USPP33000P3 - Cannabis plant named ‘OG CITRON’ - Google Patents

Cannabis plant named ‘OG CITRON’ Download PDF

Info

Publication number
USPP33000P3
USPP33000P3 US16/501,446 US201916501446V USPP33000P3 US PP33000 P3 USPP33000 P3 US PP33000P3 US 201916501446 V US201916501446 V US 201916501446V US PP33000 P3 USPP33000 P3 US PP33000P3
Authority
US
United States
Prior art keywords
citron
cannabis
plant
thc
terpenes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/501,446
Other versions
US20190254213P1 (en
Inventor
Mark Anthony LEWIS
Steven Robert Haba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOTECH INSTITUTE LLC
Original Assignee
BIOTECH INSTITUTE LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOTECH INSTITUTE LLC filed Critical BIOTECH INSTITUTE LLC
Priority to US16/501,446 priority Critical patent/USPP33000P3/en
Publication of US20190254213P1 publication Critical patent/US20190254213P1/en
Assigned to Biotech Institute LLC reassignment Biotech Institute LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HABA, Steven, LEWIS, MARK A.
Application granted granted Critical
Publication of USPP33000P3 publication Critical patent/USPP33000P3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/02Flowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/10Processes for modifying non-agronomic quality output traits, e.g. for industrial processing; Value added, non-agronomic traits
    • A01H1/101Processes for modifying non-agronomic quality output traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine or caffeine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/28Cannabaceae, e.g. cannabis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform

Definitions

  • Cannabis hybrid Latin name of genus and species: Cannabis hybrid.
  • the present invention relates to a new and distinct Cannabis cultivar designated as ‘OG CITRON’.
  • This new cultivar is the result of controlled-crosses between proprietary cultivars made by the inventors.
  • the new cultivar of ‘OG CITRON’ was asexually reproduced via a ‘stem cutting’ and ‘cloning’ method by the inventors at Salinas, Calif. Asexual clones from the original source have been tested in greenhouses, nurseries, and/or fields. The properties of each cultivar were found to be transmissible by such asexual reproduction. The cultivar is stable and reproduces true to type in successive generations of asexual reproduction.
  • Cannabis more commonly known as marijuana, is a genus of flowering plants that includes at least three species, Cannabis sativa, Cannabis indica , and Cannabis ruderalis as determined by plant phenotypes and secondary metabolite profiles.
  • Cannabis nomenclature is often used incorrectly or interchangeably.
  • Cannabis literature can be found referring to all Cannabis varieties as “ sativas ” or all cannabinoid producing plants as “ indicas ”. Indeed the promiscuous crosses of indoor Cannabis breeding programs have made it difficult to distinguish varieties, with most Cannabis being sold in the United States having features of both sativa and indica species.
  • Cannabis sativa L. assigned by Carolus Linneaus (Linnaeus, C, 1753, SPECIES PLANTARUM, 2:1027, Salvius, Swiss, Facsimile edition, 1957-1959, Ray Society, London, U.K.), is one of the oldest established names in botanical history and is still accepted to this day.
  • Another species in the genus, ‘ Cannabis indica Lam.’ was formally named somewhat later (Lamarck, J B, 1785, ENCYCLOPEDIE METHODIQUE DE BOTANIQUE, 1(2):694-695), but is still very old in botanical history.
  • Cannabis has been variously ascribed as belonging to mulberry family (Moraceae) (Engler, H G A, Ulmaceae, Moraceae and Urticaceae, pages 59-118 in: A. Engler and K. Prantl eds., 1889, DIE NATURLICHEN PFLANZENFAMILIEN 3(1). W.
  • This invention relates to a new and distinctive Cannabis cultivar designated as ‘OG CITRON’.
  • the objective of the breeding program which produced novel plants disclosed herein was primarily to develop a Cannabis cultivar with its unique blend of various cannabinoids and/or terpenes for (a) medicinal effects such as improving appetite and reducing nausea, vomiting and/or chronic pain, as well as neurological and cardiovascular effects, (b) psychoactive effects such as increased motivation and energetic behavior rather than indifference, passiveness and lethargy, and (c) recreational effects with enhanced enjoyment such as food and aroma.
  • cultivar is used interchangeably with “variety”, “strain”, and/or “clone”.
  • Cannabis plants produce a unique family of terpeno-phenolic compounds.
  • Cannabinoids, terpenoids, and other compounds are secreted by glandular trichomes that occur most abundantly on the floral calyxes and bracts of female plants.
  • the Cannabis plant has at least 545 distinct compounds that span twenty chemical classes including cannabinoids, terpenes, terpenoids, amino acids, nitrogenous compounds, simple alcohols, aldehydes, ketones, esters, lactones, acids, fatty acids, steroids, non-cannabinoid phenols, pigments, flavonoids, vitamins, proteins, enzymes, glycoproteins, and hydrocarbons.
  • Terpenes and/or cannabinoids in particular, have shown great potential in terms of medicinal value.
  • Terpenes and/or cannabinoids have been shown to be largely responsible for beneficial effects of a Cannabis plant.
  • each Cannabis plant has the varying concentrations of medically viable compounds depending on different strains (genotypes) and their resulting chemotypes.
  • Even a small variation in terpene and/or cannabinoid concentration can cause noticeable differences in the entourage and/or synergistic effects of a Cannabis plant, which distinguishes one variety from another. Research shows that it relies heavily on the physiological effects produced by terpenes and/or cannabinoids.
  • Terpenes are a large and diverse class of organic compounds, produced by a variety of plants. They are often strong smelling and thus may have had a protective function. Terpenes are an important component, not only influencing taste and smell of each Cannabis strain but also influencing its effects on the mind and body of a subject such as humans and animals. Terpenes are a classification of organic molecules that are found in a wide variety of plants and animals. These molecules are known for their characteristic scents and flavors. The varying terpene concentrations found in Cannabis plants directly influence the resulting taste and smell, as well as the observed effects.
  • Non-limiting examples of types of terpenes include Hemiterpenes, Monoterpenes, Sesquiterpenes, Diterpenes, Sesterterpenes, Triterpenes, Sesquarterpenes, Tetraterpenes, Polyterpenes, and Norisoprenoids.
  • the main terpenes found in Cannabis plants include, but are not limited to, myrcene, limonene, caryophyllene, pinene, terpinene, terpinolene, camphene, terpineol, phellandrene, carene, humulene, pulegone, sabinene, geraniol, linalool, fenchol, borneol, eucalyptol, and nerolidol.
  • Cannabinoids are the most studied group of the main physiologically active secondary metabolites in Cannabis .
  • the classical cannabinoids are concentrated in a viscous resin produced in structures known as glandular trichomes. At least over one hundred different cannabinoids have been isolated from Cannabis plants.
  • the main classes of cannabinoids from Cannabis include, but are not limited to tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN).
  • Cannabinoid can be at least one of a group comprising tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN) cannabichromene (CBC), cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabigerovarin (CBGV), cannabichromevarin (CBCV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE), cannabicitran (CBT), cannabinol propyl variant (CBNV), cannabitriol (CBO), and their acidic counterparts, such as tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic acid (THCVA
  • cannabinoids exist in two forms, as acids and in neutral (decarboxylated) forms.
  • the acidic form of cannabinoids is designated by an “A” at the end of its acronym (i.e. THCA).
  • the cannabinoids in their acidic forms can be converted to their non-acidic forms through a process called decarboxylation when the sample is heated.
  • the phytocannabinoids are synthesized in the plant as acidic forms. While some decarboxylation does occur in the plant, it increases significantly post-harvest and the kinetics increase at high temperatures (Flores-Sanchez and Verpoorte, 2008, Plant Cell Physiol. 49(12): 1767-1782).
  • the biologically active forms for human consumption are the neutral forms.
  • Decarboxylation is usually achieved by thorough drying of the plant material followed by heating it, often by combustion, vaporization, heating, or baking in an oven.
  • references to cannabinoids in a plant include both the acidic and decarboxylated versions (e.g., CBD and CBDA).
  • THC max (THCA ⁇ 0.877)+THC.
  • CBD max (CBDA ⁇ 0.877)+CBD.
  • CBGA can be converted to active CBG by multiplying 87.8% to CBGA.
  • the biologically active chemicals found in plants, phytochemicals may affect the normal structure or function of the human body and in some cases treat disease.
  • the mechanisms for the medicinal and psychoactive properties of a Cannabis plant, like any medicinal herb, produce the pharmacologic effects of its phytochemicals, and the key phytochemicals for a medical Cannabis plant are cannabinoids and terpenes.
  • ⁇ 9-Tetrahydrocannabinol is a psychoactive cannabinoid responsible for many of the effects such as mild to moderate pain relief, relaxation, insomnia and appetite stimulation. THC has been demonstrated to have anti-depressant effects. The majority of strains range from about 12-21% THC with very potent and carefully prepared strains reaching even higher. While ⁇ 9-Tetrahydrocannabinol (THC) is also implicated in the treatment of disease, the psychotropic activity of THC makes it undesirable for some patients and/or indications.
  • Tetrahydrocannabinol, THC is the primary psychoactive and medicinal cannabinoid and is the result of the decarboxylation of tetrahydrocannabinolic acid (THC-A), its acidic precursor.
  • THC-A (6ar,10ar)-1-hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6h-benzochromene-2-carboxylic acid, is found in the trichomes of the plant and converted into THC, which actually exists in only minute quantities in the living plant, after harvest and drying.
  • CBD Cannabidiol
  • CBD is one of the principal cannabinoids found in a Cannabis plant and is largely considered to be the most medically significant. CBD occurs in many strains, at low levels, ⁇ 1%. In some cases, CBD can be the dominant cannabinoid, as high as 15% by weight. CBD is non-psychoactive, meaning that unlike THC, CBD does not cause a noticeable “high”.
  • CBD has shown potential for its medical properties in the treatment of a wide variety of diseases and symptoms, including cancer, nausea, chronic pain, spasms, seizures/epilepsy, anxiety, psoriasis, Crohn's disease, rheumatoid arthritis, diabetes, schizophrenia, post-traumatic stress disorder (PTSD), alcoholism, strokes, multiple sclerosis, and cardiovascular disease.
  • CBD also has been reported to act as a muscle relaxant, antibiotic, anti-inflammatory, and bone stimulant, as well as to improve blood circulation, cause drowsiness, and protect the nervous system. It can provide relief for chronic pain due to muscle spasticity, convulsions and inflammation, as well as effective relief from anxiety-related disorders. It can offer relief for patients with Multiple Sclerosis (MS), Fibromyalgia and Epilepsy.
  • MS Multiple Sclerosis
  • Epilepsy has also been shown to inhibit cancer cell growth when injected into breast and brain tumors in combination with THC.
  • a Cannabis cultivar can be used to achieve the desire of patients to be treated with CBD without the adverse side-effects (e.g., psychoactivity) of THC.
  • adverse side-effects e.g., psychoactivity
  • Cannabichromene is a rare, non-psychoactive cannabinoid, usually found at low levels ( ⁇ 1%) when present. It has been shown to have anti-depressant effects and to improve the pain-relieving effects of THC. Studies have demonstrated that CBC has sedative effects such as promoting relaxation.
  • Cannabidiol (CBD) and cannabichromene (CBC) are both non-psychoactive and end products of CBG metabolism, like THC, so that they can be used medically.
  • Cannabigerol is a non-psychoactive cannabinoid.
  • CBG-acid is the precursor to both THC-acid and CBD-acid in the plant usually found at low levels ( ⁇ 1%) when present. It has been demonstrated to have both pain relieving and inflammation reducing effects.
  • CBG reduces intraocular pressure, associated with glaucoma.
  • CBG has been shown to have antibiotic properties and to inhibit platelet aggregation, which slows the rate of blood clotting.
  • Cannabigerol (CBG) is not considered psychoactive, it is known to block the psychoactive effects of THC and is considered medically active in a variety of conditions.
  • cannabigerolic acid CBG-A
  • (E)-3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-pentylbenzoic acid is being studied medically.
  • Cannabinol is an oxidative degradation product of THC. It may result from improper storage or curing and extensive processing, such as when making concentrates. It is usually formed when THC is exposed to UV light and oxygen over time. CBN has some psychoactive properties, less strength than THC. CBN is thought to enhance the dizziness and disorientation that users of Cannabis may experience. It may cause feelings of grogginess, and has been shown to reduce heart rate.
  • High potency Cannabis plants contain large quantities of specific terpenes as well as various assortments of other terpenes.
  • a Cannabis plant may have a profile with either a high level of, a moderate amount of, or a small amount of various terpenes depending on its cultivar and environmental conditions.
  • Cannabis ’ species have been cultivated in an effort to create a cultivar best suited to meet the interest of inventors according to their own need.
  • the particular plant disclosed herein was discovered in the area where the inventors were intentionally cross-pollinating and cultivating plants described below using standard Mendelian breeding procedures well known to those of ordinary skill in the art. This resulted in the progenies of the inventors' crosses.
  • the progenies resulting from any selection stage of either the crossing, selfing or backcrossing versions of the breeding regimes of the present invention were asexually reproduced to fix and maintain the desirable THC content, CBs content, terpenes content, the aroma and flavor(s) typical of the desired class, and the other desirable phenotypic and/or genotypic characteristics.
  • the resultant selected Cannabis cultivar is designated as ‘OG CITRON’ disclosed herein.
  • the inventors reproduced progenies asexually by stem cutting and cloning. This is the origin of this remarkable new cultivar.
  • the plant has been and continues to be asexually reproduced by stem cutting and cloning at the inventors' greenhouses, nurseries and/or fields in Salinas, Calif., Oakland, Calif., and/or Washington, D.C.
  • Table 1 includes detailed information of the Cannabis plant named ‘OG CITRON’ including the concentration ranges of terpenes and cannabinoids as tested on flowers at least twelve different times.
  • the Cannabis plant has been tested in a laboratory setting and/or facility to determine cannabinoids and terpenes concentrations in the Cannabis plant named ‘OG CITRON’ according to the procedures provided in Giese et al. (Journal of AOAC International (2015) 98(6):1503-1522).
  • High throughput homogenization (HTH) of typical inflorescences as a single sample preparation method for the analysis of both terpenoids and cannabinoids.
  • HPLC-UV assay was used for HTH of cannabinoids
  • GC-flame ionization detector (FID) was used for HTH of terpenes.
  • the Cannabis plant named ‘OG CITRON’ has a complement of terpenes, including but not limited to, relatively high levels of linalool, limonene, myrcene, beta-caryophyllene, alpha-bisabolol, alpha-humulene, and beta-pinene compared to other terpene compounds. This unique combination of differently concentrated terpenes further distinguishes ‘OG CITRON’ from other varieties in its odor, its medical qualities, and its effects on mood and mentation.
  • Asexual reproduction also known as “cloning”, is a process well known to those of ordinary skill in the art of Cannabis production and breeding and includes the following steps.
  • the Cannabis cultivar disclosed herein is asexually propagated via taking cuttings of shoots and putting them in rock wool cubes. These cubes are presoaked with pH-adjusted water and kept warm ( ⁇ 80° F.). Full trays are covered, left under 18 hours of light and allowed to root (7-14 days). Upon root onset, the plantlets are transplanted into rigid 1 gallon containers filled with a proprietary soil mix A and remain in 18 hours of daylight for another 14-21 days. Once root-bound, plants are transplanted into rigid 3 gallon containers filled with proprietary soil mix B. Immediately, the light cycle is altered to 12/12 and flower initiating begins. The plants remain in 12/12 lighting until harvesting. They undergo a propriety nutrient regimen and grow as undisturbed as possible for 60-70 days depending on chemotype analysis.
  • FIG. 1 shows an overall view of the ‘OG CITRON’ plant from the side.
  • FIG. 2A shows a close view of a single leaf of the check variety BLK03 plant.
  • FIG. 2B shows a close view of a single leaf of the new variety ‘OG CITRON’ plant.
  • FIG. 3A shows top parts (including inflorescence) of the BLK03 plant from the side.
  • FIG. 3B shows top parts (including inflorescence) of the ‘OG CITRON’ plant from the side.
  • FIG. 4 shows a close view of flowers of the ‘OG CITRON’ plant at the mid to late flowering stage.
  • FIG. 5 shows another close view of flowers of the ‘OG CITRON’ plant at the mid to late flowering stage.
  • FIG. 6 shows a reproductive part of a sample Cannabis plant, indicating position/location of a flower, a bract and a stipule in the plant.
  • the sample Cannabis plant in FIG. 6 is not the claimed ‘OG CITRON’ plant.
  • Plants for the botanical measurements in the present application are annual plants. In the following description, the color determination is in accordance with The Royal Horticultural Society Colour Chart, 2007 Edition, except where general color terms of ordinary dictionary significance are used.
  • Cannabis plant disclosed herein was derived from female and male parents that are internally designated as below.
  • the internal GNBR Code of the Cannabis plant named ‘OG CITRON’ is S8.08.34, also known as SLV08.P38.BX.08.34.
  • the internal GNBR Breeding Code of the Cannabis plant named ‘OG CITRON’ is (S08)x(P38.BX.08).34.
  • the additional number ‘.34’ was only assigned to the 34 th individual plant (i.e.‘OG CITRON’) selected from progenies of the cross event between pollen acceptor (S08) and pollen donor (P38.BX.08).
  • ‘OG CITRON’ is a fertile hybrid derived from a controlled-cross between two proprietary cultivars: (i) SLV08 (pollen acceptor; female parent), also known as S08 or S8, and (ii) P38.BX.08 (pollen donor; male parent), also known as 08.
  • SLV08 polylen acceptor
  • P38.BX.08 polymeren donor
  • the initial cross between two parental cultivars was made in September 2015.
  • the primary phenotypic criteria used to select the new and distinct Cannabis cultivar disclosed herein is as follows: structure score, nose/organoleptic testing, mold susceptibility/resistance, and insect susceptibility/resistance. Also, the chemotypic characteristics described in Table 1 were used to select the new and distinct Cannabis cultivar disclosed herein. The first asexual propagation of ‘OG CITRON’ occurred on Apr. 30, 2016 in Salinas, Calif.
  • Tables 2 to 6 present phenotypic traits and/or characteristics of ‘OG CITRON’ compared to the check variety ‘BLK03’ as follows. Unless otherwise indicated, all plants were raised together and evaluated when 90 days old (i.e., 23 days in vegetative stage, 15 days in clonal propagation stage, and 52 days in flowering times).
  • Leaf/Foliage Characteristics New Variety Check Variety (BLK03) Leaf Alternate Alternate arrangement
  • Leaf shape Palmately compound Palmately compound
  • Leaf structure Linear-lanceolate Linear-lanceolate leaflet blades leaflet blades with glandular hairs with glandular hairs
  • Leaf margins Dentate, coarsely Dentate, coarsely serrated, serrated, and the teeth and the teeth point point away from the tip away from the tip
  • Leaf hairs Present and abundant Present on both upper on both upper and lower surfaces and lower surfaces
  • Leaf length with 40.20 cm 16.60 cm petiole at maturity
  • Leaf width at 9.3-15.9 cm 10.7 cm maturity Petiole length at 17.10 cm 6.50 cm maturity
  • Petiole color 149A 140C (RHS No.) Intensity of Very weak Medium (vegetative petiole stage); very strong anthocyanin (late flowering stage) Stipule length at 0.70 cm 0.70 cm maturity Stipule shape Bulbous Elliptical Stipule color
  • Leaflets 5-7 5-7 Middle largest 23.50 cm 9.80 cm (longest) leaflet length Middle largest 4.70 cm 2.3 cm (longest) leaflet width Middle largest 23.5:4.7 9.8:2.3 (longest) leaflet length/width ratio No. teeth of 40 25 middle leaflet (average)
  • Leaf (upper 132B 132A side) color (RHS No.)
  • Leaf (lower 141D 134D side) color (RHS No.)
  • the flowers are over- lapping within each node) Number of 25-50 80-120 flowers per plant Flower shape Calcarate-urceolate Calcarate-urceolate Flower 0.61 cm 0.70 cm (individual pistillate) length Flower 9.70 cm 3.80 cm (compound cyme) diameter Corolla shape No defined corolla No defined corolla Corolla Color N/A N/A (RHS No.) Bract shape Urceolate Urceolate Bract size 0.8-2.0 cm (high 0.2-0.8 cm density of trichomes) Bract color 130A N134C (RHS No.) Calyx shape No defined calyx No defined calyx Calyx color N/A N/A (RHS No.) Stigma shape Linear Acute Stigma length 0.1-0.4 mm 2.20 mm Stigma color 30A 159D (RHS No.) Trichome Capitate-stalked glandular Capitate-stalked shape glandular Trichome 157A at day 55 in flowering 157A at day 40 in color (before harvest
  • Terminal bud Urceolate Oblong shape Terminal bud 127B 203C color (RHS No.) Pedicel Absent Absent Staminate No staminate flowers No staminate flowers shape produced naturally; produced naturally; however, male flower however, male flower (staminate) can be induced (staminate) can be induced with chemical compounds with chemical compounds (such as silver nitrate (such as silver nitrate and silver thiosulphate and silverthiosulphate anionic complex). anionic complex).
  • Seed shape Striped Smooth and globular Seed size 2.80-3.20 mm 1.80-2.30 mm (Diameter) Marbling of Weak to absent Absent (non-existent) seed Petal Apetalous Apetalous description Max THC About 9.90-12.66% About 18.88-19.37% content Max CBD About 5.50-9.23% 0.00% content Max CBG About 0.08-0.78% About 0.84-0.91% content N/A: Not available
  • ‘OG CITRON’ is larger in width and height than both parents, pollen acceptor (S08) and pollen donor (P38.BX.08). ‘OG CITRON’ is more robust in terms of growing performance, time to rooted clones, and time to flower maturity. As ‘OG CITRON’ has greater resistance to pests and disease (specifically to powdery mildew), it yields higher than both parents. Since ‘OG CITRON’ has stronger branches and thicker stems with greater flexibility than both parents, its main and lateral branches give ‘OG CITRON’ ability to produce higher yields under different/variable growing conditions. The flowers of ‘OG CITRON’ are larger in width and length than both parents.
  • ‘OG CITRON’ clearly demonstrates hybrid vigor, and outperforms both parents overall. Chemically, ‘OG CITRON’ has a higher cannabinoid content with a high THC:CBD ratio as well as a higher terpene content than either parent. Also, ‘OG CITRON’ has unique combination of parental terpenes.
  • ‘OG CITRON’ When ‘OG CITRON’ is compared to the check variety ‘BLK03’, ‘OG CITRON’ is narrower in width than ‘BLK03’ and has higher plant vigor than ‘BLK03’. ‘OG CITRON’ has longer and wider leaves than ‘BLK03’ in terms of whole leaf length including petioles. Also, ‘OG CITRON’ has longer and wider leaflets than ‘BLK03’ when comparing the middle largest leaflet. ‘OG CITRON’ has more than twice longer petioles in average than ‘BLK03’ at maturity, while it has about the same stipule size to ‘BLK03’.
  • ‘OG CITRON’ is longer than ‘BLK03’, and the internode length of ‘OG CITRON’ is also longer than that of ‘BLK03’.
  • ‘OG CITRON’ is longer than ‘BLK03’, while individual pistillate flowers of ‘OG CITRON’ are shorter than that of ‘BLK03’ in length.
  • ‘OG CITRON’ has longer bracts than ‘BLK03’, while having shorter stigma.
  • aroma ‘OG CITRON’ has an ambrosial smell, while ‘BLK03’ has a generally spicy smell.
  • ‘OG CITRON’ When ‘OG CITRON’ is compared to the known Cannabis plant named ‘ECUADORIAN SATIVA’ (U.S. Plant Pat. No. 27,475), there are several distinctive characteristics. For example, the overall form of ‘OG CITRON’ plant is taller in height and wider across at the widest point than ‘ECUADORIAN SATIVA’ plant. ‘OG CITRON’ plant has longer leaves including petioles, longer and wider middle leaflets, and longer petioles at maturity than ‘ECUADORIAN SATIVA’ plant. Regarding stem diameter at base, ‘OG CITRON’ pant is longer than ‘ECUADORIAN SATIVA’ plant.
  • ‘OG CITRON’ flowers are longer than ‘ECUADORIAN SATIVA’ flowers. While the aroma of ‘ECUADORIAN SATIVA’ is strongly mephitic with hints of limonene, ‘OG CITRON’ has an ambrosial smell.
  • the total THC content of ‘OG CITRON’ is about 9.90-12.66%, while ‘ECUADORIAN SATIVA’ accumulates 12.45% total THC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Genetics & Genomics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Disclosed herein are main terpenes of ‘OG CITRON’, which are linalool, limonene, myrcene, beta-caryophyllene, alpha-bisabolol, alpha-humulene, and beta-pinene. Also, the present invention provides the estimated concentration of the THCmax, CBDmax, and CBGmax, about 9.90-12.66%, about 5.50-9.23%, and about 0.08-0.78%, respectively, at the time of assaying metabolites from flower samples of ‘OG CITRON’.

Description

Latin name of genus and species: Cannabis hybrid.
Variety denomination: ‘OG CITRON’.
BACKGROUND OF THE INVENTION
The present invention relates to a new and distinct Cannabis cultivar designated as ‘OG CITRON’.
This new cultivar is the result of controlled-crosses between proprietary cultivars made by the inventors. The new cultivar of ‘OG CITRON’ was asexually reproduced via a ‘stem cutting’ and ‘cloning’ method by the inventors at Salinas, Calif. Asexual clones from the original source have been tested in greenhouses, nurseries, and/or fields. The properties of each cultivar were found to be transmissible by such asexual reproduction. The cultivar is stable and reproduces true to type in successive generations of asexual reproduction.
TAXONOMY AND NOMENCLATURE
Cannabis, more commonly known as marijuana, is a genus of flowering plants that includes at least three species, Cannabis sativa, Cannabis indica, and Cannabis ruderalis as determined by plant phenotypes and secondary metabolite profiles. In practice however, Cannabis nomenclature is often used incorrectly or interchangeably. Cannabis literature can be found referring to all Cannabis varieties as “sativas” or all cannabinoid producing plants as “indicas”. Indeed the promiscuous crosses of indoor Cannabis breeding programs have made it difficult to distinguish varieties, with most Cannabis being sold in the United States having features of both sativa and indica species.
Human cultivation history of Cannabis dates back 8,000 years (Schultes, R E., 1970, Random thoughts and queries on the botany of Cannabis. Pages 11-38 in: CRB Joyce, and S H Curry eds., THE BOTANY AND CHEMISTRY OF CANNABIS. J. & A. Churchill. London, England). Hemp cloth recovered in Europe dates back 6,000 years (Small, E, Beckstead, H D, and Chan, A, 1975, The evolution of cannabinoid phenotypes in Cannabis, ECONOMIC BOTANY 29(3):219-232). The written record of the pharmacologic properties of Cannabis goes back more than 4,000 years (Ti, H. 2737 BC. NEI JING SU WEN HUANG TI, Yellow Emperor's Classic on Internal Medicine; referred to without citation in Small et al. 1975 Supra).
The taxonomy and nomenclature of the highly variable genus Cannabis (Emboden, W A, 1974, ECONOMIC BOTANY 28(3):304-310; Small, E and Cronquist, A, 1976, TAXON 25(4):405-435; Small E and Cronquist, A, 1977, TAXON 26(1):110; Hillig, K W and Mahlberg, P G, 2004, American Journal of Botany 91(6):966-975), remains in question. This is in spite of the fact that its formal scientific name, ‘Cannabis sativa L.’, assigned by Carolus Linneaus (Linnaeus, C, 1753, SPECIES PLANTARUM, 2:1027, Salvius, Stockholm, Facsimile edition, 1957-1959, Ray Society, London, U.K.), is one of the oldest established names in botanical history and is still accepted to this day. Another species in the genus, ‘Cannabis indica Lam.’ was formally named somewhat later (Lamarck, J B, 1785, ENCYCLOPEDIE METHODIQUE DE BOTANIQUE, 1(2):694-695), but is still very old in botanical history. In 1785, Jean-Baptiste Lamarck published a description of a second species of Cannabis, which he named Cannabis indica. Lamarck based his description of the newly named species on plant specimens collected in India. C. indica was described as relatively short, conical, and densely branched, whereas C. sativa was described as tall and laxly branched (Schultes R. E. et al, 1974, Harvard University Botanical Museum Leaflets, 23:337-367). C. indica plants were also described as having short, broad leaflets whereas those of C. sativa were characterized as relatively long and narrow (Anderson L. C., 1980, Harvard University Botanical Museum Leaflets, 28: 61-69). C. indica plants conforming to Schultes' and Anderson's descriptions may have originated from the Hindu Kush mountain range. Because of the often harsh and variable (extremely cold winters, and warm summers) climate of those parts, C. indica is well-suited for cultivation in temperate climates.
Three other species names were proposed in the 1800s to distinguish plants with presumably different characteristics (C. macrosperma Stokes, C. chinensis Delile, C. gigantean Vilmorin), none of which are accepted today, although the epithet “indica” lives on as a subspecies of C. sativa (‘C. sativa ssp. indica Lam.’, Small and Cronquist 1976 Supra).
In the 20th century, two new names were added to the liturgy of proposed ‘Cannabis species: C. ruderalis’ Janischevsky and a hybrid, x ‘C. intersita’ Sojak. (Small, E, Jui, P Y, and Lefkovitch, L P, 1976, SYSTEMATIC BOTANY 1(1):67-84; Small and Cronquist 1976 Supra). Further, numerous names have been proposed for horticultural variants of ‘Cannabis’ but as of 1976, “very few of these have been validly published as formal taxa under the International Code of Botanical Nomenclature” (Small and Cronquist 1976 Supra). Moreover, other recent work continues to focus on higher-order evolutionary relationships of the genus. Cannabis has been variously ascribed as belonging to mulberry family (Moraceae) (Engler, H G A, Ulmaceae, Moraceae and Urticaceae, pages 59-118 in: A. Engler and K. Prantl eds., 1889, DIE NATURLICHEN PFLANZENFAMILIEN 3(1). W. Engelmann, Leipzig, Germany; Judd, W S, Sanders, R W, and Donoghue, M J, 1994, HARVARD PAPERS IN BOTANY 5:1-51; Humphries, C J and Blackmore, S, A review of the classification of the Moraceae, pages 267-277 In: Crane and Blackmore 1989 id.); nettle family (Urticaceae) (Berg, C C, Systematics and phylogeny of the Urticales, pages 193-220, in: P. R. Crane and S. Blackmore eds., 1989, EVOLUTION, SYSTEMATIC, AND FOSSIL HISTORY OF THE HAMAMELIDAE, VOL. 2, HIGHER HAMAMELIDAE, Clarendon Press, Oxford, U.K.); and most recently in its own family with hops (Humulus), Cannabaceae, or hemp family (Sytsma, K J, et al, 2002, AMERICAN JOURNAL OF BOTANY 89(9):1531-1546). While the work of Small and Cronquist 1976 Supra, seemed to effectively confine the genus to a single species with 2 subspecies (C. sativa s., C. s. indica), each with two varieties (C. s. s. var. sativa, C. s. s. var. spontanea; C. s. i. var. indica, C. s. i. var. Kafiristanica) largely on the basis of chemotaxonomy and interfertility of all forms, more recent work (Sytsma et al. 2002 Supra), proposes a two-species concept, resurrecting the binomial C. indica Lam. Since Sytsma et al. (2002) provides no key for discriminating between the species, the dichotomous key of Small and Cronquist (1976), which accounts for all forms in nature, whether wild or domesticated, is preferred to classify the characteristics of the plants.
BRIEF SUMMARY OF THE INVENTION
This invention relates to a new and distinctive Cannabis cultivar designated as ‘OG CITRON’.
The objective of the breeding program which produced novel plants disclosed herein was primarily to develop a Cannabis cultivar with its unique blend of various cannabinoids and/or terpenes for (a) medicinal effects such as improving appetite and reducing nausea, vomiting and/or chronic pain, as well as neurological and cardiovascular effects, (b) psychoactive effects such as increased motivation and energetic behavior rather than indifference, passiveness and lethargy, and (c) recreational effects with enhanced enjoyment such as food and aroma.
As used herein, the term “cultivar” is used interchangeably with “variety”, “strain”, and/or “clone”.
Cannabis plants produce a unique family of terpeno-phenolic compounds. Cannabinoids, terpenoids, and other compounds are secreted by glandular trichomes that occur most abundantly on the floral calyxes and bracts of female plants. As a drug it usually comes in the form of dried flower buds (marijuana), resin (hashish), or various extracts collectively known as hashish oil. The Cannabis plant has at least 545 distinct compounds that span twenty chemical classes including cannabinoids, terpenes, terpenoids, amino acids, nitrogenous compounds, simple alcohols, aldehydes, ketones, esters, lactones, acids, fatty acids, steroids, non-cannabinoid phenols, pigments, flavonoids, vitamins, proteins, enzymes, glycoproteins, and hydrocarbons. Terpenes and/or cannabinoids, in particular, have shown great potential in terms of medicinal value.
Terpenes and/or cannabinoids have been shown to be largely responsible for beneficial effects of a Cannabis plant. In fact, each Cannabis plant has the varying concentrations of medically viable compounds depending on different strains (genotypes) and their resulting chemotypes. Even a small variation in terpene and/or cannabinoid concentration can cause noticeable differences in the entourage and/or synergistic effects of a Cannabis plant, which distinguishes one variety from another. Research shows that it relies heavily on the physiological effects produced by terpenes and/or cannabinoids.
Over one hundred different kinds of terpenes have been identified in Cannabis plants although not being as well-studied as cannabinoids, they are instrumental in giving rise to the physiological and psychoactive effects in Cannabis.
Terpenes are a large and diverse class of organic compounds, produced by a variety of plants. They are often strong smelling and thus may have had a protective function. Terpenes are an important component, not only influencing taste and smell of each Cannabis strain but also influencing its effects on the mind and body of a subject such as humans and animals. Terpenes are a classification of organic molecules that are found in a wide variety of plants and animals. These molecules are known for their characteristic scents and flavors. The varying terpene concentrations found in Cannabis plants directly influence the resulting taste and smell, as well as the observed effects. Non-limiting examples of types of terpenes include Hemiterpenes, Monoterpenes, Sesquiterpenes, Diterpenes, Sesterterpenes, Triterpenes, Sesquarterpenes, Tetraterpenes, Polyterpenes, and Norisoprenoids. The main terpenes found in Cannabis plants include, but are not limited to, myrcene, limonene, caryophyllene, pinene, terpinene, terpinolene, camphene, terpineol, phellandrene, carene, humulene, pulegone, sabinene, geraniol, linalool, fenchol, borneol, eucalyptol, and nerolidol.
Cannabinoids are the most studied group of the main physiologically active secondary metabolites in Cannabis. The classical cannabinoids are concentrated in a viscous resin produced in structures known as glandular trichomes. At least over one hundred different cannabinoids have been isolated from Cannabis plants. The main classes of cannabinoids from Cannabis include, but are not limited to tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN). Cannabinoid can be at least one of a group comprising tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN) cannabichromene (CBC), cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabigerovarin (CBGV), cannabichromevarin (CBCV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE), cannabicitran (CBT), cannabinol propyl variant (CBNV), cannabitriol (CBO), and their acidic counterparts, such as tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic acid (THCVA), cannabidivarinic acid (CBDVA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA) and cannabinerolic acid (CBNRA).
Most cannabinoids exist in two forms, as acids and in neutral (decarboxylated) forms. The acidic form of cannabinoids is designated by an “A” at the end of its acronym (i.e. THCA). The cannabinoids in their acidic forms (those ending in “-A”) can be converted to their non-acidic forms through a process called decarboxylation when the sample is heated. The phytocannabinoids are synthesized in the plant as acidic forms. While some decarboxylation does occur in the plant, it increases significantly post-harvest and the kinetics increase at high temperatures (Flores-Sanchez and Verpoorte, 2008, Plant Cell Physiol. 49(12): 1767-1782). The biologically active forms for human consumption are the neutral forms. Decarboxylation is usually achieved by thorough drying of the plant material followed by heating it, often by combustion, vaporization, heating, or baking in an oven. Unless otherwise noted, references to cannabinoids in a plant include both the acidic and decarboxylated versions (e.g., CBD and CBDA).
The molecules lose mass through the process of decarboxylation. In order to find the total theoretical active cannabinoids, the acid forms should be multiplied by 87.7%. For example, THCA can be converted to active THC using the formula: THCA×0.877=THC. The maximum THC for the sample is: THCmax=(THCA×0.877)+THC. This method has been validated according to the principles of the International Conference on Harmonization. Similarly, CBDA can be converted to active CBD and the yield is determined using the yield formula: CBDA×0.877=CBD. Also the maximum amount of CBD yielded, i.e. max CBD for the sample is: CBDmax=(CBDA×0.877)+CBD. Additionally, CBGA can be converted to active CBG by multiplying 87.8% to CBGA. Thus, the maximum amount of CBG is: CBGmax=(CBGA×0.878)+CBG.
The biologically active chemicals found in plants, phytochemicals, may affect the normal structure or function of the human body and in some cases treat disease. The mechanisms for the medicinal and psychoactive properties of a Cannabis plant, like any medicinal herb, produce the pharmacologic effects of its phytochemicals, and the key phytochemicals for a medical Cannabis plant are cannabinoids and terpenes.
Δ9-Tetrahydrocannabinol (THC) is a psychoactive cannabinoid responsible for many of the effects such as mild to moderate pain relief, relaxation, insomnia and appetite stimulation. THC has been demonstrated to have anti-depressant effects. The majority of strains range from about 12-21% THC with very potent and carefully prepared strains reaching even higher. While Δ9-Tetrahydrocannabinol (THC) is also implicated in the treatment of disease, the psychotropic activity of THC makes it undesirable for some patients and/or indications.
Tetrahydrocannabinol, THC, is the primary psychoactive and medicinal cannabinoid and is the result of the decarboxylation of tetrahydrocannabinolic acid (THC-A), its acidic precursor. THC-A, (6ar,10ar)-1-hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6h-benzochromene-2-carboxylic acid, is found in the trichomes of the plant and converted into THC, which actually exists in only minute quantities in the living plant, after harvest and drying.
Cannabidiol (CBD) is one of the principal cannabinoids found in a Cannabis plant and is largely considered to be the most medically significant. CBD occurs in many strains, at low levels, <1%. In some cases, CBD can be the dominant cannabinoid, as high as 15% by weight. CBD is non-psychoactive, meaning that unlike THC, CBD does not cause a noticeable “high”. CBD has shown potential for its medical properties in the treatment of a wide variety of diseases and symptoms, including cancer, nausea, chronic pain, spasms, seizures/epilepsy, anxiety, psoriasis, Crohn's disease, rheumatoid arthritis, diabetes, schizophrenia, post-traumatic stress disorder (PTSD), alcoholism, strokes, multiple sclerosis, and cardiovascular disease. CBD also has been reported to act as a muscle relaxant, antibiotic, anti-inflammatory, and bone stimulant, as well as to improve blood circulation, cause drowsiness, and protect the nervous system. It can provide relief for chronic pain due to muscle spasticity, convulsions and inflammation, as well as effective relief from anxiety-related disorders. It can offer relief for patients with Multiple Sclerosis (MS), Fibromyalgia and Epilepsy. CBD has also been shown to inhibit cancer cell growth when injected into breast and brain tumors in combination with THC.
A Cannabis cultivar can be used to achieve the desire of patients to be treated with CBD without the adverse side-effects (e.g., psychoactivity) of THC.
Cannabichromene (CBC) is a rare, non-psychoactive cannabinoid, usually found at low levels (<1%) when present. It has been shown to have anti-depressant effects and to improve the pain-relieving effects of THC. Studies have demonstrated that CBC has sedative effects such as promoting relaxation.
Cannabidiol (CBD) and cannabichromene (CBC) are both non-psychoactive and end products of CBG metabolism, like THC, so that they can be used medically.
Cannabigerol (CBG) is a non-psychoactive cannabinoid. CBG-acid is the precursor to both THC-acid and CBD-acid in the plant usually found at low levels (<1%) when present. It has been demonstrated to have both pain relieving and inflammation reducing effects. CBG reduces intraocular pressure, associated with glaucoma. CBG has been shown to have antibiotic properties and to inhibit platelet aggregation, which slows the rate of blood clotting. While Cannabigerol (CBG), is not considered psychoactive, it is known to block the psychoactive effects of THC and is considered medically active in a variety of conditions. Its precursor, cannabigerolic acid, CBG-A, (E)-3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-pentylbenzoic acid, is being studied medically.
Cannabinol (CBN) is an oxidative degradation product of THC. It may result from improper storage or curing and extensive processing, such as when making concentrates. It is usually formed when THC is exposed to UV light and oxygen over time. CBN has some psychoactive properties, less strength than THC. CBN is thought to enhance the dizziness and disorientation that users of Cannabis may experience. It may cause feelings of grogginess, and has been shown to reduce heart rate.
High potency Cannabis plants contain large quantities of specific terpenes as well as various assortments of other terpenes. For instance, a Cannabis plant may have a profile with either a high level of, a moderate amount of, or a small amount of various terpenes depending on its cultivar and environmental conditions.
Various cultivars of ‘Cannabis’ species have been cultivated in an effort to create a cultivar best suited to meet the interest of inventors according to their own need. The particular plant disclosed herein was discovered in the area where the inventors were intentionally cross-pollinating and cultivating plants described below using standard Mendelian breeding procedures well known to those of ordinary skill in the art. This resulted in the progenies of the inventors' crosses.
The progenies resulting from any selection stage of either the crossing, selfing or backcrossing versions of the breeding regimes of the present invention were asexually reproduced to fix and maintain the desirable THC content, CBs content, terpenes content, the aroma and flavor(s) typical of the desired class, and the other desirable phenotypic and/or genotypic characteristics. The resultant selected Cannabis cultivar is designated as ‘OG CITRON’ disclosed herein.
The inventors reproduced progenies asexually by stem cutting and cloning. This is the origin of this remarkable new cultivar. The plant has been and continues to be asexually reproduced by stem cutting and cloning at the inventors' greenhouses, nurseries and/or fields in Salinas, Calif., Oakland, Calif., and/or Washington, D.C.
The following are the most outstanding and distinguishing chemical characteristics of this new cultivar when grown under normal conditions in Salinas, Calif. Chemical analyses of the new Cannabis variety and the check variety (or the parental varieties) disclosed herein were performed using standard chemical separation techniques well known to those skilled in the art. Samples for assaying were obtained from flower tissues of the Cannabis plant disclosed herein. Cannabinoid composition of this cultivar can be determined by assaying the concentration of at least one cannabinoid in a subset (e.g., sample) of the harvested product.
Table 1 includes detailed information of the Cannabis plant named ‘OG CITRON’ including the concentration ranges of terpenes and cannabinoids as tested on flowers at least twelve different times. The Cannabis plant has been tested in a laboratory setting and/or facility to determine cannabinoids and terpenes concentrations in the Cannabis plant named ‘OG CITRON’ according to the procedures provided in Giese et al. (Journal of AOAC International (2015) 98(6):1503-1522). High throughput homogenization (HTH) of typical inflorescences as a single sample preparation method for the analysis of both terpenoids and cannabinoids. HPLC-UV assay was used for HTH of cannabinoids, while GC-flame ionization detector (FID) was used for HTH of terpenes.
    • 1) The main terpenes found in ‘OG CITRON’ are linalool, limonene, myrcene, beta-caryophyllene, alpha-bisabolol, alpha-humulene, and beta-pinene; and
    • 2) The estimated concentration of the total THCmax, CBDmax, and CBGmax is about 9.90-12.66%, about 5.50-9.23%, and about 0.08-0.78%, respectively, at the time of assaying metabolites from flower samples of ‘OG CITRON’.
Terpene and cannabinoid profiles of ‘OG CITRON’ demonstrate that ‘OG CITRON’ has a phenotypically unique profile, particularly insofar as to the level of terpenes and cannabinoids. This data is presented in a tabular form in Table 1.
TABLE 1
Ranges of Active Cannabinoids and Terpenes
Ranges of Active Cannabinoids (% by weight)
Max THC 9.90- Max CBD 5.50- Max CBG 0.08-
12.66% 9.23% 0.78%
Ranges of Terpenes (% by weight)
thujene 0.00% gamma- 0.00% hexyl 0.00-
terpinene hexanoate 0.03%
alpha-pinene 0.02- linalool oxide 0.00- octyl butyrate 0.00%
0.05% 0.02%
camphene 0.00- terpinolene 0.00- beta- 0.21-
0.02% 0.01% caryophyllene 0.32%
sabinene 0.00% fenchone 0.00% alpha- 0.09-
humulene 0.14%
beta-pinene 0.05- linalool 0.24- cis-nerolidol 0.00%
0.10% 0.71%
myrcene 0.11- fenchol 0.02- trans-nerolidol 0.00%
0.47% 0.07%
alpha- 0.00% caryophyllene 0.01-
phellandrene oxide 0.04%
carene 0.00% camphor 0.00% alpha- 0.00-
bisabolol 0.16%
alpha- 0.00% isoborneol 0.00% nerol 0.00%
terpinene
limonene 0.26- (−)borneol 0.00- geraniol 0.00%
0.64% 0.02%
beta- 0.00% menthol 0.00% geranyl- 0.00%
phellandrene acetate
cineole 0.00% hexyl 0.00% methyl- 0.00%
butyrate eugenol
cis-ocimene 0.00% alpha- 0.00- Total 1.67-
terpineol 0.07% Terpenes 2.57%
trans-ocimene 0.00% citronellol 0.00%
The Cannabis plant named ‘OG CITRON’ has a complement of terpenes, including but not limited to, relatively high levels of linalool, limonene, myrcene, beta-caryophyllene, alpha-bisabolol, alpha-humulene, and beta-pinene compared to other terpene compounds. This unique combination of differently concentrated terpenes further distinguishes ‘OG CITRON’ from other varieties in its odor, its medical qualities, and its effects on mood and mentation.
Asexual Reproduction
Asexual reproduction, also known as “cloning”, is a process well known to those of ordinary skill in the art of Cannabis production and breeding and includes the following steps.
The Cannabis cultivar disclosed herein is asexually propagated via taking cuttings of shoots and putting them in rock wool cubes. These cubes are presoaked with pH-adjusted water and kept warm (−80° F.). Full trays are covered, left under 18 hours of light and allowed to root (7-14 days). Upon root onset, the plantlets are transplanted into rigid 1 gallon containers filled with a proprietary soil mix A and remain in 18 hours of daylight for another 14-21 days. Once root-bound, plants are transplanted into rigid 3 gallon containers filled with proprietary soil mix B. Immediately, the light cycle is altered to 12/12 and flower initiating begins. The plants remain in 12/12 lighting until harvesting. They undergo a propriety nutrient regimen and grow as undisturbed as possible for 60-70 days depending on chemotype analysis.
All sun leaves are removed and the plant is dismantled to result in approximately 12″ branches covered in inflorescences and trichomes. The goal in harvesting is to actually harvest trichome heads but not ‘buds’. Thus, great care is taken not to disturb the trichome heads and as much of the plant remains intact as possible to promote even and slow drying. Slow drying is followed by a one to two months curing process.
Observation of the all female progenies of the original plant has demonstrated that this new and distinct cultivar has fulfilled the objectives and that its distinctive characteristics are firmly fixed and hold true from generation to generation vegetatively propagated from the original plant.
Under careful observation, the unique characteristics of the new cultivar have been uniform, stable and reproduced true to type in successive generations of asexual reproduction.
DESCRIPTION OF THE DRAWINGS
The accompanying color photographs depict characteristics of the new ‘OG CITRON’ plants as nearly true as possible to make color reproductions. The overall appearance of the ‘OG CITRON’ plants in photographs is shown in colors that may differ slightly from the color values described in the detailed botanical description.
FIG. 1 shows an overall view of the ‘OG CITRON’ plant from the side.
FIG. 2A shows a close view of a single leaf of the check variety BLK03 plant.
FIG. 2B shows a close view of a single leaf of the new variety ‘OG CITRON’ plant.
FIG. 3A shows top parts (including inflorescence) of the BLK03 plant from the side.
FIG. 3B shows top parts (including inflorescence) of the ‘OG CITRON’ plant from the side.
FIG. 4 shows a close view of flowers of the ‘OG CITRON’ plant at the mid to late flowering stage.
FIG. 5 shows another close view of flowers of the ‘OG CITRON’ plant at the mid to late flowering stage.
FIG. 6 shows a reproductive part of a sample Cannabis plant, indicating position/location of a flower, a bract and a stipule in the plant. The sample Cannabis plant in FIG. 6 is not the claimed ‘OG CITRON’ plant.
DETAILED BOTANICAL DESCRIPTION
‘OG CITRON ’ has not been observed under all possible environmental conditions, and the phenotype may vary significantly with variations in environment. The following observations, measurements, and comparisons describe this plant as grown at Salinas, Calif., when grown in the greenhouse, nursery or field, unless otherwise noted.
Plants for the botanical measurements in the present application are annual plants. In the following description, the color determination is in accordance with The Royal Horticultural Society Colour Chart, 2007 Edition, except where general color terms of ordinary dictionary significance are used.
The Cannabis plant disclosed herein was derived from female and male parents that are internally designated as below.
The internal GNBR Code of the Cannabis plant named ‘OG CITRON’ is S8.08.34, also known as SLV08.P38.BX.08.34. The internal GNBR Breeding Code of the Cannabis plant named ‘OG CITRON’ is (S08)x(P38.BX.08).34. The additional number ‘.34’ was only assigned to the 34th individual plant (i.e.‘OG CITRON’) selected from progenies of the cross event between pollen acceptor (S08) and pollen donor (P38.BX.08). ‘OG CITRON’ is a fertile hybrid derived from a controlled-cross between two proprietary cultivars: (i) SLV08 (pollen acceptor; female parent), also known as S08 or S8, and (ii) P38.BX.08 (pollen donor; male parent), also known as 08. The initial cross between two parental cultivars was made in September 2015. The primary phenotypic criteria used to select the new and distinct Cannabis cultivar disclosed herein is as follows: structure score, nose/organoleptic testing, mold susceptibility/resistance, and insect susceptibility/resistance. Also, the chemotypic characteristics described in Table 1 were used to select the new and distinct Cannabis cultivar disclosed herein. The first asexual propagation of ‘OG CITRON’ occurred on Apr. 30, 2016 in Salinas, Calif.
The following traits in combination further distinguish the Cannabis cultivar ‘OG CITRON’ from the check variety ‘BLK03’, which is set as a standard for phenotypic comparison. Tables 2 to 6 present phenotypic traits and/or characteristics of ‘OG CITRON’ compared to the check variety ‘BLK03’ as follows. Unless otherwise indicated, all plants were raised together and evaluated when 90 days old (i.e., 23 days in vegetative stage, 15 days in clonal propagation stage, and 52 days in flowering times).
TABLE 2
General Characteristics
Characteristics New Variety Check Variety (BLK03)
Plant life An herbaceous An herbaceous
forms plant (herb) plant (herb)
Plant growth An upright, tap-rooted An upright, tap-rooted
habit annual plant; forming annual plant; forming
fibrous roots when fibrous roots when
asexually propagated asexually propagated
Plant origin A controlled-cross between A controlled-cross between
pollen acceptor (SLV08) pollen acceptor
and (P38.BX.08) (GLD13) and
pollen donor (BSIA)
Plant Asexually propagated by Asexually propagated by
propagation stem cuttings and cloning stem cuttings and cloning
Propagation Easy Moderate
ease
Height 1.50-2.30 m 0.50-2.50 m
Width 89.0 cm 119.5 cm
Plant vigor High Medium
Time to 7-8 weeks; as early 8 weeks
Harvest as 50 days
(Seed
to Harvest)
Resistance to Resistant to pests as Not Resistant to pests as
pests or follows; (1) Two-spotted follows; (1) Two spotted
diseases spider mite (Tetranychus spider mite
urticae (Koch)); (Tetranychus urticae
(2) Aphids species such (Koch)); (2) Aphids
as: Cannabis species such as: Cannabis
Aphids (Phorodon Aphids (Phorodon
cannabis), Green Peach cannabis), Green Peach
Aphid (Myzus persicae Aphid (Myzus
(Sulzer)), Foxglove Aphid persicae (Sulzer)),
(Aulacorthum solani), Foxglove Aphid (Aulacor-
Peach Aphid thum solani), Peach Aphid
(Macrosiphum (Macrosiphum
euphorbiae), Black Bean euphorbiae), Black
Aphid (Aphis fabae); Bean Aphid (Aphis
(3) Whitefly (Trialeurodes fabae); (3) Whitefly (Tri-
vaporariorum; (4) Lepi- aleurodes vaporariorum);
doptera species such as: (4) Lepidoptera species
Armyworm (Spodoptera such as: Armyworm
frupperda), Cabbage (Spodoptera frupperda),
Whites (Pieris rapae), Cabbage Whites (Pieris
Painted Lady (Vanessa rapae), Painted
cardui), Lepidoptera sp. Lady (Vanessa
Resistant to diseases cardui), Lepidoptera sp.
as follows;Powdery Mildew Not resistant to diseases
(Podosphaera xanthii) as follows; Botrytis/
Flower Rot
(Botrytis cinerea) and
Powdery Mildew
(Podosphaera xanthii)
Genetically- NO NO
modified
organism
TABLE 3
Leaf/Foliage
Characteristics New Variety Check Variety (BLK03)
Leaf Alternate Alternate
arrangement
Leaf shape Palmately compound Palmately compound
Leaf structure Linear-lanceolate Linear-lanceolate
leaflet blades leaflet blades
with glandular hairs with glandular hairs
Leaf margins Dentate, coarsely Dentate, coarsely serrated,
serrated, and the teeth and the teeth point
point away from the tip away from the tip
Leaf hairs Present and abundant Present on both upper
on both upper and lower surfaces
and lower surfaces
Leaf length with 40.20 cm 16.60 cm
petiole at
maturity
Leaf width at 9.3-15.9 cm 10.7 cm
maturity
Petiole length at 17.10 cm 6.50 cm
maturity
Petiole color 149A 140C
(RHS No.)
Intensity of Very weak Medium (vegetative
petiole stage); very strong
anthocyanin (late flowering stage)
Stipule length at 0.70 cm 0.70 cm
maturity
Stipule shape Bulbous Elliptical
Stipule color 134A 149B
(RHS No.)
No. of leaflets 5-7 5-7
Middle largest 23.50 cm 9.80 cm
(longest) leaflet
length
Middle largest 4.70 cm 2.3 cm
(longest) leaflet
width
Middle largest 23.5:4.7 9.8:2.3
(longest) leaflet
length/width
ratio
No. teeth of 40 25
middle leaflet
(average)
Leaf (upper 132B 132A
side) color
(RHS No.)
Leaf (lower 141D 134D
side) color
(RHS No.)
Leaf glossiness Medium at the upper Strong at the upper
leaf surface leaf surface
Vein/midrib Obliquely continuous Obliquely continuous
shape throughout leaflet throughout leaflet
Vein/midrib 150B 144C
color (RHS No.)
Aroma Euphoric to Chemical/ Spicy
Ambrosial
TABLE 4
Stem
Characteristics New Variety Check Variety (BLK03)
Stem shape Hollow and large Hollow, ribbed, textured
Stem diameter 3.40 cm 2.80 cm
at base
Stem color 149D N144D
(RHS No.)
Depth of main Shallow Absent
stem
ribs/grooves
Internode length 9.9-17.3 cm 2.4-4.9 cm
TABLE 5
Inflorescence (Female/Pistillate Flowers)
Characteristics New Variety Check Variety (BLK03)
Flowering Cymes Cymes
(blooming)
habit
Proportion of 100% pistillate 100% pistillate
female plants
Inflorescence Even Even
position
Flower Cymose (Inflorescences are Cymose (terminal bud
arrangement very compact, and there- matures, while lateral
fore bracts overlap within flowers mature thereafter)
each cluster of flowers.
Thus, the flowers are over-
lapping within each node)
Number of 25-50 80-120
flowers per
plant
Flower shape Calcarate-urceolate Calcarate-urceolate
Flower 0.61 cm 0.70 cm
(individual
pistillate)
length
Flower 9.70 cm 3.80 cm
(compound
cyme)
diameter
Corolla shape No defined corolla No defined corolla
Corolla Color N/A N/A
(RHS No.)
Bract shape Urceolate Urceolate
Bract size 0.8-2.0 cm (high 0.2-0.8 cm
density of trichomes)
Bract color 130A N134C
(RHS No.)
Calyx shape No defined calyx No defined calyx
Calyx color N/A N/A
(RHS No.)
Stigma shape Linear Acute
Stigma length 0.1-0.4 mm 2.20 mm
Stigma color 30A 159D
(RHS No.)
Trichome Capitate-stalked glandular Capitate-stalked
shape glandular
Trichome 157A at day 55 in flowering 157A at day 40 in
color (before harvest) flowering
(RHS No.)
Other types of Capitate sessile trichomes Capitate sessile trichomes
trichomes are present on the upper are present on the leaves of
and lower surfaces on plants, as well as being
leaves of plants, noticed in the flowers
as well as being (color: 157A at day 40
noticed in the flowers in flowering).
(color: 157A at day During later flowering, i.e.
55 in flowering). day 48 to day 60 in
During later flowering, flowering, capitate stalked
i.e. day 60 trichomes are present
to day 70 in flowering, (color: N30B).
the capitate stalked Bulbous and
trichomes are present non-glandular trichomes are
(color: N30B). also present and most notice-
able on the petioles, stems,
and leaves (color: 157A).
Terminal bud Urceolate Oblong
shape
Terminal bud 127B 203C
color (RHS
No.)
Pedicel Absent Absent
Staminate No staminate flowers No staminate flowers
shape produced naturally; produced naturally;
however, male flower however, male flower
(staminate) can be induced (staminate) can be induced
with chemical compounds with chemical compounds
(such as silver nitrate (such as silver nitrate
and silver thiosulphate and silverthiosulphate
anionic complex). anionic complex).
Pollen Absent Absent
description
Seed shape Striped Smooth and globular
Seed size 2.80-3.20 mm 1.80-2.30 mm
(Diameter)
Marbling of Weak to absent Absent (non-existent)
seed
Petal Apetalous Apetalous
description
Max THC About 9.90-12.66% About 18.88-19.37%
content
Max CBD About 5.50-9.23% 0.00%
content
Max CBG About 0.08-0.78% About 0.84-0.91%
content
N/A: Not available
TABLE 6
Other Characteristics
Characteristics New Variety Check Variety (BLK03)
Time period and 7-9 weeks 7-9 weeks
condition of
flowering/
blooming
Hardiness of Hardy to 25° F.- Hardy to 25° F.-
plant ambient temperature ambient temperature
Breaking action Flexible, resistant Strong, non-flexible
to breakage
Rooting rate 99%-vigorous 70%-moderate
after
cutting/cloning
Types of Stem Stem
Cutting for
Cloning
Shipping quality Good Moderate
Storage life Medium (3-6 months Medium (2-6 months
with minor changes with minor changes
in physical appearance in physical appearance
and/or smell/taste) and/or smell/taste)
Market use Medicinal n/a
In general, ‘OG CITRON’ is larger in width and height than both parents, pollen acceptor (S08) and pollen donor (P38.BX.08). ‘OG CITRON’ is more robust in terms of growing performance, time to rooted clones, and time to flower maturity. As ‘OG CITRON’ has greater resistance to pests and disease (specifically to powdery mildew), it yields higher than both parents. Since ‘OG CITRON’ has stronger branches and thicker stems with greater flexibility than both parents, its main and lateral branches give ‘OG CITRON’ ability to produce higher yields under different/variable growing conditions. The flowers of ‘OG CITRON’ are larger in width and length than both parents. ‘OG CITRON’ clearly demonstrates hybrid vigor, and outperforms both parents overall. Chemically, ‘OG CITRON’ has a higher cannabinoid content with a high THC:CBD ratio as well as a higher terpene content than either parent. Also, ‘OG CITRON’ has unique combination of parental terpenes.
When ‘OG CITRON’ is compared to the check variety ‘BLK03’, ‘OG CITRON’ is narrower in width than ‘BLK03’ and has higher plant vigor than ‘BLK03’. ‘OG CITRON’ has longer and wider leaves than ‘BLK03’ in terms of whole leaf length including petioles. Also, ‘OG CITRON’ has longer and wider leaflets than ‘BLK03’ when comparing the middle largest leaflet. ‘OG CITRON’ has more than twice longer petioles in average than ‘BLK03’ at maturity, while it has about the same stipule size to ‘BLK03’. Regarding the average stem diameter at base, ‘OG CITRON’ is longer than ‘BLK03’, and the internode length of ‘OG CITRON’ is also longer than that of ‘BLK03’. When comparing the compound cyme diameter, ‘OG CITRON’ is longer than ‘BLK03’, while individual pistillate flowers of ‘OG CITRON’ are shorter than that of ‘BLK03’ in length. ‘OG CITRON’ has longer bracts than ‘BLK03’, while having shorter stigma. With respect to aroma, ‘OG CITRON’ has an ambrosial smell, while ‘BLK03’ has a generally spicy smell.
When ‘OG CITRON’ is compared to the known Cannabis plant named ‘ECUADORIAN SATIVA’ (U.S. Plant Pat. No. 27,475), there are several distinctive characteristics. For example, the overall form of ‘OG CITRON’ plant is taller in height and wider across at the widest point than ‘ECUADORIAN SATIVA’ plant. ‘OG CITRON’ plant has longer leaves including petioles, longer and wider middle leaflets, and longer petioles at maturity than ‘ECUADORIAN SATIVA’ plant. Regarding stem diameter at base, ‘OG CITRON’ pant is longer than ‘ECUADORIAN SATIVA’ plant. When comparing individual pistillate flower length, ‘OG CITRON’ flowers are longer than ‘ECUADORIAN SATIVA’ flowers. While the aroma of ‘ECUADORIAN SATIVA’ is strongly mephitic with hints of limonene, ‘OG CITRON’ has an ambrosial smell. When comparing total THC content between ‘OG CITRON’ and ‘ECUADORIAN SATIVA’, the total THC content of ‘OG CITRON’ is about 9.90-12.66%, while ‘ECUADORIAN SATIVA’ accumulates 12.45% total THC.

Claims (1)

The invention claimed is:
1. A new and distinct cultivar of Cannabis plant named ‘OG CITRON’ substantially as shown and described herein.
US16/501,446 2017-12-08 2019-04-17 Cannabis plant named ‘OG CITRON’ Active USPP33000P3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/501,446 USPP33000P3 (en) 2017-12-08 2019-04-17 Cannabis plant named ‘OG CITRON’

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762596561P 2017-12-08 2017-12-08
US16/350,327 USPP31917P3 (en) 2017-12-08 2018-11-05 Cannabis plant named ‘RASPBERRY PUNCH’
US16/501,446 USPP33000P3 (en) 2017-12-08 2019-04-17 Cannabis plant named ‘OG CITRON’

Publications (2)

Publication Number Publication Date
US20190254213P1 US20190254213P1 (en) 2019-08-15
USPP33000P3 true USPP33000P3 (en) 2021-04-27

Family

ID=66696627

Family Applications (10)

Application Number Title Priority Date Filing Date
US15/932,562 Active USPP31535P3 (en) 2017-12-08 2018-03-16 Cannabis plant named ‘LEMON CRUSH OG’
US15/998,287 Active USPP31752P3 (en) 2017-12-08 2018-08-01 Cannabis plant named ‘cake batter cookies’
US15/999,235 Active USPP31918P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘RAINBOW GUMMEEZ’
US15/999,236 Active USPP32473P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘BIHEMP 050924’
US15/999,234 Active USPP31874P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘HOLY CRUNCH’
US15/999,237 Active USPP31707P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘GRAPE LOLIPOP’
US15/999,233 Active USPP31724P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘PRIMO CHERRY’
US16/350,327 Active USPP31917P3 (en) 2017-12-08 2018-11-05 Cannabis plant named ‘RASPBERRY PUNCH’
US16/770,799 Abandoned US20210045311A1 (en) 2017-12-08 2018-12-10 Propyl cannabinoid hemp plants, methods of producing and methods of using them
US16/501,446 Active USPP33000P3 (en) 2017-12-08 2019-04-17 Cannabis plant named ‘OG CITRON’

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US15/932,562 Active USPP31535P3 (en) 2017-12-08 2018-03-16 Cannabis plant named ‘LEMON CRUSH OG’
US15/998,287 Active USPP31752P3 (en) 2017-12-08 2018-08-01 Cannabis plant named ‘cake batter cookies’
US15/999,235 Active USPP31918P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘RAINBOW GUMMEEZ’
US15/999,236 Active USPP32473P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘BIHEMP 050924’
US15/999,234 Active USPP31874P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘HOLY CRUNCH’
US15/999,237 Active USPP31707P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘GRAPE LOLIPOP’
US15/999,233 Active USPP31724P3 (en) 2017-12-08 2018-08-28 Cannabis plant named ‘PRIMO CHERRY’
US16/350,327 Active USPP31917P3 (en) 2017-12-08 2018-11-05 Cannabis plant named ‘RASPBERRY PUNCH’
US16/770,799 Abandoned US20210045311A1 (en) 2017-12-08 2018-12-10 Propyl cannabinoid hemp plants, methods of producing and methods of using them

Country Status (1)

Country Link
US (10) USPP31535P3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312988B2 (en) * 2015-06-12 2022-04-26 Anandia Laboratories Inc. Methods and compositions for cannabis characterization
USPP31535P3 (en) 2017-12-08 2020-03-10 Biotech Institute LLC Cannabis plant named ‘LEMON CRUSH OG’
USPP32725P2 (en) 2019-10-22 2021-01-05 Biomax Seeds S.L. Cannabis plant named ‘PAN2020’
CA3169446C (en) * 2020-02-19 2023-03-07 Charlotte's Web, Inc. Hemp plant named 'kirsche'
US11871692B2 (en) * 2020-09-09 2024-01-16 Talby McKay Encapsulated seed and method for making same
US11432488B1 (en) * 2021-05-24 2022-09-06 Biotech Institute, Llc Hemp cultivar named ‘05.09.24.S1’
USPP35571P2 (en) 2023-05-05 2024-01-09 Phat Panda LLC Cannabis plant named ‘AC/DC x Redneck Wedding 13’

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145490A2 (en) 2013-03-15 2014-09-18 Biotech Institute, Llc Breeding, production, processing and use of specialty cannabis
US20140298511A1 (en) 2013-03-15 2014-10-02 Biotech Institute, Llc Breeding, production, processing and use of medical cannabis
WO2015065544A1 (en) 2013-10-29 2015-05-07 Biotech Institute, Llc Breeding, production, processing and use of specialty cannabis
WO2016105514A1 (en) 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
WO2016123160A1 (en) 2015-01-26 2016-08-04 Biotech Institute, Llc Systems, apparatuses, and methods for classification
USPP27475P2 (en) 2010-03-13 2016-12-20 Kubby Patent And Licenses, Limited Liability Company Cannabis plant named ‘Ecuadorian Sativa’
WO2018094359A1 (en) 2016-11-18 2018-05-24 Biotech Institute, Llc Caryophyllene compositions, apparatuses, and methods
US20190183003P1 (en) 2017-12-08 2019-06-13 Biotech Institute LLC Cannabis plant named 'LEMON CRUSH'

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US475046A (en) * 1892-05-17 Sawmill-carriage feed

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USPP27475P2 (en) 2010-03-13 2016-12-20 Kubby Patent And Licenses, Limited Liability Company Cannabis plant named ‘Ecuadorian Sativa’
US9642317B2 (en) 2013-03-15 2017-05-09 Biotech Institute, LLC. Breeding, production, processing and use of specialty cannabis
US20140298511A1 (en) 2013-03-15 2014-10-02 Biotech Institute, Llc Breeding, production, processing and use of medical cannabis
US20170202170A1 (en) 2013-03-15 2017-07-20 Biotech Institute LLC Breeding, production, processing and use of specialty cannabis
US9095554B2 (en) 2013-03-15 2015-08-04 Biotech Institute LLC Breeding, production, processing and use of specialty cannabis
US20180064055A1 (en) 2013-03-15 2018-03-08 Biotech Institute LLC Extracts of cbd and thc
US20150366154A1 (en) 2013-03-15 2015-12-24 Biotech Institute LLC Breeding, production, processing and use of specialty cannabis
US9370164B2 (en) 2013-03-15 2016-06-21 Biotech Institute, Llc Breeding, production, processing and use of specialty Cannabis
US20150359188A1 (en) 2013-03-15 2015-12-17 Biotech Institute LLC Breeding, production, processing and use of specialty cannabis
WO2014145490A2 (en) 2013-03-15 2014-09-18 Biotech Institute, Llc Breeding, production, processing and use of specialty cannabis
US20160324091A1 (en) 2013-03-15 2016-11-10 Biotech Institute, Llc Breeding, production, processing and use of specialty cannabis
US20140287068A1 (en) 2013-03-15 2014-09-25 Biotech Institute LLC Breeding, production, processing and use of specialty cannabis
WO2015065544A1 (en) 2013-10-29 2015-05-07 Biotech Institute, Llc Breeding, production, processing and use of specialty cannabis
WO2016105514A1 (en) 2014-12-23 2016-06-30 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
US20180143212A1 (en) 2014-12-23 2018-05-24 Biotech Institute, Llc A reliable and robust method for the analysis of cannabinoids and terpenes in cannabis
WO2016123160A1 (en) 2015-01-26 2016-08-04 Biotech Institute, Llc Systems, apparatuses, and methods for classification
US20180284145A1 (en) 2015-01-26 2018-10-04 Biotech Institute, Llc Systems, apparatuses, and methods for classification
WO2018094359A1 (en) 2016-11-18 2018-05-24 Biotech Institute, Llc Caryophyllene compositions, apparatuses, and methods
US20190183003P1 (en) 2017-12-08 2019-06-13 Biotech Institute LLC Cannabis plant named 'LEMON CRUSH'
US20190183006P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named 'holy crunch'
US20190183005P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named ' PRIMO CHERRY'
US20190183008P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named 'GUAVA JAM'
US20190183010P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named 'RASPBERRY PUNCH'
US20190183009P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named 'Grape Lolipop'
US20190183007P1 (en) 2017-12-08 2019-06-13 Biotech Institute, Llc Cannabis plant named `RAINBOW GUMMEEZ'
US20190183004P1 (en) 2017-12-08 2019-06-13 Biotech Institute LLC Cannabis plant named 'CAKE BATTER'

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Alchimia The effect of cold on Cannabis plants 2017, retrieved on Mar. 18, 2020, retrieved from the Internet at https://www.alchimiaweb.com/blogen/the-cold-during-a-cannabis-plant-crop/, 13 pp. (Year: 2017). *
Grasscity Forums, "Lemon Crush", 2010, retrieved on May 1, 2019 from https://forum.grasscity.com/threads/ lemon-crush-weed.475046/, 7 pages
Reddit, "Cake batter?," 2016, retrieved on Jun. 10, 2019, from https://www.reddit.com/r/CannabisExtracts/comments/4jcow1/cake_batter/, 5 pages.
Weed Connection, "#Cake Batter #OG," 2016, retrieved on Jun. 11, 2019, from https://weedconnection.com/medz/ link/cakebatterogkush.html, 2 pages.

Also Published As

Publication number Publication date
US20190183007P1 (en) 2019-06-13
US20190254213P1 (en) 2019-08-15
USPP31707P3 (en) 2020-04-28
US20190183003P1 (en) 2019-06-13
US20190183009P1 (en) 2019-06-13
USPP32473P3 (en) 2020-11-17
USPP31724P3 (en) 2020-05-05
USPP31918P3 (en) 2020-06-30
US20190183006P1 (en) 2019-06-13
USPP31917P3 (en) 2020-06-30
USPP31874P3 (en) 2020-06-16
USPP31752P3 (en) 2020-05-12
US20210045311A1 (en) 2021-02-18
US20190183005P1 (en) 2019-06-13
US20190183010P1 (en) 2019-06-13
US20190183008P1 (en) 2019-06-13
USPP31535P3 (en) 2020-03-10
US20190183004P1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
USPP33000P3 (en) Cannabis plant named ‘OG CITRON’
US20200405685A1 (en) High cannabigerol cannabis plants, methods of producing and methods of using them
US11297789B2 (en) Cannabis plant named ‘V1’
US11297791B2 (en) Cannabis plant named ‘V3’
USPP34802P2 (en) Cannabis plant named ‘UNIQUE FLOWER ORIGINAL HAZE’
US11297790B2 (en) Cannabis plant named ‘V2’
USPP33332P3 (en) Cannabis plant named ‘HAPPY PINEAPPLE’
USPP35571P2 (en) Cannabis plant named ‘AC/DC x Redneck Wedding 13’
USPP34828P2 (en) Hemp plant named ‘3 Crop’
USPP33162P3 (en) Hemp plant named ‘Eighty Eight’
USPP33182P3 (en) Hemp plant named ‘Painted Lady’
EP3720275A1 (en) Propyl cannabinoid hemp plants, methods of producing and methods of using them
US20200315118A1 (en) CANNABIS PLANT NAMED &#39;FS-tp2&#39;
USPP34829P3 (en) Cannabis plant named BAGZXCD6-PA#2
USPP36307P3 (en) Cannabis plant named ‘21AF0716’
US20220256799A1 (en) Cannabis plant named &#39;lpa004&#39;
USPP35668P3 (en) Cannabis plant named ‘ZLT’
USPP35667P3 (en) Cannabis plant named ‘AFZ’
US20220330466P1 (en) Cannabis plant named &#39;vb252x&#39;
WO2019113582A1 (en) Specialty plants and cannabinoid compositions comprising hexyl butyrate
US20220007611A1 (en) Cannabis plant named &#39;drg2&#39;
US20210227770A1 (en) Cannabis plant named &#39;frb005&#39;

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: BIOTECH INSTITUTE LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEWIS, MARK A.;HABA, STEVEN;REEL/FRAME:051804/0104

Effective date: 20181204