USRE36821E - Wordline driver circuit having a directly gated pull-down device - Google Patents

Wordline driver circuit having a directly gated pull-down device Download PDF

Info

Publication number
USRE36821E
USRE36821E US08/644,351 US64435196A USRE36821E US RE36821 E USRE36821 E US RE36821E US 64435196 A US64435196 A US 64435196A US RE36821 E USRE36821 E US RE36821E
Authority
US
United States
Prior art keywords
primary
wordline
signal
predecode signal
logic state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/644,351
Inventor
Stephen L. Casper
Paul S. Zagar
Adrian E. Ong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US08/644,351 priority Critical patent/USRE36821E/en
Application granted granted Critical
Publication of USRE36821E publication Critical patent/USRE36821E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines

Definitions

  • This invention relates generally to memory device technologies and more particularly to a circuit and method for driving a wordline to a desired potential.
  • a DRAM consists of an arrangement of individual memory cells.
  • Each memory cell comprises a capacitor capable of holding a charge and a field effect transistor, hereinafter referred to as an access transistor, for accessing the capacitor charge.
  • the charge is referred to as a data bit and can be either a high voltage or a low voltage. Therefore, the memory has two states; often thought of as the true logic state and the complementary logic state.
  • a bit of data may be stored in a specific cell in the write mode, or a bit of data may be retrieved from a specific cell in the read mode.
  • the data is transmitted on signal lines, also called digit lines, to and from the Input/Output lines, hereinafter known as I/O lines, through field effect transistors used as switching devices and called decode transistors.
  • I/O lines For each bit of data stored, its true logic state is available at an I/O line and its complementary logic state is available at a line designated I/O*.
  • I/O and I/O* lines are often referred to as just I/O lines.
  • each cell has two digit lines, referred to as digit line pairs.
  • the memory cells are arranged in an array and each cell has an address identifying its location in the array.
  • the array comprises a configuration of intersecting rows and columns and a memory cell is associated with each intersection.
  • the address for the selected cell is represented by input signals to a row decoder and to a column decoder.
  • the row decoder activates a wordline in response to the row address.
  • the selected wordline activates the access transistor for each of the memory cells in electrical communication with the selected wordline.
  • the column decoder activates a column decoder output in response to the column address.
  • the active column decoder output selects the desired digit line pair.
  • the selected wordline activates the access transistors for a given row address, and data is latched to the digit line pairs.
  • the column decoder output selects and activates the decode transistors such that the data is transferred from the selected digit line pair to the I/O lines.
  • the row decoder comprises decode circuitry for determining which wordline is selected for a desired address and for determining which wordlines are non-selected.
  • the row decoder also comprises driver circuitry for driving the selected and the non-selected wordlines to potentials having active and inactive logic states respectively.
  • the active wordline has a potential capable of activating the access transistors in electrical communication with the active wordline and the inactive wordline has a potential capable of deactivating the access transistors in electrical communication with the non-selected wordlines.
  • the selected wordline will have a high potential and the non-selected wordlines will have low potentials.
  • the decode circuitry comprises a primary decoder and a secondary decoder for generating a primary select signal, S 1 *, and at least one secondary select signal, S 2 , respectively.
  • the asterisk indicates that the signal is active low.
  • the primary and secondary select signals are used as inputs to a driver portion of the row decoder.
  • the driver portion typically comprises an inverter portion and a latch portion.
  • the primary select signal is typically inverted to the wordline by the inverter portion, and the secondary select signal regulates the switching of the primary select signal to the inverter portion.
  • the latch portion latches a nonselected wordline to the inactive logic state.
  • Typical decoder circuitries can comprise either MOS decodes utilizing NAND circuitry or NOR circuitry, or tree decode circuitry.
  • FIGS. 1, 2 and 3 are examples of a portion of the NAND, NOR, and tree decode circuitries respectively.
  • the decode circuitries of the row decoder provide predecoded addresses to select the driver portion of the row decoder circuit.
  • MOS decode circuitry provides predecode signals comprising the primary select signal, S 1 *, and the secondary select signal, S 2 .
  • S 1 * the primary select signal
  • S 2 secondary select signal
  • FIG. 1 is an example of a portion of a CMOS NAND decode circuit wherein each of the secondary select signals, S 2A , S 2B , S 2C and S 2D , is a one of four decode having four phases, and wherein S 1 * (not shown) comes from a one of 64 CMOS NAND decode used to decode 256 wordlines.
  • FIG. 2 is an example of a portion of a CMOS NOR decode circuit wherein each of the primary select signals, S 1A *, S 1B *, S 1C * and S 1D *, is a one of four decode using four phases, and wherein secondary select signal S 2 , (not shown), comes from a one of 64 CMOS NOR decode used to decode 256 wordlines.
  • the secondary select signal controls the activation of a single pass transistor.
  • the decode circuitry may employ the tree decode configuration wherein a plurality of serially connected pass transistors are activated in order to drive the selected wordline to a high logic level.
  • predecode address signals activate three serially connected pass transistors. For example if predetermined address signals RA56(0), RA34(0), and RA12(1) are high and the remaining predecode addresses are low, transistors 1,2, and 3 are activated providing an electrical path between points 4 and 5.
  • FIG. 4 is a simplified schematic of the driver circuit of the related art. Each wordline in the array has a similar driver circuit.
  • a MOS decode has been utilized to provide a primary select signal S 1 * at primary select node 4 and a secondary select signal S 2 at secondary select node 6.
  • the select signals S 1 * and S 2 control the potential of the wordline 8.
  • the primary select signal is transmitted through NMOS transistor 9 and continually gated transistor 10 to an inverter/latch portion 11 when the secondary select signal is high.
  • select signal S 2 is high, NMOS transistor 9 activates and the select signal on S 1 * is inverted to the wordline 8.
  • FIG. 5 is a simplified schematic of a portion of the decode circuitry of a typical row decoder of the related art.
  • Primary select signals S 1 * and S 1 '* and secondary select signals S 2 and S 2 ' are generated by decode circuitry (not shown).
  • decode circuitry not shown.
  • the purpose of this discussion is to provide an understanding of the final mechanism for activating and deactivating the wordlines and to provide an understanding of the relationship between the select signals and the driver circuit.
  • select signals S 1 *, S 1 '*, S 2 , and S 2 ' have a high potential which take the potentials of the wordlines 12, 14, 16, and 18 low.
  • the secondary select signals go low except for the secondary select signal which activates the pass transistor in electrical communication with the selected wordline. All of the primary select signals remain high except for the primary select signal which must be inverted to the selected wordline.
  • select signal S 2 goes low and select signal S 2 ' is high; and select signal S 1 '* goes low, and select signals S 1 * is high.
  • the low select signal S 1 '* is inverted to wordline 14 through activated transistor 22.
  • transistors 21 and 23 are deactivated the wordlines 12 and 16 remain at the initial low potential due to a latching of the low potential by the inverter/latch portion 11 of the driver circuits.
  • Wordline 18 is driven low when the high potential of S 1 * is driven through activated transistor 24 and inverted to wordline 18.
  • FIG. 6 is exemplary of a driver portion of a row decoder circuit wherein the decode portion is implemented with tree decode circuitry having a plurality of pass transistors 25.
  • Serial nodes 26 and 27 tend to float to unknown potentials between cycles of cell selection. Since it is important to know the potential of serial nodes 26 and 27 the serial nodes 26 and 27 are typically reset to a known potential prior to the selection of the active wordline. During reset transistors 25 are actuated thereby precharging the serial nodes 26 and 27 to a high potential. Initial precharging presents a problem since there is a significant power consumption associated with precharging all of the serial nodes at the onset of each cycle.
  • Latch up occurs when node 40 in FIGS. 4 and 6 has latched to the high supply potential through a transistor component (not shown) of the driver circuit. Latch up occurs when the potential of node 40 is greater than the supply potential, V ccp . This can occur during power up when the supply potential is increasing.
