USRE36902E - Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking - Google Patents
Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking Download PDFInfo
- Publication number
- USRE36902E USRE36902E US09/405,635 US40563599A USRE36902E US RE36902 E USRE36902 E US RE36902E US 40563599 A US40563599 A US 40563599A US RE36902 E USRE36902 E US RE36902E
- Authority
- US
- United States
- Prior art keywords
- parts
- weight
- alkyl
- styrene
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 26
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 26
- 239000000206 moulding compound Substances 0.000 title claims description 25
- 238000005336 cracking Methods 0.000 title claims description 14
- 239000000203 mixture Substances 0.000 claims abstract description 60
- -1 monophosphorus compound Chemical class 0.000 claims abstract description 56
- 229920000578 graft copolymer Polymers 0.000 claims abstract description 33
- 125000003118 aryl group Chemical group 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 229920000098 polyolefin Polymers 0.000 claims abstract description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 13
- 238000009757 thermoplastic moulding Methods 0.000 claims abstract description 11
- 229920006163 vinyl copolymer Polymers 0.000 claims abstract description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 7
- 239000011737 fluorine Substances 0.000 claims abstract description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 67
- 229920000642 polymer Polymers 0.000 claims description 29
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 23
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 20
- 229920001577 copolymer Polymers 0.000 claims description 18
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 16
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 15
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 14
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 14
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 13
- 150000003440 styrenes Chemical class 0.000 claims description 13
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 9
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical group 0.000 claims description 8
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 8
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 229920002857 polybutadiene Polymers 0.000 claims description 7
- 239000012779 reinforcing material Substances 0.000 claims description 7
- 239000005060 rubber Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- 239000002216 antistatic agent Substances 0.000 claims description 5
- 239000000975 dye Substances 0.000 claims description 5
- 239000000314 lubricant Substances 0.000 claims description 5
- 239000002667 nucleating agent Substances 0.000 claims description 5
- 239000000049 pigment Substances 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 125000002256 xylenyl group Chemical group C1(C(C=CC=C1)C)(C)* 0.000 claims description 4
- 239000005062 Polybutadiene Substances 0.000 claims description 3
- 125000004799 bromophenyl group Chemical group 0.000 claims description 3
- 125000000068 chlorophenyl group Chemical group 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 claims description 3
- OWICEWMBIBPFAH-UHFFFAOYSA-N (3-diphenoxyphosphoryloxyphenyl) diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=C(OP(=O)(OC=2C=CC=CC=2)OC=2C=CC=CC=2)C=CC=1)(=O)OC1=CC=CC=C1 OWICEWMBIBPFAH-UHFFFAOYSA-N 0.000 claims description 2
- 229920001195 polyisoprene Polymers 0.000 claims description 2
- 101100001669 Emericella variicolor andD gene Proteins 0.000 claims 4
- 239000006082 mold release agent Substances 0.000 claims 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- 239000000178 monomer Substances 0.000 description 21
- 239000000839 emulsion Substances 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000003063 flame retardant Substances 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920002959 polymer blend Polymers 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 150000004712 monophosphates Chemical class 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- BSWWXRFVMJHFBN-UHFFFAOYSA-N 2,4,6-tribromophenol Chemical compound OC1=C(Br)C=C(Br)C=C1Br BSWWXRFVMJHFBN-UHFFFAOYSA-N 0.000 description 2
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 2
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000001177 diphosphate Substances 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical class [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 2
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YFVPSVILXHJMEY-UHFFFAOYSA-N (2-ethyl-4-methyl-3,5-diphenylphenyl) dihydrogen phosphate Chemical compound CCC1=C(OP(O)(O)=O)C=C(C=2C=CC=CC=2)C(C)=C1C1=CC=CC=C1 YFVPSVILXHJMEY-UHFFFAOYSA-N 0.000 description 1
- XMNDMAQKWSQVOV-UHFFFAOYSA-N (2-methylphenyl) diphenyl phosphate Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C=CC=CC=1)OC1=CC=CC=C1 XMNDMAQKWSQVOV-UHFFFAOYSA-N 0.000 description 1
- 125000006833 (C1-C5) alkylene group Chemical group 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- KAIRTVANLJFYQS-UHFFFAOYSA-N 2-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=CC=C1O KAIRTVANLJFYQS-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- KKZUMAMOMRDVKA-UHFFFAOYSA-N 2-chloropropane Chemical group [CH2]C(C)Cl KKZUMAMOMRDVKA-UHFFFAOYSA-N 0.000 description 1
- ICBJBNAUJWZPBY-UHFFFAOYSA-N 2-hydroxyethyl 3-methylbut-2-enoate Chemical compound CC(=CC(=O)OCCO)C ICBJBNAUJWZPBY-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- CUAUDSWILJWDOD-UHFFFAOYSA-N 4-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=C(O)C=C1 CUAUDSWILJWDOD-UHFFFAOYSA-N 0.000 description 1
- HVXRCAWUNAOCTA-UHFFFAOYSA-N 4-(6-methylheptyl)phenol Chemical compound CC(C)CCCCCC1=CC=C(O)C=C1 HVXRCAWUNAOCTA-UHFFFAOYSA-N 0.000 description 1
- KJWMCPYEODZESQ-UHFFFAOYSA-N 4-Dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C=C1 KJWMCPYEODZESQ-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NRTJOSFDLNGXOS-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentyl]phenol Chemical compound CC1CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 NRTJOSFDLNGXOS-UHFFFAOYSA-N 0.000 description 1
- IIQVXZZBIGSGIL-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3-dimethylcyclohexyl]phenol Chemical compound C1C(C)(C)CCCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 IIQVXZZBIGSGIL-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HPUPGAFDTWIMBR-UHFFFAOYSA-N [methyl(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(C)OC1=CC=CC=C1 HPUPGAFDTWIMBR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 125000002603 chloroethyl group Chemical group [H]C([*])([H])C([H])([H])Cl 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- VZEGPPPCKHRYGO-UHFFFAOYSA-N diethoxyphosphorylbenzene Chemical compound CCOP(=O)(OCC)C1=CC=CC=C1 VZEGPPPCKHRYGO-UHFFFAOYSA-N 0.000 description 1
- VONWDASPFIQPDY-UHFFFAOYSA-N dimethyl methylphosphonate Chemical compound COP(C)(=O)OC VONWDASPFIQPDY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- YAFOVCNAQTZDQB-UHFFFAOYSA-N octyl diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(OCCCCCCCC)OC1=CC=CC=C1 YAFOVCNAQTZDQB-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- LIPMRGQQBZJCTM-UHFFFAOYSA-N tris(2-propan-2-ylphenyl) phosphate Chemical compound CC(C)C1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C(C)C)OC1=CC=CC=C1C(C)C LIPMRGQQBZJCTM-UHFFFAOYSA-N 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
- C08K5/523—Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L85/00—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
- C08L85/02—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
Definitions
- the present invention relates to flame resistant polycarbonate/ABS moulding compounds whose stress cracking resistance is substantially improved by a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound.
- EP-A 0 174 493 (U.S. Pat. No. 4,983,658) describes flameproofed polymer blends containing halogen prepared from an aromatic polycarbonate, a graft copolymer containing styrene, monophosphates and a special polytetrafluoroethylene formulation. While these blends do indeed have adequate fire behaviour and mechanical properties, they may be deficient in stress cracking resistance.
- U.S. Pat. No. 5,030,675 describes flame resistant, thermoplastic moulding compounds prepared from an aromatic polycarbonate, ABS polymer, polyalkylene terephthalate together with monophosphates and fluorinated polyolefins as flame retardants.
- Good stress cracking resistance is accompanied by deficiencies in notched impact strength, together with unsatisfactory thermal stability when exposed to elevated temperatures, such as for example during processing.
- Diphosphates are known as flame retardants.
- JA 59 202 240 describes the production of such a product from phosphorus oxychloride, diphenols such as hydroquinone or bisphenol A and monophenols such as phenol or cresol. These diphosphates may be used as flame retardants in polyamide or polycarbonate.
- this publication contains no indication of any improvement in stress cracking resistance by adding the oligomeric phosphate to polycarbonate moulding compounds in conjunction with polyalkylene terephthalates.
- flame resistant polycarbonate/ABS moulding compounds with excellent stress cracking resistance may be produced if a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound is added.
- Particularly elevated stress cracking resistance is achieved if the ratio by weight of the monophosphorus compound to the oligomeric phosphorus compound is within the range 90:10 to 10:90.
- These moulding compounds are particularly suitable for the production of thin-walled mouldings (computer equipment casing parts), where elevated processing temperatures and pressures result in the exposure of the material used to considerable stress.
- the present invention provides flame resistant, thermoplastic moulding compounds prepared from
- B.1 50 to 98, preferably 60 to 95 parts by weight of styrene, ⁇ -methylstyrene, ring-substituted styrenes, C 1 -C 8 alkyl methacrylates, C 1 -C 8 alkyl acrylates or mixtures thereof and
- B.2 50 to 2, preferably 40 to 5 parts by weight of acrylonitrile, methacrylonitrile, C 1 -C 8 alkyl methacrylates, C 1 -C 8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof,
- D.1) 10 to 90 wt. %, preferably 12 to 50, in particular 14 to 40 wt. %, very particular 15 to 40 wt. % (related to the total quantity of D) of a monophosphorus compound of the formula (I) ##STR3## in which R 1 , R 2 and R 3 mutually independently mean optionally halogenated C 1 -C 8 alkyl, C 6 -C 20 aryl or C 7 -C 12 aralkyl
- n 0 or 1
- n 0 or 1
- D.2 90 to 10 wt. %, preferably 88 to 50, in particular 86 to 60 wt. %, very particular 85 to 60 wt. % (related to the total amount of D) of an oligomeric phosphorus compound of the formula (II) ##STR4## in which R 4 , R 5 , R 6 , R 7 mutually independently mean C 1 -C 8 alkyl, C 5 -C 6 cycloalkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl,
- n mutually independently mean 0 or 1
- X means a mono- or polycyclic aromatic residue with 6 to 30 C atoms
- thermoplastic, aromatic polycarbonates are those based on diphenols of the formula (III) ##STR5## in which A is a single bond, C 1 -C 5 alkylene, C 2 -C 5 alkylidene, C 5 -C 6 cycloalkylidene, --S-- or --SO 2 --,
- B is chlorine, bromine
- p 1 or 0
- R 8 and R 9 mutually independently mean hydrogen, halogen, preferably chlorine or bromine, C 1 -C 8 alkyl, C 5 -C 6
- cycloalkyl C 6 -C 10 aryl, preferably phenyl, and C 7 -C 12 aralkyl, preferably phenyl-C 1 -C 4 -alkyl, in particular benzyl,
- n means an integer of 4, 5, 6 or 7, preferably 4 or 5,
- R 10 and R 11 mean, individually selectable for each Z, and mutually independently hydrogen or C 1 -C 6 alkyl
- Z means carbon, provided that on at least one Z atom, R 10 and R 11 simultaneously mean alkyl.
- Suitable diphenols of the formula (III) are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis-(4-hydroxyphenyl) propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 2,2-bis-(3-chloro-4-hydroxyphenyl) propane, 2,2-bis -(3,5-dibromo-4-hydroxyphenyl)propane.
- Preferred diphenols of the formula (III) are 2,2bis-(4-hydroxyphenyl)propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis-(4-hydroxyphenyl)cyclohexane.
- Preferred diphenols of the formula (IV) are 1,1-bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentane.
- Both homopolycarbonates and copolycarbonates are suitable polycarbonates according to the invention.
- Component A may also be a blend of the thermoplastic polycarbonates specified above.
- Polycarbonates may be produced in a known manner from diphenols with phosgene using the phase interface process or with phosgene using the homogeneous phase process, the so-called pyridine process, wherein molecular weight may be adjusted in a known manner with an appropriate quantity of known chain terminators.
- Suitable chain terminators are, for example, not only phenol, p-chlorophenol, p-tert.-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2 842 005 (Le A 19 006) or monoalkylphenol or dialkylphenol with a total of 8 to 20 C atoms in the alkyl substituents according to German patent application P 3 506 472.2 (Le A 23 654), such as 3,5-di-tert.-butylphenol, p-iso-octylphenol, p-tert.-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol.
- long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2
- the quantity of chain terminators is in general between 0.5 and 10 mol. %, related to the sum of the diphenols of the formulae (III) and/or (IV) used in each case.
- Suitable polycarbonates A according to the invention have average molecular weights (M w , weight average measured for example by ultracentrifugation or light scattering) of 10,000 to 200,000, preferably of 20,000 to 80,000.
- Suitable polycarbonates A according to the invention may be branched in a known manner, in particular preferably by incorporation 0.05 to 2 mol. %, related to total quantity of diphenols used, of tri- or higher functional compounds, for example those with three or more phenolic groups.
- preferred polycarbonates are copolycarbonates of bisphenol A with up to 15 mol. %, related to the total molar quantities of diphenols, of 2,2-bis-(3,5-dibromo-4-hydroxylphenyl) propane and the copolycarbonates of bisphenol A with up to 60 mol. %, related to the total molar quantities of diphenols, of 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane.
- the polycarbonates A may be partially or entirely replaced with aromatic polyester-carbonates.
- Component B vinyl copolymers which may be used according to the invention are those prepared from at least one monomer of the group: styrene, ⁇ -methylstyrene and/or ring-substituted styrenes, C 1 -C 8 alkyl methacrylate, C 1 -C 8 alkyl acrylate (B.1) with at least one monomer from the group: acrylonitrile, methacrylonitrile, C 1 -C 8 alkyl methacrylate, C 1 -C 8 alkyl acrylate, maleic anhydride and/or N-substituted maleimide (B.2).
- C 1 -C 8 alkyl acrylates or C 1 -C 8 alkyl methacrylates are esters of acrylic or methacrylic acids respectively with monohydric alcohols with 1 to 8 C atoms.
- Methyl methacrylate, ethyl methacrylate and propyl methacrylate are particularly preferred.
- Methyl methacrylate is cited as a particularly preferred methacrylic acid ester.
- Thermoplastic copolymers of a composition according to component B may be produced as secondary products of graft polymerisation during production of component C, particularly if large quantities of monomers are grafted onto small quantities of rubber.
- the quantity of copolymer B to be used according to the invention does not include these secondary products of graft polymerisation.
- the component B copolymers are resinous, thermoplastic and contain no rubber.
- thermoplastic copolymers B contain 50 to 98, preferably 60 to 95 parts by weight of B.1 and 50 to 2, preferably 40 to 5 parts by weight of B.2.
- Particularly preferred copolymers B are those prepared from styrene with acrylonitrile and optionally methyl methacrylate, from ⁇ -methylstyrene with acrylonitrile and optionally methyl methacrylate or from styrene and ⁇ -methylstyrene with acrylonitrile and optionally methyl methacrylate.
- the component B styrene/acrylonitrile copolymers are known any may be produced by free-radical polymerisation, in particular by emulsion, suspension, solution or bulk polymerisation.
- the component B copolymers preferably have molecular weights M w (weight average, determined by light scattering or setting) of between 15,000 and 200,000.
- copolymers B according to the invention are also random copolymers of styrene and maleic anhydride, which may be produced from the corresponding monomers by continuous bulk or solution polymerisation with incomplete conversion.
- the proportions of the two components in the suitable random styrene-maleic anhydride copolymers according to the invention may be varied within a wide range.
