USRE33108E - Method for preparing a printed circuit board - Google Patents

Method for preparing a printed circuit board Download PDF

Info

Publication number
USRE33108E
USRE33108E US07271710 US27171088A USRE33108E US RE33108 E USRE33108 E US RE33108E US 07271710 US07271710 US 07271710 US 27171088 A US27171088 A US 27171088A US RE33108 E USRE33108 E US RE33108E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
copolymer
plated
unsaturated compound
mixture
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07271710
Inventor
Katsukiyo Ishikawa
Kanji Nishijima
Mamoru Seio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/164Coating processes; Apparatus therefor using electric, electrostatic or magnetic means; powder coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/135Electrophoretic deposition of insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Abstract

The invention provides a method for preparing a printed circuit board with plated-through-holes, using a specifically prepared photoresist material and a combination of exposure, development and etching means. This method is particularly useful for the preparation of a printed circuit board with plated-through-holes bearing a high density circuit pattern.

Description

FIELD OF THE INVENTION

The present invention relates to a method for preparing a printed circuit board with plated-through-holes. More specifically, it concerns a method for preparing a printed circuit board with plated-through-holes bearing a high density circuit pattern by simple steps, with a high reliability and at a lower expense.

DESCRIPTION OF THE PRIOR ART

Heretofore, various methods have been proposed for the preparation of a printed circuit board with plated-through-holes, but none of the methods gave fruitful answers to the problems of producing a printed circuit board with a high density circuit pattern in a simple way, and with a high reliability.

For example, in a method wherein an etching resist pattern is formed by a screen printing and the through-holes are then filled by an appropriate means, it is impossible to form a circuit pattern with a line width of 200μ or less and moreover, there is a drawback of lacking in reliability as an etching resist because of easy occurence of shoulder defects in through holes, and the like.

In another method of using a photosensitive film, there are such problems that the film is hardly followed uneven copper metal surface on a plated board, and the products thus obtained often suffer from reliability as an etching resist, especially in the case with a photocuring type resin film, due to an uneven and undesired curing of the film with entrapped oxygen.

Furthermore, since a light exposure of the photosensitive resin composition is necessarily carried out through a base film, the minimum line width is only limited to the order of 150μ.

There is an additional problem of a higher cost because of the necessity of using a base film and a protective film, as well as a photosensitive resin composition.

In the production of a printing plate and a printed circuit board, there have been well known the method wherein a photocuring type (the so-called negative working) photosensitive resin layer is applied on a copper metal on a base plate, the resin layer is exposed through a negative mask of image to an actinic radiation, thereby effecting curing of the resin at an exposed area, the remaining uncured resin is then removed by a solvent (this is called as a development step), and the product is subjected to an etching step and then to the final step of removing an exposed and cured resin as desired, or the method wherein a photolysis type (the so-called positive working) photosensitive resin layer is applied on a copper metal on a base plate, the resin layer is exposed through a positive mask of image to an actinic radiation, thereby effecting a photodegradation of the exposed resin, the exposed resin is dissolved with a solvent, and the product is subjected to an etching step and then to the final step of removing an unexposed resin.

However, in the former, there is a problem of inferior resolving power due to undesired light reflection occurring at the exposure step or the like, and in the latter, a problem of relatively poor adhesion of the photosensitive resin to the base plate.

As to the adhesion of the photosensitive resin layer to the base plate, there are two points to be carefully examined. That is, one is the adhesive power of the resin material itself, and the other is the uneven surface of the copper metal of the base plate.

It is quite difficult to apply a photosensitive resin layer onto said uneven surface intimately bonded thereto. The inventors have now found that said adhesion can be fairly improved by the adoption of an electrodeposition technique with an aqueous solution of a salt form of such resin.

Since a number of positive working resin compositions have been known, including polyoxymethylene polymer, o-nitrocarbinol esters, o-nitrophenyl acetals, quinonediazidesulfonyl esters of novolak resins and the like, if an invention is made to introduce an acidic or a basic group in the molecule of such material so that an appropriate water-soluble salt can be made therefrom, an electrodeposition technique would be successfully used in the application of the positive type photosensitive resin compositions onto said uneven surface of the copper metal on the base plate. The inventors have indeed obtained good results with said method, but have also found that for the production of a printed circuit board with a high density circuit pattern, the known positive working photosensitive resin materials are not of full satisfaction in having a reliable etching resist therefrom.

An object of the invention is, therefore, to find a novel positive working photosensitive resin composition which is based on a resin with good adhesive power and flexibility and which can be applied onto a copper metal by an electrodeposition means. An additional object of the invention is to provide a layer of a positive working photosensitive resinous composition deposited on a copper metal which will well stand to the attack from a developing liquid and an etching liquid, giving no peeling or cracks in the processing steps, and which will give a reliable etching resist therefrom. A further object of the invention is to provide a manufacturing method for a printed circuit board with through-holes bearing a high density circuit pattern, the method being excellent in giving a reliable etching resist and being superior to heretofore known methods in both economical and operational points of view.