  • a transistor device 10 is continually gated by a V ccp supply potential as shown in FIGS. 4 and 6. Transistor device 10 keeps the potential at node 40 less than the supply potential as long as the potentials at nodes 42 and 27 are less than the supply potential.
  • V ccp is a high voltage pump potential typically equal to the supply potential, V cc , of the memory device plus a threshold voltage, V t , of the access transistor, V cc +V t equals V ccp .
  • the threshold voltage of the access transistor is the potential that must be overcome in order for the access transistor to conduct current.
  • 4-6 may drop from 3 volts to 2 volts due to the threshold loss.
  • the inverter/latch 11 will see the 2 volts as a low logic state rather than the high logic state desired, or that the threshold voltage loss will be greater thereby decreasing the potential at the input of the inverter/latch.
  • DRAM circuitry can be gleaned from the DRAM DATA BOOK, 1992, published by Micron Technology and herein incorporated by reference.
  • An object of the invention is a low power circuit and a method for quickly driving non-selected wordlines to correct potentials while providing a suitable row decode architecture for large memories and while providing reliable wordline selection for circuits utilizing supply potentials less than five volts.
  • the invention features a driving device which is directly actuated by a predecode signal.
  • the wordline is driven through the actuated driving device to an inactive logic state.
  • the driving device is an NMOS transistor.
  • wordlines of memory circuits utilizing supply potentials less than five volts are reliably driven to inactive logic states.
  • the invention also minimizes the delay time associated with the circuitry of the related art wherein the primary select signal is routed through at least one pass device before actuating a driving device. Since the circuitry of the invention eliminates the pass device of the related art delay time is eliminated and speed is increased. In addition power consumption is reduced by eliminating the need to actuate the pass device.
  • FIG. 1 is a schematic of a portion of a MOS NAND decoder for row decoder circuitry.
  • FIG. 2 is a schematic of a portion of a MOS NOR decoder for row decoder circuitry.
  • FIG. 3 is a schematic of a portion of a tree decoder for row decoder circuitry.
  • FIG. 4 is a schematic of a driver circuit of a row decoder of the related art.
  • FIG. 5 is a portion of a row decoder circuit for providing a simplified example of wordline selection.
  • FIG. 6 is a schematic of a driver circuit of a row decoder of the related art.
  • FIG. 7 is a simplified schematic of a driver circuit of the invention.
  • FIG. 8 is a detailed schematic of the driver circuit of the invention.
  • FIG. 9 is a detailed schematic of a further embodiment of the invention.
  • FIG. 10 is a detailed schematic of a further embodiment of the invention.
  • FIG. 7 represents a driver portion of a row decoder.
  • a decode portion of the row decoder is not shown.
  • the decode portion generates predecode signals S 1 * and S 2 .
  • S 1 * is a primary select signal and controls the actuation and deactuation of pull-down NMOS transistor 50.
  • S 2 is a secondary select signal and controls the actuation and deactuation of pass NMOS transistor 55.
  • the primary select signal S 1 * goes to a low potential and the secondary select signal goes to a high potential.
  • the low is then driven through transistors 55 and 65 to the input of inverter/latch 62 where the primary select signal is inverted and driven as a high potential to the wordline 60.
  • the low primary select signal deacuates transistor 50 thereby isolating wordline 60 from the reference potential.
  • the secondary select signal remains low, and the wordline is latched to its initial low potential by inverter/latch circuitry 62.
  • FIG. 8 is a more detailed schematic of the circuit of FIG. 7.
  • a high primary select signal, S 1 * gates transistor 50 rapidly pulling the wordline 60 to a low potential.
  • the low on wordline 60 activates transistor 90 thereby pulling the gate node 95 to the high supply potential at high voltage node 96.
  • This high supply potential at gate node 95 is actually a latch signal.
  • the latch signal actuates transistor 97 which in turn pulls wordline 60 to the reference potential.
  • the primary select signal, S 1 * transitions low and the secondary select signal, S 2 , transitions high.
  • the low primary select signal is then transmitted to node 95 through transistors 55 and 65.
  • the low at 95 actuates transistor 98 and deactuates transistor 97 thereby pulling the wordline to a high supply potential and isolating the wordline from the reference potential.
  • transistor 50 is relatively large when compared to transistor 97. Directly driving the wordline to the low potential through transistor 50 ensures the that the wordline is driven to the low potential quickly in the case where the supply potential is lower than the typical 5 volts. This is accomplished without the use of complicated PMOS circuitry and the more cumbersome layout methods necessitated in the manufacture of PMOS-NMOS circuits.
  • Continually gated NMOS transistor 65 is utilized to prevent the n-well of transistor 90 from forward biasing during powerup when V ccp is less than V cc .
  • FIG. 9 is an alternate embodiment of the circuit of FIG. 8.
  • the gate node 99 of transistor 97 is the serial connection of transistors 55 and 65. Both placements of nodes 95 and 99, as shown in FIGS. 8 and 9, are equally viable and the final configuration may well be determined from a manufacturing standpoint where layout design restrictions are weighted against circuit performance.
  • FIG. 10 a tree decode is implemented as the decode portion of the row decoder.
  • the circuit of FIG. 10 performs similar to the circuits of FIGS. 9 and 8.
  • the primary select signal S 1 * is high transistor 50 is actuated and wordline 60 is pulled to the low reference potential.
  • the primary select signal transitions low the wordline is latched low by the inverter/latch circuit 62 in a case where the wordline is not selected. In this case at least one of the pass transistors 100 is deactuated.
  • the secondary select signals S 2 , S 2 ', and S 2 " transition high thereby actuating pass transistors 100.
  • the low primary select signal is then transmitted to node 95 and the primary select signal then actuates transistor 98 thereby pulling the wordline to the high supply potential.
  • Transistors 50 and 97 are deacuated by the low primary select signal.
  • Serial nodes 110 provide the electrical connection between the pass transistors and between one of the pass transistors and the continually gated transistor 65.
  • the automatic precharge circuit of the invention eliminates the need for the precharge circuit of the related art.
  • the automatic precharge circuit of the invention provides quick response and large power saving without increasing cell size.
  • the precharge circuit of the invention comprises the serial node pull-up transistors 105. Each serial node pull-up transistor 105 is interposed between high voltage node 106 connected to a supply potential, and a serial node 110.
  • the serial node pull-up transistors are gated by a high primary select signal. Therefore when the primary select signal is high the serial node pull-up transistors are automatically actuated thereby automatically precharging the serial nodes by pulling them passively to the high potential.
  • the pass transistors 100 do not have to be actuated at the start of each cycle in order to precharge the nodes.
  • a significant power savings is realized using the implementation of the invention over the previous implementation of the related art wherein all of the pass transistors were actuated before each cycle. Since the precharge occurs automatically the access speed is increased.
  • the serial node pull up transistors are fabricated with existing silicon and there is no increase in cell size.
  • the automatic precharge circuit of the invention can also be utilized in a case wherein a MOS decode has been utilized. In this case the automatic precharge circuit is particularly useful during power up.
  • the invention quickly drives a nonselected wordline to an inactive logic state having a low potential through the pull-down transistor gated directly by the primary select signal.
  • the low potential is latched to the wordline through an inverter/latch circuit which also drives the wordline to the low potential.
  • the inverter/latch circuit drives a selected wordline high in response to a low primary select signal.
  • Serial node charging transistors can be configured to automatically charge the serial nodes when the primary select signal is high thereby conserving power by eliminating the necessity of actuating all of the pass transistors for every wordline at the beginning of each cycle.
  • the circuit has utility in other circuits where it is desired to quickly drive a node to a first potential and latch it to that first potential until a subsequent selection allows the circuitry to drive the node to a second potential. Modification to the circuitry may also be implemented without detracting from the concept of the invention. Accordingly, the invention should be read as limited only by the claims.

