USRE29039E - Metal deposition process - Google Patents
Metal deposition process Download PDFInfo
- Publication number
- USRE29039E USRE29039E US05/592,033 US59203375A USRE29039E US RE29039 E USRE29039 E US RE29039E US 59203375 A US59203375 A US 59203375A US RE29039 E USRE29039 E US RE29039E
- Authority
- US
- United States
- Prior art keywords
- active component
- parts
- cation
- process according
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000008569 process Effects 0.000 title claims abstract description 28
- 238000001465 metallisation Methods 0.000 title description 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 238000007772 electroless plating Methods 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 230000005291 magnetic effect Effects 0.000 claims abstract description 24
- 229910052709 silver Inorganic materials 0.000 claims abstract description 14
- 239000004332 silver Substances 0.000 claims abstract description 14
- 150000003839 salts Chemical class 0.000 claims abstract description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 239000010931 gold Substances 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 238000007747 plating Methods 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 238000000576 coating method Methods 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 20
- 150000001768 cations Chemical class 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 239000006260 foam Substances 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 7
- 238000009713 electroplating Methods 0.000 claims description 7
- 150000002894 organic compounds Chemical class 0.000 claims description 7
- 125000001424 substituent group Chemical group 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000003302 ferromagnetic material Substances 0.000 claims description 5
- 230000001235 sensitizing effect Effects 0.000 claims description 4
- 101000701936 Homo sapiens Signal peptidase complex subunit 1 Proteins 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 4
- 102100030313 Signal peptidase complex subunit 1 Human genes 0.000 claims 1
- 150000005839 radical cations Chemical class 0.000 abstract description 31
- 230000007935 neutral effect Effects 0.000 abstract description 21
- 150000003254 radicals Chemical class 0.000 abstract description 13
- 239000000969 carrier Substances 0.000 abstract description 7
- 239000012736 aqueous medium Substances 0.000 abstract description 6
- 206010070834 Sensitisation Diseases 0.000 abstract description 4
- 230000008313 sensitization Effects 0.000 abstract description 4
- 239000002984 plastic foam Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 97
- 239000010408 film Substances 0.000 description 78
- -1 tetrafluoroborate Chemical compound 0.000 description 59
- 229920002451 polyvinyl alcohol Polymers 0.000 description 23
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 21
- 229920000139 polyethylene terephthalate Polymers 0.000 description 19
- 239000005020 polyethylene terephthalate Substances 0.000 description 19
- PMZURENOXWZQFD-UHFFFAOYSA-L sodium sulphate Substances [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 9
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 9
- 235000011152 sodium sulphate Nutrition 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 108010010803 Gelatin Proteins 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 8
- 229910021538 borax Inorganic materials 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 229920000159 gelatin Polymers 0.000 description 8
- 239000008273 gelatin Substances 0.000 description 8
- 235000019322 gelatine Nutrition 0.000 description 8
- 235000011852 gelatine desserts Nutrition 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- 239000004328 sodium tetraborate Substances 0.000 description 8
- 235000010339 sodium tetraborate Nutrition 0.000 description 8
- UDATXMIGEVPXTR-UHFFFAOYSA-N 1,2,4-triazolidine-3,5-dione Chemical compound O=C1NNC(=O)N1 UDATXMIGEVPXTR-UHFFFAOYSA-N 0.000 description 7
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 7
- 238000007654 immersion Methods 0.000 description 7
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 239000008098 formaldehyde solution Substances 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 150000002739 metals Chemical group 0.000 description 5
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 229920003169 water-soluble polymer Polymers 0.000 description 4
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000174 gluconic acid Substances 0.000 description 3
- 235000012208 gluconic acid Nutrition 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 239000001476 sodium potassium tartrate Substances 0.000 description 3
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- WCBPJVKVIMMEQC-UHFFFAOYSA-N 1,1-diphenyl-2-(2,4,6-trinitrophenyl)hydrazine Chemical group [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NN(C=1C=CC=CC=1)C1=CC=CC=C1 WCBPJVKVIMMEQC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000004435 EPR spectroscopy Methods 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229910003803 Gold(III) chloride Inorganic materials 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- QMJDEXCUIQJLGO-UHFFFAOYSA-N [4-(methylamino)phenyl] hydrogen sulfate Chemical compound CNC1=CC=C(OS(O)(=O)=O)C=C1 QMJDEXCUIQJLGO-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001767 cationic compounds Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940015043 glyoxal Drugs 0.000 description 2
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- NYYDZOSYLUOKEM-UHFFFAOYSA-N oxaldehyde;hydrate Chemical compound O.O=CC=O NYYDZOSYLUOKEM-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical class [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 239000001120 potassium sulphate Substances 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- ZZHIDJWUJRKHGX-UHFFFAOYSA-N 1,4-bis(chloromethyl)benzene Chemical compound ClCC1=CC=C(CCl)C=C1 ZZHIDJWUJRKHGX-UHFFFAOYSA-N 0.000 description 1
- AWIHACLPIMKXFT-UHFFFAOYSA-N 1-(2-azulen-1-ylethenyl)azulene Chemical group C1=CC=CC=C2C(C=CC=3C4=CC=CC=CC4=CC=3)=CC=C21 AWIHACLPIMKXFT-UHFFFAOYSA-N 0.000 description 1
- KQEIJFWAXDQUPR-UHFFFAOYSA-N 2,4-diaminophenol;hydron;dichloride Chemical compound Cl.Cl.NC1=CC=C(O)C(N)=C1 KQEIJFWAXDQUPR-UHFFFAOYSA-N 0.000 description 1
- PFHTYDZPRYLZHX-UHFFFAOYSA-N 2-(2,5-dihydroxyphenyl)benzene-1,4-diol Chemical group OC1=CC=C(O)C(C=2C(=CC=C(O)C=2)O)=C1 PFHTYDZPRYLZHX-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical group NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- GPOGMJLHWQHEGF-UHFFFAOYSA-N 2-chloroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCl GPOGMJLHWQHEGF-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- MWVTWFVJZLCBMC-UHFFFAOYSA-N 4,4'-bipyridine Chemical group C1=NC=CC(C=2C=CN=CC=2)=C1 MWVTWFVJZLCBMC-UHFFFAOYSA-N 0.000 description 1
- XRHGYUZYPHTUJZ-UHFFFAOYSA-N 4-chlorobenzoic acid Chemical class OC(=O)C1=CC=C(Cl)C=C1 XRHGYUZYPHTUJZ-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- ZVNPWFOVUDMGRP-UHFFFAOYSA-N 4-methylaminophenol sulfate Chemical compound OS(O)(=O)=O.CNC1=CC=C(O)C=C1.CNC1=CC=C(O)C=C1 ZVNPWFOVUDMGRP-UHFFFAOYSA-N 0.000 description 1
- PODJSIAAYWCBDV-UHFFFAOYSA-N 5,6-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4(16),5,7,9,11(15),12-octaene Chemical class C1=NN=C2C=CC3=CC=CC4=CC=C1C2=C43 PODJSIAAYWCBDV-UHFFFAOYSA-N 0.000 description 1
- HUXPKQXHDPXCMM-UHFFFAOYSA-N 5,6-dimethylheptane-1,6-diamine Chemical class CC(N)(C)C(C)CCCCN HUXPKQXHDPXCMM-UHFFFAOYSA-N 0.000 description 1
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101100177155 Arabidopsis thaliana HAC1 gene Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021581 Cobalt(III) chloride Inorganic materials 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 102100035233 Furin Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101001022148 Homo sapiens Furin Proteins 0.000 description 1
- 101001128694 Homo sapiens Neuroendocrine convertase 1 Proteins 0.000 description 1
- 101000601394 Homo sapiens Neuroendocrine convertase 2 Proteins 0.000 description 1
- 101001072067 Homo sapiens Proprotein convertase subtilisin/kexin type 4 Proteins 0.000 description 1
- 101000828971 Homo sapiens Signal peptidase complex subunit 3 Proteins 0.000 description 1
- 101000979222 Hydra vulgaris PC3-like endoprotease variant A Proteins 0.000 description 1
- 101000979221 Hydra vulgaris PC3-like endoprotease variant B Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- WRUZLCLJULHLEY-UHFFFAOYSA-N N-(p-hydroxyphenyl)glycine Chemical compound OC(=O)CNC1=CC=C(O)C=C1 WRUZLCLJULHLEY-UHFFFAOYSA-N 0.000 description 1
- 102100032132 Neuroendocrine convertase 1 Human genes 0.000 description 1
- 102100037732 Neuroendocrine convertase 2 Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101100434170 Oryza sativa subsp. japonica ACR2.1 gene Proteins 0.000 description 1
- 101100434171 Oryza sativa subsp. japonica ACR2.2 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- WDVSHHCDHLJJJR-UHFFFAOYSA-N Proflavine Chemical compound C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21 WDVSHHCDHLJJJR-UHFFFAOYSA-N 0.000 description 1
- 108010022052 Proprotein Convertase 5 Proteins 0.000 description 1
- 102100036371 Proprotein convertase subtilisin/kexin type 4 Human genes 0.000 description 1
- 102100036365 Proprotein convertase subtilisin/kexin type 5 Human genes 0.000 description 1
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 1
- 101710180552 Proprotein convertase subtilisin/kexin type 6 Proteins 0.000 description 1
- 102100038950 Proprotein convertase subtilisin/kexin type 7 Human genes 0.000 description 1
- 101710180647 Proprotein convertase subtilisin/kexin type 7 Proteins 0.000 description 1
- 229910019032 PtCl2 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 239000004133 Sodium thiosulphate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- IGOJDKCIHXGPTI-UHFFFAOYSA-N [P].[Co].[Ni] Chemical compound [P].[Co].[Ni] IGOJDKCIHXGPTI-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- PEJLNXHANOHNSU-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 PEJLNXHANOHNSU-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 150000001299 aldehydes Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- OKVJWADVFPXWQD-UHFFFAOYSA-N difluoroborinic acid Chemical compound OB(F)F OKVJWADVFPXWQD-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XJELOQYISYPGDX-UHFFFAOYSA-N ethenyl 2-chloroacetate Chemical compound ClCC(=O)OC=C XJELOQYISYPGDX-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- AWJZTPWDQYFQPQ-UHFFFAOYSA-N methyl 2-chloroprop-2-enoate Chemical compound COC(=O)C(Cl)=C AWJZTPWDQYFQPQ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical group 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 229960000286 proflavine Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- JBSAUEMFOKUWTP-UHFFFAOYSA-N quinoline-4-carbonitrile Chemical compound C1=CC=C2C(C#N)=CC=NC2=C1 JBSAUEMFOKUWTP-UHFFFAOYSA-N 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- IEKWPPTXWFKANS-UHFFFAOYSA-K trichlorocobalt Chemical compound Cl[Co](Cl)Cl IEKWPPTXWFKANS-UHFFFAOYSA-K 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/30—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
- B41M5/32—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers one component being a heavy metal compound, e.g. lead or iron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1612—Process or apparatus coating on selected surface areas by direct patterning through irradiation means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1653—Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1657—Electroless forming, i.e. substrate removed or destroyed at the end of the process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/72—Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
- G03C1/73—Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C5/00—Photographic processes or agents therefor; Regeneration of such processing agents
- G03C5/58—Processes for obtaining metallic images by vapour deposition or physical development
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/32—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
- H01F41/34—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
Definitions
- This invention relates to a metal deposition process, and in particular to a process for the deposition of metals onto organic materials.
- metal is deposited in or on a substrate containing or consisting of, as active component, an organic compound selected from
- said dicationic compound is a salt containing in the molecule nitrogen atoms, at least two of which are quaternized and are also contained in linked at least partially aromatic rings, the link providing a chain of conjugated unsaturation between the nitrogen atoms.
- electroless plating solution is used in its normal meaning in electro-plating technology, that is, a solution containing a metal salt and a reducing agent capable of depositing metal without the external application of an electrical potential. This deposition occurs in a way which has not yet been satisfactorily explained, merely requiring some form of activation of the receiving surface, e.g. by abrasion or by an initial deposit of a trace of metal.
- the present invention resides in the discovery that the above defined organic compounds are capable of causing metal to be deposited from the electroless plating solution. Once a trace of metal has been deposited on the organic material, the metal so deposited is capable of catalyzing further deposition of the same or a different metal from the appropriate solution, and a layer of metal can be built up.
- the substrate containing or consisting of organic compounds selected from neutral free radicals, radical cations or a defined neutral compound is contacted first with sensitizer comprising a solution of a compound of a metal of the platinum group (Ru, Rh, Pd, Os, Ir, Pt) silver or gold and subsequently with the electroless plating solution.
- sensitizer comprising a solution of a compound of a metal of the platinum group (Ru, Rh, Pd, Os, Ir, Pt) silver or gold and subsequently with the electroless plating solution.
- the active component of the substrate is the neutral radical, radical cation or defined neutral compound.
- the active component may itself form the substrate or a support may be used to carry the active component in or on it.
- the support may be inert towards the active component, or may have a stabilizing influence on it. In this way some normally highly active radicals may be stabilized to allow treatment with the electroless plating solution even though there is a delay between their formation and reaction with the plating solution.
- Free radicals which may be used include those generated by decomposition of peroxides or organometallic compounds. Free radicals may be obtained by the thermal decomposition of many compounds, including the bipyridyl and related compounds mentioned below. Stable free radicals may also be used, e.g. diphenyl picryl hydrazyl.
- radical cations which may be used are those which contain two unsaturated heterocyclic or azulene ring systems (both of which may be substituted) linked directly or by a chain of conjugated unsaturation.
- examples of such radical cations are tetrathiotetracene, tetraselenotetracene, bis(indolizinum)ethylene, bis(benzthiazolinylidene)azine, bis(quinolyl)azine, and bis(azulenyl)ethylene and substituted derivatives thereof, especially with lower alkyl(1-10 carbon atom) and aryl, e.g. phenyl substituents.