SUMMARY OF THE INVENTION

The present invention is directed to a method of preparing a printed circuit board with plated-through-holes comprising a combination of steps of providing a plated board with a number of plated-through-holes, forming a positive working photoresist on said plated board, exposing said photoresist through a positive mask of circuit pattern placed on said photoresist to an actinic radiation, developing said photoresist on said plated board with an aqueous or a semiaqueous alkaline solution to dissolve the exposed resin and form an etching resist, subjecting said resist to an etching to remove copper metal under the exposed area of said plated board, and finally removing said resist still remaining on an unexposed area of said plated board, which is characterized in that the formation of said positive working photoresist is carried out by an electrodeposition means with an anionic or cationic electrodeposition bath of quinonediazide sulfonic ester bearing acrylic copolymer. The drawings depict the photosensitive materials involved in each step of the method of this invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a circuit base plate which consists of an insulating base plate 1 with through-holes 2 and a conductive coating 3;

FIG. 2 shows the circuit base plate of FIG. 1 having a coating 4 of the positive type photosensitive resin composition;

FIG. 3 shows the circuit base plate of FIG. 2 having a positive type photomask 5 with a circuit pattern;

FIG. 4 shows the circuit base plate after the exposed portion of the resin coating 4 has been removed;

FIG. 5 shows the circuit base plate after the exposed portion of the conductive coating 3 has been removed; and

FIG. 6 shows the circuit board remaining after the positive type photosensitive resin composition coating 4 remaining in FIG. 5 has been removed.

DESCRIPTION OF PREFERRED EMBODIMENTS

In this specification and claims, the term "bearing" denotes both chemically bound and cold blended forms.

In the practice of the present invention, there is provided a plated board with a number of plated-through-holes. So far as the plated board is constructed in the abovementioned structure, any of the methods may be used for the preparation of said plated board. For example, such a plated board may be obtained by providing an insulating board substrate with a number of through-holes, affixing an activation material for an electroless plating use to the whole surface of said substrate including said through-holes, conducting copper electroless plating and then applying copper by an electrolytic means. Alternatively, such a plated board may be obtained by perforating a copper clad laminate at the fixed positions, affixing an activation material for an electroless plating use into said holes, and conducting a series of plating, i.e. a copper electroless plating and a copper electrolytic plating, on the whole surface including the through-holes. The positive working photoresist to be applied by the method of this invention on said copper metal on the plated board are anionic or cationic positive working, quinone diazide group bearing acrylic resin compositions which can form a continuous film on the copper metal by an electrodeposition means and can be dissolved by a developer at an exposed area of said film.

For example, such an electrodeposition bath of an anionic, positive working photosensitive resin composition may be prepared by copolymerizing an acidic group bearing α,β-ethylenically unsaturated compound with a copolymerizable monomer having hydroxyl groups, adding to said hydroxyl groups of the thus obtained polymer a quinone diazide compound through an esterification reaction, neutralizing the acidic groups derived from said α,β-ethylenically unsaturated compound with an alkaline substance, and dispersing the thus obtained neutralized polymer into water.

An electrodeposition bath of a cationic, positive type photosensitive resin composition may be prepared by copolymerizing monomer having at least one amino group with a hydroxy group bearing monomer, adding to a part of said hydroxyl and/or amino groups of the obtained copolymer a quinone diazide compound, through an esterification reaction, neutralizing the remaining amino groups of said copolymer with an acidic substance, and dispersing the thus obtained, neutralized polymer into water.

As the acidic group bearing α,β-ethylenically unsaturated compounds to be used in the synthesis of said anionic, positive working photosensitive resin compositions, mention is made of α,β-ethylenically unsaturated carboxylic acids, polymerizable organic sulfonic acids, polymerizable organic phosphoric acids and water soluble salts thereof.

Examples of α,β-ethylenically unsaturated carboxylic acids are maleic acid, fumaric acid, acrylic acid, methacrylic acid and the like.

Examples of polymerizable organic sulfonic acids are 1-acryloxy-1-propane sulfonic acid, 2-acrylamide-2-methyl propane sulfonic acid, 3-methacrylamide-1-hexane sulfonic acid and the like, and examples of polymerizable organic phosphoric acids are mono (2-hydroxylethyl methacrylate) acid phosphate, acid phosphoxyethyl methacrylate, acid phosphoxy propyl methacrylate and the like.

As the water soluble salts of said acidic group bearing unsaturated compounds, mention is made of alkali metal salts, alkaline earth metal salts, amine salts and the like. Examples of hydroxyl group bearing polymerizable monomers are 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, γ-hydroxy styrene, and the like.

Examples of the quinone diazide compounds used in said esterification reaction are 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride, 1,2-benzoquinone-2-diazide-4-sulfonyl chloride and the like.

They are, however, named only as typical examples and should not be taken in any limitative sense.

The amino group bearing polymerizable monomers to be used in the synthesis of cationic, positive working photosensitive resin compositions are dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, diethylaminopropyl acrylamide, diethylaminopropyl methacrylamide, γ-aminostyrene, 3-(2-hydroxypropyl amino)-2-(hydroxy) propyl methacrylate, and the like. They are also merely named as typical examples of the employable materials. In the abovesaid anionic, positive working photosensitive resin composition, the ratio of acidic group bearing α,β-ethylenically unsaturated compound to hydroxyl group bearing polymerizable monomer must be controlled according to the particular members selected and the molecular weight of the copolymer desired.

Said ratio is appropriately determined by taking into due consideration the water dispersibility of the resin after alkali neutralization, dissolvability at the time of development step, and resolution desired. Usually, a preferable range is from 1/99 to 80/20 in terms of molar ratio.

If the acidic group bearing component exceeds the abovesaid range, there is the case wherein resolution will get lowered since the acid molar ratio in the resin at the exposed area will undesirably come near to that of the resin in the exposed area and for this, both exposed and unexposed resins are simultaneously dissolved at the development stage. If the acidic group bearing component is lower than the abovesaid range, there are problems of reduced water dispersibility of the resin and of diminished electrodeposition effect.

A weight average molecular weight of said copolymer may vary with the employed monomer components and the weight ratio thereof. In general, it is preferably determined in a range from 500 to 200,000, taking into account the dispersibility of the resin (after neutralization) in water, adhesive property of the electrodeposited coating, dissolvability of the resin at a development stage, resolution, and acid resistance of the resist film at an etching stage.

In the abovesaid cationic, positive working photosensitive resin composition, the ratio of amino group bearing polymerizable monomer to hydroxyl group bearing polymerizable monomer must be controlled according to the particular members selected and the molecular weight of the copolymer desired. It should also be determined by taking into due consideration acid resistance of the resist film in an etching stage of removing a conductive coating from the base plate. Usually, it is preferably determined in a range from 1/99 to 80/20 in terms of molar ratio. If the molar ratio of amino group bearing monomer exceeds the abovesaid range, there is a tendency that undesirable swelling and solution of the resist film will occur at the etching stage.

If the molar ratio of amino group bearing monomer is lower than the abovesaid range, there often occur troubles in water dispersibility of the acid neutralized resin and in an electrodeposition efficiency.

The molecular weight of said copolymer may vary with the particular monomer components selected and the weight ratio thereof. It is preferably determined in a range of 500 to 200,000, taking into account water dispersibility of the resin after neutralization, adhesive property of electrodeposited film, dissolvability of the film at a development stage, resolution, and an acid resistance of the resist film at an etching stage of removing a conductive coating from the base plate.

From the standpoints of adhesive property to a base plate, flexibility of the coating and other contributive toward the present objects, particularly preferable anionic or cationic, quinone diazide group bearing, acrylic resin compositions include the following:

Anionic resin composition:

Copolymer(A) of

(a) mono-olefinic unsaturated compound or conjugated diolefinic hydrocarbon

(b) unsaturated compound represented by the formula: ##STR1## wherein n is an integer of 1 to 3;

R1 represents hydrogen atom or methyl radical;

R2 is hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group or nitro group;

R3 is hydrogen atom, ##STR2## (c) unsaturated compound having at least one acidic group selected from the group consisting of α,β-ethylenically unsaturated carboxylic acids, polymerizable organic sulfonic acids, polymerizable organic phosphoric acids and salts thereof,

or a mixture of copolymer (A) and other quinone diazide sulfonic ester with the content of said copolymer (A) being 5% by weight or more of said mixture.

Cationic resin composition:

Copolymer(C) of

(a) mono-olefinic unsaturated compound or conjugated diolefinic hydrocarbon

(b) unsaturated compound represented by the formula: ##STR3## wherein n, R1, R2 and R3 are as defined above, and (c) unsaturated compound having amino group,

or a mixture of copolymer (C) and other quinone diazide sulfonic ester (B) with the content of said copolymer (C) being 5% by weight or more of said mixture.

Typical examples of said mono-olefinic unsaturated compounds are alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate and the like; alkyl acrylates such as methyl acrylate, isopropyl acrylate and the like; cyclic alkyl methacrylates such as cyclohexyl methacrylate, 2-methyl-cyclohexyl methacrylate and the like; cyclo alkyl acrylates such as cyclohexyl acrylate, 2-methyl-cyclohexyl acrylate and the like; aryl methacrylates such as phenyl methacrylate, benzyl methacrylate and the like; aryl acrylates such as phenyl acrylate, benzyl acrylate and the like; dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconate and the like; hydroxy alkyl methacrylates such as 2-hydroxyethyl methacrylate, 2-hydroxy propyl methacrylate and the like; styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, vinyl toluene, p-methoxy styrene, acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, vinyl acetate and the like. Typical examples of said conjugated diolefinic hydrocarbons are 1,3-butadiene, isoprene, chloroprene, dimethyl butadiene and the like.

The unsaturated compounds represented by the formula I may be easily and advantageously prepared by reacting glycidyl acrylate or glycidyl methacrylate with a carboxylic acid of the formula: ##STR4## wherein n, R2 and R3 are as defined above, or a combination of steps of reacting glycidyl acrylate or glycidyl methacrylate with a hydroxy carboxylic acid of the formula: ##STR5## wherein n and R2 are as defined above, and subsequently reacting the product with benzoquinone or naphthoquinone diazide sulfonylchloride.

As the acidic group bearing unsaturated compounds and the amino group bearing unsaturated compounds, reference should be made to the preceeding pages of this specification. The monomer weight ratio and molecular weight of the resins are also as defined previously.

The preparation of such resins may be carried out just in the same way customarily used in the preparation of an acrylic resin for coating use. Of course, the resin compositions are used, after neutralizing with alkali or acid substance, in the form of aqueous dispersions in an electrodeposition stage.

The other quinone diazide sulfonic esters used in the present invention are of the known type as described, for example, in British Pat. Nos. 1,227,602, 1,329,888, 1,330,932, and U.S. Pat. No. 4,306,010.

Examples of such compounds are condensation products of naphthoquinone diazide sulfonyl chloride or benzoquinone diazide sulfonyl chloride with hydroxy group bearing lower molecular weight or higher molecular weight compounds. Typical examples of said hydroxy group bearing lower molecular weight compounds are hydroquinone, resorcin, phloroglucinol, 2,4-dihydroxy benzophenone, 2,3,4-trihydroxy benzophenone, alkyl gallate and the like. Typical examples of hydroxy group bearing higher molecular weight compounds are phenol-formaldehyde novolak resins, cresol-formaldehyde novolak resins, polyhydroxystyrenes and the like. Among them, particular reference is given to the hydroxy group bearing lower molecular weight compounds.

When R3 in the generic formula (I) of the aforesaid unsaturated compound stands for hydrogen atom, the thus obtained copolymer should be used as a mixture with other quinonediazide sulfonic esters as defined above. At this time, the copolymer should preferably be 5% by weight and more of the total weight of such mixture.

The present electrodeposition baths may include other additives as coloring matter and the like customarily used in an electrodeposition bath, as desired.

In order to apply said anionic or cationic positive working photosensitive resin composition on copper metal on plated board a common electrophoresis means can be utilized in the present invention.

For example, the abovesaid plated board with through-holes is dipped in an electrodeposition bath of the anionic, positive working photosensitive resin composition, an anode is connected to the plated board and a cathode is to the metallic bath wall, direct current is flowed between the electrodes, thereby depositing the anionic, positive working photosensitive resin composition the copper metal the plated board, the thus treated board is then subjected to drying to form a continuous film of the photosensitive resin composition.

In the case of using a cationic, positive working photosensitive resin composition bath, the anode and the cathode are connected just inversely and the similar processes are carried out to obtain a continuous film of the photosensitive resin composition.

The thus obtained film is then exposed through a positive mask of circuit pattern to an actinic radiation, for example, ultra-violet rays. At this time, either in the case of anionic or cationic photosensitive layer, the quinone diazide groups of the exposed resin may be photolytically degradated to ketone and then to indene carboxylic acids.

Therefore, when developed with an aqueous alkaline solution, the exposed resin is dissolved and removed in the soluble salt form.

At the exposed area, no change will occur in the case of anionic photosensitive resin, but in the case of cationic type resin, the unaffected, quinone diazide groups may undergo azo-coupling with each other in the presence of the alkaline developer, thereby resulting in a resin with far improved acid resistance and alkali resistance.

In the next place, the thus obtained board bearing an etching resist pattern is processed with an etching bath containing ferric chloride, cupric chloride or an alkali substance to remove the exposed copper metal from the board. Finally, the resin composition still remaining on the copper metal at the unexposed area is removed by the treatment with an appropriate solvent or the like.

According to the present method, it is possible to obtain a circuit board bearing a high density circuit pattern in the order of 100μ line width.

This method is far superior to the heretofore proposed screen printing method and photosensitive film method in respect of simplicity of processing, reliability of product and economical point of view.

The invention shall be now more fully described in the following examples by referring to the attached drawings.

REFERENCE EXAMPLE 1 Preparation of unsaturated compound 1

Into a 1,000 ml separable flask, were placed 276 g of o-hydroxy benzoic acid, 5.4 g of N,N'-dimethylbenzylamine, 0.14 g of hydroquinone and 150 g of dioxane, and the mixture was heated under stirring to 100° C. To this, 284 g of glycidyl methacrylate were added and the combined mixture was heated under stirring and aeration at 100° C. for 6 hours. The product obtained was confirmed by IR spectrum and NMR spectrum to be 3-(o-hydroxybenzoyloxy)-2-(hydroxy) propyl methacrylate.

REFERENCE EXAMPLE 2 Preparation of unsaturated compound 2

Into a 2,000 ml separable flask, were placed 143 g of the reaction solution of unsaturated compound I, 50.5 g of triethylamine and 200 g of dioxane, and the mixture was added dropwise, under stirring and at a room temperature, with a solution of 118.2 g of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride in 800 g of dioxane. After completion of said addition, stirring was continued for additional 2 hours.

Next, the abovesaid reaction solution was dropped in 5,000 ml of water, the resulting mixture was stirred and extracted with 1,000 ml of dichloromethane. From this extract, solvent was removed off at a reduced pressure to obtain 1,2-naphthoquinone-2-diazide-5-sulfonic acid ester of 3-(o-hydroxybenzoyloxy)-2-(hydroxy) propyl methacrylate, which was identified from the IR and NMR spectrum data thereof.

REFERENCE EXAMPLE 3 Preparation of unsaturated compound 4

Into a 1,000 ml separable flask, were placed 336 g of 4-methoxy salicyclic acid, 5.4 g of N,N'-dimethyl benzylamine, 0.14 g of hydroquinone, and 150 g of dioxane, and the mixture was heated under stirring to 100° C. To this, 284 g of glycidyl methacrylate were added and the mixture was stirred under aeration at 100° C. for 6 hours. Thus obtained product was identified from IR and NMR spectrum data to be 3-(2-hydroxy-4-methoxybenzoyloxy)-2-(hydroxy) propyl methacrylate.

REFERENCE EXAMPLE 4 Preparation of unsaturated compound 4

Into a 1,000 ml separable flask, were 376 g of gallic acid, 5.4 g of N,N'-dimethylbenzylamine, 0.14 g of hydroquinone and 200 g of dioxane, and the mixture was heated under stirring to 100° C. To this, was added 284 g of glycidyl methacrylate and the mixture was further stirred under aeration at 100° C. for 6 hours. The product was confirmed by IR and NMR spectrum to be 3-(3,4,5-trihydroxybenzoyloxy)-2-(hydroxy) propyl methacrylate.

REFERENCE EXAMPLE 5 Preparation of electrodeposition bath 1

Into a 2,000 ml separable flask, was placed 100 g of ethyleneglycol monomethyl ether and it was heated to 80° C. To this, were added 43 g of methacrylic acid, 120 g of 2-hydroxyethyl methacrylate and a solution of 3 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 100 g of dioxane simultaneously over 3 hours and the combined mixture was further stirred for 2 hours to obtain a copolymer solution.

Thereafter, the copolymer solution was added with 60 g of triethylamine and then dropwise with a solution of 134 g of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride in 800 g of dioxane at a room temperature and under stirring. After completion of said addition, stirring was continued for 2 hours. Next, the reaction solution was dropped in 5,000 ml of water and stirred well. The reaction product was extracted with 1,000 ml of dichloromethane and the solvent was removed at a reduced pressure to obtain 1,2-naphthoquinone-2-diazide-5-sulfonic ester, 150 g of the thus obtained ester were dissolved in 100 g of cyclohexanone and the solution was added with 12 g of monoethanolamine and then gradually with 2,700 g of deionized water under stirring to obtain an electrodeposition bath liquid 1.

REFERENCE EXAMPLE 6 Preparation of electrodeposition bath 2

Into a 500 ml separable flask, was added 60 g of ethyleneglycol monomethyl ether and the content was heated to 80° C. To this, were added 34.2 g of butyl acrylate, 39.8 g of methyl methacrylate, and 71.5 g of the reaction solution of unsaturated compound I, and the mixture was added dropwise and simultaneously with a solution of 9.6 g of 2-acrylamide-2-methyl propane sulfonic acid in a mixture of 15 g of ethyleneglycol monomethyl ether and 15 g of deionized water and a solution of 2.8 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 80 g of dioxane in 3 hours. After completion of said addition, the combined mixture was stirred for additional 2 hours to obtain a copolymer solution. Next, the copolymer solution was added with 3.8 g of triethylamine and then with 75.2 g of 1,2-naphthoquinone-2-diazide-5-sulfonic ester and 4,000 g of deionized water and the mixture was stirred well to obtain an electrodeposition bath liquid 2.

REFERENCE EXAMPLE 7 Preparation of electrodeposition bath 3

Into a 500 ml separable flask, was placed 80 g of ethyleneglycol monomethyl ether and the content was heated to 80° C. To this, were added 30.8 g of butyl acrylate, 5.2 g of methyl methacrylate, 32.2 g of reaction solution of unsaturated compound I, and 15.4 g of unsaturated compound 2, and the mixture was further added simultaneously with a solution of 2-acrylamide-2-methylopropane sulfonic acid in a mixture of 15 g of ethyleneglycol monomethyl ether, 15 g of deionized water and 3.5 g of triethylamine and a solution of 2.0 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 80 g of dioxane in 3 hours. After completion of said addition, the mixture was further stirred for 2 hours to obtain a copolymer solution.

The copolymer solution was then added with 1,400 g of deionized water to obtain an electrodeposition bath liquid 3.

REFERENCE EXAMPLE 8 Preparation of electrodeposition bath 4

Into a 500 ml separable flask, was placed 80 g of ethyleneglycol monomethyl ether and the content was heated to 80° C. To this, were added a monomer solution consisting of 34.2 of butyl acrylate, 39.8 g of methyl methacrylate, 71.5 g of reaction solution of unsaturated compound I, and 12.0 g of 3-(2-hydroxypropyl amino)-2-(hydroxy) propyl methacrylate and a solution of 2.0 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 80 g of dioxane in 3 hours and the combined mixture was further stirred for 2 hours to obtain a copolymer solution.

The copolymer solution was then added with 3.3 g of acetic acid and then with 50 g of 1,2-naphthoquinone-2-diazide-5-sulfonic ester of 2,4-dihydroxybenzophenone and thus obtained mixture was added under stirring with 3,500 g of deionized water to obtain an electrodeposition bath liquid 4.

REFERENCE EXAMPLE 9 Preparation of electrodeposition bath 5

Into a 500 ml separable flask, was added 60 g of ethyleneglycol monomethyl ether and the content was heated to 80° C. To this, were added dropwise and simultaneously with a monomer solution of 34.2 g of butyl acrylate, 39.8 g of methylmethacrylate, 70.0 g of reaction solution of unsaturated compound 3 and 10.0 g of mono (2-hydroxyethyl methacrylate) acid phosphate and a catalyst solution of 2.0 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 80 g of dioxane in 3 hours and the combined solution was further stirred for 2 hours to obtain a copolymer solution. Next, the copolymer solution was added with 16 g of triethylamine and 75.2 g of 1,2- naphthoquinone-2-diazide-5-sulfonic ester of 2,3,4-trihydroxybenzophenone and to thus obtained solution, 4,000 g of deionized water were gradually added under stirring to obtain an electrodeposition bath liquid 5.

REFERENCE EXAMPLE 10 Preparation of electrodeposition bath 6

Into a 500 ml separable flask, was placed 60 g of ethyleneglycol monomethylether and the content was heated to 80° C. To this, a monomer solution consisting of 34.2 g of butylacrylate, 39.8 g of methyl methacrylate, 73.4 g of the reaction solution of unsaturated compound 4 obtained in Reference Example 4, and 10.0 g of mono (2-hydroxy ethyl methacrylate) acid phosphate and a catalyst solution of 2.0 g of 2,2'-azobis (4-methoxy-2,4-dimethyl valeronitrile) in 80 g of dioxane were simultaneously dropped in over 3 hours, and thereafter the mixture was stirred for additional 2 hours to obtain a copolymer solution. The solution was then added with 16 g of triethylamine an 75.2 g of 1,2-naphthoquinone-2-diazide-5-sulfonic ester of 2,3,4-trihydroxybenzophenone and the thus obtained solution was finally added, under stirring, with 3,900 g of deionized water to obtain an electrodeposition bath liquid 6.

EXAMPLE 1

FIG. 1 shows a circuit base plate which consists of an insulating base plate 1 with through-holes 2, whose whole surface including the through-holes is covered by a conductive coating 3.

The abovesaid circuit base plate was dipped into the electrodeposition bath 1 prepared by Reference Example 5. After connecting the base plate to an anode and the metallic wall of the electrodeposition bath to a cathode, 150 V direct current was impressed for 1 minute, thereby effecting the deposition of anionic, positive type photosensitive resin composition on the conductive coating 3 on the circuit base plate in about 20μ thickness, and the thus obtained electrodeposited circuit base plate was then washed with water and dried in an oven maintained at 120° C. for 5 minutes to form a coating 4 of the positive type photosensitive resin composition (see FIG. 2).