- the preferred maleic anhydride content is between 5 and 25 wt. %.
- the molecular weights (number average, M n ) of the suitable component B random styrene/maleic anhydride copolymers according to the invention may vary over a wide range. A range of 60,000 to 200,000 is preferred. An intrinsic viscosity of 0.3 to 0.9 is preferred for these products (measured in dimethylformamide at 25° C.; see Hoffmann, Kromer, Kuhn, Polymeranalytik I, Stuttgart 1977, p. 316 et seq.).
- the vinyl copolymers B may also contain ring-substituted styrenes such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, and other substituted styrenes such as ⁇ -methylstyrene.
- the graft polymers C) comprise, for example, graft copolymers with rubber-elastic properties, which are substantially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth) acrylic acid esters with 1 to 18 C atoms in the alcohol component; i.e. polymers as are, for example, described in Methoden der Organischen Chemie (Houben-Weyl), vol. 14/1, Georg Thieme Verlag, Stuttgart 1961, p. 393-406 and in C. B. Bucknall, Toughened Plastics, Appl. Science Publishers, London 1977.
- Preferred polymers C) are partially crosslinked and have a gel content of above 20 wt. %, preferably of above 40 wt. %, in particular above 60 wt. %.
- Preferred graft polymers C) comprise graft copolymers prepared from:
- polybutadienes, butadiene/styrene or butadiene/ acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with acrylic or methacrylic acid alkyl esters, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes, as are, for example, described in DE-OS 2 348 377 ( U.S. Pat. No. 3,919,353).
- Particularly preferred graft polymers C) are graft polymers obtainable by the grafting reaction of
- I. 10 to 70 preferably 15 to 50, in particular 20 to 40 wt. %, related to the grafted product, of at least one (meth) acrylic acid ester of 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. % of a mixture of 10 to 50, preferably 20 to 35 wt. %, related to the mixture, of acrylonitrile or (meth)acrylic acid ester and 50 to 90, preferably 65 to 80 wt. %, related to the mixture, of styrene onto
- the gel content of the grafting backbone II is at least 70 wt. % (measured in toluene), the degree of grafting G of the graft polymer C) is 0.15 to 0.55 and its average particle diameter d 50 0.05 to 2, preferably 0.1 to 0.6 ⁇ m.
- (Meth) acrylic acid esters I are esters of acrylic acid or methacrylic acid and monohydric alcohols with 1 to 18 C atoms. Methyl, ethyl and propyl methacrylate and particularly preferred.
- the grafting backbone II may contain up to 50 wt. %, related to II, of residues of other ethylenically unsaturated monomers, such as styrene, acrylonitrile, esters of acrylic or methacrylic acid with 1 to 4 C atoms in the alcohol component (such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate), vinyl esters and/or vinyl ethers.
- the preferred grafting backbone II consists of pure polybutadiene.
- graft polymers C) according to the invention are also taken to be those products obtained by polymerisation of the graft monomers in the presence of the grafting backbone.
- the degree of grafting G describes the ratio by weight of grafted monomers to the grafting backbone and is dimensionless.
- the average particle size d 50 is the diameter both above and below which are found 50 wt. % of the particles. This value may be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid Z. & Z. Polymere 250 (1972), 782-796).
- Particularly preferred graft polymers C) are also, for example, graft polymers of
- the acrylate rubbers (a) of the polymers C) are preferably polymers of acrylic acid alkyl esters, optionally with up to 40 wt. %, related to (a), of other polymerisable, ethylenically unsaturated monomers.
- Preferred polymerisable acrylic acid esters include C 1 -C 8 alkyl esters, for example methyl, ethyl, n-butyl, n-octyl and 2-ethylhexyl acrylate; halogenalkyl esters, preferably halogen-C 1 -C 8 -alkyl esters, such as chloroethyl acrylate, together with mixtures of these monomers.
- crosslinking monomers with more than one polymerisable double bond may be copolymerised.
- Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as for example ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as for example trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
- Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethylacrylate, diallyl phthalate and heterocyclic compounds containing at least 3 ethylenically unsaturated groups.
- crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, trivinyl cyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
- the quantity of crosslinking monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt. %, related to the grafting backbone (a).
- preferred polymerisable, ethylenically unsaturated monomers which may optionally be used to produce the grafting backbone (a) are, for example, acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl-C 1 -C 6 -alkyl ethers, methyl methacrylate, butadiene.
- Preferred acrylate rubbers as the grafting backbone (a) are emulsion polymers having a gel content of at least 60 wt. %.
- grafting backbones are silicone rubbers with active grafting sites, as are described in DE-OS 37 04 657, DE-OS 37 04 655, DE-OS 36 31 540 and DE-OS 36 31 539.
- the gel content of the grafting backbone (a) is determined in dimethylformamide at 25° C. (M. Hoffmann, H. Kromer, R. Kuhn, Polymeranalytik I & II, Georg Thieme Verlag, Stuttgart 1977).
- aqueous dispersions of graft polymer C) to be used for the preferred embodiment of coprecipitation with the tetrafluoroethylene polymer E) generally have solids contents of 25 to 60, preferably 30 to 45 wt. %.
- the polymer blends according to the invention contain as flame retardant a mixture of a monophosphorus compound D.1) and a oligomeric phosphorus compound D.2).
- Component D.1) is a phosphorus compound according to the formula (I) ##STR7## in which formula, R 1 , R 2 and R 3 mutually independently mean optionally halogenated C 1 -C 8 alkyl, C 6 -C 20 aryl or C 7 -C 12 aralkyl
- n 0 or 1
- n 0 or 1.
- phosphorus compounds according to component D.1) which are suitable according to the invention are generally known (see, for example, Ullmanns Enzyklopaadie der ischen Chemie, vol. 18, p. 301 et seq. 1979; Houben-Weyl, Methoden der Organischen Chemie, Vol. 12/1, p. 43; Beilstein, vol. 6, p. 177).
- Preferred substituents R m to R s comprise methyl, butyl, octyl, chloroethyl, 2-chloropropyl, 2,3-dibromopropyl, phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl and pentabromophenyl.
- Methyl, ethyl, butyl, phenyl, the latter optionally substituted with methyl, ethyl, chlorine and/or bromine, are particularly preferred.
- Preferred phosphorus compounds D.1) (formula (I)) comprise, for example, tributyl phosphate, tris-(2-chloroethyl) phosphate, tris-(2,3-dibromopropyl) phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri-(isopropylphenyl) phosphate, halogen-substituted aryl phosphates, methylphosphonic acid dimethyl ester, methylphosphonic acid diphenyl ester, phenylphosphonic acid diethyl ester, triphenylphosphine oxide and tricresylphosphine oxide.
- Component D.2 is an oligomeric phosphorus compound of the formula (II). ##STR8##
- R 4 , R 5 , R 6 , R 7 mutually independently mean C 1 -C 8 alkyl, C 5 -C 6 cycloalkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl, C 6 -C 10 aryl or C 7 -C 12 aralkyl being preferred.
- the aromatic groups R 4 , R 5 , R 6 , R 7 may in themselves be substituted with halogen or alkyl groups.
- Particularly preferred aryl residues are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, together with the brominated and chlorinated derivatives thereof.
- X in the formula (II) means a mono- or polycyclic aromatic residue with 6 to 30 C atoms. This residue is derived from diphenols such as, for example, bisphenol A, resorcinol or hydroquinone or also the chlorinated or brominated derivatives thereof.
- n in the formula (II) may mutually independently be 0 or 1, n preferably equalling 1.
- y may have values between 1 and 5, preferably between 1 and 2. Mixtures of various oligomeric phosphates may also be used as component D.2) according to the invention. In this case, y has an average value between 1 and 5, preferably between 1 and 2.
- the polymer blends according to the invention contain as flame retardant a mixture of D. 1) and D.2).
- the weight ratios of D.1) and D.2) have to be chosen in such a manner to achieve a synergistic effect.
- the mixture generally consists of 10 to 90 wt. % of D.1) and 90 to 10 wt. % of D.2) (related to D) in each case).
- Particularly favourable properties are achieved in the preferred and particularly preferred range of about 12 to 50 and 14 to 40 wt. % of D.1) and 88 to 50 wt. % and 86 to 60 wt. % of D.2).
- Very particul- arly preferred is the range of 15 to 40 wt. % of D.1) and 85 to 60 wt. % of D.2).
- the fluorinated polyolefins E) are of high molecular weight and have glass transition temperatures of above -30° C., generally of about 100° C., fluorine contents preferably of 65 to 76, in particular of 70 to 76 wt. %, average particle diameters d 50 of 0.05 to 1000, preferably of 0.08 to 20 ⁇ m.
- the fluorinated polyolefins E) have a density of 1.2 to 2.3 g/cm 3 .
- Preferred fluorinated polyolefins E) are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene/hexafluoropropylene and ethylene/tetrafluoroethylene copolymers.
- the fluorinated polyolefins and know c.f. Vinyl and Related Polymers by Schildknecht, John Wiley & Sons Inc., New York, 1962, p. 484-494; Fluoropolymers by Wall, Wiley-Interscience, John Wiley & Sons Inc., New York, vol. 13, 1970, p. 623-654; Modern Plastics Encyclopedia, 1970-1971, vol.
- polymers may be produced using known processes, such as for example by polymerisation of tetrafluoroethylene in an aqueous medium with a free radical forming catalyst, for example sodium, potassium or ammonium peroxydisulphate at pressures of 7 to 71 kg/cm 2 and at temperatures of 0° to 200° C., preferably at temperatures of 20° to 100° C. (For further details, see for example U.S. Pat. No. 2,393,967).
- a free radical forming catalyst for example sodium, potassium or ammonium peroxydisulphate
- the density of these materials may be between 1.2 and 2.3 g/cm 3 and average particle sizes between 0.05 and 1000
- Preferred fluorinated polyolefins E) according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 ⁇ m, preferably of 0.08 to 10 ⁇ m, and a density of 1.2 to 1.9 g/cm 3 , which are preferably used in the form of a coagulated mixture of emulsions of the tetrafluoroethylene polymers E) with emulsions of the graft polymers C).
- Suitable fluorinated polyolefins E) which may be used in powder form are tetrafluoroethylene polymers with average particle sizes of 100 to 1000 ⁇ m and densities of 2.0 g/cm 3 to 2.3 g/cm 3 .
- an aqueous emulsion (latex) of a graft polymer C) with an average latex particle diameter of 0.05 to 2 ⁇ m, in particular 0.1 to 0.6 ⁇ m is first of all blended with a finely divided emulsion of a tetrafluoroethylene polymer E) in water with an average particle diameter of 0.05 to 20 ⁇ m, in particular 0.08 to 10 ⁇ m; suitable tetrafluoroethylene polymer emulsions customarily have solids contents of 30 to 70 wt. %, in particular 50 to 60 wt. %.
- the emulsions of the graft polymer C) have solids contents of 25 to 50 wt. %, preferably of 30 to 45 wt. %.
- component C excludes the proportion of the graft polymer for the coagulated mixture of graft polymer and fluorinated polyolefins.
- the ratio by weight of graft polymer C) to the tetrafluoroethylene polymer E) is 95:5 to 60:40.
- the emulsion mixture is then coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents such as alcohols, ketones, preferably at temperatures of 20° to 150° C., in particular of 50° to 100° C. If necessary, drying may be performed at 50° to 200° C, preferably 70° to 100° C.
- Suitable tetrafluoroethylene polymer emulsions are customary commercial products offered for sale, for example, by the company DuPont as Teflone® 30N.
- the moulding compounds according to the invention may contain customary additives such as lubricants and mould release agents, nucleating agents, antistatic agents, stabilisers, fillers and reinforcing materials, together with dyes and pigments.
- the filled or reinforced moulding compounds may contain up to 60, preferably 10 to 40 wt. %, related to the filled or reinforced moulding compound, of fillers and/or reinforcing materials.
- Glass fibre is the preferred reinforcing material.
- Preferred fillers, which may also have a reinforcing effect are glass beads, mica, silicates, quartz, talcum, titanium dioxide, wollastonite.
- the moulding compounds according to the invention consisting of components A to E and optionally further known additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and double screw extruders, wherein component E) is preferably used in the form of the already mentioned coagulated mixture.
- additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and
- the present invention thus also provides a process for the production of thermoplastic moulding compounds consisting of components A to E, optionally together with stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents, together with antistatic agents, which is characterised in that, once components A to E, optionally together with stabilisers, dyes, pigments, plasticisers, fillers and reinforcing materials, lubricants and mould release agents, nucleating agents and/or antistatic agents are mixed together, they are melt-compounded or melt-extruded in customary equipment at temperatures of 200° to 330°, wherein component E is preferably used in the form of a coagulated mixture with component C.
- the individual constituents may be mixed together in a known manner both consecutively and simultaneously, and both at approximately 20° C. (room temperature) and at higher temperatures.
- moulding compounds according to the present invention may be used to produce mouldings of any kind.
- mouldings may be produced by injection moulding.
- articles which may be moulded are: casing parts of any kind, for example for household appliances such as juice extractors, coffee machines, food mixers, for office equipment or cover plates for the construction sector and motor vehicle components.
- the moulding compounds are also used in electrical engineering because they have very good electrical properties.
- the moulding compounds are particularly suitable for the production of thin-walled mouldings (for example computer casing parts), which are required to exhibit particularly high notched impact strength and stress cracking resistance.
- Another type of processing is the production of mouldings by blowmoulding or by thermaforming previously produced sheet or film.
- Bisphenol A based polycarbonate with a relative solution viscosity of 1.26 to 1.28 measured in methylene chloride at 25° C. at a concentration of 0.5 g/100 ml.
- Graft polymer of 45 parts by weight of styrene and acrylonitrile in a ratio of 72:28 on 55 parts by weight of particulate, crosslinked polybutadiene rubber (average particle diameter d 50 0.4 ⁇ m), produced by emulsion polymerisation.
- Tetrafluoroethylene polymer as a coagulated mixture prepared from an aqueous emulsion of SAN graft polymer according to C) and an aqueous emulsion of tetrafluoroethylene polymer.
- the ratio by weight of the graft polymer C) to the tetrafluoroethylene polymer E) in the mixture is 90 wt. % to 10 wt. %.
- the tetrafluoroethylene polymer emulsion has a solids content of 60 wt. % and average particle diameter is between 0.05 and 0.5 ⁇ m.
- the SAN graft polymer emulsion has a solids content of 34 wt. % and an average latex particle diameter of 0.4 ⁇ m.
- the emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is blended with the SAN graft polymer emulsion C) and stabilised with 1.8 wt. %, related to polymer solids, of phenolic antioxidants.
- the mixture is coagulated with an aqueous solution of MgSO 4 (Epsom salts) and acetic acid at pH 4 to 5, filtered and washed until virtually free of electrolytes, the majority of the water is then eliminated by centrifugation and the product dried at 100° C. to give a powder. This powder may then be compounded with the other components in the described equipment.
- Components A to E were mixed together in a 3-1 internal kneader.
- the mouldings were produced on an Arburg 270 E injection moulding machine at 260° C.
- Stress cracking behaviour was determined on bars of dimensions 80 ⁇ 10 ⁇ 4 mm, melt temperature 260° C.
- the test medium was a mixture of 60 vol. % toluene and 40 vol. % isopropanol.