Abstract

The invention is a circuit and method for quickly driving non-selected wordlines to correct potentials. The invention drives the non-selected wordlines to low potentials through a driving device directly gated by a primary select predecode signal generated by decode circuitry. The driving device is electrically interposed between the wordline and a reference node. The invention provides low power operation, and provides reliable wordline selection for circuits having supply potentials less than 5 volts.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is being filed simultaneously with copending application Ser. No. 07/993,929 entitled A WORDLINE DRIVER CIRCUIT HAVING AN AUTOMATIC PRECHARGE CIRCUIT.
TECHNICAL FIELD
This invention relates generally to memory device technologies and more particularly to a circuit and method for driving a wordline to a desired potential.
BACKGROUND OF THE INVENTION
A DRAM consists of an arrangement of individual memory cells. Each memory cell comprises a capacitor capable of holding a charge and a field effect transistor, hereinafter referred to as an access transistor, for accessing the capacitor charge. The charge is referred to as a data bit and can be either a high voltage or a low voltage. Therefore, the memory has two states; often thought of as the true logic state and the complementary logic state. There are two options available in a DRAM memory: a bit of data may be stored in a specific cell in the write mode, or a bit of data may be retrieved from a specific cell in the read mode. The data is transmitted on signal lines, also called digit lines, to and from the Input/Output lines, hereinafter known as I/O lines, through field effect transistors used as switching devices and called decode transistors. For each bit of data stored, its true logic state is available at an I/O line and its complementary logic state is available at a line designated I/O*. For purposes or this discussion, I/O and I/O* lines are often referred to as just I/O lines. Thus, each cell has two digit lines, referred to as digit line pairs.
Typically, the memory cells are arranged in an array and each cell has an address identifying its location in the array. The array comprises a configuration of intersecting rows and columns and a memory cell is associated with each intersection. In order to read from or write to a cell, the particular cell in question must be selected, also called addressed. The address for the selected cell is represented by input signals to a row decoder and to a column decoder. The row decoder activates a wordline in response to the row address. The selected wordline activates the access transistor for each of the memory cells in electrical communication with the selected wordline. Next the column decoder activates a column decoder output in response to the column address. The active column decoder output selects the desired digit line pair. For a read operation the selected wordline activates the access transistors for a given row address, and data is latched to the digit line pairs. The column decoder output selects and activates the decode transistors such that the data is transferred from the selected digit line pair to the I/O lines.
The row decoder comprises decode circuitry for determining which wordline is selected for a desired address and for determining which wordlines are non-selected. The row decoder also comprises driver circuitry for driving the selected and the non-selected wordlines to potentials having active and inactive logic states respectively. The active wordline has a potential capable of activating the access transistors in electrical communication with the active wordline and the inactive wordline has a potential capable of deactivating the access transistors in electrical communication with the non-selected wordlines. For this discussion the selected wordline will have a high potential and the non-selected wordlines will have low potentials.
Typically the decode circuitry comprises a primary decoder and a secondary decoder for generating a primary select signal, S1 *, and at least one secondary select signal, S2, respectively. The asterisk indicates that the signal is active low. The primary and secondary select signals are used as inputs to a driver portion of the row decoder. The driver portion typically comprises an inverter portion and a latch portion. The primary select signal is typically inverted to the wordline by the inverter portion, and the secondary select signal regulates the switching of the primary select signal to the inverter portion. The latch portion latches a nonselected wordline to the inactive logic state.
Typical decoder circuitries can comprise either MOS decodes utilizing NAND circuitry or NOR circuitry, or tree decode circuitry. FIGS. 1, 2 and 3 are examples of a portion of the NAND, NOR, and tree decode circuitries respectively. The decode circuitries of the row decoder provide predecoded addresses to select the driver portion of the row decoder circuit. MOS decode circuitry provides predecode signals comprising the primary select signal, S1 *, and the secondary select signal, S2. Although the specific decode circuitry determining the values of S1 * and S2 can vary, the variations are well known in the art. FIGS. 1-3 have been included to provide examples of portions of possible decode circuitries. FIG. 1 is an example of a portion of a CMOS NAND decode circuit wherein each of the secondary select signals, S2A, S2B, S2C and S2D, is a one of four decode having four phases, and wherein S1 * (not shown) comes from a one of 64 CMOS NAND decode used to decode 256 wordlines. FIG. 2 is an example of a portion of a CMOS NOR decode circuit wherein each of the primary select signals, S1A *, S1B *, S1C * and S1D *, is a one of four decode using four phases, and wherein secondary select signal S2, (not shown), comes from a one of 64 CMOS NOR decode used to decode 256 wordlines.
In the circuits of FIGS. 1 and 2, the secondary select signal controls the activation of a single pass transistor. The decode circuitry may employ the tree decode configuration wherein a plurality of serially connected pass transistors are activated in order to drive the selected wordline to a high logic level. In the example depicted by FIG. 3 predecode address signals activate three serially connected pass transistors. For example if predetermined address signals RA56(0), RA34(0), and RA12(1) are high and the remaining predecode addresses are low, transistors 1,2, and 3 are activated providing an electrical path between points 4 and 5. These decode circuitries are well known to those skilled in the art.
FIG. 4 is a simplified schematic of the driver circuit of the related art. Each wordline in the array has a similar driver circuit. In FIG. 4, a MOS decode has been utilized to provide a primary select signal S1 * at primary select node 4 and a secondary select signal S2 at secondary select node 6. The select signals S1 * and S2 control the potential of the wordline 8. The primary select signal is transmitted through NMOS transistor 9 and continually gated transistor 10 to an inverter/latch portion 11 when the secondary select signal is high. When select signal S2 is high, NMOS transistor 9 activates and the select signal on S1 * is inverted to the wordline 8.
FIG. 5 is a simplified schematic of a portion of the decode circuitry of a typical row decoder of the related art. Primary select signals S1 * and S1 '* and secondary select signals S2 and S2 ' are generated by decode circuitry (not shown). The purpose of this discussion is to provide an understanding of the final mechanism for activating and deactivating the wordlines and to provide an understanding of the relationship between the select signals and the driver circuit. At the onset of each read or write cycle, all of the wordlines are typically reset to a low potential. In this case, select signals S1 *, S1 '*, S2, and S2 ' have a high potential which take the potentials of the wordlines 12, 14, 16, and 18 low.
During the selection of a wordline the secondary select signals go low except for the secondary select signal which activates the pass transistor in electrical communication with the selected wordline. All of the primary select signals remain high except for the primary select signal which must be inverted to the selected wordline.
Still referring to FIG. 5, assume the desired address selects wordline 14. In this case select signal S2 goes low and select signal S2 ' is high; and select signal S1 '* goes low, and select signals S1 * is high. The low select signal S1 '* is inverted to wordline 14 through activated transistor 22. Although transistors 21 and 23 are deactivated the wordlines 12 and 16 remain at the initial low potential due to a latching of the low potential by the inverter/latch portion 11 of the driver circuits. Wordline 18 is driven low when the high potential of S1 * is driven through activated transistor 24 and inverted to wordline 18.
FIG. 6 is exemplary of a driver portion of a row decoder circuit wherein the decode portion is implemented with tree decode circuitry having a plurality of pass transistors 25.
Serial nodes 26 and 27 tend to float to unknown potentials between cycles of cell selection. Since it is important to know the potential of serial nodes 26 and 27 the serial nodes 26 and 27 are typically reset to a known potential prior to the selection of the active wordline. During reset transistors 25 are actuated thereby precharging the serial nodes 26 and 27 to a high potential. Initial precharging presents a problem since there is a significant power consumption associated with precharging all of the serial nodes at the onset of each cycle.
In some circuits there have been problems with latch up. Latch up occurs when node 40 in FIGS. 4 and 6 has latched to the high supply potential through a transistor component (not shown) of the driver circuit. Latch up occurs when the potential of node 40 is greater than the supply potential, Vccp. This can occur during power up when the supply potential is increasing. In order to eliminate latch up, a transistor device 10 is continually gated by a Vccp supply potential as shown in FIGS. 4 and 6. Transistor device 10 keeps the potential at node 40 less than the supply potential as long as the potentials at nodes 42 and 27 are less than the supply potential. Therefore, as long as the potentials at nodes 42 and 27 are less than Vccp, the pan will not latch up since the n-well of the transistor component of the driver circuit will never be forward biased. The function of the continually gated device will become clear when analyzed with respect to subsequent schematics of the present invention.
Vccp is a high voltage pump potential typically equal to the supply potential, Vcc, of the memory device plus a threshold voltage, Vt, of the access transistor, Vcc +Vt equals Vccp. The threshold voltage of the access transistor is the potential that must be overcome in order for the access transistor to conduct current.