On said positive type photosensitive resin composition coating 4, was placed a positive type photomask 5 with a circuit pattern, and the circuit base plate was illuminated from both sides thereof by a high pressure mercury lamp (see FIG. 3). Thereafter, the exposed resin composition coating was dissolved and removed in an aqueous solution of sodium carbonate adjusted to pH 9 and maintained at a temperature of less than 20° C. (FIG. 4). The exposed conductive coating 3 was then removed by subjecting to an etching operation with a ferric chloride bath (FIG. 5). Finally, the positive type photosensitive resin composition coating 4 still remaining at the portion corresponding to the circuit pattern was removed in an aqueous solution of sodium carbonate containing 20% ethylene glycol monobutyl ether, the solution being adjusted to pH 11 and maintained at 55° C., to obtain a circuit board bearing circuit pattern of line width 70μ and having through-holes (see FIG. 6).

EXAMPLE 2

The same procedures as stated in Example 1 were repeated except substituting the electrodeposition bath 2 for the electrodeposition bath 1 and impressing a 50 V direct current for 1 minutes between the electrodes to deposit an anionic, positive type photosensitive resin composition on the conductive coating in about 20μ thickness.

A circuit-board bearing circuit pattern of line width 80 μ and having through-holes was obtained.

EXAMPLE 3

The same procedures as stated in Example 1 were repeated except substituting the electrodeposition bath 3 for the electrodeposition bath 1 and impressing a 75 V direct current between the electrodes for 1 minute to deposit an anionic, positive type photosensitive resin composition in about 20μ thickness on the conductive coating of the circuit base plate.

A circuit-board bearing circuit pattern of line width 80 μ and having through-holes was obtained.

EXAMPLE 4

The similar procedures as stated in Example 1 were repeated except substituting the electrodeposition bath 4 for the electrodeposition bath 1, reversing the connection of the base plate and metallic wall of the bath to electrodes, and impressing a 100 V direct current for 2 minutes to deposit a cationic, positive type photosensitive resin composition on a conductive coating in about 25μ thickness.

A circuit board having through-holes and bearing a circuit pattern of line width 100μ was obtained.

EXAMPLE 5

The same procedures as stated in Example 1 were repeated except substituting the electrodeposition bath 5 for the electrodeposition bath 1 and impressing a 50 V direct current between the electrodes for 2 minutes to deposit an anionic, positive type photosensitive resin composition on a conductive coating in about 25μ thickness.

A circuit-board having through-holes and bearing a circuit pattern of line width 70μ was obtained.

EXAMPLE 6

The same procedures as stated in Example 1 were repeated except substituting the electrodeposition bath 6 for the electrodeposition bath 1 and impressing a 80 V direct current between the electrodes for 1 minute to deposit an anionic, positive type photosensitive resin composition on a conductive coating in about 20μ thickness.

A circuit-board having through-holes and bearing circuit pattern of line width 90μ was obtained.

Claims (3)

What is claimed is:
1. A method for preparing a printed circuit board with plated-through-holes, comprising:
providing a plated board with a number of plated-through-holes,
forming a positive working photoresist on said plated board, exposing said photoresist through a positive mask of circuit pattern placed on said photoresist to an actinic radiation, developing said photoresist on said plated board with an aqueous or a semi-aqueous alkaline solution, thereby removing the exposed area and form an etching resist,
subjecting said resist to an etching to remove copper metal covered with the exposed photoresist on said plated board, and finally removing said resist still remaining on the unexposed area of said plated board,
which is characterized in that the formation of said positive working photoresist is carried out by an electrodeposition process with an anionic or cationic electrodeposition bath containing quinonediazide sulfonic ester bearing acrylic copolymer.
2. A method according to claim 1, wherein the quinonediazide sulfonic ester bearing anionic acrylic copolymer comprises a copolymer (A) of
(a) monoolefinic unsaturated compound or conjugated diolefinic hydrocarbon,
(b) unsaturated compound represented by the formula: ##STR6## in which n is an integer of 1 to 3; R1 is hydrogen atom or methyl group; R2 is hydrogen atom, alkyl having 1 to 5 carbon atoms, alkoxy or nitro group; R3 is hydrogen atom, ##STR7## (c) unsaturated compound having at least one acidic group selected from the group consisting of α,β-ethylenically unsaturated carboxylic acids, polymerizable organic sulfonic acids, polymerizable organophosphoric acids, and salts thereof,
or a mixture of said copolymer (A) and other quinonediazide sulfonic ester (B), the content of said copolymer (A) being 5% by weight or more of said mixture.
3. A method according to claim 1, wherein the quinonediazide sulfonic ester bearing cationic acrylic copolymer (C) of
(a) monoolefinic unsaturated compound or conjugated diolefinic hydrocarbon,
(b) unsaturated compound represented by the formula: ##STR8## in which R1, R2, R3 and n are as defined above, and
(c) unsaturated compound having amino group, or a mixture of said copolymer (C) and other quinonediazide sulfonic ester (B), the content of said copolymer (C) being 5% by weight or more of said mixture.
US07271710 1985-03-08 1988-11-16 Method for preparing a printed circuit board Expired - Lifetime USRE33108E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60-47262 1985-03-08
JP4726285A JPH0562835B2 (en) 1985-03-08 1985-03-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06837767 Reissue US4673458A (en) 1985-03-08 1986-03-10 Method for preparing a printed circuit board

Publications (1)

Publication Number Publication Date
USRE33108E true USRE33108E (en) 1989-11-07

Family

ID=12770373

Family Applications (2)

Application Number Title Priority Date Filing Date
US06837767 Expired - Lifetime US4673458A (en) 1985-03-08 1986-03-10 Method for preparing a printed circuit board
US07271710 Expired - Lifetime USRE33108E (en) 1985-03-08 1988-11-16 Method for preparing a printed circuit board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06837767 Expired - Lifetime US4673458A (en) 1985-03-08 1986-03-10 Method for preparing a printed circuit board

