USRE23119E - Oil-soluble dkiek metal salt - Google Patents

Oil-soluble dkiek metal salt Download PDF

Info

Publication number
USRE23119E
USRE23119E US23119DE USRE23119E US RE23119 E USRE23119 E US RE23119E US 23119D E US23119D E US 23119DE US RE23119 E USRE23119 E US RE23119E
Authority
US
United States
Prior art keywords
oil
metal
viscosity
drier
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE23119E publication Critical patent/USRE23119E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms
    • C07C53/128Acids containing more than four carbon atoms the carboxylic group being bound to a carbon atom bound to at least two other carbon atoms, e.g. neo-acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/12Straight chain carboxylic acids containing eighteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F9/00Compounds to be used as driers, i.e. siccatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/061Metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10

Definitions

  • This invention relates to oil-soluble metal salt compositions useful in several arts for various purposes, such, for example, as in connection with paint and varnish driers, bodying agents, catalysts, lubricant additives, etc.
  • the oil soluble salts of diverse organic acids are in use for many different purposes.
  • the drying metal salts that is, principally lead, cobalt, manganese, iron, Zinc and nickel salts of certain organic acids; for example, naphthenic acids, tall oil acids, rosin acids, linseed acids, Z-ethylhexoic acid, etc.
  • naphthenic acids for example, tall oil acids, rosin acids, linseed acids, Z-ethylhexoic acid, etc.
  • the lead salts of certain. acids, such as naphthenic acids are employed not only as driers, but also to impart certain desirable characteristics to lubricants.
  • l-feavy metal alkali earth metal salts are generally water-insoluble. Their commercial utility depends upon their ability to dissolve in and to be stable in the organic solvents and vehicles for which they are intended. For example, in the case of cobalt, manganese and lead driers they are usually employed in compositions containing drying oils such as linseed oil. In order that they may function properly it is necessary that they be soluble in such oils and many other types of vehicles used in paints, varnishes and printing inks. Similarly a copper salt, intended for use in fungicides, should be soluble in certain organic vehicles, such as creosote oils, with which it is often associated in fungicidal compositions. Zinc salts, such as zinc naphthenate, are employed commercially as wetting agents in paints and varnishes. For such application it is desirable that these salts be soluble in the. vehicles of such compositions.
  • the metal salts are sometimes employed in solid form; i. e., in the absence of a solvent, but more often they are employed in the form of concentrated liquid solvent solutions.
  • serious difficulties have been experienced in the commercial use of the above described metal salts because they lack the necessary element of solubility. Equally serious troubles are experienced in the preparation of such metal salts and their solutions.
  • solvent solutions are of objectionably high consistency at the maximum concentration which is preferable from the standpoint of economics and other reasons.
  • the solvent solutions generally contain, for the purpose of minimizing their tendency towards sludging and their lack of solubility, relatively high proportions of organic acids. They may carry as much as 25% of free acids for this purpose. This means that a relatively high amount of extraneous matter is introduced along with the active principal. It also means that, were it not for the presence of such free acid, the concentration of the metal salt in such solutions would be increased.
  • alkyl acid phosphates greatly reduce the viscosity of solutions of oil-soluble metal salts and greatly improve the stability and solubility of such solutions. Furthermore, they make it possible to effect considerable economies in the preparation of such compositions.
  • stabilizing agents are of very low vapor pressure and thus will remain permanently associated in the compositions in which they are incorporated.
  • the amount of stabilizing agent needed is relatively small, as low as 25% per total weight of the heavy metal salt solutions having effected marked changes, but it may be found desirable in some cases to use considerably higher percentages of such stabilizing agents. Generally speaking, we have found that from 1% to 3% produces commercially satisfactory results. There may be applications where even as much as 10% of these agents may be employed.
  • alkyl acid phosphates of this invention 2 are compounds with the general formula RH2PO4 or RR-HPO4 aswell as combinations of both.
  • R represents an alkyl radical.
  • EXAMPLE 1 In this example, a manganese naphthenate has beenprepared without the agent of this invention, but employing approximately of free naphthenic acid so as to make the product commercially acceptable.
  • the end product is a mineral spirits solution of manganese naphthenate carrying 6 manganese metal.
  • lbs. of a 14% caustic soda solution is added to a mixture of 512 lbs. of naphthenic acid (acid number 240 mg.) in 389 lbs. of mineral spirits. This results in a substantially neutral soap mixture; that is, it contains neitherfree acid nor free alkali. 100 lbs. of naphthenic acid is then added. This corresponds to 10% of the finished product.
  • the temperature of the mixture is raised to 180 F. and to it with agitation is added 750 lbs. of an aqueous, manganese sulfate solution containing 8% manganese. After agitation, the mixture is allowed to stratify into an upper mineral spirits layer containing manganese naphthenate and a lower aqueous layer.
  • the product of this example represents the best commercial grade that could be produced prior to this invention.
  • EXAMPLE 2 This example shows the addition of amyl acid phosphate to an already prepared manganese naphthenate drier solution carrying 6% mananese metal.
  • EXAMPLE 3 This example shows the addition of butyl acid phosphate to an already prepared manganese naphthenate drier solution carrying 6% manganese metal.
  • EXAMPLE 4 This example shows the use of propyl acid phosphate as a stabilizer in a manganese naphthenate solution in mineral spirits carrying 6% manganese metal.
  • EXAMPLE 6 This example shows the use of amyl acid phosphate in reducing the viscosity of a mineral spirits solution of copper naphthenate carrying 8% copper metal.
  • EXAMPLE '7 EXAMPLE 8 In this example a commercial grade of a Xylol solution of the calcium salt of 2-ethy1hexoic acid was first prepared. The solution carried 5% of calcium metal in the form of the salt. The solution thus made showed an initial viscosity of 340 C. P. S. at 80 F. There was then added to this solution 3% by weight of the propyl acid phosphate. The viscosity of the calcium salt solution was reduced down to 50 C. P. S.
  • EXAMPLE 9 A commercial grade of a copper oleate paste in creosote oil was first prepared so as to carry 7% of copper metal. To this paste was then" added 3% by Weight of amyl acid phosphate. The viscosity of the composition which, before the addition, was 4630 C. P. S. dropped, after the addition, to 435 C. P. S.
  • EXAMPLE 10 A commercial grade of a copper salt of tall oil acids was first prepared in a solution of toluol. This solution carried 6% copper metal. There was then added 3% of octyl acid phosphate. The viscosity of the composition dropped from the initial Viscosity of 627 C. P. 3., before the addition of the agent, down to 320 C. P. S. Another important advantage, resulting from the additive agent, was the great improvement in storage stability. Whereas the solution, without the modification, months standing, the modified product retained its initial homogeneous character permanently.
  • EXAMPLE 11 A commercial grade of cobalt linoleate of 9% cobalt metal content, was first prepared by fusion or cobalt acetate and linseed oil fatty acids by standard commercial procedure. The end product was then introduced into linseed oil (which required heating and agitating), so as to provide 2% cobalt metal content in the linseed oil. The dilution of the cobalt linoleate thus prepared showed serious instability after several days standing. There were some discrete particles of the cobalt drier which had separated away from the oil and overall gelation had begun.
  • EXAMPLE 1 3 A batch of aluminum oleate was modified through the addition of 1% of amyl acid phosphate. When dilutions of the aluminum soaps in 'benzol were made so as to carry 10% of the aluminum soaps, it was found that the viscosity of the dilution of the modified soap showed a viscosity of only 50 C.- P. S. By contrast, the dilution of the unmodified soap was a viscous gel.
  • EXAMPLE 18 A commercial grade of an iron tallate catalyst was prepared in the usual manner. The end product carried 8% iron metal. To a portion of this end product, there was then added 5% of butyl acid phosphate. The unmodified, as well as'the modified catalyst were then introduced into typical core oil compositions. It was foundthat the modified catalyst possessed much better solubility and compatibility with the core oil than the. unmodified catalyst.
  • EXAMPLE 20 The zinc salt of Z-ethylhexoic 'acid was first prepared by .a fusion of zinc oxide and 2-ethyl-- hexoic-acid. The end product was then dissolved in :a hydrogenated'petroleum solvent sold under the name Solvesso #1 by the Standard Oil Company of New Jersey and consisting of a mixture of approximately 65% aliphatic hydrocarbons of boiling range 250350 F. and 35% of methylated monocyclic aromatic hydrocarbons. The solution carried 10% of zinc metal. When to this solution, 2% of isopropyl acid phosphate was added, the initially high viscosity of the solution was reduced from approximately 9800 C. P. S. at 80 F. to 3600 C. P. S. It was also determined that the modification greatly improved the solubility and compatibility of the zinc salt in many organic vehicles.
  • composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an alkyl acid phosphate wherein the alkyl group embodies not more than 8 carbon atoms.
  • composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an amyl acid phosphate.
  • composition of matter consisting essentially of an oil-soluble drier metal salt of naphthenic acid and a lesser amount of an alkyl acid phosphate wherein the alkyl group embodies notmore than 8 carbon atoms.
  • composition of matter consisting essentially of an oil-solub1e drier metal salt of naphthenic acid and a lesser amount of an amyl acid phosphate.
  • composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an isopropyl acid phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

Reissuecl May 31, 1949 NITED STATES OFICE OIL-SOLUBLE DRIER METAL SALT COMPOSITIONS Alfred Fischer, Bronx, N. Y., assignor to Nuodex Products 00., Inc.. Elizabeth, N. l, a corporation of New York Serial No. 72,741
6 Claims.
This invention relates to oil-soluble metal salt compositions useful in several arts for various purposes, such, for example, as in connection with paint and varnish driers, bodying agents, catalysts, lubricant additives, etc.
The oil soluble salts of diverse organic acids are in use for many different purposes. For example, the drying metal salts; that is, principally lead, cobalt, manganese, iron, Zinc and nickel salts of certain organic acids; for example, naphthenic acids, tall oil acids, rosin acids, linseed acids, Z-ethylhexoic acid, etc., are widely used as paint, varnish and printing ink driers. The lead salts of certain. acids, such as naphthenic acids, are employed not only as driers, but also to impart certain desirable characteristics to lubricants.
l-feavy metal alkali earth metal salts are generally water-insoluble. Their commercial utility depends upon their ability to dissolve in and to be stable in the organic solvents and vehicles for which they are intended. For example, in the case of cobalt, manganese and lead driers they are usually employed in compositions containing drying oils such as linseed oil. In order that they may function properly it is necessary that they be soluble in such oils and many other types of vehicles used in paints, varnishes and printing inks. Similarly a copper salt, intended for use in fungicides, should be soluble in certain organic vehicles, such as creosote oils, with which it is often associated in fungicidal compositions. Zinc salts, such as zinc naphthenate, are employed commercially as wetting agents in paints and varnishes. For such application it is desirable that these salts be soluble in the. vehicles of such compositions.
The metal salts, referred to above, are sometimes employed in solid form; i. e., in the absence of a solvent, but more often they are employed in the form of concentrated liquid solvent solutions. Heretofore, serious difficulties have been experienced in the commercial use of the above described metal salts because they lack the necessary element of solubility. Equally serious troubles are experienced in the preparation of such metal salts and their solutions.
Some of the most serious defects of prior metal salts are as follows:
1. Generally, solvent solutions are of objectionably high consistency at the maximum concentration which is preferable from the standpoint of economics and other reasons.
2. These metal soaps in form of their concentrated solutions, as Well as when incorporated into the ultimate compositions for which they may be intended, sludge out during storage; that is, a portion of the active constituent becomes inactive. v
3. These metal salts are often only incompletely soluble in solvents which are intended for the preparation of their concentrated solutions, as well as in the ultimate vehicles and compositions for which they are intended.
4. The solvent solutions generally contain, for the purpose of minimizing their tendency towards sludging and their lack of solubility, relatively high proportions of organic acids. They may carry as much as 25% of free acids for this purpose. This means that a relatively high amount of extraneous matter is introduced along with the active principal. It also means that, were it not for the presence of such free acid, the concentration of the metal salt in such solutions would be increased.
5. These solutions in many cases do not retain their initial useful low viscosity, but rather tend to increase in viscosity upon aging, sometimes to the gelation point.
Various attempts have been made in the past to cope with these disadvantages. Besides the use of free organic acids, certain other agents have also been suggested. For example, certain alcohols have been recommended. However, their use is attended by certain drawbacks such as volatility, relatively low degree of efiiciency, etc.
As a result of protracted research and tests, it has now been discovered that it is possible to eliminate all of these disadvantages and others and produce compositions which will function with high efiiciency. This is accomplished, according to the present invention, by the use of alkyl acid phosphates. These alkyl acid phosphates greatly reduce the viscosity of solutions of oil-soluble metal salts and greatly improve the stability and solubility of such solutions. Furthermore, they make it possible to effect considerable economies in the preparation of such compositions.
These stabilizing agents are of very low vapor pressure and thus will remain permanently associated in the compositions in which they are incorporated. The amount of stabilizing agent needed is relatively small, as low as 25% per total weight of the heavy metal salt solutions having effected marked changes, but it may be found desirable in some cases to use considerably higher percentages of such stabilizing agents. Generally speaking, we have found that from 1% to 3% produces commercially satisfactory results. There may be applications where even as much as 10% of these agents may be employed.
aiie" Often it is desirable to retain some amounts of the usual organic acids in conjunction with these stabilizing agents.
Another very important advantage in the use of these stabilizing agents has been found in their pronounced peptizing and de-emulsifying effect upon solutions of heavy metal salts and alkali earth metal salts during the process of manufacture.
It is quite common that water-insoluble heavy metal and alkali earth metal salts are-produced by double decomposition in the presence "of a water immiscible solvent for the salt thus formed. For example, U. S. Patent No. 2,113,496 describes the operation of such a process. -In carrying out that process, certain impurities, originally. present in the organic acids, may cause some emulsification which results in difiiculties in separating the two phases as Well as in reduced yields of the end product. Through the use of the stabilizing agents of this invention. these difficulties are eliminated or minimized so that smoother production and better yields are obtained. In the pastthe hazard of emulsification has often required the use of considerable amounts of free The: alkyl acid phosphates of this invention 2 are compounds with the general formula RH2PO4 or RR-HPO4 aswell as combinations of both. In these formulae, R represents an alkyl radical.
EXAMPLE 1 In this example, a manganese naphthenate has beenprepared without the agent of this invention, but employing approximately of free naphthenic acid so as to make the product commercially acceptable. The end product is a mineral spirits solution of manganese naphthenate carrying 6 manganese metal.
.625. lbs. of a 14% caustic soda solution is added to a mixture of 512 lbs. of naphthenic acid (acid number 240 mg.) in 389 lbs. of mineral spirits. This results in a substantially neutral soap mixture; that is, it contains neitherfree acid nor free alkali. 100 lbs. of naphthenic acid is then added. This corresponds to 10% of the finished product. The temperature of the mixture is raised to 180 F. and to it with agitation is added 750 lbs. of an aqueous, manganese sulfate solution containing 8% manganese. After agitation, the mixture is allowed to stratify into an upper mineral spirits layer containing manganese naphthenate and a lower aqueous layer. The latter is run off and the upper mineral spirits layer is dried invacuo. The final dry product is adjusted with mineral spirits so that the manganese content is 6 Stratification in this preparation is fair and the product is stable (does not gel). of this product is 125 C. P. S. at 80 F. and has from poor to fair solubility in alkali refined linseed oil. The heat stability of this-product is very poor. Thus the viscosity of the product originally at C.- P. Spat 80 rises -to"200 The viscosity 4 C. P. S. at F. after heating at 320 F. for 3 hours. The alkali refined linseed oil solubility, which was fair originally, becomes very poor after such heat treatment.
The product of this example represents the best commercial grade that could be produced prior to this invention.
EXAMPLE 2 This example shows the addition of amyl acid phosphate to an already prepared manganese naphthenate drier solution carrying 6% mananese metal.
2% amyl acid phosphate is incorporated into a commercial 6% manganese naphthenate liquid drier. The commercial product is considerably improved. Its viscosity is reduced from 300 C. P. S. to C. P. S. The alkali refined linseed oil solubility which was fair becomes excellent. The original product is rendered stable to heating; that is, the viscosity (100 C. P. S.) and the alkali refined linseed oil solubility (excellent), remain unaffected after heating at 320 F. for 3 hours.
EXAMPLE 3 This example shows the addition of butyl acid phosphate to an already prepared manganese naphthenate drier solution carrying 6% manganese metal.
1.75 butyl acid phosphate is incorporated into a commercial 6% manganese naphthenate liquid drier. The commercial product is considerably improved. Its viscosity is reduced from 300 C. P. S. to 100 C. P. S. The alkali refined linseed oil solubility which was fair becomes excellent. The original product is rendered stable to heata ing; that is, the viscosity (100 C. P. S.) and the alkali refined linseed oil solubility (excellent), remain unaffected after heating at 320 F. for three hours.
EXAMPLE 4 EXAMPLE 5 This example shows the use of propyl acid phosphate as a stabilizer in a manganese naphthenate solution in mineral spirits carrying 6% manganese metal.
To commercial manganese naphthenate drier of 6% manganese metal content there is added 4% of a dilution of propyl acid'phosphate. This dilution is made by dissolving equal parts by Weight of the phosphate and the ethylene glycol monoethyl ether. The manganese drier solution thus modified shows a considerably lower viscosity than the unmodified material and it will also be resistant to increase in viscosity, even upon heating at 320 F. for three hours.
EXAMPLE 6 This example shows the use of amyl acid phosphate in reducing the viscosity of a mineral spirits solution of copper naphthenate carrying 8% copper metal.
1% amyl acid phosphate is added to a commercial 8% copper naphthenate solution. The viscosity is reduced from 2'7 seconds to 1'7 seconds at 80 F. on a Gardner-Parks mobilometer with no load.
EXAMPLE '7 EXAMPLE 8 In this example a commercial grade of a Xylol solution of the calcium salt of 2-ethy1hexoic acid was first prepared. The solution carried 5% of calcium metal in the form of the salt. The solution thus made showed an initial viscosity of 340 C. P. S. at 80 F. There was then added to this solution 3% by weight of the propyl acid phosphate. The viscosity of the calcium salt solution was reduced down to 50 C. P. S.
EXAMPLE 9 A commercial grade of a copper oleate paste in creosote oil was first prepared so as to carry 7% of copper metal. To this paste was then" added 3% by Weight of amyl acid phosphate. The viscosity of the composition which, before the addition, was 4630 C. P. S. dropped, after the addition, to 435 C. P. S.
EXAMPLE 10 A commercial grade of a copper salt of tall oil acids was first prepared in a solution of toluol. This solution carried 6% copper metal. There was then added 3% of octyl acid phosphate. The viscosity of the composition dropped from the initial Viscosity of 627 C. P. 3., before the addition of the agent, down to 320 C. P. S. Another important advantage, resulting from the additive agent, was the great improvement in storage stability. Whereas the solution, without the modification, months standing, the modified product retained its initial homogeneous character permanently.
EXAMPLE 11 A commercial grade of cobalt linoleate of 9% cobalt metal content, was first prepared by fusion or cobalt acetate and linseed oil fatty acids by standard commercial procedure. The end product was then introduced into linseed oil (which required heating and agitating), so as to provide 2% cobalt metal content in the linseed oil. The dilution of the cobalt linoleate thus prepared showed serious instability after several days standing. There were some discrete particles of the cobalt drier which had separated away from the oil and overall gelation had begun. When to the same solid cobalt linoleate, an addition of 4% of the isopropyl acid phosphate was made, the thus modified cobalt drier rendered stable and homogeneous dilutions with the linseed oil.
loses its homogeneity after several EXAMPLE 12 A commercial grade of lead linoleate drier was modified through the addition of 3% of octyl acid phosphate. It was found that this modification showed greatly improved stability characteristics in various drying vehicles as compared with the unmodified material.
EXAMPLE 1 3 A batch of aluminum oleate was modified through the addition of 1% of amyl acid phosphate. When dilutions of the aluminum soaps in 'benzol were made so as to carry 10% of the aluminum soaps, it was found that the viscosity of the dilution of the modified soap showed a viscosity of only 50 C.- P. S. By contrast, the dilution of the unmodified soap was a viscous gel.
EXAMPLE 14 A manganese drier solution in mineral spirits, carrying 8% manganese metal, was prepared from a combination of naphthenic acid and 2-ethylhexoic acid. These acids Were used in equal weight proportions in the preparation of the drier. To a portion of the drier thus prepared, 2% of isopropyl acid phosphate was added. The change in characteristics of the drier are shown in the table.
Table Modified with:
2% isopropyl Unmodified acid phosphate Storage Stability Stable indefinitely Gels within I few days. Viscosity in O. P. S. at F... 50 550. Alkali Refined Linseed Oil Excellent Poor.
Solubility. Heat Stability (3 hours at 320 50 1290.
F.) Viscosity in C. P. S. at 80 F. Alkali Refined Linseed Oil Excellent Very poor.
Solubility, After Heating for 3 Hours at 320 F.
EXAMPLE 15 A typical combination drier comprising lead and cobalt was first prepared. This drier, representing a linseed oil-rosin solution of lead and cobalt linoleate, carried, respectively, 1% cobalt metal and 4% lead metal. To a portion of this drier was then added 3% of isopropyl acid phosphate. The drier thus modified was clear and stable on long storage, whereas the unmodified drier showed considerable sludging and instability on aging.
EXAMPLE 16 To a mineral spirits solution of a commercial grade of copper oleate carrying 7% copper metal, was added 1.5% each of amyl acid phosphate and isopropyl acid phosphate. The modified solution showed a Viscosity of only 400 C. P. S. By contrast the unmodified solution showed a viscosity of over 4000 C. P. S.
EXAMPLE 1'7 To a commercial grade of a manganese naphthenate drier solution in mineral spirits carrying 6% manganese metal, there was added 2% of octyl acid phosphate and .5% of amyl acid phosphate. This modification showed greatly improved stability and solubility characteristics as compared with the initial material. The viscosity also was greatly reduced as a result of this modification.
EXAMPLE 18 A commercial grade of an iron tallate catalyst was prepared in the usual manner. The end product carried 8% iron metal. To a portion of this end product, there was then added 5% of butyl acid phosphate. The unmodified, as well as'the modified catalyst were then introduced into typical core oil compositions. It was foundthat the modified catalyst possessed much better solubility and compatibility with the core oil than the. unmodified catalyst.
EXAMPLE 19 A fungicidal solution in toluol of cadmium naphthenate carrying 8% cadmium metal, was first prepared by standard methods. To a portion of the solution thus prepared there was then added 3% of 'amyl acid phosphate. This addition reduced the initial viscosity of 627 C. P. S. at 80 F. to 6 C. P. S. It was also observed that the modified solution possessed much better stability in organic vehicles than the unmodified product.
EXAMPLE 20 The zinc salt of Z-ethylhexoic 'acid was first prepared by .a fusion of zinc oxide and 2-ethyl-- hexoic-acid. The end product was then dissolved in :a hydrogenated'petroleum solvent sold under the name Solvesso #1 by the Standard Oil Company of New Jersey and consisting of a mixture of approximately 65% aliphatic hydrocarbons of boiling range 250350 F. and 35% of methylated monocyclic aromatic hydrocarbons. The solution carried 10% of zinc metal. When to this solution, 2% of isopropyl acid phosphate was added, the initially high viscosity of the solution was reduced from approximately 9800 C. P. S. at 80 F. to 3600 C. P. S. It was also determined that the modification greatly improved the solubility and compatibility of the zinc salt in many organic vehicles.
The foregoing examples illustrate the preferred forms of this invention, but the invention isto be understood as fully commensurate with the appended claims, for I am fully aware of the -fact that, in addition to the examples of the alkyl acid phosphates enumerated, a great many others will also operate within the purview of this invention.
Having thus fully described the inventionpwhat I claim as new and desire to secure by Letters Patent is:
l. A composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an alkyl acid phosphate wherein the alkyl group embodies not more than 8 carbon atoms.
2. A composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an amyl acid phosphate.
3. A composition of matter consisting essentially of an oil-soluble drier metal salt of naphthenic acid and a lesser amount of an alkyl acid phosphate wherein the alkyl group embodies notmore than 8 carbon atoms.
4. A composition of matter consisting essentially of an oil-solub1e drier metal salt of naphthenic acid and a lesser amount of an amyl acid phosphate.
5. A composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of a butyl acid phosphate.
6. A composition of matter consisting essentially of an oil-soluble drier metal salt and a lesser amount of an isopropyl acid phosphate.
ALFRED FISCHER.
No references cited.
US23119D 1946-07-10 Oil-soluble dkiek metal salt Expired USRE23119E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US682586A US2456824A (en) 1946-07-10 1946-07-10 Oil-soluble drier metal salt compositions

Publications (1)

Publication Number Publication Date
USRE23119E true USRE23119E (en) 1949-05-31

Family

ID=24740318

Family Applications (2)

Application Number Title Priority Date Filing Date
US23119D Expired USRE23119E (en) 1946-07-10 Oil-soluble dkiek metal salt
US682586A Expired - Lifetime US2456824A (en) 1946-07-10 1946-07-10 Oil-soluble drier metal salt compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US682586A Expired - Lifetime US2456824A (en) 1946-07-10 1946-07-10 Oil-soluble drier metal salt compositions

Country Status (3)

Country Link
US (2) US2456824A (en)
GB (1) GB641168A (en)
NL (1) NL65938C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793962A (en) * 1952-09-10 1957-05-28 Mcgean Chem Co Inc Manufacture of metallic soaps useful as driers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565897A (en) * 1951-08-28 Drier compositions
US2628202A (en) * 1949-09-23 1953-02-10 Leffingwell Chemical Company Soap useful for making lubricating greases
US2599553A (en) * 1950-02-17 1952-06-10 California Research Corp Complex aluminum soap
NL127076C (en) * 1960-02-23
GB986731A (en) * 1961-01-31 1965-03-24 Catalin Ltd Foundry moulding process
US4331575A (en) * 1978-04-28 1982-05-25 Tenneco Chemicals, Inc. Drier systems and surface-coating compositions containing same
US4257913A (en) * 1979-09-17 1981-03-24 Tenneco Chemicals, Inc. Stable manganese salt solutions and a process for their production
CA1247589A (en) * 1985-05-02 1988-12-28 Herbert Bishop Oil additive

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2228668A (en) * 1941-01-14 Drying oil composition
US2095508A (en) * 1931-03-02 1937-10-12 Ig Farbenindustrie Ag Process of manufacturing naphthenates
US2188951A (en) * 1939-02-08 1940-02-06 Richards Chemical Works Inc Insecticide
US2322307A (en) * 1939-06-20 1943-06-22 Standard Oil Co California Compounded oil
US2308502A (en) * 1940-08-02 1943-01-19 Standard Oil Co Compounded oil
US2409774A (en) * 1942-10-08 1946-10-22 Advance Solvents & Chemical Co Drier metal salt and process of making it
US2370080A (en) * 1943-02-03 1945-02-20 Atlantic Refining Co Stabilized lubricant composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793962A (en) * 1952-09-10 1957-05-28 Mcgean Chem Co Inc Manufacture of metallic soaps useful as driers

Also Published As

Publication number Publication date
NL65938C (en)
GB641168A (en) 1950-08-09
US2456824A (en) 1948-12-21

Similar Documents

Publication Publication Date Title
US4199369A (en) Aqueous fortified rosin dispersions
USRE23119E (en) Oil-soluble dkiek metal salt
US2469041A (en) Methods for preparing aluminum soaps and certain classes of useful compositions containing aluminum soaps
US2157767A (en) Basic metal
US2807553A (en) Stabilized metal soap compositions
US2075230A (en) Production of siccatives
US2079803A (en) Soluble oil
US2360081A (en) Zein dispersions
US4203776A (en) Aqueous fortified rosin dispersions
US2243519A (en) Asphalt emulsion and method of preparing same
US2350688A (en) Metallic soap composition
US2799615A (en) Process of preparing fungicidal 8-hydroxyquinoline compositions
US2544772A (en) Aqueous emulsions containing hydrazine derivatives as emulsifying agents
CA1242574A (en) Process for preparing an alkyl aryl sulphonate concentrate composition
US2763621A (en) Method of converting a liquid hydrocarbon to a gel
US2793962A (en) Manufacture of metallic soaps useful as driers
US2304102A (en) Protein composition
US2081407A (en) Drier
US2287116A (en) Art of incorporating drying metals in paints, varnishes, linoleums, inks, etc.
US2572803A (en) Stabilized solutions of metallic salts
US2531460A (en) Stabilized metallic soaps
US2502080A (en) Petroleum resin dispersion and the use thereof
US2372756A (en) Water-in-moil emulsions
US2343860A (en) Sulphur product and method of producing same
US2058821A (en) Waterproofing composition