- radical cations are used in the form of salts of anions such as halide, perchlorate, tetrafluoroborate, methylsulphate, bisulphate, acetate and polymeric anions such as poly(p-vinylbenzene sulphonate), poly(acrylate) and poly(styrylphosphonate).
- anions such as halide, perchlorate, tetrafluoroborate, methylsulphate, bisulphate, acetate and polymeric anions such as poly(p-vinylbenzene sulphonate), poly(acrylate) and poly(styrylphosphonate).
- Especially preferred active compounds for use in our invention are neutral compounds and radical cations derived from dications of the general formula (1). ##SPC1##
- link joins the two aromatic rings in the 4,4'- or 2,2'-positions, when it replaces R 3 ,8 or R 5 ,6, e.g. 2,2'-bipyridyls and 4,4'-bipyridyls.
- Pairs of substituents on the same or adjacent rings may be links to form cyclic structures.
- cyclic structures For example, in compounds containing a 4,4'-bipyridyl structure (2) ##SPC2##
- pairs of groups R may be linked to form a single divalent unsaturated organic group, particularly the pairs R 1 ,2, R 4 ,5, R 9 ,10, R 6 ,7, R 2 ,9 and R 4 ,7 in the first four of these cases, the divalent organic group may form a fused aromatic ring as in biquinolyl compounds.
- R 2 ,9 and R 4 ,7 are both joined by ethylenic groupings, a diazapyrene nucleus is formed.
- the active compound may be a simple compound or radical cation, or it may be part of a more complex molecule, as in dimers. It may also be polymeric, in which case the active unit may be contained in the polymer backbone, in end groups or in side chains or in combinations of such positions.
- the reference letter following each name will be used in the following description to indicate the appropriate cationic unit to avoid repeating the whole structural formula.
- the CH 3 -- P -- CH 3 . 2Cl - represents N,N'-dimethyl-4,4'-bipyridylium chloride. It is implicit in this nomenclature that the CH 3 groups are linked to the nitrogen. It is to be understood however that substitution on the carbon atoms of the nuclear unit is possible. Such substituents include alkyl, aryl, aralkyl, alkaryl and oxyhydrocarbyl groups. Of the halogens, chlorine and fluorine are preferred. It is desirable that readily reducible groups are absent, e.g. NO 2 . Therefore when using the symbol P, D, Q etc., it will be clear that as well as the parent compound, suitably substituted derivatives may also be used, e.g. 2,2'-dimethyl-4,4'-bipyridilium compounds.
- the active component be formed into or incorporated in the substrate in a variety of ways.
- a solution of the active component may be used to impregnate a porous support such as paper, cloth, wood or plastics foam.
- a solvent appropriate to the active component is used, e.g. organic solvents for neutral radicals and neutral compounds, aqueous or organic solvents for cationic compounds.
- organic solvents for neutral radicals and neutral compounds e.g. organic solvents for neutral radicals and neutral compounds
- aqueous or organic solvents for cationic compounds e.g. organic solvents for neutral radicals and neutral compounds
- it is desirable to produce the substrate in the form of a film This may be readily achieved by solvent casting, preferably in the presence of a polymeric support.
- the preferred procedure is to support the dicationic compound in a water soluble or swellable film forming polymer matrix and to convert the dicationic unit to radical cation or neutral compound in situ by means of radiation or heat.
- the procedure for forming such films is described in detail for bipyridyl and related compounds in our copending application Ser. No. 50,910, now U.S. Pat. No. 3,671,250.
- P, Q, E, A, B, M ultraviolet radiation and electron beams are the preferred forms of radiation for conversion to the radical cation and on longer exposure, to the neutral compound.
- Water soluble or a swellable polymer suitable for as the matrix material include poly(vinyl alcohol), poly(ammonium methacrylate), gelatin, aliginates, and maleic anhydride copolymers e.g. with styrene methyl vinyl ether, or ethylene.
- Soluble polysaccharides such as polysucrose may also be used.
- Polyvinylpyrrolidone is also useful, and good results have been obtained with mixtures of film forming polymers, especially with mixtures of poly(vinyl alcohol) with poly(vinylpyrrolidone), using 40-80% of the latter.
- salt and film-forming polymer are not particularly critical, being dictated mainly by practical considerations and sensitivity required.
- a solution for film casting consists of water soluble polymer 5-20 parts, salt conferring radiation sensitivity whether it is simple or polymeric, 0.1 to 10 parts, and water to 100 parts. All parts herein are by weight. Storage and handling must obviously be in the absence of radiation to which the materials are sensitive.
- water soluble polymers are preferred, certain water insoluble polymers may be used if dissolved in a suitable solvent.
- An example is a copolymer of 1,6-diaminotrimethyl hexanes and terephthalic acid which may be cast into films using a polar solvent such as dimethyl formamide and the appropriate salt.
- the colors of the radical cations are mainly green or blue or purple, but other colors may be obtained, e.g. compound (34) gives a pink coloration.
- compound (34) gives a pink coloration.
- B base, such as pyridine, quinoline, or a monoquaternized bipyridyl (M).
- Polymeric anions may be also used.
- Zwitterionic compounds are also effective; for example ##STR23##
- Electroless plating solutions are well described in the literature, especially the plating solutions for the deposition of silver, copper and nickel.
- a general reference which contains useful formulae is W. Goldie -- “Metal Coating of Plastics," Vol. 1 (1968).
- Other useful formulae are contained in Dutch Pat. application No. 6,901,919 and German Pat. application No. 1,900,983.
- Commercially available solutions such as the "Enplate” series of Enthone Inc., New Haven, Conn. are suitable.
- Silver and copper containing solutions in which the reducing agent is an aldehyde such as formaldehyde may be used.
- Silver-containing solutions in which the reducing agent is an aminophenol or one or more of the other common organic reducing agents used in photographic developers are also of general application.
- a suitable iron, cobalt or nickel depositing system comprises a hypophosphite solution. The preparation of specific solutions will be described in the Examples.
- palladium and to a lesser extent other metals such as platinum, silver and gold catalyze the decomposition of electroless plating solutions.
- the phenomenon may be utilized in the present invention by sensitizing the active substrate by contacting it with a compound of the metal required conveniently in solution, and subsequently contacting this sensitized substrate with the electroless plating solution thereby enabling the processing time and/or temperature to be reduced.
- a simple palladium salt may be used: palladium chloride is quite suitable, at a concentraion in the range 0.001 to 10 parts per 1,000 in water. Platinum, osmium, irridium, ruthenium, rhodium, silver or gold salts may be used similarly.
- the preferred concentration of the platinum or palladium solution is about 0.1 part per 1,000 parts of water, based on the weight of halide.
- a useful palladium chloride activator solution may be made by diluting the preparation, available commercially as "Enplate” Activator No. 440, 1.15 with water. Typically the active substrate is immersed in the sensitizer solution for 0.5 to 5 minutes at 15-30° C, washed and then transferred to the electroless plating solution proper.
- the active, optionally, sensitized, substrate is contacted with the electroless plating solution until the required amount of metal has been deposited.
- This can usually be gauged visually: the color of the organic compound is discharged and is replaced by finely divided metal to give a darker image.
- the metallized image darkens as the metal first formed catalyzes the reduction of the solution. In this way the optical density of the image may be intensified.
- the active components are contained in a supporting film based on a water soluble or swellable polymer such as polyvinyl alcohol
- some precautions may be needed to prevent damage to or loss of the substrate during processing.
- the process of contacting the substrate with the plating solution is carried out in cold (e.g. room temperature) solutions then the water soluble polymer should be selected such that its solubility in cold aqueous media is much less than a hot aqueous media.
- Suitable grade of polyvinyl alcohol is a medium to high molecular weight 99-100 percent hydrolyzed polyvinyl alcohol e.g.
- the metal image forming process can be carried out in the presence of a high concentration of ions, by addition of inactive salts.
- 1 to 30 percent by weight of alkali metal or ammonium salts may be used: ammonium, sodium or potassium sulphates are preferred in concentrations from 1 to 5 percent by weight of the plating solutions.
- a further alternative or additional precaution is to pretreat a polyvinyl alcohol film with an aqueous borax solution or glyoxal solution to introduce cross-linking between polymer chains; a source of borate ions e.g. borax may be included in the plating solution where, in some cases, it increases the plating rate so that lower plating temperatures can be used.
- a source of borate ions e.g. borax may be included in the plating solution where, in some cases, it increases the plating rate so that lower plating temperatures can be used.
- a surface active agent in the plating solution a surface active agent. This reduces the tendency to deposit metal prematurely.
- Long chain amines may be used.
- up to 5 percent, preferably about 2 percent by weight polyvinyl pyrrolidone may be used.
- An important application of the present invention is in rendering permanent or intensifying images (latent or visible) in those silver-free photographic systems where the image is in the form of organic neutral free radicals, radical cations or defined neutral compounds.
- An example of such a system is described in our copending patent application being based on nitrogenous salts which on exposure to radiation form radical cations.
- Preferred salts are those based on compounds containing two quaternized nitrogen atoms with a chain of conjugated sites of unsaturation between the nitrogen atoms. All of the photosensitive compounds described earlier are capable of application in this aspect of the invention.
- the photosensitive compound in a water soluble of swellable film forming polymer matrix, on exposure to radiation, especially ultraviolet or short wavelengths visible radiation, is converted into mainly radical cations.
- the polymeric matrix is capable of stabilizing the radical cations formed, but eventually the combined effect of oxygen and moisture bleaches the image unless this is kept under dessication. If the radical cation image is treated according to our process, it is rendered as permanent as in conventional photographic systems, while retaining most of the advantages of high resolution possessed by the light sensitive material we have already described. 1,500 line pairs mm - 1 can be resolved. Care must be taken however not to proceed with the metallizing process too far if the sole aim is high resolution as the growing area of metal deposit will reduce resolution. Thus in some cases it may be necessary to balance resolution with optical density.
- the film forming polymer may include in addition to the active component, the additives described in our copending application (1) speed improvement (i.e. compounds containing active hydrogen as in alcohols and amines, including alcohols, phenols, carboxylic acids, and sugars, e.g. glucose, oxalic acid, p-chlorobenzoic acids, glycerol, phenol, ethylene diaminetetracetic acid (disodium salt), picric acid, glycine, ⁇ -alarine, mellitic acid, triethanolamine, thiazine, and nictoinamide adenosine dinucleotide phosphate), (2) sensitizers (i.e. compounds which extend the response well into the visible region of the spectrum.
- speed improvement i.e. compounds containing active hydrogen as in alcohols and amines, including alcohols, phenols, carboxylic acids, and sugars, e.g. glucose, oxalic acid, p-chlorobenzoic
- Riboflavin as free base, Acronol yellow (a dyestuff comprising 3,6-dimethyl-2-(4-dimethyl-aminophenyl)-benzthiazolium chloride) and alkaline solutions of the wood resin derivative known as collophony, which are capable of extending the sensitivity up to or beyond 500 nm and other sensitizers which include 3,3'-diethylthiacyanide iodide, proflavin, acridine orange, acriflavin, N-methylphenazinium methyl sulphate, 4-cyanoquinolinium methiodide and erythrosin, (3) desensitizing (i.e.
- miscellaneous additives i.e. compounds which may be incorporated in the film to modify the radiation sensitivity or physical properties of the finished material.
- miscellaneous additives i.e. compounds which may be incorporated in the film to modify the radiation sensitivity or physical properties of the finished material.
- ammonium chloride improves the sensitivity to light and also film pliability
- other water soluble plasticizers such as urea, glycerol and other polyols, may also be used to improve this property.
- Sensitivity to X-rays may be increased by the introduction of a compound of metal of high atomic weight such as barium chloride).
- Self-supporting films may be prepared from water soluble polymers, conveniently about 0.2 to 2 mm thick.
- the film is prepared as a coating on a flexible base, such as polyethylene terephthalate film, when the coating thickness can be reduced to 0.001 to 0.1 mm.
- Data may be recorded on the film by means of ultra-violet or visible radiation of the appropriate wavelength, by electron beam or by infra-red radiation which causes the film to heat locally to a temperature at which the radical cation is formed.
- the exposed film should then be processed according to our invention as soon as possible. If it is proposed to store the exposed film for a long time before processing it is desirable to do so under dry and/or oxygen free conditions.
- One particularly suitable application is the production of magnetic information carriers by using the process of the present invention to deposit a magnetic coating on a support to which the active component has been applied.
- the support may be a non-magnetic metal, for example an aluminum disc (to make magnetic discs for computer data processing) or may be non-metallic, for example for the production of audio, video, instrumentation and computer recording tapes, preferably incorporating a polyethylene terephthalate film support.
- the non-metallic support may be made of a material chosen from paper; cellulose acetate; cellulose nitrate; ethyl cellulose; regenerated cellulose; methyl cellulose; polyamide; polymethyl methacrylate; polytrifluorochloroethylene; polytetrafluoroethylene; polymers or copolymers of ⁇ -olefines, such as ethylene, propylene and 4-methyl pentene-1; polymers and copolymers of vinyl chloride; polyvinylidene chloride; polycarbonates; polyimides, polysulphones; and linear polyesters such as polyethylene terephthalate and polyethylene-1:2-diphenoxyethane-4:4'-dicarboxylate.
- the present invention is particularly useful in the production of magnetic recording tapes.
- the non-metallic support should normally exhibit a high longitudinal tensile strength consistent with a satisfactory transverse strength and resistance to fibrillation.
- the support should also be dimensionally stable.
- Such properties are provided by biaxially oriented and heat set polyethylene terephthalate film.
- the so-called "tensilized" grades of polyethylene terephthalate film which have generally higher longitudinal tensile strengths than normal grades are particularly useful.
- the support When the support consists of a polymeric film it is generally biaxially oriented to provide the desired properties. Methods of production of such films are well known in the art.
- the supports e.g., polyethylene terephthalate, suitable for the production of the information carriers according to this invention are hydrophobic. Accordingly it is generally desirable to pretreat the surface of the support so as to improve its adhesion to the active component or the composition containing the active component which is applied over it.
- the surface of the support can be subjected to a physical or chemical treatment or an anchor coat may be applied to it. Alternatively, a physical or chemical treatment may be used in conjunction with the application of an anchor coat.
- Convenient physical or chemical treatments include treating the surface with etching or solvent agents such as chromic acid in sulphuric acid, hot nitric acid, potassium permanganate and o-chlorophenol; exposing the surface to ozone; exposing the surface to flame treatment; and exposing the surface to ionizing radiation such as that commonly known as corona discharge treatment.
- etching or solvent agents such as chromic acid in sulphuric acid, hot nitric acid, potassium permanganate and o-chlorophenol
- Useful anchor coats include those suitable for improving the bonding properties to photographic emulsions, for example copolymers of conjugated diolefines, particularly butadiene, with one or more comonomers selected from acrylonitrile, styrene, methyl methacrylate, methacrylic acid and itaconic acid, such as a butadiene/styrene/itaconic acid terpolymer, preferably in the proportion 25 to 40/53 to 74.5/0.5 to 7 mole percent respectively.
- anchor coat formulations include copolymers or terpolymers of vinylidene chloride containing at least 35 mole percent of vinylidene chloride.
- Suitable comonomers are vinyl acetate, vinyl propionate; vinyl chloroacetate; vinyl chloride; vinyl bromide, methyl, isobutyl or chloroethyl methacrylate; methyl chloroacrylate; itaconic acid and the methyl, ethyl and butyl esters of itaconic acid; acrylonitrile; methacrylonitrile; styrene; and acrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate and butyl acrylate, and acrylic and methacrylic acids.
- Terpolymers of vinylidene chloride comprising 75 to 95 mole percent of vinylidene chloride, 4 to 20 mole percent of an
- Polymers, copolymers and terpolymers of a vinyl halogenoester or a vinyl cyanoester may alternatively be used as the anchor coat.
- Suitable formulations are disclosed in British Nos. 1,208,821 and 1,208,822.
- Polyvinyl alcohol is another suitable anchor coat.
- a layer of gelatin may also be used in conjunction with or instead of layers of the above anchor coating materials.
- the anchor coat may be applied to the surface of the completed base, that is for example in the case of polyethylene terephthalate film after it has been biaxially oriented and heat set.
- the anchor coat may be applied between the stretching operations; such a technique is useful in the production of a polyethylene terephthalate film base.
- the overall thickness of the anchor coat layer or combination of layers is preferably in the region of one micron.
- Preferred magnetic coatings are nickel/phosphorus or nickel/cobalt/phosphorus.
- a plating solution which deposits a nickel-cobalt-phosphorus layer is useful according to this invention. Depositions from such solutions may be effected by the autocatalytic reduction of nickel and cobalt source ions, with hypophosphite ions serving both as a reducing agent and a source of phosphorus for the deposited ferromagnetic alloy.
- a suitable solution has the following composition (measured in parts by weight)
- Such an electroless plating solution may be employed within a temperature range of 20 to 95° C, preferably 25 to 50° C. Using such a bath at 30° C a plating of about one micron in thickness can be deposited in 60 minutes.
- a solution capable of depositing cobalt and phosphorus may include cobalt sulphate, sodium hypophosphite, ammonium sulphate and sodium citrate.
- Providing the deposition of ferromagnetic material is not too excessive the high resolution is reproducible in the magnetic information carriers. Accordingly it is possible to increase the storage capabilities of a carrier produced according to the invention by disposing the recording tracks closer together than is possible with carriers produced by conventional photographic techniques. This is of particular advantage in high density recording, for instance in computer input or output recording tape.
- the ferromagnetic material in sharply defined and closely packed discrete patterns over the surface of the support. Accordingly discrete ferromagnetic recording filaments or tracks may be deposited parallel to the read/write axis of a recording tape along which the reading or recording transducers traverse. It is also possible to arrange the recording filaments or tracks transversely across the recording tape and to traverse the recording or reading transducers appropriately across the tapes. Other forms of recording zones include ferromagnetic spots, conveniently in the shape of ellipses, deposited on the surface of the support. Alternatively information may be recorded in one or more variable area or variable density tracks. It will be understood that whereas the invention is described mainly with reference to recording tapes which are our preferred form of information carrier, other forms such as recording discs and cards also fall within the ambit of this specification.
- Recording filaments or tracks on magnetic recording tapes produced according to this invention have higher information storage capabilities when used in saturation digital recording than tapes produced by conventional processes. It has been found that adjacent tracks of conventional magnetic tapes tend to degrade each other. This effect arises through the magnetic fields of one track interfering with and demagnetizing part of the bit-domain of an adjacent track, thereby reducing its sharpness and the strength of its read-out signal. This interference can be reduced by making the track as narrow as possible, that is filamentary, so as to approach the width of a single unidirectional domain as long as the readout voltage is not reduced to an unacceptable level. This reduction in width is made possible by the high resolution obtainable with this invention.
- Prior art magnetic recording tapes are often made by applying ferric oxide particles in a resinous binder to the surface of a support.
- the particles are aligned by subjecting them to the influence of a magnetic field while the binder cures or the solvent used to apply it evaporates off.
- the production of tapes or other forms of information carrier according to this invention is effected by exposing the coated support with suitable sensitizing radiation.
- a discrete pattern of ferromagnetic material e.g., in the form of filaments or tracks
- the coating is exposed by directing the sensitizing radiation through a negative image of the desired pattern.
- the exposed areas of the coating become sensitized and susceptible to electroless plating by the techniques hereinbefore described thereby depositing the desired ferromagnetic material pattern.
- magnetic information carriers particularly magnetic recording tapes
- magnetic coatings such as those based on ferric oxide having a thickness up to about 10 microns, generally greater than 4 microns but thicknesses as low as 3 microns have been employed for less critical audio uses.
- the ferromagnetic layers applied according to this invention can be applied in smaller thicknesses of 0.1 micron with satisfactory read/write performance.
- a plating thickness of the order of 2 microns is adequate, a thickness of about 1 micron being useful for most applications although a thickness in the region of 0.1 micron is useful for certain applications.
- the support may have a thickness up to about 50 microns.
- the thickness chosen in practice will generally be the thinnest possible consistent with the desired strength for the particular application.
- Tensilized film is particularly useful as a compact tape having the requisite longitudinal strength can be made from thin film.
- Polyethyelene terephthalate film is preferred for the production of such tapes. Where compactness is desirable it is advantageous to use tensilized film. If this is not so important balanced film, that is film which is oriented by stretching to substantially the same extent in the longitudinal and transverse directions, may be used.
- Audio recording tape produced according to this invention may use balanced polyethylene terephthalate film having a thickness in the range 25 to 40 microns, conveniently around 36 microns for standard tapes. Audio tapes having a higher recording capacity may be produced from tensilized polyethylene terephthalate film having a thickness from 4 to 20 microns, preferably between 6 and 15 microns. Such tape is suitable for storage in cassettes.
- Video tapes in which the picture image is recorded magnetically and audio and control tracks are also incorporated on the same tape, generally require high storage capabilities and may be made on a tensilized polyethylene terephthalate film support of the same character specified for audio tapes.
- Computer and instrumentation tapes may be made on balanced film but they too can be made on a tensilized polyethylene terephthalate film support as specified for audio tapes when high storage capabilities are required. They may also be stored on cassettes.
- Instrumentation tapes are particularly useful for monitoring the operation of an industrial plant by recording the variation of controls and/or process conditions.
- Information may be recorded upon and read-out from the magnetic information carriers according to this invention by any of the known systems e.g., by inductive recording.
- a magneto-optic recording system may be employed if desired.
- information may be written into a carrier in which the magnetic coating is initially uniformly saturated in one direction by illuminating the recording location briefly with a light beam so as to raise the local surface temperature above the Curie point of the coating.
- a magnetic field applied in the direction opposite to the saturation of the coating and of a value less than the coercive force of the coating causes the heated area to assume reverse magnetization as it cools to below the Curie point.
- the temperature of the recording location may be raised to a level at which its coercivity falls below the value of the applied field thereby enabling reversal of magnetization to occur.
- Read-out is effected by monitoring the rotation of the plane of polarization of incident light transmitted through or reflected by the material.
- Metallized foams may be prepared by taking a plastics foam, introducing the active component, electroless plating, consolidating the deposited metal by electroplating and optionally dissolving out, burning off or otherwise removing the plastics material.
- a circuit for the construction of electrical or electronic equipment is prepared by forming a circuitwise distribution of activating component over a base support material, e.g., plastics laminate sheet, electroless plating, (after optional sensitization) and building up the metallic layer to a sufficient thickness by further electroless or conventional electroplating technique. It should be noted that no etching stage is required. Also because of the high resolution of the film, a high component density is possible.
- Circuits may also be prepared having regions of differential resistivity by using different metals in different parts thereof.
- a first circuitwise distribution of active component is plated with a highly conducting metal, e.g., copper. Gaps are left where lower conductivity is required and a second circuitwise distribution of active component is applied to join the gaps. This is then plated to the required degree with a higher resistivity metal e.g. nickel/iron mixtures.
- a higher resistivity metal e.g. nickel/iron mixtures.
- This technique is applicable where substrate is used in which the active component is bound in a polymer, e.g., polymers containing bipyridyl radical cations in the backbone or side chain.
- a film containing a bipyridyl salt is exposed to ultraviolet radiation to form a first circuit image of radical cations and this is electroless plated with a first plating solution, e.g., copper. Gaps are left in the circuit where a resistive component is required.
- a first plating solution e.g., copper.
- Gaps are left in the circuit where a resistive component is required.
- the bipyridyl salt which is not converted to radical cation is bound in the substrate, it may then be further exposed to ultraviolet radiation to form a second image of radical cations, linked to the first.
- This is then plated with a second plating solution e.g. an iron-nickel mixture, to form resistive elements.
- the operation may be repeated with different metals if desired, but the metal of lowest resistivity should be deposited first.
- a film of polyvinyl alcohol containing 10 percent by weight of N,N'-dimethylbipyridilium dichloride was exposed to ultraviolet radiation through a negative of varying optical density.
- the image obtained was dark blue with an optical density in the range from 0.1 to 0.5.
- This film was processed by immersion in an electroless plating solution for 20 minutes at 20° C.
- the developer was prepared from the following components dissolved in water and made up to 1,000 parts.
- the first four components are based on a physical developer published by A, F. Odell (J. Ind. Eng. Chem. 25,877 (1933). The last two components were added to reduce the effect of water on the polyvinyl alcohol film.
- the blue color was discharged and was replaced by a dark brown image with optical density in the range 0.1 to 2.2 after washing and drying.
- the 2,4-diaminodiphenol dihydrochloride was replaced by the same weight of p-methylaminophenol sulphate ("metol”), p-hydroxy phenylaminoacetic acid (“glycin”) or p-aminophenol, and good results were obtained.
- This developing solution provides a higher optical density, but is unsuitable for film materials in which there are halides present, because the silver halide is precipitated.
- the developer was made up by dissolving the following components in water and making up to 1 liter.
- a polyvinyl alcohol film containing 10 percent by weight of N,N'-dimethylbipyridilium methyl sulphate was exposed to ultraviolet light through a wire mesh grid until the optical density reached about 2. After immersion in the above solution for 10 minutes at 20° C, washing and drying, the silver image had an optical density greater than 4, in the exposed areas.
- Example 2 The procedure of Example 2 was repeated but including poly(vinyl pyrrolidone) (20 parts) in addition to the surface active agents. With this solution, it was found possible to use active components containing halides without undue fogging.
- a glass plate coated with gelatin was immersed in a 10 percent aqueous solution of N,N'-dimethylbipyridilium dichloride. The plate was dried and exposed to ultraviolet light through a metal grid.
- a glass plate coated with gelatin (0.001 inch thick) was immersed in a solution of N,N'-dimethyl bis(pyridinium) methyl sulphate (10 percent aqueous solution) for 1 minute, rinsed with distilled water for 5 seconds and allowed to dry. After exposure for about 5 minutes, through a line negative, to a 100 watt mercury vapor lamp at 50 cm. the plate was immersed in a palladium chloride solution made up from PdCl 2 (0.1 part) concentrated hydrochloric acid (10 parts) and water (to 1000 parts). After 1 minute the plate was removed, washed with water and developed in a nickel-based electroless plating solution made up from PdCl 2 (0.1 part) concentrated hydrochloric acid (10 parts) and water (to 1000 parts). After 1 minute the plate was removed, washed with water and developed in a nickel-based electroless plating solution made up from
- Example 5 The procedure of Example 5 was repeated using the palladium sensitizer, but the period of residence in the nickel solution was increased to 30 minutes. The image became metallic in appearance and was sufficiently conductive to be electroplated.
- a polyethylene terephthalate film (“Melinex”) subcoated with an alkyd resin varnish was coated with a solution containing
- Example 5 The solution was evaporated to give a sensitive coating about 0.025 mm thick. Preparation was carried out under subdued artificial light. The film was exposed through a line negative for 3 minutes under the conditions of Example 5. After exposure it was immersed in a solution of auric chloride (0.5 part) and concentrated hydrochloric acid (10 parts) in water (to 1,000 parts) for 1 minute.
- Example 7 Two pieces of coated film prepared as in Example 7 were exposed and sensitized with a palladium salt as in Example 5. They were then washed and developed in the following solution.
- a glass plate was coated, exposed and sensitized by the procedure of Example 5. After washing, the gelatin layer was hardened by formaldehyde treatment (5 minutes) in a solution consisting of
- a plate was coated, exposed and sensitized as in Example 5 and then developed for 10 minutes at room temperature in the following solution.