- the test pieces were pre-stressed on a circular arc template (elongation 2.4%) and stored in the test medium at room temperature. Stress cracking behaviour was determined by assessing cracking or failure as a function of length of exposure to the test medium.
- composition of the tested materials and the results obtained are summarised in the following table.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Flame resistant, thermoplastic molding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate,
B) 3 to 50 parts by weight of a vinyl copolymer,
C) 0.5 to 40 parts by weight of a graft polymer,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D) , of a monophosphorus compound of the formula (I) ##STR1## D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR2## and E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
Description
This application is a continuation of application Ser. No. 08/516,899 filed on Aug. 18, 1995 now abandoned, which in turn is a continuation of Ser. No. 08/290,544, filed on Aug. 15, 1994 now abandoned.
The present invention relates to flame resistant polycarbonate/ABS moulding compounds whose stress cracking resistance is substantially improved by a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound.
EP-A 0 174 493 (U.S. Pat. No. 4,983,658) describes flameproofed polymer blends containing halogen prepared from an aromatic polycarbonate, a graft copolymer containing styrene, monophosphates and a special polytetrafluoroethylene formulation. While these blends do indeed have adequate fire behaviour and mechanical properties, they may be deficient in stress cracking resistance.
U.S. Pat. No. 5,030,675 describes flame resistant, thermoplastic moulding compounds prepared from an aromatic polycarbonate, ABS polymer, polyalkylene terephthalate together with monophosphates and fluorinated polyolefins as flame retardants. Good stress cracking resistance is accompanied by deficiencies in notched impact strength, together with unsatisfactory thermal stability when exposed to elevated temperatures, such as for example during processing.
Diphosphates are known as flame retardants. JA 59 202 240 describes the production of such a product from phosphorus oxychloride, diphenols such as hydroquinone or bisphenol A and monophenols such as phenol or cresol. These diphosphates may be used as flame retardants in polyamide or polycarbonate. However, this publication contains no indication of any improvement in stress cracking resistance by adding the oligomeric phosphate to polycarbonate moulding compounds in conjunction with polyalkylene terephthalates. EP-A 0 363 608 (=U.S. Pat. No. 5,204,394) describes polymer blends prepared from an aromatic polycarbonate, a Copolymer or graft copolymer containing styrene, together with oligomeric phosphates as flame retardants. U.S. Pat. No. 5,061,745 describes polymer blends prepared from an aromatic polycarbonate, ABS graft copolymer and/or a copolymer containing styrene and monophosphates as flame retardants. The stress cracking resistance of these blends is often inadequate for the production of thin-walled casing components.
It has surprisingly now been found that flame resistant polycarbonate/ABS moulding compounds with excellent stress cracking resistance may be produced if a combination of additives comprising a monophosphorus compound and an oligomeric phosphorus compound is added. Particularly elevated stress cracking resistance is achieved if the ratio by weight of the monophosphorus compound to the oligomeric phosphorus compound is within the range 90:10 to 10:90. These moulding compounds are particularly suitable for the production of thin-walled mouldings (computer equipment casing parts), where elevated processing temperatures and pressures result in the exposure of the material used to considerable stress.
The present invention provides flame resistant, thermoplastic moulding compounds prepared from
A) 40 to 98 parts by weight, preferably 50 to 95 parts by weight, particularly preferably 60 to 90 parts by weight of an aromatic polycarbonate,
B) 3 to 50, preferably 5 to 40 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98, preferably 60 to 95 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2, preferably 40 to 5 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof,
C) 0.5 to 40 parts by weight, preferably 1 to 20 parts by weight, particularly preferably 2 to 12 parts by weight of a graft polymer,
D) 0.5 to 20 parts by weight, preferably 1 to 18 parts by weight, particularly preferably 2 to 15 parts by weight of a mixture of
D.1) 10 to 90 wt. %, preferably 12 to 50, in particular 14 to 40 wt. %, very particular 15 to 40 wt. % (related to the total quantity of D) of a monophosphorus compound of the formula (I) ##STR3## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
m means 0 or 1 and
n means 0 or 1 and
D.2) 90 to 10 wt. %, preferably 88 to 50, in particular 86 to 60 wt. %, very particular 85 to 60 wt. % (related to the total amount of D) of an oligomeric phosphorus compound of the formula (II) ##STR4## in which R4, R5, R6, R7 mutually independently mean C1 -C8 alkyl, C5 -C6 cycloalkyl, C6 -C10 aryl or C7 -C12 aralkyl,
n mutually independently mean 0 or 1,
y means 1 to 5 and
X means a mono- or polycyclic aromatic residue with 6 to 30 C atoms,
and
E) 0.05 to 5 parts by weight, preferably 0.1 to 1 part by weight, particularly preferably 0.1 to 0.5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
The sum of all the parts by weight A+B+C+D+E is 100.
Suitable component A thermoplastic, aromatic polycarbonates according to the invention are those based on diphenols of the formula (III) ##STR5## in which A is a single bond, C1 -C5 alkylene, C2 -C5 alkylidene, C5 -C6 cycloalkylidene, --S-- or --SO2 --,
B is chlorine, bromine,
q is 0, 1 or 2 and
p is 1 or 0
or alkyl-substituted dihydroxyphenylcycloalkanes of the formula (IV), ##STR6## in which R8 and R9 mutually independently mean hydrogen, halogen, preferably chlorine or bromine, C1 -C8 alkyl, C5 -C6
cycloalkyl, C6 -C10 aryl, preferably phenyl, and C7 -C12 aralkyl, preferably phenyl-C1 -C4 -alkyl, in particular benzyl,
m means an integer of 4, 5, 6 or 7, preferably 4 or 5,
R10 and R11 mean, individually selectable for each Z, and mutually independently hydrogen or C1 -C6 alkyl
and
Z means carbon, provided that on at least one Z atom, R10 and R11 simultaneously mean alkyl.
Suitable diphenols of the formula (III) are, for example, hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis-(4-hydroxyphenyl) propane, 2,4-bis-(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 2,2-bis-(3-chloro-4-hydroxyphenyl) propane, 2,2-bis -(3,5-dibromo-4-hydroxyphenyl)propane.
Preferred diphenols of the formula (III) are 2,2bis-(4-hydroxyphenyl)propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)propane and 1,1-bis-(4-hydroxyphenyl)cyclohexane.
Preferred diphenols of the formula (IV) are 1,1-bis-(4-hydroxyphenyl)-3,3-dimethylcyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and 1,1-bis-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentane.
Both homopolycarbonates and copolycarbonates are suitable polycarbonates according to the invention.
Component A may also be a blend of the thermoplastic polycarbonates specified above.
Polycarbonates may be produced in a known manner from diphenols with phosgene using the phase interface process or with phosgene using the homogeneous phase process, the so-called pyridine process, wherein molecular weight may be adjusted in a known manner with an appropriate quantity of known chain terminators.
Suitable chain terminators are, for example, not only phenol, p-chlorophenol, p-tert.-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols such as 4-(1,3-tetramethylbutyl)phenol according to DE-OS 2 842 005 (Le A 19 006) or monoalkylphenol or dialkylphenol with a total of 8 to 20 C atoms in the alkyl substituents according to German patent application P 3 506 472.2 (Le A 23 654), such as 3,5-di-tert.-butylphenol, p-iso-octylphenol, p-tert.-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol.
The quantity of chain terminators is in general between 0.5 and 10 mol. %, related to the sum of the diphenols of the formulae (III) and/or (IV) used in each case.
Suitable polycarbonates A according to the invention have average molecular weights (Mw, weight average measured for example by ultracentrifugation or light scattering) of 10,000 to 200,000, preferably of 20,000 to 80,000.
Suitable polycarbonates A according to the invention may be branched in a known manner, in particular preferably by incorporation 0.05 to 2 mol. %, related to total quantity of diphenols used, of tri- or higher functional compounds, for example those with three or more phenolic groups.
In addition to bisphenol A homopolycarbonate, preferred polycarbonates are copolycarbonates of bisphenol A with up to 15 mol. %, related to the total molar quantities of diphenols, of 2,2-bis-(3,5-dibromo-4-hydroxylphenyl) propane and the copolycarbonates of bisphenol A with up to 60 mol. %, related to the total molar quantities of diphenols, of 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane.
The polycarbonates A may be partially or entirely replaced with aromatic polyester-carbonates.
Component B vinyl copolymers which may be used according to the invention are those prepared from at least one monomer of the group: styrene, α-methylstyrene and/or ring-substituted styrenes, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate (B.1) with at least one monomer from the group: acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, maleic anhydride and/or N-substituted maleimide (B.2).
C1 -C8 alkyl acrylates or C1 -C8 alkyl methacrylates are esters of acrylic or methacrylic acids respectively with monohydric alcohols with 1 to 8 C atoms. Methyl methacrylate, ethyl methacrylate and propyl methacrylate are particularly preferred. Methyl methacrylate is cited as a particularly preferred methacrylic acid ester. Thermoplastic copolymers of a composition according to component B may be produced as secondary products of graft polymerisation during production of component C, particularly if large quantities of monomers are grafted onto small quantities of rubber. The quantity of copolymer B to be used according to the invention does not include these secondary products of graft polymerisation.
The component B copolymers are resinous, thermoplastic and contain no rubber.
The thermoplastic copolymers B contain 50 to 98, preferably 60 to 95 parts by weight of B.1 and 50 to 2, preferably 40 to 5 parts by weight of B.2.
Particularly preferred copolymers B are those prepared from styrene with acrylonitrile and optionally methyl methacrylate, from α-methylstyrene with acrylonitrile and optionally methyl methacrylate or from styrene and α-methylstyrene with acrylonitrile and optionally methyl methacrylate.
The component B styrene/acrylonitrile copolymers are known any may be produced by free-radical polymerisation, in particular by emulsion, suspension, solution or bulk polymerisation. The component B copolymers preferably have molecular weights Mw (weight average, determined by light scattering or setting) of between 15,000 and 200,000.
Particularly preferred copolymers B according to the invention are also random copolymers of styrene and maleic anhydride, which may be produced from the corresponding monomers by continuous bulk or solution polymerisation with incomplete conversion.
The proportions of the two components in the suitable random styrene-maleic anhydride copolymers according to the invention may be varied within a wide range. The preferred maleic anhydride content is between 5 and 25 wt. %.
The molecular weights (number average, Mn) of the suitable component B random styrene/maleic anhydride copolymers according to the invention may vary over a wide range. A range of 60,000 to 200,000 is preferred. An intrinsic viscosity of 0.3 to 0.9 is preferred for these products (measured in dimethylformamide at 25° C.; see Hoffmann, Kromer, Kuhn, Polymeranalytik I, Stuttgart 1977, p. 316 et seq.).
Instead of styrene, the vinyl copolymers B may also contain ring-substituted styrenes such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, and other substituted styrenes such as α-methylstyrene.
The graft polymers C) comprise, for example, graft copolymers with rubber-elastic properties, which are substantially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate and (meth) acrylic acid esters with 1 to 18 C atoms in the alcohol component; i.e. polymers as are, for example, described in Methoden der Organischen Chemie (Houben-Weyl), vol. 14/1, Georg Thieme Verlag, Stuttgart 1961, p. 393-406 and in C. B. Bucknall, Toughened Plastics, Appl. Science Publishers, London 1977. Preferred polymers C) are partially crosslinked and have a gel content of above 20 wt. %, preferably of above 40 wt. %, in particular above 60 wt. %.
Preferred graft polymers C) comprise graft copolymers prepared from:
C.1) 5 to 95, preferably 30 to 80 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, in particular methyl methacrylate, C1 -C8 alkyl acrylate, in particular methyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, in particular methyl methacrylate, C1 -C8 alkyl acrylate, in particular methyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95, preferably 20 to 70 parts by weight of a polymer with a glass transition temperature of below -10° C.
Preferred graft polymers C) are, for example, polybutadienes, butadiene/styrene copolymers and acrylate rubbers grafted with styrene and/or acrylonitrile and/or (meth)acrylic acid alkyl esters; i.e. copolymers of the type described in DE-OS 1 694 173 (=U.S. Pat. No. 3,564,077); polybutadienes, butadiene/styrene or butadiene/ acrylonitrile copolymers, polyisobutenes or polyisoprenes grafted with acrylic or methacrylic acid alkyl esters, vinyl acetate, acrylonitrile, styrene and/or alkylstyrenes, as are, for example, described in DE-OS 2 348 377 (=U.S. Pat. No. 3,919,353).
Particularly preferred polymers C) are, for example, ABS polymers, as are for example described in DE-OS 2 035 390 (=U.S. Pat. No. 3,644,574) or in DE-OS 2 248 242 (GB patent 1,409,275).
Particularly preferred graft polymers C) are graft polymers obtainable by the grafting reaction of
I. 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. %, related to the grafted product, of at least one (meth) acrylic acid ester of 10 to 70, preferably 15 to 50, in particular 20 to 40 wt. % of a mixture of 10 to 50, preferably 20 to 35 wt. %, related to the mixture, of acrylonitrile or (meth)acrylic acid ester and 50 to 90, preferably 65 to 80 wt. %, related to the mixture, of styrene onto
II. 30 to 90, preferably 50 to 85, in particular 60 to
80 wt. %, related to the grafted product, of a butadiene polymer with at least 50 wt. %, related to IL butadiene residues as the grafting backbone,
wherein the gel content of the grafting backbone II is at least 70 wt. % (measured in toluene), the degree of grafting G of the graft polymer C) is 0.15 to 0.55 and its average particle diameter d50 0.05 to 2, preferably 0.1 to 0.6 μm.
(Meth) acrylic acid esters I are esters of acrylic acid or methacrylic acid and monohydric alcohols with 1 to 18 C atoms. Methyl, ethyl and propyl methacrylate and particularly preferred.
In addition to butadiene residues, the grafting backbone II may contain up to 50 wt. %, related to II, of residues of other ethylenically unsaturated monomers, such as styrene, acrylonitrile, esters of acrylic or methacrylic acid with 1 to 4 C atoms in the alcohol component (such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate), vinyl esters and/or vinyl ethers. The preferred grafting backbone II consists of pure polybutadiene.
Since, as is known, the graft monomers are not necessarily entirely grafted onto the grafting backbone, graft polymers C) according to the invention are also taken to be those products obtained by polymerisation of the graft monomers in the presence of the grafting backbone.
The degree of grafting G describes the ratio by weight of grafted monomers to the grafting backbone and is dimensionless.
The average particle size d50 is the diameter both above and below which are found 50 wt. % of the particles. This value may be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid Z. & Z. Polymere 250 (1972), 782-796).
Particularly preferred graft polymers C) are also, for example, graft polymers of
(a) 20 to 90 wt. %, related to C), of acrylate rubber with a glass transition temperature of below -20° C. as the grafting backbone and
(b) 10 to 80 wt. %, related to C), of at least one polymerisable, ethylenically unsaturated monomer, the homo- or copolymers of which, if formed in the absence of a), would have a glass transition temperature of above 25° C., as the graft monomers.
The acrylate rubbers (a) of the polymers C) are preferably polymers of acrylic acid alkyl esters, optionally with up to 40 wt. %, related to (a), of other polymerisable, ethylenically unsaturated monomers. Preferred polymerisable acrylic acid esters include C1 -C8 alkyl esters, for example methyl, ethyl, n-butyl, n-octyl and 2-ethylhexyl acrylate; halogenalkyl esters, preferably halogen-C1 -C8 -alkyl esters, such as chloroethyl acrylate, together with mixtures of these monomers.
