USRE27599E - Process for the production of a gas containing gaseous hydrocarbons - Google Patents
Process for the production of a gas containing gaseous hydrocarbons Download PDFInfo
- Publication number
- USRE27599E USRE27599E US27599DE USRE27599E US RE27599 E USRE27599 E US RE27599E US 27599D E US27599D E US 27599DE US RE27599 E USRE27599 E US RE27599E
- Authority
- US
- United States
- Prior art keywords
- oil
- gas
- gaseous hydrocarbons
- gas containing
- hydrogenator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title abstract description 31
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 29
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 29
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- 239000003921 oil Substances 0.000 abstract description 61
- 239000007789 gas Substances 0.000 abstract description 60
- 238000006243 chemical reaction Methods 0.000 abstract description 25
- 239000003208 petroleum Substances 0.000 abstract description 12
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 239000007791 liquid phase Substances 0.000 abstract description 5
- 239000000376 reactant Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/26—Fuel gas
Definitions
- ABSTRACT OF THE DISCLOSURE A process for the production of a gas containing gaseous hydrocarbons by the hydrogenation of non-distillate hydrocarbon oils.
- the oil is first preheated in the liquid phase, and then introduced through an atomiser into a gas recycle hydrogenator in which the oil reacts under pressure with, and is continuously entrained into circulation with, a supply of hydrogenating gas.
- a gas containing gaseous hydrocarbons is formed by reaction of the oil and the hydrogen, and is continuously withdrawn from the hydrogenator.
- the process is primarily for the hydrogenation of nondistillate oils, such as crude petroleum and particularly light crude petroleum.
- This invention relates to a process for the production of a gas containing gaseous hydrocarbons, and in particular to a process for the production of a gas containing gaseous hydrocarbons by the hydrogenation of non-distillate hydrocarbon oils.
- Non-distillate hydrocarbon oils such as crude petroleum oil
- a hydrogenating gas by passing the reactants through a bed of a particulate solid material maintained in the fluidised state under suitable conditions of temperature (500 C. to 1000 C.) and pressure (above 3 atmospheres) so that substantially the whole of the hydrocarbons in the oil that undergo reaction with hydrogen are converted into gaseous hydrocarbons or into gaseous hydrocarbons and condensable aromatic hydrocarbons.
- Such a process can be carried out causing the particulate solid material, which is present to maintain uniform temperatures throughout the reaction zone, to recirculate within the reaction vessel by introducing the hydrogenating gas into the reaction zone from the base of the reaction vessel.
- the reactants themselves do not recirculate and pass directly through the reaction vessel.
- a gas recycle hydrogenator is apparatus comprising a reaction vessel so constructed that the reactants react with one another under pressure and are continuously entrained into circulation therein and that the product gas can be continuously withdrawn, at least one of the reactants being introduced in a manner which promotes the circulation.
- 1,031,717 describes such hydrogenators and a continuous process for the vapour-phase hydrogenation of a hydrocarbon distillate oil comprising aliphatic constituents, wherein the oil vapour and a gas comprising hydrogen are continuously introduced into a thermally insulated reaction chamber so constructed as to define an endless path along which gas can circulate within the chamber, the oil vapour is reacted exothermically with hydrogenin the chamber at a temperature within the range of from 600 C. to 800 C.
- gaseous products of reaction are continuously withdrawn from the reaction chamber, the reactants are introduced in the form of at least one jet through orifice means into the reaction chamber to cause a substantial body of gas comprising both reactants and reaction products to circulate continuously around the said endless path, and the reactants are preheated to an extent such as to maintain a reaction temperature within the aforesaid range that is substantially uniform throughout the interior of the reaction chamber except in the vicinity of the orifice means.
- gas recycle hydrogenator can be used in the hydrogenation of non-distillate oils when the oil is atomised into the hydrogenator, rather than being introduced by means of a jet as commonly used in such hydrogenators.
- the invention provides a process for the production of a gas containing gaseous hydrocarbons by the hydrogenation of hydrocarbon oils, which process comprises preheating the oil in the liquid phase, atomising the preheated oil into a gas recycle hydrogenator in which the oil reacts under pressure with and is continuously entrained into circulation with a supply of hydrogenating gas, whereby the oil reacts with hydrogen to form gaseous hydrocarbons, and continuously withdrawing a gas containing the gaseous hydrocarbons from the gas recycle hydrogenator.
- the gas produced by the process of the invention can be used as a fuel, for example as a component of town gas or, if necessary with further enrichment, for example with light petroleum gases, as a gas that can be used to supplement natural gas supplied especially when the hydrocarbon oil is a non-distillate oil, condensate rich in aromatic hydrocarbons, and carbon black, are also produced.