- a solution of diphenyl picryl hydrazyl (2 percent in acetone) was used to draw an image on a piece of polyvinyl alcohol film, which was then dried under nitrogen.
- the film was sensitized with 0.1 percent palladium chloride solution and then developed in the copper plating solution of Example 4. After 5 minutes the image had a dark brown-black appearance. After 30 minutes the image was metallic and had a resistance of about 200 ohm/square.
- the foam was drained, dried and the radical was formed by heating at 100° C for 30 minutes.
- the foam was then immersed in a plating solution as described in Example 4 and a red-brown deposit of copper formed throughout the foam, which was then found to be conductive.
- the surface of a piece of phenol formaldehyde laminate was roughened (by abrading it with emery paper), coated with the following solution and allowed to dry.
- the board After exposure to UV light through a printed circuit negative, the board was developed in the following solution for 30 minutes at room temperature (20° C).
- the resulting deposit of copper had a resistivity of ⁇ 1 ohm/square and cold be built up in thickness by electroplating or continued immersion in the above solution. These thicker deposits of copper (0.001 - 0.002 inch) could be soldered using conventional techniques.
- a polyethylene terephthalate film (“Melinex”) subcoated with an alkyd resin varnish was coated with a solution containing
- the solution was evaporated at a temperature not exceeding 75° C to give a sensitive coating about 0.003 mm thick.
- Preparation was carried out under subdued artificial light.
- the film was exposed to electrons from a scanning electron microscope.
- the electron energy was varied from 10 - 80 keV.
- Estimated spot size was 0.2 - 0.5 ⁇ .
- the image color was dark green.
- Example 1 On extended exposure to electrons the image became red due to the formation of the neutral compound, which could also be plated with the solution of Example 1.
- a coated polyethylene terephthalate film was prepared as in Example 14 and exposed to ultraviolet radiation in the cavity of an electron spin resonance spectrometer.
- a green coloration of the radical cation formed and the spin concentration increased linearly with exposure time up to 2.5 ⁇ 10 15 spins/cm 2 .
- the optical density reached 0.5 at 610 nm.
- the radical cation image was immersed in the plating solution of Example 1 and a very dark brown image of optical density >4 attained.
- a coated polyethylene terephthalate film was prepared as in Example 14 and exposed to electrons in a scanning electron microscope at an energy of 50 kev.
- the exposed film had an optical density of 0.5 at 610 nm and the radical concentration was 1.4 ⁇ 10 16 spins/cm 2 , as measured by electron spin resonance.
- After immersion in the plating solution of Example 1 the image was examined by electron microscopy and was shown to have resolved ⁇ 1500 line pairs/mm.
- a coated polyethylene terephthalate film was prepared as in Example 14 and exposed to ultraviolet radiation through a metal grid to produce a dark green radical cation image.
- An electroless plating solution was prepared by the method of Belgian Patent 637398.
- a film formed by casting on a glass plate produced a blue or purple radical cation image on exposure to UV light.
- the image was developed with the plating solution of Example 1 to give a black image.
- a polymer was prepared from p-xylylene dichloride and 2,2'-bipyridyl. The polymer analyzed consistent with the repeating units: ##SPC7##
- a poly(vinyl alcohol) film containing this polymer rapidly turned blue on exposure too sunlight, and on immersion in the plating solution of Example 1 a black deposit was obtained.
- a film was cast from a solution containing 10 percent poly(vinyl alcohol), 1 percent N,N'-bisphenyl-2,7-diazapyrinium difluoroborate, 0.2 percent ammonium chloride, 0.5 percent glucose.
- the film responded to light of wavelength up to at least 436 nm, to give a radical cation image which blackened when immersed in the plating solution of Example 3.
- a film was cast following the procedure of Example 20 using 1,2-bis(1'-methyl-4'-pyridinium)ethylene di(methyl) sulphate). It gave a magenta image in sunlight, when exposed through a metal grid. The magenta image blackened when immersed in the plating solution of Example 3.
- a magnetic tape having a multifilamentary recording pattern was made in this Example.
- the support was a balanced biaxially oriented and heat set polyethylene terephthalate film coated with an anchor coating of thickness 1 micron comprising a copolymer of 88 percent vinylidene chloride and 12 percent acrylonitrile.
- the film had an overall thickness of 36 microns.
- a coating composition incorporating N,N'-dimethyl bipyridilium as the active component and polyvinyl alcohol as a carrier matrix was made up in water.
- the composition had the following constitution
- This composition was applied to the subbed surface of the support film and dried slowly at room temperature (15°-30° C).
- the dried film was exposed to ultra-violet light for 60 seconds through a lined negative image so as to sensitize the coating by exposure in tracks 0.04 mm wide spaced 0.01 mm.
- the exposed film was immersed in a bath of the sensitizer solution maintained at a temperature of 25° C for one minute to deposit a layer of palladium metal over the exposed parts of the coating.
- the film was then washed with distilled water.
- the bath was maintained at a temperature of 30° C and plating was effected for about 60 minutes.
- the plated film was finally washed with distilled water and was found to have a strongly adherent nickel/phosphorus coating about one micron in thickness in the regions exposed to the ultraviolet light which was capable of information storage by employing inductive recording techniques for write-in and read-out.
- a multifilamentary recording pattern was applied to a carrier by this Example.
- the support was a balanced biaxially oriented and heat set polyethylene terephthalate film coated with an anchor coating of thickness 1 micron comprising a copolymer of 88 percent vinylidene chloride and 12 percent acrylonitrile, and a layer of gelatin; 0.001 inch thick.
- the gelatin surface was immersed in a solution of N,N'-dimethyl bis(pyridinium)methyl sulphate (10 percent aqueous solution) for 1 minute, rinsed with distilled water for 5 seconds and allowed to dry.
- the coated film was exposed for about 5 minutes through a line negative to a 100 watt mercury vapor lamp at 50 cm, followed by a treatment for five minutes to harden the gelatin layer in the following solution:
- the film was then washed in distilled water and developed in a nickel-based electroless plating solution made up from
- the developing bath was maintained at a temperature of 30° C and plating was effected for about 60 minutes.
- the plated film was washed with distilled water.
- a strongly adherent black coating was deposited in the regions exposed to ultraviolet light.
- the coating was capable of information storage which could be written-in and read-out by inductive recording techniques.
- Example 22 was repeated so as to deposit an array of elliptical spots of magnetic material on the film.
- the film was exposed to ultra-violet light through a negative of the desired elliptical spots.
- the spots of nickel/phosphorus applied to the film were found to be strongly adherent thereto.
- Information was stored on the carrier so obtained by a magneto-optic technique in which magnetic coating, which was in a state of uniform saturation in one direction prior to recording, was illuminated by a laser beam (argon ion, 1 watt output) representing the information to be recorded.
- a magnetic field of 150 oersteds was applied in the direction opposite to the initial direction of saturation.
- the stored information was read-out by observing a rotation in the plane of polarization of incident light reflected from the elliptical recording spots on the surface of the film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemically Coating (AREA)
Abstract
Metal is deposited on a substrate containing neutral radicals, radical cations or neutral molecules (the latter being derived from a dication normally stable in aqueous media), by contacting the substrate with an electroless plating solution, optionally after sensitization with a salt of a platinum group metal silver or gold. The use of the process for data recording, particularly for the production of magnetic information carriers e.g. tapes or discs, metallizing plastic foam and for producing printed circuits is described.
Description
This application .Iadd.is a reissue application of U.S. Pat. No. 3,853,589 which patent .Iaddend.is a continuation-in-part of application Ser. No. 88,173 filed Nov. 9, 1970, now abandoned.
This invention relates to a metal deposition process, and in particular to a process for the deposition of metals onto organic materials.
According to the invention metal is deposited in or on a substrate containing or consisting of, as active component, an organic compound selected from
1. NEUTRAL FREE RADICALS,
2. RADICAL CATIONS, AND
3. NEUTRAL MOLECULES, Z, derived from compounds containing dicationic units by two electron reduction, said dicationic compound being Z+ + in the equation ##STR1##
and in which Z+ + is the normally stable oxidation state of the molecule in aqueous media; preferably, by contacting the substrate with an electroless plating solution, said dicationic compound is a salt containing in the molecule nitrogen atoms, at least two of which are quaternized and are also contained in linked at least partially aromatic rings, the link providing a chain of conjugated unsaturation between the nitrogen atoms.
The term "electroless plating solution" is used in its normal meaning in electro-plating technology, that is, a solution containing a metal salt and a reducing agent capable of depositing metal without the external application of an electrical potential. This deposition occurs in a way which has not yet been satisfactorily explained, merely requiring some form of activation of the receiving surface, e.g. by abrasion or by an initial deposit of a trace of metal. The present invention resides in the discovery that the above defined organic compounds are capable of causing metal to be deposited from the electroless plating solution. Once a trace of metal has been deposited on the organic material, the metal so deposited is capable of catalyzing further deposition of the same or a different metal from the appropriate solution, and a layer of metal can be built up.
In a modification of the invention, the substrate containing or consisting of organic compounds selected from neutral free radicals, radical cations or a defined neutral compound is contacted first with sensitizer comprising a solution of a compound of a metal of the platinum group (Ru, Rh, Pd, Os, Ir, Pt) silver or gold and subsequently with the electroless plating solution. This technique is preferred in some cases where the straight forward electroless plating without the sensitizer requires too long a processing time or too high a temperature for convenience.
The active component of the substrate is the neutral radical, radical cation or defined neutral compound. The active component may itself form the substrate or a support may be used to carry the active component in or on it. The support may be inert towards the active component, or may have a stabilizing influence on it. In this way some normally highly active radicals may be stabilized to allow treatment with the electroless plating solution even though there is a delay between their formation and reaction with the plating solution.
Free radicals which may be used include those generated by decomposition of peroxides or organometallic compounds. Free radicals may be obtained by the thermal decomposition of many compounds, including the bipyridyl and related compounds mentioned below. Stable free radicals may also be used, e.g. diphenyl picryl hydrazyl.
Preferred radical cations which may be used are those which contain two unsaturated heterocyclic or azulene ring systems (both of which may be substituted) linked directly or by a chain of conjugated unsaturation. Examples of such radical cations are tetrathiotetracene, tetraselenotetracene, bis(indolizinum)ethylene, bis(benzthiazolinylidene)azine, bis(quinolyl)azine, and bis(azulenyl)ethylene and substituted derivatives thereof, especially with lower alkyl(1-10 carbon atom) and aryl, e.g. phenyl substituents. These radical cations are used in the form of salts of anions such as halide, perchlorate, tetrafluoroborate, methylsulphate, bisulphate, acetate and polymeric anions such as poly(p-vinylbenzene sulphonate), poly(acrylate) and poly(styrylphosphonate).
Another group of radical cations is that derived by reduction from the group of dications on which the above definition of active neutral compounds is based. This relationship will be made clearer by the following equation. Compounds such as bipyridyls can be oxidized/reduced according to the scheme: ##STR2## Thus a dication (the normally stable oxidation state in aqueous media) supplied with a single electron forms a radical cation, which with a further electron is converted to the neutral compound. Both Z+ and Z are active in the required manner according to our invention, with electroless plating solutions, where Z+ + is the stable form in aqueous media.
Especially preferred active compounds for use in our invention are neutral compounds and radical cations derived from dications of the general formula (1). ##SPC1##
where R1 -2 are hydrogen, halogen or organic substituents (including groups between units having the structure 1, which form polymeric salts); n = 0 or an integer.
Usually the link joins the two aromatic rings in the 4,4'- or 2,2'-positions, when it replaces R3,8 or R5,6, e.g. 2,2'-bipyridyls and 4,4'-bipyridyls.
Pairs of substituents on the same or adjacent rings may be links to form cyclic structures. For example, in compounds containing a 4,4'-bipyridyl structure (2) ##SPC2##
pairs of groups R may be linked to form a single divalent unsaturated organic group, particularly the pairs R1,2, R4,5, R9,10, R6,7, R2,9 and R4,7 in the first four of these cases, the divalent organic group may form a fused aromatic ring as in biquinolyl compounds. When R2,9 and R4,7 are both joined by ethylenic groupings, a diazapyrene nucleus is formed.
The active compound may be a simple compound or radical cation, or it may be part of a more complex molecule, as in dimers. It may also be polymeric, in which case the active unit may be contained in the polymer backbone, in end groups or in side chains or in combinations of such positions.
The defined neutral compounds and radical cations which are described generally above and which will be described in greater detail with the examples later, have the common feature of being formable from a cationic compound on exposure to heat or radiation. Salts containing mono cations are reduced to neutral radicals.
Examples of monomeric cations with the above properties are (3) to (8). ##SPC3##
The reference letter following each name will be used in the following description to indicate the appropriate cationic unit to avoid repeating the whole structural formula. The CH3 -- P -- CH3. 2Cl- represents N,N'-dimethyl-4,4'-bipyridylium chloride. It is implicit in this nomenclature that the CH3 groups are linked to the nitrogen. It is to be understood however that substitution on the carbon atoms of the nuclear unit is possible. Such substituents include alkyl, aryl, aralkyl, alkaryl and oxyhydrocarbyl groups. Of the halogens, chlorine and fluorine are preferred. It is desirable that readily reducible groups are absent, e.g. NO2. Therefore when using the symbol P, D, Q etc., it will be clear that as well as the parent compound, suitably substituted derivatives may also be used, e.g. 2,2'-dimethyl-4,4'-bipyridilium compounds.