To achieve crosslinking, monomers with more than one polymerisable double bond may be copolymerised. Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as for example ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as for example trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethylacrylate, diallyl phthalate and heterocyclic compounds containing at least 3 ethylenically unsaturated groups.
Particularly preferred crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, trivinyl cyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
The quantity of crosslinking monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt. %, related to the grafting backbone (a).
In the case of cyclic crosslinking monomers with at least 3 ethylenically unsaturated groups, it is advantageous to limit the quantity of below 1 wt. % of the grafting backbone (a).
Other than the acrylic acid esters, preferred polymerisable, ethylenically unsaturated monomers which may optionally be used to produce the grafting backbone (a) are, for example, acrylonitrile, styrene, α-methylstyrene, acrylamides, vinyl-C1 -C6 -alkyl ethers, methyl methacrylate, butadiene. Preferred acrylate rubbers as the grafting backbone (a) are emulsion polymers having a gel content of at least 60 wt. %.
Further suitable grafting backbones are silicone rubbers with active grafting sites, as are described in DE-OS 37 04 657, DE-OS 37 04 655, DE-OS 36 31 540 and DE-OS 36 31 539.
The gel content of the grafting backbone (a) is determined in dimethylformamide at 25° C. (M. Hoffmann, H. Kromer, R. Kuhn, Polymeranalytik I & II, Georg Thieme Verlag, Stuttgart 1977).
The aqueous dispersions of graft polymer C) to be used for the preferred embodiment of coprecipitation with the tetrafluoroethylene polymer E) generally have solids contents of 25 to 60, preferably 30 to 45 wt. %.
The polymer blends according to the invention contain as flame retardant a mixture of a monophosphorus compound D.1) and a oligomeric phosphorus compound D.2). Component D.1) is a phosphorus compound according to the formula (I) ##STR7## in which formula, R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
m means 0 or 1 and
n means 0 or 1.
The phosphorus compounds according to component D.1) which are suitable according to the invention are generally known (see, for example, Ullmanns Enzyklopaadie der technischen Chemie, vol. 18, p. 301 et seq. 1979; Houben-Weyl, Methoden der Organischen Chemie, Vol. 12/1, p. 43; Beilstein, vol. 6, p. 177). Preferred substituents Rm to Rs comprise methyl, butyl, octyl, chloroethyl, 2-chloropropyl, 2,3-dibromopropyl, phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl and pentabromophenyl. Methyl, ethyl, butyl, phenyl, the latter optionally substituted with methyl, ethyl, chlorine and/or bromine, are particularly preferred.
Preferred phosphorus compounds D.1) (formula (I)) comprise, for example, tributyl phosphate, tris-(2-chloroethyl) phosphate, tris-(2,3-dibromopropyl) phosphate, triphenyl phosphate, tricresyl phosphate, diphenylcresyl phosphate, diphenyloctyl phosphate, diphenyl-2-ethylcresyl phosphate, tri-(isopropylphenyl) phosphate, halogen-substituted aryl phosphates, methylphosphonic acid dimethyl ester, methylphosphonic acid diphenyl ester, phenylphosphonic acid diethyl ester, triphenylphosphine oxide and tricresylphosphine oxide.
Component D.2) is an oligomeric phosphorus compound of the formula (II). ##STR8##
In the formula, R4, R5, R6, R7 mutually independently mean C1 -C8 alkyl, C5 -C6 cycloalkyl, C6 -C10 aryl or C7 -C12 aralkyl, C6 -C10 aryl or C7 -C12 aralkyl being preferred. The aromatic groups R4, R5, R6, R7 may in themselves be substituted with halogen or alkyl groups. Particularly preferred aryl residues are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, together with the brominated and chlorinated derivatives thereof.
X in the formula (II) means a mono- or polycyclic aromatic residue with 6 to 30 C atoms. This residue is derived from diphenols such as, for example, bisphenol A, resorcinol or hydroquinone or also the chlorinated or brominated derivatives thereof.
The values of n in the formula (II) may mutually independently be 0 or 1, n preferably equalling 1.
y may have values between 1 and 5, preferably between 1 and 2. Mixtures of various oligomeric phosphates may also be used as component D.2) according to the invention. In this case, y has an average value between 1 and 5, preferably between 1 and 2.
The polymer blends according to the invention contain as flame retardant a mixture of D. 1) and D.2). The weight ratios of D.1) and D.2) have to be chosen in such a manner to achieve a synergistic effect. The mixture generally consists of 10 to 90 wt. % of D.1) and 90 to 10 wt. % of D.2) (related to D) in each case). Particularly favourable properties are achieved in the preferred and particularly preferred range of about 12 to 50 and 14 to 40 wt. % of D.1) and 88 to 50 wt. % and 86 to 60 wt. % of D.2). Very particul- arly preferred is the range of 15 to 40 wt. % of D.1) and 85 to 60 wt. % of D.2).
The fluorinated polyolefins E) are of high molecular weight and have glass transition temperatures of above -30° C., generally of about 100° C., fluorine contents preferably of 65 to 76, in particular of 70 to 76 wt. %, average particle diameters d50 of 0.05 to 1000, preferably of 0.08 to 20 μm. In general, the fluorinated polyolefins E) have a density of 1.2 to 2.3 g/cm3. Preferred fluorinated polyolefins E) are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene/hexafluoropropylene and ethylene/tetrafluoroethylene copolymers. The fluorinated polyolefins and know (c.f. Vinyl and Related Polymers by Schildknecht, John Wiley & Sons Inc., New York, 1962, p. 484-494; Fluoropolymers by Wall, Wiley-Interscience, John Wiley & Sons Inc., New York, vol. 13, 1970, p. 623-654; Modern Plastics Encyclopedia, 1970-1971, vol. 47, n° 10 A, October 1970, McGraw-Hill Inc., New York, p. 134 and 774; Modern Plastics Encyclopedia, 1975-1976, October 1975, vol. 52, n° 10 A, McGraw-Hill Inc., New York, p. 27, 28 & 472 and U.S. Pat. Nos. 3,671,487, 3,723,373 and 3,838,092).
These polymers may be produced using known processes, such as for example by polymerisation of tetrafluoroethylene in an aqueous medium with a free radical forming catalyst, for example sodium, potassium or ammonium peroxydisulphate at pressures of 7 to 71 kg/cm2 and at temperatures of 0° to 200° C., preferably at temperatures of 20° to 100° C. (For further details, see for example U.S. Pat. No. 2,393,967). Depending upon the form in which it is used, the density of these materials may be between 1.2 and 2.3 g/cm3 and average particle sizes between 0.05 and 1000
Preferred fluorinated polyolefins E) according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 μm, preferably of 0.08 to 10 μm, and a density of 1.2 to 1.9 g/cm3, which are preferably used in the form of a coagulated mixture of emulsions of the tetrafluoroethylene polymers E) with emulsions of the graft polymers C).
Suitable fluorinated polyolefins E) which may be used in powder form are tetrafluoroethylene polymers with average particle sizes of 100 to 1000 μm and densities of 2.0 g/cm3 to 2.3 g/cm3.
In order to produce a coagulated mixture of C) and E), an aqueous emulsion (latex) of a graft polymer C) with an average latex particle diameter of 0.05 to 2 μm, in particular 0.1 to 0.6 μm, is first of all blended with a finely divided emulsion of a tetrafluoroethylene polymer E) in water with an average particle diameter of 0.05 to 20 μm, in particular 0.08 to 10 μm; suitable tetrafluoroethylene polymer emulsions customarily have solids contents of 30 to 70 wt. %, in particular 50 to 60 wt. %. The emulsions of the graft polymer C) have solids contents of 25 to 50 wt. %, preferably of 30 to 45 wt. %.
The stated quantity in the description of component C) excludes the proportion of the graft polymer for the coagulated mixture of graft polymer and fluorinated polyolefins.
In the emulsion mixture, the ratio by weight of graft polymer C) to the tetrafluoroethylene polymer E) is 95:5 to 60:40. The emulsion mixture is then coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents such as alcohols, ketones, preferably at temperatures of 20° to 150° C., in particular of 50° to 100° C. If necessary, drying may be performed at 50° to 200° C, preferably 70° to 100° C.
Suitable tetrafluoroethylene polymer emulsions are customary commercial products offered for sale, for example, by the company DuPont as Teflone® 30N.
The moulding compounds according to the invention may contain customary additives such as lubricants and mould release agents, nucleating agents, antistatic agents, stabilisers, fillers and reinforcing materials, together with dyes and pigments. The filled or reinforced moulding compounds may contain up to 60, preferably 10 to 40 wt. %, related to the filled or reinforced moulding compound, of fillers and/or reinforcing materials. Glass fibre is the preferred reinforcing material. Preferred fillers, which may also have a reinforcing effect, are glass beads, mica, silicates, quartz, talcum, titanium dioxide, wollastonite.
The moulding compounds according to the invention consisting of components A to E and optionally further known additives such as stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents together with antistatic agents are produced by mixing together the particular constituents in a known manner and melt-compounding or melt-extruding them at temperatures of 200° C. to 330° C. in customary equipment, such as internal kneaders, extruders and double screw extruders, wherein component E) is preferably used in the form of the already mentioned coagulated mixture.
The present invention thus also provides a process for the production of thermoplastic moulding compounds consisting of components A to E, optionally together with stabilisers, dyes, pigments, lubricants and mould release agents, fillers and reinforcing materials, nucleating agents, together with antistatic agents, which is characterised in that, once components A to E, optionally together with stabilisers, dyes, pigments, plasticisers, fillers and reinforcing materials, lubricants and mould release agents, nucleating agents and/or antistatic agents are mixed together, they are melt-compounded or melt-extruded in customary equipment at temperatures of 200° to 330°, wherein component E is preferably used in the form of a coagulated mixture with component C. The individual constituents may be mixed together in a known manner both consecutively and simultaneously, and both at approximately 20° C. (room temperature) and at higher temperatures.
The moulding compounds according to the present invention may be used to produce mouldings of any kind. In particular, mouldings may be produced by injection moulding. Examples of articles which may be moulded are: casing parts of any kind, for example for household appliances such as juice extractors, coffee machines, food mixers, for office equipment or cover plates for the construction sector and motor vehicle components. The moulding compounds are also used in electrical engineering because they have very good electrical properties.
The moulding compounds are particularly suitable for the production of thin-walled mouldings (for example computer casing parts), which are required to exhibit particularly high notched impact strength and stress cracking resistance.
Another type of processing is the production of mouldings by blowmoulding or by thermaforming previously produced sheet or film.
Bisphenol A based polycarbonate with a relative solution viscosity of 1.26 to 1.28 measured in methylene chloride at 25° C. at a concentration of 0.5 g/100 ml.
Styrene/acrylonitrile copolymer with a stryene/acrylonitrile ratio of 72:28 and an intrinsic viscosity of 55 dl/g (measured in dimethylformamide at 20° C).
Graft polymer of 45 parts by weight of styrene and acrylonitrile in a ratio of 72:28 on 55 parts by weight of particulate, crosslinked polybutadiene rubber (average particle diameter d50 =0.4 μm), produced by emulsion polymerisation.
D.1) triphenyl phosphate (Disflamoll® TP from Bayer AG) D.2) m-phenylene-bis(diphenylphosphate) (Fyroflex RDP from Akzo)
Tetrafluoroethylene polymer as a coagulated mixture prepared from an aqueous emulsion of SAN graft polymer according to C) and an aqueous emulsion of tetrafluoroethylene polymer. The ratio by weight of the graft polymer C) to the tetrafluoroethylene polymer E) in the mixture is 90 wt. % to 10 wt. %. The tetrafluoroethylene polymer emulsion has a solids content of 60 wt. % and average particle diameter is between 0.05 and 0.5 μm. The SAN graft polymer emulsion has a solids content of 34 wt. % and an average latex particle diameter of 0.4 μm.
The emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is blended with the SAN graft polymer emulsion C) and stabilised with 1.8 wt. %, related to polymer solids, of phenolic antioxidants. At 85° to 95° C., the mixture is coagulated with an aqueous solution of MgSO4 (Epsom salts) and acetic acid at pH 4 to 5, filtered and washed until virtually free of electrolytes, the majority of the water is then eliminated by centrifugation and the product dried at 100° C. to give a powder. This powder may then be compounded with the other components in the described equipment.
Production and Testing of Moulding Compounds According to the Invention
Components A to E were mixed together in a 3-1 internal kneader. The mouldings were produced on an Arburg 270 E injection moulding machine at 260° C.
Stress cracking behaviour was determined on bars of dimensions 80×10×4 mm, melt temperature 260° C. The test medium was a mixture of 60 vol. % toluene and 40 vol. % isopropanol. The test pieces were pre-stressed on a circular arc template (elongation 2.4%) and stored in the test medium at room temperature. Stress cracking behaviour was determined by assessing cracking or failure as a function of length of exposure to the test medium.
The composition of the tested materials and the results obtained are summarised in the following table.
It may be seen from the table that the comparative examples 1 and 8 with pure component D.2) and D.1) respectively have distinctly lower stress cracking resistance than examples 2 to 7 according to the invention.
TABLE
______________________________________
Composition and propeties of moulding compounds
Failure at
Components [parts by weight]
ε.sub.x = 2.4%
Example A B C D.1 D.2 E [minutes]
______________________________________
1 (comparison)
67 10 7.5 -- 10 3.5 3.4
2 67 10 7.5 1 9 3.5 3.5
3 67 10 7.5 1.5 8.5 3.5 4.7
4 67 10 7.5 2 8 3.5 5.6
5 67 10 7.5 3 7 3.5 4.7
6 67 10 7.5 4 6 3.5 4.3
7 67 10 7.5 5 5 3.5 3.4
8 (comparison)
67 10 7.5 10 -- 3.5 2.5
______________________________________
Claims (13)
1. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.
D) 0.5 to 20 parts by weight of a mixture of
D.1) 14 to 40 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR9## in which R1, R2 and R3 are independently phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl or pentabromophenyl
n means 1 and
D.2) 86 to 60 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR10## in which R4, R5, R6, R7 are independently cresyl, phenyl xylenyl , propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof,
n means 1,
y has an average value of between 1 and 2, and
x means a residue derived from resorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
2. Moulding compounds according to claim 1, containing 50 to 95 parts by weight of an aromatic polycarbonate A.
3. Moulding compounds as according to claim 1 containing component D) in amounts of monophosphorus compound D.1) and an oligomeric phosphorus compound D.2) in combined amounts effective to improve stress cracking resistance.
4. Flame resistant thermoplastic moulding compound according to claim 1 containing additives selected from the group consisting of stabilizers, dyes, pigments, lubricants and mold release agents, fillers and reinforcing materials, nucleating agents and antistatic agents.
5. The flame resistant, thermoplastic molding compound of claim 1, wherein in component D.2. each of R4, R5, R6 and R7 are phenyl.
6. A flame resistant thermoplastic molding compound having improved stress resistance, consisting essentially of:
A) 40-98 parts by weight of aromatic polycarbonate;
B) 3-50 parts by weight of styrene/acrylonitrile copolymer;
C) 0.5 to 40 parts by weight of a graft polymer of styrene and acrylonitrile on particulate, crosslinked polybutadiene rubber;
D) 0.5 to 20 parts by weight of a mixture of:
D.1.) 14 to 40%, based on D), of triphenyl phosphate;
D.2.) 86 to 60%, based on D), of m-phenylene-bis(diphenylphosphate); and
E) 0.05 to 5 parts by weight of tetrafluoroethylene polymer.
7. The molding compound of claim 6 containing 50 to 95 parts of A), 5 to 40 parts of B), 2 to 12 parts of C), 2 to 15 parts of D), and 0.1 to 0.5 parts of E).
8. The molding compound of claim 7, containing 67 parts of A), 10 parts of B), 7.5 parts of C), and 3.5 parts of E).
9. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1.) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2.) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR11## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
n means 1 and
D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR12## in which R4, R5, R6, R7 are mutually independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof
n means 1,
Y means an average value of between 1 and 2, and
X means a residue derived from resorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %.
10. The moulding compound of claim 9, wherein component C) is one or more of polybutadiene, butadiene styrene copolymer, acrylate rubber, polyisobutadiene, or polyisoprene.
11. The moulding composition of claim 9, wherein component C) is polybutadiene, butadiene/styrene copolymer, or mixtures thereof. .Iadd.
12. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 10 to 90 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR13## in which R1, R2 and R3 mutually independently mean optionally halogenated C1 -C8 alkyl, C6 -C20 aryl or C7 -C12 aralkyl
n means 1 and
D.2) 90 to 10 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR14## in which R4, R5, R6, R7 are mutually independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof
n means 1,
y means an average value between 1 and 2, and
x means a residue derived from bisphenol A, rescorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %..Iaddend..Iadd.
13. Flame resistant, thermoplastic moulding compounds containing
A) 40 to 98 parts by weight of an aromatic polycarbonate;
B) 3 to 50 parts by weight of a vinyl copolymer prepared from
B.1) 50 to 98 parts by weight of styrene, α-methylstyrene, ring-substituted styrenes, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates or mixtures thereof and
B.2) 50 to 2 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylates, maleic anhydride, N-substituted maleimides and mixtures thereof;
C) 0.5 to 40 parts by weight of a graft polymer prepared from
C.1) 5 to 95 parts by weight of a mixture of
C.1.1) 50 to 95 parts by weight of styrene, α-methylstyrene, halogen or methyl ring-substituted styrene, C1 -C8 alkyl methacrylate, C1 -C8 alkyl acrylate, or mixtures of these compounds and
C.1.2) 5 to 50 parts by weight of acrylonitrile, methacrylonitrile, C1 -C8 alkyl methacrylates, C1 -C8 alkyl acrylate, maleic anhydride, C1 -C4 alkyl or phenyl N-substituted maleimides or mixtures of these compounds on
C.2) 5 to 95 parts by weight of a polymer with a glass transition temperature of below -10° C.,
D) 0.5 to 20 parts by weight of a mixture of
D.1) 14 to 40 wt. %, related to D), of a monophosphorus compound of the formula (I) ##STR15## in which R1, R2 and R3 are independently phenyl, cresyl, cumyl, naphthyl, chlorophenyl, bromophenyl, pentachlorophenyl or pentabromophenyl
n means 1 and
D.2) 86 to 60 wt. %, related to D), of an oligomeric phosphorus compound of the formula (II) ##STR16## in which R4, R5, R6, R7 are independently cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, or brominated or chlorinated derivatives thereof,
n means 1,
y has an average value between 1 and 2, and
x means a residue derived from bisphenol A, rescorcinol or hydroquinone, and
E) 0.05 to 5 parts by weight of a fluorinated polyolefin with an average particle diameter of 0.05 to 1000 μm, a density of 1.2 to 2.3 g/cm3 and a fluorine content of 65 to 76 wt. %..Iaddend.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/405,635 USRE36902E (en) | 1993-08-26 | 1999-09-27 | Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4328656A DE4328656A1 (en) | 1993-08-26 | 1993-08-26 | Flame retardant, stress crack resistant polycarbonate ABS molding compounds |
| DE4328656 | 1993-08-26 | ||
| US29054494A | 1994-08-15 | 1994-08-15 | |
| US51689995A | 1995-08-18 | 1995-08-18 | |
| US08/764,747 US5672645A (en) | 1993-08-26 | 1996-12-12 | Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking |
| US09/405,635 USRE36902E (en) | 1993-08-26 | 1999-09-27 | Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US51689995A Continuation | 1993-08-26 | 1995-08-18 | |
| US08/764,747 Reissue US5672645A (en) | 1993-08-26 | 1996-12-12 | Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE36902E true USRE36902E (en) | 2000-10-03 |
Family
ID=6496038
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/764,747 Ceased US5672645A (en) | 1993-08-26 | 1996-12-12 | Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking |
| US09/405,635 Expired - Lifetime USRE36902E (en) | 1993-08-26 | 1999-09-27 | Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/764,747 Ceased US5672645A (en) | 1993-08-26 | 1996-12-12 | Flame resistant polycarbonate/ABS moulding compounds resistant to stress cracking |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US5672645A (en) |
| EP (1) | EP0640655B1 (en) |
| JP (1) | JP3168124B2 (en) |
| DE (2) | DE4328656A1 (en) |
| ES (1) | ES2136040T3 (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020137821A1 (en) * | 2001-01-09 | 2002-09-26 | Andreas Seidel | Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions |
| US6475589B1 (en) * | 2001-12-17 | 2002-11-05 | General Electric Company | Colored optical discs and methods for making the same |
| US6475588B1 (en) | 2001-08-07 | 2002-11-05 | General Electric Company | Colored digital versatile disks |
| US6528561B1 (en) | 1999-09-02 | 2003-03-04 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate ABS blends |
| US20030083419A1 (en) * | 1999-12-24 | 2003-05-01 | Andreas Seidel | Flame-resistant polycarbonate molding compositions containing high-purity talc |
| US20030099837A1 (en) * | 1999-12-22 | 2003-05-29 | Dirk Mockel | Thermoplastic multi-layered film with a layer of vinylcyclohexane-based polymer |
| US20040059031A1 (en) * | 2002-07-29 | 2004-03-25 | Andreas Seidel | Flame-resistant polycarbonate molding compositions |
| US6713544B2 (en) | 2000-12-08 | 2004-03-30 | Bayer Aktiengesellschaft | Flame-resistant and heat-resistant polycarbonate compositions |
| US20040110879A1 (en) * | 2002-12-06 | 2004-06-10 | Andreas Seidel | Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds |
| US6753364B1 (en) | 1999-09-02 | 2004-06-22 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate molding materials |
| US6767943B1 (en) * | 1999-03-27 | 2004-07-27 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate moulding materials modified with graft polymers |
| US6771578B2 (en) | 2000-09-29 | 2004-08-03 | General Electric Company | Colored data storage media |
| US6774163B2 (en) | 2002-04-16 | 2004-08-10 | Bayer Chemicals Ag | Flame retardants for polymers comprising a mixture of two different aryl phosphates, their preparation and their use |
| US6784232B1 (en) | 1999-09-02 | 2004-08-31 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US20040235999A1 (en) * | 2001-09-21 | 2004-11-25 | Marc Vathauer | Modified shock-resistant polymer compositions |
| US6831120B1 (en) | 1999-09-02 | 2004-12-14 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6906122B1 (en) | 1999-09-02 | 2005-06-14 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6914089B2 (en) | 2000-12-08 | 2005-07-05 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6936647B2 (en) | 2000-03-09 | 2005-08-30 | Bayer Aktiengesellschaft | Bead polymerizates containing halogen-free phosphourus compounds |
| US20090258978A1 (en) * | 2007-03-07 | 2009-10-15 | Bayer Materialscience Ag | Polycarbonate composition containing uv absorber |
| US20110098386A1 (en) * | 2009-08-28 | 2011-04-28 | Bayer Materialscience Ag | Products having improved flame resistance |
| US20110144242A1 (en) * | 2007-11-27 | 2011-06-16 | Total Raffinage Marketing | Thermoreversibly crosslinked elastic bituminous composition |
| US8058333B1 (en) * | 2010-07-23 | 2011-11-15 | Entire Technology Co., Ltd. | Flame retarding composite material |
| US9676716B2 (en) | 2009-12-21 | 2017-06-13 | Covestro Deutschland Ag | Polycarbonate having improved thermal and mechanical properties and reduced coefficients of thermal expansion |
| US11732130B2 (en) | 2019-12-04 | 2023-08-22 | Covestro Intellectual Property Gmbh & Co. Kg | Flame retardant impact-modified polycarbonate composition |
Families Citing this family (222)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR0139249B1 (en) * | 1994-09-05 | 1998-05-01 | 유현식 | Thermoplastic resin composition having flame retardancy |
| KR0148398B1 (en) * | 1994-12-01 | 1999-02-01 | 유현식 | Flameproof thermoplastic resin composition |
| DE19503470C2 (en) * | 1995-02-03 | 1999-09-09 | Bayer Ag | Polycarbonate molding compounds |
| CN1177363A (en) * | 1995-03-03 | 1998-03-25 | 旭化成工业株式会社 | Flame retardant for compounding styrene resin and resin composition containing same |
| KR0150763B1 (en) * | 1995-03-07 | 1998-10-15 | 유현식 | Thermoplastic resin composition having flame retardancy |
| US6083428A (en) * | 1995-03-07 | 2000-07-04 | Asahi Kasei Kogyo Kabushiki Kaisha | Flame-retardant resin composition |
| TW386099B (en) * | 1995-07-26 | 2000-04-01 | Gen Electric | Flame resistant compositions of polycarbonate and monovinylidene aromatic compounds |
| KR0150766B1 (en) * | 1995-08-19 | 1998-10-15 | 유현식 | Inflammable thermoplastic resin composition |
| SG69988A1 (en) | 1995-11-01 | 2000-01-25 | Gen Electric | Flame retardant polycarbonate/graft blends exhibiting heat aging stability |
| DE19620993A1 (en) * | 1996-05-24 | 1997-11-27 | Bayer Ag | Laser-inscribable polymer molding compounds |
| DE19714003A1 (en) * | 1997-04-04 | 1998-10-08 | Basf Ag | Flame-retardant thermoplastic molding compounds with good flow properties |
| DE19721628A1 (en) * | 1997-05-23 | 1998-11-26 | Bayer Ag | Flame-retardant, highly heat-resistant polycarbonate molding compounds with high flow seam strength |
| DE19734663A1 (en) * | 1997-08-11 | 1999-02-18 | Bayer Ag | Flame-retardant, heat-resistant polycarbonate ABS molding compounds |
| DE19734661A1 (en) * | 1997-08-11 | 1999-02-18 | Bayer Ag | Flame retardant, stress crack resistant polycarbonate ABS molding compounds |
| DE19734667A1 (en) * | 1997-08-11 | 1999-02-18 | Bayer Ag | Flame-retardant, reinforced polycarbonate ABS molding compounds |
| DE19734659A1 (en) * | 1997-08-11 | 1999-02-18 | Bayer Ag | Flame-retardant polycarbonate ABS molding compounds |
| GB2329639B (en) * | 1997-09-25 | 2002-02-20 | Samyang Corp | Flame retardant resin composition |
| DE19742868A1 (en) * | 1997-09-29 | 1999-04-01 | Bayer Ag | Polycarbonate ABS molding compounds |
| US5962587A (en) * | 1997-10-23 | 1999-10-05 | General Electric Company | High modulus thermoplastic resin composition |
| KR100360714B1 (en) * | 1997-10-23 | 2003-04-03 | 제일모직주식회사 | Flame retardant thermoplastic resin composition based on polycarbonate |
| US6593404B1 (en) | 1997-10-23 | 2003-07-15 | Cheil Industries, Inc. | Thermoplastic resin composition |
| DE19801050A1 (en) * | 1998-01-14 | 1999-07-15 | Bayer Ag | Polycarbonate acrylonitrile-butadiene-styrene based thermoplastic molding composition useful in automotive, electrical and electronic applications |
| DE19801198A1 (en) * | 1998-01-15 | 1999-07-22 | Bayer Ag | Inflammable thermoplastic polycarbonate-based molding composition used for electrical and domestic housing having good electrical properties |
| TW455605B (en) * | 1998-02-13 | 2001-09-21 | Gen Electric | Flame retardant carbonate polymer composition with improved hydrolytic stability |
| US6084054A (en) | 1998-03-30 | 2000-07-04 | General Electric Company | Flame retardant polycarbonate resin/ABS graft copolymer blends having low melt viscosity |
| JPH11343382A (en) * | 1998-04-01 | 1999-12-14 | Daihachi Chemical Industry Co Ltd | Flame-retardant resin composition |
| US6063844A (en) * | 1998-04-02 | 2000-05-16 | General Electric Company | Polycarbonate/rubber-modified graft copolymer resin blends having improved thermal stability |
| JP4771566B2 (en) * | 1998-04-03 | 2011-09-14 | サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ | Resin composition and resin molded article excellent in slidability and flame retardancy |
| KR100249091B1 (en) | 1998-04-07 | 2000-03-15 | 유현식 | Thermoplastics flameproof resin composition |
| US5910538A (en) * | 1998-04-24 | 1999-06-08 | Bayer Corporation | Compatibilized ABS polycarbonate molding |
| EP1076675A1 (en) * | 1998-05-01 | 2001-02-21 | General Electric Company | Flame retardant polycarbonate/rubber-modified graft copolymer resin blends having a low fluorine content |
| KR20010009104A (en) * | 1998-07-10 | 2001-02-05 | 유현식 | Flame retardant thermoplastic resin composition |
| EP1117742B1 (en) * | 1998-07-27 | 2006-06-14 | General Electric Company | Flame retardant polycarbonate/rubber-modified graft copolymer resin blend having a metallic appearance |
| FR2781807A1 (en) * | 1998-07-31 | 2000-02-04 | Cheil Ind Inc | Fireproof thermoplastic resin composition, for production of molded housings of electric and electronic devices, includes non-halogenated thermoplastic polycarbonate and rubber-based graft copolymer |
| KR100355411B1 (en) * | 1999-11-30 | 2002-10-11 | 제일모직주식회사 | Flameproof Thermoplastic Resin Composition |
| KR100289941B1 (en) | 1998-09-02 | 2001-09-17 | 유현식 | Thermoplastic composition with flame retardancy |
| KR100331377B1 (en) | 1999-07-14 | 2002-04-09 | 안복현 | Method of Preparing Flameproof Thermoplastic Resin Composition |
| US6133360A (en) * | 1998-10-23 | 2000-10-17 | General Electric Company | Polycarbonate resin blends containing titanium dioxide |
| US6205623B1 (en) * | 1998-11-06 | 2001-03-27 | Velcro Industries B.V. | Composite hook and loop fasteners, and products containing them |
| DE19853108A1 (en) | 1998-11-18 | 2000-05-25 | Bayer Ag | Flame-retardant, heat-resistant polycarbonate ABS molding compounds |
| JP3926938B2 (en) * | 1998-12-03 | 2007-06-06 | 三菱エンジニアリングプラスチックス株式会社 | Flame retardant polycarbonate resin composition |
| DE19914139A1 (en) * | 1999-03-27 | 2000-09-28 | Bayer Ag | Flame retardant, impact modified polycarbonate molding compounds |
| US6262135B1 (en) | 1999-04-12 | 2001-07-17 | Akzo Nobel Nv | Polyurethane foam containing a blend of monomeric and oligomeric flame retardants |
| US6319432B1 (en) | 1999-06-11 | 2001-11-20 | Albemarle Corporation | Bisphenol-A bis(diphenyl phosphate)-based flame retardant |
| KR100540582B1 (en) | 1999-07-12 | 2006-01-10 | 제일모직주식회사 | Flame Retardant Thermoplastic Composition |
| US6180702B1 (en) * | 1999-08-09 | 2001-01-30 | Bayer Corporation | Flame retardant polycarbonate composition |
| DE19941827A1 (en) * | 1999-09-02 | 2001-03-08 | Bayer Ag | Flame retardant polycarbonate blends |
| US7288577B1 (en) | 1999-09-09 | 2007-10-30 | Supresta U.S. Llc | Polyurethane foam containing flame retardant blend of non-oligomeric and oligomeric flame retardants |
| WO2001058999A1 (en) * | 2000-02-10 | 2001-08-16 | The Dow Chemical Company | Ignition resistant polymer compositions |
| DE10010941A1 (en) * | 2000-03-06 | 2001-09-13 | Bayer Ag | Low-fluorine polycarbonate molding compositions containing an impact modifier and a phosphorus-containing flame retardant, useful for making molded products with high stress cracking resistance |
| CA2401783C (en) * | 2000-03-06 | 2010-02-02 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate moulding compounds for extrusion applications |
| DE10027333A1 (en) * | 2000-06-02 | 2001-12-06 | Bayer Ag | Flame retardant and anti-electrostatic polycarbonate molding compounds |
| DE10027341A1 (en) * | 2000-06-02 | 2001-12-06 | Bayer Ag | Flame retardant translucent polycarbonate molding compounds |
| KR100439331B1 (en) * | 2000-08-29 | 2004-07-07 | 제일모직주식회사 | Flame-Retardant Thermoplastic Resin Composition |
| KR100372569B1 (en) | 2000-10-31 | 2003-02-19 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| US6399685B1 (en) | 2000-12-11 | 2002-06-04 | Albemarle Corporation | Purification of arylene polyphosphate esters |
| US6605659B2 (en) | 2000-12-20 | 2003-08-12 | General Electric Company | Flame retardant polycarbonate resin/ABS graft copolymer blends |
| DE10109226A1 (en) * | 2001-02-26 | 2002-09-05 | Bayer Ag | Polycarbonate composition with improved adhesion to foam, useful for making molded articles and composites, contains copolymer of styrene and carboxylated monomer |
| DE10109224A1 (en) * | 2001-02-26 | 2002-09-05 | Bayer Ag | Flame retardant polycarbonate compositions with increased chemical resistance |
| KR100435571B1 (en) * | 2001-07-20 | 2004-06-09 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| KR100427531B1 (en) * | 2001-09-13 | 2004-04-30 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| KR100422778B1 (en) * | 2001-09-03 | 2004-03-12 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| DE10152318A1 (en) * | 2001-10-26 | 2003-05-08 | Bayer Ag | Impact-resistant modified flame-retardant polycarbonate molding compounds |
| KR100442939B1 (en) * | 2001-12-11 | 2004-08-04 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| KR100442937B1 (en) * | 2001-12-11 | 2004-08-04 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| DE10162747A1 (en) * | 2001-12-20 | 2003-07-03 | Bayer Ag | Extrudable polycarbonate molding compounds |
| AU2003273184A1 (en) * | 2002-05-20 | 2003-12-12 | Pabu Services, Inc. | Blends of (alkyl substituted) triaryl phosphate esters with phosphorus-containing flame retardants for polyurethane foams |
| AU2003226414A1 (en) * | 2002-05-30 | 2003-12-19 | Dow Global Technologies, Inc. | Halogen free ignition resistant thermoplastic resin compositions |
| KR100462531B1 (en) * | 2002-07-08 | 2004-12-17 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| KR100463960B1 (en) * | 2002-07-11 | 2004-12-30 | 제일모직주식회사 | Flame Retardant Thermoplastic Resin Composition |
| WO2004072179A1 (en) * | 2003-02-06 | 2004-08-26 | Dow Global Technologies Inc. | Halogen free ignition resistant thermoplastic resin compositions |
| ES2221800B2 (en) * | 2003-06-16 | 2005-07-01 | Unex Aparellaje Electrico S.L. | EXTRUSIONABLE COMPOSITION OF SYNTHETIC RESIN. |
| EP1756217B1 (en) * | 2004-06-18 | 2012-03-21 | Cheil Industries Inc. | Flameproof thermoplastic resin composition |
| US20080014446A1 (en) * | 2004-10-07 | 2008-01-17 | General Electric Company | Window shade and a multi-layered article, and methods of making the same |
| KR100650910B1 (en) | 2004-10-13 | 2006-11-27 | 제일모직주식회사 | Flame Retardant Thermoplastic Composition |
| KR100560151B1 (en) * | 2004-12-30 | 2006-03-10 | 제일모직주식회사 | Flame Retardant Polycarbonate Resin Composition |
| ATE444330T1 (en) * | 2005-03-21 | 2009-10-15 | Chemtura Corp | FLAME RETARDANTS AND FLAME RETARDANT POLYMERS |
| DE102006006167A1 (en) * | 2005-04-06 | 2006-10-12 | Lanxess Deutschland Gmbh | Molding compounds based on a thermoplastic polycarbonate |
| US7358293B2 (en) | 2005-05-02 | 2008-04-15 | General Electric Company | Thermoplastic polycarbonate compositions with improved optical surface quality, articles made therefrom and method of manufacture |
| DE102006018602A1 (en) * | 2005-06-09 | 2006-12-14 | Bayer Materialscience Ag | Flame retardant coated polycarbonate moldings |
| US7446144B2 (en) * | 2005-09-14 | 2008-11-04 | Bayer Materialscience Llc | Thermoplastic molding composition and articles thermoformed therefrom |
| KR100796938B1 (en) | 2005-12-28 | 2008-01-22 | 제일모직주식회사 | Thermoplastic resin composition with low linear expansion coefficient and excellent impact resistance |
| KR100722149B1 (en) * | 2005-12-30 | 2007-05-28 | 제일모직주식회사 | Flame retardant polycarbonate-based plastic resin composition excellent in extrusion processability and impact resistance |
| EP1976929A4 (en) | 2005-12-30 | 2012-07-18 | Cheil Ind Inc | Flame retardant polycarbonate thermoplastic resin composition having good extrusion moldability and impact resistance |
| US7863381B2 (en) * | 2006-03-08 | 2011-01-04 | 3M Innovative Properties Company | Polymer composites |
| US8129457B2 (en) * | 2006-03-22 | 2012-03-06 | Chemtura Corporation | Flame retardant blends for flexible polyurethane foam |
| DE102007002925A1 (en) | 2007-01-19 | 2008-07-24 | Bayer Materialscience Ag | Impact modified polycarbonate compositions |
| US8217101B2 (en) | 2007-03-02 | 2012-07-10 | Bayer Materialscience Llc | Flame retardant thermoplastic molding composition |
| DE102007011070A1 (en) | 2007-03-07 | 2008-09-11 | Bayer Materialscience Ag | Product with improved paint adhesion |
| KR100841927B1 (en) * | 2007-03-07 | 2008-06-27 | 주식회사 지케이엘 | Method for producing polymer resin grafted with triphenylphosphate and polymer resin composition produced thereby |
| DE102007017936A1 (en) | 2007-04-13 | 2008-10-16 | Bayer Materialscience Ag | Products with improved flame resistance |
| DE102008015124A1 (en) | 2007-05-16 | 2008-11-20 | Bayer Materialscience Ag | Impact modified polycarbonate compositions |
| DE102007052783A1 (en) * | 2007-11-02 | 2009-05-07 | Bayer Materialscience Ag | Flame-resistant polycarbonates with polyols |
| CN101939381A (en) * | 2007-12-05 | 2011-01-05 | 株式会社Lg化学 | Flame-retardant polycarbonate resin composition with high infrared transmittance |
| KR101004040B1 (en) | 2007-12-18 | 2010-12-31 | 제일모직주식회사 | Flame retardant scratch resistant thermoplastic resin composition with improved compatibility |
| KR100885819B1 (en) | 2007-12-18 | 2009-02-26 | 제일모직주식회사 | Branched acrylic copolymer with excellent refractive index and manufacturing method thereof |
| KR100902352B1 (en) | 2008-03-13 | 2009-06-12 | 제일모직주식회사 | Thermoplastic resin composition with improved compatibility |
| KR100886348B1 (en) | 2008-04-14 | 2009-03-03 | 제일모직주식회사 | Flame retardant scratch resistant thermoplastic resin composition with improved compatibility |
| CN101591468B (en) * | 2008-05-28 | 2011-09-14 | 上海科领实业有限公司 | Low-smoke halogen-free flame retardant PC/ABS alloy and preparation method thereof |
| DE102008028571A1 (en) | 2008-06-16 | 2009-12-17 | Bayer Materialscience Ag | Impact modified polycarbonate compositions |
| DE102008048202A1 (en) | 2008-09-20 | 2010-04-01 | Bayer Materialscience Ag | Stress crack resistant and low distortion two-component moldings containing platelet or Schuppförmigen inorganic filler except talc |
| DE102008048201A1 (en) | 2008-09-20 | 2010-04-01 | Bayer Materialscience Ag | Stress crack resistant and low warpage two-component moldings containing isotropic filler |
| DE102008048204A1 (en) | 2008-09-20 | 2010-04-01 | Bayer Materialscience Ag | Stress crack resistant and low distortion two-component moldings containing talc |
| US8445568B2 (en) * | 2008-09-25 | 2013-05-21 | Sabic Innovative Plastics Ip B.V. | Flame retardant thermoplastic composition and articles formed therefrom |
| DE102008054329A1 (en) | 2008-11-03 | 2010-05-06 | Bayer Materialscience Ag | Composition, useful e.g. in lamp housings, electrical circuit breakers and power strips, comprises polycarbonate, organosilane oligomer and flame retardant additive |
| DE102008060536A1 (en) | 2008-12-04 | 2010-06-10 | Bayer Materialscience Ag | Impact-modified polycarbonate compositions containing acid phosphorus compounds with basic precipitated emulsion graft polymer |
| KR101188349B1 (en) | 2008-12-17 | 2012-10-05 | 제일모직주식회사 | Polycarbonate resin composition with improved transparency and scratch-resistance |
| DE102008062945A1 (en) | 2008-12-23 | 2010-06-24 | Bayer Materialscience Ag | Flame-retardant toughened polycarbonate compositions |
| DE102008062903A1 (en) | 2008-12-23 | 2010-06-24 | Bayer Materialscience Ag | Flame-retardant toughened polycarbonate compositions |
| US7915329B2 (en) * | 2008-12-30 | 2011-03-29 | Sabic Innovative Plastics Ip B.V. | Flame retardant resinous compositions and process |
| US7915328B2 (en) | 2008-12-30 | 2011-03-29 | Sabic Innovative Plastics Ip B.V. | Flame retardant resinous compositions and process |
| DE102009009680A1 (en) | 2009-02-19 | 2010-08-26 | Bayer Materialscience Ag | Compounding process for the preparation of polymer compositions with reduced content of volatile organic compounds |
| DE102009014878A1 (en) | 2009-03-25 | 2010-09-30 | Bayer Materialscience Ag | Flame-retardant toughened polycarbonate compositions |
| DE102009015040A1 (en) | 2009-03-26 | 2010-09-30 | Bayer Materialscience Ag | (Co) polycarbonates with improved optical properties |
| DE102009020544A1 (en) | 2009-05-08 | 2010-11-11 | Heinrich-Heine-Universität Düsseldorf | Preparing a copolymer, useful to produce e.g. plastics, comprises providing a cyclodextrin compound, providing a metallocene compound with double bonds and providing a styrene compound, adding an initiator and polymerizing components |
| WO2011036122A1 (en) | 2009-09-24 | 2011-03-31 | Bayer Materialscience Ag | Injection molded multi-component composite systems having improved fire behavior |
| EP2308679A1 (en) | 2009-10-06 | 2011-04-13 | Bayer MaterialScience AG | Solar module with polycarbonate blend film as rear film |
| US20120231278A1 (en) | 2009-11-05 | 2012-09-13 | Bayer Intellectual Property Gmbh | Polycarbonate composition having improved flame resistance for extrusion applications |
| DE102009052042A1 (en) | 2009-11-05 | 2011-05-12 | Bayer Materialscience Ag | Polycarbonate composition with improved flame retardancy for extrusion applications |
| WO2011054862A1 (en) | 2009-11-05 | 2011-05-12 | Bayer Materialscience Ag | Polycarbonate plates with improved flame resistance |
| WO2011067282A1 (en) | 2009-12-05 | 2011-06-09 | Bayer Materialscience Ag | Polycarbonate compositions with a phenolically substituted triazine derivative |
| DE102009059075A1 (en) | 2009-12-18 | 2011-06-22 | Bayer MaterialScience AG, 51373 | Flame-retardant, impact-modified, scratch-resistant polycarbonate molding compounds with good mechanical properties |
| DE102009059074A1 (en) | 2009-12-18 | 2011-06-22 | Bayer MaterialScience AG, 51373 | Scratch-resistant, impact-resistant polycarbonate molding compounds with good mechanical properties II |
| DE102009059076A1 (en) | 2009-12-18 | 2011-06-22 | Bayer MaterialScience AG, 51373 | Scratch-resistant, impact-resistant polycarbonate molding compounds with good mechanical properties |
| US8735490B2 (en) * | 2009-12-30 | 2014-05-27 | Cheil Industries Inc. | Thermoplastic resin composition having improved impact strength and melt flow properties |
| EP2525972B1 (en) | 2010-01-22 | 2016-11-02 | Covestro Deutschland AG | Flame-protected article having a high level of transmission |
| TW201137033A (en) | 2010-03-02 | 2011-11-01 | Styron Europe Gmbh | Improved flow ignition resistant carbonate polymer composition |
| TWI521051B (en) | 2010-03-11 | 2016-02-11 | 盛禧奧歐洲有限責任公司 | Impact modified ignition resistant carbonate polymer composition |
| DE102010018234A1 (en) | 2010-04-23 | 2012-03-29 | Bayer Materialscience Aktiengesellschaft | Easy-flowing polycarbonate / ABS molding compounds with good mechanical properties and a good surface |
| TWI577530B (en) | 2010-07-14 | 2017-04-11 | 科思創德意志股份有限公司 | Method and apparatus for manufacturing composite colorants |
| DE102010039712A1 (en) | 2010-08-24 | 2012-03-01 | Bayer Materialscience Aktiengesellschaft | Toughened polyester / polycarbonate compositions with improved elongation at break |
| DE102010041388A1 (en) | 2010-09-24 | 2012-03-29 | Bayer Materialscience Aktiengesellschaft | Polycarbonate-based flame-retardant impact-modified battery housings II |
| DE102010041387A1 (en) | 2010-09-24 | 2012-03-29 | Bayer Materialscience Aktiengesellschaft | Polycarbonate-based flame-retardant impact-modified battery cases I |
| US9193848B2 (en) | 2010-11-05 | 2015-11-24 | Bayer Intellectual Property Gmbh | Flame-resistant, UV-protected polycarbonate moulding compositions of low molecular weight degradation |
| US20130221294A1 (en) | 2010-11-05 | 2013-08-29 | Bayer Intellectual Property Gmbh | Uv-protected polycarbonate molding materials equipped so as to be flame-retardant and having a low molecular weight decrease |
| EP2468820A1 (en) | 2010-12-23 | 2012-06-27 | Bayer MaterialScience AG | Polycarbonate compositions with improved flame resistance |
| US8440762B2 (en) | 2011-01-14 | 2013-05-14 | Sabic Innovative Plastics Ip B.V. | Polymer compositions, method of manufacture, and articles formed therefrom |
| US8404772B2 (en) | 2011-01-14 | 2013-03-26 | Sabic Innovative Plastics Ip B.V. | Polymer compositions, method of manufacture, and articles formed therefrom |
| CN102311628B (en) * | 2011-07-06 | 2012-12-12 | 惠州市昌亿科技股份有限公司 | Cold resistant polycarbonate/ABS alloy for intelligent ammeter shell and preparation method thereof |
| EP2543695A1 (en) | 2011-07-08 | 2013-01-09 | Bayer MaterialScience AG | Matt, flame-retardant item with high transmission |
| EP2554597B1 (en) | 2011-08-02 | 2014-12-31 | Styron Europe GmbH | Chemical resistant and fire retardant polycarbonate polyester composition |
| EP2574642B1 (en) | 2011-09-28 | 2013-11-20 | Bayer Intellectual Property GmbH | Flame-retardant PC/ABS compounds with good impact strength, flowability and chemical resistance |
| ES2628394T3 (en) | 2011-10-26 | 2017-08-02 | Covestro Deutschland Ag | Polycarbonate compositions stabilized with mixtures of silicic acid and an inorganic acid |
| RU2014120914A (en) | 2011-10-26 | 2015-12-10 | Байер Интеллектуэль Проперти Гмбх | METHOD FOR PRODUCING AND STABILIZING POLYCARBONATE COMPOSITIONS WITH MODIFIED SHOCK VISCOSITY USING DILUTED SOLUTIONS OF ACID COMPOUNDS |
| EP2647669A1 (en) | 2012-04-05 | 2013-10-09 | Bayer MaterialScience AG | Impact modified polycarbonate compounds for simplified production of low temperature components with high sheen and matt component sections |
| EP2657258A1 (en) | 2012-04-23 | 2013-10-30 | Bayer MaterialScience AG | Method for producing ABS compounds with improved surface after hot-wet storage |
| EP2657259A1 (en) | 2012-04-23 | 2013-10-30 | Bayer MaterialScience AG | ABS compounds with improved surface after hot-wet storage |
| EP2657298A1 (en) | 2012-04-27 | 2013-10-30 | Bayer MaterialScience AG | PC/ABS compounds with good thermal and chemical resistance |
| US20150307705A1 (en) | 2012-12-07 | 2015-10-29 | Bayer Materialscience Ag | Flame-retardant polycarbonate molding materials ii |
| EP2746316A1 (en) | 2012-12-18 | 2014-06-25 | Mitsubishi Chemical Europe GmbH | Thermoplastic composition |
| EP2953995A1 (en) | 2013-02-07 | 2015-12-16 | Covestro Deutschland AG | Method for the production of abs compositions having an improved surface following storage in a warm-humid environment |
| CN104968691B (en) | 2013-02-07 | 2017-10-13 | 科思创德国股份有限公司 | Method for preparing the ABS compositions with improved surface |
| WO2014122177A1 (en) | 2013-02-07 | 2014-08-14 | Bayer Materialscience Ag | Method for the production of abs compositions having an improved surface |
| US9856406B2 (en) | 2013-03-11 | 2018-01-02 | Covestro Llc | Flame retardant polycarbonate |
| WO2014161830A1 (en) | 2013-04-04 | 2014-10-09 | Bayer Materialscience Ag | High-temperature (co)polycarbonates containing phthalimide and having improved rheological properties |
| EP2981576A1 (en) | 2013-04-04 | 2016-02-10 | Covestro Deutschland AG | High-temperature (co)polycarbonates with improved rheological properties |
| KR102292854B1 (en) | 2013-10-08 | 2021-08-25 | 코베스트로 도이칠란트 아게 | Fiber composite material, use therefor, and method for the production thereof |
| CN105873742B (en) | 2013-11-21 | 2017-10-17 | 沙特基础工业全球技术有限公司 | The product that density reduces |
| WO2015074233A1 (en) * | 2013-11-22 | 2015-05-28 | Bayer Material Science (China) Co., Ltd. | Glass-fibre reinforced polycarbonate composition |
| EP2881408B1 (en) | 2013-12-04 | 2017-09-20 | Lotte Advanced Materials Co., Ltd. | Styrene-based copolymer and thermoplastic resin composition including the same |
| US10434705B2 (en) | 2014-03-06 | 2019-10-08 | Sabic Global Technologies B.V. | Additive manufactured items with flame resistance, process for making and process for testing their flame performance |
| KR102331011B1 (en) | 2014-03-14 | 2021-11-25 | 코베스트로 도이칠란트 아게 | Thermally conductive thermoplastic compositions featuring balanced processability |
| US9902850B2 (en) | 2014-06-26 | 2018-02-27 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition |
| US9856371B2 (en) | 2014-06-27 | 2018-01-02 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and low-gloss molded article made therefrom |
| US9850333B2 (en) | 2014-06-27 | 2017-12-26 | Lotte Advanced Materials Co., Ltd. | Copolymers and thermoplastic resin composition including the same |
| US9790362B2 (en) | 2014-06-27 | 2017-10-17 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and molded article made using the same |
| KR101822697B1 (en) | 2014-11-18 | 2018-01-30 | 롯데첨단소재(주) | Thermoplastic resin composition with excellent appearance and molded article using thereof |
| CN104962059B (en) * | 2015-06-18 | 2016-11-02 | 金发科技股份有限公司 | A kind of polycarbonate compositions and preparation method thereof |
| KR20180090809A (en) | 2015-12-09 | 2018-08-13 | 코베스트로 엘엘씨 | Thermoplastic compositions having low gloss and high impact strength |
| WO2017100447A1 (en) | 2015-12-11 | 2017-06-15 | Sabic Global Technologies B.V. | Addition of plasticizers to improve interlayer adhesion in additive manufacturing processes |
| EP3211050A1 (en) | 2016-02-26 | 2017-08-30 | Trinseo Europe GmbH | Molded structures of polycarbonate based substrates over molded with silicone rubbers |
| TWI745364B (en) | 2016-03-23 | 2021-11-11 | 德商科思創德意志股份有限公司 | Polycarbonate compositions with improved hydrolysis resistance |
| TWI764909B (en) | 2016-07-04 | 2022-05-21 | 德商科思創德意志股份有限公司 | Multilayer composite material comprising specific polycarbonate compositions as matrix material |
| WO2018035092A1 (en) | 2016-08-15 | 2018-02-22 | Sabic Global Tecnologies B.V. | Multifunctional flame retardant thermoplastic compositions for connected personal protective equipment |
| WO2018033562A1 (en) | 2016-08-19 | 2018-02-22 | Covestro Deutschland Ag | Process for the synthesis of polyoxazolidinone compounds |
| CN109963643B (en) | 2016-11-02 | 2022-07-26 | 田村稔 | Method for mixing multiple solutions |
| KR102018717B1 (en) | 2016-12-22 | 2019-09-05 | 롯데첨단소재(주) | Thermoplastic resin composition and article using the same |
| CN108239295A (en) | 2016-12-26 | 2018-07-03 | 科思创聚合物(中国)有限公司 | The polycarbonate compound of pencil hardness with raising |
| EP3357949A1 (en) | 2017-02-02 | 2018-08-08 | Covestro Deutschland AG | Method for the production of polyoxazolidinone polymer compounds |
| WO2018164666A1 (en) | 2017-03-07 | 2018-09-13 | Covestro Llc | Two shot injection molding process for thermoplastic parts |
| WO2018199959A1 (en) | 2017-04-27 | 2018-11-01 | Covestro Llc | Structured filaments used in 3d printing |
| WO2019043094A1 (en) | 2017-08-30 | 2019-03-07 | Trinseo Europe Gmbh | Compositions useful in preparing recyclable polycarbonate sheeting having a matte appearance |
| EP3697846A1 (en) | 2017-10-16 | 2020-08-26 | Covestro Deutschland AG | Flame-resistant polycarbonate composition having a reduced bisphenol-a content |
| WO2019076495A1 (en) | 2017-10-16 | 2019-04-25 | Covestro Deutschland Ag | FLAME-RESISTANT, FILLER-REINFORCED POLYCARBONATE COMPOSITION WITH LOW BISPHENOL-A CONTENTS |
| US20200270451A1 (en) | 2017-10-16 | 2020-08-27 | Covestro Deutschland Ag | Flame-retardant polycarbonate-acrylate rubber composition with low bisphenol a content |
| EP3498469B1 (en) | 2017-12-14 | 2021-12-01 | Trinseo Europe GmbH | Laminate containing polycarbonate composition layers and fiber structure layers with improved fire resistance properties |
| EP3499119A1 (en) | 2017-12-18 | 2019-06-19 | Covestro Deutschland AG | Device for dissipating heat from a heat source and use of this device |
| EP3502173A1 (en) | 2017-12-19 | 2019-06-26 | Covestro Deutschland AG | Design laminated sheet containing special polycarbonate compositions as matrix material |
| EP3502170A1 (en) | 2017-12-19 | 2019-06-26 | Covestro Deutschland AG | Laminated sheet containing special polycarbonate compositions as matrix material |
| JP2021507053A (en) | 2017-12-20 | 2021-02-22 | コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag | Polycarbonate composition with good flame retardancy |
| EP3502171A1 (en) | 2017-12-21 | 2019-06-26 | Covestro Deutschland AG | Laminated sheet containing special polycarbonate compositions as matrix material |
| EP3775043B1 (en) | 2018-04-09 | 2022-12-07 | Covestro Intellectual Property GmbH & Co. KG | Polycarbonate composition, molded article prepared from same, and use thereof |
| EP3736309A1 (en) | 2019-05-07 | 2020-11-11 | Trinseo Europe GmbH | Polycarbonate composition which exhibits a flecked appearance when molded |
| EP4021977B1 (en) | 2019-08-28 | 2023-05-24 | Covestro Intellectual Property GmbH & Co. KG | Flame-retardant polycarbonate composition and molded parts as well as articles made therefrom |
| CN114555705B (en) | 2019-09-20 | 2025-03-21 | 盛禧奥欧洲有限责任公司 | Matte polycarbonate compositions, articles, and methods of making the same |
| US12007093B2 (en) | 2019-10-15 | 2024-06-11 | Covestro Llc | Three part headlamp assembly |
| CN111635625A (en) * | 2020-06-10 | 2020-09-08 | 上海嘉柏利通科技股份有限公司 | Protective eye cover with cleaning-resistant high-temperature-resistant damp-heat sterilization composition |
| EP4047073A1 (en) | 2021-02-17 | 2022-08-24 | Covestro Deutschland AG | Pyrolysis of polycarbonate-containing material for recovery of raw materials |
| EP4092081A1 (en) | 2021-05-18 | 2022-11-23 | Covestro Deutschland AG | Flame retardant polycarbonate composition with high comparative tracking index |
| US20240209206A1 (en) | 2021-04-26 | 2024-06-27 | Covestro Deutschland Ag | Flame Retardant Polycarbonate Composition With High Comparative Tracking Index |
| EP4105252A1 (en) | 2021-06-17 | 2022-12-21 | Covestro Deutschland AG | Thermoplastic moulding composition with high flame resistance |
| US20240287306A1 (en) | 2021-06-18 | 2024-08-29 | Covestro Deutschland Ag | Flame-Retardant Polycarbonate Compositions Having a High CTI |
| CN117730122A (en) | 2021-07-27 | 2024-03-19 | 科思创德国股份有限公司 | Hydrolysis-resistant polycarbonate composition |
| JP2024530004A (en) | 2021-08-04 | 2024-08-14 | コベストロ、ドイチュラント、アクチエンゲゼルシャフト | Polycarbonate Compositions Having High CTI |
| EP4201987A1 (en) | 2021-12-22 | 2023-06-28 | Covestro Deutschland AG | Pyrolysis of polycarbonate-containing material in combination with phosphorus-containing organic compound for recovery of raw materials |
| CN118922498A (en) | 2022-03-25 | 2024-11-08 | 科思创德国股份有限公司 | Polycarbonate compositions with high CTI |
| EP4499750A1 (en) | 2022-03-25 | 2025-02-05 | Covestro Deutschland AG | Polycarbonate compositions having a high cti |
| US20250257208A1 (en) | 2022-03-25 | 2025-08-14 | Covestro Deutschland Ag | Polycarbonate Composition |
| EP4249561B1 (en) | 2022-03-25 | 2024-12-18 | Covestro Deutschland AG | Polycarbonate composition |
| EP4249560A1 (en) | 2022-03-25 | 2023-09-27 | Covestro Deutschland AG | Polycarbonate / polyester composition and component with high resistance to leakage current |
| CN118922896A (en) | 2022-03-25 | 2024-11-08 | 科思创德国股份有限公司 | EE component comprising polycarbonate composition element with high CTI |
| CN119032135A (en) | 2022-04-14 | 2024-11-26 | 科思创德国股份有限公司 | Flame retardant thermally conductive polycarbonate composition with high relative tracking index |
| WO2023198591A1 (en) | 2022-04-14 | 2023-10-19 | Covestro Deutschland Ag | Thermally conductive flame-proof polycarbonate compositions having a high comparative tracking index |
| JP2025513266A (en) | 2022-04-19 | 2025-04-24 | コベストロ、ドイチュラント、アクチエンゲゼルシャフト | Method for producing plastic compounds having improved properties |
| EP4306594A1 (en) | 2022-07-12 | 2024-01-17 | Trinseo Europe GmbH | Polycarbonates with high post-consumer recycle content |
| EP4342948A1 (en) | 2022-09-23 | 2024-03-27 | Trinseo Europe GmbH | Flame retardant polycarbonate formulations |
| EP4345136B1 (en) | 2022-09-29 | 2025-06-11 | Covestro Deutschland AG | Electronic component containing polycarbonate material with high track resistance |
| WO2024200029A1 (en) | 2023-03-24 | 2024-10-03 | Covestro Deutschland Ag | Polycarbonate composition |
| WO2024245878A1 (en) | 2023-05-30 | 2024-12-05 | Covestro Deutschland Ag | Flame retardant polycarbonate composition |
| WO2025026756A2 (en) | 2023-07-31 | 2025-02-06 | Trinseo Europe Gmbh | Methods of modifying flame retardancy of polycarbonates |
| WO2025078222A1 (en) | 2023-10-12 | 2025-04-17 | Covestro Deutschland Ag | Method for producing a plastic compound having improved properties |
| WO2025186412A1 (en) | 2024-03-08 | 2025-09-12 | Trinseo Europe Gmbh | Fire retardant polycarbonate long glass fiber compositions |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5924736A (en) * | 1982-08-02 | 1984-02-08 | Adeka Argus Chem Co Ltd | Flame-retarding polystyrene resin composition |
| JPS5945351A (en) * | 1982-09-08 | 1984-03-14 | Adeka Argus Chem Co Ltd | Flame-retardant composition |
| EP0174493A1 (en) * | 1984-08-17 | 1986-03-19 | Bayer Ag | Thermoplastic moulding masses with flame-retarding properties |
| US4914144A (en) * | 1987-12-17 | 1990-04-03 | Basf Aktiengesellschaft | Halogen-free flameproof molding materials |
| EP0363608A1 (en) * | 1988-09-22 | 1990-04-18 | General Electric Company | Polymer mixture comprising an aromatic polycarbonate, a styrene-containing copolymer and/or graft polymer and a phosphate based flame-retardant; articles formed therefrom |
| US5030675A (en) * | 1987-08-29 | 1991-07-09 | Bayer Aktiengesellschaft | Flame-resistant thermoplastic moulding compounds based on polycarbonate, polyalkylene terephthalate, graft copolymer, fluorinated polyolefine and phosphorus compound |
| US5036126A (en) * | 1990-05-30 | 1991-07-30 | General Electric Company | Flame retardant blends of polycarbonate, ABS and a terpolymer |
| US5061745A (en) * | 1988-06-04 | 1991-10-29 | Bayer Aktiengesellschaft | Flame-retardant, high-impact polycarbonate molding compounds |
| US5122556A (en) * | 1990-04-23 | 1992-06-16 | General Electric Company | Tetra (lower alkaryl) p-phenylene diphosphate-polycarbonate blends |
| EP0491986A1 (en) * | 1990-12-24 | 1992-07-01 | General Electric Company | Flame retardant polymer compositions containing polybutylene terephthalate and oligomeric phosphoric or phosphonic acid esters |
| US5157065A (en) * | 1990-06-22 | 1992-10-20 | Bayer Aktiengesellschaft | Thermoplastic polycarbonate moulding compositions with flame-resistant properties |
| EP0521745A1 (en) * | 1991-06-20 | 1993-01-07 | Louis Lefebvre | Method for erecting and dismantling shuttering for walls poured on a reference surface and means for its application |
| EP0521628A2 (en) * | 1991-06-14 | 1993-01-07 | Ethyl Petroleum Additives, Inc. | Organic phosphates and their preparation |
| US5204394A (en) * | 1988-09-22 | 1993-04-20 | General Electric Company | Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom |
| US5272193A (en) * | 1991-07-12 | 1993-12-21 | Bayer Aktiengesellschaft | Thermoplastic polycarbonate moulding compounds with flame-resistant properties |
| US5276078A (en) * | 1989-07-24 | 1994-01-04 | The Dow Chemical Company | Ignition resistant polycarbonate blends |
| US5290836A (en) * | 1991-10-25 | 1994-03-01 | Dsm N.V. | Flame-retardant polymer composition |
| US5292786A (en) * | 1990-06-22 | 1994-03-08 | General Electric Company | Flame retardant blends of polycarbonate, ABS and a polyalkylmethacrylate having increased weld line strength |
| US5302646A (en) * | 1992-02-28 | 1994-04-12 | General Electric Company | Low gloss flame-retarded polycarbonate/ABS blends obtained by using hydroxyalkyl (meth) acrylate functionalized ABS |
| EP0594021A2 (en) * | 1992-10-22 | 1994-04-27 | Bayer Ag | Flame-retardant moulding compositions |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59202240A (en) * | 1983-05-02 | 1984-11-16 | Daihachi Kagaku Kogyosho:Kk | Flame-retardant thermoplastic resin composition |
-
1993
- 1993-08-26 DE DE4328656A patent/DE4328656A1/en not_active Withdrawn
-
1994
- 1994-08-16 DE DE59408980T patent/DE59408980D1/en not_active Expired - Lifetime
- 1994-08-16 ES ES94112738T patent/ES2136040T3/en not_active Expired - Lifetime
- 1994-08-16 EP EP94112738A patent/EP0640655B1/en not_active Expired - Lifetime
- 1994-08-22 JP JP21833094A patent/JP3168124B2/en not_active Expired - Lifetime
-
1996
- 1996-12-12 US US08/764,747 patent/US5672645A/en not_active Ceased
-
1999
- 1999-09-27 US US09/405,635 patent/USRE36902E/en not_active Expired - Lifetime
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5924736A (en) * | 1982-08-02 | 1984-02-08 | Adeka Argus Chem Co Ltd | Flame-retarding polystyrene resin composition |
| JPS5945351A (en) * | 1982-09-08 | 1984-03-14 | Adeka Argus Chem Co Ltd | Flame-retardant composition |
| US4983658A (en) * | 1984-08-17 | 1991-01-08 | Bayer Aktiengesellschaft | Thermoplastic moulding compositions with flame-repellent properties |
| EP0174493A1 (en) * | 1984-08-17 | 1986-03-19 | Bayer Ag | Thermoplastic moulding masses with flame-retarding properties |
| US5030675A (en) * | 1987-08-29 | 1991-07-09 | Bayer Aktiengesellschaft | Flame-resistant thermoplastic moulding compounds based on polycarbonate, polyalkylene terephthalate, graft copolymer, fluorinated polyolefine and phosphorus compound |
| US4914144A (en) * | 1987-12-17 | 1990-04-03 | Basf Aktiengesellschaft | Halogen-free flameproof molding materials |
| US5061745A (en) * | 1988-06-04 | 1991-10-29 | Bayer Aktiengesellschaft | Flame-retardant, high-impact polycarbonate molding compounds |
| EP0363608A1 (en) * | 1988-09-22 | 1990-04-18 | General Electric Company | Polymer mixture comprising an aromatic polycarbonate, a styrene-containing copolymer and/or graft polymer and a phosphate based flame-retardant; articles formed therefrom |
| US5204394A (en) * | 1988-09-22 | 1993-04-20 | General Electric Company | Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom |
| US5276078A (en) * | 1989-07-24 | 1994-01-04 | The Dow Chemical Company | Ignition resistant polycarbonate blends |
| US5122556A (en) * | 1990-04-23 | 1992-06-16 | General Electric Company | Tetra (lower alkaryl) p-phenylene diphosphate-polycarbonate blends |
| US5036126A (en) * | 1990-05-30 | 1991-07-30 | General Electric Company | Flame retardant blends of polycarbonate, ABS and a terpolymer |
| US5157065A (en) * | 1990-06-22 | 1992-10-20 | Bayer Aktiengesellschaft | Thermoplastic polycarbonate moulding compositions with flame-resistant properties |
| US5292786A (en) * | 1990-06-22 | 1994-03-08 | General Electric Company | Flame retardant blends of polycarbonate, ABS and a polyalkylmethacrylate having increased weld line strength |
| EP0491986A1 (en) * | 1990-12-24 | 1992-07-01 | General Electric Company | Flame retardant polymer compositions containing polybutylene terephthalate and oligomeric phosphoric or phosphonic acid esters |
| EP0521628A2 (en) * | 1991-06-14 | 1993-01-07 | Ethyl Petroleum Additives, Inc. | Organic phosphates and their preparation |
| EP0521745A1 (en) * | 1991-06-20 | 1993-01-07 | Louis Lefebvre | Method for erecting and dismantling shuttering for walls poured on a reference surface and means for its application |
| US5272193A (en) * | 1991-07-12 | 1993-12-21 | Bayer Aktiengesellschaft | Thermoplastic polycarbonate moulding compounds with flame-resistant properties |
| US5290836A (en) * | 1991-10-25 | 1994-03-01 | Dsm N.V. | Flame-retardant polymer composition |
| US5302646A (en) * | 1992-02-28 | 1994-04-12 | General Electric Company | Low gloss flame-retarded polycarbonate/ABS blends obtained by using hydroxyalkyl (meth) acrylate functionalized ABS |
| EP0594021A2 (en) * | 1992-10-22 | 1994-04-27 | Bayer Ag | Flame-retardant moulding compositions |
Non-Patent Citations (1)
| Title |
|---|
| Abstract of JA 59 202 240, cited in Polymer and General Chemistry, p. 2. * |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6767943B1 (en) * | 1999-03-27 | 2004-07-27 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate moulding materials modified with graft polymers |
| US6831120B1 (en) | 1999-09-02 | 2004-12-14 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6784232B1 (en) | 1999-09-02 | 2004-08-31 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6906122B1 (en) | 1999-09-02 | 2005-06-14 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6528561B1 (en) | 1999-09-02 | 2003-03-04 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate ABS blends |
| US6753364B1 (en) | 1999-09-02 | 2004-06-22 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate molding materials |
| US20030099837A1 (en) * | 1999-12-22 | 2003-05-29 | Dirk Mockel | Thermoplastic multi-layered film with a layer of vinylcyclohexane-based polymer |
| US20030083419A1 (en) * | 1999-12-24 | 2003-05-01 | Andreas Seidel | Flame-resistant polycarbonate molding compositions containing high-purity talc |
| US6737465B2 (en) | 1999-12-24 | 2004-05-18 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate molding compositions containing high-purity talc |
| US6936647B2 (en) | 2000-03-09 | 2005-08-30 | Bayer Aktiengesellschaft | Bead polymerizates containing halogen-free phosphourus compounds |
| US6944115B2 (en) | 2000-09-29 | 2005-09-13 | General Electric Company | Colored data storage media |
| US6771578B2 (en) | 2000-09-29 | 2004-08-03 | General Electric Company | Colored data storage media |
| US6914089B2 (en) | 2000-12-08 | 2005-07-05 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate blends |
| US6713544B2 (en) | 2000-12-08 | 2004-03-30 | Bayer Aktiengesellschaft | Flame-resistant and heat-resistant polycarbonate compositions |
| US20020137821A1 (en) * | 2001-01-09 | 2002-09-26 | Andreas Seidel | Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions |
| US7019056B2 (en) | 2001-01-09 | 2006-03-28 | Bayer Aktiengesellschaft | Flame retardants which contain phosphorus, and flame-retardant thermoplastic molding compositions |
| US6623827B2 (en) | 2001-08-07 | 2003-09-23 | General Electric Company | Colored digital versatile disks |
| US6475588B1 (en) | 2001-08-07 | 2002-11-05 | General Electric Company | Colored digital versatile disks |
| US20040235999A1 (en) * | 2001-09-21 | 2004-11-25 | Marc Vathauer | Modified shock-resistant polymer compositions |
| US6673410B2 (en) | 2001-12-17 | 2004-01-06 | General Electric Company | Colored optical discs and methods for making the same |
| US6916519B2 (en) | 2001-12-17 | 2005-07-12 | General Electric Company | Colored optical discs and methods for making the same |
| US20030150553A1 (en) * | 2001-12-17 | 2003-08-14 | Vandita Pai-Parajape | Colored optical discs and methods for making the same |
| US6475589B1 (en) * | 2001-12-17 | 2002-11-05 | General Electric Company | Colored optical discs and methods for making the same |
| US6774163B2 (en) | 2002-04-16 | 2004-08-10 | Bayer Chemicals Ag | Flame retardants for polymers comprising a mixture of two different aryl phosphates, their preparation and their use |
| US7220790B2 (en) | 2002-07-29 | 2007-05-22 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate molding compositions |
| US20040059031A1 (en) * | 2002-07-29 | 2004-03-25 | Andreas Seidel | Flame-resistant polycarbonate molding compositions |
| US7144935B2 (en) | 2002-12-06 | 2006-12-05 | Bayer Aktiengesellschaft | Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds |
| US20040110879A1 (en) * | 2002-12-06 | 2004-06-10 | Andreas Seidel | Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds |
| US20090258978A1 (en) * | 2007-03-07 | 2009-10-15 | Bayer Materialscience Ag | Polycarbonate composition containing uv absorber |
| US8044122B2 (en) | 2007-03-07 | 2011-10-25 | Bayer Materialscience Ag | Polycarbonate composition containing UV absorber |
| US20110144242A1 (en) * | 2007-11-27 | 2011-06-16 | Total Raffinage Marketing | Thermoreversibly crosslinked elastic bituminous composition |
| US20110098386A1 (en) * | 2009-08-28 | 2011-04-28 | Bayer Materialscience Ag | Products having improved flame resistance |
| US9676716B2 (en) | 2009-12-21 | 2017-06-13 | Covestro Deutschland Ag | Polycarbonate having improved thermal and mechanical properties and reduced coefficients of thermal expansion |
| US8058333B1 (en) * | 2010-07-23 | 2011-11-15 | Entire Technology Co., Ltd. | Flame retarding composite material |
| US11732130B2 (en) | 2019-12-04 | 2023-08-22 | Covestro Intellectual Property Gmbh & Co. Kg | Flame retardant impact-modified polycarbonate composition |
Also Published As
| Publication number | Publication date |
|---|---|
| DE59408980D1 (en) | 2000-01-13 |
| EP0640655B1 (en) | 1999-12-08 |
| ES2136040T3 (en) | 2000-03-16 |
| ES2136040T1 (en) | 1999-11-16 |
| US5672645A (en) | 1997-09-30 |
| EP0640655A3 (en) | 1995-05-24 |
| EP0640655A2 (en) | 1995-03-01 |
| JP3168124B2 (en) | 2001-05-21 |
| DE4328656A1 (en) | 1995-03-02 |
| JPH0782466A (en) | 1995-03-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE36902E (en) | Flame resistant polycarbonate/abs moulding compounds resistant to stress cracking | |
| JP4257688B2 (en) | Flame-resistant, heat-resistant polycarbonate ABS molding material | |
| US6569930B1 (en) | Flame and stress crack resistant polycarbonate molding compositions | |
| US6590015B1 (en) | Flame-resistant molding compounds | |
| US6613822B1 (en) | Flame-resistant polycarbonate ABS moulding materials | |
| JP5841372B2 (en) | Flame retardant polycarbonate-ABS molding composition | |
| KR100648581B1 (en) | Flame Retardant Polycarbonate ABS Blend | |
| US6914089B2 (en) | Flame-resistant polycarbonate blends | |
| RU2431649C2 (en) | Polycarbonate moulding compounds | |
| US6727301B1 (en) | Flame-resistant, impact-resistant modified polycarbonate molding and extrusion masses | |
| MXPA02011796A (en) | Non-inflammable, anti-electrostatic polycarbonate molding materials. | |
| US20010009946A1 (en) | Polycarbonate resin/graft copolymer blends | |
| US6706788B2 (en) | Flame-resistant polycarbonate moulding materials which are dimensionally stable at high temperatures and have high flow line strength | |
| JP2013525534A (en) | Free-flowing polycarbonate / ABS molding composition with good mechanical properties and good surface | |
| US5741838A (en) | Flame retardent thermoplastic polycarbonate moulding compounds | |
| US6326423B1 (en) | Polycarbonate-ABS moulding compounds | |
| US6767943B1 (en) | Flame-resistant polycarbonate moulding materials modified with graft polymers | |
| US6713544B2 (en) | Flame-resistant and heat-resistant polycarbonate compositions | |
| KR100431885B1 (en) | Flame retardant carbonate polymer composition with improved hydrolytic stability | |
| US5733957A (en) | Flame retardant polycarbonate containing polycyclic phosphoric acid esters | |
| KR100358604B1 (en) | Flame Resistant Polycarbonate / Acrylonitrile-Butadiene-Styrene Molding Compound | |
| KR20020029394A (en) | Flame-resistant Polycarbonate Moulding Materials | |
| MXPA99010761A (en) | Flame-resistant polycarbonate moulding materials which are dimensionally stable at high temperatures and have high flow line strength | |
| MXPA01005765A (en) | Polycarbonate molding materials exhibiting improved mechanical properties | |
| MXPA00000949A (en) | Abs mouldable materials containing polycarbonate, non-flammable and resistant to stress crack |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |