USRE36518E - Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device - Google Patents
Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device Download PDFInfo
- Publication number
- USRE36518E USRE36518E US08/504,943 US50494395A USRE36518E US RE36518 E USRE36518 E US RE36518E US 50494395 A US50494395 A US 50494395A US RE36518 E USRE36518 E US RE36518E
- Authority
- US
- United States
- Prior art keywords
- layer
- providing
- active area
- conductive
- contact opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 12
- 150000004767 nitrides Chemical class 0.000 claims abstract description 38
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 31
- 229920005591 polysilicon Polymers 0.000 claims abstract description 31
- 238000003672 processing method Methods 0.000 claims abstract description 31
- 238000005530 etching Methods 0.000 claims abstract description 23
- 125000006850 spacer group Chemical group 0.000 claims abstract description 14
- 238000000059 patterning Methods 0.000 claims abstract description 11
- 239000011810 insulating material Substances 0.000 claims description 18
- 239000004020 conductor Substances 0.000 claims description 13
- 238000005498 polishing Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/485—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- This invention relates to semiconductor processing methods for making electrical contact with an active area and more particularly, for making electrical contact with an active area through sub-micron contact openings. This invention also relates to semiconductor devices having buried contact plugs.
- Present processing techniques are therefore incapable of producing narrow and properly aligned contact openings to active areas for geometries of 0.4 micron or less.
- This invention provides a processing method for making contacts to active areas between semiconductor word line (conductive runners) having sub-micron geometries.
- FIG. 1 is a diagrammatic section of a semiconductor wafer shown at one processing step in accordance with the invention.
- FIG. 2 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 1.
- FIG. 3 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 2.
- FIG. 4 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 3.
- FIG. 5 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 5.
- FIG. 6 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 5.
- FIG. 7 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 6.
- FIG. 8 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 7.
- FIG. 9 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 8.
- FIG. 10 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 7.
- FIG. 10 illustrates advantages of the present invention in diminishing problems associated with misalignment.
- a semiconductor processing method of making electrical contact with an active area on a semiconductor wafer comprises the following steps:
- first oxide layer selected thickness being less than one-half the selected distance between the insulative sides of adjacent conductive runners
- first planarized layer of insulating material atop the first oxide layer, the first layer of insulating material being selectively etchable relative to the first oxide, the first layer of insulating material having an upper surface;
- the patterned first insulating layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the planarized first insulating layer upper surface, the aperture width being greater than the selected distance between the insulative sides of adjacent conductive runners;
- the step of providing a first planarized layer of insulating material comprises:
- a semiconductor device comprises:
- conductive runners formed on the semiconductor wafer, individual runners having a top and sides;
- insulative spacers provided on the sides of the conductive runners, the spacers of adjacent runners being spaced a selected distance apart at selected locations on the wafer;
- conductive plugs disposed in the first contact openings to electrically contact the active areas, individual conductive plugs having a substantially flat upper surface, the upper surfaces of the conductive plugs being approximately uniform in elevational height across the wafer;
- a conductive layer disposed above the oxide layer and in the second contact openings to electrically contact the conductive plugs.
- FIGS. 1-9 A semiconductor processing method of making electrical contact with an active area on a semiconductor wafer is described with reference to FIGS. 1-9.
- the same numbers have been used throughout these figures to reference like parts.
- a section of a semiconductor wafer 10 has bulk substrate 12, field oxide 14, and active area 16 and 18.
- Conductive runners 20, 22, 24, and 26 are provided over wafer 10.
- Individual runners have a polysilicon layer 28, a silicide layer 30, and an oxide layer 32. Gate oxide layers are omitted for purposes of clarity.
- Individual runners 20, 22, 24, and 26 have respective tops 20a, 22a, 24a, and 26a and respective sides 20b/20c, 22b/22c, 24b/24c, and 26b/26c.
- Insulative layer is provided over wafer 10, and then patterned and etched to define insulative spacers 34 on the sides of conductive runners 20, 22, 24, and 26. Insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26 are spaced a distance D apart at a selected location on wafer 10 in which a buried contact is eventually formed.
- Source/drain regions 36, 38, 40, and 42 are implanted into substrate 12 to define source/drain regions 36, 38, 40, and 42.
- buried contact openings are formed to expose source/drain region 38 of active area 16 and source/drain region 40 of active area 18.
- a first oxide layer 44 is provided over active areas 16 and 18 and conductive runners 20, 22, 24, and 26.
- First oxide layer 44 has a thickness less than one-half of distance D (FIG. 1) between insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26.
- First oxide layer 44 is preferably deposited to a thickness from about 100 to 1000 Angstroms, with a thickness from about 300 to 500 Angstroms being most preferred.
- First oxide layer 44 has an upper surface 46 with a contour conforming to the shape of the underlying semiconductor components. Upper surface 46 defines a highest elevational location K of first oxide layer 44 above active areas 16 and 18.
- a thick conformal first layer of insulating material 48 is provided on top of first oxide layer 44.
- First insulating layer 48 is formed of a material which is selectively etchable relative to first oxide layer 44, and is preferably formed of a nitride.
- First insulating layer 48 has an upper surface 50 which generally follows the contour defined by the underlying topography of the runners and field oxide. Upper surface 50 defines a lowest elevational location H above active areas 16 and 18 which is elevationally higher than highest elevational location K of first oxide layer 44.
- semiconductor wafer 10 undergoes chemical mechanical polishing (CMP) to planarize first insulating layer 48 and define a substantially flat upper surface 52.
- Planarized upper surface 52 is at an elevational location L above active areas 16 and 18 which is elevationally higher than highest elevational location K of first oxide layer 44.
- first insulating layer 48 may be deposited in a manner to provide a substantially planarized upper surface without the need for a subsequent CMP step.
- first insulating layer 48 is patterned by a mask (not shown) and etched selectively relative to first oxide layer 44 to define first contact openings 54 and 56 between adjacent conductive runners 20, 22 and 24, 26 above respective source/drain regions 38 and 40 of active areas 16 and 18.
- First contact openings 54 and 56 have an aperture width W at or near upper surface 52 which is greater than distance D between insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26.
- first oxide layer 44 is etched within first contact openings 54 and 56 to expose respective active areas 16 and 18, or more specifically, respective source/drain regions 38 and 40 of active areas 16 and 18.
- This etching step is preferably a timed etch, selective to silicon, which removes the thin oxide layer 44 without detrimentally etching into insulative spacers 34 or oxide caps 32.
- plugs 58 and 60 are provided within respective first contact openings 54 and 56 over the exposed active areas 16 and 18.
- Plugs 58 and 60 are formed of a conductive material and electrically contact source/drain regions 38 and 40.
- plugs 58 and 60 are formed of polysilicon.
- Plugs 58 and 60 have respective substantially flat upper surfaces 62 and 64 which are at an elevational height M above active areas 16 and 18. Height M is preferably approximately equal to, or slightly lower than, elevational height L of the insulating layer upper surface 52.
- Plug surfaces 62 and 64 are approximately uniform in elevational height across the semiconductor wafer. The advantages of this globally uniform height are discussed below in more detail.
- plugs 58 and 60 have relatively large upper surface areas.
- the distance across plugs 58 and 60 at upper surfaces 62 and 64 is equal to width W of contact openings 54 and 56 (FIG. 4). This distance is significantly greater than distance D (FIG. 1) of the buried contact region near source/drain regions 34 and 40 of substrate 12. Accordingly, the process of this invention effectively replaces a narrow contact area near the active area with a large contact area.
- conductive plugs 58 and 60 are formed by providing a layer of conductive material (preferably polysilicon) over first insulating layer 48 and within first contact openings 54 and 56. The semiconductor wafer is then subjected to chemical mechanical polishing to remove the conductive layer from upper surface 52 of first insulating layer 48. All the conductive material is removed from upper surface 52 to electrically isolate individual plugs 58 and 60 and to prevent formation of undesired stray conductive traces between conductive plugs 58 and 60. To help insure that all conductive material is removed from upper surface 52, plugs 58 and 60 are over polished such that plug surfaces 62 and 64 are slightly below first insulating layer upper surface 52. In this manner, individual plugs 58 and 60 are electrically isolated from one another.