The active component be formed into or incorporated in the substrate in a variety of ways. A solution of the active component may be used to impregnate a porous support such as paper, cloth, wood or plastics foam. A solvent appropriate to the active component is used, e.g. organic solvents for neutral radicals and neutral compounds, aqueous or organic solvents for cationic compounds. In many applications it is desirable to produce the substrate in the form of a film. This may be readily achieved by solvent casting, preferably in the presence of a polymeric support. In the case of the radical cations and neutral compounds prepared from the defined dications, the preferred procedure is to support the dicationic compound in a water soluble or swellable film forming polymer matrix and to convert the dicationic unit to radical cation or neutral compound in situ by means of radiation or heat. The procedure for forming such films is described in detail for bipyridyl and related compounds in our copending application Ser. No. 50,910, now U.S. Pat. No. 3,671,250. For the monomeric cations referred to earlier as P, Q, E, A, B, M ultraviolet radiation and electron beams are the preferred forms of radiation for conversion to the radical cation and on longer exposure, to the neutral compound.
Water soluble or a swellable polymer suitable for as the matrix material include poly(vinyl alcohol), poly(ammonium methacrylate), gelatin, aliginates, and maleic anhydride copolymers e.g. with styrene methyl vinyl ether, or ethylene.
Soluble polysaccharides such as polysucrose may also be used. Polyvinylpyrrolidone is also useful, and good results have been obtained with mixtures of film forming polymers, especially with mixtures of poly(vinyl alcohol) with poly(vinylpyrrolidone), using 40-80% of the latter.
The proportions of salt and film-forming polymer used are not particularly critical, being dictated mainly by practical considerations and sensitivity required. Typically a solution for film casting consists of water soluble polymer 5-20 parts, salt conferring radiation sensitivity whether it is simple or polymeric, 0.1 to 10 parts, and water to 100 parts. All parts herein are by weight. Storage and handling must obviously be in the absence of radiation to which the materials are sensitive.
While water soluble polymers are preferred, certain water insoluble polymers may be used if dissolved in a suitable solvent. An example is a copolymer of 1,6-diaminotrimethyl hexanes and terephthalic acid which may be cast into films using a polar solvent such as dimethyl formamide and the appropriate salt.
Examples of compounds containing dications which may be converted at least into radical cations by heat or radiation in the presence of a water soluble or swellable polymer are: R -- P -- R 2X- where R is:
______________________________________
(9) CH.sub.3 XCl, Br,
SiF.sub.6, HSO.sub.4,
CH.sub.3 SO.sub.4
(10)
##STR3## XCl
(11)
##STR4## XCl
(12)
##STR5## XCl
(13)
##STR6## XCl
(14)
##STR7## XCl
(15)
##STR8## XCl
(16) CH.sub.2 CON(C.sub.2 H.sub.5).sub.2
XCl
(17)
##STR9## XCl
(18)
##STR10## XCl
(19) CH.sub.2 CONH-t-but. XCl
(20) (CH.sub.2)COCH.sub.3 XBr
(21) CH.sub.2 CH.sub.2 OH XCl
(22)
##STR11## XCl
(23)
##STR12## XCl
(24) CH.sub.3 COOC.sub.2 H.sub.5
XBr
(25)
##STR13## XCl
(26)
##STR14## XCl
(27)
##STR15## XCl
(28)
##STR16## XCl
(29)
##STR17## XCl
∥
t-but=tertiary butyl
i-prop = isopropyl
The groups R may be different as in
(30)
##STR18##
MR'X.sup.-
where R' is
(31)
##STR19## XCl
(32)
##STR20## XCl
(33) CH.sub.3 XCl
Other compounds which have been tested are
- (34) CH.sub.3QCH.sub.3 (CH.sub.3 SO.sub.4 .sup.-).sub.2
(35)
##STR21##
(36)
CH.sub.3ECH.sub. 3 (CH.sub.3 SO.sub.4 .sup.-).sub.2
(37)
##STR22##
______________________________________
The colors of the radical cations are mainly green or blue or purple, but other colors may be obtained, e.g. compound (34) gives a pink coloration. ##SPC4##
where B = base, such as pyridine, quinoline, or a monoquaternized bipyridyl (M). ##SPC5##
Polymeric anions may be also used. Zwitterionic compounds are also effective; for example ##STR23##
Electroless plating solutions are well described in the literature, especially the plating solutions for the deposition of silver, copper and nickel. A general reference which contains useful formulae is W. Goldie -- "Metal Coating of Plastics," Vol. 1 (1968). Other useful formulae are contained in Dutch Pat. application No. 6,901,919 and German Pat. application No. 1,900,983. Commercially available solutions such as the "Enplate" series of Enthone Inc., New Haven, Conn. are suitable.
The most readily available solutions for use in our invention are those containing metals of Group VIII and IB together with mercury, lead, tin, antimony and bismuth.
Silver and copper containing solutions in which the reducing agent is an aldehyde such as formaldehyde may be used. Silver-containing solutions in which the reducing agent is an aminophenol or one or more of the other common organic reducing agents used in photographic developers are also of general application. A suitable iron, cobalt or nickel depositing system comprises a hypophosphite solution. The preparation of specific solutions will be described in the Examples.
It is known that palladium and to a lesser extent other metals such as platinum, silver and gold catalyze the decomposition of electroless plating solutions. The phenomenon may be utilized in the present invention by sensitizing the active substrate by contacting it with a compound of the metal required conveniently in solution, and subsequently contacting this sensitized substrate with the electroless plating solution thereby enabling the processing time and/or temperature to be reduced. A simple palladium salt may be used: palladium chloride is quite suitable, at a concentraion in the range 0.001 to 10 parts per 1,000 in water. Platinum, osmium, irridium, ruthenium, rhodium, silver or gold salts may be used similarly. The preferred concentration of the platinum or palladium solution is about 0.1 part per 1,000 parts of water, based on the weight of halide. A useful palladium chloride activator solution may be made by diluting the preparation, available commercially as "Enplate" Activator No. 440, 1.15 with water. Typically the active substrate is immersed in the sensitizer solution for 0.5 to 5 minutes at 15-30° C, washed and then transferred to the electroless plating solution proper.
The active, optionally, sensitized, substrate is contacted with the electroless plating solution until the required amount of metal has been deposited. This can usually be gauged visually: the color of the organic compound is discharged and is replaced by finely divided metal to give a darker image. The metallized image darkens as the metal first formed catalyzes the reduction of the solution. In this way the optical density of the image may be intensified.
Where the active components are contained in a supporting film based on a water soluble or swellable polymer such as polyvinyl alcohol, some precautions may be needed to prevent damage to or loss of the substrate during processing. If the process of contacting the substrate with the plating solution is carried out in cold (e.g. room temperature) solutions then the water soluble polymer should be selected such that its solubility in cold aqueous media is much less than a hot aqueous media. Suitable grade of polyvinyl alcohol is a medium to high molecular weight 99-100 percent hydrolyzed polyvinyl alcohol e.g. Du Pont "Elvanol" grades 71-30, 72-60 or 73-125, or Nippon Gohssei "Gohsenol" all "N" grades. As an alternative, or an additional precaution, the metal image forming process can be carried out in the presence of a high concentration of ions, by addition of inactive salts. 1 to 30 percent by weight of alkali metal or ammonium salts may be used: ammonium, sodium or potassium sulphates are preferred in concentrations from 1 to 5 percent by weight of the plating solutions.
A further alternative or additional precaution is to pretreat a polyvinyl alcohol film with an aqueous borax solution or glyoxal solution to introduce cross-linking between polymer chains; a source of borate ions e.g. borax may be included in the plating solution where, in some cases, it increases the plating rate so that lower plating temperatures can be used.
It is also advantageous to include in the plating solution a surface active agent. This reduces the tendency to deposit metal prematurely. Long chain amines may be used. For the same purpose up to 5 percent, preferably about 2 percent by weight polyvinyl pyrrolidone may be used.
When a silver base plating solution is used, some precautions are required to prevent precipitation of silver halides. Either a halide free substrate is used or a suitable complexing agent is used, and the use of polyvinyl pyrrolidone in the above mentioned concentration gives this additional advantage.
If electroless plating is continued for a sufficient period, sufficient metal is deposited to render the substrate conducting. The conducting metal deposit may then be further metallized by conventional electroplating with the same or different metal. Plastics foams may also be made conducting by a similar technique.
An important application of the present invention is in rendering permanent or intensifying images (latent or visible) in those silver-free photographic systems where the image is in the form of organic neutral free radicals, radical cations or defined neutral compounds. An example of such a system is described in our copending patent application being based on nitrogenous salts which on exposure to radiation form radical cations. Preferred salts are those based on compounds containing two quaternized nitrogen atoms with a chain of conjugated sites of unsaturation between the nitrogen atoms. All of the photosensitive compounds described earlier are capable of application in this aspect of the invention. The photosensitive compound in a water soluble of swellable film forming polymer matrix, on exposure to radiation, especially ultraviolet or short wavelengths visible radiation, is converted into mainly radical cations. The polymeric matrix is capable of stabilizing the radical cations formed, but eventually the combined effect of oxygen and moisture bleaches the image unless this is kept under dessication. If the radical cation image is treated according to our process, it is rendered as permanent as in conventional photographic systems, while retaining most of the advantages of high resolution possessed by the light sensitive material we have already described. 1,500 line pairs mm- 1 can be resolved. Care must be taken however not to proceed with the metallizing process too far if the sole aim is high resolution as the growing area of metal deposit will reduce resolution. Thus in some cases it may be necessary to balance resolution with optical density.
The film forming polymer may include in addition to the active component, the additives described in our copending application (1) speed improvement (i.e. compounds containing active hydrogen as in alcohols and amines, including alcohols, phenols, carboxylic acids, and sugars, e.g. glucose, oxalic acid, p-chlorobenzoic acids, glycerol, phenol, ethylene diaminetetracetic acid (disodium salt), picric acid, glycine, β-alarine, mellitic acid, triethanolamine, thiazine, and nictoinamide adenosine dinucleotide phosphate), (2) sensitizers (i.e. compounds which extend the response well into the visible region of the spectrum. Riboflavin, as free base, Acronol yellow (a dyestuff comprising 3,6-dimethyl-2-(4-dimethyl-aminophenyl)-benzthiazolium chloride) and alkaline solutions of the wood resin derivative known as collophony, which are capable of extending the sensitivity up to or beyond 500 nm and other sensitizers which include 3,3'-diethylthiacyanide iodide, proflavin, acridine orange, acriflavin, N-methylphenazinium methyl sulphate, 4-cyanoquinolinium methiodide and erythrosin, (3) desensitizing (i.e. compounds which may be added to reduce the spectral response, so that the film may be handled in daylight, include p-aminobenzoic acid, 6-amino-3,4-phthaloylacridone and urazole, (4) miscellaneous additives (i.e. compounds which may be incorporated in the film to modify the radiation sensitivity or physical properties of the finished material. For example, ammonium chloride improves the sensitivity to light and also film pliability, and other water soluble plasticizers, such as urea, glycerol and other polyols, may also be used to improve this property. Sensitivity to X-rays may be increased by the introduction of a compound of metal of high atomic weight such as barium chloride).
Self-supporting films may be prepared from water soluble polymers, conveniently about 0.2 to 2 mm thick. Preferably however, the film is prepared as a coating on a flexible base, such as polyethylene terephthalate film, when the coating thickness can be reduced to 0.001 to 0.1 mm.
Data may be recorded on the film by means of ultra-violet or visible radiation of the appropriate wavelength, by electron beam or by infra-red radiation which causes the film to heat locally to a temperature at which the radical cation is formed. The exposed film should then be processed according to our invention as soon as possible. If it is proposed to store the exposed film for a long time before processing it is desirable to do so under dry and/or oxygen free conditions.
One particularly suitable application is the production of magnetic information carriers by using the process of the present invention to deposit a magnetic coating on a support to which the active component has been applied.
The support may be a non-magnetic metal, for example an aluminum disc (to make magnetic discs for computer data processing) or may be non-metallic, for example for the production of audio, video, instrumentation and computer recording tapes, preferably incorporating a polyethylene terephthalate film support.
The non-metallic support may be made of a material chosen from paper; cellulose acetate; cellulose nitrate; ethyl cellulose; regenerated cellulose; methyl cellulose; polyamide; polymethyl methacrylate; polytrifluorochloroethylene; polytetrafluoroethylene; polymers or copolymers of α-olefines, such as ethylene, propylene and 4-methyl pentene-1; polymers and copolymers of vinyl chloride; polyvinylidene chloride; polycarbonates; polyimides, polysulphones; and linear polyesters such as polyethylene terephthalate and polyethylene-1:2-diphenoxyethane-4:4'-dicarboxylate.
The present invention is particularly useful in the production of magnetic recording tapes. For such tapes the non-metallic support should normally exhibit a high longitudinal tensile strength consistent with a satisfactory transverse strength and resistance to fibrillation. The support should also be dimensionally stable. Such properties are provided by biaxially oriented and heat set polyethylene terephthalate film. The so-called "tensilized" grades of polyethylene terephthalate film which have generally higher longitudinal tensile strengths than normal grades are particularly useful.
When the support consists of a polymeric film it is generally biaxially oriented to provide the desired properties. Methods of production of such films are well known in the art.
Many of the supports, e.g., polyethylene terephthalate, suitable for the production of the information carriers according to this invention are hydrophobic. Accordingly it is generally desirable to pretreat the surface of the support so as to improve its adhesion to the active component or the composition containing the active component which is applied over it. Thus the surface of the support can be subjected to a physical or chemical treatment or an anchor coat may be applied to it. Alternatively, a physical or chemical treatment may be used in conjunction with the application of an anchor coat. Convenient physical or chemical treatments include treating the surface with etching or solvent agents such as chromic acid in sulphuric acid, hot nitric acid, potassium permanganate and o-chlorophenol; exposing the surface to ozone; exposing the surface to flame treatment; and exposing the surface to ionizing radiation such as that commonly known as corona discharge treatment.
Useful anchor coats include those suitable for improving the bonding properties to photographic emulsions, for example copolymers of conjugated diolefines, particularly butadiene, with one or more comonomers selected from acrylonitrile, styrene, methyl methacrylate, methacrylic acid and itaconic acid, such as a butadiene/styrene/itaconic acid terpolymer, preferably in the proportion 25 to 40/53 to 74.5/0.5 to 7 mole percent respectively.