- the non-distillate oils may be crude petroleum or other oils having similar density and volatility characteristics; they may also originate from the treatment of coal.
- the preferred oils are light crude petroleums, particularly those having a density of less than 0.9 and a Conradson carbon content of less than 2 percent by weight.
- the oil may be atomised by a simple conventional atomiser consisting of a central tube terminating in a nozzle for the supply of oil, surrounded by a co-axial tube terminating in a nozzle a short distance beyond the oil nozzle, for the supply of an atomising gas.
- the supply of oil, suitably preheated, along the central tube and of preheated atomising gas along the outer annular passage at a suitable rate and pressure result in the projection from the outermost nozzle of a stream of gas mixed with a dispersion of atomised oil at a high velocity.
- any atomiser can be used that produces a jet, consisting of oil droplets entrained in gas, of the right characteristics to induce circulation of reactants and products round the reaction vessel path. If an atomiser is used that is not of this description, circulation must be separately induced by. other means, for example, by using a suitable jet or jets of hydrogenating gas which can be located near the atomiser.
- the hydrogenating gas (which may be any hydrogenating gas) may conveniently be used as the atomising gas, and all, or nearly all, of that required for the conduct of the hydrogenation reactions may be supplied in this way. It is advantageous to introduce a small proportion (a few percent, e.g. 2 to 5%) of the hydrogenating gas as bubbles into the stream of oil feedstock, before it enters the oil preheaters, as this reduces the formation of deposits in the preheater tubes. For example, with a total quantity of hydrogenating gas of 200 to 400 s.c.f. per gallon of oil, to 12 s.c.f. per gallon may be introduced into the stream of oil.
- That part not so supplied may be introduced by any suitable means, for example, along a passage formed by providing an outermost tube co-axial with the atomiser proper, terminating near the atomiser nozzle.
- the preheat temperature that is suitable for the preferred feedstock, a light crude petroleum is 300 to 400 (3., more preferably 300 to 350 C.
- the hydrogenating gas alone may be preheated to any desired temperature-in particular it may be heated to a temperature such that the total sensible heat of the reactants is capable, in conjunction with the exothermicity of the reactions, of sustaining the operation of the hydrogenator in a thermally self-supporting manner, notwithstanding the with drawal of the sensible and latent heat by the products,
- heat may be supplied by other known means, for example, by adding air to the reactants for internal combustion.
- the reaction is generally carried out at a temperature of from 650 C. to 850 0, preferably 700 C. to 800 C.
- the pressure is generally above 5 atmospheres and within the range 5 to 100 atmospheres, but is preferably within the range to atmospheres.
- Carbon deposition within the reaction vessel can be limited or prevented by taking certain precautions, severally or all together. These precautions include: the avoidance of excessively high temperatures (e.g. above 750 C.); providing for a certain small concentration of sulphur compounds to be present in the feedstock (e.g. 10 ppm); adding steam to the reactants (e.g. 10 percent by volume of the inlet gas); using a sufficiently high proportion of hydrogen to hydrocarbons (e.g. 300 cu. ft. per gallon); and operating at an adequate total pressure (e.g. above 10 atmospheres) and partial pressure of hydrogen.
- these precautions include: the avoidance of excessively high temperatures (e.g. above 750 C.); providing for a certain small concentration of sulphur compounds to be present in the feedstock (e.g. 10 ppm); adding steam to the reactants (e.g. 10 percent by volume of the inlet gas); using a sufficiently high proportion of hydrogen to hydrocarbons (e.g. 300 cu. ft. per gallon
- the gas recycle hydrogenator can be continuouslyoperated for the hydrogenation of non-distillate oils (for example, light crude petroleum) for an economically useful time before carbon deposition interferes with the flow pattern of the reacting gases and vapours sufliciently to compel the plant to be shut down.
- the point at which it is necessary to interrupt the process can be judged from the maximum temperature difference between different points in the reactor; in general it is necessary to interrupt the process when this temperature difference is greater than 50 C., and it is preferred to interrupt the process when the difference is in the range 25 to 50 C.
- the carbon collects on the walls of the reactor (when a non-distillate oil is used) in such a way that it can readily be removed, and it is a feature of the invention that the process produces a small recoverable yield of carbon black.
- Other suitable means of recovery of the carbon black may be used; for instance, it may be washed outwith jets of water (suitably placed inlets and outlets being provided) if it is desired to avoid dismantling the reactor between periods of operation.
- the process using the gas recycle hydrogenator described in the above example has many advantages.
- the apparatus used is easier to operate and is of a much simplified design; a distributor for a fluidised bed is not required and no provision need be made for carry-over or for feeding solids and withdawing them, and there is no danger of erosion. Start-up and shut-down is quicker, and the carbon formed can be easily recovered.
- a process for the production of a gas containing gaseous hydrocarbons by the hydrogenation of a nondistillate hydrocarbon oil comprises (a) preheating the oil in the liquid phase, (b) atomising the preheated oil into a gas recycle hydrogenator in which the oil reacts under pressure with and is continuously entrained into circulation within the hydrogenator with a supply of hydrogenating gas, whereby the oil reacts with hydrogen to form gaseous hydrocarbons, and (c) continuously withdrawing a gas containing the gaseous hydrocarbons from the gas recycle hydrogenator.
- oil is selected from the group consisting of crude petroleum and light crude petroleum having a density of less than 0.9 and a Conradson carbon content of less than 2% by weight.
- reaction temperature is from 660" to 850 C. and the pressure is 5 to 100 atmospheres.
- reaction temperature is from 700 C. to 800 C. and the pressure is 25 to atmospheres.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB37530/67A GB1199009A (en) | 1967-08-15 | 1967-08-15 | A Process for the Production of a Gas Containing Gaseous Hydrocarbons |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE27599E true USRE27599E (en) | 1973-03-13 |
Family
ID=10397177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US27599D Expired USRE27599E (en) | 1967-08-15 | 1972-03-15 | Process for the production of a gas containing gaseous hydrocarbons |
Country Status (5)
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870481A (en) * | 1972-10-12 | 1975-03-11 | William P Hegarty | Method for production of synthetic natural gas from crude oil |
-
1967
- 1967-08-15 GB GB37530/67A patent/GB1199009A/en not_active Expired
-
1968
- 1968-07-31 DE DE1795025A patent/DE1795025C3/de not_active Expired
- 1968-08-12 FR FR1578388D patent/FR1578388A/fr not_active Expired
- 1968-08-13 ES ES357237A patent/ES357237A1/es not_active Expired
-
1972
- 1972-03-15 US US27599D patent/USRE27599E/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ES357237A1 (es) | 1970-03-16 |
DE1795025B2 (de) | 1974-01-24 |
GB1199009A (en) | 1970-07-15 |
FR1578388A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1969-08-14 |
DE1795025A1 (de) | 1972-01-20 |
DE1795025C3 (de) | 1974-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5344554A (en) | Downflow fluid catalytic cracking process and apparatus | |
US2436160A (en) | Cracking of hydrocarbon oils with | |
US2520149A (en) | Process for producing olefins | |
US2904502A (en) | Method of cracking hydrocarbons | |
US2885272A (en) | Apparatus for fluid bed coking of heavy oils | |
US3010813A (en) | Hydrocarbon conversion process | |
US2525276A (en) | Method of cracking hydrocarbons | |
USRE27599E (en) | Process for the production of a gas containing gaseous hydrocarbons | |
US3591356A (en) | Process for the production of a gas containing gaseous hydrocarbons | |
US3484219A (en) | Process and apparatus for performing chemical reactions | |
US3156544A (en) | Apparatus for making combustible gas | |
US3868226A (en) | Reaction vessels | |
US2789148A (en) | Conversion of hydrocarbons | |
US2015085A (en) | Method of thermolizing carbonizable materials | |
US3090684A (en) | Conversion of oils with amounts of oxygen insufficient for complete combustion for the formation of carbon monoxide and hydrogen | |
EP0059772A1 (en) | Crude oil cracking using partial combustion gases | |
US3342556A (en) | Method and apparatus for manufacturing carbon black | |
US3154385A (en) | Apparatus for pyrolysis of hydrocarbons | |
US1940649A (en) | Process for purifying unrefined hydrocarbon oils by action of high pressure hydrogen | |
US1955268A (en) | Process for preparing low boiling hydrocarbons from higher boiling hydrocarbons | |
US1890435A (en) | Production of valuable liquid products from tars, mineral oils, and the like carbonaceous materials | |
US2305004A (en) | Chemical process | |
US2319836A (en) | Process of catalytically cracking hydrocarbon oils | |
US3458588A (en) | Regenerating naphthalene mixtures containing carbon black with simultaneous recovery of globular petroleum coke | |
US3795713A (en) | Thermal cracking of liquid hydrocarbons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BRITISH GAS PLC, RIVERMILL HOUSE 152 GROSVENOR ROA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BRITISH GAS CORPORATION;REEL/FRAME:004859/0891 Effective date: 19870512 |