USRE31609E - Method of preparing a controlled-release pharmaceutical preparation, and resulting composition - Google Patents

Method of preparing a controlled-release pharmaceutical preparation, and resulting composition Download PDF

Info

Publication number
USRE31609E
USRE31609E US06/103,463 US10346379A USRE31609E US RE31609 E USRE31609 E US RE31609E US 10346379 A US10346379 A US 10346379A US RE31609 E USRE31609 E US RE31609E
Authority
US
United States
Prior art keywords
compound
alkyl
iaddend
iadd
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/103,463
Inventor
Barry D. Sears
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIPID SPECIALTIES Inc A CORP OF
Lipid Specialties Inc
Original Assignee
Lipid Specialties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/731,132 external-priority patent/US4086257A/en
Application filed by Lipid Specialties Inc filed Critical Lipid Specialties Inc
Priority to US06/103,463 priority Critical patent/USRE31609E/en
Assigned to LIPID SPECIALTIES, INC., A CORP. OF MA reassignment LIPID SPECIALTIES, INC., A CORP. OF MA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SEARS, BARRY D.
Application granted granted Critical
Publication of USRE31609E publication Critical patent/USRE31609E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds

Definitions

  • Phospholipids are amipathic compounds that tend to self-associate in aqueous systems to form micelles with a hydrophobic interior and hydrophilic exterior.
  • Two types of structures can be formed by phospholipids.
  • One type is vesicles in which a phospholipid bilayer encloses an aqueous internal space. Since the phospholipid bi-layer acts as a barrier between the aqueous internal space and the outer aqueous environment, various water-soluble compounds can be sequestered in the internal aqueous space.
  • this particular structure has been used as a drug-delivery system (see G. Gregoriadis, New England J. Med. 295 704 (1976) and G. Gregoriadis, New England J. Med. 295 765 (1976)).
  • phospholipids can form is microemulsions in which a highly water-insoluble substance, such as cholesterols, cholesterol esters and derivatives, or triglycerides, forms an inner core surrounded by an outer monolayer of phospholipid (see L. Shorr et al., Biophys. J. 17 81a (1977)). Since the interior of these structures is hydrophobic, compounds which are nonpolar can be sequestered in the interior core of these microemulsion structures.
  • a highly water-insoluble substance such as cholesterols, cholesterol esters and derivatives, or triglycerides
  • the major enzymes responsible for the hydrolysis of phospholipids in mammals are phospholipase A and phospholipase C.
  • Phospholipase A 2 which hydrolyzes the acyl chains of phospholipids, is maximally active at the transition temperature when the phospholipids are melting into a liquid crystalline state (see J.A.F. Op Den Kamp et al., Biochem. Biophys. Acta 406 169 (1975)). At temperatures in which the phospholipid is in the gel state, the enzyme is relatively inactive. Furthermore, if the acyl linkages to the glycerol backbone of the phospolipids are replaced by ether linkages, then the phospholipid is totally inactive. Thus, phospholipase A 2 hydrolysis can be prevented rather easily.
  • Phospholipase C hydrolyzes the polar moiety of the phospholipid. Therefore, the physical state of the acyl chains has little bearing on the hydrolysis of the polar-head group. Thus, it is desirable to minimize or eliminate phospholipase C hydrolysis of phospholipids, and to permit the use of phospholipids in drug-delivery systems.
  • a wide variety of pharmaceutical compounds may be used, including bronchodilators, vitamins, medicants, hormones, antibiotics, including water-insoluble and water-soluble compounds.
  • bronchodilators including bronchodilators, vitamins, medicants, hormones, antibiotics, including water-insoluble and water-soluble compounds.
  • the use of the phospholipids described is not wholly satisfactory, due to the rapid hydrolysis of such phospholipids on oral administration of the encapsulated compounds.
  • My invention relates to a method for the preparation of controlled-release pharmaceutical compositions and to the controlled-release compositions so prepared.
  • my invention concerns the preparation of controlled-release pharmaceutical compositions with synthetic phospholipids, which phospholipids are characterized by decreased rates of phospholipase C hydrolysis, and to the controlled-release compounds so prepared.
