USRE28594E - Manufactured articles of blends of thermoplastic polymers having different fluidity degrees - Google Patents

Manufactured articles of blends of thermoplastic polymers having different fluidity degrees Download PDF

Info

Publication number
USRE28594E
USRE28594E US46055174A USRE28594E US RE28594 E USRE28594 E US RE28594E US 46055174 A US46055174 A US 46055174A US RE28594 E USRE28594 E US RE28594E
Authority
US
United States
Prior art keywords
polymer
fluidity
cross
polymethylmethacrylate
linked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US46055174 priority Critical patent/USRE28594E/en
Application granted granted Critical
Publication of USRE28594E publication Critical patent/USRE28594E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/17Articles comprising two or more components, e.g. co-extruded layers the components having different colours
    • B29C48/175Articles comprising two or more components, e.g. co-extruded layers the components having different colours comprising a multi-coloured single component, e.g. striated, marbled or wood-like patterned
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • ABSTRACT Stippled surface thermoplastic articles are produced by extruding a mixture of a polymer of higher fluidity degree and one of lower fluidity degree at a tempera' ture above the temperature of fluidization of the former but below the temperature of fluidization of the latter.
  • Preferred polymers include polymethylmethacrylate, ABS type resins, and various copolymers of methylmethacrylate or of styrene.
  • This invention relates to manufactured articles made from thermoplastic polymers, which articles have a stippled surface appearance and are obtained by direct extrusion, and to a process for their production.
  • An object of the present invention is the preparation of manufactured articles (e.g. flat and corrugated plates, pipes, structural shapes) from thermoplastic polymers, or mixes of thermoplastic polymers, having a stippled surface appearance, by direct extrusion of the materials in the extruder.
  • manufactured article having a stippled surface appearance we mean a manufactured article which, although homogeneous internally, has discontinuities on its surface, namely stipple or pin-spots which on the whole produce a decorative appearance; these decorative effects are also known as embossing, and therefore the materials are said to be embossed articles.
  • these effects are obtained by a batch process, by placing the polymer in a vertical press provided with a suitable metallic mold at a high temperature, or alternatively, by a continuous process, by calendering the polymer articles obtained by extrusion or molding by means of engraved cylinders.
  • Such articles with a stippled surface appearance can also be obtained by casting in suitable molds.
  • the present invention eliminates further treatment of the articles or the use of additional equipment to obtain the stippled effect, thus effecting a substantial saving of time and effort.
  • the polymer mixture used herein consists essentially of two components: the first component being a thermoplastic polymer or mixture of thermoplastic polymers having a high fluidity, or a low viscosity, in the molten state; and the second component being a thermoplastic polymer or mixture of thermoplastic polymers having little or no fluidity or, in other words, having a high viscosity, in the molten state.
  • Fluidity degree is determined according to ASTM 123862 with the following particular conditions:
  • Suitable mixtures include those wherein the first (high fluidity) component is polymethylmethacrylate having a fluidity degree of from 0.8 to 1.3 and the second (low fluidity) component is polymethylmethacrylate having a fluidity degree from 0.1 to 0.3.
  • Other suitable mixtures include, for example, polyvinylchloride, polymethylmethacrylate having a fluidity degree of from 0.8 to 1.3, and polymethylmethacrylate having a fluidity degree of 0.] to 0.3.
  • thermoplastic polymers of the present invention is a polymethylmethacrylate having a fluidity of 1.1, and a polymethylmethacrylate having a fluidity of 0. l 8.
  • Another is a polymethylmethacrylate 2 having a fluidity of 1.1 and polymethylmethacrylate, cross-linked with 1% of glycoldimethacrylate, having a fluidity which is so low as to be unmeasurable by the method indicated hereinabove.
  • stippled manufactured articles can be obtained by extruding polymethylmethacrylate having a low fluidity, with a mixture consisting of polyvinylchloride and polymethylmethacrylate having a normal fluidity; in this particular case the materials are also self-extinguishing.
  • Another suitable mixture consists of an impact proof material comprising an ABS resin and of a polymethylmethacrylate having a fluidity of 0.18.
  • the polymers or the mixes of polymers having different fluidity employed in order to obtain these materials can be prepared in many different manners, that is, either in suspension or in bulk, or in solution, or in emu]- sion.
  • the size of the polymers, pellets and granules or powders can be widely varied, but it is necessary that they be suitable for the commonly used extrusion process for thermoplastic materials.
  • the amounts of the two components are also widely variable, but an amount of about 5% of the polymer having the low fluidity is sufficient to give the above described stippled effects.
  • a preferred ratio is from about 95 to 40 parts of the polymer having high fluidity, and from 5 to parts of the polymer having low fluidity. However, higher amounts of the latter can be used, thus obtaining different effects as far as the intensity and the appearance are concerned.
  • plasticizers such as plasticizers, lubricants, antioxidants, coloring agents, absorbents of ultraviolet rays, etc., provided that they are used within suitable ratios, being added singly or together.
  • the process for the preparation of these articles of stippled surface appearance is very simple.
  • the operation is carried out as follows:
  • the previously mixed polymer (in the dry state) is fed into the extruder.
  • the extruder works at a temperature higher than that suitable for the normal extrusion of the more fluid polymer, this temperature being in relation to the amount of the polymer having a low fluidity that is used, in the way, that higher amounts of the polymer having lower fluidity in the mixture require significantly higher operating temperatures of the extruder than those of the polymer having higher fluidity.
  • the extrusion temperature of the mixtures never reaches the extrusion temperature of the polymer having lower fluidity.
  • the stippled surface article is cooled in air according to conventional methods.
  • the mechanical properties of the manufactured articles which are obtained according to our process are analogous to those which are obtained by means of conventional processes.
  • the stippled surface articles of the present invention can be made using all of the conventional equipment for extrusion generally used for thermoplastic material.
  • the decorative stippled effect can be seen either in transparent products or in opalinized. colored or pigmented materials. It can be intensified by suitably varying the optical characteristics ofeither of the materials or of both. Different effects without limitation of nu merical quantity can be obtained, by varying materials used.
  • the stippled surface appearance articles prepared according to the present invention behave exactly the same as those having a smooth surface.
  • cutting, shaping and gluing are performed under the same conditions and by use of the same equipment.
  • the stip pled effect surface showing stipple or pin-spots
  • This characteristic is surprising, although extremely useful, since it allows one to maintain unchanged the effect of light diffusion in thin layers of opaline materials. This does not occur with numerous other materials.
  • the stippled effect still remains even if the manufactured articles at the outlet of the extruder are treated with a smooth cylinder.
  • the optical characteristics of these articles are particularly surprising, since they show simultaneously. both high transparency, and also, high light diffusion.
  • the present invention includes products produced by the foregoing process which are thereafter calendered by treatment with engraved cylinders,
  • EXAMPLE l 15 kg./h. of the following mixture is fed to an extruder provided with degasification and having a head f 300 X 3.3 mm.;
  • I parts of transparent polymethylmethacrylate pearls having a fluidity degree of LI and an average diameter of between 0.1 and 0.3 mm.;
  • the two types of polymethylmethacrylate have been previously mixed in a powder mixer for -30 minutes.
  • the extruder works at a temperature of about 240 C. during the plastifying operation and during the degasification operation. In this way [8 m./h. of a flat plate having a thickness of about 3 mm. and width of 250 mm. is obtained.
  • the plate is cooled in the air on a suitable draft gear. It shows on the surface (stipple or pinspots) a typical stippled appearance.
  • the light transmission and the light diffusion of this article measured according to ASTM D 1003 on specimens having a thickness of about 3 mm, are respectively 89 and 18%.
  • the two types of polymethylmethacrylate have been previously mixed in a powder mixer for 2030 minutes.
  • the extruder works at a temperature of about 250C. during the plastifying and degasification operation. In this way, 13 m./h. of a flat plate having a thickness of about 3 mm. and a width of about 250 mm. are obtained.
  • the plate is cooled in the air on a suitable draft gear. It shows on the surface, a typical stippled decorative effect as can be seen in the accompanying diagram, wherein section l represents a top view of transparent normal plate of polymethylmethacrylate, placed on a drawing with thick lines, whereas section 2 thereof shows a top view of a part ofa plate obtained by working as described in this example and placed on the same drawing.
  • the light transmission and diffusion of this product measured according to ASTM D I003 on a specimen having a thickness of 3 mm. are respectively 85 and 48%.
  • the two types of polymethylmethacrylate have been previously mixed in a powder mixer for 20-30 minutes.
  • the extruder works at a temperature of about 250 C. during the plastifying and degasification step; in this way.
  • l8 m./h. ofa flat plate having a thickness of about 3 mm. and a width of about 250 mm. is obtained.
  • the plate is cooled in the air on a suitable draft gear. It shows on its surface a typical and marked decorative stippled effect, as can be seen in section 3 of the ac companying diagram, which shows a top view ofa plate of the product obtained according to the present process, and placed on a drawing having thick lines.
  • the light transmission and diffusion of this product measured according to ASTM D I003 on specimens having a thickness of 3 mm. are respectively and 88%.
  • EXAMPLE 4 Two suspensions of polymethylmethacrylate pearls having a pearl content of about 25% are mixed in an autoclave in the ratio 10:2.
  • the first suspension consists of transparent polymethylmethacrylate pearls hav ing a fluidity degree of LI and an average diameter of between 0.1 and 0.3 mm.
  • the second suspension consists of transparent polymethylmethacrylate pearls having a fluidity degree of 0.18 and an average diameter of between 0.1 and 0.3.
  • the mixture of the two suspensions is discharged into a centrifuge, and then the separated product is dehydrated and dried.
  • the dry product is sent to an extruder similar to that described in Example I. in quantities of kgjh.
  • the extruder works at a temperature of about 250 C. during the plastifying and degasification step. In this way, l8 m./h. of a flat plate having a thickness of about 3 mm. and a width of about 250 mm. is obtained.
  • the plate is cooled in the air on a suitable draft gear. It shows on the surface a typical decorative stippled effect.
  • the light transmission and diffusion of this product when measured according to ASTM D I003 on specimens having a thickness of 3 mm. are respectively 85 and 48%.
  • ID parts of transparent polymethylmethacryiate pearls having a fluidity degree of 0.18 and an average diameter of between 0.] and 0.3 mm.;
  • the mixture is first mixed in a powder mixer for -30 minutes and then sent to the extruder.
  • extruder works at a temperature of about 240 C. during the plastifying and degasification step. In this way, about 18 m./h. of a flat plate having a thickness of about 3 mm. and a width of 250 mm. is obtained.
  • the plate is cooled in the air on a suitable draft gear. It is opalized and shows a typically stippled surface with a decorative effect.
  • the light transmission and diffusion of this product when measured according to ASTM D 1003, on specimens having a thickness of3 mm., are 45 and 100% respectively.
  • the mixture is previously mixed in a powder equipment for 20-30 minutes and then it is sent to the extruder.
  • the extruder works at about 250 C. during the plastifying and degasification step. In this way, 18 m./h. of a flat plate having a thickness of about 3 mm. and width of 250 mm. is obtained.
  • the plate is cooled in the air on a suitable draft gear. It is grey colored and has the typically stippled decorative effect surface.
  • the light transmission and diffusion of this product when measured according to ASTM D 1003, on specimens having a thickness of 3 mm.. are 67 and 44% respec' tively.
  • Transparent polymethylmethacrylate granules having a fluidity degree of 0.18 and a diameter of between 0.8 and 2.5 mm. and obtained by milling polymethylmethacrylate prepared in bulk The two types of polymethylmethacrylate have been previously mixed in a powder mixer for 2030 minutes.
  • the extruder works at a temperature of about 250 C. during the plastifying and degasification step. In this way l8 m./h. ofa flat plate having a thickness of about 3 mm. and a width of about 250 mm. are obtained.
  • the plate is cooled in air on a draft gear.
  • the plate shows a typical decorative stippled effect on the surface.
  • the light transmission and diffusion of this product. when measured according to ASTM D 1003, on specimens having a thickness of 3 mm. are 85 and 4871 respectively.
  • Parts Granules of an impact-proof ABS resin (type B 32 produced by Monteculmi Edison S.p.A.) 80 Polyrncthylmethacrylate pearls having a fluidity degree of (LIX and an average diameter of between (LI and (l 3 mm. 20
  • the polymers are previously mixed in a powder mixer for 20-30 minutes and then sent to the extruder.
  • the extruder works at a temperature of l80200 C. during the plastifying phase and degasification step.
  • EXAMPLE S0 kg./h. of the following mixture is fed to an extruder provided with degasification and having a head of 1,250 mm.:
  • Transparent polymethylmethacrylute pearls having a fluidity degree of l.l and a diameter of between 0.] and 0.3 mm.
  • 100 Transparent polymethylmelhacrylate pearls having a fluidity degree of(l.l8 and diameter of between (H and 0.3 mm. 20
  • the two types of polymethylmethacrylate have been previously mixed into a powder mixer for 2030 minutes.
  • the extruder works at a temperature of about 250 C. during the plastifying and degasification step. in this way.
  • 20 m./h. of a plate having a thickness of about 3 mm. and a width of about 1,200 mm. are obtained.
  • This plate is transparent and its surface shows the typical stippled decorative effect.
  • the light trans mission and diffusion of this product when measured according to ASTM D l003 are 85 and 48% respectively.
  • a process for producing articles having a stippled surface comprising extruding a mixture of at least two thermoplastic polymers having different degrees of fluidity, the ratio of the fluidity of the polymer having the higher degree of fluidity to the fluidity of the polymer having the lower degree of fluidity being at least 2.67, said extrusion being performed at a temperature higher than the temperature of fluidization of the polymer having a higher degree of fluidity and lower than the temperature of fluidization of the polymer having the lower degree of fluidity, said degree of fluidity being determined according to ASTM 1238-62 at l90 C with nozzle diameter of 3 mm and plunger load of l0 kg; said polymers being selected from the group consisting of polymethyl methacrylate, a copolymer of methylmethacrylate with an acrylic ester or mcthacrylic ester of a higher aliphatic alcohol; polymethyl-methacrylate cross-linked with glycoldimethacrylate; and] an impact-proof ABS resin and
  • a method for the production of an article of manufacture having a rough surface which diffuses light which comprises blending (1) particles of a crosslinked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, cross-linking monomer, with (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, and directly forming, by extrusion, the resultant blend, as such, into said article, wherein said non-cross-linked, thermoplastic polymer is molten at least during said forming and said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend.
  • thermoplastic polymers are polymers of methyl meth acrylate.
  • An article of manufacture formed directly by extruding a blend of 1) particles of a cross-linked ther moplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, crosslinking monomer and (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, wherein said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend, and said non-cross-linked, thermoplastic polymer was molten at least during said extrusion of the blend.
  • thermoplastic polymer is a polymer of methyl methacrylate.

