USRE25131E - Tube flaring tool - Google Patents

Tube flaring tool Download PDF

Info

Publication number
USRE25131E
USRE25131E US25131DE USRE25131E US RE25131 E USRE25131 E US RE25131E US 25131D E US25131D E US 25131DE US RE25131 E USRE25131 E US RE25131E
Authority
US
United States
Prior art keywords
cone
flaring
sleeve
tube
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE25131E publication Critical patent/USRE25131E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • B21D41/021Enlarging by means of tube-flaring hand tools

Definitions

  • This invention relates to tube flaring tools and, more particularly, to gauges for such tools for insuring that the flares produced thereby will be properly dimensioned and will conform with standards prescribed therefor.
  • the invention also relates to a novel form of flaring cone for use with tube flaring tools.
  • gauges of various sorts have been proposed for use with tube flaring tools to facilitate the formation of flares of the proper depth and the diflerent sizes of tubing being flared.
  • none of the gauges proposed for use with flaring tools capable of flaring the tubing in the air have been of a type which would definitely and positively limit the entrance of the flaring cone into the tube to a prescribed amount.
  • any of these gauges been automatically adjustable in accordance with the size of the tubing being flared.
  • Another object of the invention is to provide a flare gauge in which the depth of flare is automatically controlled in accordance with the adjustment of the tube clamping means.
  • Another object of the invention is to provide a flare gauge having a series of graduated abutment faces which are indexed into operating position upon movement of the clamping means to bring the proper size recess into position beneath the flaring cone.
  • Another object of the invention is to provide a novel design of flaring cone which is suited for use with my novel type of flare gauge.
  • FIG. 1 is a side elevation of a tube flaring tool incorporating one form of my novel flare gauge and also my new design of flaring cone which is capable of flaring tubes in the air.
  • FIG. 2 is a cross-sectional vew taken along the line 22 in FIG. 1 for the purpose. of showing the shape of the cone as viewed in a lateral section therethrough.
  • FIG. 3 is a cross-sectional view taken along the line 33 in FIG. 1.
  • FIG. 4 is a diagrammatic view showing the gauging member in relation to the clamping die with which it is associated.
  • FIG. 5 is a cross-sectional view taken along the line 55 in FIG. 4 illustrating the operation of the gauging device.
  • FIG. 6 is a cross-sectional view taken along the line 6-6 in FIG. 4 showing the gauging device in a different position.
  • FIG. 7 is a fragmentary cross-sectional view taken along the line 77 in FIG. 4 showing the gauging device in still another position.
  • FIG. 8 is a side elevation of a tube flaring tool showing a second form or embodiment of my automatic flare gauge.
  • FIG. 9 is a cross-sectional view taken along the line 9--9 in FIG. 8.
  • FIG. 10 is a diagrammatic view showing the relationship between the gauge member and the clamping die with which it is associated.
  • FIG. 11 is a cross-sectional view illustrating the ganging member in the position which it occupies when flaring large diameter tubes, this view being taken along the line 11--11 in FIG. 10.
  • FIG. 12 is a fragmentary cross-sectional view showing the position which the gauging member occupies when flaring tubes of medium size, this view being taken along the line 1212 in FIG. 10.
  • FIG. 13 is a fragmentary cross-sectional view showing the position of the gauging member when flaring small diameter tubes, this view being taken along the line 1313 in FIG. 10.
  • FIGS. 1 to 7, inclusive One form or embodiment of my invention is shown in FIGS. 1 to 7, inclusive, wherein there is shown a flaring tool having a yoke 20 on which a flaring cone 21 and a tube clamping means 22 are mounted.
  • the cone 21 is either integral with or firmly secured to a spindle 23 which is rotatably journaled in a threaded sleeve 24 which is received within a threaded aperture provided in the cross bar of the yoke 20.
  • An abutment shoulder in the form of collar 25 is screwed onto the upper end of the sleeve 24 and secured in place thereon by a recessed-head setscrew 26.
  • FIG. 1 recessed-head setscrew 26
  • the extreme upper end of the sleeve 24 is provided with a hexagonal seat 27 for receiving a ratchet 28 provided with a hexagonal hole or socket which slips over the seat 27.
  • the ratchet 28 is loosely held between a pair of plates 29 which are maintained in spaced relation by rivets 30.
  • Mounted on one of the rivets 30 is a doubleacting pawl 31 which is urged by a toggle spring 32 in one direction or another to maintain one or the other of the two teeth provided thereon in engagement with the ratchet 28.
  • The-details of this pawl and ratchet mechanism are clearly shown in my Patent No. 2,711,576 which issued June 28, 1955, for Tube Clamping Means from my copending application Serial No.
  • the plates 29 provide a rotating handle for the flaring cone 21, the handle being keyed to the spindle 23 by a square tenon 33 on the upper end thereof which is received in a square aperture provided in a cap 34 welded on the upper plate 29 of the handle.
  • the entire assembly is held together by a cap screw 35 which screws into the upper end of the spindle.
  • a ball type thrust bearing 36 is provided between the top of the cone 21 and the bottom of the sleeve 24 for taking up the upward thrust on the cone and permittting free rotation of the cone relative to the sleeve.
  • the clamping means 22 for receiving and holding the tube 40 to be flared includes a pair of clamping dies 44 and 45 having semi-circular clamping recesses, as shown in FIG. 4, and mounted for rotation about their centers to permit the various sized clamping recesses to be brought into alignment with the longitudinal axis of the flaring cone.
  • This clamping means, including the die block-s 44 and 45 is fully shown and described in my copending application Serial No. 274,403, to which reference may be had for amore complete understanding of this part of the flaring tool. .As best shown in FIG.
  • each of the *die blocks 44 and 45 is in the form of arecessedirregular polygon in .cross section, the length .of each face of said polygon being proportional to the size of the clamping recess formed therein.
  • the die blocks 44 and 45 are each provided with nine semicylindrical recesses 46 whose centers all lie on a common circle whose center coincides with the axis of rotation of the die block.
  • the pair of die blocks are freely rotatable between two sets of spaced base plates 49 and 50, respectively, the base plates 49 being immovably secured to the legs of the yoke by bolts 51 and 52 (FIG. 1).
  • the base plates 50 are secured toa U-shaped bracket 48 which is supported on the bolt 51 for pivotal movement thereabout so as to enable the plates 50 and the die block 45 to be swung away from the plates 49 and the die block 44 to permit insertion and removal of tubes'from the clamping means.
  • a clamping bolt 53 istsupported for pivotal movement about the bolt 52 so that the clamping bolt and its wing nut 54 screwed thereon may be swung into clamping position as-shown in FIG. 1 after which the wing nut 54 may be tightened tosecurely clamp the base plates and die block together.
  • the die block 45 is freely rotatable about a sleeve 55 which encompasses a threaded .stud 56 :on which is screwed a nut 57 which may be tightened to securely clamp the sleeve 55 between the nut and the head of the stud 56.
  • the die block 44 is fast on a sleeve 58 which is clamped between a shoulder 59 and a nut 60 provided on the lower end of a gauging spindle 61.
  • the block 44, sleeve 58 and spindle 61 are fastened together by. a pin 44' which passes .therethrough and causes them torotate as'a unit.
  • the sleeve 58 is freely rotatable in apertures provided in the base plates 49 so that the die block .44 and the spindle 61 may rotate as a unit to bring the various recesses-46 into alignment with the longitudinal axis ofthe flaring cone.
  • Fast on the upper end of the spindle 61 is a dis-like gauging member 62 which cooperates with-an abutment in the form of annular shoulder 63 formed on the lower end of the sleeve 24 for the purpose of determining the depth of the flare to be formed on the tube 40.
  • the spindle 61 is journaled in a bearing provided therefor in a housing 64 which is mounted on the yoke 20 by screws 65 (FIG. 1), the housing serving to enclose and protect the gauging member 62.
  • FIGS. 4 to 7, inclusive The manner in which the member 62 cooperates with the flange 63 is best shown in FIGS. 4 to 7, inclusive, As shown in FIG. 3, the lower limit of movement of the cone 21 is fixed and is determined by engagement of the bottom edge of the collar 25 with the top of the yoke 20 to limit downward feeding movement of the cone into the tube.
  • the upper limit of movement of the cone is variable and is limited by engagement of the annular flange 63 either with one of the gauging surfaces provided on the gauge member 62 or with the bottom surface 66 of theyoke 20.
  • the disc 62 is cutout to permit free passage of the flange 63 up against the surface 66 on the yoke.
  • each of the cutout portions 67 is aligned with one of the three largest clamping recesses 46. Consequently, when any one of these three .recesses is brought into alignment with the longitudinal axis of the flaring cone one of the cutout portions .67 on the gauging member .62 will likewise be moved into alignment with the longitudinal axis of the cone and the sleeve 24 so that the flange 63 will be unobstructed in its upward travel until it abuts against the surface 66 on the yoke.
  • the cone 21 is free to travel up and down through the full distance permitted by the flange 63 and the col- 'lar 25.
  • the gaugemember 62 is provided with recesses 68 which extend approximately .half way through the thickness of the member 62 as best shown in FIG. 6. As shown in FIG. 4 there are three such .recesses 68, one for each of the three medium sizerecesses '46 in the dieblock 44.
  • the recesses 68 and the three medium size clamping recesses 46 are in alignment so that when a tube of medium size is clamped between the die blocks, a recess 68 will lie in position to engage the flange 63 and limit the upward travel of the cone in the manner indicated in FIG. 6. Hence, the vertical travel of the flaring cone will be reduced and the depth-of the flare provided on the tube will likewise be reduced.
  • the gauge member 62 is provided with a portion 69 of 'full thickness which lies in alignment with the three smallest clamping recesses 46. As shown in FIG. 7, when any one of these recesses is moved into axial alignment with the axis of the flaring cone, the portion 69 will be brought into position above the flange 63 thereby reducing the upper travel of the flaring cone to a minimum.
  • the clamping means 22 of the tube flaring tool (FIG. 1) is opened and the die blocks 44 and 45 are then turned to bring the clamping recesses'46 on the die blocks corresponding in size to the size of tube to be flared into alignment with the axis of the flaring cone.
  • the handle 29 of the tool is then turned counterclockwise so as to elevate the flaring cone 21 to its starting position. This position will be determined by the position of the gauge member 62.
  • the conditions shown in FIG. 6 will prevail wherein the cut-out portions 67 will permit'the flange 63 to move all the way up into engagement with the. surface 66 on the bottom'of the yoke 20.
  • the flange 63 will engage with the face of the recess 68 as shown in FIG. 6, while-for the. smaller'sizes of tubing the flange will engage with the bottom face of the member 62 as shown in FIG. 7.
  • the tube to be flared is now inserted into the die opening and pushed all the way up until it is stopped by the flaring cone 21.
  • the die blocks are then securely clamped together by tightening the wing nut 54 (FIG. 1) so as tosecurely hold the tube in place beneath the flaring cone.
  • the pawl 31 is now flipped to driving position and the handle 29 is turned clockwise to feed the flaring cone downwardly into the end of the tube 40.
  • the indexing of the die block 44 will cause corresponding indexing of the gauging member 62 so as to properly limit the upward travel of the threaded sleeve 24 in accordance with the diameter of the tube to be flared.
  • a positive type gauge is hereby provided for limiting the depth of flare to the extent required for the formation of a properly dimensioned tube flare.
  • the flaring cone is flattened so as to restrict the contact thereof with the tube 70 to be flared to the opposite sides 71 of the cone.
  • tube contacting edges of the cone are rounded on a radius 72 which is smaller than the radius 73 of the cone at this point, only line contact will exist between the sides of the cone and the wall of the tube.
  • the cone 21 is preferably coated with a hard, corrosion resistant metal such as chromium which is given a high polish to reduce the friction between the cone and the tube and to prevent any pick-up of metal by the cone from the tube.
  • a hard, corrosion resistant metal such as chromium which is given a high polish to reduce the friction between the cone and the tube and to prevent any pick-up of metal by the cone from the tube.
  • my novel form of flaring cone 21 will provide a highly polished, accurately formed flare on the end of the tube. Furthermore, the amount of etfort required to turn the handle 29 will be found to be considerably less than with conventional types of flaring cones. This is because essentially line contact exists between the flaring cone and the wall of the tube and the amount of friction is therefore greatly reduced.
  • the hard and highly polished surface of the cone helps to cut down the friction between the cone and the tube and prevents any roughening of the wall of the flare due to pick-up of metal particles by the cone.
  • FIGS. 8 to 13, inclusive A modified form ofmy invention is shown in FIGS. 8 to 13, inclusive, wherein there is shown a flaring tool similar to the one heretofore described except for the flaring cone which, as shown in FIG. 8, comprises a cone 75 fitted with conical rollers 76 which operate to roll the flare on the end of the tube.
  • This type of flaring cone is fully shown and described in my said Patent No. 2,711,576 mentioned above.
  • the flaring tool shown in FIGS. 8 and 9 has a yoke 77 to which is fastened a clamping means 78 consisting of a pair of complementary die blocks 79 and 80.
  • the yoke is provided with a threaded aperture for receiving a threaded sleeve 81 which carries an abutment collar 82.
  • the flaring cone 75 is secured to a spindle (not shown) which is journaled within the sleeve 81 and is keyed to the operating handle 83.
  • the upper end of the sleeve 81 is keyed to a ratchet 84 which is adapted to be driven by a double acting pawl 85 carried by the handle 83.
  • a ball type anti-friction bearing 86 is interposed between the bottom of the sleeve 81 and the top of the flaring cone 75 so as to take up the upward thrust on the cone and permit free rotation of the cone relative to the sleeve.
  • the clamping means 78 is similar to the one shown in my aforementioned Patent No. 2,711,576 and includes two pairs of base plates 90 and 91 between which the die blocks 79 and are located.
  • the base plates 91 are secured to the legs of the yokes 77 by bolts 92 and 93 while the base plates are arranged for pivoting movement about the bolt 92 by means of a U-shaped bracket 94 secured to the plates 90 and apertured to receive the shank of the bolt 92.
  • a clamping bolt 95 carrying a wing nut 96 is provided for clamping the die blocks securely together after the tube to be flared has been inserted therebetween.
  • the die block 79 is mounted for free rotation about a sleeve 98 which is clamped between the base plates 90 by a headed stud 97 which passes through the sleeve and base plates and is threaded to receive a nut 87.
  • the sleeve 98 serves as a spacer to hold the base plates apart so that the block 79 can rotate freely between them.
  • the die block 80 is mounted on a sleeve 100 which receives the lower end of a spindle 99.
  • the block, sleeve and spindle are fastened together by a pin 88 which passes therethrough and causes them to rotate as a unit.
  • the spindle is provided with a shoulder 101, against which the upper end of the sleeve abuts, and is threaded at its lower end to receive a nut 102 which clamps against the lower end of the sleeve.
  • the sleeve is of suificient length to permit free turning movement of the block between the base plates 91.
  • the spindle 99 will turn therewith and cause' a gauging member 103 mounted on the upper end thereof to be indexed to different positions beneath an annular flange 104 provided on the lower end of the sleeve 81.
  • the gauging member 103 is provided with a series of graduated abutment faces which cooperate with the flange 104 to limit the downward movement of the flaring cone 75. These abutment faces are aligned with their respective clamping recesses provided in the die block 80 so that as the clamping recesses are brought into alignment with the longitudinal axis of the flaring cone, the abutment faces on the gauging member 103 will likewise be brought beneath the flange 104. As shown in FIGS. 10 and 11, the member 103 is provided with a cut-out portion 106 which lies in alignment with the largest clamping recess 105 on the die block 80.
  • clamping recess of intermediate size such as the recess .111, will be utilized for receiving and clamping the tube to be flared.
  • the recess 111 has aligned therewith a recessed abutment face 112 which is adapted to engage with the underface of the flange 104 and limit the downward travel of the flaring cone to the extent shown in FIG. 12.
  • a small size clamping recess such as the recess 113
  • a small size clamping recess is swung into alignment with the flaring cone thereby bringing a portion 114 on the member 103 into alignment with the flange 104.
  • downward feeding movement of the flaring cone is limited by engagement of the under face of the flange with the top face of the member 103 in the manner indicated in FIG. 13.
  • the normal starting position of the flaring cone in the modification shown in FIGS. 8 to 13, inclusive, is the fully elevated position thereon shown in FIGS. 8 and 9.
  • the user of the tool wishes to provide a flare of the proper shape and size on the end of a piece of tubing of given size, he notes the outside diameter of the tube and selects the corresponding clamping recesses on the die blocks 79 and 80, the die blocks being rotated about their axes to bring these recesses into alignment with the'longitudina'l axis of the flaring cone.
  • the cone With the cone in its fully raised position, the tubing is inserted in the die opening from the bottom and pushed upwardly until it engages with the blade 89.
  • the clamping bolt 95 is then swung closed and the thumb screw 96 tightened to securely clamp the tube in place beneath the cone.
  • the handle 83 is then turned clockwise so as to feed the flaring cone down into the tube and produce a flare on the end of the tube.
  • the downward travel of the cone will be limited either by the engagement of flange 104 with the gauging member 103, or by abutment of the collar 82 against the abutment face 107 on the yoke 77. If the largest size of tubing is to be flared, the cut-out portion 106 on the member 103 will be positioned beneath the flange 104 so that full downward travel of the cone will be permitted and downward feeding movement of the cone will continue until stopped by abutment collar 82.
  • an abutment face such as the face 112 will be brought beneath the flange 104 and downward feeding movement of the cone will be limited as indicated in FIG. 12. If the smallest diameter of tubing is to be flared, the abutment face 114 will be brought into alignment with the flangeso as to stop the downward movement of the cone after arelatively small amount of travel as shown in FIG. 13.
  • the pawl 85 may be flipped to permit rotation of the cone without further advancement of the threaded sleeve 81 so that .burnishing of the flare may be effected.
  • the handle 83 may be rotated counterclockwise to remove the cone from the tube and raise the cone to its fully elevated position as shown in FIGS. 8 and 9.
  • the clamping means 78 is then opened and the flared piece of tubing removed from the tool.
  • the tool is then ready to receive the next piece of tubing to be flared and the die blocks 79 and 80 are then turned to bring clamping recesses of the proper size into alignment with the flaring cone after which the new piece .of tubing is inserted in the clamping means until it is stopped by the blade 89.
  • the clamping means may then be shut and clamped and the handle 83 rotated clockwise to feed the cone into the tube as far as the automatic gauging means will permit.
  • An automatic gauge for a tube flaring tool comprising a yoke, a flaring cone mounted for rotation on said yoke, a pair of tube clamping dies supported on said yoke, said dies each having a plurality of clamp-ing recesses of different sizes formed therein and each being adjustable relative to said yoke to enablerecesses of different sizes to be brought into axial alignment'with said cone, means for feeding said cone axially of the tube to be flared, and agaugingdevice settable inaccordance'with the adjustment of said dies for limiting the 'feeding'movement of said cone to an extent commensurate 'with the size of the recesses brought into alignment with the cone.
  • clamping dies are each irregularly polygonal in cross-section and are mounted for rotation on said yoke to enable recesses of different sizes to be brought into axial alignment with said flaring cone, and said gauging device is rotatable in accordance with the rotation of said dies.
  • said feeding means includes a threaded sleeve, and a flange on said sleeve cooperating withsaid gauging device for limiting the feeding movement of said cone.
  • a flare gauge for a tube flaring tool comprising a rotatable flaring cone, a mounting for the flaring cone, a clamping means on said mounting having recesses for receiving and holding various sizes of tubes, said means being rotatably attached to said mounting to bring a selected recess into axial alignment with said flaring cone, means for feeding said cone along its axis of rotation as it is rotated, and a gauging device moving with said clamping means into position for limting the feeding movement of said cone to an extent corresponding to the size of the recess selected for use.
  • the flare gauge of claim '5 including an abutment shoulder moving with said cone as it is fed along its axis of rotation, and a plurality of abutment surfaces on said gauging device arranged for coaction with said abutment shoulder.
  • An automatic flare gauge for tube flaring tools comprising a yoke, a threaded sleeve received within a threaded hole provided in said yoke, a flaring cone having a spindle rotatably journaled within said sleeve, a handle for turning said spindle, means for selectively connecting said spindle and said sleeve for conjoint rotation to control feeding or non-feeding movement of said cone as said handle isrotated, a pair of tube clamping dies supported on said yoke, each die being provided with a plurality of clamping recesses of different sizes and mounted to rotate about an axis substantially parallel to the axis of said spindle to enable a selected recess to be brought into axial alignment with said cone, and a gauging member fastened to one of said dies and adapted to cooperate with said sleeve to limit axial feeding movement of said sleeve to an extent corresponding to the size of the recess located in alignment with said cone.
  • the flare gauge of claim 7 including a flange on said sleeve, and cooperating abutment faces on said gauging member.
  • the flare guage of claim 7 including a plurality of abutment faces on said gauging members and a pair of abutments on said sleeve, one of said abutments cooperating with said yoke to limit axial feeding movement of the sleeve in one direction, and the other of said abutments cooperating with one of the faces on said gauging member to variably'limit axial feeding movement of the sleeve in the opposite direction.
  • the flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an abutment on said sleeve cooperating with said yoke for limiting inward feeding movement of said sleeve, and a second abutment on said sleeve cooperating with one of the faces on said gauging member for variably limiting outward feeding movement of said sleeve.
  • the flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an abutment on said sleeve cooperating with said yoke for limiting outward feeding movement of said sleeve, and a second abutment on said sleeve cooperating with one of the faces on said gauging member for variably limiting inward feeding movement of said sleeve.
  • the flare gauge of claim 7 including a fixed stop on said sleeve cooperating with said yoke for limiting inward feeding movement of said sleeve, a plurality of abutment faces on said gauging member, and an annular flange on said sleeve cooperating with one of said faces for variably limiting outward feeding movement of said sleeve.
  • the flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an annular flange on said sleeve, asurface on said flange cooperating with said yoke for limiting outward feeding movement of said sleeve, and another surface on said flange cooperating with one of the faces of said gauging member for variably limiting inward feeding movement of said sleeve.
  • the flare gauge of claim 7 including means on the outer end of said sleeve for cooperating with said yoke to determine the inward limit of movement of said sleeve, an annular flange on the inner end of said sleeve, a surface on said flange cooperating with said yoke to determine the outward limit of movement of said sleeve, a plurality of graduated faces on said gauging member, and a second surface on said flange cooperating with one of said abutment faces to establish limits of movement of said sleeve intermediate said inner and outer limits.
  • a gauge for a tube flaring tool comprising a yoke, a flaring cone mounted on said yoke, tube clamping dies supported on said yoke, said dies having a plurality of clamping recesses of different sizes, each die being adjustable relative to said yoke to enable recesses of diflerent sizes to be brought into axial alinement with said cone, means for feeding said cone axially of the tube to be flared, and a gauging device settable in accordance with the adjustment of said dies for limiting the feeding movement of said cone to an extent commensurate with the size of a recess brought into alinement with the cone, said feeding means having abutments on each end for cooperating with said gauging device and said yoke.
  • clamping dies are each polygonal in cross section and are mounted for rotation on said yoke to enable recesses of different sizes to be brought into axial alinement with said flaring cone, and said gauging device is rotatable in accordance with the rotation of said dies.
  • said feeding means includes a threaded sleeve, and a flange on said sleeve cooperating with said gauging device for limiting the outward feeding movement of said cone.
  • a flare gauge for tube flaring tools comprising a yoke, a flaring cone having a spindle rotatably supported by said yoke, means for feeding said cone under rotation relatively to said yoke, a handle for turning said spindle to control feeding movement of said cone as said handle is rotated, 11 pair of tube clamping dies supported on said yoke, each die being provided with a plurality of clamping recesses of diflerent sizes and mounted to rotate about an axis substantially parallel to the axis of said spindle to enable a selected recess to be brought into axial alinement with said cone, and a gauging member fastened to one of said dies and adapted to cooperate with means on said spindle to limit axial feeeding movement of said spindle to an extent commensurate with the size of the recess located in alinement with said cone.
  • said flar e gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, and a pair of abutments carried by said spindle, one of said abutments cooperating with said yoke to eflect said limit of axial feeding movement of the spindle in one direction, and the other of said abutments cooperating with one of the faces of said gauging member to effect said limit of axial feeding movement of the spindle in the opposite direction.
  • said flare gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, an abutment carried by said spindle cooperating with said yoke for limiting inward feeding movement of said spindle, and a second abutment carried by said spindle cooperating with one of the faces on said gauging member for limiting outward feeding movement of said spindle.
  • said means on said spindle includes a fixed stop connected to said spindle cooperating with said yoke for limited inward feeding movement of said spindle
  • said gauging member includes a plurality of abutment faces on said gauging member
  • said means on said spindle further includes an annular flange connected to said spindle cooperating with one of said faces for limiting outward feeding movement of said spindle.
  • said means on said spindle includes means mounted adjacent the 11 mter end of said spindle for cooperating with said yoke 0 determine the inward limit of movement of said 'pindle
  • said means on said spindle further includes an rnnular' flange adjacent the inner end of said spindle, a 'urface on said flange cooperating with said yoke to letermine the outward limit of movement of said spindle", 1 plurality of graduated faces on said gauging member, 1nd a second surface on said flange cooperating with me of said abutment faces to establish limits of movenent of said spindlel intermediate said inner and outer imits.

Description

March 6, 1962 R WILSON Re. 25,131
TUBE FLARING TOOL WITH CLAMP CARRYING GAUGE MEANS -FOR LIMITING THE DEPTH OF TOOL FEED Original Filed Nov. 19, 1955 2 Sheets-Sheet 1 mummw m2 Crawl/1:111:
INVENTOR. FRANK R. WILSON BY DES JARDINS, ROBINSON A KEISER H15 ATTO NEYS March 6, 1962 F. R. WILSON TUBE FLggNCi WITH CLAMP CARRYING GAUGE M5115; Original Filed Nov. 19, 1953 NG THE DEPTH OF TOOL FEED 2 Sheets-Sheet 2 INVENTOR.
FRANK R. WILSON IIIIIII-IIIIIIII BY DES JARDINS, ROBINSON L KEISER HIS ATTORNEYS United States Patent Ofitice 'Re. 25,131 Reissued Mar. 6, 1962 25,131 TUBE FLARING TOOL WITH CLAMP CARRYING GAUGE MEANS FOR LllVlITING THE DEPTH F TOOL FEED Frank R. Wilson, Memphis, Tenn., assignor to Quinn Esther Wilson Original No. 2,853,116, dated Sept. 23, 1958, Ser. No. 393,172, Nov. 19, 1953. Application for reissue Sept. 23, 1960, Ser. No. 58,149
28 Claims. (Cl. 15381) Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to tube flaring tools and, more particularly, to gauges for such tools for insuring that the flares produced thereby will be properly dimensioned and will conform with standards prescribed therefor. The invention also relates to a novel form of flaring cone for use with tube flaring tools.
In the past, gauges of various sorts have been proposed for use with tube flaring tools to facilitate the formation of flares of the proper depth and the diflerent sizes of tubing being flared. However, none of the gauges proposed for use with flaring tools capable of flaring the tubing in the air have been of a type which would definitely and positively limit the entrance of the flaring cone into the tube to a prescribed amount. Nor have any of these gauges been automatically adjustable in accordance with the size of the tubing being flared.
Accordingly, it is an object of my invention to provide an automatic flare gauge for controlling the depth of the flare produced by a tube flaring tool.
Another object of the invention is to provide a flare gauge in which the depth of flare is automatically controlled in accordance with the adjustment of the tube clamping means.
Another object of the invention is to provide a flare gauge having a series of graduated abutment faces which are indexed into operating position upon movement of the clamping means to bring the proper size recess into position beneath the flaring cone.
Another object of the invention is to provide a novel design of flaring cone which is suited for use with my novel type of flare gauge.
With these and otherobjects in view which will become apparent from the following description, the invention includes certain novel features of construction and combinations of parts the essential elements of which are set forth in the appended claims and several preferred forms or embodiments of which will hereinafter be described,
with reference to the drawings which accompany and form a part of this specification.
In the drawings:
FIG. 1 is a side elevation of a tube flaring tool incorporating one form of my novel flare gauge and also my new design of flaring cone which is capable of flaring tubes in the air.
FIG. 2 is a cross-sectional vew taken along the line 22 in FIG. 1 for the purpose. of showing the shape of the cone as viewed in a lateral section therethrough.
FIG. 3 is a cross-sectional view taken along the line 33 in FIG. 1.
FIG. 4 is a diagrammatic view showing the gauging member in relation to the clamping die with which it is associated.
FIG. 5 is a cross-sectional view taken along the line 55 in FIG. 4 illustrating the operation of the gauging device.
FIG. 6 is a cross-sectional view taken along the line 6-6 in FIG. 4 showing the gauging device in a different position.
FIG. 7 is a fragmentary cross-sectional view taken along the line 77 in FIG. 4 showing the gauging device in still another position.
FIG. 8 is a side elevation of a tube flaring tool showing a second form or embodiment of my automatic flare gauge.
FIG. 9 is a cross-sectional view taken along the line 9--9 in FIG. 8.
FIG. 10 is a diagrammatic view showing the relationship between the gauge member and the clamping die with which it is associated.
FIG. 11 is a cross-sectional view illustrating the ganging member in the position which it occupies when flaring large diameter tubes, this view being taken along the line 11--11 in FIG. 10.
FIG. 12 is a fragmentary cross-sectional view showing the position which the gauging member occupies when flaring tubes of medium size, this view being taken along the line 1212 in FIG. 10.
FIG. 13 is a fragmentary cross-sectional view showing the position of the gauging member when flaring small diameter tubes, this view being taken along the line 1313 in FIG. 10.
In the present drawings I have shown my novel, positive-acting flare gauge embodied in two different forms to better illustrate the fundamental, underlying principles of the invention. In both cases, the gauge is shown in connection with flaring tools adapted to flare tubes in the air, my gauge being particularly suited to this type of tube flaring operation and finding its greatest utility in this sort of environment. There is also shown herein a novel design of flaring cone which is of simple construction but which is eflicient in operation and ideally suited for use in conjunction with my novel flare gauge since it is capable of producing accurate flares on tubes flared in the air.
One form or embodiment of my invention is shown in FIGS. 1 to 7, inclusive, wherein there is shown a flaring tool having a yoke 20 on which a flaring cone 21 and a tube clamping means 22 are mounted. As shown in FIG. 3, the cone 21 is either integral with or firmly secured to a spindle 23 which is rotatably journaled in a threaded sleeve 24 which is received within a threaded aperture provided in the cross bar of the yoke 20. An abutment shoulder in the form of collar 25 is screwed onto the upper end of the sleeve 24 and secured in place thereon by a recessed-head setscrew 26. As shown in FIG. 3, the extreme upper end of the sleeve 24 is provided with a hexagonal seat 27 for receiving a ratchet 28 provided with a hexagonal hole or socket which slips over the seat 27. The ratchet 28 is loosely held between a pair of plates 29 which are maintained in spaced relation by rivets 30. Mounted on one of the rivets 30 is a doubleacting pawl 31 which is urged by a toggle spring 32 in one direction or another to maintain one or the other of the two teeth provided thereon in engagement with the ratchet 28. The-details of this pawl and ratchet mechanism are clearly shown in my Patent No. 2,711,576 which issued June 28, 1955, for Tube Clamping Means from my copending application Serial No. 274,403, tiled March 1, 1952, and to which reference is made for a complete disclosure of this mechanism. The plates 29 provide a rotating handle for the flaring cone 21, the handle being keyed to the spindle 23 by a square tenon 33 on the upper end thereof which is received in a square aperture provided in a cap 34 welded on the upper plate 29 of the handle. The entire assembly is held together by a cap screw 35 which screws into the upper end of the spindle. A ball type thrust bearing 36 is provided between the top of the cone 21 and the bottom of the sleeve 24 for taking up the upward thrust on the cone and permittting free rotation of the cone relative to the sleeve.
By means of this construction, it is possible to selectively connect or disconnect the threaded sleeve 24 from the spindle 23 so that the cone 21 may be rotated with or without feeding movement toward or away from the end of a tube 40 (FIG. 3) held in the clamping means 22. This construction permits the interior face of the flare to be burnished after it has been formed thereon by disconnecting the sleeve from the spindle by suitable manipulation of the pawl 31 so that the cone may be rotated dithout advancement.
The clamping means 22 for receiving and holding the tube 40 to be flared, includes a pair of clamping dies 44 and 45 having semi-circular clamping recesses, as shown in FIG. 4, and mounted for rotation about their centers to permit the various sized clamping recesses to be brought into alignment with the longitudinal axis of the flaring cone. This clamping means, including the die block-s 44 and 45 is fully shown and described in my copending application Serial No. 274,403, to which reference may be had for amore complete understanding of this part of the flaring tool. .As best shown in FIG. 4 each of the * die blocks 44 and 45 is in the form of arecessedirregular polygon in .cross section, the length .of each face of said polygon being proportional to the size of the clamping recess formed therein. The die blocks 44 and 45 are each provided with nine semicylindrical recesses 46 whose centers all lie on a common circle whose center coincides with the axis of rotation of the die block.
The pair of die blocks are freely rotatable between two sets of spaced base plates 49 and 50, respectively, the base plates 49 being immovably secured to the legs of the yoke by bolts 51 and 52 (FIG. 1). The base plates 50 are secured toa U-shaped bracket 48 which is supported on the bolt 51 for pivotal movement thereabout so as to enable the plates 50 and the die block 45 to be swung away from the plates 49 and the die block 44 to permit insertion and removal of tubes'from the clamping means. A clamping bolt 53 istsupported for pivotal movement about the bolt 52 so that the clamping bolt and its wing nut 54 screwed thereon may be swung into clamping position as-shown in FIG. 1 after which the wing nut 54 may be tightened tosecurely clamp the base plates and die block together.
The die block 45 is freely rotatable about a sleeve 55 which encompasses a threaded .stud 56 :on which is screwed a nut 57 which may be tightened to securely clamp the sleeve 55 between the nut and the head of the stud 56.
The die block 44, on the other hand, is fast on a sleeve 58 which is clamped between a shoulder 59 and a nut 60 provided on the lower end of a gauging spindle 61.
The block 44, sleeve 58 and spindle 61 are fastened together by. a pin 44' which passes .therethrough and causes them torotate as'a unit. The sleeve 58 is freely rotatable in apertures provided in the base plates 49 so that the die block .44 and the spindle 61 may rotate as a unit to bring the various recesses-46 into alignment with the longitudinal axis ofthe flaring cone. Fast on the upper end of the spindle 61 .is a dis-like gauging member 62 which cooperates with-an abutment in the form of annular shoulder 63 formed on the lower end of the sleeve 24 for the purpose of determining the depth of the flare to be formed on the tube 40. At its extreme upper end, the spindle 61 is journaled in a bearing provided therefor in a housing 64 which is mounted on the yoke 20 by screws 65 (FIG. 1), the housing serving to enclose and protect the gauging member 62.
The manner in which the member 62 cooperates with the flange 63 is best shown in FIGS. 4 to 7, inclusive, As shown in FIG. 3, the lower limit of movement of the cone 21 is fixed and is determined by engagement of the bottom edge of the collar 25 with the top of the yoke 20 to limit downward feeding movement of the cone into the tube. The upper limit of movement of the cone is variable and is limited by engagement of the annular flange 63 either with one of the gauging surfaces provided on the gauge member 62 or with the bottom surface 66 of theyoke 20. For the larger sizes of tubing, the disc 62 is cutout to permit free passage of the flange 63 up against the surface 66 on the yoke. There are three such cutouts, these being indicated by reference numeral 67 in FIG. 4. It will be seen from this figure that each of the cutout portions 67 is aligned with one of the three largest clamping recesses 46. Consequently, when any one of these three .recesses is brought into alignment with the longitudinal axis of the flaring cone one of the cutout portions .67 on the gauging member .62 will likewise be moved into alignment with the longitudinal axis of the cone and the sleeve 24 so that the flange 63 will be unobstructed in its upward travel until it abuts against the surface 66 on the yoke. Hence, the cone 21 is free to travel up and down through the full distance permitted by the flange 63 and the col- 'lar 25. To reduce the depth of 'flare when working with tubes of medium size, the gaugemember 62 is provided with recesses 68 which extend approximately .half way through the thickness of the member 62 as best shown in FIG. 6. As shown in FIG. 4 there are three such .recesses 68,, one for each of the three medium sizerecesses '46 in the dieblock 44. The recesses 68 and the three medium size clamping recesses 46 are in alignment so that when a tube of medium size is clamped between the die blocks, a recess 68 will lie in position to engage the flange 63 and limit the upward travel of the cone in the manner indicated in FIG. 6. Hence, the vertical travel of the flaring cone will be reduced and the depth-of the flare provided on the tube will likewise be reduced.
To provide the least depth of flare on tubes of small diameter, the gauge member 62 is provided with a portion 69 of 'full thickness which lies in alignment with the three smallest clamping recesses 46. As shown in FIG. 7, when any one of these recesses is moved into axial alignment with the axis of the flaring cone, the portion 69 will be brought into position above the flange 63 thereby reducing the upper travel of the flaring cone to a minimum.
The operation of the form of gauging device shown in FIGS. 1 to 7, inclusive, is as follows:
To produce an accurately dimensioned flare on a piece of tube of any given size, the clamping means 22 of the tube flaring tool (FIG. 1) is opened and the die blocks 44 and 45 are then turned to bring the clamping recesses'46 on the die blocks corresponding in size to the size of tube to be flared into alignment with the axis of the flaring cone. The handle 29 of the tool is then turned counterclockwise so as to elevate the flaring cone 21 to its starting position. This position will be determined by the position of the gauge member 62. For the larger sizes of tubing, the conditions shown in FIG. 6 will prevail wherein the cut-out portions 67 will permit'the flange 63 to move all the way up into engagement with the. surface 66 on the bottom'of the yoke 20. In .the case. of tubes of intermediate size, the flange 63 will engage with the face of the recess 68 as shown in FIG. 6, while-for the. smaller'sizes of tubing the flange will engage with the bottom face of the member 62 as shown in FIG. 7. The tube to be flared is now inserted into the die opening and pushed all the way up until it is stopped by the flaring cone 21. The die blocks are then securely clamped together by tightening the wing nut 54 (FIG. 1) so as tosecurely hold the tube in place beneath the flaring cone. The pawl 31 is now flipped to driving position and the handle 29 is turned clockwise to feed the flaring cone downwardly into the end of the tube 40. As soon as the bottom of the collar 25 contacts the top of the yoke 20 further turning movement of the sleeve 24 will be prevented and the operator of the tool will be unable to continue to rotate the handle 29. The pawl 31 is then flipped to burnishing position whereupon the handle may be rotated to turn the cone 21 independently of the sleeve 24 so as to burnish the inside face of the flare. After the burnishing operation, the flaring of the tube 40 will be complete and the clamping means may be opened so as to permit removal of the tube from the tool. The tool is now ready to receive the next piece of tubing to be flared, the die blocks 44 and 45 being adjusted to suit the size of the new piece of tubing. The indexing of the die block 44 will cause corresponding indexing of the gauging member 62 so as to properly limit the upward travel of the threaded sleeve 24 in accordance with the diameter of the tube to be flared. Hence, it will be seen that a positive type gauge is hereby provided for limiting the depth of flare to the extent required for the formation of a properly dimensioned tube flare.
As shown in FIG. 2, the flaring cone is flattened so as to restrict the contact thereof with the tube 70 to be flared to the opposite sides 71 of the cone. In fact, since tube contacting edges of the cone are rounded on a radius 72 which is smaller than the radius 73 of the cone at this point, only line contact will exist between the sides of the cone and the wall of the tube.
The cone 21 is preferably coated with a hard, corrosion resistant metal such as chromium which is given a high polish to reduce the friction between the cone and the tube and to prevent any pick-up of metal by the cone from the tube.
It will be found that my novel form of flaring cone 21 will provide a highly polished, accurately formed flare on the end of the tube. Furthermore, the amount of etfort required to turn the handle 29 will be found to be considerably less than with conventional types of flaring cones. This is because essentially line contact exists between the flaring cone and the wall of the tube and the amount of friction is therefore greatly reduced. The hard and highly polished surface of the cone helps to cut down the friction between the cone and the tube and prevents any roughening of the wall of the flare due to pick-up of metal particles by the cone.
A modified form ofmy invention is shown in FIGS. 8 to 13, inclusive, wherein there is shown a flaring tool similar to the one heretofore described except for the flaring cone which, as shown in FIG. 8, comprises a cone 75 fitted with conical rollers 76 which operate to roll the flare on the end of the tube. This type of flaring cone is fully shown and described in my said Patent No. 2,711,576 mentioned above. For further information regarding the flaring cone, reference may be made to this application. Like the tool shown in FIGS. 1 and 3, the flaring tool shown in FIGS. 8 and 9 has a yoke 77 to which is fastened a clamping means 78 consisting of a pair of complementary die blocks 79 and 80. The yoke is provided with a threaded aperture for receiving a threaded sleeve 81 which carries an abutment collar 82. The flaring cone 75 is secured to a spindle (not shown) which is journaled within the sleeve 81 and is keyed to the operating handle 83. The upper end of the sleeve 81 is keyed to a ratchet 84 which is adapted to be driven by a double acting pawl 85 carried by the handle 83. A ball type anti-friction bearing 86 is interposed between the bottom of the sleeve 81 and the top of the flaring cone 75 so as to take up the upward thrust on the cone and permit free rotation of the cone relative to the sleeve.
The clamping means 78 is similar to the one shown in my aforementioned Patent No. 2,711,576 and includes two pairs of base plates 90 and 91 between which the die blocks 79 and are located. The base plates 91 are secured to the legs of the yokes 77 by bolts 92 and 93 while the base plates are arranged for pivoting movement about the bolt 92 by means of a U-shaped bracket 94 secured to the plates 90 and apertured to receive the shank of the bolt 92. A clamping bolt 95 carrying a wing nut 96 is provided for clamping the die blocks securely together after the tube to be flared has been inserted therebetween.
The die block 79 is mounted for free rotation about a sleeve 98 which is clamped between the base plates 90 by a headed stud 97 which passes through the sleeve and base plates and is threaded to receive a nut 87. The sleeve 98 serves as a spacer to hold the base plates apart so that the block 79 can rotate freely between them.
The die block 80 is mounted on a sleeve 100 which receives the lower end of a spindle 99. The block, sleeve and spindle are fastened together by a pin 88 which passes therethrough and causes them to rotate as a unit. The spindle is provided with a shoulder 101, against which the upper end of the sleeve abuts, and is threaded at its lower end to receive a nut 102 which clamps against the lower end of the sleeve. The sleeve is of suificient length to permit free turning movement of the block between the base plates 91. As the die block 80 is turned about its axis between the base plates 91, the spindle 99 will turn therewith and cause' a gauging member 103 mounted on the upper end thereof to be indexed to different positions beneath an annular flange 104 provided on the lower end of the sleeve 81.
In this modification of my device it is desirable to provide means for limiting the insertion of the tubing in the clamping device to a predetermined, constant extent for all sizes of tubing. Accordingly, I have provided, in this case, a blade 89 which is pivoted on the bolt 93 and constrained to swing with the clamping bolt 95 in the manner described in connection with the gauging blade described in my copending patent application Serial No. 384,302 filed October 5, 1953, and entitled Flare Gauge. Hence, when the bolt 95 is swung to its open position, the blade 89 will lie over the clamping recess and limit the insertion of the tubing to a predetermined extent. When the bolt 95 is swung to its closed position, the blade will be moved away from over the recess to the position shown in FIGS. 8 and 9 where it will not interfere with the flaring operation.
As best shown in FIG. 10, the gauging member 103 is provided with a series of graduated abutment faces which cooperate with the flange 104 to limit the downward movement of the flaring cone 75. These abutment faces are aligned with their respective clamping recesses provided in the die block 80 so that as the clamping recesses are brought into alignment with the longitudinal axis of the flaring cone, the abutment faces on the gauging member 103 will likewise be brought beneath the flange 104. As shown in FIGS. 10 and 11, the member 103 is provided with a cut-out portion 106 which lies in alignment with the largest clamping recess 105 on the die block 80. Consequently, when this recess is brought into axial alignment with the flaring cone, the cut-out 106 associated therewith will lie beneath the flange 104 so as to permit uninterrupted downward travel of the sleeve 81 as the handle 83 is turned clockwise. Hence, the flaring cone may be fed down into the tube until the abutment collar 82 contacts the upper face 107 of the yoke 77 to stop further feeding movement of the cone. This condition is illustrated in FIG. 11 where the abutment collar is shown engaged with the face 107 on the yoke 77 to limit downward movement of the cone. When tubes of intermediate size are to be flared, a. clamping recess of intermediate size such as the recess .111, will be utilized for receiving and clamping the tube to be flared. As shown in FIG. 10, the recess 111 has aligned therewith a recessed abutment face 112 which is adapted to engage with the underface of the flange 104 and limit the downward travel of the flaring cone to the extent shown in FIG. 12.
When tubing of small size is to be flared, a small size clamping recess, such as the recess 113, is swung into alignment with the flaring cone thereby bringing a portion 114 on the member 103 into alignment with the flange 104. As a result, downward feeding movement of the flaring cone is limited by engagement of the under face of the flange with the top face of the member 103 in the manner indicated in FIG. 13.
In each case, upward travel of the cone is limited to the extent permitted by engagement of the top face of the flange 104 with the bottom surface 110 on the yoke 77.
The operation of the gauging device shown in FIGS. 8 to 13, inclusive, is as follows:
The normal starting position of the flaring cone in the modification shown in FIGS. 8 to 13, inclusive, is the fully elevated position thereon shown in FIGS. 8 and 9. When the user of the tool wishes to provide a flare of the proper shape and size on the end of a piece of tubing of given size, he notes the outside diameter of the tube and selects the corresponding clamping recesses on the die blocks 79 and 80, the die blocks being rotated about their axes to bring these recesses into alignment with the'longitudina'l axis of the flaring cone. With the cone in its fully raised position, the tubing is inserted in the die opening from the bottom and pushed upwardly until it engages with the blade 89. The clamping bolt 95 is then swung closed and the thumb screw 96 tightened to securely clamp the tube in place beneath the cone. The handle 83 is then turned clockwise so as to feed the flaring cone down into the tube and produce a flare on the end of the tube. The downward travel of the cone will be limited either by the engagement of flange 104 with the gauging member 103, or by abutment of the collar 82 against the abutment face 107 on the yoke 77. If the largest size of tubing is to be flared, the cut-out portion 106 on the member 103 will be positioned beneath the flange 104 so that full downward travel of the cone will be permitted and downward feeding movement of the cone will continue until stopped by abutment collar 82. If the tubing is of intermediate size, an abutment face such as the face 112 will be brought beneath the flange 104 and downward feeding movement of the cone will be limited as indicated in FIG. 12. If the smallest diameter of tubing is to be flared, the abutment face 114 will be brought into alignment with the flangeso as to stop the downward movement of the cone after arelatively small amount of travel as shown in FIG. 13.
After the advancement of the cone into the tube has been stopped, in the above-described manner, the pawl 85 may be flipped to permit rotation of the cone without further advancement of the threaded sleeve 81 so that .burnishing of the flare may be effected. After burnishing, the handle 83 may be rotated counterclockwise to remove the cone from the tube and raise the cone to its fully elevated position as shown in FIGS. 8 and 9. The clamping means 78 is then opened and the flared piece of tubing removed from the tool. The tool is then ready to receive the next piece of tubing to be flared and the die blocks 79 and 80 are then turned to bring clamping recesses of the proper size into alignment with the flaring cone after which the new piece .of tubing is inserted in the clamping means until it is stopped by the blade 89. As before, the clamping means may then be shut and clamped and the handle 83 rotated clockwise to feed the cone into the tube as far as the automatic gauging means will permit.
It will be observed from the foregoing description of my invention that no conscious attention is required on the part of the userof the tool in order to provide a flare of proper depth. This is all automatically taken care of by my novel gauging device when the clamping means is adjusted for the size of tube to be flared. Since a positive stop is provided for limiting the travel of the cone into the tube, it is impossible for the user of the tool to inadvertently run the cone too far into the tube and thereby produce an incorrectly dimensioned flare.
WhileI have described my invention inconnection with certain, definite physical embodiments and have used, therefore, certain specific terms and language in describing the structures shown, it is to be understood that the present disclosure is illustrative rather than restrictive and that changes and modifications may be made therein without departing from the spirit or scope of the claims which follow.
Having thus described my invention, what I claim as new and useful and desired .to secure by United States Letters Patent, is:
1. An automatic gauge for a tube flaring tool comprising a yoke, a flaring cone mounted for rotation on said yoke, a pair of tube clamping dies supported on said yoke, said dies each having a plurality of clamp-ing recesses of different sizes formed therein and each being adjustable relative to said yoke to enablerecesses of different sizes to be brought into axial alignment'with said cone, means for feeding said cone axially of the tube to be flared, and agaugingdevice settable inaccordance'with the adjustment of said dies for limiting the 'feeding'movement of said cone to an extent commensurate 'with the size of the recesses brought into alignment with the cone.
2. The automatic gauge of claim 1 wherein said clamping dies are each irregularly polygonal in cross-section and are mounted for rotation on said yoke to enable recesses of different sizes to be brought into axial alignment with said flaring cone, and said gauging device is rotatable in accordance with the rotation of said dies.
3. The automatic gauge of claim 1 wherein said gauging device is secured to and movable with one of said clamping dies.
4. The automatic gauge of claim I wherein said feeding means includes a threaded sleeve, and a flange on said sleeve cooperating withsaid gauging device for limiting the feeding movement of said cone.
5. A flare gauge for a tube flaring tool comprising a rotatable flaring cone, a mounting for the flaring cone, a clamping means on said mounting having recesses for receiving and holding various sizes of tubes, said means being rotatably attached to said mounting to bring a selected recess into axial alignment with said flaring cone, means for feeding said cone along its axis of rotation as it is rotated, and a gauging device moving with said clamping means into position for limting the feeding movement of said cone to an extent corresponding to the size of the recess selected for use.
6. The flare gauge of claim '5 including an abutment shoulder moving with said cone as it is fed along its axis of rotation, and a plurality of abutment surfaces on said gauging device arranged for coaction with said abutment shoulder.
7. An automatic flare gauge for tube flaring tools comprising a yoke, a threaded sleeve received within a threaded hole provided in said yoke, a flaring cone having a spindle rotatably journaled within said sleeve, a handle for turning said spindle, means for selectively connecting said spindle and said sleeve for conjoint rotation to control feeding or non-feeding movement of said cone as said handle isrotated, a pair of tube clamping dies supported on said yoke, each die being provided with a plurality of clamping recesses of different sizes and mounted to rotate about an axis substantially parallel to the axis of said spindle to enable a selected recess to be brought into axial alignment with said cone, and a gauging member fastened to one of said dies and adapted to cooperate with said sleeve to limit axial feeding movement of said sleeve to an extent corresponding to the size of the recess located in alignment with said cone.
8. The flare gauge of claim 7 wherein said one die is provided with an axle on which said gauging member is mounted.
9. The flare gauge of claim 7 including a flange on said sleeve, and cooperating abutment faces on said gauging member.
10. The flare guage of claim 7 including a plurality of abutment faces on said gauging members and a pair of abutments on said sleeve, one of said abutments cooperating with said yoke to limit axial feeding movement of the sleeve in one direction, and the other of said abutments cooperating with one of the faces on said gauging member to variably'limit axial feeding movement of the sleeve in the opposite direction.
11. The flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an abutment on said sleeve cooperating with said yoke for limiting inward feeding movement of said sleeve, and a second abutment on said sleeve cooperating with one of the faces on said gauging member for variably limiting outward feeding movement of said sleeve.
12. The flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an abutment on said sleeve cooperating with said yoke for limiting outward feeding movement of said sleeve, and a second abutment on said sleeve cooperating with one of the faces on said gauging member for variably limiting inward feeding movement of said sleeve.
13. The flare gauge of claim 7 including a fixed stop on said sleeve cooperating with said yoke for limiting inward feeding movement of said sleeve, a plurality of abutment faces on said gauging member, and an annular flange on said sleeve cooperating with one of said faces for variably limiting outward feeding movement of said sleeve.
14. The flare gauge of claim 7 including a plurality of abutment faces on said gauging member, an annular flange on said sleeve, asurface on said flange cooperating with said yoke for limiting outward feeding movement of said sleeve, and another surface on said flange cooperating with one of the faces of said gauging member for variably limiting inward feeding movement of said sleeve.
15. The flare gauge of claim 7 including means on the outer end of said sleeve for cooperating with said yoke to determine the inward limit of movement of said sleeve, an annular flange on the inner end of said sleeve, a surface on said flange cooperating with said yoke to determine the outward limit of movement of said sleeve, a plurality of graduated faces on said gauging member, and a second surface on said flange cooperating with one of said abutment faces to establish limits of movement of said sleeve intermediate said inner and outer limits.
16. A gauge for a tube flaring tool comprising a yoke, a flaring cone mounted on said yoke, tube clamping dies supported on said yoke, said dies having a plurality of clamping recesses of different sizes, each die being adjustable relative to said yoke to enable recesses of diflerent sizes to be brought into axial alinement with said cone, means for feeding said cone axially of the tube to be flared, and a gauging device settable in accordance with the adjustment of said dies for limiting the feeding movement of said cone to an extent commensurate with the size of a recess brought into alinement with the cone, said feeding means having abutments on each end for cooperating with said gauging device and said yoke.
17. The gauge of claim 16 wherein said clamping dies are each polygonal in cross section and are mounted for rotation on said yoke to enable recesses of different sizes to be brought into axial alinement with said flaring cone, and said gauging device is rotatable in accordance with the rotation of said dies.
18. The gauge of claim 16 wherein said gauging de- 10 vice is secured to and movable with one of said clamping dies.
19. The gauge of claim 16 wherein said feeding means includes a threaded sleeve, and a flange on said sleeve cooperating with said gauging device for limiting the outward feeding movement of said cone.
20. A flare gauge for tube flaring tools comprising a yoke, a flaring cone having a spindle rotatably supported by said yoke, means for feeding said cone under rotation relatively to said yoke, a handle for turning said spindle to control feeding movement of said cone as said handle is rotated, 11 pair of tube clamping dies supported on said yoke, each die being provided with a plurality of clamping recesses of diflerent sizes and mounted to rotate about an axis substantially parallel to the axis of said spindle to enable a selected recess to be brought into axial alinement with said cone, and a gauging member fastened to one of said dies and adapted to cooperate with means on said spindle to limit axial feeeding movement of said spindle to an extent commensurate with the size of the recess located in alinement with said cone.
2]. The flare gauge of claim 20 wherein said one die is provided with an axle on which said gauging member is mounted.
22. The flare gauge of claim 20 in which said means on said spindle comprises a flange carried by said spindle, and said gauging member includes abutment faces respectively cooperating with said flange for accomplishing said axial feeding limit.
23. The flar e gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, and a pair of abutments carried by said spindle, one of said abutments cooperating with said yoke to eflect said limit of axial feeding movement of the spindle in one direction, and the other of said abutments cooperating with one of the faces of said gauging member to effect said limit of axial feeding movement of the spindle in the opposite direction.
24. The flare gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, an abutment carried by said spindle cooperating with said yoke for limiting inward feeding movement of said spindle, and a second abutment carried by said spindle cooperating with one of the faces on said gauging member for limiting outward feeding movement of said spindle.
25. The flare gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, and said means on said spindle comprises an abutment carried by said spindle cooperating with said yoke for limiting outward feeding movement of said spindle and a second abutment carried by. said spindle cooperating with one of the faces on said gauging member for limiting inward feeding movement of said spindle.
26. The flare gauge of claim 20 in which said means on said spindle includes a fixed stop connected to said spindle cooperating with said yoke for limited inward feeding movement of said spindle, said gauging member includes a plurality of abutment faces on said gauging member, and said means on said spindle further includes an annular flange connected to said spindle cooperating with one of said faces for limiting outward feeding movement of said spindle.
27. The flare gauge of claim 20 in which said gauging member includes a plurality of abutment faces on said gauging member, and said means on said spindle comprises an annular flange connected to said spindle, a surface on said flange cooperating with said yoke for limiting outward feeding movement of said spindle, and another surface on said flange cooperating with one of the faces of said gauging member for limiting inward feeding movement of said spindle.
28. The flare gauge of claim 20 in which said means on said spindle includes means mounted adjacent the 11 mter end of said spindle for cooperating with said yoke 0 determine the inward limit of movement of said 'pindle, said means on said spindle further includes an rnnular' flange adjacent the inner end of said spindle, a 'urface on said flange cooperating with said yoke to letermine the outward limit of movement of said spindle", 1 plurality of graduated faces on said gauging member, 1nd a second surface on said flange cooperating with me of said abutment faces to establish limits of movenent of said spindlel intermediate said inner and outer imits.
References Cited in the file of this patent or' the original patent UNITED STATES PATENTS 1,081,932 Smith Dec. 16, 1913 12 Schellenbach July 3, Furber Mar. 18, Davies Feb. 10, Arndt Mar. 10 Wilkins Oct. 6, Kerr Aug. 16, French June 2, Mclntosh May 30, Capewell -1. Apr. 17, Franck Apr. 25, WoIcott Dec. 15, Wilson June 28, Wilson June, 28, Franck Dec; 18,
FOREIGN PATENTS,
Great Britain Ian. 28,
US25131D Tube flaring tool Expired USRE25131E (en)

Publications (1)

Publication Number Publication Date
USRE25131E true USRE25131E (en) 1962-03-06

Family

ID=2093768

Family Applications (1)

Application Number Title Priority Date Filing Date
US25131D Expired USRE25131E (en) Tube flaring tool

Country Status (1)

Country Link
US (1) USRE25131E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396562A (en) * 1966-08-05 1968-08-13 James B. Thigpen Flaring toolholder
US20060243014A1 (en) * 2005-04-28 2006-11-02 Kao Meng J Ratchet pipe enlarging tool
US9492857B2 (en) 2010-08-06 2016-11-15 American Grease Stick Company Hand held flaring tool
US9962755B2 (en) 2013-10-30 2018-05-08 Ags Company Automotive Solutions, Llc Hand held flaring tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396562A (en) * 1966-08-05 1968-08-13 James B. Thigpen Flaring toolholder
US20060243014A1 (en) * 2005-04-28 2006-11-02 Kao Meng J Ratchet pipe enlarging tool
US9492857B2 (en) 2010-08-06 2016-11-15 American Grease Stick Company Hand held flaring tool
US10850319B2 (en) 2010-08-06 2020-12-01 Ags Company Automotive Solutions, Llc Hand held flaring tool
US9962755B2 (en) 2013-10-30 2018-05-08 Ags Company Automotive Solutions, Llc Hand held flaring tool
US11072018B2 (en) 2013-10-30 2021-07-27 Ags Company Automotive Solutions Llc Hand held flaring tool

Similar Documents

Publication Publication Date Title
US2416228A (en) Cutting tool
US2157574A (en) Torque release wrench
US2156195A (en) Clamp
US2883198A (en) Work driver for the metal cutting machine
USRE25131E (en) Tube flaring tool
US2707511A (en) Tube flaring tool
US2496545A (en) Lathe chuck
US2007122A (en) Metal tube cutting tool
US2568952A (en) Shaft holder
GB607188A (en) Improvements in or relating to angle measuring devices
US2853116A (en) Tube flaring tool with clamp carrying gauge means for limiting the depth of tool feed
US2592229A (en) Self-aligning shoe for steady rests used on lathes
US1326804A (en) George benjamin taylor
US2566893A (en) Rocker arm grinding device
US2360059A (en) Thread plug gauge wear testing device
US1473946A (en) Combination hand vise
US3012772A (en) Blind clamping device
US2791872A (en) Oscillating support for use on grinding machines
US2852839A (en) Annular clamping blocks with tube clamping recesses for a flaring tool
US2554770A (en) Tap guide
US2040718A (en) Trunnion
US3209571A (en) Tube flaring tool
US2679773A (en) Thread rolling device having adjustably matched die rolls
USRE23897E (en) Thread rolling device haying
US1515636A (en) Metal-cutting tool