  • Such phospholipids considerably enhances the ability of various drug compounds to be administered orally. It has been discovered that such phospholipids, with decreased or eliminated polar-head-group hydrolysis, permit the phospholipids to be resistant to hydrolysis in the stomach, and, therefore, such phospholipids and encapsulated compounds are able to be absorbed by the gut or intestinal system.
  • Such phospholipids, with altered head groups would include those phospholipids that have a fatty-acid ester linkage, or exist in the gel state at the temperature of use, such as about 37° C., or have incorporated therein high amounts of cholesterol, cholesterol derivatives or similar compounds; for example, with cholesterol greater than 35 mole percent (see J.A.F. Op Den Kamp et al., supra).
  • the phospholipids useful in my method are surfactants which form micelles in self-association (vesicles), or with other lipids (microemulsions), and which phospholipids are resistant to enzymatic hydrolysis.
  • Synthetic phosphonium, sulfonium, and particularly quaternary-ammonium phospholipids, as described in my copending applications (supra), and related compounds with different polar-head groups, are useful in my method.
  • These synthetic phospholipids are useful in encapsulating various drugs, such as insulin and antitumor drugs, for oral administration; that is, drugs which normally would be hydrolyzed in the stomach on oral administration.
  • drugs such as insulin and antitumor drugs
  • the encapsulated controlled-release drug compositions, with hydrolysis eliminated or minimized, would not be released in the stomach by the hydrolysis of the encapsulating phospholipids, but would be permitted to be absorbed by the gut for eventual localization in the bloodstream or other tissues in the body, wherein the released drug could assert its desired effect.
  • drugs that are orally administered are usually hydrolyzed by enzymes in the stomach, but usually a high enough concentration of the drug is used, so that enough of the drug is able to pass through the stomach and be absorbed by the gut, and eventually enter into the bloodstream.
  • Many other drugs such as antitumor agents or insulin, have to be injected directly into the bloodstream, since these drugs would be inactivated totally in the stomach.
  • My drug-delivery system requires that the encapsulating lipid structure, itself, not be hydrolyzed, thereby releasing its contents. Therefore, my lipid drug carrier permits oral administration of many drugs that are now injected, and also allows a greater effectiveness of drugs that are presently given orally.
  • the phospholipids useful in my method comprise phosphatidyl compounds, wherein the sulfonium, phosphonium and quaternary-ammonium polar-head moiety of such compounds has been modified by hydrocarbon groups, particularly alkyl groups, over that of natural or synthetic lecithin or the phosphonium or sulfonium lecithin derivatives.
  • Phosphatidyl compounds wherein the phosphatidyl portion contains ester groups; for example, C 14 to C 20 fatty-acid groups (the same or different), are useful, such as dihydrocarbon phosphatidyl alkyl N-trialkyl ammonium hydroxide, wherein the hydrocarbon; for example, the alkyl group, is typically C 1 to C 4 , with the alkyl group between the nitrogen and phosphorous atoms ranging, for example, from C 1 to C 10 , except that natural or synthetic lecithin is excluded from these useful compounds.
  • ester groups for example, C 14 to C 20 fatty-acid groups (the same or different)
  • the hydrocarbon for example, the alkyl group
  • the alkyl group is typically C 1 to C 4
  • the alkyl group between the nitrogen and phosphorous atoms ranging, for example, from C 1 to C 10 , except that natural or synthetic lecithin is excluded from these useful compounds.
  • Similar phosphonium and sulfonium phospholipids are useful where the sulfur atom or phosphorous atom replaces the quaternary-ammonium atom.
  • R is a fatty radical, such as a radical derived from fatty acids or alcohols, the same or different, but preferably a C 14 to C 20 fatty-acid ester radical, such as myristoyl, stearoyl, palmitoyl, oleatoyl, linoleatoyl, or a natural material like egg yolk, soybeans, etc.;
  • R 1 , R 2 and R 3 are alkyl radicals, the same or different, typically C 1 to C 4 radicals, such as methyl, ethyl, propyl and butyl;
