USRE37458E1 - Hydro-mechanical transmission - Google Patents
Hydro-mechanical transmission Download PDFInfo
- Publication number
- USRE37458E1 USRE37458E1 US09/496,181 US49618100A USRE37458E US RE37458 E1 USRE37458 E1 US RE37458E1 US 49618100 A US49618100 A US 49618100A US RE37458 E USRE37458 E US RE37458E
- Authority
- US
- United States
- Prior art keywords
- output shaft
- speed
- coupled
- input shaft
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H47/00—Combinations of mechanical gearing with fluid clutches or fluid gearing
- F16H47/02—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
- F16H47/04—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/20—Off-Road Vehicles
- B60Y2200/22—Agricultural vehicles
- B60Y2200/222—Harvesters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0833—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
- F16H37/084—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
- F16H2037/088—Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0833—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
- F16H37/084—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
- F16H2037/088—Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
- F16H2037/0886—Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
- F16H59/38—Inputs being a function of speed of gearing elements
- F16H59/40—Output shaft speed
Definitions
- the present invention relates to an improved transmission of the type including a combination of hydrostatic (fluid) and mechanical drives. More specifically, the present invention relates to a transmission which may transmit power solely through the hydrostatic portion of the transmission, solely through the geared portion of the transmission, or in combination through both the hydrostatic and geared portions of the transmission.
- hydrostatic transmissions and geared transmissions are used in agricultural and construction equipment to transmit power from engines to equipment for accomplishing a desired task.
- transmissions are used to properly transmit power to the wheels of a vehicle, or to a vehicle implement such as a rotor on an agricultural combine.
- a geared transmission or a hydrostatic transmission will provide the best performance for all of the transmission requirements.
- Two important considerations in selecting transmissions are their efficiency and range of input and output speed variability.
- hydrostatic transmissions provide extremely high speed variability between the input and output, but are less efficient than geared transmissions.
- the present invention provides a hydro-mechanical transmission.
- the transmission includes a clutch rotatably supported by a housing.
- the clutch includes a first input shaft, a second input shaft and a first output shaft, and is configured to selectively couple the output shaft to the first and second input shafts.
- the transmission also includes a motor coupled to the second input shaft, and a differential assembly coupled to the first output shaft.
- the differential assembly is rotatably supported by the housing, and includes a third input shaft coupled to the first output shaft, a fourth input shaft coupled to the motor, and second output shaft.
- the speed of the second output shaft is a combination of the speeds of the third and fourth input shafts.
- the present invention also provides a method for increasing the speed of the output of the hydro-mechanical transmission.
- the method includes the steps of operating the first input shaft at a first rotational speed, operating the clutch to couple only the second input shaft with the first output shaft, and increasing the rotational speed of the motor to a speed which rotates the second output shaft at a second rotational speed such that the ratio of the first and second rotational speeds is within a predetermined range of a predetermined ratio. After the ratio of the first and second rotational speeds is within the predetermined range, the clutch is operated to couple the first input shaft with the first output shaft.
- the present invention further provides a threshing system for a combine including a clutch having a first input shaft, a second input shaft and a first output shaft.
- the clutch is configured to selectively couple the output shaft to the first and second input shafts.
- the system also includes a hydraulic motor coupled to the second input shaft and a differential assembly.
- the differential assembly includes a third input shaft coupled to the first output shaft, a fourth input shaft coupled to the motor, and a second output shaft.
- the speed of the second output shaft is a combination of the speeds of the third and fourth input shafts.
- the system also includes an internal combustion engine coupled to the first input shaft, a hydraulic pump coupled to the engine and in fluid communication with the hydraulic motor, and a threshing rotor coupled to the second output shaft.
- the present invention still further provides a method for increasing the speed of the rotor of the threshing system.
- the method includes the steps of operating the first input shaft at a first rotational speed defined by the speed of the engine, operating the clutch to couple only the second input shaft with the first output shaft, and increasing the rotational speed of the motor to a speed which rotates the rotor at a second rotational speed such that the ratio of the first and second rotational speeds is within a predetermined range of a predetermined ratio. After the ratio of the first and second rotational speeds is within the predetermined range, the clutch is operated to couple the first input shaft with the first output shaft.
- FIG. 1 is a schematic block diagram of a transmission connected to a rotor of a combine
- FIG. 2 is a schematic block diagram of a control circuit of the combine shown in FIG. 1 .
- FIG. 3 is a flowchart of a method of operating the transmission of FIGS. 1 and 2 .