- conductive material preferably polysilicon
- An alternative technique to chemical mechanical polishing is to subject the layer of conductive material to a resist etch back process to define the slightly recessed plug surfaces 62 and 64 of respective plugs 58 and 60.
- Second insulating layer 66 is provided over first insulating layer 48 and plugs 58 and 60.
- Second insulating layer 66 may be an oxide layer such as BPSG.
- second insulating layer 66 is patterned beneath a mask (not shown) and etched to form second contact openings 68 and 70 which expose respective upper surfaces 62 and 64 of conductive plugs 58 and 60.
- Second insulating layer 66 is preferably dry etched with an etchant selective to both insulating layer 48 (which is preferably a nitride layer) and polysilicon plugs 58 and 60 (which are preferably polysilicon). Due to the relatively large surface areas of plugs 58 and 60 and the etch selectively, conventional photolithographic techniques may be used to form second contact openings 68 and 70.
- First insulating layer 48 and oxide layer 44 assist in protecting conductive runners 20, 22, 24, and 26 during this etching step.
- the etchant may remove insulating layer 48 at a different rate than polysilicon plugs 58 and 60 as illustrated by surface level discontinuities 71 at the interface between insulating layer 48 and plugs 58 and 60.
- a conductive layer 76 is provided over second insulating layer 66 and into second contact openings 68 and 70 to electrically contact plugs 58 and 60.
- Conductive layer 76 may be formed of polysilicon or metal.
- second insulating layer 66 is undesirably patterned and etched to form misaligned contact openings 72 and 74.
- electrical contact with active areas 16 and 18 is still achieved through respective plugs 58 and 60 due to the large surface area at upper plug surfaces 62 and 64 (in comparison to the narrow distance D of the buried contact opening between adjacent runners near active areas 16 and 18).
- etching second contact layer 66 with an etchant selective to both first insulating layer 48 and conductive plugs 58 and 60 permits significant misalignment while still protecting the underlying structure.
- the present invention therefore provides desirable misalignment tolerance which results in higher yields of processed semiconductor devices.
- This invention defines a processing method for sub-micron geometries, and is most useful at geometries of less than 0.4 micron.
- the combined thin oxide and thick nitride layers afford a structure suitable for highly selective etching to define contact openings on the scale of 0.3 to 0.4 micron.
- the uniformly elevated and significantly wide landing plugs provide an easy target for conventional photolithographic techniques when forming the second contact openings. Additionally, the wide landing plugs provide misalignment tolerance which helps increase production yield.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A semiconducting processing method for making electrical contacts with an active area in sub-micron geometries includes: (a) providing a pair of conductive runners on a semiconductor wafer; (b) providing insulative spacers on the sides of the conductive runners wherein adjacent spacers are spaced a selected distance apart at a selected location on the wafer; (c) providing an active area between the conductive runners at the selected location; (d) providing an oxide layer over the active area and conductive runners; (e) providing a planarized nitride layer atop the oxide layer; (f) patterning and etching the nitride layer selectively relative to the oxide layer to define a first contact opening therethrough, wherein the first contact opening has an aperture width at the nitride layer upper surface which is greater than the selected distance between the insulative spacers; (g) etching the oxide layer within the first contact opening to expose the active area; (h) providing a polysilicon plug within the first contact opening over the exposed active areas; (i) providing an insulating layer over the nitride layer and the polysilicon plug; (j) patterning and etching the insulating layer to form a second contact opening to and exposing the polysilicon plug; and (k) providing a conductive layer over the insulating layer and into the second opening to electrically contact the polysilicon plug. A semiconductor device having buried landing plugs of approximately uniform height across the wafer is also described.
Description
This invention relates to semiconductor processing methods for making electrical contact with an active area and more particularly, for making electrical contact with an active area through sub-micron contact openings. This invention also relates to semiconductor devices having buried contact plugs.
As semiconductor devices are scaled down to increase packing density, distances between adjacent components are becoming increasingly smaller. Sub-micron geometries are possible with currently available technologies. In some high-density memory devices, distances between adjacent word lines are required to be 0.4 micron or less to produce a sufficiently dense cell. At these geometries, problems arise when attempting to define contact openings to active areas between these adjacent, tightly spaced word lines. Present photolithographic alignment and metallization techniques are only possible to 0.35 micron features, with a misalignment error of ±0.15 micron. Without the use of self-aligned active area contacts, the minimum word line spacing would be approximately greater than 0.85 micron which is equal to the minimum photolithographic feature of 0.35 micron, plus twice the misalignment tolerance of 0.15 micron, plus twice the processing margin of 0.10 micron (or, 0.35 micron+2×0.15 micron+2×0.10 micron=0.85 micron). Present processing techniques are therefore incapable of producing narrow and properly aligned contact openings to active areas for geometries of 0.4 micron or less.
This invention provides a processing method for making contacts to active areas between semiconductor word line (conductive runners) having sub-micron geometries.
One or more preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 1 is a diagrammatic section of a semiconductor wafer shown at one processing step in accordance with the invention.
FIG. 2 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 1.
FIG. 3 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 2.
FIG. 4 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 3.
FIG. 5 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 5.
FIG. 6 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 5.
FIG. 7 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 6.
FIG. 8 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 7.
FIG. 9 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 8.
FIG. 10 is a diagrammatic section of the FIG. 1 wafer illustrated at a processing step subsequent to that shown in FIG. 7. FIG. 10 illustrates advantages of the present invention in diminishing problems associated with misalignment.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws "to promote the progress of science and useful arts" (Article 1, Section 8).
In accordance with one aspect of the invention, a semiconductor processing method of making electrical contact with an active area on a semiconductor wafer comprises the following steps:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having sides;
providing an insulative layer on the sides of the conductive runners, the insulative sides of adjacent conductive runners being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
providing a layer of first oxide to a selected thickness over the active area and conductive runners, the first oxide layer selected thickness being less than one-half the selected distance between the insulative sides of adjacent conductive runners;
providing a first planarized layer of insulating material atop the first oxide layer, the first layer of insulating material being selectively etchable relative to the first oxide, the first layer of insulating material having an upper surface;
patterning the planarized first insulating layer for definition of a first contact opening therethrough to the active area;
etching the patterned first insulating layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the planarized first insulating layer upper surface, the aperture width being greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area;
providing a plug of conductive material within the first contact opening over the exposed active area;
providing a second insulating layer over the first insulating layer and the conductive plug;
patterning and etching the second insulating layer to form a second contact opening to and exposing the conductive plug; and providing a conductive layer over the second insulating layer and into the second contact opening, the conductive layer electrically contacting the conductive plug.
In accordance with another aspect of the invention, the step of providing a first planarized layer of insulating material comprises:
providing a conformal first layer of insulating material atop the first oxide layer; and
chemical mechanical polishing the wafer to planarize the first insulating layer.
In accordance with yet another aspect of the invention, a semiconductor device comprises:
conductive runners formed on the semiconductor wafer, individual runners having a top and sides;
insulative spacers provided on the sides of the conductive runners, the spacers of adjacent runners being spaced a selected distance apart at selected locations on the wafer;
active areas positioned between the conductive runners at the selected locations;
an insulating layer with an upper surface formed over the runners, the insulating layer having first contact openings between adjacent runners above the selected locations, the first contact openings having an aperture width at the upper surface which is greater than the selected distance;
conductive plugs disposed in the first contact openings to electrically contact the active areas, individual conductive plugs having a substantially flat upper surface, the upper surfaces of the conductive plugs being approximately uniform in elevational height across the wafer;
an oxide layer provided above the insulating layer and having second contact openings formed therethrough which extend to the upper surfaces of the conductive plugs; and
a conductive layer disposed above the oxide layer and in the second contact openings to electrically contact the conductive plugs.