Country Status (5)

Country Link
US (2) US4673458A (en)
EP (1) EP0194824B1 (en)
JP (1) JPH0562835B2 (en)
KR (1) KR920007122B1 (en)
DE (2) DE3681808D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168624A (en) * 1990-07-18 1992-12-08 Nippon Cmk Corp. Method of manufacturing printed wiring board
US5284683A (en) * 1991-10-15 1994-02-08 Semih Erhan Method for metallization of plastics using poly-diamine-quinone polymers as a binder
US5312717A (en) * 1992-09-24 1994-05-17 International Business Machines Corporation Residue free vertical pattern transfer with top surface imaging resists
US5320933A (en) * 1990-03-30 1994-06-14 Morton International, Inc. Photoimageable composition having improved adhesion promoter
US6662443B2 (en) 1999-03-24 2003-12-16 Fujitsu Limited Method of fabricating a substrate with a via connection
US20090139086A1 (en) * 2007-11-29 2009-06-04 Foxconn Advanced Technology Inc. Method for manufacturing printed circuit board

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3751598T2 (en) * 1986-10-23 1996-04-18 Ciba Geigy Ag Imaging process.
US4859571A (en) * 1986-12-30 1989-08-22 E. I. Du Pont De Nemours And Company Embedded catalyst receptors for metallization of dielectrics
JP2593305B2 (en) * 1987-02-02 1997-03-26 日本ペイント株式会社 The positive photosensitive resin composition
JPS6420694A (en) * 1987-07-15 1989-01-24 Kansai Paint Co Ltd Manufacture of printed wiring board
JPH07119374B2 (en) * 1987-11-06 1995-12-20 関西ペイント株式会社 Positive photosensitive cationic electrodeposition coating composition
DE68907101D1 (en) * 1988-03-28 1993-07-22 Mitsubishi Electric Corp Electroplating process for photo varnishes printed circuits.
JP2962739B2 (en) * 1988-07-30 1999-10-12 日本石油化学株式会社 Method of forming a photocured coating
CA1334897C (en) * 1988-08-02 1995-03-28 Mamoru Seio Electrodeposition coating composition and image-forming method using the same
JP2585070B2 (en) * 1988-08-02 1997-02-26 日本ペイント株式会社 The image forming method
JP2804579B2 (en) * 1989-02-14 1998-09-30 関西ペイント株式会社 Method for producing a positive photosensitive electrodeposition coating composition and a circuit board using the same
JPH0687514B2 (en) * 1989-02-20 1994-11-02 関西ペイント株式会社 Method for manufacturing a printed circuit board
JP2721843B2 (en) * 1989-03-23 1998-03-04 関西ペイント株式会社 Method for manufacturing a printed wiring board
JPH02302092A (en) * 1989-05-16 1990-12-14 Kansai Paint Co Ltd Manufacture of printed wiring board
JPH0389353A (en) * 1989-09-01 1991-04-15 Nippon Paint Co Ltd Positive type photosensitive resin composition
US5236810A (en) * 1989-10-03 1993-08-17 Kansai Paint Co., Ltd. Process for preparing printed-circuit board
US5232815A (en) * 1989-12-15 1993-08-03 W. R. Grace & Co.-Conn. Autodeposition emulsion and methods of using thereof to selectively protect metallic surfaces
US5508141A (en) * 1989-12-15 1996-04-16 W. R. Grace & Co.-Conn. Autodeposition emulsion and methods of using thereof to selectively protect metallic surfaces
CA2051400A1 (en) * 1989-12-15 1991-06-16 Alan R. Browne Autodeposition emulsion for selectively protecting metallic surfaces
EP0433720A3 (en) * 1989-12-22 1992-08-26 Siemens Aktiengesellschaft Method of applying a solder stop coating on printed circuit boards
US5252427A (en) * 1990-04-10 1993-10-12 E. I. Du Pont De Nemours And Company Positive photoresist compositions
US5245751A (en) * 1990-04-27 1993-09-21 Circuit Components, Incorporated Array connector
US5071359A (en) * 1990-04-27 1991-12-10 Rogers Corporation Array connector
JPH0465184A (en) * 1990-07-05 1992-03-02 Kansai Paint Co Ltd Electrodeposition pretreatment method
DE69130691T2 (en) * 1990-08-02 1999-07-22 Ppg Industries Inc Photosensitive electrodepositable photoresist composition
US5268256A (en) * 1990-08-02 1993-12-07 Ppg Industries, Inc. Photoimageable electrodepositable photoresist composition for producing non-tacky films
FI88241C (en) * 1990-10-30 1993-04-13 Nokia Mobile Phones Ltd Foerfarande Foer framstaellning of the circuit boards
US5223373A (en) * 1991-04-29 1993-06-29 Industrial Technology Research Institute Positive working photosensitive composition and photosensitive electrodeposition composition prepared therefrom
GB2259812B (en) * 1991-09-06 1996-04-24 Toa Gosei Chem Ind Method for making multilayer printed circuit board having blind holes and resin-coated copper foil used for the method
JPH05287222A (en) * 1992-04-10 1993-11-02 Kansai Paint Co Ltd Photosensitive electrodeposition coating composition of positive type, and production of circuit board using the same
US5624781A (en) * 1993-05-28 1997-04-29 Kansai Paint Co., Ltd. Positive type anionic electrodeposition photo-resist composition and process for pattern formation using said composition
US5744283A (en) * 1994-04-12 1998-04-28 U.S. Philips Corporation Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material
DE69508019T2 (en) * 1994-04-12 1999-09-16 Koninkl Philips Electronics Nv A method of photolithographically metallizing at least the inner surfaces of holes which are applied in connection with a container on an existing pattern plate of electrically insulating material
JPH07278471A (en) * 1994-04-15 1995-10-24 Kansai Paint Co Ltd Positive photosensitive anionic electrodeposition coating composition and pattern formation by using the same
US5840402A (en) * 1994-06-24 1998-11-24 Sheldahl, Inc. Metallized laminate material having ordered distribution of conductive through holes
US8324511B1 (en) * 2010-04-06 2012-12-04 Amkor Technology, Inc. Through via nub reveal method and structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327167A (en) * 1980-03-14 1982-04-27 Dainippon Screen Manufacturing Co., Ltd. Method of producing printed circuit boards
US4608274A (en) * 1982-08-06 1986-08-26 Faultless Pcbs Method of manufacturing circuit boards
US4770900A (en) * 1984-03-09 1988-09-13 Hoechst Aktiengesellschaft Process and laminate for the manufacture of through-hole plated electric printed-circuit boards

