USRE36902E - Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking - Google Patents

Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking Download PDF

Info

Publication number
USRE36902E
USRE36902E US09/405,635 US40563599A USRE36902E US RE36902 E USRE36902 E US RE36902E US 40563599 A US40563599 A US 40563599A US RE36902 E USRE36902 E US RE36902E
Authority
US
United States
Prior art keywords
parts
weight
alkyl
styrene
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/405,635
Inventor
Thomas Eckel
Dieter Wittmann
Manfred Oller
Heinrich Alberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6496038&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE36902(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Priority to US09/405,635 priority Critical patent/USRE36902E/en
Application granted granted Critical
Publication of USRE36902E publication Critical patent/USRE36902E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus

Definitions

  • the present invention relates to flame resistant polycarbonate/ABS moulding compounds whose stress cracking resistance is substantially improved by a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound.
  • EP-A 0 174 493 (U.S. Pat. No. 4,983,658) describes flameproofed polymer blends containing halogen prepared from an aromatic polycarbonate, a graft copolymer containing styrene, monophosphates and a special polytetrafluoroethylene formulation. While these blends do indeed have adequate fire behaviour and mechanical properties, they may be deficient in stress cracking resistance.
  • U.S. Pat. No. 5,030,675 describes flame resistant, thermoplastic moulding compounds prepared from an aromatic polycarbonate, ABS polymer, polyalkylene terephthalate together with monophosphates and fluorinated polyolefins as flame retardants.
  • Good stress cracking resistance is accompanied by deficiencies in notched impact strength, together with unsatisfactory thermal stability when exposed to elevated temperatures, such as for example during processing.
  • Diphosphates are known as flame retardants.
  • JA 59 202 240 describes the production of such a product from phosphorus oxychloride, diphenols such as hydroquinone or bisphenol A and monophenols such as phenol or cresol. These diphosphates may be used as flame retardants in polyamide or polycarbonate.
  • this publication contains no indication of any improvement in stress cracking resistance by adding the oligomeric phosphate to polycarbonate moulding compounds in conjunction with polyalkylene terephthalates.
  • flame resistant polycarbonate/ABS moulding compounds with excellent stress cracking resistance may be produced if a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound is added.
  • Particularly elevated stress cracking resistance is achieved if the ratio by weight of the monophosphorus compound to the oligomeric phosphorus compound is within the range 90:10 to 10:90.
  • These moulding compounds are particularly suitable for the production of thin-walled mouldings (computer equipment casing parts), where elevated processing temperatures and pressures result in the exposure of the material used to considerable stress.
  • the present invention provides flame resistant, thermoplastic moulding compounds prepared from
  • B.1 50 to 98, preferably 60 to 95 parts by weight of styrene, ⁇ -methylstyrene, ring-substituted styrenes, C 1 -C 8 alkyl methacrylates, C 1 -C 8 alkyl acrylates or mixtures thereof and
  • B.2 50 to 2, preferably 40 to 5 parts by weight of acrylonitrile, methacrylonitrile, C 1 -C 8 alkyl methacrylates, C 1 -C 8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof,
  • D.1) 10 to 90 wt. %, preferably 12 to 50, in particular 14 to 40 wt. %, very particular 15 to 40 wt. % (related to the total quantity of D) of a monophosphorus compound of the formula (I) ##STR3## in which R 1 , R 2 and R 3 mutually independently mean optionally halogenated C 1 -C 8 alkyl, C 6 -C 20 aryl or C 7 -C 12 aralkyl
  • n 0 or 1
  • n 0 or 1
  • D.2 90 to 10 wt. %, preferably 88 to 50, in particular 86 to 60 wt. %, very particular 85 to 60 wt. % (related to the total amount of D) of an oligomeric phosphorus compound of the formula (II) ##STR4## in which R 4 , R 5 , R 6 , R 7 mutually independently mean C 1 -C 8 alkyl, C 5 -C 6 cycloalkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl,
  • n mutually independently mean 0 or 1
  • X means a mono- or polycyclic aromatic residue with 6 to 30 C atoms
  • thermoplastic, aromatic polycarbonates are those based on diphenols of the formula (III) ##STR5## in which A is a single bond, C 1 -C 5 alkylene, C 2 -C 5 alkylidene, C 5 -C 6 cycloalkylidene, --S-- or --SO 2 --,
  • B is chlorine, bromine
  • p 1 or 0
  • R 8 and R 9 mutually independently mean hydrogen, halogen, preferably chlorine or bromine, C 1 -C 8 alkyl, C 5 -C 6
  • cycloalkyl C 6 -C 10 aryl, preferably phenyl, and C 7 -C 12 aralkyl, preferably phenyl-C 1 -C 4 -alkyl, in particular benzyl,
  • n means an integer of 4, 5, 6 or 7, preferably 4 or 5,
  • R 10 and R 11 mean, individually selectable for each Z, and mutually independently hydrogen or C 1 -C 6 alkyl
  • Z means carbon, provided that on at least one Z atom, R 10 and R 11 simultaneously mean alkyl.
  • Suitable diphenols of the formula (III) are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis-(4-hydroxyphenyl) propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 2,2-bis-(3-chloro-4-hydroxyphenyl) propane, 2,2-bis -(3,5-dibromo-4-hydroxyphenyl)propane.
  • Preferred diphenols of the formula (III) are 2,2bis-(4-hydroxyphenyl)propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis-(4-hydroxyphenyl)cyclohexane.
  • Preferred diphenols of the formula (IV) are 1,1-bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentane.
  • Both homopolycarbonates and copolycarbonates are suitable polycarbonates according to the invention.
  • Component A may also be a blend of the thermoplastic polycarbonates specified above.
  • Polycarbonates may be produced in a known manner from diphenols with phosgene using the phase interface process or with phosgene using the homogeneous phase process, the so-called pyridine process, wherein molecular weight may be adjusted in a known manner with an appropriate quantity of known chain terminators.
  • Suitable chain terminators are, for example, not only phenol, p-chlorophenol, p-tert.-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2 842 005 (Le A 19 006) or monoalkylphenol or dialkylphenol with a total of 8 to 20 C atoms in the alkyl substituents according to German patent application P 3 506 472.2 (Le A 23 654), such as 3,5-di-tert.-butylphenol, p-iso-octylphenol, p-tert.-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol.
  • long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2
  • the quantity of chain terminators is in general between 0.5 and 10 mol. %, related to the sum of the diphenols of the formulae (III) and/or (IV) used in each case.
  • Suitable polycarbonates A according to the invention have average molecular weights (M w , weight average measured for example by ultracentrifugation or light scattering) of 10,000 to 200,000, preferably of 20,000 to 80,000.
  • Suitable polycarbonates A according to the invention may be branched in a known manner, in particular preferably by incorporation 0.05 to 2 mol. %, related to total quantity of diphenols used, of tri- or higher functional compounds, for example those with three or more phenolic groups.
  • preferred polycarbonates are copolycarbonates of bisphenol A with up to 15 mol. %, related to the total molar quantities of diphenols, of 2,2-bis-(3,5-dibromo-4-hydroxylphenyl) propane and the copolycarbonates of bisphenol A with up to 60 mol. %, related to the total molar quantities of diphenols, of 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane.
  • the polycarbonates A may be partially or entirely replaced with aromatic polyester-carbonates.
  • Component B vinyl copolymers which may be used according to the invention are those prepared from at least one monomer of the group: styrene, ⁇ -methylstyrene and/or ring-substituted styrenes, C 1 -C 8 alkyl methacrylate, C 1 -C 8 alkyl acrylate (B.1) with at least one monomer from the group: acrylonitrile, methacrylonitrile, C 1 -C 8 alkyl methacrylate, C 1 -C 8 alkyl acrylate, maleic anhydride and/or N-substituted maleimide (B.2).
  • C 1 -C 8 alkyl acrylates or C 1 -C 8 alkyl methacrylates are esters of acrylic or methacrylic acids respectively with monohydric alcohols with 1 to 8 C atoms.
  • Methyl methacrylate, ethyl methacrylate and propyl methacrylate are particularly preferred.
  • Methyl methacrylate is cited as a particularly preferred methacrylic acid ester.
  • Thermoplastic copolymers of a composition according to component B may be produced as secondary products of graft polymerisation during production of component C, particularly if large quantities of monomers are grafted onto small quantities of rubber.
  • the quantity of copolymer B to be used according to the invention does not include these secondary products of graft polymerisation.
  • the component B copolymers are resinous, thermoplastic and contain no rubber.
  • thermoplastic copolymers B contain 50 to 98, preferably 60 to 95 parts by weight of B.1 and 50 to 2, preferably 40 to 5 parts by weight of B.2.
  • Particularly preferred copolymers B are those prepared from styrene with acrylonitrile and optionally methyl methacrylate, from ⁇ -methylstyrene with acrylonitrile and optionally methyl methacrylate or from styrene and ⁇ -methylstyrene with acrylonitrile and optionally methyl methacrylate.
  • the component B styrene/acrylonitrile copolymers are known any may be produced by free-radical polymerisation, in particular by emulsion, suspension, solution or bulk polymerisation.
  • the component B copolymers preferably have molecular weights M w (weight average, determined by light scattering or setting) of between 15,000 and 200,000.
  • copolymers B according to the invention are also random copolymers of styrene and maleic anhydride, which may be produced from the corresponding monomers by continuous bulk or solution polymerisation with incomplete conversion.
  • the proportions of the two components in the suitable random styrene-maleic anhydride copolymers according to the invention may be varied within a wide range.
  • the preferred maleic anhydride content is between 5 and 25 wt. %.
  • the molecular weights (number average, M n ) of the suitable component B random styrene/maleic anhydride copolymers according to the invention may vary over a wide range. A range of 60,000 to 200,000 is preferred. An intrinsic viscosity of 0.3 to 0.9 is preferred for these products (measured in dimethylformamide at 25° C.; see Hoffmann, Kromer, Kuhn, Polymeranalytik I, Stuttgart 1977, p. 316 et seq.).
  • the vinyl copolymers B may also contain ring-substituted styrenes such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, and other substituted styrenes such as ⁇ -methylstyrene.
  • the graft polymers C) comprise, for example, graft copolymers with rubber-elastic properties, which are substantially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth) acrylic acid esters with 1 to 18 C atoms in the alcohol component; i.e. polymers as are, for example, described in Methoden der Organischen Chemie (Houben-Weyl), vol. 14/1, Georg Thieme Verlag, Stuttgart 1961, p. 393-406 and in C. B. Bucknall, Toughened Plastics, Appl. Science Publishers, London 1977.
  • Preferred polymers C) are partially crosslinked and have a gel content of above 20 wt. %, preferably of above 40 wt. %, in particular above 60 wt. %.
  • Preferred graft polymers C) comprise graft copolymers prepared from:
  • polybutadienes, butadiene/styrene or butadiene/ acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with acrylic or methacrylic acid alkyl esters, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes, as are, for example, described in DE-OS 2 348 377 ( U.S. Pat. No. 3,919,353).
  • Particularly preferred graft polymers C) are graft polymers obtainable by the grafting reaction of
  • I. 10 to 70 preferably 15 to 50, in particular 20 to 40 wt. %, related to the grafted product, of at least one (meth) acrylic acid ester of 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. % of a mixture of 10 to 50, preferably 20 to 35 wt. %, related to the mixture, of acrylonitrile or (meth)acrylic acid ester and 50 to 90, preferably 65 to 80 wt. %, related to the mixture, of styrene onto
  • the gel content of the grafting backbone II is at least 70 wt. % (measured in toluene), the degree of grafting G of the graft polymer C) is 0.15 to 0.55 and its average particle diameter d 50 0.05 to 2, preferably 0.1 to 0.6 ⁇ m.
  • (Meth) acrylic acid esters I are esters of acrylic acid or methacrylic acid and monohydric alcohols with 1 to 18 C atoms. Methyl, ethyl and propyl methacrylate and particularly preferred.
  • the grafting backbone II may contain up to 50 wt. %, related to II, of residues of other ethylenically unsaturated monomers, such as styrene, acrylonitrile, esters of acrylic or methacrylic acid with 1 to 4 C atoms in the alcohol component (such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate), vinyl esters and/or vinyl ethers.
  • the preferred grafting backbone II consists of pure polybutadiene.
  • graft polymers C) according to the invention are also taken to be those products obtained by polymerisation of the graft monomers in the presence of the grafting backbone.
  • the degree of grafting G describes the ratio by weight of grafted monomers to the grafting backbone and is dimensionless.
  • the average particle size d 50 is the diameter both above and below which are found 50 wt. % of the particles. This value may be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid Z. & Z. Polymere 250 (1972), 782-796).
  • Particularly preferred graft polymers C) are also, for example, graft polymers of
  • the acrylate rubbers (a) of the polymers C) are preferably polymers of acrylic acid alkyl esters, optionally with up to 40 wt. %, related to (a), of other polymerisable, ethylenically unsaturated monomers.
  • Preferred polymerisable acrylic acid esters include C 1 -C 8 alkyl esters, for example methyl, ethyl, n-butyl, n-octyl and 2-ethylhexyl acrylate; halogenalkyl esters, preferably halogen-C 1 -C 8 -alkyl esters, such as chloroethyl acrylate, together with mixtures of these monomers.
  • crosslinking monomers with more than one polymerisable double bond may be copolymerised.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as for example ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as for example trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethylacrylate, diallyl phthalate and heterocyclic compounds containing at least 3 ethylenically unsaturated groups.
  • crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, trivinyl cyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
  • the quantity of crosslinking monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt. %, related to the grafting backbone (a).
  • preferred polymerisable, ethylenically unsaturated monomers which may optionally be used to produce the grafting backbone (a) are, for example, acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl-C 1 -C 6 -alkyl ethers, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as the grafting backbone (a) are emulsion polymers having a gel content of at least 60 wt. %.
  • grafting backbones are silicone rubbers with active grafting sites, as are described in DE-OS 37 04 657, DE-OS 37 04 655, DE-OS 36 31 540 and DE-OS 36 31 539.
  • the gel content of the grafting backbone (a) is determined in dimethylformamide at 25° C. (M. Hoffmann, H. Kromer, R. Kuhn, Polymeranalytik I & II, Georg Thieme Verlag, Stuttgart 1977).
  • aqueous dispersions of graft polymer C) to be used for the preferred embodiment of coprecipitation with the tetrafluoroethylene polymer E) generally have solids contents of 25 to 60, preferably 30 to 45 wt. %.
  • the polymer blends according to the invention contain as flame retardant a mixture of a monophosphorus compound D.1) and a oligomeric phosphorus compound D.2).
  • Component D.1) is a phosphorus compound according to the formula (I) ##STR7## in which formula, R 1 , R 2 and R 3 mutually independently mean optionally halogenated C 1 -C 8 alkyl, C 6 -C 20 aryl or C 7 -C 12 aralkyl
  • n 0 or 1
  • n 0 or 1.
  • phosphorus compounds according to component D.1) which are suitable according to the invention are generally known (see, for example, Ullmanns Enzyklopaadie der ischen Chemie, vol. 18, p. 301 et seq. 1979; Houben-Weyl, Methoden der Organischen Chemie, Vol. 12/1, p. 43; Beilstein, vol. 6, p. 177).
  • Preferred substituents R m to R s comprise methyl, butyl, octyl, chloroethyl, 2-chloropropyl, 2,3-dibromopropyl, phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl and pentabromophenyl.
  • Methyl, ethyl, butyl, phenyl, the latter optionally substituted with methyl, ethyl, chlorine and/or bromine, are particularly preferred.
  • Preferred phosphorus compounds D.1) (formula (I)) comprise, for example, tributyl phosphate, tris-(2-chloroethyl) phosphate, tris-(2,3-dibromopropyl) phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri-(isopropylphenyl) phosphate, halogen-substituted aryl phosphates, methylphosphonic acid dimethyl ester, methylphosphonic acid diphenyl ester, phenylphosphonic acid diethyl ester, triphenylphosphine oxide and tricresylphosphine oxide.
  • Component D.2 is an oligomeric phosphorus compound of the formula (II). ##STR8##
  • R 4 , R 5 , R 6 , R 7 mutually independently mean C 1 -C 8 alkyl, C 5 -C 6 cycloalkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl being preferred.
  • the aromatic groups R 4 , R 5 , R 6 , R 7 may in themselves be substituted with halogen or alkyl groups.
  • Particularly preferred aryl residues are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, together with the brominated and chlorinated derivatives thereof.
  • X in the formula (II) means a mono- or polycyclic aromatic residue with 6 to 30 C atoms. This residue is derived from diphenols such as, for example, bisphenol A, resorcinol or hydroquinone or also the chlorinated or brominated derivatives thereof.
  • n in the formula (II) may mutually independently be 0 or 1, n preferably equalling 1.
  • y may have values between 1 and 5, preferably between 1 and 2. Mixtures of various oligomeric phosphates may also be used as component D.2) according to the invention. In this case, y has an average value between 1 and 5, preferably between 1 and 2.
  • the polymer blends according to the invention contain as flame retardant a mixture of D. 1) and D.2).
  • the weight ratios of D.1) and D.2) have to be chosen in such a manner to achieve a synergistic effect.
  • the mixture generally consists of 10 to 90 wt. % of D.1) and 90 to 10 wt. % of D.2) (related to D) in each case).
  • Particularly favourable properties are achieved in the preferred and particularly preferred range of about 12 to 50 and 14 to 40 wt. % of D.1) and 88 to 50 wt. % and 86 to 60 wt. % of D.2).
  • Very particul- arly preferred is the range of 15 to 40 wt. % of D.1) and 85 to 60 wt. % of D.2).
  • the fluorinated polyolefins E) are of high molecular weight and have glass transition temperatures of above -30° C., generally of about 100° C., fluorine contents preferably of 65 to 76, in particular of 70 to 76 wt. %, average particle diameters d 50 of 0.05 to 1000, preferably of 0.08 to 20 ⁇ m.
  • the fluorinated polyolefins E) have a density of 1.2 to 2.3 g/cm 3 .
  • Preferred fluorinated polyolefins E) are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene/hexafluoropropylene and ethylene/tetrafluoroethylene copolymers.
  • the fluorinated polyolefins and know c.f. Vinyl and Related Polymers by Schildknecht, John Wiley & Sons Inc., New York, 1962, p. 484-494; Fluoropolymers by Wall, Wiley-Interscience, John Wiley & Sons Inc., New York, vol. 13, 1970, p. 623-654; Modern Plastics Encyclopedia, 1970-1971, vol.
  • polymers may be produced using known processes, such as for example by polymerisation of tetrafluoroethylene in an aqueous medium with a free radical forming catalyst, for example sodium, potassium or ammonium peroxydisulphate at pressures of 7 to 71 kg/cm 2 and at temperatures of 0° to 200° C., preferably at temperatures of 20° to 100° C. (For further details, see for example U.S. Pat. No. 2,393,967).
  • a free radical forming catalyst for example sodium, potassium or ammonium peroxydisulphate
  • the density of these materials may be between 1.2 and 2.3 g/cm 3 and average particle sizes between 0.05 and 1000
  • Preferred fluorinated polyolefins E) according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 ⁇ m, preferably of 0.08 to 10 ⁇ m, and a density of 1.2 to 1.9 g/cm 3 , which are preferably used in the form of a coagulated mixture of emulsions of the tetrafluoroethylene polymers E) with emulsions of the graft polymers C).
  • Suitable fluorinated polyolefins E) which may be used in powder form are tetrafluoroethylene polymers with average particle sizes of 100 to 1000 ⁇ m and densities of 2.0 g/cm 3 to 2.3 g/cm 3 .
  • an aqueous emulsion (latex) of a graft polymer C) with an average latex particle diameter of 0.05 to 2 ⁇ m, in particular 0.1 to 0.6 ⁇ m is first of all blended with a finely divided emulsion of a tetrafluoroethylene polymer E) in water with an average particle diameter of 0.05 to 20 ⁇ m, in particular 0.08 to 10 ⁇ m; suitable tetrafluoroethylene polymer emulsions customarily have solids contents of 30 to 70 wt. %, in particular 50 to 60 wt. %.
  • the emulsions of the graft polymer C) have solids contents of 25 to 50 wt. %, preferably of 30 to 45 wt. %.
  • component C excludes the proportion of the graft polymer for the coagulated mixture of graft polymer and fluorinated polyolefins.
  • the ratio by weight of graft polymer C) to the tetrafluoroethylene polymer E) is 95:5 to 60:40.
  • the emulsion mixture is then coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents such as alcohols, ketones, preferably at temperatures of 20° to 150° C., in particular of 50° to 100° C. If necessary, drying may be performed at 50° to 200° C, preferably 70° to 100° C.
  • Suitable tetrafluoroethylene polymer emulsions are customary commercial products offered for sale, for example, by the company DuPont as Teflone® 30N.
  • the moulding compounds according to the invention may contain customary additives such as lubricants and mould release agents, nucleating agents, antistatic agents, stabilisers, fillers and reinforcing materials, together with dyes and pigments.
  • the filled or reinforced moulding compounds may contain up to 60, preferably 10 to 40 wt. %, related to the filled or reinforced moulding compound, of fillers and/or reinforcing materials.
  • Glass fibre is the preferred reinforcing material.
  • Preferred fillers, which may also have a reinforcing effect are glass beads, mica, silicates, quartz, talcum, titanium dioxide, wollastonite.
  • the moulding compounds according to the invention consisting of components A to E and optionally further known additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and double screw extruders, wherein component E) is preferably used in the form of the already mentioned coagulated mixture.
  • additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and
  • the present invention thus also provides a process for the production of thermoplastic moulding compounds consisting of components A to E, optionally together with stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents, together with antistatic agents, which is characterised in that, once components A to E, optionally together with stabilisers, dyes, pigments, plasticisers, fillers and reinforcing materials, lubricants and mould release agents, nucleating agents and/or antistatic agents are mixed together, they are melt-compounded or melt-extruded in customary equipment at temperatures of 200° to 330°, wherein component E is preferably used in the form of a coagulated mixture with component C.
  • the individual constituents may be mixed together in a known manner both consecutively and simultaneously, and both at approximately 20° C. (room temperature) and at higher temperatures.
  • moulding compounds according to the present invention may be used to produce mouldings of any kind.
  • mouldings may be produced by injection moulding.
  • articles which may be moulded are: casing parts of any kind, for example for household appliances such as juice extractors, coffee machines, food mixers, for office equipment or cover plates for the construction sector and motor vehicle components.
  • the moulding compounds are also used in electrical engineering because they have very good electrical properties.
  • the moulding compounds are particularly suitable for the production of thin-walled mouldings (for example computer casing parts), which are required to exhibit particularly high notched impact strength and stress cracking resistance.
  • Another type of processing is the production of mouldings by blowmoulding or by thermaforming previously produced sheet or film.
  • Bisphenol A based polycarbonate with a relative solution viscosity of 1.26 to 1.28 measured in methylene chloride at 25° C. at a concentration of 0.5 g/100 ml.
  • Graft polymer of 45 parts by weight of styrene and acrylonitrile in a ratio of 72:28 on 55 parts by weight of particulate, crosslinked polybutadiene rubber (average particle diameter d 50 0.4 ⁇ m), produced by emulsion polymerisation.
  • Tetrafluoroethylene polymer as a coagulated mixture prepared from an aqueous emulsion of SAN graft polymer according to C) and an aqueous emulsion of tetrafluoroethylene polymer.
  • the ratio by weight of the graft polymer C) to the tetrafluoroethylene polymer E) in the mixture is 90 wt. % to 10 wt. %.
  • the tetrafluoroethylene polymer emulsion has a solids content of 60 wt. % and average particle diameter is between 0.05 and 0.5 ⁇ m.
  • the SAN graft polymer emulsion has a solids content of 34 wt. % and an average latex particle diameter of 0.4 ⁇ m.
  • the emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is blended with the SAN graft polymer emulsion C) and stabilised with 1.8 wt. %, related to polymer solids, of phenolic antioxidants.
  • the mixture is coagulated with an aqueous solution of MgSO 4 (Epsom salts) and acetic acid at pH 4 to 5, filtered and washed until virtually free of electrolytes, the majority of the water is then eliminated by centrifugation and the product dried at 100° C. to give a powder. This powder may then be compounded with the other components in the described equipment.
  • Components A to E were mixed together in a 3-1 internal kneader.
  • the mouldings were produced on an Arburg 270 E injection moulding machine at 260° C.
  • Stress cracking behaviour was determined on bars of dimensions 80 ⁇ 10 ⁇ 4 mm, melt temperature 260° C.
  • the test medium was a mixture of 60 vol. % toluene and 40 vol. % isopropanol.
  • the test pieces were pre-stressed on a circular arc template (elongation 2.4%) and stored in the test medium at room temperature. Stress cracking behaviour was determined by assessing cracking or failure as a function of length of exposure to the test medium.
  • composition of the tested materials and the results obtained are summarised in the following table.