In order to conserve power, supply potentials of many memory devices have been decreased from the typical 5 volt Vcc. A low supply voltage of 3.3 volts is increasingly replacing the 5 volt operation. There is a disadvantage associated with the lower supply potentials. Often the potentials driven to a node are marginal. They often do not meet the minimum low potentials for a high logic state. Thus, circuits can experience erroneous outputs potentials. For example, in FIG. 6 when the supply voltage is approximately 3 volts, the select signal on S1 * may be 3 volts. Considering that the NMOS transistor doesn't pass high potentials with minimal loss, we must expect a threshold voltage drop across the NMOS transistors 25. The input voltage to the inverter/latch 11, FIGS. 4-6, may drop from 3 volts to 2 volts due to the threshold loss. There exists the increased probability that the inverter/latch 11 will see the 2 volts as a low logic state rather than the high logic state desired, or that the threshold voltage loss will be greater thereby decreasing the potential at the input of the inverter/latch. A need therefore exists to provide a row decoder that consistently drives the wordline to the inactive low state for a high primary select signal regardless of the supply potential used. Therefore, memory device circuits need to be redesigned in order to successfully drive wordlines to low logic levels for circuits utilizing supply potentials less than the typical 5 volts.
Further understanding of the DRAM circuitry can be gleaned from the DRAM DATA BOOK, 1992, published by Micron Technology and herein incorporated by reference.
SUMMARY OF THE INVENTION
An object of the invention is a low power circuit and a method for quickly driving non-selected wordlines to correct potentials while providing a suitable row decode architecture for large memories and while providing reliable wordline selection for circuits utilizing supply potentials less than five volts.
The invention features a driving device which is directly actuated by a predecode signal. The wordline is driven through the actuated driving device to an inactive logic state. Typically the driving device is an NMOS transistor.
By directly gating the driving device error in wordline selection is eliminated. More particularly the invention eliminates the misfiring of a wordline to an active logic state as a result of the predecode signal experiencing Vt losses prior to being inverted to the wordline as in the related art. Thus, wordlines of memory circuits utilizing supply potentials less than five volts are reliably driven to inactive logic states.
The invention also minimizes the delay time associated with the circuitry of the related art wherein the primary select signal is routed through at least one pass device before actuating a driving device. Since the circuitry of the invention eliminates the pass device of the related art delay time is eliminated and speed is increased. In addition power consumption is reduced by eliminating the need to actuate the pass device.
Details of the present invention will become clear from the following detailed description of the invention, taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic of a portion of a MOS NAND decoder for row decoder circuitry.
FIG. 2 is a schematic of a portion of a MOS NOR decoder for row decoder circuitry.
FIG. 3 is a schematic of a portion of a tree decoder for row decoder circuitry.
FIG. 4 is a schematic of a driver circuit of a row decoder of the related art.
FIG. 5 is a portion of a row decoder circuit for providing a simplified example of wordline selection.
FIG. 6 is a schematic of a driver circuit of a row decoder of the related art.
FIG. 7 is a simplified schematic of a driver circuit of the invention.
FIG. 8 is a detailed schematic of the driver circuit of the invention.
FIG. 9 is a detailed schematic of a further embodiment of the invention.
FIG. 10 is a detailed schematic of a further embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 7 represents a driver portion of a row decoder. A decode portion of the row decoder is not shown. The decode portion generates predecode signals S1 * and S2. S1 * is a primary select signal and controls the actuation and deactuation of pull-down NMOS transistor 50. S2 is a secondary select signal and controls the actuation and deactuation of pass NMOS transistor 55. When a high primary select signal actuates pull-down transistor 50, a low reference potential at reference node 59 is rapidly driven to the wordline 60 through the pull-down transistor 50. Since the high primary select signal is not driven through a pass transistor to the inverter/latch portion 62 and then inverted to the wordline, but instead directly drives the transistor that pulls the wordline low, there is a significant time savings realized over the circuit of the related art as shown in FIG. 4.
In a case where wordline 60 is selected the primary select signal S1 * goes to a low potential and the secondary select signal goes to a high potential. The low is then driven through transistors 55 and 65 to the input of inverter/latch 62 where the primary select signal is inverted and driven as a high potential to the wordline 60. The low primary select signal deacuates transistor 50 thereby isolating wordline 60 from the reference potential.
In the case where the primary select signal goes to a low potential but wordline 60 is not selected, the secondary select signal remains low, and the wordline is latched to its initial low potential by inverter/latch circuitry 62.
FIG. 8 is a more detailed schematic of the circuit of FIG. 7. A high primary select signal, S1 *, gates transistor 50 rapidly pulling the wordline 60 to a low potential. The low on wordline 60 activates transistor 90 thereby pulling the gate node 95 to the high supply potential at high voltage node 96. This high supply potential at gate node 95 is actually a latch signal. The latch signal actuates transistor 97 which in turn pulls wordline 60 to the reference potential. Thus even if the primary select signal transitions low thereby deactuating transistor 50, the initial low potential on the inactive wordline is latched to the wordline by the inverter/latch circuitry, as long as transistor 55 remains deactuated.
In a case where wordline 60 is selected the primary select signal, S1 *, transitions low and the secondary select signal, S2, transitions high. The low primary select signal is then transmitted to node 95 through transistors 55 and 65. The low at 95 actuates transistor 98 and deactuates transistor 97 thereby pulling the wordline to a high supply potential and isolating the wordline from the reference potential.
In the circuit of FIG. 8 transistor 50 is relatively large when compared to transistor 97. Directly driving the wordline to the low potential through transistor 50 ensures the that the wordline is driven to the low potential quickly in the case where the supply potential is lower than the typical 5 volts. This is accomplished without the use of complicated PMOS circuitry and the more cumbersome layout methods necessitated in the manufacture of PMOS-NMOS circuits.
Continually gated NMOS transistor 65 is utilized to prevent the n-well of transistor 90 from forward biasing during powerup when Vccp is less than Vcc.
FIG. 9 is an alternate embodiment of the circuit of FIG. 8. In FIG. 9 the gate node 99 of transistor 97 is the serial connection of transistors 55 and 65. Both placements of nodes 95 and 99, as shown in FIGS. 8 and 9, are equally viable and the final configuration may well be determined from a manufacturing standpoint where layout design restrictions are weighted against circuit performance.
In FIG. 10 a tree decode is implemented as the decode portion of the row decoder. The circuit of FIG. 10 performs similar to the circuits of FIGS. 9 and 8. When the primary select signal S1 * is high transistor 50 is actuated and wordline 60 is pulled to the low reference potential. When the primary select signal transitions low the wordline is latched low by the inverter/latch circuit 62 in a case where the wordline is not selected. In this case at least one of the pass transistors 100 is deactuated. When wordline 60 is selected the secondary select signals S2, S2 ', and S2 " transition high thereby actuating pass transistors 100. The low primary select signal is then transmitted to node 95 and the primary select signal then actuates transistor 98 thereby pulling the wordline to the high supply potential. Transistors 50 and 97 are deacuated by the low primary select signal.
Serial nodes 110 provide the electrical connection between the pass transistors and between one of the pass transistors and the continually gated transistor 65. The automatic precharge circuit of the invention eliminates the need for the precharge circuit of the related art. The automatic precharge circuit of the invention provides quick response and large power saving without increasing cell size. The precharge circuit of the invention comprises the serial node pull-up transistors 105. Each serial node pull-up transistor 105 is interposed between high voltage node 106 connected to a supply potential, and a serial node 110. The serial node pull-up transistors are gated by a high primary select signal. Therefore when the primary select signal is high the serial node pull-up transistors are automatically actuated thereby automatically precharging the serial nodes by pulling them passively to the high potential.
When using the present invention the pass transistors 100 do not have to be actuated at the start of each cycle in order to precharge the nodes. A significant power savings is realized using the implementation of the invention over the previous implementation of the related art wherein all of the pass transistors were actuated before each cycle. Since the precharge occurs automatically the access speed is increased. The serial node pull up transistors are fabricated with existing silicon and there is no increase in cell size.
The automatic precharge circuit of the invention can also be utilized in a case wherein a MOS decode has been utilized. In this case the automatic precharge circuit is particularly useful during power up.
It can be seen that the invention quickly drives a nonselected wordline to an inactive logic state having a low potential through the pull-down transistor gated directly by the primary select signal. The low potential is latched to the wordline through an inverter/latch circuit which also drives the wordline to the low potential. The inverter/latch circuit drives a selected wordline high in response to a low primary select signal. Serial node charging transistors can be configured to automatically charge the serial nodes when the primary select signal is high thereby conserving power by eliminating the necessity of actuating all of the pass transistors for every wordline at the beginning of each cycle.
Although the invention has been described in terms of driving the potential of the wordlines of a DRAM to active and inactive potentials, the circuit has utility in other circuits where it is desired to quickly drive a node to a first potential and latch it to that first potential until a subsequent selection allows the circuitry to drive the node to a second potential. Modification to the circuitry may also be implemented without detracting from the concept of the invention. Accordingly, the invention should be read as limited only by the claims.