  • R 4 is an methylene radical, typically a C 1 to C 10 radical, preferably a C 1 to C 4 radical, such as dimethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, nonamethylene, etc. In the above formula, R 4 cannot be dimethylene while R 1
  • R 1 , R 2 and R 3 are all the same radical, particularly methyl or ethyl, and R 4 is a different and preferably longer radical; for example, tetramethylene or trimethylene, and R is a fatty-acid radical.
  • the synthetic phospholipid is dispersed in water with the pharmaceutical compound whose release is to be controlled (other additives and surfactants added, if desired) to form a dispersion or emulsion, and, thereafter, the emulsion is coagulated, such as by precipitation, frozen, coagulants are added, the temperature or pH is changed, or other methods used to entrap and encapsulate the pharmaceutical compound within the phospholipid, and the encapsulated material is recovered for use or administration.
  • the controlled-release material may be used alone or with other materials.
  • the drawing is a graphical representation of comparative tests of the hydrolysis rate of various synthetic phospholipids, comparing percent hydrolysis of the phospholipid with the time and hours.
  • Tests to determine the comparative rates of phospholipase C hydrolysis of my modified phospholipids and phosphatidyl choline were carried out as follows: 18 mg dimyristoyl derivatives of each phospholipid compound, identified in Table I, A-F, was lyophilized from benzene. To the dried lipid was added 1 ml of 0.1M KCl, 10mM CaCl 2 (pH 7.4) and 2 mg of phospholipase C. Then 2 ml of diethyl ether was added to each sample. The solution so prepared is a synthetic, aqueous, acidic composition of a standardized assay mixture. The solutions were shaken at 24° C., and at various time points, aliquots were taken from the aqueous phase. The aliquots were assayed over a time period for the appearance of phosphorylcholine in the aqueous phase.
  • test results are shown in Table II and graphically in the drawing, wherein the percent hydrolysis in the composition was plotted against the time in hours in the mixture.
  • Dimyristoyl phosphatidyl choline was the most rapidly hydrolyzed phospholipid, whereas my modified phospholipid compounds were retarded in their enzymatic hydrolysis.
  • two of the compounds tested dimyristoyl phosphatidyl propyl-N-triethyl ammonium hydroxide (F) and dimyristoyl phosphatidyl butyl-N-trimethyl ammonium hydroxide (E), demonstrated little hydrolysis by phospholipase C.
  • a controlled-release pharmaceutical composition is prepared by dispersing the phospholipids E and F in water using a blender; for example, an amount of 0.001 to 0.2 g/ml, and then adding and dispersing a drug, subject to phospholipase C enzymatic hydrolysis, such as insulin, to the phospholipid dispersion; for example in an amount of 0.01 to 1.0 grams per gram of the phospholipid used.
  • the dispersion is then frozen; for example, to below -5° C., and then is permitted to thaw to 15° to 40° C.
  • the thawed aqueous suspension is then separated; for example, by centrifuging, to separate and recover the entrapped drug.
  • the recovered, entrapped phospholipid insulin may be employed as a controlled-release drug-delivery system on oral administration, since the drug is prevented from enzymatic hydrolysis by the employment of the phospholipid delivery agent, which is resistant to enzymatic hydrolysis by phospholipase C, thereby permitting the drug to pass through the stomach and into the gut of the patient.
  • One preferable technique which produces small-size particles for oral absorption (for example, less than 500-Angstrom particles), comprises the sonication of the drug and the phospholipid compounds together, followed by separation of the sonicated encapsulated drug within the particles from the nonencapsulated drug by techniques such as gel-partition column chromatography in U.S. Pat. No. 4,016,100.
  • the method described, while satisfactory, is not wholly desirable in that the particle size obtained is often too large for efficient absorption of the encapsulated drug.
  • My invention has been described in connection with the preparation of controlled-release drug compositions; however, where desired, my enzymatic-resistant phospholipids may be used alone for direct oral administration for use or application in the intestinal tract, where beneficial or desired.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)

