumonics Corporation Laser system and method for material processing with ultra fast lasers
US20040226925A1 (en) * 2003-03-07 2004-11-18 Bo Gu Laser system and method for material processing with ultra fast lasers
US20080180655A1 (en) * 2003-03-28 2008-07-31 Applied Photonics Worldwide, Inc. Mobile terawatt femtosecond laser system (mtfls) for long range spectral sensing and identification of bioaerosols and chemical agents in the atmosphere
US7391557B1 (en) * 2003-03-28 2008-06-24 Applied Photonics Worldwide, Inc. Mobile terawatt femtosecond laser system (MTFLS) for long range spectral sensing and identification of bioaerosols and chemical agents in the atmosphere
US7361171B2 (en) 2003-05-20 2008-04-22 Raydiance, Inc. Man-portable optical ablation system
US20050171516A1 (en) * 2003-05-20 2005-08-04 Richard Stoltz Man-portable optical ablation system
US20110073584A1 (en) * 2003-05-20 2011-03-31 Richard Stoltz Portable Optical Ablation System
US8398622B2 (en) 2003-05-20 2013-03-19 Raydiance, Inc. Portable optical ablation system
US7367969B2 (en) 2003-08-11 2008-05-06 Raydiance, Inc. Ablative material removal with a preset removal rate or volume or depth
US20050065502A1 (en) * 2003-08-11 2005-03-24 Richard Stoltz Enabling or blocking the emission of an ablation beam based on color of target
US20060064079A1 (en) * 2003-08-11 2006-03-23 Richard Stoltz Ablative material removal with a preset removal rate or volume or depth
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US20050215985A1 (en) * 2003-08-11 2005-09-29 Michael Mielke Method of generating an ultra-short pulse using a high-frequency ring oscillator
US7143769B2 (en) 2003-08-11 2006-12-05 Richard Stoltz Controlling pulse energy of an optical amplifier by controlling pump diode current
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US20080140060A1 (en) * 2003-08-11 2008-06-12 Raydiance, Inc. Ablative material removal with a preset removal rate or volume or depth
US20050074974A1 (en) * 2003-10-02 2005-04-07 Richard Stoltz Semiconductor manufacturing using optical ablation
US20050236380A1 (en) * 2003-10-16 2005-10-27 Olympus Corporation Ultrashort pulse laser processing method
EP1674189A4 (en) * 2003-10-16 2007-04-11 Olympus Corp Ultrashort pulse laser processing method
EP1674189A1 (en) * 2003-10-16 2006-06-28 Olympus Corporation Ultrashort pulse laser processing method
US20050195726A1 (en) * 2004-02-09 2005-09-08 Jeff Bullington Semiconductor-type processing for solid-state lasers
US20050199599A1 (en) * 2004-03-09 2005-09-15 Xinghua Li Method of fabrication of hermetically sealed glass package
US9147989B2 (en) 2004-03-31 2015-09-29 Imra America, Inc. Femtosecond laser processing system with process parameters controls and feedback
US20050226287A1 (en) * 2004-03-31 2005-10-13 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7912100B2 (en) 2004-03-31 2011-03-22 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US9774160B2 (en) 2004-03-31 2017-09-26 Imra America, Inc. Femtosecond laser processing system with process parameters controls and feedback
US20090097514A1 (en) * 2004-03-31 2009-04-16 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US20110139760A1 (en) * 2004-03-31 2011-06-16 Imra America, Inc. Femtosecond laser processing system with process parameters controls and feedback
US8644356B2 (en) 2004-03-31 2014-02-04 Imra America, Inc. Femtosecond laser processing system with process parameters controls and feedback
US8279903B2 (en) 2004-03-31 2012-10-02 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
WO2005123324A1 (en) 2004-06-08 2005-12-29 Tag Heuer Sa Method of producing a micro- or nano-mechanical part, comprising a femto-laser-assisted ablation step
US7584756B2 (en) 2004-08-17 2009-09-08 Amo Development, Llc Apparatus and method for correction of aberrations in laser system optics
US20080017010A1 (en) * 2004-09-10 2008-01-24 Advanced Cardiovascular Systems, Inc. Laser process to produce drug delivery channel in metal stents