Claims (7)

What is claimed is:
1. A memory device, comprising:
a) an output node;
b) decode circuitry for determining a logic state of said output node, said decode circuitry generating a primary and a secondary predecode signal;
c) a driving circuit for driving the output node to an inactive logic state when actuated, said driving circuit directly actuated by a corresponding primary predecode signal;
d) a latching circuit for monitoring the logic state of the output node and latching the output node to said inactive logic state;
e) an inverter circuit for inverting said primary predecode signal to said output node; and
f) a pass device for transmitting said primary predecode signal to said inverter when actuated by said secondary predecode signal, such that when said driving circuit is deactuated by said primary predecode signal and said pass device is actuated by said secondary predecode signal said wordline is driven to an active logic state.
2. A method for driving a wordline to a potential having an inactive logic state, the method comprising the following steps:
a) generating a primary predecode signal having an actuation potential;
b) actuating a driving device with said primary predecode signal having a full value of said actuation potential;
c) driving the wordline to the potential having the inactive logic state through the driving device;
d) generating a latch signal in response to the inactive logic state on the wordline, said latch signal having a potential capable of actuating latch circuitry;
e) actuating said latch circuitry with said latch signal;
f) latching the wordline to the inactive logic state through said latch circuitry;
g) actuating a precharge device with said primary predecode signal having the full value of said actuation potential; and
h) pulling a serial node to a precharge potential through said precharge device. .Iadd.
3. A memory device, comprising:
a) an output node;
b) decode circuitry adapted to generate a primary predecode signal and a secondary predecode signal;
c) a driving circuit directly actuable by said primary predecode signal to drive the output node to an inactive logic state;
d) a latching circuit responsive to the logic state of the output node and adapted to latch the output node to said inactive logic state;
e) an inverter circuit adapted to invert said primary predecode signal to said output node; and
f) a pass device controlled by said secondary predecode signal for selectively transmitting said primary predecode signal to said inverter, such that when said driving circuit is not actuated by said primary predecode signal and said pass device is actuated by said secondary predecode signal said output node is driven to an active logic state..Iaddend..Iadd.4. A method for driving a wordline to a potential having an inactive logic state, comprising:
a) generating a primary predecode signal having an actuation potential;
b) actuating a driving device with said primary predecode signal;
c) driving the wordline to the potential having the inactive logic state through the driving device, said inactive logic state comprising a latch signal having a potential capable of actuating latch circuitry;
d) actuating said latch circuitry with said latch signal;
e) latching the wordline to the inactive logic state through said latch circuitry;
f) actuating a precharge device with said primary predecode signal having the full value of said actuation potential; and
g) pulling a serial node to a precharge potential with said actuated
precharge device..Iaddend..Iadd.5. A memory device, comprising:
a) an output;
b) decode circuitry for generating a primary predecode signal and a secondary predecode signal;
c) a driving circuit directly responsive to said primary predecode signal to drive the output to an inactive logic state;
d) a latching circuit adapted to latch the output to said inactive logic state responsive to such logic state;
e) an inverter circuit adapted to invert said primary predecode signal to said output; and
f) a pass device controlled by said predecode signal for selectively passing said primary predecode signal to said inverter, such that when said driving circuit is not actuated by said primary predecode signal and said pass device is actuated by said secondary predecode signal said output is driven to an active logic state..Iaddend..Iadd.6. A method for driving a wordline to an inactive logic state potential, comprising:
a) generating a primary predecode signal having an actuation potential;
b) generating a secondary predecode signal controlling a pass transistor gating said primary predecode signal to an input of a latch driving the wordline;
c) actuating a driving device with said primary predecode signal;
d) driving the wordline to the inactive logic state potential through the driving device; and
e) latching the wordline to the inactive logic state without regard to the state of the secondary predecode signal..Iaddend..Iadd.7. A memory device, comprising:
a) an output;
b) decode circuitry for generating a primary predecode signal and a secondary predecode signal;
c) a driving circuit directly responsive to said primary predecode signal to drive the output to an inactive logic state; and
d) a pass device controlled by said secondary predecode signal for selectively passing said primary predecode signal, such that when said driving circuit is not actuated by said primary predecode signal and said pass device is actuated by said secondary predecode signal said primary decode signal determines the logic state of the output independently of said driving circuit..Iaddend..Iadd.8. A method for driving a wordline to an inactive logic state potential, comprising:
a) generating a primary predecode signal having an actuation potential;
b) generating at least one secondary predecode signal capable of gating the primary predecode signal to at least one serial node;
c) actuating a driving device with said primary predecode signal;
d) driving the wordline to the inactive logic state potential through the driving device;
e) latching the wordline to the inactive logic state; and
f) actuating a precharge device with said primary predecode signal to pull said at least one serial node to a precharge potential..Iaddend..Iadd.9. A memory device, comprising:
a) a wordline;
b) decode circuitry for generating a primary predecode signal and a secondary predecode signal;
c) a driving circuit directly responsive to said primary predecode signal to drive the wordline to an inactive logic state; and
d) a pass device controlled by said secondary predecode signal for selectively passing said primary predecode signal, such that when said driving circuit is not actuated by said primary predecode signal and said pass device is actuated by said secondary predecode signal said primary decode signal determines the logic state of the output independently of said driving circuit..Iaddend..Iadd.10. A memory device, comprising:
a) a wordline;
b) decode circuitry for generating a primary predecode signal and a secondary predecode signal;
c) a pass device controlled by said secondary predecode signal for selectively passing said primary predecode signal to said wordline;
d) a driving circuit gated by said decode circuitry without control by said pass device to receive said primary predecode signal and drive the
wordline to an inactive logic state responsive thereto..Iaddend..Iadd.11. A memory device circuit, comprising:
a) a wordline;
b) decode circuitry for generating a primary predecode signal and a secondary predecode signal; and
c) a driving circuit directly responsive to said primary predecode signal to drive the wordline to an inactive logic state without regard to the state of said secondary predecode signal..Iaddend..Iadd.12. A method for driving a wordline to an inactive logic state potential, comprising:
a) generating a primary predecode signal having an actuation potential;
b) generating a secondary predecode signal controlling a pass transistor gating said primary predecode signal to an input of a latch driving the wordline;
c) pulling the wordline to a low reference potential through a pull-down transistor directly responsive to said primary predecode signal without gating said primary predecode signal to said input of said latch..Iaddend..Iadd.13. In a memory device having one or more conductors for activating memory cells in the memory device, a conductor driver circuit comprising:
inversion circuitry for driving one of the conductors to an active state in response to a primary decode signal of the memory device being in an active state and a secondary select signal of the memory device being in an active state; and
switching circuitry for driving the one of the conductors to an inactive state in response to the secondary select signal being in an inactive state..Iaddend..Iadd.14. The conductor driver circuit of claim 13, wherein the switching circuitry comprises an NMOS transistor..Iaddend..Iadd.15. The conductor driver circuit of claim 13, wherein the inversion circuitry comprises an inverter..Iaddend..Iadd.16. The conductor driver circuit of claim 15, wherein the inverter comprises an NMOS transistor and a PMOS
transistor..Iaddend..Iadd.17. A wordline driver circuit, comprising:
an inverting latch;
a wordline connected to the output of said inverting latch;
a primary decode signal line for carrying a primary decode signal;
a secondary decode signal line for carrying a secondary decode signal;
a pass transistor gated by said secondary decode signal for passing said primary decode signal to the input of said inverting latch; and
a pull-down transistor directly gated by said primary decode signal with output connected to said wordline for deactivating said wordline when said primary decode signal is deactivated..Iaddend..Iadd.18. The wordline driver circuit of claim 17, wherein said inverting latch comprises:
a PMOS transistor having a drain coupled to Vccp, a gate coupled to said wordline and a source coupled to the input of said inverting latch;
an NMOS transistor having a drain coupled to the output of said inverting latch, a gate coupled to the input of said inverting latch and a source coupled to a reference voltage; and
a PMOS transistor having a gate coupled to the input of said inverting latch, a drain coupled to Vccp and a source coupled to the output of said inverting latch..Iaddend..Iadd.19. The wordline driver circuit of claim 17, further comprising a continuously gated pass transistor between said pass transistor and the input of said inverting latch having a drain coupled to the output of said pass transistor and a source coupled to the
input of said inverting latch..Iaddend..Iadd.20. The wordline driver circuit of claim 19, wherein said continuously gated pass transistor is an NMOS transistor with a gate coupled to Vccp..Iaddend..Iadd.21. The wordline driver circuit of claim 19, wherein said inverting latch comprises:
a PMOS transistor having a drain coupled to Vccp, a gate coupled to said wordline and a source coupled to the input of said inverting latch;
an NMOS transistor having a drain coupled to the output of said inverting latch, a gate coupled to the node between said pass transistor and said continuously gated pass transistor, and a source coupled to a reference voltage; and
a PMOS transistor having a gate coupled to the input of said inverting latch, a drain coupled to Vccp and a source coupled to the output of said inverting latch..Iaddend..Iadd.22. A tree decoded wordline driver circuit, comprising:
an inverting latch;
a wordline connected to the output of said inverting latch;
a primary decode signal line for carrying a primary decode signal;
a plurality of secondary decode signal lines for carrying a plurality of secondary decode signals;
a plurality of pass transistors gated by said plurality of secondary decode signals for passing said primary decode signal along a plurality of serial nodes to the input of said inverting latch; and
a pull-down transistor directly gated by said primary decode signal with output connected to said wordline for deactivating said wordline when said primary decode signal is deactivated..Iaddend..Iadd.23. The tree decoded wordline driver circuit of claim 22, further comprising a plurality of precharging transistor circuits each coupled exclusively to one of said plurality of serial nodes for precharging each of said plurality of serial nodes when said primary decode signal is deactivated..Iaddend..Iadd.24. The tree decoded wordline driver circuit of claim 23, wherein each of said plurality of precharging transistor circuits is an NMOS transistor having drain coupled to Vcc, gate coupled to said primary decode signal and source coupled exclusively to one of said plurality of serial nodes..Iaddend.
US08/644,351 1992-12-17 1996-05-10 Wordline driver circuit having a directly gated pull-down device Expired - Lifetime USRE36821E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/644,351 USRE36821E (en) 1992-12-17 1996-05-10 Wordline driver circuit having a directly gated pull-down device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/993,934 US5311481A (en) 1992-12-17 1992-12-17 Wordline driver circuit having a directly gated pull-down device
US08/644,351 USRE36821E (en) 1992-12-17 1996-05-10 Wordline driver circuit having a directly gated pull-down device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/993,934 Reissue US5311481A (en) 1992-12-17 1992-12-17 Wordline driver circuit having a directly gated pull-down device