Abstract

A method of preparing a controlled-release pharmaceutical compound for oral administration, which pharmaceutical compound is subject to enzymatic hydrolysis on oral administration, which method comprises encapsulating the pharmaceutical compound with a synthetic phosphatidyl compound having a modified polarhead moiety which increases the resistance of the phosphatidyl compound to phospholipase C hydrolysis.

Description

REFERENCE TO PRIOR APPLICATIONS
This application is a continuation-in-part of my copending patent applications U.S. Ser. No. 731,132, filed Oct. 12, 1976 (now U.S. Pat. No. 4,086,257, issued Apr. 25, 1978); U.S. Ser. No. 770,290, filed Feb. 22, 1977 (now U.S. Pat. No. 4,097,503, issued June 27, 1978); and U.S. Ser. No. 770,407, filed Feb. 22, 1977 (now U.S. Pat. No. 4,097,502, issued June 27, 1978), all hereby incorporated by reference.
BACKGROUND OF THE INVENTION
Phospholipids are amipathic compounds that tend to self-associate in aqueous systems to form micelles with a hydrophobic interior and hydrophilic exterior. Two types of structures can be formed by phospholipids. One type is vesicles in which a phospholipid bilayer encloses an aqueous internal space. Since the phospholipid bi-layer acts as a barrier between the aqueous internal space and the outer aqueous environment, various water-soluble compounds can be sequestered in the internal aqueous space. As a result, this particular structure has been used as a drug-delivery system (see G. Gregoriadis, New England J. Med. 295 704 (1976) and G. Gregoriadis, New England J. Med. 295 765 (1976)).
Another type of system that phospholipids can form is microemulsions in which a highly water-insoluble substance, such as cholesterols, cholesterol esters and derivatives, or triglycerides, forms an inner core surrounded by an outer monolayer of phospholipid (see L. Shorr et al., Biophys. J. 17 81a (1977)). Since the interior of these structures is hydrophobic, compounds which are nonpolar can be sequestered in the interior core of these microemulsion structures.
While both of such structures offer potentially new methods of drug delivery, much of this potential is modulated by the fact that both drug-delivery systems only have activity if directly injected into the blood-stream. Usually oral administration is not possible, since the phospholipids used would be hydrolyzed in the stomach, and hence any associated drug would be released, in whole or in part, in the stomach, and would be hydrolyzed by itself or at least exhibit a decrease in the maximal effectiveness of the drug. On the other hand, if the phospholipids could be altered in such a manner to resist hydrolysis, then oral administration of such drug-delivery systems is possible, as the delivery system would be able to pass through the stomach intact and then be absorbed by the gut.
The major enzymes responsible for the hydrolysis of phospholipids in mammals are phospholipase A and phospholipase C.
Phospholipase A2, which hydrolyzes the acyl chains of phospholipids, is maximally active at the transition temperature when the phospholipids are melting into a liquid crystalline state (see J.A.F. Op Den Kamp et al., Biochem. Biophys. Acta 406 169 (1975)). At temperatures in which the phospholipid is in the gel state, the enzyme is relatively inactive. Furthermore, if the acyl linkages to the glycerol backbone of the phospolipids are replaced by ether linkages, then the phospholipid is totally inactive. Thus, phospholipase A2 hydrolysis can be prevented rather easily.
Phospholipase C hydrolyzes the polar moiety of the phospholipid. Therefore, the physical state of the acyl chains has little bearing on the hydrolysis of the polar-head group. Thus, it is desirable to minimize or eliminate phospholipase C hydrolysis of phospholipids, and to permit the use of phospholipids in drug-delivery systems.
One technique of employing phospholipids, such as synthetic lecithins, to prepare controlled-release pharmaceutical compositions, is described in U.S. Pat. No. 4,016,100, issued Apr. 5, 1977, hereby incorporated by reference. This method comprises the steps of: dispersing a phospholipid uniformly in water to give an aqueous phospholipid dispersion having lipid spherules; adding a medicament to the aqueous phospholipid dispersion to form a medicament dispersion; freezing said medicament dispersion, thereby entrapping the medicament in the lipid spherules; and then thawing the frozen dispersion to give an aqueous suspension of the medicament entrapped in said lipid spherules. In such techniques, a wide variety of pharmaceutical compounds may be used, including bronchodilators, vitamins, medicants, hormones, antibiotics, including water-insoluble and water-soluble compounds. However, the use of the phospholipids described is not wholly satisfactory, due to the rapid hydrolysis of such phospholipids on oral administration of the encapsulated compounds.
SUMMARY OF THE INVENTION
My invention relates to a method for the preparation of controlled-release pharmaceutical compositions and to the controlled-release compositions so prepared. In particular, my invention concerns the preparation of controlled-release pharmaceutical compositions with synthetic phospholipids, which phospholipids are characterized by decreased rates of phospholipase C hydrolysis, and to the controlled-release compounds so prepared.
I have found that the use of synthetic phospholipids, in which the polar moiety of the phosphatidyl choline head group is altered, provides synthetic phospholipids having a decreased rate of phospholipase C hydrolysis which permits the use of such phospholipids as surfactants for controlled-release purposes.
The use of such phospholipids considerably enhances the ability of various drug compounds to be administered orally. It has been discovered that such phospholipids, with decreased or eliminated polar-head-group hydrolysis, permit the phospholipids to be resistant to hydrolysis in the stomach, and, therefore, such phospholipids and encapsulated compounds are able to be absorbed by the gut or intestinal system. Such phospholipids, with altered head groups, would include those phospholipids that have a fatty-acid ester linkage, or exist in the gel state at the temperature of use, such as about 37° C., or have incorporated therein high amounts of cholesterol, cholesterol derivatives or similar compounds; for example, with cholesterol greater than 35 mole percent (see J.A.F. Op Den Kamp et al., supra).
