USRE28406E - Process for producing textured yarn - Google Patents

Process for producing textured yarn Download PDF

Info

Publication number
USRE28406E
USRE28406E US46313874A USRE28406E US RE28406 E USRE28406 E US RE28406E US 46313874 A US46313874 A US 46313874A US RE28406 E USRE28406 E US RE28406E
Authority
US
United States
Prior art keywords
yarn
stretching
bath
heat treatment
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Inventor
Michel Buzano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodiaceta SA
Original Assignee
Rhodiaceta SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodiaceta SA filed Critical Rhodiaceta SA
Application granted granted Critical
Publication of USRE28406E publication Critical patent/USRE28406E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/229Relaxing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/20Formation of filaments, threads, or the like with varying denier along their length
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/34Yarns or threads having slubs, knops, spirals, loops, tufts, or other irregular or decorative effects, i.e. effect yarns
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/223Stretching in a liquid bath
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/227Control of the stretching tension; Localisation of the stretching neck; Draw-pins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Definitions

  • ABSTRACT OF THE DISCLOSURE Fancy yarns are made by subjecting yarns of a synthetic thermoplastic material, especially polyester yarns, to partial stretching, e.g. by a factor of 1.5-3.5, in contact with an aqueous lower alkanol or other crackproducing agent, followed by a heat relaxatior treatment, the said or other heat treatment, or a supplementary stretch, being applied intermittently or to a continuously varying degree.
  • the yarns obtained have a flake appearance and comprise alternating thick and thin portions, the diameters of the thick and thin portions both varying macroscopically, and the thick parts varying in diameter on the microscopic scale, the zones of smallest diameter corresponding to zones of highest crystallinity and orientation.
  • the thin parts may vary in diameter microscopically in an analogous way but with smaller variations, or may be substantially uniform.
  • This invention relates to a new product consisting of a fancy yarn of a synthetic thermoplastic material resembling a so-called flake yarn, and to a process and device for obtaining it.
  • the yarn is of a polyester such as polyethylene terephthalate.
  • a standard technique for the manufacture of synthetic flake yarn consists of under-stretching the yarns in zones, that is to say of stretching them in zones to a lesser degree, than corresponds to a fully stretched yarn.
  • the stretching force is not applied to the yarn uniformly, so that the diameter of the finished yarn varies along its length.
  • the present invention provides a new multifilament yarn of a synthetic thermoplastic material, in which each filament prossesses, on a macroscopic scale, alternations of thick and thin parts in phase, the diameters of the thick and thin parts varying over the length of the yarn in such a way as to give it a flake appearance.
  • This new yarn is characterized in that the thick parts comprise on a microscopic scale alternating zones of at least two different diameters, the zones of the lowest diameter corresponding to the zones having the highest crystallinity and molecular orientation and vice versa and the thin parts comprise on a microscopic scale the same alternations of zones and the same differences of structural characteristics but to a much lower degree with the possibility that the differences can become imperceptible; in other words, these thin parts can in the extreme case be in the form of normally stretched parts which are crystalline, oriented and of uniform crosssection.
  • the thick parts it is advantageous for the thick parts to show, on a microscopic scale, an alternation of zones of pronouncedly different diameters, the essentially amorphous and un-oriented zones giving the yarn great flexibility.
  • the most amorphous zones in the thick parts have a crystallinity index of less than 20 percent.
  • This crystallinity index is deduced from the measurement of the overall crystallinity index of the yarn as determined according to the method of W. O. Statton (Journal of Applied Polymer Science, Vol. 7, Pages 803-815 (1963)), from the proportions by volume of the various zones, from the X-ray diagram given by the yarn, from comparisons of fluorescence after dyeing of the various zones of one and the same yarn of several yarns, and from the morphology of these zones.
  • the invention also consists in new process for obtaining flake yarns from filaments of a synthetic thermoplastic material, especially polyester material, which comprises partially stretching the yarn in contact with a crackproducing agent and then giving it a heat treatment in the relaxed state, and continuously or intermittently varying the degree of relaxation during such a heat treatment and/ or the degree of stretching during the initial or a supplementary stretching treatment.
  • a supplementary stretching may be carried out in the cold.
  • the yarn after being stretched in a bath of a crack-producing agent, is given a supplementary stretching to a degree which varies with time, and is then given a heat treatment in the relaxed state.
  • the yarn is first given a heat treatment in the relaxed state and is then partially stretched to a varying degree.
  • the yarn after being partially stretched in a bath of a crack-producing agent, is given a heat treatment in a relaxed state, the degree of relaxation varying continuously or intermittently in a regular or random manner.
  • the yarn can be given a heat treatment while it passes continuously from a relaxed state to a stretching state.
  • crack-producing agents can be used, e.g. a1- cohols, glycols, dimethyl-formamide, kerosene, perchloroethylene, polyoxyethylenic liquids of the Carbowax type pyridine and the like.
  • a1- cohols glycols, dimethyl-formamide, kerosene, perchloroethylene, polyoxyethylenic liquids of the Carbowax type pyridine and the like.
  • Such compounds have frequently been described in the literature.
  • relatively cheap agents such as aqueous solutions of lower alcohols are used.
  • the degree of stretch in a crack-producing bath is advantageously between 1.5 and 3.5, and especially between 2.5 and 3.
  • the heat treatment can be effected by any known means, including treatment with steam or with hot air, or contact with a heating surface.
  • the various operations of the process may be carried out on a continuous or a discontinuous basis.
  • the time elapsing between stretching in a crackproducing bath and the relaxation and/or subsequent stretching under varying tension responsible for the formation of the flakes is immaterial, and when a supplementary stretching is followed by heat treatment in the relaxed state these two operations may be separated.
  • the heat treatment can take place for example during a subsequent yarn treatment stage, or on the finished woven or other fabric.
  • the invention consists also in a device for carrying out the above process, which comprises means for feeding a yarn to a bath, means for stretching it in the bath, means for heat treating the stretched yarn and means for relaxing and/ or continuously or intermittently varying the degree of relaxation during such a heat treatment or the degree of stretch during the initial or a supplementary stretching treatment, and means for winding up the resulting fancy yarn.
  • This device may be constructed as a single unit or divided into several elements.
  • the heat treatment means may consist of any known means such as a hot air box or heating plate or an equivalent thereof.
  • the device for varying the degree of relaxation and/or stretching may consist simply of a moving finger forming part of, or carried or operated by, a cam driven by a motor, usually a variable speed motor, and of two sets of rollers of which the second is controlled to run at a different peripheral speed than the first.
  • this device can be replaced by any equivalent mechanism without going outside the scope of the invention.
  • FIG. 1 is a schematic view of a device for carrying out the process continuously
  • FIG. 2 is a schematic view of a variant of this device.
  • the device comprises a creel 1 that carries a bobbin 2 from which yarn 3 is drawn off by a system of rollers 5, 6, passing through a wire loop 4.
  • the yarn 3 is thereafter stretched in a crackproducing bath contained in a vat 7, from which it is drawn by the rollers 8, 9.
  • the resulting yarn is thereafter treated in a hot air box from which it is drawn by the rollers 11, 12.
  • the yarn then undergoes a second stretching by means of a system consisting of the two snubbing elements provided by eyelets 13 and 14 and a moving finger 15.
  • the yarn is finally taken up by a wind-up mechanism 16.
  • variable stretching device is arranged upstream from the set of rollers 11, 12 and either upstream or downstream from the heating box 10.
  • polyethylene terephthalate used has an intrinsic viscosity in o-chlorophenolof the usual value for textile yarns, about 0.65.
  • EXAMPLE 1 A 66 filament polyethylene terephthalate yarn of filament denier 7 is stretched in the device of FIG. 1, using an aqueuos bath containing 25 percent of ethanol at 40 C., with a degree of stretch of 3.
  • the peripheral speed of the feed rollers 8, 9 is 510 m./minute, that of the relaxing rollers 11 and 12 is 163 m./minute and the winding up speed is 258 m./minute.
  • the temperature of the heating box is 120 C.
  • the moving finger reciprocates 110 times per minute.
  • a flake yarn is obtained in which the thick parts have a gauge of 320 denier and the thin parts a gauge of 180 denier.
  • the shrinkage in boiling water is 41.7 percent for the thin parts and 17.7 percent for the thick parts.
  • the shrinkage in boiling water is determined as follows: a length of yarn A is first measured under a load of 0.05 g./den., then dipped into boiling water for 2 minutes, and dried for half an hour in an oven at 100 C. The yarn is now suspended for 15 minutes and is then subjected to a load of 0.05 g./den., and a new length B is measured.
  • the shrinkage in boiling water is given by the ratio (AB)/A 100.
  • the moving finger reciprocates 76 times per minute.
  • EXAMPLE 4 A 44 filament polyethylene terephthalate yarn of filament denier 7 is used, this time arranging the stretching finger between the set of feed rollers 8 and 9 and the oven 10 as shown in FIG. 2.
  • the linear speeds of the feed rollers and relaxing rollers are respectively 20 m./minute and 148 m./minute, the temperature of the hot air oven is 155 C., and the moving finger reciprocates times per minute.
  • the yarns of the invention have good dyeing afiinity which is demonstrated as follows: a knitted fabric is produced from a standard polyethylene terephthalate yarn and from a flake yarn according to the present invention, and is dyed by immersing it in a bath at 40 C. containing the following, by weight:
  • Disperse Orange 11 0.3 percent of Disperse Orange 11 (Cl. 60,700) 0.6 percent of Disperse Violet 1 61,000 (01. 61,100) 3.5 percent of Disperse Blue 7 (Cl. 62,500
  • a process for the production of continuous filament polyester fancy yarns having improved softness and dyeing properties comprising subjecting an initially unstretched continuous filament polyester yarn first to partial stretching by a factor of 2.5-3.5 X in a bath of a crack-producing agent and then to a supplementary stretch in the absence of such agent by a continuously varying factor, and before or after the supplementary stretch giving the yarn a relaxing heat treatment While allowing it to shrink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

1. A PROCESS FOR THE PRODUCTION OF CONTINUOUS FILAMENT POLYESTER FANCY YARNS HAVING IMPROVED SOFTNESS AND DYEING PROPERTIES, COMPRISING SUBJECTING AN INITIALLY UNSTRETCHED CONTINUOUS FILAMENT POLYESTER YARN FIRST TO PARTIAL STRETCHING BY A FACTOR 2.5-3.5 X IN A BATH OF A CRACK-PRODUCING AGENT AND THEN TO A SUPPLEMENTARY

STRETCH IN THE ABSENCE OF SUCH AGENT BY A CONTINUOUSLY VARYING FACTOR, AND BEFORE OR AFTER THE SUPPLEMENTARY STRETCH GIVING THE YARN A RELAXING HEAT TREATMENT WHILE ALLOWING IT TO SHRINK.

Description

May 6, 1975 BUZANO Re. 28,406
PROCESS FOR PRODUCING TEXTURED YARN Original Filad larch L7, 1969 2 Sheets-Sheet 1 May 6, 1975 M. BUZANO Re. 28,406
PROCESS FOR PRODUCING TEXTURED YARN Original Filad larch 17 1969 2 Sheets-Sheet 2 United States Patent Re. 28,405 Re-issued May 6, 1975 28,406 PROCESS FOR PRODUCING TEXTURED YARN Michel Buzano, Villeurbanne, France, assignor to Rhone- Pouleuc-Textile S.A., Paris, France Original No. 3,772,747, dated Nov. 20, 1973, Ser. No. 84,131, Oct. 26, 1970, which is a division of Ser. No. 814,465, Mar. 17, 1969. Application for reissue Apr. 22, 1974, Ser. No. 463,138 Claims priority, applicatiorzisgrance, Mar. 18, 1968, Int. Cl. D02j 1/22 US. Cl. 28-72.17 6 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Fancy yarns are made by subjecting yarns of a synthetic thermoplastic material, especially polyester yarns, to partial stretching, e.g. by a factor of 1.5-3.5, in contact with an aqueous lower alkanol or other crackproducing agent, followed by a heat relaxatior treatment, the said or other heat treatment, or a supplementary stretch, being applied intermittently or to a continuously varying degree. The yarns obtained have a flake appearance and comprise alternating thick and thin portions, the diameters of the thick and thin portions both varying macroscopically, and the thick parts varying in diameter on the microscopic scale, the zones of smallest diameter corresponding to zones of highest crystallinity and orientation. The thin parts may vary in diameter microscopically in an analogous way but with smaller variations, or may be substantially uniform.
CROSS REFERENCE TO RELATED APPLICATION This application is a division of my application Ser. No. 814,465, filed Mar. 17, 1969, now US. Pat. No. 3,683,610.
This invention relates to a new product consisting of a fancy yarn of a synthetic thermoplastic material resembling a so-called flake yarn, and to a process and device for obtaining it. Preferably the yarn is of a polyester such as polyethylene terephthalate.
A standard technique for the manufacture of synthetic flake yarn consists of under-stretching the yarns in zones, that is to say of stretching them in zones to a lesser degree, than corresponds to a fully stretched yarn. In this method, the stretching force is not applied to the yarn uniformly, so that the diameter of the finished yarn varies along its length.
While this method usually gives good results with polyamide yarns, in the case of polyester yarns the under-stretched parts become brittle and fragile when heat-treated, and this is a major disadvantage.
The present invention provides a new multifilament yarn of a synthetic thermoplastic material, in which each filament prossesses, on a macroscopic scale, alternations of thick and thin parts in phase, the diameters of the thick and thin parts varying over the length of the yarn in such a way as to give it a flake appearance.
This new yarn is characterized in that the thick parts comprise on a microscopic scale alternating zones of at least two different diameters, the zones of the lowest diameter corresponding to the zones having the highest crystallinity and molecular orientation and vice versa and the thin parts comprise on a microscopic scale the same alternations of zones and the same differences of structural characteristics but to a much lower degree with the possibility that the differences can become imperceptible; in other words, these thin parts can in the extreme case be in the form of normally stretched parts which are crystalline, oriented and of uniform crosssection.
On the macroscopic scale the thick parts have a spiral three-diamensional crimp and a high apparent volume.
It is advantageous for the thick parts to show, on a microscopic scale, an alternation of zones of pronouncedly different diameters, the essentially amorphous and un-oriented zones giving the yarn great flexibility.
Preferably, in the case of polyethylene terephthalate, the most amorphous zones in the thick parts have a crystallinity index of less than 20 percent. This crystallinity index is deduced from the measurement of the overall crystallinity index of the yarn as determined according to the method of W. O. Statton (Journal of Applied Polymer Science, Vol. 7, Pages 803-815 (1963)), from the proportions by volume of the various zones, from the X-ray diagram given by the yarn, from comparisons of fluorescence after dyeing of the various zones of one and the same yarn of several yarns, and from the morphology of these zones.
The invention also consists in new process for obtaining flake yarns from filaments of a synthetic thermoplastic material, especially polyester material, which comprises partially stretching the yarn in contact with a crackproducing agent and then giving it a heat treatment in the relaxed state, and continuously or intermittently varying the degree of relaxation during such a heat treatment and/ or the degree of stretching during the initial or a supplementary stretching treatment. A supplementary stretching may be carried out in the cold.
In one method of carrying out the invention the yarn, after being stretched in a bath of a crack-producing agent, is given a supplementary stretching to a degree which varies with time, and is then given a heat treatment in the relaxed state.
In another method the yarn is first given a heat treatment in the relaxed state and is then partially stretched to a varying degree.
In yet another method the yarn, after being partially stretched in a bath of a crack-producing agent, is given a heat treatment in a relaxed state, the degree of relaxation varying continuously or intermittently in a regular or random manner.
It is sometimes particularly advantageous to combine two of the above methods, for example the yarn can be given a heat treatment while it passes continuously from a relaxed state to a stretching state.
Known crack-producing agents can be used, e.g. a1- cohols, glycols, dimethyl-formamide, kerosene, perchloroethylene, polyoxyethylenic liquids of the Carbowax type pyridine and the like. Such compounds have frequently been described in the literature. Preferably, relatively cheap agents such as aqueous solutions of lower alcohols are used.
In the case of a polyester yarn, especially a polyethylene terephthalate yarn of a usual gauge, the degree of stretch in a crack-producing bath is advantageously between 1.5 and 3.5, and especially between 2.5 and 3.
The degree of relation and of any subsequent stretching will vary according to the effect desired.
The heat treatment can be effected by any known means, including treatment with steam or with hot air, or contact with a heating surface.
The various operations of the process may be carried out on a continuous or a discontinuous basis. In the latter case the time elapsing between stretching in a crackproducing bath and the relaxation and/or subsequent stretching under varying tension responsible for the formation of the flakes is immaterial, and when a supplementary stretching is followed by heat treatment in the relaxed state these two operations may be separated.
Since the time interval between the treatments is of no importance, the heat treatment can take place for example during a subsequent yarn treatment stage, or on the finished woven or other fabric.
The invention consists also in a device for carrying out the above process, which comprises means for feeding a yarn to a bath, means for stretching it in the bath, means for heat treating the stretched yarn and means for relaxing and/ or continuously or intermittently varying the degree of relaxation during such a heat treatment or the degree of stretch during the initial or a supplementary stretching treatment, and means for winding up the resulting fancy yarn.
This device may be constructed as a single unit or divided into several elements.
The heat treatment means may consist of any known means such as a hot air box or heating plate or an equivalent thereof.
The device for varying the degree of relaxation and/or stretching may consist simply of a moving finger forming part of, or carried or operated by, a cam driven by a motor, usually a variable speed motor, and of two sets of rollers of which the second is controlled to run at a different peripheral speed than the first. Of course this device can be replaced by any equivalent mechanism without going outside the scope of the invention.
The invention is illustrated in the accompanying drawing, in which FIG. 1 is a schematic view of a device for carrying out the process continuously, and
FIG. 2 is a schematic view of a variant of this device.
Referring now to FIG. 1, the device comprises a creel 1 that carries a bobbin 2 from which yarn 3 is drawn off by a system of rollers 5, 6, passing through a wire loop 4.
The yarn 3 is thereafter stretched in a crackproducing bath contained in a vat 7, from which it is drawn by the rollers 8, 9.
The resulting yarn is thereafter treated in a hot air box from which it is drawn by the rollers 11, 12.
The yarn then undergoes a second stretching by means of a system consisting of the two snubbing elements provided by eyelets 13 and 14 and a moving finger 15. The yarn is finally taken up by a wind-up mechanism 16.
In the variant of FIG. 2 the variable stretching device is arranged upstream from the set of rollers 11, 12 and either upstream or downstream from the heating box 10.
In the examples which follow the polyethylene terephthalate used has an intrinsic viscosity in o-chlorophenolof the usual value for textile yarns, about 0.65.
EXAMPLE 1 A 66 filament polyethylene terephthalate yarn of filament denier 7 is stretched in the device of FIG. 1, using an aqueuos bath containing 25 percent of ethanol at 40 C., with a degree of stretch of 3.
The peripheral speed of the feed rollers 8, 9 is 510 m./minute, that of the relaxing rollers 11 and 12 is 163 m./minute and the winding up speed is 258 m./minute. The temperature of the heating box is 120 C. The moving finger reciprocates 110 times per minute.
A flake yarn is obtained in which the thick parts have a gauge of 320 denier and the thin parts a gauge of 180 denier.
The shrinkage in boiling water is 41.7 percent for the thin parts and 17.7 percent for the thick parts.
The shrinkage in boiling water is determined as follows: a length of yarn A is first measured under a load of 0.05 g./den., then dipped into boiling water for 2 minutes, and dried for half an hour in an oven at 100 C. The yarn is now suspended for 15 minutes and is then subjected to a load of 0.05 g./den., and a new length B is measured.
The shrinkage in boiling water is given by the ratio (AB)/A 100.
4 EXAMPLE 2 The same yarn and the same device as before are used, but the speeds of the feed rollers and relaxing rollers are respectively 234 m./minute and 81 m./ minute, the temperature of the oven is 160 C., and thewinding up speed is 144 m./minute.
The moving finger reciprocates 76 times per minute.
A yarn of the following characteristics is obtained:
Thin parts Thick parts Denier Shrinkage in boiling water, percent EXAMPLE 3 Still using the same polyethylene terephthalate yarn, an assembly is used in which the stretching finger is arranged between the oven 10 and the set of rollers 11 and 12, the operating details being:
Speed of yarn feed rollers m./minute 234 Speed of relaxation rollers m./minute .130 Oven temperature C A yarn is obtained in which the thick parts have a gauge of 410 denier and the thin parts a gauge of 200 denier.
Reciprocations per minute EXAMPLE 4 A 44 filament polyethylene terephthalate yarn of filament denier 7 is used, this time arranging the stretching finger between the set of feed rollers 8 and 9 and the oven 10 as shown in FIG. 2.
The linear speeds of the feed rollers and relaxing rollers are respectively 20 m./minute and 148 m./minute, the temperature of the hot air oven is 155 C., and the moving finger reciprocates times per minute.
The resulting yarn has the following characteristics:
Thin parts Thick parts Elongation at break in percent... Gauge in denier The yarns of the invention have good dyeing afiinity which is demonstrated as follows: a knitted fabric is produced from a standard polyethylene terephthalate yarn and from a flake yarn according to the present invention, and is dyed by immersing it in a bath at 40 C. containing the following, by weight:
0.3 percent of Disperse Orange 11 (Cl. 60,700) 0.6 percent of Disperse Violet 1 61,000 (01. 61,100) 3.5 percent of Disperse Blue 7 (Cl. 62,500
1 cm. /litre of oxyethylated castor oil as a dispersing agent, 1 cm. /litre of acetic acid as an acidifying agent; the temperature of the bath is then raised at the rate of one degree per minute to 98 C., the bath is kept at this temperature for 90 minutes and then cooled slowly, and the fabric is rinsed. The standard yarn is hardly stained, but the flake yarn is perfectly dyed.
EXAMPLE 5 I claim:
1. A process for the production of continuous filament polyester fancy yarns having improved softness and dyeing properties, comprising subjecting an initially unstretched continuous filament polyester yarn first to partial stretching by a factor of 2.5-3.5 X in a bath of a crack-producing agent and then to a supplementary stretch in the absence of such agent by a continuously varying factor, and before or after the supplementary stretch giving the yarn a relaxing heat treatment While allowing it to shrink.
2. A process according to claim 1, in which in the first stage the yarn is stretched by a factor of 2.53 X.
3. A process according to claim 2, in which the second stretching stage is efiected in the air and in the cold.
4. A process according to claim 2 in which a polyethylene terephthalate yarn is treated.
5. A process according to claim 1, in which the second stretching stage is effected in the air and in the cold.
6. A process according to claim 1, in which a polyethylene terephthalate yarn is treated.
6 1 References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
5 UNITED STATES PATENTS 2,932,850 4/1960 McNeill et a1. 28-713 3,102,323 9/1963 Adams 264290 3,115,437 12/1963 Adams 161179 3,117,173 1/1964 Adams 26429O 3,184,369 5/1965 Haseley 161179 3,185,613 5/1965 Adams 161179 3,212,158 10/1965 Kasey 2872.17 X 3,439,489 4/1969 Holton et a1. 161179 X 3,587,221 6/1971 Buzano 16-l179 X 3,611,521 10/1971 Corbiere 2871.3
LOUIS K. RIMRODT, Primary Examiner U.S. CL. X.R.

Claims (1)

1. A PROCESS FOR THE PRODUCTION OF CONTINUOUS FILAMENT POLYESTER FANCY YARNS HAVING IMPROVED SOFTNESS AND DYEING PROPERTIES, COMPRISING SUBJECTING AN INITIALLY UNSTRETCHED CONTINUOUS FILAMENT POLYESTER YARN FIRST TO PARTIAL STRETCHING BY A FACTOR 2.5-3.5 X IN A BATH OF A CRACK-PRODUCING AGENT AND THEN TO A SUPPLEMENTARY
US46313874 1968-03-18 1974-04-22 Process for producing textured yarn Expired USRE28406E (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR144238 1968-03-18
US81446569A 1969-03-17 1969-03-17
US8413170A 1970-10-26 1970-10-26

Publications (1)

Publication Number Publication Date
USRE28406E true USRE28406E (en) 1975-05-06

Family

ID=27244805

Family Applications (3)

Application Number Title Priority Date Filing Date
US814465*A Expired - Lifetime US3683610A (en) 1968-03-18 1969-03-17 Fancy yarn, and process and device for producing it
US00084131A Expired - Lifetime US3772747A (en) 1968-03-18 1970-10-26 Process for producing textured yarn
US46313874 Expired USRE28406E (en) 1968-03-18 1974-04-22 Process for producing textured yarn

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US814465*A Expired - Lifetime US3683610A (en) 1968-03-18 1969-03-17 Fancy yarn, and process and device for producing it
US00084131A Expired - Lifetime US3772747A (en) 1968-03-18 1970-10-26 Process for producing textured yarn

Country Status (6)

Country Link
US (3) US3683610A (en)
BE (1) BE729983A (en)
DE (1) DE1913686A1 (en)
FR (1) FR1584493A (en)
GB (1) GB1254924A (en)
NL (1) NL6903674A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957936A (en) * 1971-07-22 1976-05-18 Raduner & Co., Ag High temperature process for modifying thermoplastic filamentous material
JPS5247053B2 (en) * 1972-10-16 1977-11-30
GB1535057A (en) * 1975-12-11 1978-12-06 Toray Industries Multifilament yarn of irregular cross section filaments or fibres and method of manufacture
US4043108A (en) * 1976-09-16 1977-08-23 E. I. Du Pont De Nemours And Company Process
US4383404A (en) * 1981-08-26 1983-05-17 Milliken Research Corporation Method and apparatus to produce post heated textured yarn
DE19640836C2 (en) * 1996-10-02 2000-11-02 Zinser Textilmaschinen Gmbh Method and device for producing a section of fancy yarn having different thickness and / or orientation
DE19641906A1 (en) * 1996-10-22 1998-04-23 Zinser Textilmaschinen Gmbh Method and device for producing a fancy yarn from an endless synthetic filament yarn
CN109825915B (en) * 2019-03-13 2023-10-03 江南大学 Five-channel alternating drafting, twisting and coating ring spindle fancy yarn forming device and method
CN109735981B (en) * 2019-03-13 2023-09-29 江南大学 Four-channel hollow spindle fancy yarn forming device and method
CN114670426A (en) * 2022-03-15 2022-06-28 广东省科学院生物与医学工程研究所 Variable-speed stretching device for microfluidic pipeline and control method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932850A (en) * 1955-08-01 1960-04-19 Celanese Corp Production of filaments of uneven denier
US3102323A (en) * 1958-08-26 1963-09-03 Du Pont Textile
US3115437A (en) * 1959-05-01 1963-12-24 Du Pont Nubby yarns
US3117173A (en) * 1959-07-22 1964-01-07 Du Pont Process of preparing substantially oriented filaments having circumferential ridges on the surface
US3184369A (en) * 1963-07-10 1965-05-18 Du Pont Polyester filaments having improved frictional characteristics
US3185613A (en) * 1959-07-22 1965-05-25 Du Pont Nodular synthetic organic filaments
US3212158A (en) * 1956-08-31 1965-10-19 Du Pont Process for producing speckled fabric
US3439489A (en) * 1966-07-07 1969-04-22 Monsanto Co Novelty nub yarns
US3587221A (en) * 1968-02-19 1971-06-28 Rhodiaceta Variable denier yarn
US3611521A (en) * 1967-06-22 1971-10-12 Rodiceta Soc Device for production of novelty yarn

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932850A (en) * 1955-08-01 1960-04-19 Celanese Corp Production of filaments of uneven denier
US3212158A (en) * 1956-08-31 1965-10-19 Du Pont Process for producing speckled fabric
US3102323A (en) * 1958-08-26 1963-09-03 Du Pont Textile
US3115437A (en) * 1959-05-01 1963-12-24 Du Pont Nubby yarns
US3117173A (en) * 1959-07-22 1964-01-07 Du Pont Process of preparing substantially oriented filaments having circumferential ridges on the surface
US3185613A (en) * 1959-07-22 1965-05-25 Du Pont Nodular synthetic organic filaments
US3184369A (en) * 1963-07-10 1965-05-18 Du Pont Polyester filaments having improved frictional characteristics
US3439489A (en) * 1966-07-07 1969-04-22 Monsanto Co Novelty nub yarns
US3611521A (en) * 1967-06-22 1971-10-12 Rodiceta Soc Device for production of novelty yarn
US3587221A (en) * 1968-02-19 1971-06-28 Rhodiaceta Variable denier yarn

Also Published As

Publication number Publication date
DE1913686A1 (en) 1969-10-09
US3772747A (en) 1973-11-20
NL6903674A (en) 1969-09-22
US3683610A (en) 1972-08-15
FR1584493A (en) 1969-12-26
GB1254924A (en) 1971-11-24
BE729983A (en) 1969-09-17

Similar Documents

Publication Publication Date Title
US3691748A (en) Textured polyethylene terephthalate yarns
US3199281A (en) Composite polyester yarn of differentially shrinkable continuous filaments
US2278888A (en) Artificial structure and process for producing same
US3305897A (en) Crimping process
US3492389A (en) Technique for producing synthetic bulk yarns
USRE28406E (en) Process for producing textured yarn
US3388030A (en) Twistless synthetic multifilament yarns and process for making the same
US3091913A (en) Variable denier composite yarn
US2751747A (en) Process of producing dual twist yarn
GB1325297A (en) Process for the manufacture of polyester filaments having a low degree of shrinkage
US3587221A (en) Variable denier yarn
US3124632A (en) Phocess for treating nylon
US3030173A (en) Process for the uniform preparation of shaped structures such as filaments or foils from high-melting linear polyesters
US3275732A (en) Process for preparing thick and thin novelty yarns
US3256134A (en) Yarn treating process and product
US3680301A (en) Textured polyethylene terephthalate yarns
US3483690A (en) Bulky plied yarn
US3382658A (en) Apparatus for manufacturing textured filament yarns
US2993333A (en) Production of twist lively thread
US4028875A (en) False-twist texturing process
KR0132399B1 (en) Process for manufacturing a polyester mixed yarn made by high and low shrinkage fiber
USRE28843E (en) Textured polyethylene terephthalate yarns
US3964249A (en) Yarn with random denier fluctuations
US3478143A (en) Method of producing a yarn with random denier fluctuations
US3188714A (en) Process of producing self-crimping fibers