- FIG. 1 is a schematic diagram of a vehicle, such as an agricultural combine, designated by the reference numeral 10 .
- Combine 10 includes an engine 12 mechanically coupled to a hydro-mechanical transmission 14 .
- Hydro-mechanical transmission 14 selectively drives a differential assembly 16 at various gear ratios, as commanded by an operator and controlled by a control circuit 18 .
- Differential assembly 16 drives a multi-speed gear transmission 20 which in turn drives a portion of an agricultural implement, such as a rotor 22 .
- Hydro-mechanical transmission 14 is supported in combine 10 by a housing or support frame 24 .
- Hydro-mechanical transmission 14 includes a motor 26 , a pump 28 , a clutch assembly 30 and differential assembly 16 .
- Motor 26 is a hydraulic motor
- pump 28 is preferably an electronically controlled variable displacement hydraulic pump. By changing the volume in pump 28 for a fixed pump input speed, pump 28 controls the speed of motor 26 .
- Hydrostatic pump 28 and motor 26 are operated in a closed circuit and connected to one another by hydraulic lines 34 and appropriate fluid filters and storage tanks (not shown) as required.
- Clutch 30 of hydro-mechanical transmission 14 is rotatably supported relative to housing 24 by an input shaft 36 and an output shaft 40 .
- Input shaft 36 is rotatably supported by bearings 70 and 72
- output shaft 40 is rotatably supported by bearings 76 and 78 .
- Clutch 30 has two input shafts 36 and 38 .
- First input shaft 36 is coupled to engine 12 and to pump 28 .
- a shaft 84 extends from pump 28 and is rotatably supported by bearings 86 and 88 .
- Shaft 84 rotates a gear 90 .
- Gear 90 meshes with a gear 92 mounted on first input shaft 36 , thereby enabling pump 28 to drive first input shaft 36 .
- Second input shaft 38 of clutch 30 is supported by bearing 74 and coupled to motor 26 .
- Extending from motor 26 is a shaft 94 which is rotatably supported by bearings 96 and 98 .
- Shaft 94 rotates a gear 100 which meshes with a gear 102 .
- Gear 102 is coupled to a shaft 104 which is rotatably supported by bearing 106 .
- Gear 102 also meshes with a gear 105 mounted on second input shaft 38 .
- motor 26 may rotate second input shaft 38 .
- Clutch 30 has output shaft 40 which may be selectively engaged to either first input shaft 36 or second input shaft 38 . As will be discussed in further detail below, output shaft 40 may be engaged either to first input shaft 36 by turning on a hydro-mechanical clutch 112 or to second input shaft 38 by turning on a hydrostatic clutch 114 . When output shaft 40 is coupled to first input shaft 36 , clutch 30 is driven by engine 12 . When output shaft 40 is coupled to second input shaft 38 , clutch 30 is driven by motor 26 .
- Differential assembly 16 has a first input shaft 42 which is the same as or coupled to output shaft 40 of clutch 30 .
- differential assembly 16 may be a planetary gear arrangement including a ring gear 44 , a plurality of planetary gears 46 supported by a shaft 52 and a sun gear 48 .
- First input shaft 42 of differential assembly 16 is coupled to ring gear 44 .
- Differential assembly 16 also has a second input shaft 50 which rotates on bearing 106 .
- Second input shaft 50 couples motor 26 to sun gear 48 .
- Shaft 94 which extends from motor 26 also rotates a gear 108 .
- Gear 108 meshes with a gear 110 mounted on second input shaft 50 of differential assembly.
- motor 26 may rotate second input shaft 50 of differential assembly 16 .
- Output shaft 52 of differential assembly 16 is rotatably supported by bearing 116 and rotates at a speed which is a combination of the speeds of first and second input shafts 42 and 50 , respectively, of differential assembly 16 .
- a speed which is a combination of the speeds of first and second input shafts 42 and 50 , respectively, of differential assembly 16 .
- 0.728 times the speed of shaft 42 plus 0.272 times the speed of shaft 50 equals the speed of shaft 52 .
- Output shaft 52 may drive wheels on an axle (not shown) of vehicle 10 or an agricultural implement, such as motor 22 as shown.
- output shaft 52 of differential assembly 16 is coupled to a multi-speed transmission 20 which in turn drives rotor 22 .
- multi-speed transmission 20 e.g., four speed
- multi-speed transmission 20 may be any one of a number of types of transmissions, including synchronous power shaft, jaw clutch and standard gearbox transmissions.