The phospholipids useful in my method are surfactants which form micelles in self-association (vesicles), or with other lipids (microemulsions), and which phospholipids are resistant to enzymatic hydrolysis. Synthetic phosphonium, sulfonium, and particularly quaternary-ammonium phospholipids, as described in my copending applications (supra), and related compounds with different polar-head groups, are useful in my method.
These synthetic phospholipids are useful in encapsulating various drugs, such as insulin and antitumor drugs, for oral administration; that is, drugs which normally would be hydrolyzed in the stomach on oral administration. The encapsulated controlled-release drug compositions, with hydrolysis eliminated or minimized, would not be released in the stomach by the hydrolysis of the encapsulating phospholipids, but would be permitted to be absorbed by the gut for eventual localization in the bloodstream or other tissues in the body, wherein the released drug could assert its desired effect.
Many drugs that are orally administered are usually hydrolyzed by enzymes in the stomach, but usually a high enough concentration of the drug is used, so that enough of the drug is able to pass through the stomach and be absorbed by the gut, and eventually enter into the bloodstream. Many other drugs, such as antitumor agents or insulin, have to be injected directly into the bloodstream, since these drugs would be inactivated totally in the stomach. However, by encapsulating these drugs in my phospholipid structures, it is possible to prevent the drug hydrolysis in the stomach. My drug-delivery system requires that the encapsulating lipid structure, itself, not be hydrolyzed, thereby releasing its contents. Therefore, my lipid drug carrier permits oral administration of many drugs that are now injected, and also allows a greater effectiveness of drugs that are presently given orally.
The phospholipids useful in my method comprise phosphatidyl compounds, wherein the sulfonium, phosphonium and quaternary-ammonium polar-head moiety of such compounds has been modified by hydrocarbon groups, particularly alkyl groups, over that of natural or synthetic lecithin or the phosphonium or sulfonium lecithin derivatives. Phosphatidyl compounds, wherein the phosphatidyl portion contains ester groups; for example, C14 to C20 fatty-acid groups (the same or different), are useful, such as dihydrocarbon phosphatidyl alkyl N-trialkyl ammonium hydroxide, wherein the hydrocarbon; for example, the alkyl group, is typically C1 to C4, with the alkyl group between the nitrogen and phosphorous atoms ranging, for example, from C1 to C10, except that natural or synthetic lecithin is excluded from these useful compounds.
Similar phosphonium and sulfonium phospholipids are useful where the sulfur atom or phosphorous atom replaces the quaternary-ammonium atom.
The phosphatidyl choline compounds useful may be represented by the structural formula: ##STR1## wherein R is a fatty radical, such as a radical derived from fatty acids or alcohols, the same or different, but preferably a C14 to C20 fatty-acid ester radical, such as myristoyl, stearoyl, palmitoyl, oleatoyl, linoleatoyl, or a natural material like egg yolk, soybeans, etc.; R1, R2 and R3 are alkyl radicals, the same or different, typically C1 to C4 radicals, such as methyl, ethyl, propyl and butyl; and R4 is an methylene radical, typically a C1 to C10 radical, preferably a C1 to C4 radical, such as dimethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, nonamethylene, etc. In the above formula, R4 cannot be dimethylene while R1, R2 and R3 are methyl radicals.
Where sulfur or phosphorous atoms replace the quaternary nitrogen, corresponding adjustment is made in the number of radical groups in accordance with the valence of the new atom. Preferred compounds are those where R1, R2 and R3 are all the same radical, particularly methyl or ethyl, and R4 is a different and preferably longer radical; for example, tetramethylene or trimethylene, and R is a fatty-acid radical.
In my method, the synthetic phospholipid is dispersed in water with the pharmaceutical compound whose release is to be controlled (other additives and surfactants added, if desired) to form a dispersion or emulsion, and, thereafter, the emulsion is coagulated, such as by precipitation, frozen, coagulants are added, the temperature or pH is changed, or other methods used to entrap and encapsulate the pharmaceutical compound within the phospholipid, and the encapsulated material is recovered for use or administration. The controlled-release material may be used alone or with other materials. One technique, in preparing controlled release with my phospholipid composition, is set forth in U.S. Pat. No. 4,016,100, supra.
For the purpose of illustration only, my method will be described in connection with the use of certain preferred synthetic phospholipids, as set forth in the examples; however, it is recognized that other phospholipids and other methods of preparation may be used, which are all within the spirit and scope of my invention.
BRIEF DESCRIPTION OF THE DRAWING
The drawing is a graphical representation of comparative tests of the hydrolysis rate of various synthetic phospholipids, comparing percent hydrolysis of the phospholipid with the time and hours.
DESCRIPTION OF THE EMBODIMENTS
Tests to determine the comparative rates of phospholipase C hydrolysis of my modified phospholipids and phosphatidyl choline were carried out as follows: 18 mg dimyristoyl derivatives of each phospholipid compound, identified in Table I, A-F, was lyophilized from benzene. To the dried lipid was added 1 ml of 0.1M KCl, 10mM CaCl2 (pH 7.4) and 2 mg of phospholipase C. Then 2 ml of diethyl ether was added to each sample. The solution so prepared is a synthetic, aqueous, acidic composition of a standardized assay mixture. The solutions were shaken at 24° C., and at various time points, aliquots were taken from the aqueous phase. The aliquots were assayed over a time period for the appearance of phosphorylcholine in the aqueous phase.