Abstract

Stippled surface thermoplastic articles are produced by extruding a mixture of a polymer of higher fluidity degree and one of lower fluidity degree at a temperature above the temperature of fluidization of the former but below the temperature of fluidization of the latter. Preferred polymers include polymethylmethacrylate, ABS type resins, and various copolymers of methylmethacrylate or of styrene.

Description

United States Patent 1 Ronzoni et al.
[111 E Re. 28,594
N l Reissued Oct. 28,1975
1 1 MANUFACTURED ARTICLES OF BLENDS OF THERMOPLASTIC POLYMERS HAVING DIFFERENT FLUIDITY DEGREES [75] Inventors: Isidoro Ronzoni, Camerlata (Como); Mario Catoni, Milan; Pier Lodovico Chini, Bergamo, all of Italy [73] Assignee: Monecatini Societa General per et 31., Milan, Italy [22] Filed: Apr. 12, 1974 [2]] Appl. No.: 460,551
Related U.S. Patent Documents Reissue of:
[64] Patent No.: 3,655,829
Issued: Apr. 11, 1972 Appl. No.: 425,320 Filed: Jan. 13, 1965 l 30] Foreign Application Priority Data Jan. 14, 1974 Italy 888/74 [52] U.S. Cl. 260/876 R; 260/306 R; 260/23 AR; 260/458 N; 260/4575 K; 260/4595;
260/DIG. 32; 264/171; 264/176; 264/349 [5 l] Int. Cl. C08f 24/24 FOREIGN PATENTS OR APPLICATIONS 740,994 1 1/1955 United Kingdom Primary ExaminerMurray Tillman Assistant ExaminerC. J. Seccuro [57] ABSTRACT Stippled surface thermoplastic articles are produced by extruding a mixture of a polymer of higher fluidity degree and one of lower fluidity degree at a tempera' ture above the temperature of fluidization of the former but below the temperature of fluidization of the latter. Preferred polymers include polymethylmethacrylate, ABS type resins, and various copolymers of methylmethacrylate or of styrene.
13 Claims, 1 Drawing Figure Reissued 0m. 28, 1975 Re. 28, {594 INVENTORS. I QRo Rouzom ,MARig 69mm 1:. PIER woovrco cum;
MANUFACTURED ARTICLES OF BLENDS OF THERMOPLASTIC POLYMERS HAVING DIFFERENT FLUIDITY DEGREES Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to manufactured articles made from thermoplastic polymers, which articles have a stippled surface appearance and are obtained by direct extrusion, and to a process for their production.
An object of the present invention is the preparation of manufactured articles (e.g. flat and corrugated plates, pipes, structural shapes) from thermoplastic polymers, or mixes of thermoplastic polymers, having a stippled surface appearance, by direct extrusion of the materials in the extruder. By the use of the term manufactured article having a stippled surface appearance," we mean a manufactured article which, although homogeneous internally, has discontinuities on its surface, namely stipple or pin-spots which on the whole produce a decorative appearance; these decorative effects are also known as embossing, and therefore the materials are said to be embossed articles.
At the present time, these effects are obtained by a batch process, by placing the polymer in a vertical press provided with a suitable metallic mold at a high temperature, or alternatively, by a continuous process, by calendering the polymer articles obtained by extrusion or molding by means of engraved cylinders. Such articles with a stippled surface appearance can also be obtained by casting in suitable molds.
The present invention eliminates further treatment of the articles or the use of additional equipment to obtain the stippled effect, thus effecting a substantial saving of time and effort.
It has now been found that by extruding a suitable mixture of thermoplastic polymers, the stippled effect is obtained directly at the extruder outlet without the necessity of additional processing. The polymer mixture used herein consists essentially of two components: the first component being a thermoplastic polymer or mixture of thermoplastic polymers having a high fluidity, or a low viscosity, in the molten state; and the second component being a thermoplastic polymer or mixture of thermoplastic polymers having little or no fluidity or, in other words, having a high viscosity, in the molten state. Fluidity degree is determined according to ASTM 123862 with the following particular conditions:
Temperature-l 90 C.
Nozzle diameter-3 mm.
Load on the plunger-l kg.
Suitable mixtures include those wherein the first (high fluidity) component is polymethylmethacrylate having a fluidity degree of from 0.8 to 1.3 and the second (low fluidity) component is polymethylmethacrylate having a fluidity degree from 0.1 to 0.3. Other suitable mixtures include, for example, polyvinylchloride, polymethylmethacrylate having a fluidity degree of from 0.8 to 1.3, and polymethylmethacrylate having a fluidity degree of 0.] to 0.3.
One combination of thermoplastic polymers of the present invention is a polymethylmethacrylate having a fluidity of 1.1, and a polymethylmethacrylate having a fluidity of 0. l 8. Another is a polymethylmethacrylate 2 having a fluidity of 1.1 and polymethylmethacrylate, cross-linked with 1% of glycoldimethacrylate, having a fluidity which is so low as to be unmeasurable by the method indicated hereinabove.
In place of polymethylmethacrylate, its copolymers with styrene, alpha-methylstyrene, acrylic esters, methacrylic esters of higher aliphatic alcohols, acrylonitrile, and vinyl esters can be substituted, while proceeding with the process described herein. Similar results are obtained with styrene and its copolymers.
It is not necessary that the materials to be mixed have the same or analogous chemical structure; on the contrary it is only important that they are compatible and that they show a different fluidity.
As an example, stippled manufactured articles can be obtained by extruding polymethylmethacrylate having a low fluidity, with a mixture consisting of polyvinylchloride and polymethylmethacrylate having a normal fluidity; in this particular case the materials are also self-extinguishing. Another suitable mixture consists of an impact proof material comprising an ABS resin and of a polymethylmethacrylate having a fluidity of 0.18.
The polymers or the mixes of polymers having different fluidity employed in order to obtain these materials can be prepared in many different manners, that is, either in suspension or in bulk, or in solution, or in emu]- sion. However, in order to obtain the decorative effects which are the object of the present invention, it is essential that they are mixed in dry solid form, or as pellets suspended in a medium to be dried successively. The size of the polymers, pellets and granules or powders can be widely varied, but it is necessary that they be suitable for the commonly used extrusion process for thermoplastic materials.
The amounts of the two components are also widely variable, but an amount of about 5% of the polymer having the low fluidity is sufficient to give the above described stippled effects. A preferred ratio is from about 95 to 40 parts of the polymer having high fluidity, and from 5 to parts of the polymer having low fluidity. However, higher amounts of the latter can be used, thus obtaining different effects as far as the intensity and the appearance are concerned.
It is further possible to use for the preparation of these articles of stippled surface appearance any of the additives generally used in plastic materials such as plasticizers, lubricants, antioxidants, coloring agents, absorbents of ultraviolet rays, etc., provided that they are used within suitable ratios, being added singly or together.
The process for the preparation of these articles of stippled surface appearance is very simple. Preferably the operation is carried out as follows: The previously mixed polymer (in the dry state) is fed into the extruder. The extruder works at a temperature higher than that suitable for the normal extrusion of the more fluid polymer, this temperature being in relation to the amount of the polymer having a low fluidity that is used, in the way, that higher amounts of the polymer having lower fluidity in the mixture require significantly higher operating temperatures of the extruder than those of the polymer having higher fluidity. In any case the extrusion temperature of the mixtures never reaches the extrusion temperature of the polymer having lower fluidity.
At the outlet of the extruder, the stippled surface article is cooled in air according to conventional methods. The mechanical properties of the manufactured articles which are obtained according to our process are analogous to those which are obtained by means of conventional processes.
The stippled surface articles of the present invention can be made using all of the conventional equipment for extrusion generally used for thermoplastic material. The decorative stippled effect can be seen either in transparent products or in opalinized. colored or pigmented materials. It can be intensified by suitably varying the optical characteristics ofeither of the materials or of both. Different effects without limitation of nu merical quantity can be obtained, by varying materials used.
With regard to additional operations, the stippled surface appearance articles prepared according to the present invention, behave exactly the same as those having a smooth surface. In fact, cutting, shaping and gluing are performed under the same conditions and by use of the same equipment. Furthermore, it is to be noted that in the case of very great stretching. the stip pled effect (surface showing stipple or pin-spots) of the plate and its superficial appearance remain unchanged. This characteristic is surprising, although extremely useful, since it allows one to maintain unchanged the effect of light diffusion in thin layers of opaline materials. This does not occur with numerous other materials. The stippled effect still remains even if the manufactured articles at the outlet of the extruder are treated with a smooth cylinder. In this situation, the stippled effect results in a brighter and smoother surface similar to that of sandblasted glass. The optical characteristics of these articles are particularly surprising, since they show simultaneously. both high transparency, and also, high light diffusion. The present invention includes products produced by the foregoing process which are thereafter calendered by treatment with engraved cylinders,
The following examples are given to illustrate the present invention without limiting it in any way. The amounts reported in the examples are to be understood as amounts by weight, unless the contrary is clearly stated.
EXAMPLE l 15 kg./h. of the following mixture is fed to an extruder provided with degasification and having a head f 300 X 3.3 mm.;
I parts of transparent polymethylmethacrylate pearls having a fluidity degree of LI and an average diameter of between 0.1 and 0.3 mm.;
parts of transparent pearls of polymethylmeth acrylate having a fluidity degree of (l. l 8 and an average diameter of between 0.1 and 0.3 mm.
The two types of polymethylmethacrylate have been previously mixed in a powder mixer for -30 minutes. The extruder works at a temperature of about 240 C. during the plastifying operation and during the degasification operation. In this way [8 m./h. of a flat plate having a thickness of about 3 mm. and width of 250 mm. is obtained. The plate is cooled in the air on a suitable draft gear. It shows on the surface (stipple or pinspots) a typical stippled appearance. The light transmission and the light diffusion of this article measured according to ASTM D 1003 on specimens having a thickness of about 3 mm, are respectively 89 and 18%.
EXAMPLE 2 l5 kg./h. of the following mixture is fed to an ex truder similar to that described in Example l:
100 parts of transparent polymethylmethacrylate pearls having a fluidity degree of L1 and a diameter of between 0.1 and 0.3 mm.;
20 parts of transparent polymethylmethacrylate pearls having a fluidity degree of 0.18 and an average diameter of between 0.l and 0.3 mm,
The two types of polymethylmethacrylate have been previously mixed in a powder mixer for 2030 minutes. The extruder works at a temperature of about 250C. during the plastifying and degasification operation. In this way, 13 m./h. of a flat plate having a thickness of about 3 mm. and a width of about 250 mm. are obtained. The plate is cooled in the air on a suitable draft gear. It shows on the surface, a typical stippled decorative effect as can be seen in the accompanying diagram, wherein section l represents a top view of transparent normal plate of polymethylmethacrylate, placed on a drawing with thick lines, whereas section 2 thereof shows a top view of a part ofa plate obtained by working as described in this example and placed on the same drawing. The light transmission and diffusion of this product measured according to ASTM D I003 on a specimen having a thickness of 3 mm. are respectively 85 and 48%.
EXAMPLE 3 l5 kg./h of the following mixture is fed to an extruder similar to that described in Example 1:
l0() parts of transparent polymethylmethacrylate pearls having a fluidity degree of 1.1 and a diameter of between 0.1 and 0.3 mm.;
50 parts of transparent polymethylmethacrylate pearls having a fluidity degree of 0.l8 and an average diameter of between 0.] and 0.3 mm.
The two types of polymethylmethacrylate have been previously mixed in a powder mixer for 20-30 minutes. The extruder works at a temperature of about 250 C. during the plastifying and degasification step; in this way. l8 m./h. ofa flat plate having a thickness of about 3 mm. and a width of about 250 mm. is obtained. The plate is cooled in the air on a suitable draft gear. It shows on its surface a typical and marked decorative stippled effect, as can be seen in section 3 of the ac companying diagram, which shows a top view ofa plate of the product obtained according to the present process, and placed on a drawing having thick lines. The light transmission and diffusion of this product measured according to ASTM D I003 on specimens having a thickness of 3 mm. are respectively and 88%.
EXAMPLE 4 Two suspensions of polymethylmethacrylate pearls having a pearl content of about 25% are mixed in an autoclave in the ratio 10:2. The first suspension consists of transparent polymethylmethacrylate pearls hav ing a fluidity degree of LI and an average diameter of between 0.1 and 0.3 mm.; the second suspension consists of transparent polymethylmethacrylate pearls having a fluidity degree of 0.18 and an average diameter of between 0.1 and 0.3.
After agitating for 10 minutes, the mixture of the two suspensions is discharged into a centrifuge, and then the separated product is dehydrated and dried. The dry product is sent to an extruder similar to that described in Example I. in quantities of kgjh. The extruder works at a temperature of about 250 C. during the plastifying and degasification step. In this way, l8 m./h. of a flat plate having a thickness of about 3 mm. and a width of about 250 mm. is obtained. The plate is cooled in the air on a suitable draft gear. It shows on the surface a typical decorative stippled effect. The light transmission and diffusion of this product when measured according to ASTM D I003 on specimens having a thickness of 3 mm. are respectively 85 and 48%.
EXAMPLE 5 l5 kg./h. of the following mixture is fed to an ex truder similar to that described in Example 1:
100 parts of transparent methylmethaerylate pearls having a fluidity degree of L1 and an average diameter of between 0.l and 0.3 mm.
ID parts of transparent polymethylmethacryiate pearls having a fluidity degree of 0.18 and an average diameter of between 0.] and 0.3 mm.;
Parts Barium sulfate 2 Cacoyl violet ZIRS (anthraquinone derivative,
NYMCO S.p.A. 0.02 Tinuvin P lhydroxy-phenyhbenzotriazole) 0.! Stearic acid 0.2
are fed. The mixture is first mixed in a powder mixer for -30 minutes and then sent to the extruder. The
extruder works at a temperature of about 240 C. during the plastifying and degasification step. In this way, about 18 m./h. of a flat plate having a thickness of about 3 mm. and a width of 250 mm. is obtained. The plate is cooled in the air on a suitable draft gear. It is opalized and shows a typically stippled surface with a decorative effect. The light transmission and diffusion of this product, when measured according to ASTM D 1003, on specimens having a thickness of3 mm., are 45 and 100% respectively.
EXAM PLE 6 l5 kg./h of the following mixture is fed to the same extruder described in Example 1:
100 parts of transparent polymethylmethacrylate pearls having a fluidity degree of 1.] and an average diameter of between 0.1 and 0.3 mm.;
20 parts of transparent polymethylmethacrylate pearls having a fluidity degree of 0.18 and an average diameter of between 0.1 and 0.3 mm.
Parts Blue Vaxoline APS (Sesacolor S.p.A., color index: solvent blue 36. page 2883) 0007 Red Vaxoline MPS (Sesacolor S.p.f\..color index: dispersed red 9) 0.0019 Yellow Vaxoline lS (Sesacolor S.p.A. color index: solvent yellow l4. page 2821) 0.00055 Tinuvin P lhydroxy-phenyl-benzotriazole) 0.200
The mixture is previously mixed in a powder equipment for 20-30 minutes and then it is sent to the extruder. The extruder works at about 250 C. during the plastifying and degasification step. In this way, 18 m./h. of a flat plate having a thickness of about 3 mm. and width of 250 mm. is obtained. The plate is cooled in the air on a suitable draft gear. It is grey colored and has the typically stippled decorative effect surface. The light transmission and diffusion of this product. when measured according to ASTM D 1003, on specimens having a thickness of 3 mm.. are 67 and 44% respec' tively.
EXAMPLE 7 l5 kg./h. of the following mixture is fed to the same extruder described in Example l:
40 parts of transparent polymethylmethacrylate pearls having a fluidity degree of LI and a diameter of between 0.l and 0.3 mm.;
20 parts of transparent polymethylmethacrylate pearls having a fluidity degree of 0.l8 and a diameter of between 0.1 and 0.3 mm.;
60 parts of polyvinylchloride pearls having a constant K of 62-65 (as constant K we intend the time for the fall measured in seconds between two winning-posts 10 cm. distant, of a steel ball having a weight of 2.03 g. into a test-glass having a diameter of 20 mm. containing the platisol (polyvinylchloride dioctylphthalate 60:40), at 20 C.
Parts Trichloroethylphosphate 5 Stanclere (tin alkylmercaptide) I73 L8 Santowhite Crystal (4.4-thiohis (6 tert. butylmethacresol] 0.0015 Tinuvin P (H00 Loxiol 30 (a wax like substance produced by Neynaber Society) 0.500 Loxiol 3i (esters of fatty acid produced by Neynabcr Society) 070 Calcoil Violet Zl RS 0.0003
EXAMPLE 8 l5 kg./h. of the following mixture is fed to an extruder similar to that described in Example 1:
Parts Transparent polymethylmethacrylate pearls having a fluidity degree of 1.] and a diameter of between 0.l and 0.3 mm.
Transparent polymethylmethacrylate granules having a fluidity degree of 0.18 and a diameter of between 0.8 and 2.5 mm. and obtained by milling polymethylmethacrylate prepared in bulk The two types of polymethylmethacrylate have been previously mixed in a powder mixer for 2030 minutes. The extruder works at a temperature of about 250 C. during the plastifying and degasification step. In this way l8 m./h. ofa flat plate having a thickness of about 3 mm. and a width of about 250 mm. are obtained. The plate is cooled in air on a draft gear. The plate shows a typical decorative stippled effect on the surface. The light transmission and diffusion of this product. when measured according to ASTM D 1003, on specimens having a thickness of 3 mm. are 85 and 4871 respectively.
EXAMPLE 9 l kgih. of the following mixture is fed to the same extruder described in Example I:
Parts Granules of an impact-proof ABS resin (type B 32 produced by Monteculmi Edison S.p.A.) 80 Polyrncthylmethacrylate pearls having a fluidity degree of (LIX and an average diameter of between (LI and (l 3 mm. 20
The polymers are previously mixed in a powder mixer for 20-30 minutes and then sent to the extruder.
The extruder works at a temperature of l80200 C. during the plastifying phase and degasification step.
In this way 18 m./h. of a flat plate having a thickness ofabout 3 mm. and about 250 mm. width are obtained. The plate is opaque and its surface is typically stippled with a decorative effect.
EXAMPLE S0 kg./h. of the following mixture is fed to an extruder provided with degasification and having a head of 1,250 mm.:
Parts Transparent polymethylmethacrylute pearls having a fluidity degree of l.l and a diameter of between 0.] and 0.3 mm. 100 Transparent polymethylmelhacrylate pearls having a fluidity degree of(l.l8 and diameter of between (H and 0.3 mm. 20
The two types of polymethylmethacrylate have been previously mixed into a powder mixer for 2030 minutes. The extruder works at a temperature of about 250 C. during the plastifying and degasification step. in this way. 20 m./h. of a plate having a thickness of about 3 mm. and a width of about 1,200 mm. are obtained. This plate is transparent and its surface shows the typical stippled decorative effect. The light trans mission and diffusion of this product when measured according to ASTM D l003 are 85 and 48% respectively.
While the present invention has been described with particular reference to specific examples, it is not to be limited thereby. but reference is to be had to the appended claims for a definition of its scope.
What we claim and desire to protect by Letters Patent is:
l. A process for producing articles having a stippled surface. said I: method] process comprising extruding a mixture of at least two thermoplastic polymers having different degrees of fluidity, the ratio of the fluidity of the polymer having the higher degree of fluidity to the fluidity of the polymer having the lower degree of fluidity being at least 2.67, said extrusion being performed at a temperature higher than the temperature of fluidization of the polymer having a higher degree of fluidity and lower than the temperature of fluidization of the polymer having the lower degree of fluidity, said degree of fluidity being determined according to ASTM 1238-62 at l90 C with nozzle diameter of 3 mm and plunger load of l0 kg; said polymers being selected from the group consisting of polymethyl methacrylate, a copolymer of methylmethacrylate with an acrylic ester or mcthacrylic ester of a higher aliphatic alcohol; polymethyl-methacrylate cross-linked with glycoldimethacrylate; and] an impact-proof ABS resin and a copolymer of methylmethacrylate and styrene. at least one of said polymers being a polymethylmethacrylate polymer.
2. The process of claim I, wherein the polymer component having high fluidity is prsent in a ratio of from to 40 parts by weight, while the polymer component having low fluidity is present in a ratio of from 5 to 60 parts by weight.
3. The process of claim 1 where a coloring agent is added to the polymer mixture, before extrusion.
4. The process of claim 1 where an antioxidant is added to the polymer mixture, before extrusion.
S. The process of claim I where a plastifier is added to the polymer mixture, before extrusion.
6. The process of claim 1 where coloring agents, antioxidants and plastifiers are added to the polymer mixture singly or together.
7. The process of claim 1 wherein two polymethylmethacrylates of differing degrees of fluidity are used.
8. The process of claim I where one polymethyl methacrylate has a fluidity degree of from 0.8 to 1.3; while the second polymethylmethacrylate has a fluidity degree from 0.l to 0.3.
9. The process of claim 1, wherein polymethylmethacrylate and polymethylmethacrylate cross-linked with 1% of glycoldimethacrylate are use.
I: H]. The process of claim I where the polymer mixture consists of polyvinylchloride, polymethylmethacrylate which has a fluidity degree of from 0.8 to 1.3, and polymethylmethacrylate which has a fluidity degree of 0.1 to 0.3.]
11. A method for the production of an article of manufacture having a rough surface which diffuses light which comprises blending (1) particles of a crosslinked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, cross-linking monomer, with (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, and directly forming, by extrusion, the resultant blend, as such, into said article, wherein said non-cross-linked, thermoplastic polymer is molten at least during said forming and said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend.
12. A method according to claim 11 wherein said thermoplastic polymers are polymers of methyl meth acrylate.
13. An article of manufacture formed directly by extruding a blend of 1) particles of a cross-linked ther moplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, crosslinking monomer and (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, wherein said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend, and said non-cross-linked, thermoplastic polymer was molten at least during said extrusion of the blend.
14. A composition according to claim l3 wherein either thermoplastic polymer is a polymer of methyl methacrylate.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT N0. Reissue 28,594
DATED October 28, 1975 |NVENTOR(S) Isidoro RONZONI et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
[30] Foreign Application Priority Data "Jan. 14, 1974 Italy 888/74" should read Jan. 14, 1964 Italy OIOOIIOIU.
Signed and Scaled this Twenty-seventh D 2} Of July 1976 [SEAL] Arrest:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (ummissiumr ufParenIs and Trademarks

Claims (13)

1. A PROCESS FOR PRODUCING ARTICLES HAVING A STIPPLED SURFACE, SAID (METHOD) PROCESS COMPRISING EXTRUDING A MISTURE OF AT LEAST TWO THERMOPLASTIC POLYMERS HAVING DIFFERENTDEGREES OF FLUIDITY, THE RATIO OF THE POLYMER HAVING THE HIGHER DEGREE OF FLUIDITY TO THE FLUIDITY OF THE POLYMER HAVING LOWER DEGREE OF FLUIDITY BEING AT LEAST 2.67, SAID EXTRUSION BEING PERFORMED AT A TEMPERATURE HIGHER THAN THE TEMPERATURE OF FLUIDIZATION OF THE POLYMER HAVING A HIGHER DEGREE OF FLUIDITY AND LOWER THAN THE TEMPERATURE OF FLUIDIZATION OF THE POLYMER HAVING THE LOWER DEGREE OF FLUIDITY, SAID DEGREE OF FLUIDITY BEING DETERMINED ACCORDING TO ASTM 1238-62 AT 190*C WITH NOZZLE DIMETER OF 3 MM AND PLUNGER LOAD OF 10 KG, SAID POLYMER BEING SELECTED FROM THE GROUP CONSISTING OF POLYMERETHYL METHACRYLATE, A COPOLYMER OF METHYLMETHACRYLATE WITH AN ACRYLIC ESTER OR METHACRYLIC ESTER OF A HIGHER ALIPHATIC ALCOHOL, POLYMETHYL-METHACRYLATE CROSSLINKED WITH GLYCOLDIMETHACRYLATE, (AND) AN IMPACT-PROOF ABS RESIN AND A COPOLYMER OF METHYMETHACRYLATE AND STYRENE, AT LEAST ONE OF SAID POLYMERS BEING A POLYMETHYLMETHACRYLATE
2. The process of claim 1, wherein the polymer component having high fluidity is prsent in a ratio of from 95 to 40 parts by weight, while the polymer component having low fluidity is present in a ratio of from 5 to 60 parts by weight.
3. The process of claim 1 where a coloring agent is added to the polymer mixture, before extrusion.
4. The process of claim 1 where an antioxidant is added to the polymer mixture, before extrusion.
5. The process of claim 1 where a plastifier is added to the polymer mixture, before extrusion.
6. The process of claim 1 where coloring agents, antioxidants and plastifiers are added to the polymer mixture singly or together.
7. The process of claim 1 wherein two polymethylmethacrylates of differing degrees of fluidity are used.
8. The process of claim 1 where one polymethylmethacrylate has a fluidity degree of from 0.8 to 1.3; while the second polymethylmethacrylate has a fluidity degree from 0.1 to 0.3.
9. The process of claim 1, wherein polymethylmethacrylate and polymethylmethacrylate cross-linked with 1% of glycoldimethacrylate are use.
11. A method for the production of an article of manufacture having a rough surface which diffuses light which comprises blending (1) particles of a cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, cross-linking monomer, with (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, and directly forming, by extrusion, the resultant blend, as such, into said article, wherein said non-cross-linked, thermoplastic polymer is molten at least during said forming and said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend.
12. A method according to claim 11 wherein said thermoplastic polymers are polymers of methyl methacrylate.
13. An article of manufacture formed directly by extruding a blend of (1) particles of a cross-linked thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, said polymer having been cross-linked with a polyfunctional, cross-linking monomer and (2) a non-cross-linked, thermoplastic polymer of a monomer selected from the group consisting of a methacrylate, wherein said particles have diameters ranging from about 0.1 mm. to 2.5 mm. and are present in said blend in an amount ranging from about 5% to about 60%, by weight, based on the total weight of the blend, and said non-cross-linked, thermoplastic polymer was molten at least during said extrusion of the blend.
14. A composition according to claim 13 wherein either thermoplastic polymer is a polymer of methyl methacrylate.
US46055174 1964-01-14 1974-04-12 Manufactured articles of blends of thermoplastic polymers having different fluidity degrees Expired USRE28594E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US46055174 USRE28594E (en) 1964-01-14 1974-04-12 Manufactured articles of blends of thermoplastic polymers having different fluidity degrees