- combine 10 also includes a control circuit 18 .
- Control circuit 18 has a system control 54 for controlling the speed of shaft 52 connected to multi-speed transmission 20 which in turn rotates rotor 22 .
- Combine rotor 22 is used to harvest different crops, including corn, oats, wheat, soybeans and rice. The optimal rotor speed for harvesting depends on the type of crop to be harvested as well as other conditions, such as the amount of moisture and the volume of the crop.
- Control circuit 18 includes an input speed transducer 56 which monitors the rotational speed of first input shaft 36 of clutch 30 and an output speed transducer 58 which monitors the rotational speed of output shaft 52 of differential assembly 16 .
- Control circuit 18 is connected to clutch 30 via a clutch actuating circuit 60 and clutch actuating assembly 31 , so that system control 54 can regulate the engagement of output shaft 40 to first and second input shafts 36 and 38 , respectively.
- system control 54 may engage output shaft 40 with respective input shafts 36 and 38 .
- clutch actuating circuit 60 includes a hydraulic circuit 62 , a solenoid operated valve arrangement 64 , and hydraulic fluid source 32 .
- Circuit 62 is coupled to clutch 30 to engage and disengage output shaft 40 from first and second input shafts 36 and 38 , respectively.
- Arrangement 64 may be pulse width modulated valves controlled by signals applied to arrangement 64 by system control 54 via a signal bus 80 .
- control circuit 18 regulates the speed of motor 26 by applying appropriate control signals or speed signals to pump 28 via signal bus 82 to maintain a predetermined speed for output shaft 52 of differential assembly 16 or to maintain a predetermined speed difference between first input shaft 36 of clutch 30 and output shaft 52 .
- hydro-mechanical transmission 14 preferably operates as follows.
- pump 28 and first input shaft 36 are powered and rotated at a first rotational speed at a step 200 .
- First input shaft 36 is initially disengaged from clutch 30 , and shaft 94 of motor 26 is coupled to shaft 40 through the intervening drive train elements and clutch 30 at a step 202 .
- the speed of motor 26 is increased by increasing the displacement of pump 28 until the ratio of the rotational speeds of shafts 36 and 52 is within a predetermined range of a predetermined ratio at a step 204 .
- clutch 30 may be disengaged from second input shaft 38 and engaged to first input shaft 36 at a step 206 .
- shaft 38 disengaged, varying the speed of motor 26 enables hydro-mechanical transmission 14 to change the speed of shaft 52 without altering the speed of engine 12 .
- hydro-mechanical transmission 14 greater variability in speed is available, allowing combine 10 to harvest crops more efficiently by controlling the speed of rotor 22 more precisely.
- Hydro-mechanical transmission 14 therefore, has several benefits.
- Rotor 22 may be accelerated from start-up to an operating speed in any gear without the use of a slipping, high energy clutch.
- Rotor 22 may also be reversed and forwarded at high torque without using a high energy clutch.
- since braking is accomplished hydrostatically, within a certain range rotor 22 may be decelerated without the need for brakes.
- transmission 20 is of the type which can be electronically shifted control 54 can be configured to control shifting and gear synchronization, if necessary, speed matching (hydrostatic synchronization).