Publications (1)

Publication Number Publication Date
USRE36821E true USRE36821E (en) 2000-08-15

Family

ID=25540093

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/993,934 Ceased US5311481A (en) 1992-12-17 1992-12-17 Wordline driver circuit having a directly gated pull-down device
US08/644,351 Expired - Lifetime USRE36821E (en) 1992-12-17 1996-05-10 Wordline driver circuit having a directly gated pull-down device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/993,934 Ceased US5311481A (en) 1992-12-17 1992-12-17 Wordline driver circuit having a directly gated pull-down device

Country Status (1)

Country Link
US (2) US5311481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469953B1 (en) * 2001-08-08 2002-10-22 Intel Corporation Latch circuit
AU2003204616B2 (en) * 1996-05-08 2003-07-24 Brushstrokes Fine Art Inc. Programmable system for dimensionally expanding and printing a picture image
US20040189346A1 (en) * 2003-03-24 2004-09-30 Kabushiki Kaisha Toshiba Semiconductor device with charge share countermeasure

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650976A (en) * 1993-05-14 1997-07-22 Micron Technology, Inc. Dual strobed negative pumped wordlines for dynamic random access memories
US5410508A (en) * 1993-05-14 1995-04-25 Micron Semiconductor, Inc. Pumped wordlines
US5400283A (en) * 1993-12-13 1995-03-21 Micron Semiconductor, Inc. RAM row decode circuitry that utilizes a precharge circuit that is deactivated by a feedback from an activated word line driver
FR2714201B1 (en) * 1993-12-22 1996-03-01 Sgs Thomson Microelectronics Line decoder circuit for memory operating at low supply voltages.
US5586080A (en) * 1995-06-26 1996-12-17 Micron Technology, Inc. Local word line phase driver
US6388314B1 (en) 1995-08-17 2002-05-14 Micron Technology, Inc. Single deposition layer metal dynamic random access memory
US5745499A (en) * 1995-10-11 1998-04-28 Micron Technology, Inc. Supervoltage detection circuit having a multi-level reference voltage
DE69630674D1 (en) * 1996-03-29 2003-12-18 St Microelectronics Srl Control line driver for a multiplexer, for use in the wide range of supply voltages, in particular for non-volatile memories
US5838631A (en) 1996-04-19 1998-11-17 Integrated Device Technology, Inc. Fully synchronous pipelined ram
US5986946A (en) * 1996-08-07 1999-11-16 Micron Technology, Inc. Method and apparatus for reducing row shut-off time in an interleaved-row memory device
US5872736A (en) * 1996-10-28 1999-02-16 Micron Technology, Inc. High speed input buffer
US5917758A (en) 1996-11-04 1999-06-29 Micron Technology, Inc. Adjustable output driver circuit
US5949254A (en) * 1996-11-26 1999-09-07 Micron Technology, Inc. Adjustable output driver circuit
US6115318A (en) * 1996-12-03 2000-09-05 Micron Technology, Inc. Clock vernier adjustment
US5838177A (en) * 1997-01-06 1998-11-17 Micron Technology, Inc. Adjustable output driver circuit having parallel pull-up and pull-down elements
US5940608A (en) * 1997-02-11 1999-08-17 Micron Technology, Inc. Method and apparatus for generating an internal clock signal that is synchronized to an external clock signal
US5920518A (en) * 1997-02-11 1999-07-06 Micron Technology, Inc. Synchronous clock generator including delay-locked loop
US6912680B1 (en) 1997-02-11 2005-06-28 Micron Technology, Inc. Memory system with dynamic timing correction
US5956502A (en) * 1997-03-05 1999-09-21 Micron Technology, Inc. Method and circuit for producing high-speed counts
US5946244A (en) * 1997-03-05 1999-08-31 Micron Technology, Inc. Delay-locked loop with binary-coupled capacitor
US5870347A (en) * 1997-03-11 1999-02-09 Micron Technology, Inc. Multi-bank memory input/output line selection
US5898638A (en) * 1997-03-11 1999-04-27 Micron Technology, Inc. Latching wordline driver for multi-bank memory
US5903491A (en) * 1997-06-09 1999-05-11 Micron Technology, Inc. Single deposition layer metal dynamic random access memory
US6014759A (en) * 1997-06-13 2000-01-11 Micron Technology, Inc. Method and apparatus for transferring test data from a memory array
US6173432B1 (en) * 1997-06-20 2001-01-09 Micron Technology, Inc. Method and apparatus for generating a sequence of clock signals
US5953284A (en) * 1997-07-09 1999-09-14 Micron Technology, Inc. Method and apparatus for adaptively adjusting the timing of a clock signal used to latch digital signals, and memory device using same
US6044429A (en) 1997-07-10 2000-03-28 Micron Technology, Inc. Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths
US6011732A (en) * 1997-08-20 2000-01-04 Micron Technology, Inc. Synchronous clock generator including a compound delay-locked loop
US5926047A (en) * 1997-08-29 1999-07-20 Micron Technology, Inc. Synchronous clock generator including a delay-locked loop signal loss detector
US6101197A (en) * 1997-09-18 2000-08-08 Micron Technology, Inc. Method and apparatus for adjusting the timing of signals over fine and coarse ranges
US5923594A (en) * 1998-02-17 1999-07-13 Micron Technology, Inc. Method and apparatus for coupling data from a memory device using a single ended read data path
US6115320A (en) 1998-02-23 2000-09-05 Integrated Device Technology, Inc. Separate byte control on fully synchronous pipelined SRAM
US6269451B1 (en) 1998-02-27 2001-07-31 Micron Technology, Inc. Method and apparatus for adjusting data timing by delaying clock signal
US6016282A (en) * 1998-05-28 2000-01-18 Micron Technology, Inc. Clock vernier adjustment
US6405280B1 (en) 1998-06-05 2002-06-11 Micron Technology, Inc. Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence
US6338127B1 (en) 1998-08-28 2002-01-08 Micron Technology, Inc. Method and apparatus for resynchronizing a plurality of clock signals used to latch respective digital signals, and memory device using same
US6279090B1 (en) 1998-09-03 2001-08-21 Micron Technology, Inc. Method and apparatus for resynchronizing a plurality of clock signals used in latching respective digital signals applied to a packetized memory device
US6349399B1 (en) 1998-09-03 2002-02-19 Micron Technology, Inc. Method and apparatus for generating expect data from a captured bit pattern, and memory device using same
US6029250A (en) * 1998-09-09 2000-02-22 Micron Technology, Inc. Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same
US6430696B1 (en) 1998-11-30 2002-08-06 Micron Technology, Inc. Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same
US6374360B1 (en) 1998-12-11 2002-04-16 Micron Technology, Inc. Method and apparatus for bit-to-bit timing correction of a high speed memory bus
US6470060B1 (en) * 1999-03-01 2002-10-22 Micron Technology, Inc. Method and apparatus for generating a phase dependent control signal
US7069406B2 (en) * 1999-07-02 2006-06-27 Integrated Device Technology, Inc. Double data rate synchronous SRAM with 100% bus utilization
US6788614B2 (en) * 2001-06-14 2004-09-07 Micron Technology, Inc. Semiconductor memory with wordline timing
US6801989B2 (en) 2001-06-28 2004-10-05 Micron Technology, Inc. Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same
US6621759B1 (en) 2002-06-06 2003-09-16 William K. Waller Memory wordline decoder having signal-driving amplifier
US7168027B2 (en) 2003-06-12 2007-01-23 Micron Technology, Inc. Dynamic synchronization of data capture on an optical or other high speed communications link
US7234070B2 (en) 2003-10-27 2007-06-19 Micron Technology, Inc. System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220200A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Semiconductor integrated circuit device
US4811304A (en) * 1985-06-20 1989-03-07 Mitsubishi Denki Kabushiki Kaisha MDS decoder circuit with high voltage suppression of a decoupling transistor
US4899315A (en) * 1987-04-28 1990-02-06 Texas Instruments Incorporated Low-power, noise-resistant read-only memory
US4962327A (en) * 1988-02-02 1990-10-09 Fujitsu Limited Decoder circuit having selective transfer circuit for decoded output signal
US5054002A (en) * 1988-04-05 1991-10-01 Matsushita Electric Industrial Co., Ltd. Memory unit with compensating delay circuit corresponding to a decoder delay
US5065361A (en) * 1988-12-24 1991-11-12 Kabushiki Kaisha Toshiba Semiconductor memory integrated circuit
US5202855A (en) * 1991-01-14 1993-04-13 Motorola, Inc. DRAM with a controlled boosted voltage level shifting driver
US5295114A (en) * 1990-11-16 1994-03-15 Nec Corporation Semiconductor memory device with redundant circuit for rescuing from rejection due to large current consumption
US5311480A (en) * 1992-12-16 1994-05-10 Texas Instruments Incorporated Method and apparatus for EEPROM negative voltage wordline decoding
US5369621A (en) * 1992-08-26 1994-11-29 Hewlett-Packard Company Domino style address predecoder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811304A (en) * 1985-06-20 1989-03-07 Mitsubishi Denki Kabushiki Kaisha MDS decoder circuit with high voltage suppression of a decoupling transistor
JPS6220200A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Semiconductor integrated circuit device
US4899315A (en) * 1987-04-28 1990-02-06 Texas Instruments Incorporated Low-power, noise-resistant read-only memory
US4962327A (en) * 1988-02-02 1990-10-09 Fujitsu Limited Decoder circuit having selective transfer circuit for decoded output signal
US5054002A (en) * 1988-04-05 1991-10-01 Matsushita Electric Industrial Co., Ltd. Memory unit with compensating delay circuit corresponding to a decoder delay
US5065361A (en) * 1988-12-24 1991-11-12 Kabushiki Kaisha Toshiba Semiconductor memory integrated circuit
US5295114A (en) * 1990-11-16 1994-03-15 Nec Corporation Semiconductor memory device with redundant circuit for rescuing from rejection due to large current consumption
US5202855A (en) * 1991-01-14 1993-04-13 Motorola, Inc. DRAM with a controlled boosted voltage level shifting driver
US5369621A (en) * 1992-08-26 1994-11-29 Hewlett-Packard Company Domino style address predecoder
US5311480A (en) * 1992-12-16 1994-05-10 Texas Instruments Incorporated Method and apparatus for EEPROM negative voltage wordline decoding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003204616B2 (en) * 1996-05-08 2003-07-24 Brushstrokes Fine Art Inc. Programmable system for dimensionally expanding and printing a picture image
US6469953B1 (en) * 2001-08-08 2002-10-22 Intel Corporation Latch circuit
US20040189346A1 (en) * 2003-03-24 2004-09-30 Kabushiki Kaisha Toshiba Semiconductor device with charge share countermeasure
US7214975B2 (en) * 2003-03-24 2007-05-08 Kabushiki Kaisha Toshiba Semiconductor device with charge share countermeasure

Also Published As

Publication number Publication date
US5311481A (en) 1994-05-10

Similar Documents

Publication Publication Date Title
USRE36821E (en) Wordline driver circuit having a directly gated pull-down device
US5293342A (en) Wordline driver circuit having an automatic precharge circuit
US5410508A (en) Pumped wordlines
US5825205A (en) Level-shift circuit for driving word lines of negative gate erasable type flash memory
US5325325A (en) Semiconductor memory device capable of initializing storage data
EP0649146B1 (en) Semiconductor integrated circuit device
JP2501993B2 (en) Semiconductor memory device
EP0347530B1 (en) Static random access memory device with a power dissipation reduction function
US4843261A (en) Complementary output, high-density CMOS decoder/driver circuit for semiconductor memories
US5274597A (en) Semiconductor memory device capable of driving divided word lines at high speed
US6791897B2 (en) Word line driving circuit
US5384734A (en) Multiport memory device and an operation method thereof
JPH0652685A (en) Semiconductor memory having power-on reset- control latch type line repeater
US5650976A (en) Dual strobed negative pumped wordlines for dynamic random access memories
US4618784A (en) High-performance, high-density CMOS decoder/driver circuit
US6031781A (en) Semiconductor memory device allowing high-speed activation of internal circuit
US6269046B1 (en) Semiconductor memory device having improved decoders for decoding row and column address signals
US5461593A (en) Word-line driver for a semiconductor memory device
KR19980073514A (en) Synchronous Semiconductor Memory Device
EP0337172B1 (en) Static random access memory device with a power dissipation reduction function
US4360902A (en) Semiconductor memory decoder with nonselected row line hold down
US6252808B1 (en) Semiconductor memory device having improved row redundancy scheme and method for curing defective cell
US5317541A (en) Bit decoder for generating select and restore signals simultaneously
KR100287191B1 (en) Semiconductor Memory Device having enough driving capability for Wordlines During Wafer Burn-In
US6580656B2 (en) Semiconductor memory device having memory cell block activation control circuit and method for controlling activation of memory cell blocks thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12