Abstract

Flame resistant, thermoplastic molding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate,
B) 3 to 50 parts by weight of a vinyl copolymer,
C) 0.5 to 40 parts by weight of a graft polymer,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D) , of a monophosphorus compound of the formula (I) ##STR1## D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR2## and E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.

Description

This application is a continuation of application Ser. No. 08/516,899 filed on Aug. 18, 1995 now abandoned, which in turn is a continuation of Ser. No. 08/290,544, filed on Aug. 15, 1994 now abandoned.
The present invention relates to flame resistant polycarbonate/ABS moulding compounds whose stress cracking resistance is substantially improved by a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound.
EP-A 0 174 493 (U.S. Pat. No. 4,983,658) describes flameproofed polymer blends containing halogen prepared from an aromatic polycarbonate, a graft copolymer containing styrene, monophosphates and a special polytetrafluoroethylene formulation. While these blends do indeed have adequate fire behaviour and mechanical properties, they may be deficient in stress cracking resistance.
U.S. Pat. No. 5,030,675 describes flame resistant, thermoplastic moulding compounds prepared from an aromatic polycarbonate, ABS polymer, polyalkylene terephthalate together with monophosphates and fluorinated polyolefins as flame retardants. Good stress cracking resistance is accompanied by deficiencies in notched impact strength, together with unsatisfactory thermal stability when exposed to elevated temperatures, such as for example during processing.
Diphosphates are known as flame retardants. JA 59 202 240 describes the production of such a product from phosphorus oxychloride, diphenols such as hydroquinone or bisphenol A and monophenols such as phenol or cresol. These diphosphates may be used as flame retardants in polyamide or polycarbonate. However, this publication contains no indication of any improvement in stress cracking resistance by adding the oligomeric phosphate to polycarbonate moulding compounds in conjunction with polyalkylene terephthalates. EP-A 0 363 608 (=U.S. Pat. No. 5,204,394) describes polymer blends prepared from an aromatic polycarbonate, a Copolymer or graft copolymer containing styrene, together with oligomeric phosphates as flame retardants. U.S. Pat. No. 5,061,745 describes polymer blends prepared from an aromatic polycarbonate, ABS graft copolymer and/or a copolymer containing styrene and monophosphates as flame retardants. The stress cracking resistance of these blends is often inadequate for the production of thin-walled casing components.
It has surprisingly now been found that flame resistant polycarbonate/ABS moulding compounds with excellent stress cracking resistance may be produced if a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound is added. Particularly elevated stress cracking resistance is achieved if the ratio by weight of the monophosphorus compound to the oligomeric phosphorus compound is within the range 90:10 to 10:90. These moulding compounds are particularly suitable for the production of thin-walled mouldings (computer equipment casing parts), where elevated processing temperatures and pressures result in the exposure of the material used to considerable stress.
The present invention provides flame resistant, thermoplastic moulding compounds prepared from
A) 40 to 98 parts by weight, preferably 50 to 95 parts by weight, particularly preferably 60 to 90 parts by weight of an aromatic polycarbonate,
B) 3 to 50, preferably 5 to 40 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98, preferably 60 to 95 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2, preferably 40 to 5 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof,
C) 0.5 to 40 parts by weight, preferably 1 to 20 parts by weight, particularly preferably 2 to 12 parts by weight of a graft polymer,
D) 0.5 to 20 parts by weight, preferably 1 to 18 parts by weight, particularly preferably 2 to 15 parts by weight of a mixture of
D.1) 10 to 90 wt. %, preferably 12 to 50, in particular 14 to 40 wt. %, very particular 15 to 40 wt. % (related to the total quantity of D) of a monophosphorus compound of the formula (I) ##STR3## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
m means 0 or 1 and
n means 0 or 1 and
D.2) 90 to 10 wt. %, preferably 88 to 50, in particular 86 to 60 wt. %, very particular 85 to 60 wt. % (related to the total amount of D) of an oligomeric phosphorus compound of the formula (II) ##STR4## in which R4, R5, R6, R7 mutually independently mean C1 -C8 alkyl, C5 -C6 cycloalkyl, C6 -C10 aryl or C7 -C12 aralkyl,
n mutually independently mean 0 or 1,
y means 1 to 5 and
X means a mono- or polycyclic aromatic residue with 6 to 30 C atoms,
and
E) 0.05 to 5 parts by weight, preferably 0.1 to 1 part by weight, particularly preferably 0.1 to 0.5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
The sum of all the parts by weight A+B+C+D+E is 100.
COMPONENT A
Suitable component A thermoplastic, aromatic polycarbonates according to the invention are those based on diphenols of the formula (III) ##STR5## in which A is a single bond, C1 -C5 alkylene, C2 -C5 alkylidene, C5 -C6 cycloalkylidene, --S-- or --SO2 --,
B is chlorine, bromine,
q is 0, 1 or 2 and
p is 1 or 0
or alkyl-substituted dihydroxyphenylcycloalkanes of the formula (IV), ##STR6## in which R8 and R9 mutually independently mean hydrogen, halogen, preferably chlorine or bromine, C1 -C8 alkyl, C5 -C6
cycloalkyl, C6 -C10 aryl, preferably phenyl, and C7 -C12 aralkyl, preferably phenyl-C1 -C4 -alkyl, in particular benzyl,
m means an integer of 4, 5, 6 or 7, preferably 4 or 5,
R10 and R11 mean, individually selectable for each Z, and mutually independently hydrogen or C1 -C6 alkyl
and
Z means carbon, provided that on at least one Z atom, R10 and R11 simultaneously mean alkyl.
Suitable diphenols of the formula (III) are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis-(4-hydroxyphenyl) propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 2,2-bis-(3-chloro-4-hydroxyphenyl) propane, 2,2-bis -(3,5-dibromo-4-hydroxyphenyl)propane.
Preferred diphenols of the formula (III) are 2,2bis-(4-hydroxyphenyl)propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis-(4-hydroxyphenyl)cyclohexane.
Preferred diphenols of the formula (IV) are 1,1-bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentane.
Both homopolycarbonates and copolycarbonates are suitable polycarbonates according to the invention.
Component A may also be a blend of the thermoplastic polycarbonates specified above.
Polycarbonates may be produced in a known manner from diphenols with phosgene using the phase interface process or with phosgene using the homogeneous phase process, the so-called pyridine process, wherein molecular weight may be adjusted in a known manner with an appropriate quantity of known chain terminators.
Suitable chain terminators are, for example, not only phenol, p-chlorophenol, p-tert.-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2 842 005 (Le A 19 006) or monoalkylphenol or dialkylphenol with a total of 8 to 20 C atoms in the alkyl substituents according to German patent application P 3 506 472.2 (Le A 23 654), such as 3,5-di-tert.-butylphenol, p-iso-octylphenol, p-tert.-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol.
The quantity of chain terminators is in general between 0.5 and 10 mol. %, related to the sum of the diphenols of the formulae (III) and/or (IV) used in each case.
Suitable polycarbonates A according to the invention have average molecular weights (Mw, weight average measured for example by ultracentrifugation or light scattering) of 10,000 to 200,000, preferably of 20,000 to 80,000.
Suitable polycarbonates A according to the invention may be branched in a known manner, in particular preferably by incorporation 0.05 to 2 mol. %, related to total quantity of diphenols used, of tri- or higher functional compounds, for example those with three or more phenolic groups.
In addition to bisphenol A homopolycarbonate, preferred polycarbonates are copolycarbonates of bisphenol A with up to 15 mol. %, related to the total molar quantities of diphenols, of 2,2-bis-(3,5-dibromo-4-hydroxylphenyl) propane and the copolycarbonates of bisphenol A with up to 60 mol. %, related to the total molar quantities of diphenols, of 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane.
The polycarbonates A may be partially or entirely replaced with aromatic polyester-carbonates.
COMPONENT B
Component B vinyl copolymers which may be used according to the invention are those prepared from at least one monomer of the group: styrene, α-methylstyrene and/or ring-substituted styrenes, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate (B.1) with at least one monomer from the group: acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, maleic anhydride and/or N-substituted maleimide (B.2).
C1 -C8 alkyl acrylates or C1 -C8 alkyl methacrylates are esters of acrylic or methacrylic acids respectively with monohydric alcohols with 1 to 8 C atoms. Methyl methacrylate, ethyl methacrylate and propyl methacrylate are particularly preferred. Methyl methacrylate is cited as a particularly preferred methacrylic acid ester. Thermoplastic copolymers of a composition according to component B may be produced as secondary products of graft polymerisation during production of component C, particularly if large quantities of monomers are grafted onto small quantities of rubber. The quantity of copolymer B to be used according to the invention does not include these secondary products of graft polymerisation.
The component B copolymers are resinous, thermoplastic and contain no rubber.
The thermoplastic copolymers B contain 50 to 98, preferably 60 to 95 parts by weight of B.1 and 50 to 2, preferably 40 to 5 parts by weight of B.2.
Particularly preferred copolymers B are those prepared from styrene with acrylonitrile and optionally methyl methacrylate, from α-methylstyrene with acrylonitrile and optionally methyl methacrylate or from styrene and α-methylstyrene with acrylonitrile and optionally methyl methacrylate.
The component B styrene/acrylonitrile copolymers are known any may be produced by free-radical polymerisation, in particular by emulsion, suspension, solution or bulk polymerisation. The component B copolymers preferably have molecular weights Mw (weight average, determined by light scattering or setting) of between 15,000 and 200,000.
Particularly preferred copolymers B according to the invention are also random copolymers of styrene and maleic anhydride, which may be produced from the corresponding monomers by continuous bulk or solution polymerisation with incomplete conversion.
The proportions of the two components in the suitable random styrene-maleic anhydride copolymers according to the invention may be varied within a wide range. The preferred maleic anhydride content is between 5 and 25 wt. %.
The molecular weights (number average, Mn) of the suitable component B random styrene/maleic anhydride copolymers according to the invention may vary over a wide range. A range of 60,000 to 200,000 is preferred. An intrinsic viscosity of 0.3 to 0.9 is preferred for these products (measured in dimethylformamide at 25° C.; see Hoffmann, Kromer, Kuhn, Polymeranalytik I, Stuttgart 1977, p. 316 et seq.).
Instead of styrene, the vinyl copolymers B may also contain ring-substituted styrenes such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, and other substituted styrenes such as α-methylstyrene.
COMPONENT C
The graft polymers C) comprise, for example, graft copolymers with rubber-elastic properties, which are substantially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth) acrylic acid esters with 1 to 18 C atoms in the alcohol component; i.e. polymers as are, for example, described in Methoden der Organischen Chemie (Houben-Weyl), vol. 14/1, Georg Thieme Verlag, Stuttgart 1961, p. 393-406 and in C. B. Bucknall, Toughened Plastics, Appl. Science Publishers, London 1977. Preferred polymers C) are partially crosslinked and have a gel content of above 20 wt. %, preferably of above 40 wt. %, in particular above 60 wt. %.
Preferred graft polymers C) comprise graft copolymers prepared from:
C.1) 5 to 95, preferably 30 to 80 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, in particular methyl methacrylate, C1 -C8 alkyl acrylate, in particular methyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, in particular methyl methacrylate, C1 -C8 alkyl acrylate, in particular methyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95, preferably 20 to 70 parts by weight of a polymer with a glass transition temperature of below -10° C.
Preferred graft polymers C) are, for example, polybutadienes, butadiene/styrene copolymers and acrylate rubbers grafted with styrene and/or acrylonitrile and/or (meth)acrylic acid alkyl esters; i.e. copolymers of the type described in DE-OS 1 694 173 (=U.S. Pat. No. 3,564,077); polybutadienes, butadiene/styrene or butadiene/ acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with acrylic or methacrylic acid alkyl esters, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes, as are, for example, described in DE-OS 2 348 377 (=U.S. Pat. No. 3,919,353).
Particularly preferred polymers C) are, for example, ABS polymers, as are for example described in DE-OS 2 035 390 (=U.S. Pat. No. 3,644,574) or in DE-OS 2 248 242 (GB patent 1,409,275).
Particularly preferred graft polymers C) are graft polymers obtainable by the grafting reaction of
I. 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. %, related to the grafted product, of at least one (meth) acrylic acid ester of 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. % of a mixture of 10 to 50, preferably 20 to 35 wt. %, related to the mixture, of acrylonitrile or (meth)acrylic acid ester and 50 to 90, preferably 65 to 80 wt. %, related to the mixture, of styrene onto
II. 30 to 90, preferably 50 to 85, in particular 60 to
80 wt. %, related to the grafted product, of a butadiene polymer with at least 50 wt. %, related to IL butadiene residues as the grafting backbone,
wherein the gel content of the grafting backbone II is at least 70 wt. % (measured in toluene), the degree of grafting G of the graft polymer C) is 0.15 to 0.55 and its average particle diameter d50 0.05 to 2, preferably 0.1 to 0.6 μm.
(Meth) acrylic acid esters I are esters of acrylic acid or methacrylic acid and monohydric alcohols with 1 to 18 C atoms. Methyl, ethyl and propyl methacrylate and particularly preferred.
In addition to butadiene residues, the grafting backbone II may contain up to 50 wt. %, related to II, of residues of other ethylenically unsaturated monomers, such as styrene, acrylonitrile, esters of acrylic or methacrylic acid with 1 to 4 C atoms in the alcohol component (such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate), vinyl esters and/or vinyl ethers. The preferred grafting backbone II consists of pure polybutadiene.
Since, as is known, the graft monomers are not necessarily entirely grafted onto the grafting backbone, graft polymers C) according to the invention are also taken to be those products obtained by polymerisation of the graft monomers in the presence of the grafting backbone.
The degree of grafting G describes the ratio by weight of grafted monomers to the grafting backbone and is dimensionless.
The average particle size d50 is the diameter both above and below which are found 50 wt. % of the particles. This value may be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid Z. & Z. Polymere 250 (1972), 782-796).
Particularly preferred graft polymers C) are also, for example, graft polymers of
(a) 20 to 90 wt. %, related to C), of acrylate rubber with a glass transition temperature of below -20° C. as the grafting backbone and