A semiconductor processing method of making electrical contact with an active area on a semiconductor wafer is described with reference to FIGS. 1-9. The same numbers have been used throughout these figures to reference like parts.
In FIG. 1, a section of a semiconductor wafer 10 has bulk substrate 12, field oxide 14, and active area 16 and 18. Conductive runners 20, 22, 24, and 26 are provided over wafer 10. Individual runners have a polysilicon layer 28, a silicide layer 30, and an oxide layer 32. Gate oxide layers are omitted for purposes of clarity. Individual runners 20, 22, 24, and 26 have respective tops 20a, 22a, 24a, and 26a and respective sides 20b/20c, 22b/22c, 24b/24c, and 26b/26c.
An insulative layer is provided over wafer 10, and then patterned and etched to define insulative spacers 34 on the sides of conductive runners 20, 22, 24, and 26. Insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26 are spaced a distance D apart at a selected location on wafer 10 in which a buried contact is eventually formed.
An impurity is implanted into substrate 12 to define source/ drain regions 36, 38, 40, and 42. In subsequent steps discussed below, buried contact openings are formed to expose source/drain region 38 of active area 16 and source/drain region 40 of active area 18.
In FIG. 2, a first oxide layer 44 is provided over active areas 16 and 18 and conductive runners 20, 22, 24, and 26. First oxide layer 44 has a thickness less than one-half of distance D (FIG. 1) between insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26. First oxide layer 44 is preferably deposited to a thickness from about 100 to 1000 Angstroms, with a thickness from about 300 to 500 Angstroms being most preferred. First oxide layer 44 has an upper surface 46 with a contour conforming to the shape of the underlying semiconductor components. Upper surface 46 defines a highest elevational location K of first oxide layer 44 above active areas 16 and 18.
A thick conformal first layer of insulating material 48 is provided on top of first oxide layer 44. First insulating layer 48 is formed of a material which is selectively etchable relative to first oxide layer 44, and is preferably formed of a nitride. First insulating layer 48 has an upper surface 50 which generally follows the contour defined by the underlying topography of the runners and field oxide. Upper surface 50 defines a lowest elevational location H above active areas 16 and 18 which is elevationally higher than highest elevational location K of first oxide layer 44.
In FIG. 3, semiconductor wafer 10 undergoes chemical mechanical polishing (CMP) to planarize first insulating layer 48 and define a substantially flat upper surface 52. Planarized upper surface 52 is at an elevational location L above active areas 16 and 18 which is elevationally higher than highest elevational location K of first oxide layer 44. Although the preferred embodiment has been described as a two-step process involving depositing a conformal insulating layer followed by a CMP step to planarize the insulating layer, first insulating layer 48 may be deposited in a manner to provide a substantially planarized upper surface without the need for a subsequent CMP step.
In FIG. 4, first insulating layer 48 is patterned by a mask (not shown) and etched selectively relative to first oxide layer 44 to define first contact openings 54 and 56 between adjacent conductive runners 20, 22 and 24, 26 above respective source/ drain regions 38 and 40 of active areas 16 and 18. First contact openings 54 and 56 have an aperture width W at or near upper surface 52 which is greater than distance D between insulative spacers 34 on the sides of adjacent conductive runners 20, 22 and 24, 26.
In FIG. 5, first oxide layer 44 is etched within first contact openings 54 and 56 to expose respective active areas 16 and 18, or more specifically, respective source/ drain regions 38 and 40 of active areas 16 and 18. This etching step is preferably a timed etch, selective to silicon, which removes the thin oxide layer 44 without detrimentally etching into insulative spacers 34 or oxide caps 32.
In FIG. 6, plugs 58 and 60 are provided within respective first contact openings 54 and 56 over the exposed active areas 16 and 18. Plugs 58 and 60 are formed of a conductive material and electrically contact source/ drain regions 38 and 40. Preferably, plugs 58 and 60 are formed of polysilicon. Plugs 58 and 60 have respective substantially flat upper surfaces 62 and 64 which are at an elevational height M above active areas 16 and 18. Height M is preferably approximately equal to, or slightly lower than, elevational height L of the insulating layer upper surface 52. Plug surfaces 62 and 64 are approximately uniform in elevational height across the semiconductor wafer. The advantages of this globally uniform height are discussed below in more detail.
One of the advantages of this invention is that plugs 58 and 60 have relatively large upper surface areas. The distance across plugs 58 and 60 at upper surfaces 62 and 64 is equal to width W of contact openings 54 and 56 (FIG. 4). This distance is significantly greater than distance D (FIG. 1) of the buried contact region near source/ drain regions 34 and 40 of substrate 12. Accordingly, the process of this invention effectively replaces a narrow contact area near the active area with a large contact area.
According to one aspect of the invention, conductive plugs 58 and 60 are formed by providing a layer of conductive material (preferably polysilicon) over first insulating layer 48 and within first contact openings 54 and 56. The semiconductor wafer is then subjected to chemical mechanical polishing to remove the conductive layer from upper surface 52 of first insulating layer 48. All the conductive material is removed from upper surface 52 to electrically isolate individual plugs 58 and 60 and to prevent formation of undesired stray conductive traces between conductive plugs 58 and 60. To help insure that all conductive material is removed from upper surface 52, plugs 58 and 60 are over polished such that plug surfaces 62 and 64 are slightly below first insulating layer upper surface 52. In this manner, individual plugs 58 and 60 are electrically isolated from one another.
An alternative technique to chemical mechanical polishing is to subject the layer of conductive material to a resist etch back process to define the slightly recessed plug surfaces 62 and 64 of respective plugs 58 and 60.
In FIG. 7, a second insulating layer 66 is provided over first insulating layer 48 and plugs 58 and 60. Second insulating layer 66 may be an oxide layer such as BPSG.
In FIG. 8, second insulating layer 66 is patterned beneath a mask (not shown) and etched to form second contact openings 68 and 70 which expose respective upper surfaces 62 and 64 of conductive plugs 58 and 60. Second insulating layer 66 is preferably dry etched with an etchant selective to both insulating layer 48 (which is preferably a nitride layer) and polysilicon plugs 58 and 60 (which are preferably polysilicon). Due to the relatively large surface areas of plugs 58 and 60 and the etch selectively, conventional photolithographic techniques may be used to form second contact openings 68 and 70. First insulating layer 48 and oxide layer 44 assist in protecting conductive runners 20, 22, 24, and 26 during this etching step. The etchant may remove insulating layer 48 at a different rate than polysilicon plugs 58 and 60 as illustrated by surface level discontinuities 71 at the interface between insulating layer 48 and plugs 58 and 60.
In FIG. 9, a conductive layer 76 is provided over second insulating layer 66 and into second contact openings 68 and 70 to electrically contact plugs 58 and 60. Conductive layer 76 may be formed of polysilicon or metal.
Another advantage provided by this invention relates to misalignment tolerance. In FIG. 10, second insulating layer 66 is undesirably patterned and etched to form misaligned contact openings 72 and 74. Despite this misalignment, however, electrical contact with active areas 16 and 18 is still achieved through respective plugs 58 and 60 due to the large surface area at upper plug surfaces 62 and 64 (in comparison to the narrow distance D of the buried contact opening between adjacent runners near active areas 16 and 18). Additionally, etching second contact layer 66 with an etchant selective to both first insulating layer 48 and conductive plugs 58 and 60 permits significant misalignment while still protecting the underlying structure. The present invention therefore provides desirable misalignment tolerance which results in higher yields of processed semiconductor devices.
This invention defines a processing method for sub-micron geometries, and is most useful at geometries of less than 0.4 micron. The combined thin oxide and thick nitride layers afford a structure suitable for highly selective etching to define contact openings on the scale of 0.3 to 0.4 micron. The uniformly elevated and significantly wide landing plugs provide an easy target for conventional photolithographic techniques when forming the second contact openings. Additionally, the wide landing plugs provide misalignment tolerance which helps increase production yield.
In compliance with the statute, the invention has been described in language more or less specifically as to methodical features. It is to be understood, however, that the invention is not limited to the specific features described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (20)
1. A semiconductor processing method of making electrical contact with an active area on a semiconductor wafer, the method comprising the following steps:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having sides;
providing an insulative layer on the sides of the conductive runners, the insulative sides of adjacent conductive runners being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
providing a layer of first oxide to a selected thickness over the active area and conductive runners, the first oxide layer selected thickness being less than one-half the selected distance between the insulative sides of adjacent conductive runners;
providing a first planarized layer of insulating material atop the first oxide layer, the first layer of insulating material being selectively etchable relative to the first oxide, the first layer of insulating material having an upper surface;
patterning the planarized first insulating layer for definition of a first contact opening therethrough to the active area;
etching the patterned first insulating layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the planarized first insulating layer upper surface, the aperture width being greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area;
providing a plug of conductive material within the first contact opening over the exposed active area;
providing a second insulating layer over the first insulating layer and the conductive plug;
patterning and etching the second insulating layer to form a second contact opening to and exposing the conductive plug; and providing a conductive layer over the second insulating layer and into the second contact opening, the conductive layer electrically contacting the conductive plug.
2. A semiconductor processing method according to claim 1 wherein the selected first oxide layer thickness is from about 100 to 1,000 Angstroms.
3. A semiconductor processing method according to claim 1 wherein the selected first oxide layer thickness is from about 300 to 500 Angstroms.
4. A semiconductor processing method according to claim 1 wherein the first insulating layer is formed of a nitride.
5. A semiconductor processing method according to claim 1 wherein the conductive plug is formed of polysilicon.
6. A semiconductor processing method according to claim 1 wherein the step of providing a first planarized layer of insulating material comprises:
providing a conformal first layer of insulating material atop the first oxide layer; and
chemical mechanical polishing the wafer to planarize the first insulating layer.
7. A semiconductor processing method according to claim 1 wherein the first insulating layer has an upper surface and wherein the step of providing a plug of conductive material comprises:
providing a layer of conductive material over the first insulating layer and within the first contact opening over the exposed active area;
chemical mechanical polishing the wafer to remove the conductive layer from the first insulating layer upper surface and to define a plug within the first contact opening, the plug having an upper surface slightly below the first insulating layer upper surface to ensure that the plug is electrically isolated.
8. A semiconductor processing method according to claim 1 wherein the second insulating layer is etched with an etchant selective to both the first insulating layer and the conductive plug.
9. A semiconductor processing method according to claim 1 wherein:
the first insulating layer is formed of a nitride;
the conductive plug is formed of polysilicon; and
the second insulating layer is etched with an etchant selective to both the nitride insulating layer and the polysilicon plug.
10. A semiconductor processing method for making electrical contact with an active area on a semiconductor wafer comprising the steps of:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having a top and sides;
providing insulative spacers on the sides of the runners, the insulative spacers being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
depositing a first oxide layer over the wafer to a thickness from about 100 to 1,000 Angstroms, the first oxide layer having an upper surface defining a highest elevational location above the active area;
providing a nitride layer having an upper surface over the first oxide layer to a selected thickness, the nitride layer upper surface defining a lowest elevational location above the active area which is elevationally higher than the highest elevational location of the first oxide layer, the nitride being selectively etchable relative to the first oxide;
planarizing the nitride layer to a first elevational height above the active area, the first elevational height being higher than the highest elevational location of the first oxide layer;
patterning the planarized nitride layer for definition of a first contact opening therethrough to the active area;
etching the patterned nitride layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the nitride layer upper surface which is greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area;
providing a polysilicon plug within the first contact opening over the exposed active area to a second elevational height;
depositing a second oxide layer over the nitride layer and the polysilicon plug;
patterning and etching the second oxide layer to form a second contact opening to and exposing the polysilicon plug; and
providing a conductive layer over the second oxide layer and into the second contact opening, the conductive layer electrically contacting the conductive plug.
11. A semiconductor processing method according to claim 10 wherein the selected first oxide layer thickness is from about 300 to 500 Angstroms.
12. A semiconductor processing method according to claim 10 wherein the step of planarizing the nitride layer comprises chemical mechanical polishing the wafer to planarize the nitride layer.
13. A semiconductor processing method according to claim 10 wherein the step of providing a polysilicon plug comprises:
providing a layer of polysilicon over the nitride layer and within the first contact opening over the exposed active area;
chemical mechanical polishing the wafer to remove the polysilicon layer from the nitride layer upper surface and to define a polysilicon plug within the first contact opening.
14. A semiconductor processing method according to claim 10 wherein the second oxide layer is etched by an etchant selective to both the nitride layer and the polysilicon plug.
15. A semiconductor processing method according to claim 10 wherein the second elevational height is approximately equal to the first elevational height.
16. A semiconductor processing method according to claim 10 wherein the second elevational height is slightly lower than the first elevational height. .Iadd.
17. A semiconductor processing method of making electrical contact with an active area on a semiconductor wafer, the method comprising the following steps:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having sides;
providing an insulative layer on the sides of the conductive runners, the insulative sides of adjacent conductive runners being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
providing a layer of first oxide to a selected thickness over the active area and conductive runners, the first oxide layer selected thickness being less than one-half the selected distance between the insulative sides of adjacent conductive runners;
providing a first planarized layer of insulating material atop the first oxide layer, the first layer of insulating material being selectively etchable relative to the first oxide, the first layer of insulating material having an upper surface;
patterning the planarized first insulating layer for definition of a first contact opening therethrough to the active area;
etching the patterned first insulating layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the planarized first insulating layer upper surface, the aperture width being greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area; and
providing a plug of conductive material within the first contact opening over the exposed active area. .Iaddend..Iadd.18. A semiconductor processing method according to claim 17, wherein the first insulating layer has an upper surface and wherein the step of providing a plug of conductive material comprises:
providing a layer of conductive material over the first insulating layer and within the first contact opening over the exposed active area; and
chemical mechanical polishing the wafer to remove the conductive layer from the first insulating layer upper surface and to define a plug within the first contact opening, the plug having an upper surface slightly below the first insulating layer upper surface to ensure that the plug is
electrically isolated. .Iaddend..Iadd.19. A semiconductor processing method according to claim 17 wherein the second insulating layer is etched with an etchant selective to both the first insulating layer and the conductive plug. .Iaddend..Iadd.20. A semiconductor processing method according to claim 17 wherein:
the first insulating layer is formed of a nitride;
the conductive plug is formed of polysilicon; and
the second insulating layer is etched with an etchant selective to both the nitride insulating layer and the polysilicon plug. .Iaddend..Iadd.21. A semiconductor processing method of making electrical contact with an active area on a semiconductor wafer, the method comprising the following steps:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having sides;
providing an insulative layer on the sides of the conductive runners, the insulative sides of adjacent conductive runners being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
providing a layer of first oxide to a selected thickness over the active area and conductive runners, the first oxide layer selected thickness being less than one-half the selected distance between the insulative sides of adjacent conductive runners;
providing a first planarized layer of insulating material atop the first oxide layer, the first layer of insulating material being selectively etchable relative to the first oxide, the first layer of insulating material having an upper surface, said step performed by,
providing a conformal first layer of insulating material atop the first oxide layers; and
chemical mechanical polishing the wafer to planarize the first insulating layer;
patterning the planarized first insulating layer for definition of a first contact opening therethrough to the active area;
etching the patterned first insulating layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the planarized first insulating layer upper surface, the aperture width being greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area; and
providing a plug of conductive material within the first contact opening
over the exposed active area. .Iaddend..Iadd.22. A semiconductor processing method for making electrical contact with an active area on a semiconductor wafer comprising the steps of:
providing a pair of conductive runners on a semiconductor wafer, individual conductive runners having a top and sides;
providing insulative spacers on the sides of the runners, the insulative spacers being spaced a selected distance apart at a selected location on the wafer;
providing an active area between the conductive runners at the selected location;
depositing a first oxide layer over the wafer to a thickness from about 100 to 1,000 Angstroms, the first oxide layer having an upper surface defining a highest elevational location above the active area;
providing a nitride layer having an upper surface over the first oxide layer to a selected thickness, the nitride layer upper surface defining a lowest elevational location above the active area which is elevationally higher than the highest elevational location of the first oxide layer, the nitride being selectively etchable relative to the first oxide;
planarizing the nitride layer to a first elevational height above the active area, the first elevational height being higher than the highest elevational location of the first oxide layer;
patterning the planarized nitride layer for definition of a first contact opening therethrough to the active area;
etching the patterned nitride layer selectively relative to the first oxide layer to define the first contact opening therethrough, the first contact opening having an aperture width at the nitride layer upper surface which is greater than the selected distance between the insulative sides of adjacent conductive runners;
etching the first oxide layer within the first contact opening to expose the active area;
providing a polysilicon plug within the first contact opening over the exposed active area to a second elevational height; and
depositing a second oxide layer over the nitride layer and the polysilicon
plug. .Iaddend..Iadd.23. A semiconductor processing method according to claim 22 wherein the step of planarizing the nitride layer comprises chemical mechanical polishing the wafer to planarize the nitride layer. .Iaddend..Iadd.24. A semiconductor processing method according to claim 22 wherein the step of providing a polysilicon plug comprises:
providing a layer of polysilicon over the nitride layer and within the first contact opening over the exposed active area; and
chemical mechanical polishing the wafer to remove the polysilicon layer from the nitride layer upper surface and to define a polysilicon plug within the first contact opening. .Iaddend..Iadd.25. A semiconductor processing method according to claim 22 wherein the second oxide layer is etched by an etchant selective to both the nitride layer and the polysilicon plug. .Iaddend.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/504,943 USRE36518E (en) | 1992-06-23 | 1995-07-20 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
US09/488,099 USRE40790E1 (en) | 1992-06-23 | 2000-01-18 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/902,374 US5229326A (en) | 1992-06-23 | 1992-06-23 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
US08/504,943 USRE36518E (en) | 1992-06-23 | 1995-07-20 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/902,374 Reissue US5229326A (en) | 1992-06-23 | 1992-06-23 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/902,374 Continuation US5229326A (en) | 1992-06-23 | 1992-06-23 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36518E true USRE36518E (en) | 2000-01-18 |
Family
ID=25415776
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/902,374 Ceased US5229326A (en) | 1992-06-23 | 1992-06-23 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
US08/504,943 Expired - Lifetime USRE36518E (en) | 1992-06-23 | 1995-07-20 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/902,374 Ceased US5229326A (en) | 1992-06-23 | 1992-06-23 | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device |
Country Status (3)
Country | Link |
---|---|
US (2) | US5229326A (en) |
JP (1) | JPH0669358A (en) |
DE (1) | DE4320286A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323087B1 (en) * | 1998-09-03 | 2001-11-27 | Micron Technology, Inc. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US6429080B2 (en) * | 1999-12-22 | 2002-08-06 | International Business Machines Corporation | Multi-level dram trench store utilizing two capacitors and two plates |
US6537902B1 (en) * | 2000-01-24 | 2003-03-25 | Oki Electric Industry Co, Ltd. | Method of forming a via hole in a semiconductor device |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0549055A3 (en) * | 1991-12-23 | 1996-10-23 | Koninkl Philips Electronics Nv | Method of manufacturing a semiconductor device provided with a field effect transistor, and such a semiconductor device |
JP2773530B2 (en) * | 1992-04-15 | 1998-07-09 | 日本電気株式会社 | Method for manufacturing semiconductor device |
DE69220067T2 (en) * | 1992-11-18 | 1997-09-11 | Sgs Thomson Microelectronics | Manufacture of direct contacts in high density MOS / CMOS processes |
US5308777A (en) * | 1993-07-28 | 1994-05-03 | United Microelectronics Corporation | Mask ROM process |
KR970009053B1 (en) * | 1993-12-27 | 1997-06-03 | Hyundai Electronics Ind | Manufacturing method of semiconductor device |
US5956615A (en) * | 1994-05-31 | 1999-09-21 | Stmicroelectronics, Inc. | Method of forming a metal contact to landing pad structure in an integrated circuit |
US5633196A (en) * | 1994-05-31 | 1997-05-27 | Sgs-Thomson Microelectronics, Inc. | Method of forming a barrier and landing pad structure in an integrated circuit |
US5945738A (en) * | 1994-05-31 | 1999-08-31 | Stmicroelectronics, Inc. | Dual landing pad structure in an integrated circuit |
US5702979A (en) * | 1994-05-31 | 1997-12-30 | Sgs-Thomson Microelectronics, Inc. | Method of forming a landing pad structure in an integrated circuit |
US5420057A (en) * | 1994-06-30 | 1995-05-30 | International Business Machines Corporation | Simplified contact method for high density CMOS |
US5705427A (en) * | 1994-12-22 | 1998-01-06 | Sgs-Thomson Microelectronics, Inc. | Method of forming a landing pad structure in an integrated circuit |
JP4156044B2 (en) * | 1994-12-22 | 2008-09-24 | エスティーマイクロエレクトロニクス,インコーポレイテッド | Method for manufacturing landing pad structure in integrated circuit |
US5534460A (en) * | 1995-04-27 | 1996-07-09 | Vanguard International Semiconductor Corp. | Optimized contact plug process |
US5661054A (en) * | 1995-05-19 | 1997-08-26 | Micron Technology, Inc. | Method of forming a non-volatile memory array |
US5851916A (en) * | 1995-11-03 | 1998-12-22 | Micron Technology, Inc. | Formation of a self-aligned integrated circuit structures using planarization to form a top surface |
JP2814972B2 (en) * | 1995-12-18 | 1998-10-27 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US5719071A (en) * | 1995-12-22 | 1998-02-17 | Sgs-Thomson Microelectronics, Inc. | Method of forming a landing pad sturcture in an integrated circuit |
US5830798A (en) * | 1996-01-05 | 1998-11-03 | Micron Technology, Inc. | Method for forming a field effect transistor |
US5960304A (en) * | 1996-05-20 | 1999-09-28 | Texas Instruments Incorporated | Method for forming a contact to a substrate |
US5668065A (en) * | 1996-08-01 | 1997-09-16 | Winbond Electronics Corp. | Process for simultaneous formation of silicide-based self-aligned contacts and local interconnects |
US5683922A (en) * | 1996-10-04 | 1997-11-04 | United Microelectronics Corporation | Method of fabricating a self-aligned contact |
US6214727B1 (en) * | 1997-02-11 | 2001-04-10 | Micron Technology, Inc. | Conductive electrical contacts, capacitors, DRAMs, and integrated circuitry, and methods of forming conductive electrical contacts, capacitors, DRAMs, and integrated circuitry |
US5918122A (en) | 1997-02-11 | 1999-06-29 | Micron Technology, Inc. | Methods of forming integrated circuitry, DRAM cells and capacitors |
US5981333A (en) | 1997-02-11 | 1999-11-09 | Micron Technology, Inc. | Methods of forming capacitors and DRAM arrays |
US5905280A (en) | 1997-02-11 | 1999-05-18 | Micron Technology, Inc. | Capacitor structures, DRAM cell structures, methods of forming capacitors, methods of forming DRAM cells, and integrated circuits incorporating capacitor structures and DRAM cell structures |
US6238971B1 (en) | 1997-02-11 | 2001-05-29 | Micron Technology, Inc. | Capacitor structures, DRAM cell structures, and integrated circuitry, and methods of forming capacitor structures, integrated circuitry and DRAM cell structures |
US5854127A (en) * | 1997-03-13 | 1998-12-29 | Micron Technology, Inc. | Method of forming a contact landing pad |
US5998257A (en) | 1997-03-13 | 1999-12-07 | Micron Technology, Inc. | Semiconductor processing methods of forming integrated circuitry memory devices, methods of forming capacitor containers, methods of making electrical connection to circuit nodes and related integrated circuitry |
US5869403A (en) * | 1997-03-14 | 1999-02-09 | Micron Technology, Inc. | Semiconductor processing methods of forming a contact opening to a semiconductor substrate |
US6322600B1 (en) | 1997-04-23 | 2001-11-27 | Advanced Technology Materials, Inc. | Planarization compositions and methods for removing interlayer dielectric films |
TW332915B (en) * | 1997-06-24 | 1998-06-01 | Ti Acer Co Ltd | The producing method for shallow trench isolation with global planarization |
US6080672A (en) * | 1997-08-20 | 2000-06-27 | Micron Technology, Inc. | Self-aligned contact formation for semiconductor devices |
US6359302B1 (en) | 1997-10-16 | 2002-03-19 | Micron Technology, Inc. | DRAM cells and integrated circuitry, and capacitor structures |
US6028004A (en) * | 1998-01-06 | 2000-02-22 | International Business Machines Corporation | Process for controlling the height of a stud intersecting an interconnect |
US6165863A (en) * | 1998-06-22 | 2000-12-26 | Micron Technology, Inc. | Aluminum-filled self-aligned trench for stacked capacitor structure and methods |
US6103612A (en) * | 1998-09-02 | 2000-08-15 | Micron Technology, Inc. | Isolated interconnect studs and method for forming the same |
US6200875B1 (en) | 1998-12-21 | 2001-03-13 | Taiwan Semiconductor Manufacturing Company | Chemical mechanical polishing of polysilicon plug using a silicon nitride stop layer |
US6399284B1 (en) | 1999-06-18 | 2002-06-04 | Advanced Micro Devices, Inc. | Sub-lithographic contacts and vias through pattern, CVD and etch back processing |
US6168984B1 (en) | 1999-10-15 | 2001-01-02 | Taiwan Semiconductor Manufacturing Company | Reduction of the aspect ratio of deep contact holes for embedded DRAM devices |
US6268281B1 (en) | 1999-11-15 | 2001-07-31 | Taiwan Semiconductor Manufacturing Company | Method to form self-aligned contacts with polysilicon plugs |
KR100326811B1 (en) * | 1999-12-31 | 2002-03-04 | 박종섭 | A method for forming a bit line of a semiconductor device |
TW544840B (en) * | 2002-06-27 | 2003-08-01 | Intelligent Sources Dev Corp | A stack-type DRAM memory structure and its manufacturing method |
DE102006041006B4 (en) * | 2006-08-31 | 2018-05-03 | Advanced Micro Devices, Inc. | A method of patterning contact etch stop layers using a planarization process |
KR101406888B1 (en) * | 2007-12-13 | 2014-06-30 | 삼성전자주식회사 | Method of Fabricating Semiconductor Device |
US20160276156A1 (en) * | 2015-03-16 | 2016-09-22 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device and manufacturing process thereof |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423646A (en) * | 1965-02-01 | 1969-01-21 | Sperry Rand Corp | Computer logic device consisting of an array of tunneling diodes,isolators and short circuits |
GB1319388A (en) * | 1970-10-09 | 1973-06-06 | Messerschmitt Boelkow Blohm | Electronic alement |
US3796926A (en) * | 1971-03-29 | 1974-03-12 | Ibm | Bistable resistance device which does not require forming |
US4099260A (en) * | 1976-09-20 | 1978-07-04 | Bell Telephone Laboratories, Incorporated | Bipolar read-only-memory unit having self-isolating bit-lines |
US4115872A (en) * | 1977-05-31 | 1978-09-19 | Burroughs Corporation | Amorphous semiconductor memory device for employment in an electrically alterable read-only memory |
US4174521A (en) * | 1978-04-06 | 1979-11-13 | Harris Corporation | PROM electrically written by solid phase epitaxy |
US4194283A (en) * | 1977-08-17 | 1980-03-25 | Siemens Aktiengesellschaft | Process for the production of a single transistor memory cell |
US4203123A (en) * | 1977-12-12 | 1980-05-13 | Burroughs Corporation | Thin film memory device employing amorphous semiconductor materials |
US4227297A (en) * | 1977-08-23 | 1980-10-14 | Siemens Aktiengesellschaft | Method for producing a single transistor storage cell |
US4272562A (en) * | 1979-06-19 | 1981-06-09 | Harris Corporation | Method of fabricating amorphous memory devices of reduced first fire threshold voltage |
US4458260A (en) * | 1981-10-06 | 1984-07-03 | Rca Inc. | Avalanche photodiode array |
EP0117045A2 (en) * | 1983-01-18 | 1984-08-29 | OIS Optical Imaging Systems, Inc. | Liquid crystal flat panel display |
US4502208A (en) * | 1979-01-02 | 1985-03-05 | Texas Instruments Incorporated | Method of making high density VMOS electrically-programmable ROM |
JPS60109266A (en) * | 1983-11-18 | 1985-06-14 | Hitachi Ltd | Memory device |
US4569698A (en) * | 1982-02-25 | 1986-02-11 | Raytheon Company | Method of forming isolated device regions by selective successive etching of composite masking layers and semiconductor material prior to ion implantation |
US4617193A (en) * | 1983-06-16 | 1986-10-14 | Digital Equipment Corporation | Planar interconnect for integrated circuits |
JPS6232630A (en) * | 1985-07-31 | 1987-02-12 | アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド | Formation of contact plug |
US4757359A (en) * | 1986-04-07 | 1988-07-12 | American Microsystems, Inc. | Thin oxide fuse |
US4804490A (en) * | 1987-10-13 | 1989-02-14 | Energy Conversion Devices, Inc. | Method of fabricating stabilized threshold switching material |
US4809044A (en) * | 1986-08-22 | 1989-02-28 | Energy Conversion Devices, Inc. | Thin film overvoltage protection devices |
US4823181A (en) * | 1986-05-09 | 1989-04-18 | Actel Corporation | Programmable low impedance anti-fuse element |
US4868138A (en) * | 1988-03-23 | 1989-09-19 | Sgs-Thomson Microelectronics, Inc. | Method for forming a self-aligned source/drain contact for an MOS transistor |
US4876220A (en) * | 1986-05-16 | 1989-10-24 | Actel Corporation | Method of making programmable low impedance interconnect diode element |
US4876668A (en) * | 1985-07-31 | 1989-10-24 | California Institute Of Technology | Thin film memory matrix using amorphous and high resistive layers |
US4881114A (en) * | 1986-05-16 | 1989-11-14 | Actel Corporation | Selectively formable vertical diode circuit element |
US4892840A (en) * | 1986-03-27 | 1990-01-09 | Texas Instruments Incorporated | EPROM with increased floating gate/control gate coupling |
US4892845A (en) * | 1984-08-31 | 1990-01-09 | Texas Instruments Incorporated | Method for forming contacts through a thick oxide layer on a semiconductive device |
DE4107883A1 (en) * | 1990-03-13 | 1991-09-19 | Mitsubishi Electric Corp | Semiconductor device - contains gate electrodes formed on insulation regions between impurity regions |
US5110766A (en) * | 1987-07-28 | 1992-05-05 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device including forming a flattening layer over hollows in a contact hole |
US5124280A (en) * | 1991-01-31 | 1992-06-23 | Sgs-Thomson Microelectronics, Inc. | Local interconnect for integrated circuits |
US5144404A (en) * | 1990-08-22 | 1992-09-01 | National Semiconductor Corporation | Polysilicon Schottky clamped transistor and vertical fuse devices |
US5158910A (en) * | 1990-08-13 | 1992-10-27 | Motorola Inc. | Process for forming a contact structure |
US5166096A (en) * | 1991-10-29 | 1992-11-24 | International Business Machines Corporation | Process for fabricating self-aligned contact studs for semiconductor structures |
US5166758A (en) * | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5171713A (en) * | 1990-01-10 | 1992-12-15 | Micrunity Systems Eng | Process for forming planarized, air-bridge interconnects on a semiconductor substrate |
US5177567A (en) * | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
US5296716A (en) * | 1991-01-18 | 1994-03-22 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5335219A (en) * | 1991-01-18 | 1994-08-02 | Ovshinsky Stanford R | Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5341328A (en) * | 1991-01-18 | 1994-08-23 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life |
US5359205A (en) * | 1991-11-07 | 1994-10-25 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5510629A (en) * | 1994-05-27 | 1996-04-23 | Crosspoint Solutions, Inc. | Multilayer antifuse with intermediate spacer layer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2807226B2 (en) * | 1987-09-12 | 1998-10-08 | ソニー株式会社 | Method for manufacturing semiconductor device |
-
1992
- 1992-06-23 US US07/902,374 patent/US5229326A/en not_active Ceased
-
1993
- 1993-06-18 DE DE4320286A patent/DE4320286A1/en not_active Ceased
- 1993-06-23 JP JP5152385A patent/JPH0669358A/en active Pending
-
1995
- 1995-07-20 US US08/504,943 patent/USRE36518E/en not_active Expired - Lifetime
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423646A (en) * | 1965-02-01 | 1969-01-21 | Sperry Rand Corp | Computer logic device consisting of an array of tunneling diodes,isolators and short circuits |
GB1319388A (en) * | 1970-10-09 | 1973-06-06 | Messerschmitt Boelkow Blohm | Electronic alement |
US3796926A (en) * | 1971-03-29 | 1974-03-12 | Ibm | Bistable resistance device which does not require forming |
US4099260A (en) * | 1976-09-20 | 1978-07-04 | Bell Telephone Laboratories, Incorporated | Bipolar read-only-memory unit having self-isolating bit-lines |
US4115872A (en) * | 1977-05-31 | 1978-09-19 | Burroughs Corporation | Amorphous semiconductor memory device for employment in an electrically alterable read-only memory |
US4194283A (en) * | 1977-08-17 | 1980-03-25 | Siemens Aktiengesellschaft | Process for the production of a single transistor memory cell |
US4227297A (en) * | 1977-08-23 | 1980-10-14 | Siemens Aktiengesellschaft | Method for producing a single transistor storage cell |
US4203123A (en) * | 1977-12-12 | 1980-05-13 | Burroughs Corporation | Thin film memory device employing amorphous semiconductor materials |
US4174521A (en) * | 1978-04-06 | 1979-11-13 | Harris Corporation | PROM electrically written by solid phase epitaxy |
US4502208A (en) * | 1979-01-02 | 1985-03-05 | Texas Instruments Incorporated | Method of making high density VMOS electrically-programmable ROM |
US4272562A (en) * | 1979-06-19 | 1981-06-09 | Harris Corporation | Method of fabricating amorphous memory devices of reduced first fire threshold voltage |
US4458260A (en) * | 1981-10-06 | 1984-07-03 | Rca Inc. | Avalanche photodiode array |
US4569698A (en) * | 1982-02-25 | 1986-02-11 | Raytheon Company | Method of forming isolated device regions by selective successive etching of composite masking layers and semiconductor material prior to ion implantation |
EP0117045A2 (en) * | 1983-01-18 | 1984-08-29 | OIS Optical Imaging Systems, Inc. | Liquid crystal flat panel display |
US4617193A (en) * | 1983-06-16 | 1986-10-14 | Digital Equipment Corporation | Planar interconnect for integrated circuits |
JPS60109266A (en) * | 1983-11-18 | 1985-06-14 | Hitachi Ltd | Memory device |
US4892845A (en) * | 1984-08-31 | 1990-01-09 | Texas Instruments Incorporated | Method for forming contacts through a thick oxide layer on a semiconductive device |
US4714686A (en) * | 1985-07-31 | 1987-12-22 | Advanced Micro Devices, Inc. | Method of forming contact plugs for planarized integrated circuits |
JPS6232630A (en) * | 1985-07-31 | 1987-02-12 | アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド | Formation of contact plug |
US4876668A (en) * | 1985-07-31 | 1989-10-24 | California Institute Of Technology | Thin film memory matrix using amorphous and high resistive layers |
US4892840A (en) * | 1986-03-27 | 1990-01-09 | Texas Instruments Incorporated | EPROM with increased floating gate/control gate coupling |
US4757359A (en) * | 1986-04-07 | 1988-07-12 | American Microsystems, Inc. | Thin oxide fuse |
US4823181A (en) * | 1986-05-09 | 1989-04-18 | Actel Corporation | Programmable low impedance anti-fuse element |
US4881114A (en) * | 1986-05-16 | 1989-11-14 | Actel Corporation | Selectively formable vertical diode circuit element |
US4876220A (en) * | 1986-05-16 | 1989-10-24 | Actel Corporation | Method of making programmable low impedance interconnect diode element |
US4809044A (en) * | 1986-08-22 | 1989-02-28 | Energy Conversion Devices, Inc. | Thin film overvoltage protection devices |
US5110766A (en) * | 1987-07-28 | 1992-05-05 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device including forming a flattening layer over hollows in a contact hole |
US4804490A (en) * | 1987-10-13 | 1989-02-14 | Energy Conversion Devices, Inc. | Method of fabricating stabilized threshold switching material |
US4868138A (en) * | 1988-03-23 | 1989-09-19 | Sgs-Thomson Microelectronics, Inc. | Method for forming a self-aligned source/drain contact for an MOS transistor |
US5171713A (en) * | 1990-01-10 | 1992-12-15 | Micrunity Systems Eng | Process for forming planarized, air-bridge interconnects on a semiconductor substrate |
DE4107883A1 (en) * | 1990-03-13 | 1991-09-19 | Mitsubishi Electric Corp | Semiconductor device - contains gate electrodes formed on insulation regions between impurity regions |
US5158910A (en) * | 1990-08-13 | 1992-10-27 | Motorola Inc. | Process for forming a contact structure |
US5144404A (en) * | 1990-08-22 | 1992-09-01 | National Semiconductor Corporation | Polysilicon Schottky clamped transistor and vertical fuse devices |
US5335219A (en) * | 1991-01-18 | 1994-08-02 | Ovshinsky Stanford R | Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements |
US5166758A (en) * | 1991-01-18 | 1992-11-24 | Energy Conversion Devices, Inc. | Electrically erasable phase change memory |
US5296716A (en) * | 1991-01-18 | 1994-03-22 | Energy Conversion Devices, Inc. | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
US5341328A (en) * | 1991-01-18 | 1994-08-23 | Energy Conversion Devices, Inc. | Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life |
US5124280A (en) * | 1991-01-31 | 1992-06-23 | Sgs-Thomson Microelectronics, Inc. | Local interconnect for integrated circuits |
US5177567A (en) * | 1991-07-19 | 1993-01-05 | Energy Conversion Devices, Inc. | Thin-film structure for chalcogenide electrical switching devices and process therefor |
US5166096A (en) * | 1991-10-29 | 1992-11-24 | International Business Machines Corporation | Process for fabricating self-aligned contact studs for semiconductor structures |
US5359205A (en) * | 1991-11-07 | 1994-10-25 | Energy Conversion Devices, Inc. | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
US5510629A (en) * | 1994-05-27 | 1996-04-23 | Crosspoint Solutions, Inc. | Multilayer antifuse with intermediate spacer layer |
Non-Patent Citations (24)
Title |
---|
Kim and Kim, "Effects of High-Current Pulses on Polycrystalline Silicon Diode with n-type Region Heavily Doped with Both Boron and Phosphorus," J. Appl. Phys., 53(7):5359-5360, 1982, No month. |
Kim and Kim, Effects of High Current Pulses on Polycrystalline Silicon Diode with n type Region Heavily Doped with Both Boron and Phosphorus, J. Appl. Phys., 53(7):5359 5360, 1982, No month. * |
Neale and Aseltine, "The Application of Amorphous Materials to Computer Memories," IEEE, 20(2):195-205, 1973, No month. |
Neale and Aseltine, The Application of Amorphous Materials to Computer Memories, IEEE, 20(2):195 205, 1973, No month. * |
Oakley et al., "Pillars--The Way to Two Micron Pitch Multilevel Metallisation," IEEE, 23-29, 1984, No month. |
Oakley et al., Pillars The Way to Two Micron Pitch Multilevel Metallisation, IEEE, 23 29, 1984, No month. * |
Pein and Plummer, "Performance of the 3-D Sidewall Flash EPROM Cell," IEEE, 11-14, 1993, No month. |
Pein and Plummer, Performance of the 3 D Sidewall Flash EPROM Cell, IEEE, 11 14, 1993, No month. * |
Post and Ashburn, "Investigation of Boron Diffusion in Polysilicon and its Application to the Design of p-n-p Polysilicon Emitter Bipolar Transistors with Shallow Emitter Junctions," IEEE, 38(11):2442-2451, 1991, No month. |
Post and Ashburn, "The Use of an Interface Anneal to Control the Base Current and Emitter Resistance of p-n-p Polysilicon Emitter Bipolar Transistors," IEEE, 13(8):408-410, 1992, No month. |
Post and Ashburn, Investigation of Boron Diffusion in Polysilicon and its Application to the Design of p n p Polysilicon Emitter Bipolar Transistors with Shallow Emitter Junctions, IEEE, 38(11):2442 2451, 1991, No month. * |
Post and Ashburn, The Use of an Interface Anneal to Control the Base Current and Emitter Resistance of p n p Polysilicon Emitter Bipolar Transistors, IEEE, 13(8):408 410, 1992, No month. * |
Post et al., "Polysilicon Emitters for Bipolar Transistors: A Review and Re-Evaluation of Theory and Experiment," IEEE, 39(7):1717-1731, 1992, No month. |
Post et al., Polysilicon Emitters for Bipolar Transistors: A Review and Re Evaluation of Theory and Experiment, IEEE, 39(7):1717 1731, 1992, No month. * |
Rose et al., "Amorphous Silicon Analogue Memory Devices," J. Non-Crystalline Solids, 115:168-170, 1989. |
Rose et al., Amorphous Silicon Analogue Memory Devices, J. Non Crystalline Solids, 115:168 170, 1989. * |
Schaber et al., "Laser Annealing Study of the Grain Size Effect in Polycrystalline Silicon Schottky Diodes," J. Appl. Phys., 53(12):8827-8834, 1982, No month. |
Schaber et al., Laser Annealing Study of the Grain Size Effect in Polycrystalline Silicon Schottky Diodes, J. Appl. Phys., 53(12):8827 8834, 1982, No month. * |
Yamamoto et al., "The I-V Characteristics of Polycrystalline Silicon Diodes and the Energy Distribution of Traps in Grain Boundaries," Electronics and Communications in Japan, Part 2, 75(7):51-58, 1992. |
Yamamoto et al., The I V Characteristics of Polycrystalline Silicon Diodes and the Energy Distribution of Traps in Grain Boundaries, Electronics and Communications in Japan, Part 2, 75(7):51 58, 1992. * |
Yeh et al., "Investigation of Thermal Coefficient for Polycrystalline Silicon Thermal Sensor Diode," Jpn. J. Appl. Phys., 31(Part 1, No. 2A):151-155, 1992, No month. |
Yeh et al., Investigation of Thermal Coefficient for Polycrystalline Silicon Thermal Sensor Diode, Jpn. J. Appl. Phys., 31(Part 1, No. 2A):151 155, 1992, No month. * |
Yoshire Nakata et al., "Tunnel Shape Stacked Capacitor (TSSC) Memory Cell for 64Mb Dram", article (date unknown). |
Yoshire Nakata et al., Tunnel Shape Stacked Capacitor (TSSC) Memory Cell for 64Mb Dram , article (date unknown). * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6855628B2 (en) | 1998-09-03 | 2005-02-15 | Micron Technology, Inc. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US6468883B2 (en) | 1998-09-03 | 2002-10-22 | Micron Technology, Inc. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections |
US6476490B1 (en) | 1998-09-03 | 2002-11-05 | Micron Technology, Inc. | Contact openings, electrical connections and interconnections for integrated circuitry |
US20030054621A1 (en) * | 1998-09-03 | 2003-03-20 | Dennison Charles H. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US6753241B2 (en) | 1998-09-03 | 2004-06-22 | Micron Technology, Inc. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US6323087B1 (en) * | 1998-09-03 | 2001-11-27 | Micron Technology, Inc. | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US20060014379A1 (en) * | 1998-09-03 | 2006-01-19 | Dennison Charles H | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US20060273459A1 (en) * | 1998-09-03 | 2006-12-07 | Dennison Charles H | Semiconductor processing methods of forming contact openings, methods of forming electrical connections and interconnections, and integrated circuitry |
US7291917B2 (en) | 1998-09-03 | 2007-11-06 | Micron Technology, Inc. | Integrated circuitry |
US6429080B2 (en) * | 1999-12-22 | 2002-08-06 | International Business Machines Corporation | Multi-level dram trench store utilizing two capacitors and two plates |
US6537902B1 (en) * | 2000-01-24 | 2003-03-25 | Oki Electric Industry Co, Ltd. | Method of forming a via hole in a semiconductor device |
US20030109123A1 (en) * | 2000-01-24 | 2003-06-12 | Toshiyuki Orita | Method of forming a via hole in a semiconductor device |
US6746945B2 (en) * | 2000-01-24 | 2004-06-08 | Oki Electric Industry Co, Ltd. | Method of forming a via hole in a semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US5229326A (en) | 1993-07-20 |
JPH0669358A (en) | 1994-03-11 |
DE4320286A1 (en) | 1994-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36518E (en) | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device | |
US4735679A (en) | Method of improving silicon-on-insulator uniformity | |
US6100592A (en) | Integrated circuitry and method of forming a contact landing pad | |
US6171951B1 (en) | Dual damascene method comprising ion implanting to densify dielectric layer and forming a hard mask layer with a tapered opening | |
US6486018B2 (en) | Methods of electrically contacting to conductive plugs, methods of forming contact openings, and methods of forming dynamic random access memory circuitry | |
US6607955B2 (en) | Method of forming self-aligned contacts in a semiconductor device | |
EP0534631B1 (en) | Method of forming vias structure obtained | |
JPH09107028A (en) | Element isolation method for semiconductor device | |
US6248654B1 (en) | Method for forming self-aligned contact | |
US5923977A (en) | Method of forming CMOS circuitry including patterning a layer of conductive material overlying field isolation oxide | |
US5490901A (en) | Method for forming a contact hole in a semiconductor device | |
US5966632A (en) | Method of forming borderless metal to contact structure | |
US20020090808A1 (en) | Method of manufacturing a self-aligned contact from a conductive layer that is free of voids | |
US7384823B2 (en) | Method for manufacturing a semiconductor device having a stabilized contact resistance | |
US6114232A (en) | Method for making an electrical contact to a node location and process for forming a conductive line or other circuit component | |
US6255168B1 (en) | Method for manufacturing bit line and bit line contact | |
US5030587A (en) | Method of forming substantially planar digit lines | |
US6620663B1 (en) | Self-aligned copper plating/CMP process for RF lateral MOS device | |
USRE40790E1 (en) | Method for making electrical contact with an active area through sub-micron contact openings and a semiconductor device | |
US20020119618A1 (en) | Method for forming contacts of memory devices using an etch stop layer | |
KR0176151B1 (en) | Isolation method of semiconductor device | |
KR930010082B1 (en) | Making method of contact hole | |
KR100301810B1 (en) | Semiconductor memory device and method for fabricating the same | |
KR100307536B1 (en) | Manufacturing method for cell transistor in dram | |
KR20020024840A (en) | Method of forming contact plugs in semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
CC | Certificate of correction |