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1772976A1 (en) * 1968-07-30 1971-08-12 Teldix Gmbh Photo-mechanical method for the production of printed circuit boards
US3738835A (en) * 1971-10-21 1973-06-12 Ibm Electrophoretic photoresist composition and a method of forming etch resistant masks
JPS5221526B2 (en) * 1972-01-10 1977-06-11
CA1005673A (en) * 1972-12-22 1977-02-22 Constantine C. Petropoulos Positive printing plate incorporating diazoquinone
JPH0145053B2 (en) * 1980-03-01 1989-10-02 Japan Synthetic Rubber Co Ltd
US4414311A (en) * 1982-03-18 1983-11-08 American Hoechst Corporation Cathodic deposition of light sensitive components
EP0155231B2 (en) * 1984-03-07 1997-01-15 Ciba-Geigy Ag Image-producing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327167A (en) * 1980-03-14 1982-04-27 Dainippon Screen Manufacturing Co., Ltd. Method of producing printed circuit boards
US4608274A (en) * 1982-08-06 1986-08-26 Faultless Pcbs Method of manufacturing circuit boards
US4770900A (en) * 1984-03-09 1988-09-13 Hoechst Aktiengesellschaft Process and laminate for the manufacture of through-hole plated electric printed-circuit boards

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320933A (en) * 1990-03-30 1994-06-14 Morton International, Inc. Photoimageable composition having improved adhesion promoter
US5168624A (en) * 1990-07-18 1992-12-08 Nippon Cmk Corp. Method of manufacturing printed wiring board
US5284683A (en) * 1991-10-15 1994-02-08 Semih Erhan Method for metallization of plastics using poly-diamine-quinone polymers as a binder
US5312717A (en) * 1992-09-24 1994-05-17 International Business Machines Corporation Residue free vertical pattern transfer with top surface imaging resists
US6662443B2 (en) 1999-03-24 2003-12-16 Fujitsu Limited Method of fabricating a substrate with a via connection
US20090139086A1 (en) * 2007-11-29 2009-06-04 Foxconn Advanced Technology Inc. Method for manufacturing printed circuit board

Also Published As

Publication number Publication date Type
DE194824T1 (en) 1987-01-15 grant
JPH0562835B2 (en) 1993-09-09 grant
US4673458A (en) 1987-06-16 grant
EP0194824A2 (en) 1986-09-17 application
JPS61206293A (en) 1986-09-12 application
EP0194824A3 (en) 1988-01-13 application
DE3681808D1 (en) 1991-11-14 grant
KR920007122B1 (en) 1992-08-24 grant
JP2013557C (en) grant
EP0194824B1 (en) 1991-10-09 grant

Similar Documents

Publication Publication Date Title
US3188210A (en) Naphthoquinone (1, 2)-diazide-sulfonic acid derivatives and process of producing printing plates therefrom
US5296330A (en) Positive photoresists containing quinone diazide photosensitizer, alkali-soluble resin and tetra(hydroxyphenyl) alkane additive
US3264104A (en) Reversal-development process for reproduction coatings containing diazo compounds
US5281447A (en) Patterned deposition of metals via photochemical decomposition of metal-oxalate complexes
US4555469A (en) Process of preparing light-sensitive naphthoquinonediazidesulfonic acid ester
US5045435A (en) Water-borne, alkali-developable, photoresist coating compositions and their preparation
US4141733A (en) Development of light-sensitive quinone diazide compositions
US4438189A (en) Radiation-polymerizable mixture and photopolymerizable copying material prepared therefrom
US3833384A (en) Photopolymerizable compositions and elements and uses thereof
US4458006A (en) Photopolymerizable mixture and photopolymerizable copying material prepared therewith
US4019972A (en) Photopolymerizable copying compositions containing biuret-based polyfunctional monomers
US4275139A (en) Light-sensitive mixture and copying material produced therefrom
US5077174A (en) Positive working dry film element having a layer of resist composition
US4455364A (en) Process for forming metallic image, composite material for the same
US5120633A (en) Resist material for use in thick film resists
US5004672A (en) Electrophoretic method for applying photoresist to three dimensional circuit board substrate
US4530747A (en) Photopolymerizable mixture and photopolymerizable copying material prepared therewith
US4495271A (en) Radiation polymerizable mixture and copying material produced therefrom
US3652274A (en) Photographic etching resist and preparation thereof
US5384229A (en) Photoimageable compositions for electrodeposition
US4610953A (en) Aqueous developer solution for positive type photoresists with tetramethyl ammonium hydroxide and trimethyl hydroxyethyl ammonium hydroxide
US4902592A (en) Production of color display
US3595656A (en) Reprographic materials containing a water-insoluble azidochalcone
US4746399A (en) Method for making metallic patterns
US4751172A (en) Process for forming metal images

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12