(b) 10 to 80 wt. %, related to C), of at least one polymerisable, ethylenically unsaturated monomer, the homo- or copolymers of which, if formed in the absence of a), would have a glass transition temperature of above 25° C., as the graft monomers.
The acrylate rubbers (a) of the polymers C) are preferably polymers of acrylic acid alkyl esters, optionally with up to 40 wt. %, related to (a), of other polymerisable, ethylenically unsaturated monomers. Preferred polymerisable acrylic acid esters include C1 -C8 alkyl esters, for example methyl, ethyl, n-butyl, n-octyl and 2-ethylhexyl acrylate; halogenalkyl esters, preferably halogen-C1 -C8 -alkyl esters, such as chloroethyl acrylate, together with mixtures of these monomers.
To achieve crosslinking, monomers with more than one polymerisable double bond may be copolymerised. Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as for example ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as for example trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethylacrylate, diallyl phthalate and heterocyclic compounds containing at least 3 ethylenically unsaturated groups.
Particularly preferred crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, trivinyl cyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
The quantity of crosslinking monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt. %, related to the grafting backbone (a).
In the case of cyclic crosslinking monomers with at least 3 ethylenically unsaturated groups, it is advantageous to limit the quantity of below 1 wt. % of the grafting backbone (a).
Other than the acrylic acid esters, preferred polymerisable, ethylenically unsaturated monomers which may optionally be used to produce the grafting backbone (a) are, for example, acrylonitrile, styrene, α-methylstyrene, acrylamides, vinyl-C1 -C6 -alkyl ethers, methyl methacrylate, butadiene. Preferred acrylate rubbers as the grafting backbone (a) are emulsion polymers having a gel content of at least 60 wt. %.
Further suitable grafting backbones are silicone rubbers with active grafting sites, as are described in DE-OS 37 04 657, DE-OS 37 04 655, DE-OS 36 31 540 and DE-OS 36 31 539.
The gel content of the grafting backbone (a) is determined in dimethylformamide at 25° C. (M. Hoffmann, H. Kromer, R. Kuhn, Polymeranalytik I & II, Georg Thieme Verlag, Stuttgart 1977).
The aqueous dispersions of graft polymer C) to be used for the preferred embodiment of coprecipitation with the tetrafluoroethylene polymer E) generally have solids contents of 25 to 60, preferably 30 to 45 wt. %.
COMPONENT D
The polymer blends according to the invention contain as flame retardant a mixture of a monophosphorus compound D.1) and a oligomeric phosphorus compound D.2). Component D.1) is a phosphorus compound according to the formula (I) ##STR7## in which formula, R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
m means 0 or 1 and
n means 0 or 1.
The phosphorus compounds according to component D.1) which are suitable according to the invention are generally known (see, for example, Ullmanns Enzyklopaadie der technischen Chemie, vol. 18, p. 301 et seq. 1979; Houben-Weyl, Methoden der Organischen Chemie, Vol. 12/1, p. 43; Beilstein, vol. 6, p. 177). Preferred substituents Rm to Rs comprise methyl, butyl, octyl, chloroethyl, 2-chloropropyl, 2,3-dibromopropyl, phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl and pentabromophenyl. Methyl, ethyl, butyl, phenyl, the latter optionally substituted with methyl, ethyl, chlorine and/or bromine, are particularly preferred.
Preferred phosphorus compounds D.1) (formula (I)) comprise, for example, tributyl phosphate, tris-(2-chloroethyl) phosphate, tris-(2,3-dibromopropyl) phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri-(isopropylphenyl) phosphate, halogen-substituted aryl phosphates, methylphosphonic acid dimethyl ester, methylphosphonic acid diphenyl ester, phenylphosphonic acid diethyl ester, triphenylphosphine oxide and tricresylphosphine oxide.
Component D.2) is an oligomeric phosphorus compound of the formula (II). ##STR8##
In the formula, R4, R5, R6, R7 mutually independently mean C1 -C8 alkyl, C5 -C6 cycloalkyl, C6 -C10 aryl or C7 -C12 aralkyl, C6 -C10 aryl or C7 -C12 aralkyl being preferred. The aromatic groups R4, R5, R6, R7 may in themselves be substituted with halogen or alkyl groups. Particularly preferred aryl residues are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, together with the brominated and chlorinated derivatives thereof.
X in the formula (II) means a mono- or polycyclic aromatic residue with 6 to 30 C atoms. This residue is derived from diphenols such as, for example, bisphenol A, resorcinol or hydroquinone or also the chlorinated or brominated derivatives thereof.
The values of n in the formula (II) may mutually independently be 0 or 1, n preferably equalling 1.
y may have values between 1 and 5, preferably between 1 and 2. Mixtures of various oligomeric phosphates may also be used as component D.2) according to the invention. In this case, y has an average value between 1 and 5, preferably between 1 and 2.
The polymer blends according to the invention contain as flame retardant a mixture of D. 1) and D.2). The weight ratios of D.1) and D.2) have to be chosen in such a manner to achieve a synergistic effect. The mixture generally consists of 10 to 90 wt. % of D.1) and 90 to 10 wt. % of D.2) (related to D) in each case). Particularly favourable properties are achieved in the preferred and particularly preferred range of about 12 to 50 and 14 to 40 wt. % of D.1) and 88 to 50 wt. % and 86 to 60 wt. % of D.2). Very particul- arly preferred is the range of 15 to 40 wt. % of D.1) and 85 to 60 wt. % of D.2).
COMPONENT E
The fluorinated polyolefins E) are of high molecular weight and have glass transition temperatures of above -30° C., generally of about 100° C., fluorine contents preferably of 65 to 76, in particular of 70 to 76 wt. %, average particle diameters d50 of 0.05 to 1000, preferably of 0.08 to 20 μm. In general, the fluorinated polyolefins E) have a density of 1.2 to 2.3 g/cm3. Preferred fluorinated polyolefins E) are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene/hexafluoropropylene and ethylene/tetrafluoroethylene copolymers. The fluorinated polyolefins and know (c.f. Vinyl and Related Polymers by Schildknecht, John Wiley & Sons Inc., New York, 1962, p. 484-494; Fluoropolymers by Wall, Wiley-Interscience, John Wiley & Sons Inc., New York, vol. 13, 1970, p. 623-654; Modern Plastics Encyclopedia, 1970-1971, vol. 47, n° 10 A, October 1970, McGraw-Hill Inc., New York, p. 134 and 774; Modern Plastics Encyclopedia, 1975-1976, October 1975, vol. 52, n° 10 A, McGraw-Hill Inc., New York, p. 27, 28 & 472 and U.S. Pat. Nos. 3,671,487, 3,723,373 and 3,838,092).
These polymers may be produced using known processes, such as for example by polymerisation of tetrafluoroethylene in an aqueous medium with a free radical forming catalyst, for example sodium, potassium or ammonium peroxydisulphate at pressures of 7 to 71 kg/cm2 and at temperatures of 0° to 200° C., preferably at temperatures of 20° to 100° C. (For further details, see for example U.S. Pat. No. 2,393,967). Depending upon the form in which it is used, the density of these materials may be between 1.2 and 2.3 g/cm3 and average particle sizes between 0.05 and 1000
Preferred fluorinated polyolefins E) according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 μm, preferably of 0.08 to 10 μm, and a density of 1.2 to 1.9 g/cm3, which are preferably used in the form of a coagulated mixture of emulsions of the tetrafluoroethylene polymers E) with emulsions of the graft polymers C).
Suitable fluorinated polyolefins E) which may be used in powder form are tetrafluoroethylene polymers with average particle sizes of 100 to 1000 μm and densities of 2.0 g/cm3 to 2.3 g/cm3.
In order to produce a coagulated mixture of C) and E), an aqueous emulsion (latex) of a graft polymer C) with an average latex particle diameter of 0.05 to 2 μm, in particular 0.1 to 0.6 μm, is first of all blended with a finely divided emulsion of a tetrafluoroethylene polymer E) in water with an average particle diameter of 0.05 to 20 μm, in particular 0.08 to 10 μm; suitable tetrafluoroethylene polymer emulsions customarily have solids contents of 30 to 70 wt. %, in particular 50 to 60 wt. %. The emulsions of the graft polymer C) have solids contents of 25 to 50 wt. %, preferably of 30 to 45 wt. %.
The stated quantity in the description of component C) excludes the proportion of the graft polymer for the coagulated mixture of graft polymer and fluorinated polyolefins.
In the emulsion mixture, the ratio by weight of graft polymer C) to the tetrafluoroethylene polymer E) is 95:5 to 60:40. The emulsion mixture is then coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents such as alcohols, ketones, preferably at temperatures of 20° to 150° C., in particular of 50° to 100° C. If necessary, drying may be performed at 50° to 200° C, preferably 70° to 100° C.
Suitable tetrafluoroethylene polymer emulsions are customary commercial products offered for sale, for example, by the company DuPont as Teflone® 30N.
The moulding compounds according to the invention may contain customary additives such as lubricants and mould release agents, nucleating agents, antistatic agents, stabilisers, fillers and reinforcing materials, together with dyes and pigments. The filled or reinforced moulding compounds may contain up to 60, preferably 10 to 40 wt. %, related to the filled or reinforced moulding compound, of fillers and/or reinforcing materials. Glass fibre is the preferred reinforcing material. Preferred fillers, which may also have a reinforcing effect, are glass beads, mica, silicates, quartz, talcum, titanium dioxide, wollastonite.
The moulding compounds according to the invention consisting of components A to E and optionally further known additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and double screw extruders, wherein component E) is preferably used in the form of the already mentioned coagulated mixture.
The present invention thus also provides a process for the production of thermoplastic moulding compounds consisting of components A to E, optionally together with stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents, together with antistatic agents, which is characterised in that, once components A to E, optionally together with stabilisers, dyes, pigments, plasticisers, fillers and reinforcing materials, lubricants and mould release agents, nucleating agents and/or antistatic agents are mixed together, they are melt-compounded or melt-extruded in customary equipment at temperatures of 200° to 330°, wherein component E is preferably used in the form of a coagulated mixture with component C. The individual constituents may be mixed together in a known manner both consecutively and simultaneously, and both at approximately 20° C. (room temperature) and at higher temperatures.
The moulding compounds according to the present invention may be used to produce mouldings of any kind. In particular, mouldings may be produced by injection moulding. Examples of articles which may be moulded are: casing parts of any kind, for example for household appliances such as juice extractors, coffee machines, food mixers, for office equipment or cover plates for the construction sector and motor vehicle components. The moulding compounds are also used in electrical engineering because they have very good electrical properties.
The moulding compounds are particularly suitable for the production of thin-walled mouldings (for example computer casing parts), which are required to exhibit particularly high notched impact strength and stress cracking resistance.
Another type of processing is the production of mouldings by blowmoulding or by thermaforming previously produced sheet or film.
EXAMPLES Component A
Bisphenol A based polycarbonate with a relative solution viscosity of 1.26 to 1.28 measured in methylene chloride at 25° C. at a concentration of 0.5 g/100 ml.
Component B
Styrene/acrylonitrile copolymer with a stryene/acrylonitrile ratio of 72:28 and an intrinsic viscosity of 55 dl/g (measured in dimethylformamide at 20° C).
Component C
Graft polymer of 45 parts by weight of styrene and acrylonitrile in a ratio of 72:28 on 55 parts by weight of particulate, crosslinked polybutadiene rubber (average particle diameter d50 =0.4 μm), produced by emulsion polymerisation.
Component D
D.1) triphenyl phosphate (Disflamoll® TP from Bayer AG) D.2) m-phenylene-bis(diphenylphosphate) (Fyroflex RDP from Akzo)
Component E
Tetrafluoroethylene polymer as a coagulated mixture prepared from an aqueous emulsion of SAN graft polymer according to C) and an aqueous emulsion of tetrafluoroethylene polymer. The ratio by weight of the graft polymer C) to the tetrafluoroethylene polymer E) in the mixture is 90 wt. % to 10 wt. %. The tetrafluoroethylene polymer emulsion has a solids content of 60 wt. % and average particle diameter is between 0.05 and 0.5 μm. The SAN graft polymer emulsion has a solids content of 34 wt. % and an average latex particle diameter of 0.4 μm.
PRODUCTION OF E
The emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is blended with the SAN graft polymer emulsion C) and stabilised with 1.8 wt. %, related to polymer solids, of phenolic antioxidants. At 85° to 95° C., the mixture is coagulated with an aqueous solution of MgSO4 (Epsom salts) and acetic acid at pH 4 to 5, filtered and washed until virtually free of electrolytes, the majority of the water is then eliminated by centrifugation and the product dried at 100° C. to give a powder. This powder may then be compounded with the other components in the described equipment.
Production and Testing of Moulding Compounds According to the Invention
Components A to E were mixed together in a 3-1 internal kneader. The mouldings were produced on an Arburg 270 E injection moulding machine at 260° C.
Stress cracking behaviour was determined on bars of dimensions 80×10×4 mm, melt temperature 260° C. The test medium was a mixture of 60 vol. % toluene and 40 vol. % isopropanol. The test pieces were pre-stressed on a circular arc template (elongation 2.4%) and stored in the test medium at room temperature. Stress cracking behaviour was determined by assessing cracking or failure as a function of length of exposure to the test medium.
The composition of the tested materials and the results obtained are summarised in the following table.
It may be seen from the table that the comparative examples 1 and 8 with pure component D.2) and D.1) respectively have distinctly lower stress cracking resistance than examples 2 to 7 according to the invention.
              TABLE                                                       
______________________________________                                    
Composition and propeties of moulding compounds                           
                         Failure at                                       
       Components [parts by weight]                                       
                           ε.sub.x = 2.4%                         
Example  A      B     C    D.1  D.2    E   [minutes]                      
______________________________________                                    
1 (comparison)                                                            
         67     10    7.5  --   10     3.5 3.4                            
2        67     10    7.5  1    9      3.5 3.5                            
3        67     10    7.5  1.5  8.5    3.5 4.7                            
4        67     10    7.5  2    8      3.5 5.6                            
5        67     10    7.5  3    7      3.5 4.7                            
6        67     10    7.5  4    6      3.5 4.3                            
7        67     10    7.5  5    5      3.5 3.4                            
8 (comparison)                                                            
         67     10    7.5  10   --     3.5 2.5                            
______________________________________                                    

Claims (13)

We claim:
1. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.
D) 0.5 to 20 parts by weight of a mixture of
D.1) 14 to 40 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR9## in which R1, R2 and R3 are independently phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl or pentabromophenyl
n means 1 and
D.2) 86 to 60 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR10## in which R4, R5, R6, R7 are independently cresyl, phenyl xylenyl , propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof,
n means 1,
y has an average value of between 1 and 2, and
x means a residue derived from resorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
2. Moulding compounds according to claim 1, containing 50 to 95 parts by weight of an aromatic polycarbonate A.
3. Moulding compounds as according to claim 1 containing component D) in amounts of monophosphorus compound D.1) and an oligomeric phosphorus compound D.2) in combined amounts effective to improve stress cracking resistance.
4. Flame resistant thermoplastic moulding compound according to claim 1 containing additives selected from the group consisting of stabilizers, dyes, pigments, lubricants and mold release agents, fillers and reinforcing materials, nucleating agents and antistatic agents.
5. The flame resistant, thermoplastic molding compound of claim 1, wherein in component D.2. each of R4, R5, R6 and R7 are phenyl.
6. A flame resistant thermoplastic molding compound having improved stress resistance, consisting essentially of:
A) 40-98 parts by weight of aromatic polycarbonate;
B) 3-50 parts by weight of styrene/acrylonitrile copolymer;
C) 0.5 to 40 parts by weight of a graft polymer of styrene and acrylonitrile on particulate, crosslinked polybutadiene rubber;
D) 0.5 to 20 parts by weight of a mixture of:
D.1.) 14 to 40%, based on D), of triphenyl phosphate;
D.2.) 86 to 60%, based on D), of m-phenylene-bis(diphenylphosphate); and
E) 0.05 to 5 parts by weight of tetrafluoroethylene polymer.
7. The molding compound of claim 6 containing 50 to 95 parts of A), 5 to 40 parts of B), 2 to 12 parts of C), 2 to 15 parts of D), and 0.1 to 0.5 parts of E).
8. The molding compound of claim 7, containing 67 parts of A), 10 parts of B), 7.5 parts of C), and 3.5 parts of E).
9. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1.) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2.) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR11## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
n means 1 and
D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR12## in which R4, R5, R6, R7 are mutually independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof
n means 1,
Y means an average value of between 1 and 2, and
X means a residue derived from resorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
10. The moulding compound of claim 9, wherein component C) is one or more of polybutadiene, butadiene styrene copolymer, acrylate rubber, polyisobutadiene, or polyisoprene.
11. The moulding composition of claim 9, wherein component C) is polybutadiene, butadiene/styrene copolymer, or mixtures thereof. .Iadd.
12. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR13## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
n means 1 and
D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR14## in which R4, R5, R6, R7 are mutually independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof
n means 1,
y means an average value between 1 and 2, and
x means a residue derived from bisphenol A, rescorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %..Iaddend..Iadd.
13. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 14 to 40 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR15## in which R1, R2 and R3 are independently phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl or pentabromophenyl
n means 1 and
D.2) 86 to 60 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR16## in which R4, R5, R6, R7 are independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof,
n means 1,
y has an average value between 1 and 2, and
x means a residue derived from bisphenol A, rescorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %..Iaddend.
US09/405,635 1993-08-26 1999-09-27 Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking Expired - Lifetime USRE36902E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/405,635 USRE36902E (en) 1993-08-26 1999-09-27 Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE4328656A DE4328656A1 (en) 1993-08-26 1993-08-26 Flame retardant, stress crack resistant polycarbonate ABS molding compounds
DE4328656 1993-08-26
US29054494A 1994-08-15 1994-08-15
US51689995A 1995-08-18 1995-08-18
US08/764,747 US5672645A (en) 1993-08-26 1996-12-12 Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking
US09/405,635 USRE36902E (en) 1993-08-26 1999-09-27 Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US51689995A Continuation 1993-08-26 1995-08-18
US08/764,747 Reissue US5672645A (en) 1993-08-26 1996-12-12 Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking

Publications (1)

Publication Number Publication Date
USRE36902E true USRE36902E (en) 2000-10-03

Family

ID=6496038

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/764,747 Ceased US5672645A (en) 1993-08-26 1996-12-12 Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking
US09/405,635 Expired - Lifetime USRE36902E (en) 1993-08-26 1999-09-27 Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/764,747 Ceased US5672645A (en) 1993-08-26 1996-12-12 Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking

Country Status (5)

Country Link
US (2) US5672645A (en)
EP (1) EP0640655B1 (en)
JP (1) JP3168124B2 (en)
DE (2) DE4328656A1 (en)
ES (1) ES2136040T3 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137821A1 (en) * 2001-01-09 2002-09-26 Andreas Seidel Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions
US6475589B1 (en) * 2001-12-17 2002-11-05 General Electric Company Colored optical discs and methods for making the same
US6475588B1 (en) 2001-08-07 2002-11-05 General Electric Company Colored digital versatile disks
US6528561B1 (en) 1999-09-02 2003-03-04 Bayer Aktiengesellschaft Flame-resistant polycarbonate ABS blends
US20030083419A1 (en) * 1999-12-24 2003-05-01 Andreas Seidel Flame-resistant polycarbonate molding compositions containing high-purity talc
US20030099837A1 (en) * 1999-12-22 2003-05-29 Dirk Mockel Thermoplastic multi-layered film with a layer of vinylcyclohexane-based polymer
US20040059031A1 (en) * 2002-07-29 2004-03-25 Andreas Seidel Flame-resistant polycarbonate molding compositions
US6713544B2 (en) 2000-12-08 2004-03-30 Bayer Aktiengesellschaft Flame-resistant and heat-resistant polycarbonate compositions
US20040110879A1 (en) * 2002-12-06 2004-06-10 Andreas Seidel Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds
US6753364B1 (en) 1999-09-02 2004-06-22 Bayer Aktiengesellschaft Flame-resistant polycarbonate molding materials
US6767943B1 (en) * 1999-03-27 2004-07-27 Bayer Aktiengesellschaft Flame-resistant polycarbonate moulding materials modified with graft polymers
US6771578B2 (en) 2000-09-29 2004-08-03 General Electric Company Colored data storage media
US6774163B2 (en) 2002-04-16 2004-08-10 Bayer Chemicals Ag Flame retardants for polymers comprising a mixture of two different aryl phosphates, their preparation and their use
US6784232B1 (en) 1999-09-02 2004-08-31 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US20040235999A1 (en) * 2001-09-21 2004-11-25 Marc Vathauer Modified shock-resistant polymer compositions
US6831120B1 (en) 1999-09-02 2004-12-14 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6906122B1 (en) 1999-09-02 2005-06-14 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6914089B2 (en) 2000-12-08 2005-07-05 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6936647B2 (en) 2000-03-09 2005-08-30 Bayer Aktiengesellschaft Bead polymerizates containing halogen-free phosphourus compounds
US20090258978A1 (en) * 2007-03-07 2009-10-15 Bayer Materialscience Ag Polycarbonate composition containing uv absorber
US20110098386A1 (en) * 2009-08-28 2011-04-28 Bayer Materialscience Ag Products having improved flame resistance
US20110144242A1 (en) * 2007-11-27 2011-06-16 Total Raffinage Marketing Thermoreversibly crosslinked elastic bituminous composition
US8058333B1 (en) * 2010-07-23 2011-11-15 Entire Technology Co., Ltd. Flame retarding composite material
US9676716B2 (en) 2009-12-21 2017-06-13 Covestro Deutschland Ag Polycarbonate having improved thermal and mechanical properties and reduced coefficients of thermal expansion
US11732130B2 (en) 2019-12-04 2023-08-22 Covestro Intellectual Property Gmbh & Co. Kg Flame retardant impact-modified polycarbonate composition

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0139249B1 (en) * 1994-09-05 1998-05-01 유현식 Inflammable thermoplastic resin composition
KR0148398B1 (en) * 1994-12-01 1999-02-01 유현식 Flameproof thermoplastic resin composition
DE19503470C2 (en) * 1995-02-03 1999-09-09 Bayer Ag Polycarbonate molding compounds
JPH11501348A (en) * 1995-03-03 1999-02-02 旭化成工業株式会社 Flame retardant for styrenic resin and resin composition containing the same
WO1996027600A1 (en) * 1995-03-07 1996-09-12 Asahi Kasei Kogyo Kabushiki Kaisha Flame-retardant resin composition
KR0150763B1 (en) * 1995-03-07 1998-10-15 유현식 Inflammable thermoplastic resin composition
TW386099B (en) * 1995-07-26 2000-04-01 Gen Electric Flame resistant compositions of polycarbonate and monovinylidene aromatic compounds
KR0150766B1 (en) * 1995-08-19 1998-10-15 유현식 Inflammable thermoplastic resin composition
SG69988A1 (en) * 1995-11-01 2000-01-25 Gen Electric Flame retardant polycarbonate/graft blends exhibiting heat aging stability
DE19620993A1 (en) * 1996-05-24 1997-11-27 Bayer Ag Laser-inscribable polymer molding compounds
DE19714003A1 (en) * 1997-04-04 1998-10-08 Basf Ag Flame-retardant thermoplastic molding compounds with good flow properties
DE19721628A1 (en) * 1997-05-23 1998-11-26 Bayer Ag Flame-retardant, highly heat-resistant polycarbonate molding compounds with high flow seam strength
DE19734659A1 (en) * 1997-08-11 1999-02-18 Bayer Ag Flame-retardant polycarbonate ABS molding compounds
DE19734661A1 (en) * 1997-08-11 1999-02-18 Bayer Ag Flame retardant, stress crack resistant polycarbonate ABS molding compounds
DE19734667A1 (en) * 1997-08-11 1999-02-18 Bayer Ag Flame-retardant, reinforced polycarbonate ABS molding compounds
DE19734663A1 (en) * 1997-08-11 1999-02-18 Bayer Ag Flame-retardant, heat-resistant polycarbonate ABS molding compounds
GB2329639B (en) * 1997-09-25 2002-02-20 Samyang Corp Flame retardant resin composition
DE19742868A1 (en) * 1997-09-29 1999-04-01 Bayer Ag Polycarbonate ABS molding compounds
US6593404B1 (en) 1997-10-23 2003-07-15 Cheil Industries, Inc. Thermoplastic resin composition
US5962587A (en) * 1997-10-23 1999-10-05 General Electric Company High modulus thermoplastic resin composition
KR100360714B1 (en) * 1997-10-23 2003-04-03 제일모직주식회사 Flame retardant thermoplastic resin composition based on polycarbonate
DE19801050A1 (en) * 1998-01-14 1999-07-15 Bayer Ag Polycarbonate acrylonitrile-butadiene-styrene based thermoplastic molding composition useful in automotive, electrical and electronic applications
DE19801198A1 (en) * 1998-01-15 1999-07-22 Bayer Ag Inflammable thermoplastic polycarbonate-based molding composition used for electrical and domestic housing having good electrical properties
TW455605B (en) * 1998-02-13 2001-09-21 Gen Electric Flame retardant carbonate polymer composition with improved hydrolytic stability
US6084054A (en) 1998-03-30 2000-07-04 General Electric Company Flame retardant polycarbonate resin/ABS graft copolymer blends having low melt viscosity
JPH11343382A (en) * 1998-04-01 1999-12-14 Daihachi Chemical Industry Co Ltd Flame-retardant resin composition
US6063844A (en) * 1998-04-02 2000-05-16 General Electric Company Polycarbonate/rubber-modified graft copolymer resin blends having improved thermal stability
JP4771566B2 (en) * 1998-04-03 2011-09-14 サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ Resin composition and resin molded article excellent in slidability and flame retardancy
KR100249091B1 (en) 1998-04-07 2000-03-15 유현식 Thermoplastics flameproof resin composition
US5910538A (en) * 1998-04-24 1999-06-08 Bayer Corporation Compatibilized ABS polycarbonate molding
WO1999057198A1 (en) * 1998-05-01 1999-11-11 General Electric Company Flame retardant polycarbonate/rubber-modified graft copolymer resin blends having a low fluorine content
KR20010009104A (en) * 1998-07-10 2001-02-05 유현식 Flame retardant thermoplastic resin composition
CN1310747A (en) * 1998-07-27 2001-08-29 通用电气公司 Flame retardant polycarbonate/rubber-modified graft copolymer resin blend having a metallic appearance
FR2781807A1 (en) * 1998-07-31 2000-02-04 Cheil Ind Inc Fireproof thermoplastic resin composition, for production of molded housings of electric and electronic devices, includes non-halogenated thermoplastic polycarbonate and rubber-based graft copolymer
KR100331377B1 (en) 1999-07-14 2002-04-09 안복현 Method of Preparing Flameproof Thermoplastic Resin Composition
KR100289941B1 (en) 1998-09-02 2001-09-17 유현식 Thermoplastic composition with flame retardancy
KR100355411B1 (en) * 1999-11-30 2002-10-11 제일모직주식회사 Flameproof Thermoplastic Resin Composition
US6133360A (en) * 1998-10-23 2000-10-17 General Electric Company Polycarbonate resin blends containing titanium dioxide
US6205623B1 (en) * 1998-11-06 2001-03-27 Velcro Industries B.V. Composite hook and loop fasteners, and products containing them
DE19853108A1 (en) 1998-11-18 2000-05-25 Bayer Ag Flame-retardant, heat-resistant polycarbonate ABS molding compounds
JP3926938B2 (en) * 1998-12-03 2007-06-06 三菱エンジニアリングプラスチックス株式会社 Flame retardant polycarbonate resin composition
DE19914139A1 (en) * 1999-03-27 2000-09-28 Bayer Ag Flame retardant, impact modified polycarbonate molding compounds
US6262135B1 (en) 1999-04-12 2001-07-17 Akzo Nobel Nv Polyurethane foam containing a blend of monomeric and oligomeric flame retardants
US6319432B1 (en) 1999-06-11 2001-11-20 Albemarle Corporation Bisphenol-A bis(diphenyl phosphate)-based flame retardant
KR100540582B1 (en) 1999-07-12 2006-01-10 제일모직주식회사 Flame retardant thermoplastic resin composition
US6180702B1 (en) * 1999-08-09 2001-01-30 Bayer Corporation Flame retardant polycarbonate composition
DE19941827A1 (en) * 1999-09-02 2001-03-08 Bayer Ag Flame retardant polycarbonate blends
US7288577B1 (en) 1999-09-09 2007-10-30 Supresta U.S. Llc Polyurethane foam containing flame retardant blend of non-oligomeric and oligomeric flame retardants
WO2001058999A1 (en) * 2000-02-10 2001-08-16 The Dow Chemical Company Ignition resistant polymer compositions
EP1265954B1 (en) * 2000-03-06 2008-05-28 Bayer MaterialScience AG Flame-resistant polycarbonate moulding compounds for extrusion applications
DE10010941A1 (en) * 2000-03-06 2001-09-13 Bayer Ag Low-fluorine polycarbonate molding compositions containing an impact modifier and a phosphorus-containing flame retardant, useful for making molded products with high stress cracking resistance
DE10027341A1 (en) * 2000-06-02 2001-12-06 Bayer Ag Flame retardant translucent polycarbonate molding compounds
DE10027333A1 (en) * 2000-06-02 2001-12-06 Bayer Ag Flame retardant and anti-electrostatic polycarbonate molding compounds
KR100439331B1 (en) * 2000-08-29 2004-07-07 제일모직주식회사 Flame-Retardant Thermoplastic Resin Composition
KR100372569B1 (en) 2000-10-31 2003-02-19 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
US6399685B1 (en) 2000-12-11 2002-06-04 Albemarle Corporation Purification of arylene polyphosphate esters
US6605659B2 (en) 2000-12-20 2003-08-12 General Electric Company Flame retardant polycarbonate resin/ABS graft copolymer blends
DE10109224A1 (en) * 2001-02-26 2002-09-05 Bayer Ag Flame retardant polycarbonate compositions with increased chemical resistance
DE10109226A1 (en) * 2001-02-26 2002-09-05 Bayer Ag Polycarbonate composition with improved adhesion to foam, useful for making molded articles and composites, contains copolymer of styrene and carboxylated monomer
KR100435571B1 (en) * 2001-07-20 2004-06-09 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100422778B1 (en) * 2001-09-03 2004-03-12 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100427531B1 (en) * 2001-09-13 2004-04-30 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
DE10152318A1 (en) * 2001-10-26 2003-05-08 Bayer Ag Impact-resistant modified flame-retardant polycarbonate molding compounds
KR100442939B1 (en) * 2001-12-11 2004-08-04 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100442937B1 (en) * 2001-12-11 2004-08-04 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
DE10162747A1 (en) 2001-12-20 2003-07-03 Bayer Ag Extrudable polycarbonate molding compounds
RU2004137127A (en) * 2002-05-20 2005-07-10 Пабу Сервисес, Инк. (Us) COMPOSITION FOR FIRE RESISTANT POLYURETHANE, METHOD FOR PRODUCING IT AND ADDITIVE INCREASING FIRE RESISTANCE
AU2003226414A1 (en) * 2002-05-30 2003-12-19 Dow Global Technologies, Inc. Halogen free ignition resistant thermoplastic resin compositions
KR100462531B1 (en) * 2002-07-08 2004-12-17 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100463960B1 (en) * 2002-07-11 2004-12-30 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
WO2004072179A1 (en) * 2003-02-06 2004-08-26 Dow Global Technologies Inc. Halogen free ignition resistant thermoplastic resin compositions
ES2221800B2 (en) * 2003-06-16 2005-07-01 Unex Aparellaje Electrico S.L. EXTRUSIONABLE COMPOSITION OF SYNTHETIC RESIN.
EP1756217B1 (en) * 2004-06-18 2012-03-21 Cheil Industries Inc. Flameproof thermoplastic resin composition
US20080014446A1 (en) * 2004-10-07 2008-01-17 General Electric Company Window shade and a multi-layered article, and methods of making the same
KR100650910B1 (en) 2004-10-13 2006-11-27 제일모직주식회사 Flame Retardant Thermoplastic Resin Composition
KR100560151B1 (en) * 2004-12-30 2006-03-10 제일모직주식회사 Flame retardant polycarbonate resin composition
PL1861458T3 (en) * 2005-03-21 2010-09-30 Chemtura Corp Flame retardants and flame retarded polymers
DE102006006167A1 (en) * 2005-04-06 2006-10-12 Lanxess Deutschland Gmbh Molding compounds based on a thermoplastic polycarbonate
US7358293B2 (en) 2005-05-02 2008-04-15 General Electric Company Thermoplastic polycarbonate compositions with improved optical surface quality, articles made therefrom and method of manufacture
DE102006018602A1 (en) * 2005-06-09 2006-12-14 Bayer Materialscience Ag Flame retardant coated polycarbonate moldings
US7446144B2 (en) * 2005-09-14 2008-11-04 Bayer Materialscience Llc Thermoplastic molding composition and articles thermoformed therefrom
KR100796938B1 (en) 2005-12-28 2008-01-22 제일모직주식회사 Thermoplastic Resin Composition with Low Coefficient of Linear Thermal Expansion and High Impact Strength
EP1976929A4 (en) 2005-12-30 2012-07-18 Cheil Ind Inc Flame retardant polycarbonate thermoplastic resin composition having good extrusion moldability and impact resistance
KR100722149B1 (en) * 2005-12-30 2007-05-28 제일모직주식회사 Flame retardant polycarbonate thermoplastic resin composition for good extrusion molding and impact resistance
US7863381B2 (en) 2006-03-08 2011-01-04 3M Innovative Properties Company Polymer composites
US8129457B2 (en) * 2006-03-22 2012-03-06 Chemtura Corporation Flame retardant blends for flexible polyurethane foam
DE102007002925A1 (en) 2007-01-19 2008-07-24 Bayer Materialscience Ag Impact modified polycarbonate compositions
US8217101B2 (en) 2007-03-02 2012-07-10 Bayer Materialscience Llc Flame retardant thermoplastic molding composition
DE102007011070A1 (en) 2007-03-07 2008-09-11 Bayer Materialscience Ag Product with improved paint adhesion
KR100841927B1 (en) * 2007-03-07 2008-06-27 주식회사 지케이엘 Triphenyl phosphate-grafted polymer resin having butadiene moiety and preparing process thereof
DE102007017936A1 (en) 2007-04-13 2008-10-16 Bayer Materialscience Ag Products with improved flame resistance
DE102008015124A1 (en) 2007-05-16 2008-11-20 Bayer Materialscience Ag Impact modified polycarbonate compositions
DE102007052783A1 (en) 2007-11-02 2009-05-07 Bayer Materialscience Ag Flame-resistant polycarbonates with polyols
US20110184102A1 (en) * 2007-12-05 2011-07-28 Lg Chem, Ltd. Flame retardant polycarbonate resin composition having high infrared transmission
KR100885819B1 (en) 2007-12-18 2009-02-26 제일모직주식회사 Branched acrylic copolymer with high refractive index and preparation method thereof
KR101004040B1 (en) 2007-12-18 2010-12-31 제일모직주식회사 Scratch-Resistant Flameproof Thermoplastic Resin Composition with improved compatibility
KR100902352B1 (en) 2008-03-13 2009-06-12 제일모직주식회사 Thermoplastic resin composition with improved compatibility
KR100886348B1 (en) 2008-04-14 2009-03-03 제일모직주식회사 Flame-retardant scratch-resistant thermoplastic resin composition with improved compatibility
CN101591468B (en) * 2008-05-28 2011-09-14 上海科领实业有限公司 Low-smoke halogen-free flame retardant PC/ABS alloy and preparation method thereof
DE102008028571A1 (en) 2008-06-16 2009-12-17 Bayer Materialscience Ag Impact modified polycarbonate compositions
DE102008048204A1 (en) 2008-09-20 2010-04-01 Bayer Materialscience Ag Stress crack resistant and low distortion two-component moldings containing talc
DE102008048201A1 (en) 2008-09-20 2010-04-01 Bayer Materialscience Ag Stress crack resistant and low warpage two-component moldings containing isotropic filler
DE102008048202A1 (en) 2008-09-20 2010-04-01 Bayer Materialscience Ag Stress crack resistant and low distortion two-component moldings containing platelet or Schuppförmigen inorganic filler except talc
US8445568B2 (en) * 2008-09-25 2013-05-21 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles formed therefrom
DE102008054329A1 (en) 2008-11-03 2010-05-06 Bayer Materialscience Ag Composition, useful e.g. in lamp housings, electrical circuit breakers and power strips, comprises polycarbonate, organosilane oligomer and flame retardant additive
DE102008060536A1 (en) 2008-12-04 2010-06-10 Bayer Materialscience Ag Impact-modified polycarbonate compositions containing acid phosphorus compounds with basic precipitated emulsion graft polymer
KR101188349B1 (en) 2008-12-17 2012-10-05 제일모직주식회사 Polycarbonate resin composition with improved transparency and scratch-resistance
DE102008062903A1 (en) * 2008-12-23 2010-06-24 Bayer Materialscience Ag Flame-retardant toughened polycarbonate compositions
DE102008062945A1 (en) 2008-12-23 2010-06-24 Bayer Materialscience Ag Flame-retardant toughened polycarbonate compositions
US7915329B2 (en) 2008-12-30 2011-03-29 Sabic Innovative Plastics Ip B.V. Flame retardant resinous compositions and process
US7915328B2 (en) 2008-12-30 2011-03-29 Sabic Innovative Plastics Ip B.V. Flame retardant resinous compositions and process
DE102009009680A1 (en) 2009-02-19 2010-08-26 Bayer Materialscience Ag Compounding process for the preparation of polymer compositions with reduced content of volatile organic compounds
DE102009014878A1 (en) 2009-03-25 2010-09-30 Bayer Materialscience Ag Flame-retardant toughened polycarbonate compositions
DE102009015040A1 (en) 2009-03-26 2010-09-30 Bayer Materialscience Ag (Co) polycarbonates with improved optical properties
DE102009020544A1 (en) 2009-05-08 2010-11-11 Heinrich-Heine-Universität Düsseldorf Preparing a copolymer, useful to produce e.g. plastics, comprises providing a cyclodextrin compound, providing a metallocene compound with double bonds and providing a styrene compound, adding an initiator and polymerizing components
WO2011036122A1 (en) 2009-09-24 2011-03-31 Bayer Materialscience Ag Injection molded multi-component composite systems having improved fire behavior
EP2308679A1 (en) 2009-10-06 2011-04-13 Bayer MaterialScience AG Solar module with polycarbonate blend film as rear film
DE102009052042A1 (en) 2009-11-05 2011-05-12 Bayer Materialscience Ag Polycarbonate composition with improved flame retardancy for extrusion applications
WO2011054862A1 (en) 2009-11-05 2011-05-12 Bayer Materialscience Ag Polycarbonate plates with improved flame resistance
US20120231278A1 (en) 2009-11-05 2012-09-13 Bayer Intellectual Property Gmbh Polycarbonate composition having improved flame resistance for extrusion applications
MX2012006323A (en) 2009-12-05 2012-11-06 Bayer Ip Gmbh Polycarbonate compositions with a phenolically substituted triazine derivative.
DE102009059076A1 (en) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Scratch-resistant, impact-resistant polycarbonate molding compounds with good mechanical properties
DE102009059074A1 (en) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Scratch-resistant, impact-resistant polycarbonate molding compounds with good mechanical properties II
DE102009059075A1 (en) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Flame-retardant, impact-modified, scratch-resistant polycarbonate molding compounds with good mechanical properties
US8735490B2 (en) * 2009-12-30 2014-05-27 Cheil Industries Inc. Thermoplastic resin composition having improved impact strength and melt flow properties
JP2013517364A (en) 2010-01-22 2013-05-16 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Flameproof article with high transmittance
TW201137033A (en) 2010-03-02 2011-11-01 Styron Europe Gmbh Improved flow ignition resistant carbonate polymer composition
TWI521051B (en) 2010-03-11 2016-02-11 盛禧奧歐洲有限責任公司 Impact modified ignition resistant carbonate polymer composition
DE102010018234A1 (en) 2010-04-23 2012-03-29 Bayer Materialscience Aktiengesellschaft Easy-flowing polycarbonate / ABS molding compounds with good mechanical properties and a good surface
TWI577530B (en) 2010-07-14 2017-04-11 科思創德意志股份有限公司 Method and apparatus for compounding pigments
DE102010039712A1 (en) 2010-08-24 2012-03-01 Bayer Materialscience Aktiengesellschaft Toughened polyester / polycarbonate compositions with improved elongation at break
DE102010041387A1 (en) 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Polycarbonate-based flame-retardant impact-modified battery cases I
DE102010041388A1 (en) 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Polycarbonate-based flame-retardant impact-modified battery housings II
US20130221294A1 (en) 2010-11-05 2013-08-29 Bayer Intellectual Property Gmbh Uv-protected polycarbonate molding materials equipped so as to be flame-retardant and having a low molecular weight decrease
KR101838994B1 (en) 2010-11-05 2018-03-15 코베스트로 도이칠란드 아게 Flame-proofed, uv-protected polycarbonate molding compounds having low molecular weight degradation
EP2468820A1 (en) 2010-12-23 2012-06-27 Bayer MaterialScience AG Polycarbonate compositions with improved flame resistance
US8440762B2 (en) 2011-01-14 2013-05-14 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
US8404772B2 (en) 2011-01-14 2013-03-26 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
CN102311628B (en) * 2011-07-06 2012-12-12 惠州市昌亿科技股份有限公司 Cold resistant polycarbonate/ABS alloy for intelligent ammeter shell and preparation method thereof
EP2543695A1 (en) 2011-07-08 2013-01-09 Bayer MaterialScience AG Matt, flame-retardant item with high transmission
EP2554597B1 (en) 2011-08-02 2014-12-31 Styron Europe GmbH Chemical resistant and fire retardant polycarbonate polyester composition
EP2574642B1 (en) 2011-09-28 2013-11-20 Bayer Intellectual Property GmbH Flame-retardant PC/ABS compounds with good impact strength, flowability and chemical resistance
EP2771403B1 (en) 2011-10-26 2017-05-17 Covestro Deutschland AG Method for producing and stabilising impact resistant polycarbonate compounds using diluted solutions of acidic compounds
BR112014009287A8 (en) 2011-10-26 2017-06-20 Bayer Ip Gmbh stabilized polycarbonate compositions with mixtures of silicic acid and an inorganic acid
EP2647669A1 (en) 2012-04-05 2013-10-09 Bayer MaterialScience AG Impact modified polycarbonate compounds for simplified production of low temperature components with high sheen and matt component sections
EP2657258A1 (en) 2012-04-23 2013-10-30 Bayer MaterialScience AG Method for producing ABS compounds with improved surface after hot-wet storage
EP2657259A1 (en) 2012-04-23 2013-10-30 Bayer MaterialScience AG ABS compounds with improved surface after hot-wet storage
EP2657298A1 (en) 2012-04-27 2013-10-30 Bayer MaterialScience AG PC/ABS compounds with good thermal and chemical resistance
WO2014086944A1 (en) 2012-12-07 2014-06-12 Bayer Materialscience Ag Flame-retardant polycarbonate molding materials ii
EP2746316A1 (en) 2012-12-18 2014-06-25 Mitsubishi Chemical Europe GmbH Thermoplastic composition
EP2953983A1 (en) 2013-02-07 2015-12-16 Covestro Deutschland AG Method for the production of abs compositions having an improved surface
WO2014122178A1 (en) 2013-02-07 2014-08-14 Bayer Materialscience Ag Method for the production of abs compositions having an improved surface following storage in a warm-humid environment
KR20150115765A (en) 2013-02-07 2015-10-14 바이엘 머티리얼사이언스 아게 Method for the production of abs compositions having an improved surface
US9856406B2 (en) 2013-03-11 2018-01-02 Covestro Llc Flame retardant polycarbonate
EP2981577B1 (en) 2013-04-04 2019-08-14 Covestro Deutschland AG High-temperature (co)polycarbonates containing phthalimide and having improved rheological properties
CN105209543B (en) 2013-04-04 2017-10-13 科思创德国股份公司 High temperature resistant (common) makrolon with improved rheological property
JP6567508B2 (en) 2013-10-08 2019-08-28 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Fiber composite, its use and production method
EP3071393A1 (en) 2013-11-21 2016-09-28 SABIC Global Technologies B.V. Reduced density article
WO2015074233A1 (en) * 2013-11-22 2015-05-28 Bayer Material Science (China) Co., Ltd. Glass-fibre reinforced polycarbonate composition
EP2881408B1 (en) 2013-12-04 2017-09-20 Lotte Advanced Materials Co., Ltd. Styrene-based copolymer and thermoplastic resin composition including the same
CN106068177B (en) 2014-03-06 2017-12-19 沙特基础工业全球技术有限公司 The product with anti-flammability, method for making and the method for testing their anti-flammability of increasing material manufacturing
KR102331011B1 (en) 2014-03-14 2021-11-25 코베스트로 도이칠란트 아게 Thermally conductive thermoplastic compositions featuring balanced processability
US9902850B2 (en) 2014-06-26 2018-02-27 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition
US9790362B2 (en) 2014-06-27 2017-10-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article made using the same
US9856371B2 (en) 2014-06-27 2018-01-02 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and low-gloss molded article made therefrom
US9850333B2 (en) 2014-06-27 2017-12-26 Lotte Advanced Materials Co., Ltd. Copolymers and thermoplastic resin composition including the same
KR101822697B1 (en) 2014-11-18 2018-01-30 롯데첨단소재(주) Thermoplastic resin composition with excellent appearance and molded article using thereof
CN104962059B (en) * 2015-06-18 2016-11-02 金发科技股份有限公司 A kind of polycarbonate compositions and preparation method thereof
WO2017099754A1 (en) 2015-12-09 2017-06-15 Covestro Llc Thermoplastic compositions having low gloss and high impact strength
WO2017100447A1 (en) 2015-12-11 2017-06-15 Sabic Global Technologies B.V. Addition of plasticizers to improve interlayer adhesion in additive manufacturing processes
EP3211050A1 (en) 2016-02-26 2017-08-30 Trinseo Europe GmbH Molded structures of polycarbonate based substrates over molded with silicone rubbers
TWI745364B (en) 2016-03-23 2021-11-11 德商科思創德意志股份有限公司 Polycarbonate compositions with improved hydrolysis resistance
TWI764909B (en) 2016-07-04 2022-05-21 德商科思創德意志股份有限公司 Multilayer composite material comprising specific polycarbonate compositions as matrix material
EP3497165A1 (en) 2016-08-15 2019-06-19 SABIC Global Technologies B.V. Multifunctional flame retardant thermoplastic compositions for connected personal protective equipment
KR102448348B1 (en) 2016-08-19 2022-09-28 코베스트로 도이칠란트 아게 Method for synthesizing polyoxazolidinone compounds
JP7072870B2 (en) 2016-11-02 2022-05-23 稔 田村 Mixing device and mixing method for multiple solutions
KR102018717B1 (en) 2016-12-22 2019-09-05 롯데첨단소재(주) Thermoplastic resin composition and article using the same
CN108239295A (en) 2016-12-26 2018-07-03 科思创聚合物(中国)有限公司 The polycarbonate compound of pencil hardness with raising
EP3357949A1 (en) 2017-02-02 2018-08-08 Covestro Deutschland AG Method for the production of polyoxazolidinone polymer compounds
CN110352121B (en) 2017-03-07 2022-02-01 科思创有限公司 Two-shot injection molding of thermoplastic parts
US20200298467A1 (en) 2017-04-27 2020-09-24 Covestro Llc Structured filaments used in 3d printing
EP3676093B1 (en) 2017-08-30 2021-10-06 Trinseo Europe GmbH Compositions useful in preparing recyclable polycarbonate sheeting having a matte appearance
EP3697846A1 (en) 2017-10-16 2020-08-26 Covestro Deutschland AG Flame-resistant polycarbonate composition having a reduced bisphenol-a content
US20200270451A1 (en) 2017-10-16 2020-08-27 Covestro Deutschland Ag Flame-retardant polycarbonate-acrylate rubber composition with low bisphenol a content
WO2019076495A1 (en) 2017-10-16 2019-04-25 Covestro Deutschland Ag Flame-resistant filling-material-reinforced polycarbonate composition having a reduced bisphenol-a content
EP3498469B1 (en) 2017-12-14 2021-12-01 Trinseo Europe GmbH Laminate containing polycarbonate composition layers and fiber structure layers with improved fire resistance properties
EP3499119A1 (en) 2017-12-18 2019-06-19 Covestro Deutschland AG Device for dissipating heat from a heat source and use of this device
EP3502173A1 (en) 2017-12-19 2019-06-26 Covestro Deutschland AG Design laminated sheet containing special polycarbonate compositions as matrix material
EP3502170A1 (en) 2017-12-19 2019-06-26 Covestro Deutschland AG Laminated sheet containing special polycarbonate compositions as matrix material
CN111465652B (en) 2017-12-20 2022-10-18 科思创德国股份有限公司 Polycarbonate compositions with good flame retardancy
EP3502171A1 (en) 2017-12-21 2019-06-26 Covestro Deutschland AG Laminated sheet containing special polycarbonate compositions as matrix material
WO2019195979A1 (en) 2018-04-09 2019-10-17 Covestro Deutschland Ag Polycarbonate composition, molded article prepared from same, and use thereof
EP3736309A1 (en) 2019-05-07 2020-11-11 Trinseo Europe GmbH Polycarbonate composition which exhibits a flecked appearance when molded
CN114599736A (en) 2019-08-28 2022-06-07 科思创知识产权两合公司 Flame-retardant polycarbonate compositions and molded parts and articles made therefrom
EP4031622A1 (en) 2019-09-20 2022-07-27 Trinseo Europe GmbH Matte polycarbonate compositions, articles and method to make them
WO2021076561A1 (en) 2019-10-15 2021-04-22 Covestro Llc Three part headlamp assembly
CN111635625A (en) * 2020-06-10 2020-09-08 上海嘉柏利通科技股份有限公司 Protective eye cover with cleaning-resistant high-temperature-resistant damp-heat sterilization composition
EP4047073A1 (en) 2021-02-17 2022-08-24 Covestro Deutschland AG Pyrolysis of polycarbonate-containing material for recovery of raw materials
WO2022228954A1 (en) 2021-04-26 2022-11-03 Covestro Deutschland Ag Flame retardant polycarbonate composition with high comparative tracking index
EP4092081A1 (en) 2021-05-18 2022-11-23 Covestro Deutschland AG Flame retardant polycarbonate composition with high comparative tracking index
EP4105252A1 (en) 2021-06-17 2022-12-21 Covestro Deutschland AG Thermoplastic moulding composition with high flame resistance
WO2022263335A1 (en) 2021-06-18 2022-12-22 Covestro Deutschland Ag Flame-retardant polycarbonate compositions having a high cti
WO2023006614A1 (en) 2021-07-27 2023-02-02 Covestro Deutschland Ag Hydrolysis-resistant polycarbonate composition
KR20240037983A (en) 2021-08-04 2024-03-22 코베스트로 도이칠란트 아게 Polycarbonate compositions with high CTI
EP4201987A1 (en) 2021-12-22 2023-06-28 Covestro Deutschland AG Pyrolysis of polycarbonate-containing material in combination with phosphorus-containing organic compound for recovery of raw materials
EP4249561A1 (en) 2022-03-25 2023-09-27 Covestro Deutschland AG Polycarbonate composition
EP4249560A1 (en) 2022-03-25 2023-09-27 Covestro Deutschland AG Polycarbonate / polyester composition and component with high resistance to leakage current
WO2023180227A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Polycarbonate compositions having a high cti
WO2023180226A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Ee device comprising a composite polycarbonate element having high cti
WO2023180190A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Polycarbonate composition
WO2023180228A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Polycarbonate compositions having a high cti
WO2023198591A1 (en) 2022-04-14 2023-10-19 Covestro Deutschland Ag Thermally conductive flame-proof polycarbonate compositions having a high comparative tracking index
WO2023198594A1 (en) 2022-04-14 2023-10-19 Covestro Deutschland Ag Thermally conductive flame-proof polycarbonate compositions having a high comparative tracking index
WO2023202910A1 (en) 2022-04-19 2023-10-26 Covestro Deutschland Ag Method for producing a plastic compound having improved properties
EP4306594A1 (en) 2022-07-12 2024-01-17 Trinseo Europe GmbH Polycarbonates with high post-consumer recycle content
EP4342948A1 (en) 2022-09-23 2024-03-27 Trinseo Europe GmbH Flame retardant polycarbonate formulations
EP4345136A1 (en) 2022-09-29 2024-04-03 Covestro Deutschland AG Electronic component containing polycarbonate material with high track resistance

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924736A (en) * 1982-08-02 1984-02-08 Adeka Argus Chem Co Ltd Flame-retarding polystyrene resin composition
JPS5945351A (en) * 1982-09-08 1984-03-14 Adeka Argus Chem Co Ltd Flame-retardant composition
EP0174493A1 (en) * 1984-08-17 1986-03-19 Bayer Ag Thermoplastic moulding masses with flame-retarding properties
US4914144A (en) * 1987-12-17 1990-04-03 Basf Aktiengesellschaft Halogen-free flameproof molding materials
EP0363608A1 (en) * 1988-09-22 1990-04-18 General Electric Company Polymer mixture comprising an aromatic polycarbonate, a styrene-containing copolymer and/or graft polymer and a phosphate based flame-retardant; articles formed therefrom
US5030675A (en) * 1987-08-29 1991-07-09 Bayer Aktiengesellschaft Flame-resistant thermoplastic moulding compounds based on polycarbonate, polyalkylene terephthalate, graft copolymer, fluorinated polyolefine and phosphorus compound
US5036126A (en) * 1990-05-30 1991-07-30 General Electric Company Flame retardant blends of polycarbonate, ABS and a terpolymer
US5061745A (en) * 1988-06-04 1991-10-29 Bayer Aktiengesellschaft Flame-retardant, high-impact polycarbonate molding compounds
US5122556A (en) * 1990-04-23 1992-06-16 General Electric Company Tetra (lower alkaryl) p-phenylene diphosphate-polycarbonate blends
EP0491986A1 (en) * 1990-12-24 1992-07-01 General Electric Company Flame retardant polymer compositions containing polybutylene terephthalate and oligomeric phosphoric or phosphonic acid esters
US5157065A (en) * 1990-06-22 1992-10-20 Bayer Aktiengesellschaft Thermoplastic polycarbonate moulding compositions with flame-resistant properties
EP0521745A1 (en) * 1991-06-20 1993-01-07 Louis Lefebvre Method for erecting and dismantling shuttering for walls poured on a reference surface and means for its application
EP0521628A2 (en) * 1991-06-14 1993-01-07 Ethyl Petroleum Additives, Inc. Organic phosphates and their preparation
US5204394A (en) * 1988-09-22 1993-04-20 General Electric Company Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
US5272193A (en) * 1991-07-12 1993-12-21 Bayer Aktiengesellschaft Thermoplastic polycarbonate moulding compounds with flame-resistant properties
US5276078A (en) * 1989-07-24 1994-01-04 The Dow Chemical Company Ignition resistant polycarbonate blends
US5290836A (en) * 1991-10-25 1994-03-01 Dsm N.V. Flame-retardant polymer composition
US5292786A (en) * 1990-06-22 1994-03-08 General Electric Company Flame retardant blends of polycarbonate, ABS and a polyalkylmethacrylate having increased weld line strength
US5302646A (en) * 1992-02-28 1994-04-12 General Electric Company Low gloss flame-retarded polycarbonate/ABS blends obtained by using hydroxyalkyl (meth) acrylate functionalized ABS
EP0594021A2 (en) * 1992-10-22 1994-04-27 Bayer Ag Flame-retardant moulding compositions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202240A (en) * 1983-05-02 1984-11-16 Daihachi Kagaku Kogyosho:Kk Flame-retardant thermoplastic resin composition

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924736A (en) * 1982-08-02 1984-02-08 Adeka Argus Chem Co Ltd Flame-retarding polystyrene resin composition
JPS5945351A (en) * 1982-09-08 1984-03-14 Adeka Argus Chem Co Ltd Flame-retardant composition
US4983658A (en) * 1984-08-17 1991-01-08 Bayer Aktiengesellschaft Thermoplastic moulding compositions with flame-repellent properties
EP0174493A1 (en) * 1984-08-17 1986-03-19 Bayer Ag Thermoplastic moulding masses with flame-retarding properties
US5030675A (en) * 1987-08-29 1991-07-09 Bayer Aktiengesellschaft Flame-resistant thermoplastic moulding compounds based on polycarbonate, polyalkylene terephthalate, graft copolymer, fluorinated polyolefine and phosphorus compound
US4914144A (en) * 1987-12-17 1990-04-03 Basf Aktiengesellschaft Halogen-free flameproof molding materials
US5061745A (en) * 1988-06-04 1991-10-29 Bayer Aktiengesellschaft Flame-retardant, high-impact polycarbonate molding compounds
EP0363608A1 (en) * 1988-09-22 1990-04-18 General Electric Company Polymer mixture comprising an aromatic polycarbonate, a styrene-containing copolymer and/or graft polymer and a phosphate based flame-retardant; articles formed therefrom
US5204394A (en) * 1988-09-22 1993-04-20 General Electric Company Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
US5276078A (en) * 1989-07-24 1994-01-04 The Dow Chemical Company Ignition resistant polycarbonate blends
US5122556A (en) * 1990-04-23 1992-06-16 General Electric Company Tetra (lower alkaryl) p-phenylene diphosphate-polycarbonate blends
US5036126A (en) * 1990-05-30 1991-07-30 General Electric Company Flame retardant blends of polycarbonate, ABS and a terpolymer
US5157065A (en) * 1990-06-22 1992-10-20 Bayer Aktiengesellschaft Thermoplastic polycarbonate moulding compositions with flame-resistant properties
US5292786A (en) * 1990-06-22 1994-03-08 General Electric Company Flame retardant blends of polycarbonate, ABS and a polyalkylmethacrylate having increased weld line strength
EP0491986A1 (en) * 1990-12-24 1992-07-01 General Electric Company Flame retardant polymer compositions containing polybutylene terephthalate and oligomeric phosphoric or phosphonic acid esters
EP0521628A2 (en) * 1991-06-14 1993-01-07 Ethyl Petroleum Additives, Inc. Organic phosphates and their preparation
EP0521745A1 (en) * 1991-06-20 1993-01-07 Louis Lefebvre Method for erecting and dismantling shuttering for walls poured on a reference surface and means for its application
US5272193A (en) * 1991-07-12 1993-12-21 Bayer Aktiengesellschaft Thermoplastic polycarbonate moulding compounds with flame-resistant properties
US5290836A (en) * 1991-10-25 1994-03-01 Dsm N.V. Flame-retardant polymer composition
US5302646A (en) * 1992-02-28 1994-04-12 General Electric Company Low gloss flame-retarded polycarbonate/ABS blends obtained by using hydroxyalkyl (meth) acrylate functionalized ABS
EP0594021A2 (en) * 1992-10-22 1994-04-27 Bayer Ag Flame-retardant moulding compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Abstract of JA 59 202 240, cited in Polymer and General Chemistry, p. 2. *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767943B1 (en) * 1999-03-27 2004-07-27 Bayer Aktiengesellschaft Flame-resistant polycarbonate moulding materials modified with graft polymers
US6831120B1 (en) 1999-09-02 2004-12-14 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6784232B1 (en) 1999-09-02 2004-08-31 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6906122B1 (en) 1999-09-02 2005-06-14 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6528561B1 (en) 1999-09-02 2003-03-04 Bayer Aktiengesellschaft Flame-resistant polycarbonate ABS blends
US6753364B1 (en) 1999-09-02 2004-06-22 Bayer Aktiengesellschaft Flame-resistant polycarbonate molding materials
US20030099837A1 (en) * 1999-12-22 2003-05-29 Dirk Mockel Thermoplastic multi-layered film with a layer of vinylcyclohexane-based polymer
US20030083419A1 (en) * 1999-12-24 2003-05-01 Andreas Seidel Flame-resistant polycarbonate molding compositions containing high-purity talc
US6737465B2 (en) 1999-12-24 2004-05-18 Bayer Aktiengesellschaft Flame-resistant polycarbonate molding compositions containing high-purity talc
US6936647B2 (en) 2000-03-09 2005-08-30 Bayer Aktiengesellschaft Bead polymerizates containing halogen-free phosphourus compounds
US6944115B2 (en) 2000-09-29 2005-09-13 General Electric Company Colored data storage media
US6771578B2 (en) 2000-09-29 2004-08-03 General Electric Company Colored data storage media
US6914089B2 (en) 2000-12-08 2005-07-05 Bayer Aktiengesellschaft Flame-resistant polycarbonate blends
US6713544B2 (en) 2000-12-08 2004-03-30 Bayer Aktiengesellschaft Flame-resistant and heat-resistant polycarbonate compositions
US20020137821A1 (en) * 2001-01-09 2002-09-26 Andreas Seidel Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions
US7019056B2 (en) 2001-01-09 2006-03-28 Bayer Aktiengesellschaft Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions
US6623827B2 (en) 2001-08-07 2003-09-23 General Electric Company Colored digital versatile disks
US6475588B1 (en) 2001-08-07 2002-11-05 General Electric Company Colored digital versatile disks
US20040235999A1 (en) * 2001-09-21 2004-11-25 Marc Vathauer Modified shock-resistant polymer compositions
US6673410B2 (en) 2001-12-17 2004-01-06 General Electric Company Colored optical discs and methods for making the same
US6916519B2 (en) 2001-12-17 2005-07-12 General Electric Company Colored optical discs and methods for making the same
US20030150553A1 (en) * 2001-12-17 2003-08-14 Vandita Pai-Parajape Colored optical discs and methods for making the same
US6475589B1 (en) * 2001-12-17 2002-11-05 General Electric Company Colored optical discs and methods for making the same
US6774163B2 (en) 2002-04-16 2004-08-10 Bayer Chemicals Ag Flame retardants for polymers comprising a mixture of two different aryl phosphates, their preparation and their use
US7220790B2 (en) 2002-07-29 2007-05-22 Bayer Aktiengesellschaft Flame-resistant polycarbonate molding compositions
US20040059031A1 (en) * 2002-07-29 2004-03-25 Andreas Seidel Flame-resistant polycarbonate molding compositions
US7144935B2 (en) 2002-12-06 2006-12-05 Bayer Aktiengesellschaft Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds
US20040110879A1 (en) * 2002-12-06 2004-06-10 Andreas Seidel Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds
US20090258978A1 (en) * 2007-03-07 2009-10-15 Bayer Materialscience Ag Polycarbonate composition containing uv absorber
US8044122B2 (en) 2007-03-07 2011-10-25 Bayer Materialscience Ag Polycarbonate composition containing UV absorber
US20110144242A1 (en) * 2007-11-27 2011-06-16 Total Raffinage Marketing Thermoreversibly crosslinked elastic bituminous composition
US20110098386A1 (en) * 2009-08-28 2011-04-28 Bayer Materialscience Ag Products having improved flame resistance
US9676716B2 (en) 2009-12-21 2017-06-13 Covestro Deutschland Ag Polycarbonate having improved thermal and mechanical properties and reduced coefficients of thermal expansion
US8058333B1 (en) * 2010-07-23 2011-11-15 Entire Technology Co., Ltd. Flame retarding composite material
US11732130B2 (en) 2019-12-04 2023-08-22 Covestro Intellectual Property Gmbh & Co. Kg Flame retardant impact-modified polycarbonate composition

Also Published As

Publication number Publication date
DE4328656A1 (en) 1995-03-02
US5672645A (en) 1997-09-30
ES2136040T3 (en) 2000-03-16
EP0640655B1 (en) 1999-12-08
JPH0782466A (en) 1995-03-28
EP0640655A3 (en) 1995-05-24
JP3168124B2 (en) 2001-05-21
ES2136040T1 (en) 1999-11-16
EP0640655A2 (en) 1995-03-01
DE59408980D1 (en) 2000-01-13

Similar Documents

Publication Publication Date Title
USRE36902E (en) Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking
JP4257688B2 (en) Flame-resistant, heat-resistant polycarbonate ABS molding material
US6569930B1 (en) Flame and stress crack resistant polycarbonate molding compositions
US6590015B1 (en) Flame-resistant molding compounds
JP5841372B2 (en) Flame retardant polycarbonate-ABS molding composition
US6613822B1 (en) Flame-resistant polycarbonate ABS moulding materials
KR100648581B1 (en) Flame-resistant Polycarbonate ABS Blends
US6914089B2 (en) Flame-resistant polycarbonate blends
RU2431649C2 (en) Polycarbonate moulding compounds
US6727301B1 (en) Flame-resistant, impact-resistant modified polycarbonate molding and extrusion masses
MXPA02011796A (en) Non-inflammable, anti-electrostatic polycarbonate molding materials.
US20010009946A1 (en) Polycarbonate resin/graft copolymer blends
US6706788B2 (en) Flame-resistant polycarbonate moulding materials which are dimensionally stable at high temperatures and have high flow line strength
JP2013525534A (en) Free-flowing polycarbonate / ABS molding composition with good mechanical properties and good surface
US5741838A (en) Flame retardent thermoplastic polycarbonate moulding compounds
US6326423B1 (en) Polycarbonate-ABS moulding compounds
US6767943B1 (en) Flame-resistant polycarbonate moulding materials modified with graft polymers
US6713544B2 (en) Flame-resistant and heat-resistant polycarbonate compositions
KR100431885B1 (en) Flame retardant carbonate polymer composition with improved hydrolytic stability
US5733957A (en) Flame retardant polycarbonate containing polycyclic phosphoric acid esters
KR100358604B1 (en) Flame Resistant Polycarbonate / Acrylonitrile-Butadiene-Styrene Molding Compound
KR20020029394A (en) Flame-resistant Polycarbonate Moulding Materials
MXPA99010761A (en) Flame-resistant polycarbonate moulding materials which are dimensionally stable at high temperatures and have high flow line strength
MXPA01005765A (en) Polycarbonate molding materials exhibiting improved mechanical properties
MXPA00000949A (en) Abs mouldable materials containing polycarbonate, non-flammable and resistant to stress crack

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12