Other anchor coat formulations include copolymers or terpolymers of vinylidene chloride containing at least 35 mole percent of vinylidene chloride. Suitable comonomers are vinyl acetate, vinyl propionate; vinyl chloroacetate; vinyl chloride; vinyl bromide, methyl, isobutyl or chloroethyl methacrylate; methyl chloroacrylate; itaconic acid and the methyl, ethyl and butyl esters of itaconic acid; acrylonitrile; methacrylonitrile; styrene; and acrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate and butyl acrylate, and acrylic and methacrylic acids. Terpolymers of vinylidene chloride comprising 75 to 95 mole percent of vinylidene chloride, 4 to 20 mole percent of an acrylic ester such as methyl acrylate and 0.5 to 5 mole percent of itaconic acid are useful.
Polymers, copolymers and terpolymers of a vinyl halogenoester or a vinyl cyanoester may alternatively be used as the anchor coat. Suitable formulations are disclosed in British Nos. 1,208,821 and 1,208,822.
Polyvinyl alcohol is another suitable anchor coat.
A layer of gelatin may also be used in conjunction with or instead of layers of the above anchor coating materials.
The anchor coat may be applied to the surface of the completed base, that is for example in the case of polyethylene terephthalate film after it has been biaxially oriented and heat set. When the support is biaxially oriented by a sequential stretching process the anchor coat may be applied between the stretching operations; such a technique is useful in the production of a polyethylene terephthalate film base.
The overall thickness of the anchor coat layer or combination of layers is preferably in the region of one micron.
Preferred magnetic coatings are nickel/phosphorus or nickel/cobalt/phosphorus.
A plating solution which deposits a nickel-cobalt-phosphorus layer is useful according to this invention. Depositions from such solutions may be effected by the autocatalytic reduction of nickel and cobalt source ions, with hypophosphite ions serving both as a reducing agent and a source of phosphorus for the deposited ferromagnetic alloy. A suitable solution has the following composition (measured in parts by weight)
______________________________________
60 parts Cobalt chloride (6H.sub.2 O)
2 parts Nickel chloride (6H.sub.2 O)
200 parts Sodium potassium
(4H.sub.2 O)
tartrate
50 parts Ammonium chloride
17 parts Sodium hypophosphite
40 parts Anhydrous sodium sulphate
4 parts Borax
Ammonia to pH 9
Water to 1000 parts
______________________________________
Such an electroless plating solution may be employed within a temperature range of 20 to 95° C, preferably 25 to 50° C. Using such a bath at 30° C a plating of about one micron in thickness can be deposited in 60 minutes.
Other useful electroless plating solutions include that available commercially as "Enplate" Ni-410 (Enthone Inc.) and that having the following composition by weight:
______________________________________
25 parts Nickel dichloride (6H.sub.2 O)
65 parts Malic acid (monosodium salt)
55 parts Gluconic acid (sodium salt)
35 parts Sodium hypophosphite
Ammonia solution; S.G. 0.880 to pH 9.
______________________________________
A solution capable of depositing cobalt and phosphorus may include cobalt sulphate, sodium hypophosphite, ammonium sulphate and sodium citrate.
Providing the deposition of ferromagnetic material is not too excessive the high resolution is reproducible in the magnetic information carriers. Accordingly it is possible to increase the storage capabilities of a carrier produced according to the invention by disposing the recording tracks closer together than is possible with carriers produced by conventional photographic techniques. This is of particular advantage in high density recording, for instance in computer input or output recording tape.
By virtue of the high resolution achieved by the present invention it is possible to deposit the ferromagnetic material in sharply defined and closely packed discrete patterns over the surface of the support. Accordingly discrete ferromagnetic recording filaments or tracks may be deposited parallel to the read/write axis of a recording tape along which the reading or recording transducers traverse. It is also possible to arrange the recording filaments or tracks transversely across the recording tape and to traverse the recording or reading transducers appropriately across the tapes. Other forms of recording zones include ferromagnetic spots, conveniently in the shape of ellipses, deposited on the surface of the support. Alternatively information may be recorded in one or more variable area or variable density tracks. It will be understood that whereas the invention is described mainly with reference to recording tapes which are our preferred form of information carrier, other forms such as recording discs and cards also fall within the ambit of this specification.
Recording filaments or tracks on magnetic recording tapes produced according to this invention have higher information storage capabilities when used in saturation digital recording than tapes produced by conventional processes. It has been found that adjacent tracks of conventional magnetic tapes tend to degrade each other. This effect arises through the magnetic fields of one track interfering with and demagnetizing part of the bit-domain of an adjacent track, thereby reducing its sharpness and the strength of its read-out signal. This interference can be reduced by making the track as narrow as possible, that is filamentary, so as to approach the width of a single unidirectional domain as long as the readout voltage is not reduced to an unacceptable level. This reduction in width is made possible by the high resolution obtainable with this invention.
It is also possible to make the inter-track or filament zones very narrow without impairing the efficient performance of the tape through inter-track or filament interference.
In some circumstances where only a very small amount of adjacent track interference can be tolerated, e.g. in high density digital storage, and the very narrow width of a single filamentary track which would be necessary to reduce the interference to an acceptable level leads to inadequate read-out voltages, it is possible to use a multifilamentary track. In such a system the filaments act in combination to produce the desired level of read-out voltage. Accordingly read-out voltage can be maintained at a desirable level and track interference is minimized.
Prior art magnetic recording tapes are often made by applying ferric oxide particles in a resinous binder to the surface of a support. The particles are aligned by subjecting them to the influence of a magnetic field while the binder cures or the solvent used to apply it evaporates off. These measures are complex and inconvenient for certain types of tape having a complex arrangement of recording track and are to a large extent or even completely eliminated by the present invention by virtue of the fact that narrow filamentary tracks can be deposited on the support which do not require magnetic domain orientation.
The production of tapes or other forms of information carrier according to this invention is effected by exposing the coated support with suitable sensitizing radiation. When a discrete pattern of ferromagnetic material, e.g., in the form of filaments or tracks, is to be applied to the tape or other carrier the coating is exposed by directing the sensitizing radiation through a negative image of the desired pattern. The exposed areas of the coating become sensitized and susceptible to electroless plating by the techniques hereinbefore described thereby depositing the desired ferromagnetic material pattern.
In the past magnetic information carriers, particularly magnetic recording tapes, have carried magnetic coatings such as those based on ferric oxide having a thickness up to about 10 microns, generally greater than 4 microns but thicknesses as low as 3 microns have been employed for less critical audio uses. The ferromagnetic layers applied according to this invention can be applied in smaller thicknesses of 0.1 micron with satisfactory read/write performance. Generally a plating thickness of the order of 2 microns is adequate, a thickness of about 1 micron being useful for most applications although a thickness in the region of 0.1 micron is useful for certain applications. Hence with a reduced coating thickness it is possible to store more information on a given size of spool or cassette.
For magnetic tapes, generally the support may have a thickness up to about 50 microns. The thickness chosen in practice will generally be the thinnest possible consistent with the desired strength for the particular application. Tensilized film is particularly useful as a compact tape having the requisite longitudinal strength can be made from thin film.
Polyethyelene terephthalate film is preferred for the production of such tapes. Where compactness is desirable it is advantageous to use tensilized film. If this is not so important balanced film, that is film which is oriented by stretching to substantially the same extent in the longitudinal and transverse directions, may be used.
Audio recording tape produced according to this invention may use balanced polyethylene terephthalate film having a thickness in the range 25 to 40 microns, conveniently around 36 microns for standard tapes. Audio tapes having a higher recording capacity may be produced from tensilized polyethylene terephthalate film having a thickness from 4 to 20 microns, preferably between 6 and 15 microns. Such tape is suitable for storage in cassettes.
Video tapes, in which the picture image is recorded magnetically and audio and control tracks are also incorporated on the same tape, generally require high storage capabilities and may be made on a tensilized polyethylene terephthalate film support of the same character specified for audio tapes.
Computer and instrumentation tapes may be made on balanced film but they too can be made on a tensilized polyethylene terephthalate film support as specified for audio tapes when high storage capabilities are required. They may also be stored on cassettes.
Instrumentation tapes are particularly useful for monitoring the operation of an industrial plant by recording the variation of controls and/or process conditions.
Information may be recorded upon and read-out from the magnetic information carriers according to this invention by any of the known systems e.g., by inductive recording. A magneto-optic recording system may be employed if desired. In such a system information may be written into a carrier in which the magnetic coating is initially uniformly saturated in one direction by illuminating the recording location briefly with a light beam so as to raise the local surface temperature above the Curie point of the coating. A magnetic field applied in the direction opposite to the saturation of the coating and of a value less than the coercive force of the coating causes the heated area to assume reverse magnetization as it cools to below the Curie point. Alternatively the temperature of the recording location may be raised to a level at which its coercivity falls below the value of the applied field thereby enabling reversal of magnetization to occur. Read-out is effected by monitoring the rotation of the plane of polarization of incident light transmitted through or reflected by the material.
Considerable use can be made of the fact that if electroless plating is continued for sufficient time an electrically conducting product is obtained. Optionally this can then be plated further by conventional electroplating. Thus virtually any article can be rendered conducting provided the appropriate activating component can be introduced onto or into it by coating, soaking, spraying, impregnating or other means of application. The activating component may of course be derived from compounds of the bipyridyl and related types as discussed above. After introduction or formation of the activating component, the article is introduced into the electroless plating bath until the desired amount of metal is deposited, optionally with a sensitization pretreatment stage.
Metallized foams may be prepared by taking a plastics foam, introducing the active component, electroless plating, consolidating the deposited metal by electroplating and optionally dissolving out, burning off or otherwise removing the plastics material.
In another application a circuit for the construction of electrical or electronic equipment is prepared by forming a circuitwise distribution of activating component over a base support material, e.g., plastics laminate sheet, electroless plating, (after optional sensitization) and building up the metallic layer to a sufficient thickness by further electroless or conventional electroplating technique. It should be noted that no etching stage is required. Also because of the high resolution of the film, a high component density is possible.
Circuits may also be prepared having regions of differential resistivity by using different metals in different parts thereof. A first circuitwise distribution of active component is plated with a highly conducting metal, e.g., copper. Gaps are left where lower conductivity is required and a second circuitwise distribution of active component is applied to join the gaps. This is then plated to the required degree with a higher resistivity metal e.g. nickel/iron mixtures. This technique is applicable where substrate is used in which the active component is bound in a polymer, e.g., polymers containing bipyridyl radical cations in the backbone or side chain. For example, a film containing a bipyridyl salt is exposed to ultraviolet radiation to form a first circuit image of radical cations and this is electroless plated with a first plating solution, e.g., copper. Gaps are left in the circuit where a resistive component is required. As the bipyridyl salt which is not converted to radical cation is bound in the substrate, it may then be further exposed to ultraviolet radiation to form a second image of radical cations, linked to the first. This is then plated with a second plating solution e.g. an iron-nickel mixture, to form resistive elements. The operation may be repeated with different metals if desired, but the metal of lowest resistivity should be deposited first.
Typical processes according to the invention are illustrated in the following Examples, in which parts are by weight.
A film of polyvinyl alcohol containing 10 percent by weight of N,N'-dimethylbipyridilium dichloride was exposed to ultraviolet radiation through a negative of varying optical density. The image obtained was dark blue with an optical density in the range from 0.1 to 0.5. This film was processed by immersion in an electroless plating solution for 20 minutes at 20° C. The developer was prepared from the following components dissolved in water and made up to 1,000 parts.
______________________________________
Anhydrous sodium sulphite
20 parts
Sodium thiosulphate pentahydrate
30 parts
Silver nitrate 3.0 parts
2,4-Diaminophenol dihydrochloride
1.5 parts
Anhydrous sodium carbonate
1.2 parts
Anhydrous sodium sulphate
40 parts
Sodium tetraborate 4 parts
______________________________________
The first four components are based on a physical developer published by A, F. Odell (J. Ind. Eng. Chem. 25,877 (1933). The last two components were added to reduce the effect of water on the polyvinyl alcohol film.
The blue color was discharged and was replaced by a dark brown image with optical density in the range 0.1 to 2.2 after washing and drying.
Similar results were obtained by replacing the sodium sulphate with potassium sulphate (40 parts) or ammonium sulphate (60 parts).
The 2,4-diaminodiphenol dihydrochloride was replaced by the same weight of p-methylaminophenol sulphate ("metol"), p-hydroxy phenylaminoacetic acid ("glycin") or p-aminophenol, and good results were obtained.
Higher contrast and optical density may be achieved by reducing the amount of sodium thiosulphate and increasing the pH by addition of ammonia solution or sodium carbonate. This solution needs to be stabilized against silver deposition by addition of a cationic surface active agent (e.g. "Armeen 12") and to prevent precipitation of the cationic agent a non-agent must also be added, (e.g. "Lissapol N"). A suitable amount of detergent is 0.001 to 0.1 percent by weight.
This developing solution provides a higher optical density, but is unsuitable for film materials in which there are halides present, because the silver halide is precipitated. The developer was made up by dissolving the following components in water and making up to 1 liter.
______________________________________
Citric acid 20 parts
Silver nitrate 1.75 parts
p-Methylaminophenol sulphate
4.0 parts
"Lissapol N"
Surface 0.2 part
Active
"Armeen 12" Agents 0.2 part
Anhydrous sodium sulphate
40 parts
______________________________________
A polyvinyl alcohol film containing 10 percent by weight of N,N'-dimethylbipyridilium methyl sulphate was exposed to ultraviolet light through a wire mesh grid until the optical density reached about 2. After immersion in the above solution for 10 minutes at 20° C, washing and drying, the silver image had an optical density greater than 4, in the exposed areas.