- the shift between the pure hydrostatic mode and the hydro-mechanical mode may be made at synchronism without torque interruption.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Harvester Elements (AREA)
- Structure Of Transmissions (AREA)
- Motor Power Transmission Devices (AREA)
Abstract
Description
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/496,181 USRE37458E1 (en) | 1997-05-01 | 2000-01-31 | Hydro-mechanical transmission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/847,195 US5865700A (en) | 1997-05-01 | 1997-05-01 | Hydro-mechanical transmission |
US09/496,181 USRE37458E1 (en) | 1997-05-01 | 2000-01-31 | Hydro-mechanical transmission |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/847,195 Reissue US5865700A (en) | 1997-05-01 | 1997-05-01 | Hydro-mechanical transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37458E1 true USRE37458E1 (en) | 2001-11-27 |
Family
ID=25300034
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/847,195 Ceased US5865700A (en) | 1997-05-01 | 1997-05-01 | Hydro-mechanical transmission |
US09/496,181 Expired - Lifetime USRE37458E1 (en) | 1997-05-01 | 2000-01-31 | Hydro-mechanical transmission |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/847,195 Ceased US5865700A (en) | 1997-05-01 | 1997-05-01 | Hydro-mechanical transmission |
Country Status (5)
Country | Link |
---|---|
US (2) | US5865700A (en) |
EP (1) | EP0979364A1 (en) |
AU (1) | AU741373B2 (en) |
BR (1) | BR9815468A (en) |
WO (1) | WO1998049471A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040163373A1 (en) * | 2003-02-12 | 2004-08-26 | Adams G. Michael | Blade and ground speed control system |
US20050172593A1 (en) * | 2004-01-14 | 2005-08-11 | Aziz Talbi | Dual power path drive for a rotating threshing rotor of an agricultural combine and method for decelerating the rotor |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9915635A (en) * | 1998-11-24 | 2004-06-22 | Folsom Technologies Inc | Parallel hydromechanical transmission of propulsion |
US6056657A (en) * | 1999-06-11 | 2000-05-02 | Caterpillar Inc. | Control strategy for optimizing multi-range hydro-mechanical transmission |
US6247295B1 (en) | 1999-10-28 | 2001-06-19 | New Holland North America, Inc. | Hydro-mechanical transmission system for an agricultural combine |
DE10047402A1 (en) | 2000-09-26 | 2002-04-11 | Deere & Co | Hydrostatic device for a hydrostatic-mechanical power split transmission |
US6565471B2 (en) | 2000-12-19 | 2003-05-20 | Case Corporation | Continuously variable hydro-mechanical transmission |
US6609368B2 (en) | 2001-06-04 | 2003-08-26 | Caterpillar S.A.R.L. | Automatic downshift and override control for a transmission |
US6666007B2 (en) * | 2001-12-12 | 2003-12-23 | Case Corporation | Hydro-mechanical variable speed feeder/header drive for an agricultural combine |
US6775966B2 (en) | 2001-12-18 | 2004-08-17 | New Holland North America, Inc. | Integrated combine reel drive system |
US6984171B2 (en) | 2002-07-19 | 2006-01-10 | Cnh America Llc | Hydro-mechanical threshing rotor control system for an agricultural combine |
US6726560B2 (en) * | 2002-07-19 | 2004-04-27 | Cnh America Llc | Dual power path drive for a rotating threshing rotor of an agricultural combine and method for re-engaging the same |
DE60310317T2 (en) * | 2002-07-19 | 2007-05-24 | Cnh Belgium N.V. | Method for re-engaging a two-way drive for a combine harvester drum |
US7213389B2 (en) * | 2004-03-02 | 2007-05-08 | Deere & Company | Infinitely variable transmission for a combine header unit |
US7427231B2 (en) * | 2005-01-14 | 2008-09-23 | Cnh America Llc | Motor overspeed detection |
US7186201B2 (en) * | 2005-02-04 | 2007-03-06 | Cnh America Llc | Active combine rotor deceleration |
US7632179B2 (en) | 2005-08-01 | 2009-12-15 | Cnh America Llc | System and method for detecting combine rotor slugging |
US7310943B2 (en) * | 2005-12-09 | 2007-12-25 | Deere & Company | Hydrostatic transmission controls with alternative operating modes |
WO2008019799A2 (en) * | 2006-08-16 | 2008-02-21 | Robert Bosch Gmbh | Power split transmission and method for changing between drive modes |
GB201109970D0 (en) * | 2011-06-14 | 2011-07-27 | Valtra Oy Ab | Continuously variable power-split vehicle transmission |
DE102019213353A1 (en) * | 2019-09-03 | 2021-03-04 | Deere & Company | Drive system for a harvesting machine |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396607A (en) * | 1966-02-21 | 1968-08-13 | Sundstrand Corp | Hydrostatic transmission |
US3714846A (en) | 1971-02-23 | 1973-02-06 | Sundstrand Corp | Hydrostatic-differential transmission |
US3744344A (en) | 1970-12-07 | 1973-07-10 | White Motor Corp | Control system for transmission |
US3796111A (en) | 1971-08-18 | 1974-03-12 | Sundstrand Corp | Hydromechanical multi-range transmission |
US3903756A (en) | 1973-02-14 | 1975-09-09 | Zahnradfabrik Friedrichshafen | Hydromechanical transmission |
US4019404A (en) | 1975-03-21 | 1977-04-26 | Sundstrand Corporation | Power transmission |
US4138907A (en) | 1975-08-04 | 1979-02-13 | International Harvester Company | Hydromechanical transmission with overspeed limited variable drive |
US4259881A (en) | 1977-12-29 | 1981-04-07 | Zahnradfabrik Friedrichshafen Ag | Hydromechanical load-splitting drive |
US4348855A (en) * | 1980-09-22 | 1982-09-14 | International Harvester Company | Crop damage responsive control of rotor speed |
US4471668A (en) | 1980-07-10 | 1984-09-18 | Voith Getriebe Kg | Drive assembly with a prime mover and a flywheel |
US4487002A (en) * | 1981-07-17 | 1984-12-11 | Gary W. Krutz | Automatic ground speed controller |
US4694648A (en) * | 1982-12-13 | 1987-09-22 | Sundstrand Corporation | Anti-plug control |
US4913004A (en) | 1988-10-11 | 1990-04-03 | J. I. Case Company | Electronic powershift control system for an implement transmission |
US5024278A (en) | 1990-02-09 | 1991-06-18 | Lee Shuknecht & Sons, Inc. | Harvesting machine having blower damage prevention means |
EP0444472A2 (en) * | 1990-02-13 | 1991-09-04 | Michael Meyerle | Control system, particularly for motor vehicle |
DE4311084C1 (en) * | 1993-04-03 | 1994-09-22 | Man Nutzfahrzeuge Ag | Drive device of a vehicle |
US5494142A (en) | 1994-08-01 | 1996-02-27 | Case Corporation | Power take off clutch engagement control system |
US5505267A (en) | 1994-11-14 | 1996-04-09 | Case Corporation | Differential lock control system for agricultural vehicles |
US5549185A (en) | 1994-08-01 | 1996-08-27 | Case Corporation | Power take off torque limiting control system |
US5667452A (en) | 1995-04-06 | 1997-09-16 | Caterpillar Inc. | Split torque transmission |
US5873227A (en) | 1997-11-04 | 1999-02-23 | Agco Corporation | Combine harvester rotor speed control and control method |
-
1997
- 1997-05-01 US US08/847,195 patent/US5865700A/en not_active Ceased
-
1998
- 1998-04-30 WO PCT/US1998/008712 patent/WO1998049471A1/en not_active Application Discontinuation
- 1998-04-30 BR BR9815468-0A patent/BR9815468A/en not_active IP Right Cessation
- 1998-04-30 EP EP98920032A patent/EP0979364A1/en not_active Withdrawn
- 1998-04-30 AU AU72689/98A patent/AU741373B2/en not_active Ceased
-
2000
- 2000-01-31 US US09/496,181 patent/USRE37458E1/en not_active Expired - Lifetime
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396607A (en) * | 1966-02-21 | 1968-08-13 | Sundstrand Corp | Hydrostatic transmission |
US3744344A (en) | 1970-12-07 | 1973-07-10 | White Motor Corp | Control system for transmission |
US3714846A (en) | 1971-02-23 | 1973-02-06 | Sundstrand Corp | Hydrostatic-differential transmission |
US3796111A (en) | 1971-08-18 | 1974-03-12 | Sundstrand Corp | Hydromechanical multi-range transmission |
US3903756A (en) | 1973-02-14 | 1975-09-09 | Zahnradfabrik Friedrichshafen | Hydromechanical transmission |
US4019404A (en) | 1975-03-21 | 1977-04-26 | Sundstrand Corporation | Power transmission |
US4138907A (en) | 1975-08-04 | 1979-02-13 | International Harvester Company | Hydromechanical transmission with overspeed limited variable drive |
US4259881A (en) | 1977-12-29 | 1981-04-07 | Zahnradfabrik Friedrichshafen Ag | Hydromechanical load-splitting drive |
US4471668A (en) | 1980-07-10 | 1984-09-18 | Voith Getriebe Kg | Drive assembly with a prime mover and a flywheel |
US4348855A (en) * | 1980-09-22 | 1982-09-14 | International Harvester Company | Crop damage responsive control of rotor speed |
US4487002A (en) * | 1981-07-17 | 1984-12-11 | Gary W. Krutz | Automatic ground speed controller |
US4694648A (en) * | 1982-12-13 | 1987-09-22 | Sundstrand Corporation | Anti-plug control |
US4913004A (en) | 1988-10-11 | 1990-04-03 | J. I. Case Company | Electronic powershift control system for an implement transmission |
US5024278A (en) | 1990-02-09 | 1991-06-18 | Lee Shuknecht & Sons, Inc. | Harvesting machine having blower damage prevention means |
EP0444472A2 (en) * | 1990-02-13 | 1991-09-04 | Michael Meyerle | Control system, particularly for motor vehicle |
DE4311084C1 (en) * | 1993-04-03 | 1994-09-22 | Man Nutzfahrzeuge Ag | Drive device of a vehicle |
US5494142A (en) | 1994-08-01 | 1996-02-27 | Case Corporation | Power take off clutch engagement control system |
US5549185A (en) | 1994-08-01 | 1996-08-27 | Case Corporation | Power take off torque limiting control system |
US5505267A (en) | 1994-11-14 | 1996-04-09 | Case Corporation | Differential lock control system for agricultural vehicles |
US5667452A (en) | 1995-04-06 | 1997-09-16 | Caterpillar Inc. | Split torque transmission |
US5873227A (en) | 1997-11-04 | 1999-02-23 | Agco Corporation | Combine harvester rotor speed control and control method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040163373A1 (en) * | 2003-02-12 | 2004-08-26 | Adams G. Michael | Blade and ground speed control system |
US6892517B2 (en) | 2003-02-12 | 2005-05-17 | Tecumseh Products Company | Blade and ground speed control system |
US20050166565A1 (en) * | 2003-02-12 | 2005-08-04 | Adams G. M. | Blade and ground speed control system |
US7275355B2 (en) | 2003-02-12 | 2007-10-02 | Tecumseh Products Company | Blade and ground speed control system |
US20050172593A1 (en) * | 2004-01-14 | 2005-08-11 | Aziz Talbi | Dual power path drive for a rotating threshing rotor of an agricultural combine and method for decelerating the rotor |
US6984172B2 (en) * | 2004-01-14 | 2006-01-10 | Cnh America Llc | Dual power path drive for a rotating threshing rotor of an agricultural combine and method for decelerating the rotor |
Also Published As
Publication number | Publication date |
---|---|
AU7268998A (en) | 1998-11-24 |
BR9815468A (en) | 2001-08-21 |
AU741373B2 (en) | 2001-11-29 |
US5865700A (en) | 1999-02-02 |
WO1998049471A1 (en) | 1998-11-05 |
EP0979364A1 (en) | 2000-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37458E1 (en) | Hydro-mechanical transmission | |
US4286477A (en) | Steplessly adjustable variable-speed hydrostatic-mechanical composite transmission | |
US6440026B1 (en) | Hydro-mechanical transmission | |
US10336187B2 (en) | Planetary power take off device | |
US6852056B2 (en) | Continuously variable hydro-mechanical transmission | |
US6761658B1 (en) | Four mode hydro-mechanical transmission | |
US5730676A (en) | Three-mode, input-split hybrid transmission | |
US4392393A (en) | Dual engine drive | |
US8696509B2 (en) | Power split transmission | |
EP1340643B1 (en) | Vehicle transmission with a fuel cell power source and a multi-range transmission | |
AU2001284058A1 (en) | Hydro-mechanical transmission | |
JPH06174055A (en) | Oil pump drive device in transmission | |
US6561942B2 (en) | Dual mode variable ratio transmission | |
US6527660B1 (en) | Method and apparatus to transfer torque at a nominally constant speed to a dynamoelectric machine from a variable speed engine | |
US4637275A (en) | Torque feedback transmission | |
US6338689B1 (en) | Hydromechanical transmission | |
US4429593A (en) | Full range hydromechanical transmission | |
US20040154845A1 (en) | Electro-mechanical powertrain with a fuel cell transmission | |
US4858493A (en) | Multi-range, dissipative, infinitely variable ratio transmission | |
GB2431441A (en) | Infinitely variable transmission with speed changing electric motor | |
EP0040904B1 (en) | Planetary gear assembly and application thereof | |
JPH04285354A (en) | Transmission for vehicle | |
CA2475453A1 (en) | Transmission with minimal orbiter | |
EP3420248A1 (en) | A transmission system for a vehicle | |
GB2039638A (en) | Hydro-mechanical variable-speed gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: CNH AMERICA LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CASE CORPORATION;REEL/FRAME:014981/0944 Effective date: 20040805 |
|
AS | Assignment |
Owner name: BLUE LEAF I.P., INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CNH AMERICA LLC;REEL/FRAME:017730/0530 Effective date: 20060606 Owner name: CNH AMERICA LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CNH AMERICA LLC;REEL/FRAME:017730/0530 Effective date: 20060606 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |