USRE35370E - Leak detection in heating ventilating and air conditioning systems using an environmentally safe material - Google Patents

Leak detection in heating ventilating and air conditioning systems using an environmentally safe material Download PDF

Info

Publication number
USRE35370E
USRE35370E US08/519,362 US51936295A USRE35370E US RE35370 E USRE35370 E US RE35370E US 51936295 A US51936295 A US 51936295A US RE35370 E USRE35370 E US RE35370E
Authority
US
United States
Prior art keywords
refrigeration system
lubricant
grams
mixture
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/519,362
Inventor
Richard G. Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Solutions Inc
Original Assignee
Bright Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46249837&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE35370(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/081,119 external-priority patent/US5357782A/en
Priority claimed from US08/312,772 external-priority patent/US5421192A/en
Application filed by Bright Solutions Inc filed Critical Bright Solutions Inc
Priority to US08/519,362 priority Critical patent/USRE35370E/en
Application granted granted Critical
Publication of USRE35370E publication Critical patent/USRE35370E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light

Definitions

  • the present invention relates to leak detection in refrigeration systems, and more particularly to effective leak detection by the addition of a dye selected from the general chemical class of naphthalimide fluorescent dyes in a refrigeration system where said refrigeration system employs, in combination with a suitable refrigerant system lubricant, a material, suitable to function as a heat transfer agent or refrigerant in a hermetic system.
  • Refrigerants that are devoid of the chlorine atom and therefore considered environmentally friendly to the earth's ozone layer have been developed and continue to be developed to replace CFC and HCFC materials that are the circulating heat transfer media in many hermetic systems.
  • Many chemical companies have developed products that alone or in combination are suitable to function as heat transfer agents or refrigerants in a hermetic system such as, but not limited to, hydrochlorofluorocarons (HCFC), hydrofluorocarbons (HFC) and hydrogen, halogenated or ether derivatives of methane, hydrogen, halogenated, ether or cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia.
  • HCFC hydrochlorofluorocarons
  • HFC hydrofluorocarbons
  • halogenated or ether derivatives of methane hydrogen, halogenated, ether or cyclic derivatives of either ethan
  • HCFC, HFC and hydrocarbon refrigerants are considered less damaging to the environment and have ozone depletion potentials which range from zero to a fraction of one, while the ozone depletion potential of a CFC refrigerant, such as CFC-12, is one.
  • Hydrocarbons such as synthetic hydrocarbons (SHC), alkylbenzene (AB), and polyalphaolefins (PAO) may only be partially soluble in polyalkylene glycol and in polyolester lubricants such as those used in the new HFC refrigerant-containing systems.
  • SHC synthetic hydrocarbons
  • AB alkylbenzene
  • PAO polyalphaolefins
  • the materials found in the above-referenced patents have been found unsuitable in actual systems tests and laboratory analytical tests for long term use in hermetic systems such as refrigeration, heating, ventilating and air conditioning systems employing the alternative HFC refrigerants.
  • the reason for the unsuitability of these perylene dyes in HFC systems is primarily due to thermal chemical instability.
  • an improved leak detection composition that incorporates a dye selected from the general chemical class of naphthalimide dyes into a refrigeration system lubricant
  • the refrigeration lubricant is suitable for use, alone or in combination with the dye, in refrigeration systems and includes, but is not limited to, hydrocarbons such as natural or refined mineral oils, synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO) and synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters, and the general class of polyolester lubricants that are either di-, tri-, tetra- or polyfunctional pentaerythritol esters.
  • the new leak detection dyes from the general chemical naphthalimide dye class described herein have excellent thermal and oxidation stability up to 400° F., and may be left inside the hermetic system for the location of leaks on future occasions.
  • the general class of naphthalimide dyes disclosed is particularly intended for use alone or in combination with any material suitable to function as a heat transfer agent or refrigerant in a hermetic system. In practice, the combination of refrigerant, lubricant and dye will be circulated throughout the entire hermetic refrigeration system and the system will then be inspected for leaks with a light excitation source having emission wavelengths in the range from 300 to 480 nanometers.
  • the preferred composition disclosed herein is invisible or of a lessor intensity in ordinary light.
  • a lamp having a light emission output in the range from 300 to 480 nanometers is directed at the lubricant and naphthalimide dye mixture, a striking fluorescence, for example with the color yellow to yellow green, is immediately noticeable at the leak site.
  • the present invention is directed to the detection of leaks in refrigeration systems employing the new alternative HFC environmentally friendly refrigerants where said refrigeration system is suitable for cooling, freezing, heating, ventilating and air conditioning and where said refrigeration system employs alone or in combination, any material, suitable to function as a heat transfer agent or refrigerant in a hermetic system such as, but not limited to, chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC) and any hydrogen, halogenated or ether derivatives of methane, hydrogen, halogenated, ether or cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia.
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • HFC hydrofluorocarbons
  • refrigerants include but are not limited to CFC-11, CFC-12, HCFC-22, HCFC-123, HCFC-124, HCFC-142B, HFC-32, HFC-134, HFC-134A, HFC-152, HFC-152A, HFC-143A, HFC-125, HFC-245CA, HFC-245FA AND HFC-225CA.
  • refrigeration systems can use alone or in combination, refrigeration system lubricants including, but not limited to, hydrocarbons such as natural or refined mineral oils, synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO) and synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters, and the general class of polyolester lubricants that are either di-, tri-, tetra- or polyfunctional pentaerythritol esters.
  • hydrocarbons such as natural or refined mineral oils
  • synthetic hydrocarbons (SHC) synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO) and synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters
  • PAO polyalphaolefins
  • synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters
  • the mixture of refrigerants and refrigeration system lubricants can be composed of the aforementioned materials having at least 0.001 grams of general naphthalimide dye structures that incorporate any nitrogen alkyl derivatives and any functionalized ring chemistry, both carbocyclic and heterocyclic, with either nitrogen, sulfur, carbon or oxygen dissolved per 100 grams of refrigeration working fluid.
  • the dye concentrate is formulated in a predetermined manner that has optimum lubricant and dye compatibility at elevated temperatures and which does not alter the refrigerant lubricant viscosity, lubrication and system materials compatibility as determined by the sealed tube method.
  • a mixture of 1.5 grams of any general naphthalimide dye structure was individually mixed with 1 ounce of either mineral oil, polyalkyelen glycol, and polyolester refrigeration lubricants. Approximately 1/4 ounce of each of these dye mixtures was added to three different automative air conditioning systems.
  • the dye and mineral oil mixture was added to a CFC-containing system.
  • the CFC system was then charged with CRC-12 and approximately 7 fluid ounces of mineral oil lubricant were added to the system.
  • the system was then operated for 5 minutes to allow the dye mixture to mix with the mineral oil.
  • the system was then scanned with a lamp having a light emission output in the range from 300 to 480 nanometers to check for leaks. A greenish-blue color was seen at a pinpoint leak on a black EPDM hose. This greenish-blue color indicated a leak in the CFC system.
  • the dye and polyalkylene glycol mixture was added to the refrigeration system of a retrofitted automotive air conditioning system and the process of finding leaks was followed according to the above procedure. This time a green-yellow fluorescence was seen at the leak site after illumination with light.
  • the dye and ester mixture was added to the refrigeration system of an automotive air conditioning system and the process of finding leaks was followed according to the above procedure. This time a green-yellow fluorescence was seen at the leak site after illumination with light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lubricants (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

The present invention rleates to the effective leak detection of refrigerants by the addition of dyes from the general chemical class of naphthalimide fluorescent dyes in a refrigeration system where said refrigeration system employs alone, or in combination, a refrigerant in a hermetic system such as, but not limited to, chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC) and any hydrogen, halogenated or ether derivatives of the methane, hydrogen, halogenated, ether or cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia.
Leakage is determined by inspection of the sealed system using a lamp having an emission wavelength from 300 to 480 nanometers providing an indication of any system leakage.

Description

This application is a continuation-in-part of my application entitled, "Leak Detection in Heating, Ventilating and Air Conditioning Systems Using an Environmentally Safe Material", U.S. Ser. No. 08/081,119, filed Jun. 25, 1993, and now U.S. Pat. No. 5,357,782 issued Oct. 25, 1994.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to leak detection in refrigeration systems, and more particularly to effective leak detection by the addition of a dye selected from the general chemical class of naphthalimide fluorescent dyes in a refrigeration system where said refrigeration system employs, in combination with a suitable refrigerant system lubricant, a material, suitable to function as a heat transfer agent or refrigerant in a hermetic system.
2. Background Art
Refrigerants that are devoid of the chlorine atom and therefore considered environmentally friendly to the earth's ozone layer have been developed and continue to be developed to replace CFC and HCFC materials that are the circulating heat transfer media in many hermetic systems. Many chemical companies have developed products that alone or in combination are suitable to function as heat transfer agents or refrigerants in a hermetic system such as, but not limited to, hydrochlorofluorocarons (HCFC), hydrofluorocarbons (HFC) and hydrogen, halogenated or ether derivatives of methane, hydrogen, halogenated, ether or cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia. These forgoing HCFC, HFC and hydrocarbon refrigerants are considered less damaging to the environment and have ozone depletion potentials which range from zero to a fraction of one, while the ozone depletion potential of a CFC refrigerant, such as CFC-12, is one.
The use of these new alternative refrigerants has required the use of new kinds of refrigeration system lubricants such as synthetic polyalkylene glycols (PAG) and polyolesters (POE) and has rendered prior leak detection chemicals employing materials such as those described in U.S. Pat. Nos. 4,758,366 and 5,149,453, issued on Jul. 19, 1988 and Sep. 26, 1992, respectively, as largely ineffective. These patents teach the use of perylene yellow fluorescent dyes formulated with mineral oils. Mineral oil is a hydrocarbon. Hydrocarbons such as synthetic hydrocarbons (SHC), alkylbenzene (AB), and polyalphaolefins (PAO) may only be partially soluble in polyalkylene glycol and in polyolester lubricants such as those used in the new HFC refrigerant-containing systems. The materials found in the above-referenced patents have been found unsuitable in actual systems tests and laboratory analytical tests for long term use in hermetic systems such as refrigeration, heating, ventilating and air conditioning systems employing the alternative HFC refrigerants. The reason for the unsuitability of these perylene dyes in HFC systems is primarily due to thermal chemical instability.
Some new HFC systems reach higher operating temperatures and pressures than the old CFC systems because of different thermodynamic properties. Such higher temperatures and pressures can adversely affect the thermal stability of the perylene dyes in the new HFC-containing systems. For these reasons, a new fluorescent dye composition for use in HFC systems that utilize refrigeration system lubricants such as mineral hydrocarbons, synthetic hydrocarbons, polyalkylene glycols and polyolesters is required.
SUMMARY OF THE INVENTION
Accordingly, it is the object of the present invention to provide an improved leak detection composition that incorporates a dye selected from the general chemical class of naphthalimide dyes into a refrigeration system lubricant where the refrigeration lubricant is suitable for use, alone or in combination with the dye, in refrigeration systems and includes, but is not limited to, hydrocarbons such as natural or refined mineral oils, synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO) and synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters, and the general class of polyolester lubricants that are either di-, tri-, tetra- or polyfunctional pentaerythritol esters. The formulation or mixture of a dye selected from the general chemical naphthalimide dye class with a suitable refrigeration lubricant and suitable lubricant, inhibitors will then be, incorporated into a refrigeration system with the objective of locating leaks that develop within the system from manufacture or use.
It has been found that the new leak detection dyes from the general chemical naphthalimide dye class described herein have excellent thermal and oxidation stability up to 400° F., and may be left inside the hermetic system for the location of leaks on future occasions. The general class of naphthalimide dyes disclosed is particularly intended for use alone or in combination with any material suitable to function as a heat transfer agent or refrigerant in a hermetic system. In practice, the combination of refrigerant, lubricant and dye will be circulated throughout the entire hermetic refrigeration system and the system will then be inspected for leaks with a light excitation source having emission wavelengths in the range from 300 to 480 nanometers.
The preferred composition disclosed herein is invisible or of a lessor intensity in ordinary light. When a lamp having a light emission output in the range from 300 to 480 nanometers is directed at the lubricant and naphthalimide dye mixture, a striking fluorescence, for example with the color yellow to yellow green, is immediately noticeable at the leak site.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to the detection of leaks in refrigeration systems employing the new alternative HFC environmentally friendly refrigerants where said refrigeration system is suitable for cooling, freezing, heating, ventilating and air conditioning and where said refrigeration system employs alone or in combination, any material, suitable to function as a heat transfer agent or refrigerant in a hermetic system such as, but not limited to, chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC) and any hydrogen, halogenated or ether derivatives of methane, hydrogen, halogenated, ether or cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia. Examples of the refrigerants include but are not limited to CFC-11, CFC-12, HCFC-22, HCFC-123, HCFC-124, HCFC-142B, HFC-32, HFC-134, HFC-134A, HFC-152, HFC-152A, HFC-143A, HFC-125, HFC-245CA, HFC-245FA AND HFC-225CA.
The refrigeration systems can use alone or in combination, refrigeration system lubricants including, but not limited to, hydrocarbons such as natural or refined mineral oils, synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO) and synthetic polyalkylene glycols that are terminated as mono- or diethers or as esters, and the general class of polyolester lubricants that are either di-, tri-, tetra- or polyfunctional pentaerythritol esters.
The mixture of refrigerants and refrigeration system lubricants can be composed of the aforementioned materials having at least 0.001 grams of general naphthalimide dye structures that incorporate any nitrogen alkyl derivatives and any functionalized ring chemistry, both carbocyclic and heterocyclic, with either nitrogen, sulfur, carbon or oxygen dissolved per 100 grams of refrigeration working fluid.
It has been found desirable in most cases for the optimum fluorescent naphthalimide, obtained from natural or synthetic sources, to be solubilized by an appropriate solvent or solvent mixture to form a concentrate that is campatible with mineral oils, synthetic polyalkylene glycol and polyolester refrigerant lubricants. Therefore, the dye concentrate is formulated in a predetermined manner that has optimum lubricant and dye compatibility at elevated temperatures and which does not alter the refrigerant lubricant viscosity, lubrication and system materials compatibility as determined by the sealed tube method.
In a practical embodiment of the present invention a mixture of 1.5 grams of any general naphthalimide dye structure was individually mixed with 1 ounce of either mineral oil, polyalkyelen glycol, and polyolester refrigeration lubricants. Approximately 1/4 ounce of each of these dye mixtures was added to three different automative air conditioning systems.
The dye and mineral oil mixture was added to a CFC-containing system. The CFC system was then charged with CRC-12 and approximately 7 fluid ounces of mineral oil lubricant were added to the system. The system was then operated for 5 minutes to allow the dye mixture to mix with the mineral oil. The system was then scanned with a lamp having a light emission output in the range from 300 to 480 nanometers to check for leaks. A greenish-blue color was seen at a pinpoint leak on a black EPDM hose. This greenish-blue color indicated a leak in the CFC system.
The dye and polyalkylene glycol mixture was added to the refrigeration system of a retrofitted automotive air conditioning system and the process of finding leaks was followed according to the above procedure. This time a green-yellow fluorescence was seen at the leak site after illumination with light.
The dye and ester mixture was added to the refrigeration system of an automotive air conditioning system and the process of finding leaks was followed according to the above procedure. This time a green-yellow fluorescence was seen at the leak site after illumination with light.
While but three embodiments of the present invention have been disclosed, it will be obvious to those skilled in the art that numerous modifications of the formulation can be made with dyes selected from the general class of naphthalimide dyes without departing from the spirit of the present invention which shall be limited only by the scope of the claims appended hereto.

Claims (15)

What is claimed is:
1. A method of detecting leaks in a refrigeration system that uses in combination a refrigerant and a refrigeration system lubricant comprising the steps of:
preparing a mixture that .[.consists of said refrigeration system lubricant mixed with.]. .Iadd.includes .Iaddend.a predetermined amount of a dye selected from the general class of naphthalimide dye structures as a fluorescent dye;
adding a predetermined amount of the mixture to said .[.refrigerant.]. .Iadd.combination of refrigerant and refrigerant system lubricant .Iaddend.for use in .Iadd.said .Iaddend.refrigeration system;
operating the system for a predetermined period of time to allow the mixture to mix with said combination of refrigerant and the refrigeration system lubricant;
examining the system for a leak site with a lamp that produces light having an emission wavelength from 300 to 480 nanometers, directed at said refrigeration system;
determining the presence of a leak site by the presence of a colored fluorescence detectable by visual observation under the light from said lamp at said leak site;
and said dye, refrigerant and refrigeration system lubricant mixture seeping thru and appearing at .[.said.]. location of .Iadd.said .Iaddend.leak site, .[.the.]. .Iadd.then .Iaddend.remaining at said site without undergoing chemical oxidation changes to provide capability for stable fluorescent indication of a leak.
2. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said adding step consists of the addition of at least 0.001 grams of said mixture to a said refrigeration system for each 100 grams of said refrigeration lubricant.
3. A method of detecting leaks in a refrigeration system as claimed in claim 2 wherein:
said adding step-consists of the addition of at least 0.001 grams of said mixture to a system employing a mineral oil refrigerant lubricant for each 100 grams of said mineral oil refrigerant lubricant.
4. A method of detecting leaks in a refrigeration system as claimed in claim 2 wherein:
said adding step consists of the addition of at least 0.001 grams of said mixture to a system employing a polyalkylene glycol refrigerant lubricant for each 100 grams of said polyalkyelen glycol refrigerant lubricant.
5. A method of detecting leaks in a refrigeration system as claimed in claim 2 wherein:
said adding step consists of the addition of at least 0.001 grams of said mixture to a system employing a polyol ester refrigerant lubricant for each 100 grams of said polyol ester refrigerant lubricant.
6. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said mixture consists of at least 0.001 grams of fluorescent dye mixed with 100 grams of refrigeration system lubricant.
7. A method of detecting leaks in a refrigeration system as claimed in claim 6 wherein:
said mixture consists of 0.001 grams of fluorescent dye with 100 grams of mineral oil.
8. A method of detecting leaks in a refrigeration system as claimed in claim 6 wherein:
said mixture consists of 0.001 grams of naphthalimide dye with 100 grams of polyalkylene glycol.
9. A method of detecting leaks in a refrigeration system as claimed in claim 6 wherein:
said mixture consists of 0.001 grams of naphthalimide dye with 100 grams of polyol ester.
10. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said mixture of a dye selected from the general class of naphthalimide fluorescent dyes .[.and refrigeration system lubricant.]. is allowed to remain in the refrigeration system for use in detecting possible future refrigeration system leaks.
11. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said general class of naphthalimide dye structures incorporate nitrogen alkyl derivatives and functionalized ring chemistry, both carbocyclic and heterocyclic, selected from a group including nitrogen, sulfur, carbon and oxygen.
12. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said refrigeration system is suitable for operation in a preselected mode including cooling, freezing, heating, ventilating and air conditioning.
13. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said refrigeation system employs singly, or in combination, a refrigerant in a hermetic system, chosen from a group including chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), hydrofluorocarbons (HFC), hydrogen, halogenated, and either derivatives of methane, hydrogen, halogenated, ether and cyclic derivatives of either ethane, propane, butane, pentane, mixtures of HCFC, HFC, hydrocarbons, carbon dioxide and ammonia.
14. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said refrigeration lubricant in said refrigeration systems is selected from a group including hydrocarbons such as natural mineral oils, refined mineral oils, synthetic hydrocarbons (SHC), alkylbenzenes (AB), polyalphaolefins (PAO), synthetic polyalkylene glycols that are terminated as monoethers, diethers, esters, and a general class of polyester lubricants including either di-, tri-, tetra-, or polyfunctional pentaerythritol esters.
15. A method of detecting leaks in a refrigeration system as claimed in claim 1 wherein:
said mixture is solubilized in the mixture preparation step by the addition of a solvent compatible with said refrigeration lubricant and said dye.
US08/519,362 1993-06-25 1995-08-25 Leak detection in heating ventilating and air conditioning systems using an environmentally safe material Expired - Lifetime USRE35370E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/519,362 USRE35370E (en) 1993-06-25 1995-08-25 Leak detection in heating ventilating and air conditioning systems using an environmentally safe material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/081,119 US5357782A (en) 1993-06-25 1993-06-25 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material
US08/312,772 US5421192A (en) 1993-06-25 1994-09-27 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material
US08/519,362 USRE35370E (en) 1993-06-25 1995-08-25 Leak detection in heating ventilating and air conditioning systems using an environmentally safe material

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/081,119 Continuation-In-Part US5357782A (en) 1993-06-25 1993-06-25 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material
US08/312,772 Reissue US5421192A (en) 1993-06-25 1994-09-27 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material

Publications (1)

Publication Number Publication Date
USRE35370E true USRE35370E (en) 1996-11-05

Family

ID=46249837

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/519,362 Expired - Lifetime USRE35370E (en) 1993-06-25 1995-08-25 Leak detection in heating ventilating and air conditioning systems using an environmentally safe material

Country Status (1)

Country Link
US (1) USRE35370E (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858930A (en) * 1997-05-30 1999-01-12 United Color Manufacturing, Inc. Liquid Benz-iso-Quinoline derivatives
US5918269A (en) 1998-02-18 1999-06-29 Milliken & Company Naphthalimide colorants with improved compatibility in refrigeration and air conditioning lubricants
US5935272A (en) * 1999-02-02 1999-08-10 Milliken & Company Compositions comprising aryloxypolyoxyalkylene naphthalimide derivative colorants
WO2000024843A1 (en) * 1998-10-23 2000-05-04 Alliedsignal Inc. Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes
EP1013738A1 (en) * 1998-12-25 2000-06-28 Sanden Corporation Vapor compression type refrigeration cycle
US6178809B1 (en) * 1996-07-22 2001-01-30 Bright Solutions, Inc. Leak detection in heating, ventilating, refrigeration, and air conditioning systems utilizing adsorptive materials
US6251302B1 (en) * 1997-01-15 2001-06-26 Microbiomed Corporation Chemically substituted chromophores and fluorophores of high solubility and their use as fluid visualizing agents
US6253810B1 (en) * 1996-09-18 2001-07-03 Uview Ultraviolet Systems, Inc. Apparatus for detecting leaks in a pressurized air conditioning or refrigeration system
US6293138B1 (en) 1999-12-10 2001-09-25 Visteon Global Technologies, Inc. Apparatus and method for introducing leak detection dye into an air conditioning system
US6345516B1 (en) 2000-08-07 2002-02-12 Multisorb Technologies, Inc. Adsorbent unit with refrigerant tracer dye compartment
US6469300B1 (en) 2000-09-05 2002-10-22 Uview Ultraviolet Systems, Inc. Apparatus and method for injecting a concentrated fluorescent dye into a sealed air-conditioning system
US20030044335A1 (en) * 2000-01-03 2003-03-06 Juzer Jangbarwala Method and apparatus for metal removal ion exchange
US6700735B2 (en) 2001-07-27 2004-03-02 International Business Machines Corporation Disk drive lubricant reservoir systems and lubricants used therein
US20050145822A1 (en) * 2003-11-13 2005-07-07 Drigotas Martin D. Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
US6958876B2 (en) 2001-07-27 2005-10-25 Hitachi Global Storage Technologies Netherlands B.V. Leak detection system of hard disk drives with lubricant reservoir
US20060130495A1 (en) * 2004-07-13 2006-06-22 Dieckmann John T System and method of refrigeration
US7428822B2 (en) 2002-03-21 2008-09-30 Ritchie Engineering Company, Inc. Vacuum sensor
US20100058837A1 (en) * 2008-09-05 2010-03-11 Quest William J Device having multiple light sources and methods of use
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2096099A (en) * 1935-08-16 1937-10-19 Method of detecting leaks in
US3234045A (en) * 1961-05-05 1966-02-08 Chas J Webb Sons Co Inc Method for protecting underground cable and determining leaks therein
US3361547A (en) * 1963-01-14 1968-01-02 Joseph J. Packo Detection of gas leaks
US3572085A (en) * 1968-12-18 1971-03-23 Joseph J Packo Method of detecting leaks in fluid-containing equipment
US3770640A (en) * 1971-11-22 1973-11-06 Du Pont Refrigerants colored for leak indication
US4690689A (en) * 1983-03-02 1987-09-01 Columbia Gas System Service Corp. Gas tracer composition and method
US4758366A (en) * 1985-02-25 1988-07-19 Widger Chemical Corporation Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
US4938063A (en) * 1988-09-13 1990-07-03 Spectronics Corporation Apparatus and method for infusing a material into a closed loop system
US5149453A (en) * 1985-02-25 1992-09-22 H. B. Fuller Automotive Products, Inc. Method for detecting leakage in a refrigeration system
US5167867A (en) * 1989-09-26 1992-12-01 Exxon Production Research Company Test-fluid composition and method for detecting leaks in pipelines and associated facilities
US5279967A (en) * 1992-01-24 1994-01-18 Nalco Chemical Company Fluorescent labeling of hydrocarbons for source identification

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2096099A (en) * 1935-08-16 1937-10-19 Method of detecting leaks in
US3234045A (en) * 1961-05-05 1966-02-08 Chas J Webb Sons Co Inc Method for protecting underground cable and determining leaks therein
US3361547A (en) * 1963-01-14 1968-01-02 Joseph J. Packo Detection of gas leaks
US3572085A (en) * 1968-12-18 1971-03-23 Joseph J Packo Method of detecting leaks in fluid-containing equipment
US3770640A (en) * 1971-11-22 1973-11-06 Du Pont Refrigerants colored for leak indication
US4690689A (en) * 1983-03-02 1987-09-01 Columbia Gas System Service Corp. Gas tracer composition and method
US4758366A (en) * 1985-02-25 1988-07-19 Widger Chemical Corporation Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
US5149453A (en) * 1985-02-25 1992-09-22 H. B. Fuller Automotive Products, Inc. Method for detecting leakage in a refrigeration system
US4938063A (en) * 1988-09-13 1990-07-03 Spectronics Corporation Apparatus and method for infusing a material into a closed loop system
US5167867A (en) * 1989-09-26 1992-12-01 Exxon Production Research Company Test-fluid composition and method for detecting leaks in pipelines and associated facilities
US5279967A (en) * 1992-01-24 1994-01-18 Nalco Chemical Company Fluorescent labeling of hydrocarbons for source identification

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178809B1 (en) * 1996-07-22 2001-01-30 Bright Solutions, Inc. Leak detection in heating, ventilating, refrigeration, and air conditioning systems utilizing adsorptive materials
US6253810B1 (en) * 1996-09-18 2001-07-03 Uview Ultraviolet Systems, Inc. Apparatus for detecting leaks in a pressurized air conditioning or refrigeration system
US6251302B1 (en) * 1997-01-15 2001-06-26 Microbiomed Corporation Chemically substituted chromophores and fluorophores of high solubility and their use as fluid visualizing agents
US5858930A (en) * 1997-05-30 1999-01-12 United Color Manufacturing, Inc. Liquid Benz-iso-Quinoline derivatives
US5918269A (en) 1998-02-18 1999-06-29 Milliken & Company Naphthalimide colorants with improved compatibility in refrigeration and air conditioning lubricants
WO2000024843A1 (en) * 1998-10-23 2000-05-04 Alliedsignal Inc. Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes
EP1013738A1 (en) * 1998-12-25 2000-06-28 Sanden Corporation Vapor compression type refrigeration cycle
US5935272A (en) * 1999-02-02 1999-08-10 Milliken & Company Compositions comprising aryloxypolyoxyalkylene naphthalimide derivative colorants
US6293138B1 (en) 1999-12-10 2001-09-25 Visteon Global Technologies, Inc. Apparatus and method for introducing leak detection dye into an air conditioning system
US7048857B2 (en) * 2000-01-03 2006-05-23 The Boc Group, Inc. Method and apparatus for metal removal ion exchange
US20030044335A1 (en) * 2000-01-03 2003-03-06 Juzer Jangbarwala Method and apparatus for metal removal ion exchange
US6345516B1 (en) 2000-08-07 2002-02-12 Multisorb Technologies, Inc. Adsorbent unit with refrigerant tracer dye compartment
US6469300B1 (en) 2000-09-05 2002-10-22 Uview Ultraviolet Systems, Inc. Apparatus and method for injecting a concentrated fluorescent dye into a sealed air-conditioning system
US6700735B2 (en) 2001-07-27 2004-03-02 International Business Machines Corporation Disk drive lubricant reservoir systems and lubricants used therein
US6958876B2 (en) 2001-07-27 2005-10-25 Hitachi Global Storage Technologies Netherlands B.V. Leak detection system of hard disk drives with lubricant reservoir
US7428822B2 (en) 2002-03-21 2008-09-30 Ritchie Engineering Company, Inc. Vacuum sensor
US20050145822A1 (en) * 2003-11-13 2005-07-07 Drigotas Martin D. Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
US20070138433A1 (en) * 2003-11-13 2007-06-21 Drigotas Martin D Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
US20060130495A1 (en) * 2004-07-13 2006-06-22 Dieckmann John T System and method of refrigeration
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
US20100058837A1 (en) * 2008-09-05 2010-03-11 Quest William J Device having multiple light sources and methods of use
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Similar Documents

Publication Publication Date Title
US5421192A (en) Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material
USRE35370E (en) Leak detection in heating ventilating and air conditioning systems using an environmentally safe material
US5357782A (en) Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material
US6183663B1 (en) Leak detection dye delivery system
CA1331507C (en) Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors
US6132636A (en) Leak-detecting refrigerant compositions containing oxazolyl-coumarin dyes
ES2829325T3 (en) Compositions comprising 1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
AU2009316668B2 (en) Tetrafluoropropene compositions and uses thereof
BR112020010649A2 (en) composition containing refrigerant, use of the same and refrigerator comprising the same and method for operating said refrigerator
US20070138433A1 (en) Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
CN101370900A (en) Refrigerant additive compositions containing perfluoropolyethers
BR112020010740A2 (en) composition including refrigerant, use of the same, refrigerator having the same, and method for operating the refrigerator
CN105219350A (en) Comprise the composition of fluoroolefins
CN101297016A (en) Compositions comprising a fluoroolefin
AU2010339656A1 (en) Compositions comprising tetrafluoropropene and difluoromethane and uses thereof
CN103254875A (en) Compositions comprising a fluoroolefin
CN101346450A (en) Compositions comprising fluoroolefins and uses thereof
US6070454A (en) Leak detection additives for use in heating, ventilating, refrigeration, and air conditioning systems
CA3238656A1 (en) Fluoroolefin compositions containing a dye and methods for their production, storage and usage
CA2346940A1 (en) Composition and method for detecting leaks in hermetic refrigerant systems
BRPI0719465B1 (en) "compositions, cooling and heat production processes, cooling system recharge method and heat exchange system"
CN1878850A (en) Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
CN102119313A (en) Lubricants for air donditioning systems
US20040262567A1 (en) Stable compositions of liquefied refrigerant and UV dye
AU719551B3 (en) Improved refrigerant and leak detection composition

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 12

RR Request for reexamination filed

Effective date: 20070507

B1 Reexamination certificate first reexamination

Free format text: THE PATENTABILITY OF CLAIMS 1, 3, 5-12 AND 14-15 IS CONFIRMED. CLAIMS 2, 4 AND 13 ARE DETERMINED TO BE PATENTABLE AS AMENDED. NEW CLAIMS 16-46 ARE ADDED AND DETERMINED TO BE PATENTABLE.