US20060054604A1 (en) * 2004-09-10 2006-03-16 Saunders Richard J Laser process to produce drug delivery channel in metal stents
US7169687B2 (en) 2004-11-03 2007-01-30 Intel Corporation Laser micromachining method
US20060091125A1 (en) * 2004-11-03 2006-05-04 Intel Corporation Laser micromachining method
US20060126679A1 (en) * 2004-12-13 2006-06-15 Brennan James F Iii Bragg fibers in systems for the generation of high peak power light
US7349452B2 (en) 2004-12-13 2008-03-25 Raydiance, Inc. Bragg fibers in systems for the generation of high peak power light
WO2006069448A3 (en) * 2004-12-30 2007-03-22 R J Dwayne Miller Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation
US8029501B2 (en) 2004-12-30 2011-10-04 Attodyne Inc. Laser selective cutting by impulsive heat deposition in the IR wavelength range for direct-drive ablation
EP2772333A1 (en) * 2004-12-30 2014-09-03 Attodyne Inc. Laser selective cutting by impulsive heat deposition in the ir wavelength range for direct-drive ablation
US9693904B2 (en) 2005-01-10 2017-07-04 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US9119704B2 (en) 2005-01-10 2015-09-01 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9119703B2 (en) 2005-01-10 2015-09-01 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9107732B2 (en) 2005-01-10 2015-08-18 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9474648B2 (en) 2005-01-10 2016-10-25 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US9101448B2 (en) 2005-01-10 2015-08-11 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8425497B2 (en) 2005-01-10 2013-04-23 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8403921B2 (en) 2005-01-10 2013-03-26 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9474649B2 (en) 2005-01-10 2016-10-25 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US9095415B2 (en) 2005-01-10 2015-08-04 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US20060195076A1 (en) * 2005-01-10 2006-08-31 Blumenkranz Mark S Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9480601B2 (en) 2005-01-10 2016-11-01 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US20110178511A1 (en) * 2005-01-10 2011-07-21 Blumenkranz Mark S Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US20100191226A1 (en) * 2005-01-10 2010-07-29 Optimedica Corporation Method Of Patterned Plasma-Mediated Laser Trephination Of The Lens Capsule And Three Dimensional Phaco-Segmentation
US8690862B2 (en) 2005-01-10 2014-04-08 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9125725B2 (en) 2005-01-10 2015-09-08 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9693905B2 (en) 2005-01-10 2017-07-04 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US8709001B2 (en) 2005-01-10 2014-04-29 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9693903B2 (en) 2005-01-10 2017-07-04 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US9750640B2 (en) 2005-01-10 2017-09-05 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US9271870B2 (en) 2005-01-10 2016-03-01 Optimedica Corporation Apparatus for patterned plasma-mediated laser ophthalmic surgery
US8500724B2 (en) 2005-01-10 2013-08-06 Optimedica Corporation Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US20110178512A1 (en) * 2005-01-10 2011-07-21 Blumenkranz Mark S Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US20060191884A1 (en) * 2005-01-21 2006-08-31 Johnson Shepard D High-speed, precise, laser-based material processing method and system
US20060249816A1 (en) * 2005-05-05 2006-11-09 Intel Corporation Dual pulsed beam laser micromachining method
US7611966B2 (en) * 2005-05-05 2009-11-03 Intel Corporation Dual pulsed beam laser micromachining method
US20090281530A1 (en) * 2005-06-13 2009-11-12 Technolas Perfect Vision Gmbh Messerschmittstrasse 1+3 Method for treating an organic material
US20070064304A1 (en) * 2005-09-22 2007-03-22 Brennan James Francis Iii Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system
US20070110354A1 (en) * 2005-11-16 2007-05-17 Raydiance, Inc. Method and apparatus for optical isolation in high power fiber-optic systems
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US20090323740A1 (en) * 2006-01-23 2009-12-31 Stadler Andrew D Systems And Methods For Control Of Ultra Short Pulse Amplification
US20090213879A1 (en) * 2006-01-23 2009-08-27 Stadler Andrew D Automated Laser Tuning
US8139910B2 (en) 2006-01-23 2012-03-20 Raydiance, Inc. Systems and methods for control of ultra short pulse amplification
US9130344B2 (en) 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US8150271B1 (en) 2006-03-28 2012-04-03 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US9281653B2 (en) 2006-04-26 2016-03-08 Coherent, Inc. Intelligent laser interlock system
US20070253455A1 (en) * 2006-04-26 2007-11-01 Stadler Andrew D Intelligent Laser Interlock System
WO2008030718A2 (en) 2006-09-05 2008-03-13 Amo Development, Llc System and method for marking corneal tissue in a transplant procedure
WO2008030698A2 (en) 2006-09-05 2008-03-13 Amo Development, Llc System and method for resecting corneal tissue
US7887532B2 (en) 2006-09-05 2011-02-15 Amo Development, Llc. System and method for resecting corneal tissue using non-continuous initial incisions
US20080058841A1 (en) * 2006-09-05 2008-03-06 Kurtz Ronald M System and method for marking corneal tissue in a transplant procedure
US20080058777A1 (en) * 2006-09-05 2008-03-06 Intralase Corp. System and method for resecting corneal tissue using non-continuous initial incisions
US8568478B2 (en) 2006-09-21 2013-10-29 Abbott Medical Optics Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077239A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
WO2008036671A1 (en) 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US9603702B2 (en) 2006-09-21 2017-03-28 Abbott Medical Optics Inc. Intraocular lenses for managing glare, adhesion, and cell migration
US20080319428A1 (en) * 2006-11-10 2008-12-25 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
US8685006B2 (en) 2006-11-10 2014-04-01 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
US9370445B2 (en) 2006-11-10 2016-06-21 Carl Zeiss Meditec Ag Treatment apparatus for surgical correction of defective eyesight, method of generating control data therefore, and method for surgical correction of defective eyesight
US20100038825A1 (en) * 2006-12-21 2010-02-18 Mcdonald Joel P Methods of forming microchannels by ultrafast pulsed laser direct-write processing
US20080187684A1 (en) * 2007-02-07 2008-08-07 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
US8609205B2 (en) 2007-02-07 2013-12-17 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
EP2671970A1 (en) 2007-02-07 2013-12-11 Imra America, Inc. A method for depositing crystalline titania nanoparticles and films
WO2008118533A2 (en) 2007-02-07 2008-10-02 Imra America, Inc. A method for depositing crystalline titania nanoparticles and films
US20090311513A1 (en) * 2007-02-07 2009-12-17 Imra America, Inc. Method for depositing crystalline titania nanoparticles and films
US8518026B2 (en) 2007-03-13 2013-08-27 Optimedica Corporation Apparatus for creating incisions to improve intraocular lens placement
US9364317B2 (en) 2007-03-13 2016-06-14 Optimedica Corporation Method for creating incisions to improve intraocular lens placement
US20110184392A1 (en) * 2007-03-13 2011-07-28 William Culbertson Method for patterned plasma-mediated modification of the crystalline lens
US9526608B2 (en) 2007-03-13 2016-12-27 Optimedica Corporation Apparatus for creating incisions to improve intraocular lens placement
US9820848B2 (en) 2007-03-13 2017-11-21 Optimedica Corporation Method for creating incision to improve intraocular lens placement
US8657810B2 (en) 2007-03-13 2014-02-25 Optimedica Corporation Method for creating incisions to improve intraocular lens placement
US20080281413A1 (en) * 2007-03-13 2008-11-13 William Culbertson Method and apparatus for creating incisions to improve intraocular lens placement
US8968375B2 (en) 2007-03-13 2015-03-03 Optimedica Corporation Method for patterned plasma-mediated modification of the crystalline lens
US9233024B2 (en) 2007-03-13 2016-01-12 Optimedica Corporation Method and apparatus for creating ocular surgical and relaxing incisions
US9402715B2 (en) 2007-03-13 2016-08-02 Optimedica Corporation Method for patterned plasma-mediated modification of the crystalline lens
US20090012507A1 (en) * 2007-03-13 2009-01-08 William Culbertson Method for patterned plasma-mediated modification of the crystalline lens
US9782253B2 (en) 2007-03-13 2017-10-10 Optimedica Corporation Method for patterned plasma-mediated modification of the crystalline lens
US9795472B2 (en) 2007-03-13 2017-10-24 Optimedica Corporation Method for creating incision to improve intraocular lens placement
US9233023B2 (en) 2007-03-13 2016-01-12 Optimedica Corporation Method and apparatus for creating ocular surgical and relaxing incisions
US9662198B2 (en) 2007-03-13 2017-05-30 Optimedica Corporation Method for creating incisions to improve intraocular lens placement
US20100135341A1 (en) * 2007-05-04 2010-06-03 Ekspla Ltd. Multiple Output Repetitively Pulsed Laser
US7970026B2 (en) 2007-05-04 2011-06-28 Ekspla Ltd. Multiple output repetitively pulsed laser
US20100209700A1 (en) * 2007-05-25 2010-08-19 Imra America, Inc. Method of producing compound nanorods and thin films
US7767272B2 (en) 2007-05-25 2010-08-03 Imra America, Inc. Method of producing compound nanorods and thin films
US20100163540A1 (en) * 2007-06-14 2010-07-01 Universitat Zu Lubeck Method for Laser Machining Transparent Materials
US8350183B2 (en) * 2007-06-14 2013-01-08 Universitat Zu Lubeck Method for laser machining transparent materials
US20090045179A1 (en) * 2007-08-15 2009-02-19 Ellen Marie Kosik Williams Method and system for cutting solid materials using short pulsed laser
US8764736B2 (en) 2007-09-05 2014-07-01 Alcon Lensx, Inc. Laser-induced protection shield in laser surgery
US20090143772A1 (en) * 2007-09-05 2009-06-04 Kurtz Ronald M Laser-Induced Protection Shield in Laser Surgery
US20090171327A1 (en) * 2007-09-06 2009-07-02 Lensx Lasers, Inc. Photodisruptive Laser Treatment of the Crystalline Lens
US20090149840A1 (en) * 2007-09-06 2009-06-11 Kurtz Ronald M Photodisruptive Treatment of Crystalline Lens
US9456925B2 (en) 2007-09-06 2016-10-04 Alcon Lensx, Inc. Photodisruptive laser treatment of the crystalline lens
US20090149841A1 (en) * 2007-09-10 2009-06-11 Kurtz Ronald M Effective Laser Photodisruptive Surgery in a Gravity Field
US20090137993A1 (en) * 2007-09-18 2009-05-28 Kurtz Ronald M Methods and Apparatus for Integrated Cataract Surgery
US20090137991A1 (en) * 2007-09-18 2009-05-28 Kurtz Ronald M Methods and Apparatus for Laser Treatment of the Crystalline Lens
US20090137988A1 (en) * 2007-11-02 2009-05-28 Lensx Lasers, Inc Methods And Apparatus For Improved Post-Operative Ocular Optical Performance
EP3138543A1 (en) 2007-11-07 2017-03-08 Abbott Medical Optics Inc. System and method of interfacing a surgical laser with an eye
US8292877B2 (en) 2007-11-07 2012-10-23 Amo Development, Llc. System and method for incising material
US20090118716A1 (en) * 2007-11-07 2009-05-07 Intralase, Inc. System and method for scanning a pulsed laser beam
US20090126870A1 (en) * 2007-11-19 2009-05-21 Advanced Medical Optics, Inc. Method of making sub-surface photoalterations in a material
US8231612B2 (en) 2007-11-19 2012-07-31 Amo Development Llc. Method of making sub-surface photoalterations in a material
US8619357B2 (en) 2007-11-30 2013-12-31 Raydiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
US9101446B2 (en) 2008-01-02 2015-08-11 Intralase Corp. System and method for scanning a pulsed laser beam
US9138351B2 (en) 2008-01-02 2015-09-22 Amo Development, Llc Method for scanning a pulsed laser beam
US9108270B2 (en) 2008-01-02 2015-08-18 Amo Development, Llc System and method for scanning a pulsed laser beam
US9226853B2 (en) 2008-01-02 2016-01-05 Amo Development, Llc Method for scanning a pulsed laser beam
US20090177189A1 (en) * 2008-01-09 2009-07-09 Ferenc Raksi Photodisruptive laser fragmentation of tissue
US9427356B2 (en) 2008-01-09 2016-08-30 Alcon Lensx, Inc. Photodisruptive laser fragmentation of tissue
US20090247999A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc Corneal implant system, interface, and method
US20090247998A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc System and method of iris-pupil contrast enhancement
US9421131B2 (en) 2008-04-01 2016-08-23 Amo Development, Llc System and method of iris-pupil contrast enhancement
US20090247997A1 (en) * 2008-04-01 2009-10-01 Amo Development, Llc Ophthalmic laser apparatus, system, and method with high resolution imaging
US9844463B2 (en) 2008-04-01 2017-12-19 Amo Development, Llc Ophthalmic laser apparatus, system, and method with high resolution imaging
US20090289382A1 (en) * 2008-05-22 2009-11-26 Raydiance, Inc. System and method for modifying characteristics of a contact lens utilizing an ultra-short pulsed laser
EP2926769A1 (en) 2008-06-27 2015-10-07 AMO Development, LLC Intracorneal inlay, system, and method
US20090326650A1 (en) * 2008-06-27 2009-12-31 Amo Development, Llc Intracorneal inlay, system, and method
US8246609B2 (en) 2008-06-27 2012-08-21 Amo Development, Llc. Intracorneal inlay, system, and method
US8853592B2 (en) 2008-07-09 2014-10-07 Fei Company Method for laser machining a sample having a crystalline structure
US20120103945A1 (en) * 2008-07-09 2012-05-03 Fei Company Method And Apparatus For Laser Machining
US20100040095A1 (en) * 2008-08-18 2010-02-18 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
US8125704B2 (en) 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
EP2965706A1 (en) * 2008-08-29 2016-01-13 Starmedtec GmbH Multifunctional laser device
WO2010022985A1 (en) * 2008-08-29 2010-03-04 Starmedtec Gmbh Multifunctional laser device
EP3123987A1 (en) 2008-09-26 2017-02-01 AMO Development, LLC Laser modification of intraocular lens
WO2010036859A1 (en) 2008-09-26 2010-04-01 Amo Development Llc Laser modification of intraocular lens
US8498538B2 (en) 2008-11-14 2013-07-30 Raydiance, Inc. Compact monolithic dispersion compensator
EP3146893A2 (en) 2008-11-21 2017-03-29 AMO Development, LLC Apparatus, system and method for precision depth measurement
US9462943B2 (en) 2008-11-21 2016-10-11 Amo Development, Llc Apparatus, system and method for precision depth measurement
US8852175B2 (en) 2008-11-21 2014-10-07 Amo Development Llc Apparatus, system and method for precision depth measurement
US20100130966A1 (en) * 2008-11-21 2010-05-27 Advanced Medical Optics, Inc. Apparatus, System and Method for Precision Depth Measurement
EP2191927A1 (en) 2008-11-26 2010-06-02 FEI Company Method of and system for forming a microscopic structure on a substrate using a mask formed on this substrate
US8629416B2 (en) 2008-11-26 2014-01-14 Fei Company Charged particle beam masking for laser ablation micromachining
US20100127190A1 (en) * 2008-11-26 2010-05-27 Fei Company Charged particle beam masking for laser ablation micromachining
US8168961B2 (en) 2008-11-26 2012-05-01 Fei Company Charged particle beam masking for laser ablation micromachining
US8388609B2 (en) 2008-12-01 2013-03-05 Amo Development, Llc. System and method for multibeam scanning
US20100133246A1 (en) * 2008-12-01 2010-06-03 Amo Development, Llc System and method for multibeam scanning
US20100331829A1 (en) * 2008-12-01 2010-12-30 Amo Development, Llc. System and method for multi-beam scanning
US8461478B2 (en) 2009-02-03 2013-06-11 Abbott Cardiovascular Systems, Inc. Multiple beam laser system for forming stents
US9006604B2 (en) 2009-02-03 2015-04-14 Abbott Cardiovascular Systems Inc. Multiple beam laser system for forming stents
US8901452B2 (en) 2009-02-03 2014-12-02 Abbott Cardiovascular Systems, Inc. Multiple beam laser system for forming stents
US8530783B2 (en) 2009-02-03 2013-09-10 Abbott Cardiovascular Systems Inc. Laser cutting system
US20100193484A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. Multiple beam laser system for forming stents
US8872062B2 (en) 2009-02-03 2014-10-28 Abbott Cardiovascular Systems Inc. Laser cutting process for forming stents
US20100193483A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. Laser cutting process for forming stents
US9199334B2 (en) 2009-02-03 2015-12-01 Abbott Cardiovascular Systems Inc. Multiple beam laser system for forming stents
US9399267B2 (en) 2009-02-03 2016-07-26 Abbott Cardiovascular Systems Inc. Multiple beam laser system for forming stents
US20100193482A1 (en) * 2009-02-03 2010-08-05 Abbott Cardiovascular Systems Inc. laser cutting system
US8663208B2 (en) 2009-02-09 2014-03-04 Amo Development, Llc System and method for intrastromal refractive correction
WO2010091419A1 (en) 2009-02-09 2010-08-12 Amo Development Llc. System and method for intrastromal refractive correction
US9411938B2 (en) 2009-04-02 2016-08-09 Sie Ag, Surgical Instrument Engineering System for defining cuts in eye tissue
EP2236109A1 (en) * 2009-04-02 2010-10-06 SIE AG, Surgical Instrument Engineering System for defining cuts in eye tissue
US20100256965A1 (en) * 2009-04-02 2010-10-07 Christian Rathjen System for defining cuts in eye tissue
US9295518B2 (en) 2009-07-23 2016-03-29 Koninklijke Philips N.V. Optical blade and hair cutting device
US20110031655A1 (en) * 2009-08-10 2011-02-10 Fei Company Gas-assisted laser ablation
EP2283960A1 (en) 2009-08-10 2011-02-16 FEI Company Gas-assisted laser ablation
EP2700470A1 (en) 2009-08-10 2014-02-26 Fei Company Gas-assisted laser ablation
US8524139B2 (en) 2009-08-10 2013-09-03 FEI Compay Gas-assisted laser ablation
WO2011032551A3 (en) * 2009-09-18 2011-05-26 Lumera Laser Gmbh Laser beam aligning unit and laser treatment device for treating a material
EP2477568B1 (en) * 2009-09-18 2016-03-30 Lumera Laser GmbH Laser beam aligning unit and laser treatment device for treating a material
US8357196B2 (en) 2009-11-18 2013-01-22 Abbott Medical Optics Inc. Mark for intraocular lenses
US20110118836A1 (en) * 2009-11-18 2011-05-19 Abbott Medical Optics Inc. Mark for intraocular lenses
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
FR2954720A1 (en) * 2009-12-24 2011-07-01 Commissariat Energie Atomique Laser welding with total penetration of first part with a second part having high thickness, using a focused laser beam, where a sealed vapor gap and a lath are provided at the ends of the first and the second parts
US8884184B2 (en) 2010-08-12 2014-11-11 Raydiance, Inc. Polymer tubing laser micromachining
US8556511B2 (en) 2010-09-08 2013-10-15 Abbott Cardiovascular Systems, Inc. Fluid bearing to support stent tubing during laser cutting
US9114482B2 (en) 2010-09-16 2015-08-25 Raydiance, Inc. Laser based processing of layered materials
US20140030671A1 (en) * 2011-06-01 2014-01-30 Hamamatsu Photonics K.K. Dental therapy apparatus
WO2012178054A1 (en) 2011-06-23 2012-12-27 Amo Development, Llc Ophthalmic range finding
EP3001944A1 (en) 2011-06-23 2016-04-06 AMO Development, LLC Ophthalmic range finding
US9521949B2 (en) 2011-06-23 2016-12-20 Amo Development, Llc Ophthalmic range finding
US9603519B2 (en) 2011-06-23 2017-03-28 Amo Development, Llc Ophthalmic range finding
US9815141B2 (en) 2011-12-07 2017-11-14 General Atomics Methods and systems for use in laser machining
WO2013126653A1 (en) 2012-02-22 2013-08-29 Amo Development, Llc Preformed lens systems and methods
US8842358B2 (en) 2012-08-01 2014-09-23 Gentex Corporation Apparatus, method, and process with laser induced channel edge
US9537042B2 (en) 2013-02-21 2017-01-03 Nlight, Inc. Non-ablative laser patterning
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
US9359252B1 (en) 2015-07-24 2016-06-07 Corning Incorporated Methods for controlled laser-induced growth of glass bumps on glass articles
US9650292B2 (en) 2015-07-24 2017-05-16 Corning Incorporated Methods for controlled laser-induced growth of glass bumps on glass articles
US9714194B2 (en) 2015-07-24 2017-07-25 Corning Incorporated Methods for controlled laser-induced growth of glass bumps on glass articles

Also Published As

Publication number Publication date Type
CA2186451C (en) 2009-06-02 grant
JP2002205179A (en) 2002-07-23 application
WO1995027587A1 (en) 1995-10-19 application
JP3824522B2 (en) 2006-09-20 grant
DE69500997D1 (en) 1997-12-11 grant
EP0754103B1 (en) 1997-11-05 grant
JP3283265B2 (en) 2002-05-20 grant
CA2186451A1 (en) 1995-10-19 application
EP0754103A1 (en) 1997-01-22 application
US5656186A (en) 1997-08-12 grant
DE69500997T2 (en) 1998-04-30 grant
JPH09511688A (en) 1997-11-25 application

Similar Documents

Publication Publication Date Title
Meyerand Jr et al. Optical-energy absorption and high-density plasma production
Stuart et al. Optical ablation by high-power short-pulse lasers
Vogel et al. Plasma formation in water by picosecond and nanosecond Nd: YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance
Russo et al. Influence of wavelength on fractionation in laser ablation ICP-MS
US7351241B2 (en) Method and apparatus for precision working of material
Russo et al. Femtosecond laser ablation ICP-MS
US4522656A (en) Method of making reference surface markings on semiconductor wafers by laser beam
US4114018A (en) Method for ablating metal workpieces with laser radiation
US20040134896A1 (en) Laser-based method and system for memory link processing with picosecond lasers
Knowles et al. Micro-machining of metals, ceramics and polymers using nanosecond lasers
US6534743B2 (en) Resistor trimming with small uniform spot from solid-state UV laser
US6303901B1 (en) Method to reduce damage to backing plate
US6208458B1 (en) Quasi-phase-matched parametric chirped pulse amplification systems
Korte et al. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses
Stuart et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses
US4925523A (en) Enhancement of ultraviolet laser ablation and etching organic solids
US20030226833A1 (en) Laser cutting of stents and other medical devices
US6054673A (en) Method and apparatus for laser drilling
Feng et al. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses
US6210401B1 (en) Method of, and apparatus for, surgery of the cornea
US6359254B1 (en) Method for producing shaped hole in a structure
Van Stryland et al. Pulse-width and focal-volume dependence of laser-induced breakdown
Loesel et al. Non-thermal ablation of neural tissue with femtosecond laser pulses
US6864459B2 (en) High precision, rapid laser hole drilling
US6327875B1 (en) Control of median crack depth in laser scoring

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:INTRALASE CORP.;REEL/FRAME:013705/0441

Effective date: 20021231

RR Request for reexamination filed

Effective date: 20040625

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

AS Assignment

Owner name: INTRALASE CORPORATION, CALIFORNIA

Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:018711/0119

Effective date: 20061208

B1 Reexamination certificate first reexamination

Free format text: CLAIMS 6 AND 11 ARE CANCELLED. CLAIMS 1, 3, 4, 7, 24, 33, 35, 36, 37, 42-44, 46, 48 AND 50-54 ARE DETERMINED TO BE PATENTABLE AS AMENDED. CLAIMS 2, 5, 8-10, 12-23, 25-32, 34, 38-41, 45, 47 AND 49, DEPENDENT ON AN AMENDED CLAIM, ARE DETERMINED TO BE PATENTABLE. NEW CLAIMS 55-64 ARE ADDED AND DETERMINED TO BE PATENTABLE.

AS Assignment

Owner name: AMO DEVELOPMENT, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:INTRALASE CORP.;REEL/FRAME:020309/0349

Effective date: 20080101

AS Assignment

Owner name: AMO DEVELOPMENT, LLC, CALIFORNIA

Free format text: CORRECT AN ERROR IN A COVER SHEET PREVIOUSLY RECORDED AT REEL/FRAME 0203009/0349, NAMELY TO DELETE U.S. PATENT NO. 5656186 AND RE37585.;ASSIGNOR:INTRALASE CORP.;REEL/FRAME:020550/0216

Effective date: 20080101

AS Assignment

Owner name: AMO DEVELOPMENT, LLC, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE U.S. PATENT NO. 5466233 WAS INCORRECTLY ASSIGNED TO AMO DEVELOPMENT, LLC PREVIOUSLY RECORDED ON REEL 020309 FRAME 0349;ASSIGNOR:INTRALASE CORP.;REEL/FRAME:020679/0026

Effective date: 20080101

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 12

REMI Maintenance fee reminder mailed