The procedure of Example 2 was repeated but including poly(vinyl pyrrolidone) (20 parts) in addition to the surface active agents. With this solution, it was found possible to use active components containing halides without undue fogging.
A glass plate coated with gelatin was immersed in a 10 percent aqueous solution of N,N'-dimethylbipyridilium dichloride. The plate was dried and exposed to ultraviolet light through a metal grid.
After exposure the plate was immersed in a solution containing
______________________________________
Copper sulphate pentahydrate
10 parts
Sodium hydroxide 10 parts
Sodium tartrate 50 parts
______________________________________
made up to 1000 parts, to which 10 parts of 37 percent formaldehyde solution was added. The blue image became dark brown. After washing and drying density was greater than 2.
A glass plate coated with gelatin (0.001 inch thick) was immersed in a solution of N,N'-dimethyl bis(pyridinium) methyl sulphate (10 percent aqueous solution) for 1 minute, rinsed with distilled water for 5 seconds and allowed to dry. After exposure for about 5 minutes, through a line negative, to a 100 watt mercury vapor lamp at 50 cm. the plate was immersed in a palladium chloride solution made up from PdCl2 (0.1 part) concentrated hydrochloric acid (10 parts) and water (to 1000 parts). After 1 minute the plate was removed, washed with water and developed in a nickel-based electroless plating solution made up from
______________________________________
Nickel dichloride (6H.sub.2 O)
25 parts
Malic acid (monosodium salt)
65 parts
Gluconic acid (sodium salt)
55 parts
Ammonia (solution sg 0.880)
to pH 9
Sodium hypophosphite 35 parts
______________________________________
An intense black image was obtained after 1 minute, optical density in fully exposed areas, >3.
The above procedure was repeated using successively as sensitizer, 0.1 part of PtCl2 and AuCl3 with hydrochloric acid (10 parts) and then using AgNO3 (0.1 part) with nitric acid (10 parts). Similar sensitization was observed.
The procedure of Example 5 was repeated using the palladium sensitizer, but the period of residence in the nickel solution was increased to 30 minutes. The image became metallic in appearance and was sufficiently conductive to be electroplated.
A polyethylene terephthalate film ("Melinex") subcoated with an alkyd resin varnish was coated with a solution containing
______________________________________
poly(N,N'-p-xylylene-4,4'-bipyridilium
0.5 part
dichloride)
poly(vinyl alcohol), high molecular weight,
10 parts
high hydrolysis grade
Glyoxal Hydrate 1.0 part
Ammonium chloride 0.2 part
water to 150 parts
______________________________________
The solution was evaporated to give a sensitive coating about 0.025 mm thick. Preparation was carried out under subdued artificial light. The film was exposed through a line negative for 3 minutes under the conditions of Example 5. After exposure it was immersed in a solution of auric chloride (0.5 part) and concentrated hydrochloric acid (10 parts) in water (to 1,000 parts) for 1 minute.
After washing, development was completed by immersion in a commercially available electroless nickel plating solution (Enplate Ni-410, Enthone Inc.) at room temperature for 5 minutes. A black image was obtained with an optical density in the fully exposed area, >2.
Two pieces of coated film prepared as in Example 7 were exposed and sensitized with a palladium salt as in Example 5. They were then washed and developed in the following solution.
______________________________________
Cobalt trichloride (6H.sub.2 O)
27 parts
Sodium citrate (2H.sub.2 O)
90 parts
Ammonium chloride 45 parts
Sodium hypophosphite 7.5 parts
Water to 1000 parts
______________________________________
pH adjusted with ammonia solution to 8.5. A brown image was obtained.
One piece was subjected to prolonged development (45 minutes) and the other to a higher solution temperature (˜80° C, 3 minutes). In both cases conducting cobalt films were obtained.
A glass plate was coated, exposed and sensitized by the procedure of Example 5. After washing, the gelatin layer was hardened by formaldehyde treatment (5 minutes) in a solution consisting of
______________________________________
Formaldehyde solution (40%)
10 parts
Sodium carbonate (anhydrous)
5 parts
Water to 1000 parts
______________________________________
It was then developed in the following solution for 3 minutes at 80° C.
______________________________________
Cobalt chloride (6H.sub.2 O)
60 parts
Nickel chloride (6H.sub.2 O)
2 parts
Sodium potassium tartrate (4H.sub.2 O)
200 parts
Ammonium chloride 50 parts
Sodium hypophosphite 17 parts
Water to 1000 parts
Ammonia to pH 9
______________________________________
A dense black image was obtained.
A plate was coated, exposed and sensitized as in Example 5 and then developed for 10 minutes at room temperature in the following solution.
______________________________________
Ferrous sulphate (7H.sub.2 O)
120 parts
Sodium citrate (2H.sub.2 O)
170 parts
EDTA 50 parts
Sodium hypophosphite 85 parts
38% formaldehyde solution
200 parts
Water 800 parts
Ammonium hydroxide solution
to pH 10
______________________________________
A dense black image was obtained.
A solution of diphenyl picryl hydrazyl (2 percent in acetone) was used to draw an image on a piece of polyvinyl alcohol film, which was then dried under nitrogen. The film was sensitized with 0.1 percent palladium chloride solution and then developed in the copper plating solution of Example 4. After 5 minutes the image had a dark brown-black appearance. After 30 minutes the image was metallic and had a resistance of about 200 ohm/square.
An open cell polyurethane foam was impregnated with a solution containing
______________________________________
Poly(vinyl alcohol) 20 parts
N,N'-dimethylbipyridilium methyl sulphate
1 part
Water to 1000 parts
______________________________________
The foam was drained, dried and the radical was formed by heating at 100° C for 30 minutes. The foam was then immersed in a plating solution as described in Example 4 and a red-brown deposit of copper formed throughout the foam, which was then found to be conductive.
The surface of a piece of phenol formaldehyde laminate was roughened (by abrading it with emery paper), coated with the following solution and allowed to dry.
______________________________________
PV Alcohol (Du Pont Elvanol
100-30) 10 parts
(cross-linking
agent) Glyoxal Hydrate 1 part
Paraquat dichloride 0.5 part
(cross-linking
catalyst)
Ammonium chloride 0.2 part
Water 100 parts
______________________________________
After exposure to UV light through a printed circuit negative, the board was developed in the following solution for 30 minutes at room temperature (20° C).
______________________________________
Copper sulphate pentahydrate CuSO.sub.4 . 5H.sub.2 O
10 parts
Sodium potassium tartrate 50 parts
Sodium Hydroxide 10 parts
37% Formaldehyde solution 10 parts
Water 1000 parts
______________________________________
The resulting deposit of copper had a resistivity of <1 ohm/square and cold be built up in thickness by electroplating or continued immersion in the above solution. These thicker deposits of copper (0.001 - 0.002 inch) could be soldered using conventional techniques.
A polyethylene terephthalate film ("Melinex") subcoated with an alkyd resin varnish was coated with a solution containing
______________________________________
N,N'-p-cyanophenyl-4,4'-bipyridiliumdimetho-
1.0 part
sulphate
Poly(vinyl alcohol), high molecular weight, high
10 parts
hydrolysis grade
Glyoxal 0.5 part
H.sub.2 SO.sub.4 to pH 3-4
Water to 100 parts
______________________________________
The solution was evaporated at a temperature not exceeding 75° C to give a sensitive coating about 0.003 mm thick.
Preparation was carried out under subdued artificial light. The film was exposed to electrons from a scanning electron microscope. The electron energy was varied from 10 - 80 keV. Estimated spot size was 0.2 - 0.5 μ. The image color was dark green. After developing in the plating solution of Example 1 for 5 minutes the exposed film showed regular line patterns. 2,000 line pairs per mm were well resolved.
On extended exposure to electrons the image became red due to the formation of the neutral compound, which could also be plated with the solution of Example 1.
A coated polyethylene terephthalate film was prepared as in Example 14 and exposed to ultraviolet radiation in the cavity of an electron spin resonance spectrometer. A green coloration of the radical cation formed and the spin concentration increased linearly with exposure time up to 2.5 × 1015 spins/cm2. The optical density reached 0.5 at 610 nm. The radical cation image was immersed in the plating solution of Example 1 and a very dark brown image of optical density >4 attained.
A coated polyethylene terephthalate film was prepared as in Example 14 and exposed to electrons in a scanning electron microscope at an energy of 50 kev. The exposed film had an optical density of 0.5 at 610 nm and the radical concentration was 1.4 × 1016 spins/cm2, as measured by electron spin resonance. After immersion in the plating solution of Example 1 the image was examined by electron microscopy and was shown to have resolved <1500 line pairs/mm.
A coated polyethylene terephthalate film was prepared as in Example 14 and exposed to ultraviolet radiation through a metal grid to produce a dark green radical cation image. An electroless plating solution was prepared by the method of Belgian Patent 637398.
______________________________________
Solution A
Ferrous ammonium sulphate
78 parts
Ferric nitrate 8 parts
Citric acid 10.5 parts
"Lissapol N" 0.2 part
Dodecylamine 0.2 part
Water to 1000 parts
Solution B
Silver nitrate 8.5 parts
Water to 100 parts
______________________________________
Before use 1 part of B was mixed with 9 parts of A. After 5 minutes immersion in this solution a black image was obtained.
An aqueous solution containing 3 parts of a polymer consisting of units of the structure ##SPC6##
and 15 parts of poly(vinyl alcohol) was prepared.
A film formed by casting on a glass plate produced a blue or purple radical cation image on exposure to UV light. The image was developed with the plating solution of Example 1 to give a black image.
A polymer was prepared from p-xylylene dichloride and 2,2'-bipyridyl. The polymer analyzed consistent with the repeating units: ##SPC7##
A poly(vinyl alcohol) film containing this polymer rapidly turned blue on exposure too sunlight, and on immersion in the plating solution of Example 1 a black deposit was obtained.
A film was cast from a solution containing 10 percent poly(vinyl alcohol), 1 percent N,N'-bisphenyl-2,7-diazapyrinium difluoroborate, 0.2 percent ammonium chloride, 0.5 percent glucose. The film responded to light of wavelength up to at least 436 nm, to give a radical cation image which blackened when immersed in the plating solution of Example 3.
A film was cast following the procedure of Example 20 using 1,2-bis(1'-methyl-4'-pyridinium)ethylene di(methyl) sulphate). It gave a magenta image in sunlight, when exposed through a metal grid. The magenta image blackened when immersed in the plating solution of Example 3.
A magnetic tape having a multifilamentary recording pattern was made in this Example.
The support was a balanced biaxially oriented and heat set polyethylene terephthalate film coated with an anchor coating of thickness 1 micron comprising a copolymer of 88 percent vinylidene chloride and 12 percent acrylonitrile.
The film had an overall thickness of 36 microns.
A coating composition incorporating N,N'-dimethyl bipyridilium as the active component and polyvinyl alcohol as a carrier matrix was made up in water. The composition had the following constitution
10 percent du Pont grade 72-60 "Elvanol" 99-100 percent hydrolyzed polyvinyl alcohol.
1 percent N,N'-dimethylbipyridilium dimethyl sulphate.
This composition was applied to the subbed surface of the support film and dried slowly at room temperature (15°-30° C).
The dried film was exposed to ultra-violet light for 60 seconds through a lined negative image so as to sensitize the coating by exposure in tracks 0.04 mm wide spaced 0.01 mm.
An activator solution was made up having the following constitution:
______________________________________ 0.1 part palladium chloride 10 parts concentrated hydrochloric acid 40 parts anhydrous sodium sulphate 4 parts borax 1000 parts distilled water ______________________________________
The exposed film was immersed in a bath of the sensitizer solution maintained at a temperature of 25° C for one minute to deposit a layer of palladium metal over the exposed parts of the coating. The film was then washed with distilled water.
An electroless plating solution of the following composition was used to deposit a layer of metal upon the surface of the support:
______________________________________ 25 parts Nickel dichloride (6H.sub.2 O) 65 parts Malic acid (monosodium salt) 55 parts Gluconic acid (sodium salt) 35 parts Sodium hypophosphite 40 parts Anhydrous sodium sulphate 4 parts Borax ______________________________________
Ammonia solution, S.G. 0.880 to pH 9.
The bath was maintained at a temperature of 30° C and plating was effected for about 60 minutes. The plated film was finally washed with distilled water and was found to have a strongly adherent nickel/phosphorus coating about one micron in thickness in the regions exposed to the ultraviolet light which was capable of information storage by employing inductive recording techniques for write-in and read-out.
A multifilamentary recording pattern was applied to a carrier by this Example.
The support was a balanced biaxially oriented and heat set polyethylene terephthalate film coated with an anchor coating of thickness 1 micron comprising a copolymer of 88 percent vinylidene chloride and 12 percent acrylonitrile, and a layer of gelatin; 0.001 inch thick. The gelatin surface was immersed in a solution of N,N'-dimethyl bis(pyridinium)methyl sulphate (10 percent aqueous solution) for 1 minute, rinsed with distilled water for 5 seconds and allowed to dry.
The coated film was exposed for about 5 minutes through a line negative to a 100 watt mercury vapor lamp at 50 cm, followed by a treatment for five minutes to harden the gelatin layer in the following solution:
10 parts Formaldehyde solution (40 percent)
5 parts Anhydrous sodium carbonate Water to make 1000 parts.
The film was immersed for 1 minute in an activator solution of the following composition:
______________________________________ 0.1 part Palladium chloride 10 parts Concentrated hydrochloric acid 40 parts Anhydrous sodium sulphate 4 parts Borax 1000 parts Distilled water. ______________________________________
The film was then washed in distilled water and developed in a nickel-based electroless plating solution made up from
______________________________________
60 parts Cobalt chloride (6H.sub.2 O)
2 parts Nickel dichloride (6H.sub.2 O)
200 parts Sodium Potassium tartrate (4H.sub.2 O)
50 parts Ammonium chloride
17 parts Sodium hypophosphite
40 parts Anhydrous sodium sulphate
4 parts Borax
Ammonia solution, S.G. 0.880 to pH 9
Water to 1000 parts.
______________________________________
The developing bath was maintained at a temperature of 30° C and plating was effected for about 60 minutes. The plated film was washed with distilled water. A strongly adherent black coating was deposited in the regions exposed to ultraviolet light. The coating was capable of information storage which could be written-in and read-out by inductive recording techniques.
Example 22 was repeated so as to deposit an array of elliptical spots of magnetic material on the film. The film was exposed to ultra-violet light through a negative of the desired elliptical spots.
The spots of nickel/phosphorus applied to the film were found to be strongly adherent thereto.
Information was stored on the carrier so obtained by a magneto-optic technique in which magnetic coating, which was in a state of uniform saturation in one direction prior to recording, was illuminated by a laser beam (argon ion, 1 watt output) representing the information to be recorded. A magnetic field of 150 oersteds was applied in the direction opposite to the initial direction of saturation.
The stored information was read-out by observing a rotation in the plane of polarization of incident light reflected from the elliptical recording spots on the surface of the film.
Claims (21)
1. A process for the deposition of metal in or on substrate characterized in that the substrate contains or consists of, as active component, an organic compound derived from a cation of the general formula ##SPC8##
where R1 - 12 are hydrogen, halogen or organic substituents and n = 0 or an integer, comprising contacting the substrate with an electroless plating solution.
2. A process according to claim 1 comprising contacting the substrate first with a sensitizer comprising a solution of a compound of a metal of the platinum group, silver or gold and subsequently with the electroless plating solution.
3. A process according to claim 1 in which the active component is supported in a water soluble or swellable polymer.
4. A process according to claim 1 in which the active component is formed in situ from the cation by radiation or by heat.
5. A process according to claim 1 wherein the active component is derived from a cation of the formula: ##SPC9##
6. A process according to claim 1 wherein the active component is derived from a cation of the formula: ##SPC10##
7. A data recording process which comprises preparing a substrate, containing or consisting of, as active component, an organic compound derived from a cation of the general formula ##SPC11##
where R1 - 12, are hydrogen, halogen or organic substituents and n = 0 or an integer, comprising contacting the substrate with an electroless plating solution, exposing said substrate to radiation or heat, and subsequently contacting with an electroless plating solution.
8. A data recording process according to claim 7 in which the exposed material is contacted with a sensitizing solution of a metal of the platinum group, silver or gold before contact with the electroless plating solution.
9. A data recording process according to claim 7 in which the plating solution is a ferromagnetic material plating solution.
10. A data recording process according to claim 9 in which the plating solution is selected from cobalt/phosphorus, nickel/phosphorus and cobalt/nickel/phosphorus plating solutions.
11. A data recording process according to claim 7 in which the support is a non-magnetic disc bearing a coating containing said salt.
12. A data recording process according to claim 7 in which the support is a polymeric film bearing a coating containing said salt.
13. A data recording process according to claim 12 in which the support is a tape formed from a linear polyester.
14. A data recording process according to claim 9 wherein the imagewise distribution of organic compound in a series of discrete tracks on the support.
15. A method of producing metallized foam which includes the steps of introducing an active component derived from a cation of the general formula ##SPC12##
where R1 - 12 are hydrogen, halogen or organic substituents and n = 0 or an integer into a plastics foam and electroless plating, consolidating the deposited metal by electroplating and optionally removing the plastics material.
16. A method according to claim 15 wherein the active component is derived from a cation of the formula: ##SPC13##
17. A method according to claim 15 wherein the active component is derived from a cation of the formula: ##SPC14##
18. A method of producing printed circuits for electrical or electronic devices in which a circuitwise distribution of active component derived from a cation of the general formula ##SPC15##
where R1 - 12 are hydrogen, halogen or organic substituents and n = 0 or an integer is formed on a base support material, electroless plating, and building up the metallic layer by further plating.
19. A method according to claim 18 for the production of circuits having regions of differing resistivity in which a first circuitwise distribution of active components is plated with a first metal and then a second circuitwise distribution of active component is plated with a second metal of higher resistivity than the first.
20. A method according to claim 18 wherein the active component is derived from a cation of the formula: ##SPC16##
21. A method according to claim 18 wherein the active component is derived from a cation of the formula: ##SPC17##
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/592,033 USRE29039E (en) | 1969-11-26 | 1975-06-30 | Metal deposition process |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| UK57862/69 | 1969-11-26 | ||
| GB5786269 | 1969-11-26 | ||
| GB2520370 | 1970-05-26 | ||
| UK25203/70 | 1970-05-26 | ||
| UK16006/71 | 1971-05-20 | ||
| GB1600671*[A GB1354322A (en) | 1971-05-20 | 1971-05-20 | Magnetic information carriers |
| US00222991A US3853589A (en) | 1970-11-09 | 1972-02-02 | Metal deposition process |
| US05/592,033 USRE29039E (en) | 1969-11-26 | 1975-06-30 | Metal deposition process |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US8817370A Continuation-In-Part | 1970-11-09 | 1970-11-09 | |
| US00222991A Reissue US3853589A (en) | 1969-11-26 | 1972-02-02 | Metal deposition process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE29039E true USRE29039E (en) | 1976-11-16 |
Family
ID=27516170
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/592,033 Expired - Lifetime USRE29039E (en) | 1969-11-26 | 1975-06-30 | Metal deposition process |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE29039E (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4557957A (en) | 1983-03-18 | 1985-12-10 | W. L. Gore & Associates, Inc. | Microporous metal-plated polytetrafluoroethylene articles and method of manufacture |
| US4624865A (en) * | 1984-05-21 | 1986-11-25 | Carolina Solvents, Inc. | Electrically conductive microballoons and compositions incorporating same |
| US4666858A (en) | 1984-10-22 | 1987-05-19 | International Business Machines Corporation | Determination of amount of anionic material in a liquid sample |
| US4690715A (en) | 1982-06-18 | 1987-09-01 | American Telephone And Telegraph Company, At&T Bell Laboratories | Modification of the properties of metals |
| US4980991A (en) * | 1986-11-14 | 1991-01-01 | The Crowell Corporation | Protective wrapping |
| US5786785A (en) * | 1984-05-21 | 1998-07-28 | Spectro Dynamics Systems, L.P. | Electromagnetic radiation absorptive coating composition containing metal coated microspheres |
| WO2005115670A2 (en) | 2004-05-25 | 2005-12-08 | Hakko Corporation | Soldering iron with replaceable tip |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2979422A (en) * | 1958-03-07 | 1961-04-11 | Bersin Theodor | Coating process |
| US3033703A (en) * | 1958-12-08 | 1962-05-08 | Photocircuits Corp | Electroless plating of copper |
| US3035944A (en) * | 1960-08-05 | 1962-05-22 | Ben C Sher | Electrical component preparation utilizing a pre-acid treatment followed by chemical metal deposition |
| US3083118A (en) * | 1958-03-04 | 1963-03-26 | Tee Pak Inc | Method of depositing a polymer of olefinically unsaturated monomer within a polymeric material and the resulting product |
| US3111424A (en) * | 1955-07-08 | 1963-11-19 | Du Pont | Process of coating irradiated polymer substrates |
| US3222218A (en) * | 1962-01-02 | 1965-12-07 | Exxon Research Engineering Co | Metal coating process |
| US3222210A (en) * | 1962-08-03 | 1965-12-07 | Nat Distillers Chem Corp | Polyolefin packaging film |
| US3317339A (en) * | 1963-12-23 | 1967-05-02 | Monsanto Co | Surface modification of plastic articles |
| US3326719A (en) * | 1963-11-07 | 1967-06-20 | Exxon Research Engineering Co | Metal coating process |
| US3429706A (en) * | 1959-04-30 | 1969-02-25 | Minnesota Mining & Mfg | Radiation-sensitive system |
| US3436468A (en) * | 1965-05-28 | 1969-04-01 | Texas Instruments Inc | Plastic bodies having regions of altered chemical structure and method of making same |
| US3518067A (en) * | 1965-08-20 | 1970-06-30 | Union Carbide Corp | Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles |
| US3579428A (en) * | 1967-09-30 | 1971-05-18 | Mitsubishi Petrochemical Co | Method of manufacturing plated polypropylene shaped articles |
| US3629922A (en) * | 1967-03-23 | 1971-12-28 | Hooker Chemical Corp | Metal plating of plastics |
| US3639153A (en) * | 1966-08-25 | 1972-02-01 | M & T Chemicals Inc | Process of modifying a hydrohalogen polymer surface |
-
1975
- 1975-06-30 US US05/592,033 patent/USRE29039E/en not_active Expired - Lifetime
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3111424A (en) * | 1955-07-08 | 1963-11-19 | Du Pont | Process of coating irradiated polymer substrates |
| US3083118A (en) * | 1958-03-04 | 1963-03-26 | Tee Pak Inc | Method of depositing a polymer of olefinically unsaturated monomer within a polymeric material and the resulting product |
| US2979422A (en) * | 1958-03-07 | 1961-04-11 | Bersin Theodor | Coating process |
| US3033703A (en) * | 1958-12-08 | 1962-05-08 | Photocircuits Corp | Electroless plating of copper |
| US3429706A (en) * | 1959-04-30 | 1969-02-25 | Minnesota Mining & Mfg | Radiation-sensitive system |
| US3035944A (en) * | 1960-08-05 | 1962-05-22 | Ben C Sher | Electrical component preparation utilizing a pre-acid treatment followed by chemical metal deposition |
| US3222218A (en) * | 1962-01-02 | 1965-12-07 | Exxon Research Engineering Co | Metal coating process |
| US3222210A (en) * | 1962-08-03 | 1965-12-07 | Nat Distillers Chem Corp | Polyolefin packaging film |
| US3326719A (en) * | 1963-11-07 | 1967-06-20 | Exxon Research Engineering Co | Metal coating process |
| US3317339A (en) * | 1963-12-23 | 1967-05-02 | Monsanto Co | Surface modification of plastic articles |
| US3436468A (en) * | 1965-05-28 | 1969-04-01 | Texas Instruments Inc | Plastic bodies having regions of altered chemical structure and method of making same |
| US3518067A (en) * | 1965-08-20 | 1970-06-30 | Union Carbide Corp | Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles |
| US3639153A (en) * | 1966-08-25 | 1972-02-01 | M & T Chemicals Inc | Process of modifying a hydrohalogen polymer surface |
| US3629922A (en) * | 1967-03-23 | 1971-12-28 | Hooker Chemical Corp | Metal plating of plastics |
| US3579428A (en) * | 1967-09-30 | 1971-05-18 | Mitsubishi Petrochemical Co | Method of manufacturing plated polypropylene shaped articles |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4690715A (en) | 1982-06-18 | 1987-09-01 | American Telephone And Telegraph Company, At&T Bell Laboratories | Modification of the properties of metals |
| US4557957A (en) | 1983-03-18 | 1985-12-10 | W. L. Gore & Associates, Inc. | Microporous metal-plated polytetrafluoroethylene articles and method of manufacture |
| US4624865A (en) * | 1984-05-21 | 1986-11-25 | Carolina Solvents, Inc. | Electrically conductive microballoons and compositions incorporating same |
| US5786785A (en) * | 1984-05-21 | 1998-07-28 | Spectro Dynamics Systems, L.P. | Electromagnetic radiation absorptive coating composition containing metal coated microspheres |
| US4666858A (en) | 1984-10-22 | 1987-05-19 | International Business Machines Corporation | Determination of amount of anionic material in a liquid sample |
| US4980991A (en) * | 1986-11-14 | 1991-01-01 | The Crowell Corporation | Protective wrapping |
| WO2005115670A2 (en) | 2004-05-25 | 2005-12-08 | Hakko Corporation | Soldering iron with replaceable tip |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4066804A (en) | Metal deposition process | |
| US3853589A (en) | Metal deposition process | |
| US3223525A (en) | Method of manufacturing, by photographic means, external, electrically conductive noble-metal patterns on non-metallic, electrically non-conductive, macromolecular supports and products obtained by these methods | |
| US4278758A (en) | Process for making a reflective data storage medium | |
| US4269917A (en) | Data storage medium having reflective particulate silver layer | |
| US4927897A (en) | Metal-containing organic polymer and use thereof | |
| US5443865A (en) | Method for conditioning a substrate for subsequent electroless metal deposition | |
| US3801368A (en) | Process of electroless plating and article made thereby | |
| US3006819A (en) | Method of photo-plating electrical circuits | |
| USRE29039E (en) | Metal deposition process | |
| US4017265A (en) | Ferromagnetic memory layer, methods of making and adhering it to substrates, magnetic tapes, and other products | |
| US3656952A (en) | Non-reversal imaging process and recording elements produced thereby | |
| US3748137A (en) | Photosensitive and thermosensitive elements and process for development | |
| CA1197923A (en) | Reflective optical data storage and laser recording medium | |
| US3708295A (en) | Process for the manufacture of metallic,electrically conductive patterns | |
| US3520723A (en) | Process for forming a metallic layer on a substrate | |
| Andrews et al. | Improvements in magnetic information carriers | |
| US3130052A (en) | Method of manufacturing, by photographic agency, internal and/or external images on and/or in macromolecular supports with mercury and silver salts germ introduction baths | |
| JPS59136290A (en) | Electrically activable recording element and method | |
| JPH08283950A (en) | Electroless plating method and stamper manufacturing method | |
| Jonker et al. | Principles of PD recording systems and their use in photofabrication | |
| US3594229A (en) | Plated substrate and related methods | |
| US3360397A (en) | Process of chemically depositing a magnetic cobalt film from a bath containing malonate and citrate ions | |
| JPH03180476A (en) | Electroless nickel plating method | |
| JP2769833B2 (en) | Method of forming metal material pattern |