The phospholipids tested are set forth in Table I.
              TABLE I                                                     
______________________________________                                    
Identification                                                            
          Compound                                                        
______________________________________                                    
A.        Dimyristoyl phosphatidyl choline                                
B.        Dimyristoyl phosphatidyl ethyl-N--dimethyl,                     
          propyl ammonium hydroxide                                       
C.        Dimyristoyl phosphatidyl ethyl-N--dimethyl,                     
          ethyl ammonium hydroxide                                        
D.        Dimyristoyl phosphatidyl propyl-N--tri-                         
          methyl ammonium hydroxide                                       
E.        Dimyristoyl phosphatidyl butyl-N--trimethyl                     
          ammonium hydroxide                                              
F.        Dimyristoyl phosphatidyl propyl-N--triethyl                     
          ammonium hydroxide                                              
______________________________________                                    
The test results are shown in Table II and graphically in the drawing, wherein the percent hydrolysis in the composition was plotted against the time in hours in the mixture.
              TABLE II                                                    
______________________________________                                    
Data Results                                                              
Compound     Time in Hours                                                
                         % Hydrolysis                                     
______________________________________                                    
A            1/2         58                                               
             1           84                                               
             21/4        100                                              
             4           100                                              
B            1/2         13                                               
             1           53                                               
             21/4        97                                               
             4           100                                              
C            1           25                                               
             21/4        55                                               
             4           100                                              
D            1/2         2                                                
             1           5                                                
             21/4        18                                               
             4           100                                              
E & F        1           2                                                
             21/4        3                                                
             4           5                                                
______________________________________                                    
Dimyristoyl phosphatidyl choline was the most rapidly hydrolyzed phospholipid, whereas my modified phospholipid compounds were retarded in their enzymatic hydrolysis. In fact, two of the compounds tested, dimyristoyl phosphatidyl propyl-N-triethyl ammonium hydroxide (F) and dimyristoyl phosphatidyl butyl-N-trimethyl ammonium hydroxide (E), demonstrated little hydrolysis by phospholipase C.
Therefore, the synthetic modifications placed in the polar-head group structure of phosphatidyl choline have resulted in unexpected and surprising altered resistance to phospholipase C hydrolysis. My phospholipid compounds employed as surfactants and encapsulation agents for drugs, such as insulin, should not be hydrolyzed in the stomach on oral administration, assuming that suitable precautions to prevent phospholipase A hydrolysis have been taken.
A controlled-release pharmaceutical composition is prepared by dispersing the phospholipids E and F in water using a blender; for example, an amount of 0.001 to 0.2 g/ml, and then adding and dispersing a drug, subject to phospholipase C enzymatic hydrolysis, such as insulin, to the phospholipid dispersion; for example in an amount of 0.01 to 1.0 grams per gram of the phospholipid used. The dispersion is then frozen; for example, to below -5° C., and then is permitted to thaw to 15° to 40° C. The thawed aqueous suspension is then separated; for example, by centrifuging, to separate and recover the entrapped drug. The recovered, entrapped phospholipid insulin may be employed as a controlled-release drug-delivery system on oral administration, since the drug is prevented from enzymatic hydrolysis by the employment of the phospholipid delivery agent, which is resistant to enzymatic hydrolysis by phospholipase C, thereby permitting the drug to pass through the stomach and into the gut of the patient.
There are a variety of techniques which may be employed to encapsulate drugs employing my phospholipids. One preferable technique, which produces small-size particles for oral absorption (for example, less than 500-Angstrom particles), comprises the sonication of the drug and the phospholipid compounds together, followed by separation of the sonicated encapsulated drug within the particles from the nonencapsulated drug by techniques such as gel-partition column chromatography in U.S. Pat. No. 4,016,100. The method described, while satisfactory, is not wholly desirable in that the particle size obtained is often too large for efficient absorption of the encapsulated drug.
My invention has been described in connection with the preparation of controlled-release drug compositions; however, where desired, my enzymatic-resistant phospholipids may be used alone for direct oral administration for use or application in the intestinal tract, where beneficial or desired.