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT88864 1964-01-14
US42532065A 1965-01-13 1965-01-13
US46055174 USRE28594E (en) 1964-01-14 1974-04-12 Manufactured articles of blends of thermoplastic polymers having different fluidity degrees

Publications (1)

Publication Number Publication Date
USRE28594E true USRE28594E (en) 1975-10-28

Family

ID=27272500

Family Applications (1)

Application Number Title Priority Date Filing Date
US46055174 Expired USRE28594E (en) 1964-01-14 1974-04-12 Manufactured articles of blends of thermoplastic polymers having different fluidity degrees

Country Status (1)

Country Link
US (1) USRE28594E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847323A (en) 1986-06-27 1989-07-11 Shiseido Company Ltd. Resin composition having nacreous gloss
US6749932B1 (en) * 1993-12-03 2004-06-15 John Gould Colorants, colored articles and methods of making them
US20060263578A1 (en) * 2005-05-04 2006-11-23 Robert Bordener Structural laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326543A (en) * 1940-07-27 1943-08-10 Du Pont Methyl methacrylate molding composition
GB740994A (en) * 1953-03-18 1955-11-23 British Celanese Improvements relating to plastic products
US2887464A (en) * 1954-11-15 1959-05-19 Eastman Kodak Co Composition comprising copolymers of methyl methacrylate and alpha-methylstyrene with polymers of acrylic esters
US3055859A (en) * 1956-09-28 1962-09-25 Basf Ag Impact-resistant plastic compositions comprising a styrene polymer and a cross-linked acrylic acid ester polymer, and process for preparing same
US3060148A (en) * 1958-07-29 1962-10-23 Du Pont Low viscosity methyl methacrylate coating composition containing high viscosity methyl methacrylate polymer
US3090763A (en) * 1963-05-21 Table iii
US3230186A (en) * 1961-02-06 1966-01-18 Huels Chemische Werke Ag Shock-resistant polystyrene composi-tions containing two rubbery polymers
US3310505A (en) * 1963-03-11 1967-03-21 Phillips Petroleum Co Production of thermoplastic materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090763A (en) * 1963-05-21 Table iii
US2326543A (en) * 1940-07-27 1943-08-10 Du Pont Methyl methacrylate molding composition
GB740994A (en) * 1953-03-18 1955-11-23 British Celanese Improvements relating to plastic products
US2887464A (en) * 1954-11-15 1959-05-19 Eastman Kodak Co Composition comprising copolymers of methyl methacrylate and alpha-methylstyrene with polymers of acrylic esters
US3055859A (en) * 1956-09-28 1962-09-25 Basf Ag Impact-resistant plastic compositions comprising a styrene polymer and a cross-linked acrylic acid ester polymer, and process for preparing same
US3060148A (en) * 1958-07-29 1962-10-23 Du Pont Low viscosity methyl methacrylate coating composition containing high viscosity methyl methacrylate polymer
US3230186A (en) * 1961-02-06 1966-01-18 Huels Chemische Werke Ag Shock-resistant polystyrene composi-tions containing two rubbery polymers
US3310505A (en) * 1963-03-11 1967-03-21 Phillips Petroleum Co Production of thermoplastic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847323A (en) 1986-06-27 1989-07-11 Shiseido Company Ltd. Resin composition having nacreous gloss
US6749932B1 (en) * 1993-12-03 2004-06-15 John Gould Colorants, colored articles and methods of making them
US20060263578A1 (en) * 2005-05-04 2006-11-23 Robert Bordener Structural laminate

Similar Documents

Publication Publication Date Title
US3655829A (en) Manufactured articles of blends of thermoplastic polymers having different fluidity degrees
JP2530687B2 (en) Polymer composition
US3843753A (en) Composite interpolymer and low haze impact resistant thermoplastic compositions thereof
JP2618342B2 (en) Granular polymer composition and method for producing the same
US3345434A (en) Blend of particles of crosslinked thermoplastic polymers with non-crosslinked thermoplastic polymers
US4876311A (en) Opaque synthetic resins
US3796677A (en) Incorporating rubber into thermoplastics
US2101107A (en) Molding compositions and process of molding
US3050785A (en) Process which comprises forming a gel from a solution in a vinylidene compound of isotactic polymethylmethacrylate and syndiotactic polymethylmethacrylate and polymerizing said gel
EP2530097A1 (en) Impact modifier for polymethyl methacrylate resin having excellent impact strength and transparency and method of preparing the same
US2972170A (en) Methyl methacrylate monomer molding process
USRE28594E (en) Manufactured articles of blends of thermoplastic polymers having different fluidity degrees
CN1951994A (en) Transparent film masterbatch and its preparing method
KR100355809B1 (en) Process for coloring thermoplastics
JP3504010B2 (en) Molded article made of styrene resin composition
US3907727A (en) Process for dispersing carbon black in acrylate plastics
CN109627587A (en) A kind of polypropylene agglomerate and its preparation process
US3226353A (en) Color concentrates of graft copolymers of methyl methacrylate and 2-hydroxymethyl-5-norbornene
EP0104433A1 (en) Moulded mass for extruding hollow bodies and profiles with an opaque surface
US2321759A (en) Molding compounds
EP0124371A1 (en) Soft vinyl chloride resin composition
DE1132725B (en) Process for the production of copolymers with an extremely heterogeneous structure
JPH03285958A (en) Light-diffusible resin composition
EP0645420B1 (en) Polymethacrylate moulding based on cured casting resin, with structure of particular microdomains
US2344918A (en) Process of plasticizing esters of methacrylic acid