Claims (10)

What I claim is:
1. In a method for preparing a controlled-release pharmaceutical composition for oral administration, the method which comprises: forming an aqueous emulsion of phospholipid encapsulating agent with the pharmaceutical compound whose release is to be controlled; coagulating the emulsion to entrap the pharmaceutical compound within the phospholipid agent; and recovering the pharmaceutical composition as prepared, the improvement which comprises:
employing as the phospholipid encapsulating agent a synthetic fatty-acid phosphatidyl .[.C1 -C10 alkyl-N-C1 -C4 trialkyl.]. quaternary-ammonium hydroxide compound.[., with the proviso that the alkyl of the alkyl-N group is not an ethyl group when the alkyl groups of the N-trialkyl radicals are methyl groups.]. .Iadd.represented by the structural formula: .Iaddend. ##STR2## .Iadd.wherein R4 is a C1 -C10 methylene radical and R1, R2 and R3 are C1 -C4 alkyl radicals, with the proviso that R1, R2 and R3 at the same time are not all methyl radicals and wherein R is a fatty-acid radical.Iaddend., and which phosphatidyl quaternary-ammonium compound is resistant to enzymatic hydrolysis of phospholipase C.
2. The method of claim 1 wherein the .[.fatty acid.]. .Iadd.fatty-acid radical .Iaddend.is a C14 to C20 fatty-acid radical.
3. The method of claim 1 wherein .[.the alkyl-N of the quaternary-ammonium compound is butyl-N or propyl-N, and.]. the .[.trialkyl groups.]. .Iadd.R1, R2 and R3 alkyl radicals .Iaddend.are all the same alkyl .[.group.]. .Iadd.radical.Iaddend..
4. The method of claim 3 wherein the .[.trialkyl groups.]. .Iadd.R1, R2 and R3 alkyl radicals .Iaddend.are methyl or ethyl .[.groups.]. .Iadd.radicals.Iaddend..
5. The method of claim 1 wherein the quaternary-ammonium compound is selected from the group consisting of: dimyristoyl phosphatidyl ethyl-N-dimethyl, propyl ammonium hydroxide; .Iadd.and .Iaddend.dimyristoyl phosphatidyl ethyl-N-dimethyl, ethyl ammonium hydroxide.[.; dimyristoyl phosphatidyl propyl-N-trimethyl ammonium hydroxide; dimyristoyl phosphatidyl butyl-N-trimethyl ammonium hydroxide; and dimyristoyl phosphatidyl propyl-N-triethyl ammonium hydroxide.]..
6. The method of claim 1 wherein the pharmaceutical compound is insulin.
7. The controlled-release composition prepared by the method of claim 6.
8. The method of claim 1 wherein the encapsulated pharmaceutical compound is enzymatically hydrolyzed by phospholipase C in the stomach.
9. The controlled-release pharmaceutical composition prepared by the method of claim 1.
10. The method of claim 1 which comprises: sonification of the pharmaceutical compound and the synthetic phospholipid compound together to encapsulate the pharmaceutical compound.
US06/103,463 1976-10-12 1979-12-14 Method of preparing a controlled-release pharmaceutical preparation, and resulting composition Expired - Lifetime USRE31609E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/103,463 USRE31609E (en) 1976-10-12 1979-12-14 Method of preparing a controlled-release pharmaceutical preparation, and resulting composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/731,132 US4086257A (en) 1976-10-12 1976-10-12 Phosphatidyl quaternary ammonium compounds
US06/103,463 USRE31609E (en) 1976-10-12 1979-12-14 Method of preparing a controlled-release pharmaceutical preparation, and resulting composition

Related Parent Applications (4)

Application Number Title Priority Date Filing Date
US05/731,132 Continuation-In-Part US4086257A (en) 1976-10-12 1976-10-12 Phosphatidyl quaternary ammonium compounds
US05/770,407 Continuation-In-Part US4097502A (en) 1976-10-12 1977-02-22 Phosphatidyl sulfonium hydroxide compounds
US05/770,290 Continuation-In-Part US4097503A (en) 1976-10-12 1977-02-22 Phosphatidyl phosphonium hydroxide compounds
US05/807,373 Reissue US4145410A (en) 1976-10-12 1977-06-17 Method of preparing a controlled-release pharmaceutical preparation, and resulting composition

Publications (1)

Publication Number Publication Date
USRE31609E true USRE31609E (en) 1984-06-19

Family

ID=26800486

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/103,463 Expired - Lifetime USRE31609E (en) 1976-10-12 1979-12-14 Method of preparing a controlled-release pharmaceutical preparation, and resulting composition

Country Status (1)

Country Link
US (1) USRE31609E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009956A (en) * 1987-02-24 1991-04-23 Univ Minnesota Phospholipase A2-resistant liposomes
US5252263A (en) * 1986-06-16 1993-10-12 The Liposome Company, Inc. Induction of asymmetry in vesicles
US6447806B1 (en) 1999-02-25 2002-09-10 Novartis Ag Pharmaceutical compositions comprised of stabilized peptide particles
US8501232B2 (en) 2002-04-23 2013-08-06 Nanotherapeutics, Inc. Process of forming and modifying particles and compositions produced thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30748A (en) * 1860-11-27 Improvement in cultivators
US4016100A (en) * 1975-01-27 1977-04-05 Tanabe Seiyaku Co., Ltd. Method of preparing a controlled release liquid pharmaceutical composition
US4159988A (en) * 1974-08-06 1979-07-03 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Synthetic phospholipids, a process for their manufacture and their use
USRE30748E (en) 1976-10-12 1981-09-22 Phosphatidyl quaternary ammonium compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30748A (en) * 1860-11-27 Improvement in cultivators
US4159988A (en) * 1974-08-06 1979-07-03 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Synthetic phospholipids, a process for their manufacture and their use
US4016100A (en) * 1975-01-27 1977-04-05 Tanabe Seiyaku Co., Ltd. Method of preparing a controlled release liquid pharmaceutical composition
USRE30748E (en) 1976-10-12 1981-09-22 Phosphatidyl quaternary ammonium compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gregoriadis: "The Carrier Potential of Liposomes in Biology and Medicine," New England J. Med. 295, 704-710, Sep. 23, 1976.
Gregoriadis: The Carrier Potential of Liposomes in Biology and Medicine, New England J. Med. 295, 704 710, Sep. 23, 1976. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252263A (en) * 1986-06-16 1993-10-12 The Liposome Company, Inc. Induction of asymmetry in vesicles
US5376452A (en) * 1986-06-16 1994-12-27 The Liposome Company, Inc. Induction of asymmetry in vesicles
US5009956A (en) * 1987-02-24 1991-04-23 Univ Minnesota Phospholipase A2-resistant liposomes
US6447806B1 (en) 1999-02-25 2002-09-10 Novartis Ag Pharmaceutical compositions comprised of stabilized peptide particles
US8501232B2 (en) 2002-04-23 2013-08-06 Nanotherapeutics, Inc. Process of forming and modifying particles and compositions produced thereby

Similar Documents

Publication Publication Date Title
US4145410A (en) Method of preparing a controlled-release pharmaceutical preparation, and resulting composition
EP0161445B1 (en) Water soluble drug complex and method for production of same
US4794000A (en) Coacervate-based oral delivery system for medically useful compositions
US4844904A (en) Liposome composition
US4743449A (en) Drug-containing lipid vesicle preparation and method for preparing them
US4963526A (en) Oral insulin and a method of making the same
EP0041772B1 (en) Fat emulsion containing a steroid
WO1985005029A1 (en) Oral insulin and a method of making the same
EP0380584B1 (en) Polyene macrolide pre-liposomal powders
WO1993019738A1 (en) Method of treatment of infected tissues
JPS6354684B2 (en)
KR19990044445A (en) PPE1-containing lyophilized preparation and its preparation
JPH10510830A (en) Proliposomal powder for inhalation
JPS63112512A (en) Liposome preparation and production thereof
EP0551169A1 (en) Liposome composition and production thereof
JPS6111931B2 (en)
USRE31609E (en) Method of preparing a controlled-release pharmaceutical preparation, and resulting composition
CA1111347A (en) Liposome delivery systems
JP2844756B2 (en) Fat emulsion
WO1994028876A1 (en) Liposome powders
EP0598116B1 (en) Fat emulsion
JPH03101622A (en) Preventive and therapeutic agent of hepatitis
BE881238A (en) PHARMACEUTICAL PREPARATION AND METHOD OF PREPARATION THEREOF
CN102670509B (en) Liposomal formulation containing slightly solubility camptothecine and preparation method thereof
US20010051183A1 (en) Liposomes with enhanced circulation time and method of treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIPID SPECIALTIES, INC., 281 ALBANY ST., CAMBRIDGE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SEARS, BARRY D.;REEL/FRAME:004134/0327

Effective date: 19830425