USH665H - Resistive field shields for high voltage devices - Google Patents

Resistive field shields for high voltage devices Download PDF

Info

Publication number
USH665H
USH665H US07/110,153 US11015387A USH665H US H665 H USH665 H US H665H US 11015387 A US11015387 A US 11015387A US H665 H USH665 H US H665H
Authority
US
United States
Prior art keywords
sin
layer
resistive field
semiconductor
field shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/110,153
Inventor
William R. Knolle
John W. Osenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US07/110,153 priority Critical patent/USH665H/en
Assigned to BELL TELEPHONE LABORATORIES, INCORPORATED, 600 MOUNTAIN AVENUE, MURRAY HILL, NEW JERSEY, 07974-2070, A CORP. OF NEW YORK, AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVENUE, NEW YORK, NEW YORK 10022-3201, A CORP. OF NEW YORK reassignment BELL TELEPHONE LABORATORIES, INCORPORATED, 600 MOUNTAIN AVENUE, MURRAY HILL, NEW JERSEY, 07974-2070, A CORP. OF NEW YORK ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OSENBACH, JOHN W., KNOLLE, WILLIAM R.
Priority to EP88309483A priority patent/EP0313249A1/en
Priority to JP63259625A priority patent/JPH02153529A/en
Priority to CA000580461A priority patent/CA1292327C/en
Application granted granted Critical
Publication of USH665H publication Critical patent/USH665H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to high voltage devices with improved resistive field shields and, more particularly, to high voltage devices with resistive field shields comprising a layer of semi-insulating silicon nitride (sin-SiN).
  • the breakdown voltage and/or leakage current of high voltage discrete devices and integrated circuits will be degraded by the presence of charge (usually ionic) on the top surface of the outermost passivation layer.
  • charge usually ionic
  • These mobile charges may also form a surface channel which can effectively create a shunt resistor between the emitter-base, emitter-collector, or collector-base electrodes.
  • these surface ions can redistribute and create large extrinsic potentials on the surface of the chip.
  • cracks or pinholes in the top passivation layer will allow charge to leak up into or on top of this layer and spread out from the point of origination. If the potential generated by this leakage charge is different from that of the silicon below it, field crowding results, leading to a degradation of both the breakdown voltage and leakage current of the high voltage device.
  • SIPOS semi-insulating polysilicon
  • SIPOS As a material, SIPOS has further problems which limit its usefulness as a passivation material. Firstly, SIPOS is extremely reactive in a humid environment, experiencing drastic conductivity changes (both increases and decreases) which are neither well-controlled nor well-understood. In particular, when SIPOS is in contact with aluminum metallization, the aluminum will penetrate the surface, forming Al 2 O 3 at the interface. Thus, SIPOS is essentially limited to utilization with devices encased to hermetic packages, resulting in increasing the cost (and perhaps size) of the final packaged device. Additionally, when SIPOS is used with tri-level metal contacts (Ti-Pt-Au), the gold will migrate through the contact, forming various eutectic compounds with the SIPOS. Again, these compounds will seriously degrade the performance of the device.
  • Ti-Pt-Au tri-level metal contacts
  • the present invention relates to a high voltage device with an improved resistive field shield and, more particularly, to a high voltage device with a semi-insulating silicon nitride (sin-SiN) resistive field shield.
  • the present invention is directed to utilizing a sin-SiN passivation layer with a predetermined N/Si ratio so as to provide the necessary conductivity of the field shield layer.
  • Another aspect of the present invention is to utilize a resistive field shield as a top passivation layer for the device which is capable of shielding the device from surface charges.
  • FIGS. 1-5 illustrate, in cross-sectional views, various exemplary high voltage devices formed with a semi-insulating silicon nitride (sin-SiN) resistive field shield of the present invention
  • FIG. 6 is a graph illustrating the relationship between conductivity of the sin-SiN resistive field shield as a function of its N/Si ratio.
  • FIG. 1 An exemplary high voltage device 10 formed with the semi-insulating silicon nitride (sin-SiN) resistive field shield layer of the present invention is illustrated in cross-sectional form in FIG. 1.
  • Device 10 comprises a semiconductor substrate 12 of a first conductivity type, shown as p-type in FIG. 1.
  • a first diffusion region 14 of the same conductivity type, but higher dopant concentration, is formed through surface 16 of substrate 12.
  • a second diffusion region 18, of the opposite conductivity type, is also formed through surface 16, at a location spaced-apart from first diffusion region 14.
  • a pair of metal electrodes 20,22 are formed to contact first and second diffusions 14 and 18, respectively.
  • a dielectric layer 24 is disposed across surface 16 of substrate 12 to provide electrical isolation between electrodes 20 and 22.
  • the structure is then covered with a layer of semi-insulating silicon nitride (sin-SiN) which forms the resistive field shield 26 of the high voltage device.
  • resistive field shield 26 function to isolate any charge in or on the device surface, shielding the active device regions formed below. The field of the ionic charge is essentially terminated in the resistive layer and does not reach or effect the silicon below.
  • FIG. 2 An alternative high voltage structure 30 utilizing the sin-SiN passivation layer of the present invention is illustrated in FIG. 2.
  • the identical active device is illustrated for the sake of comparison, namely, a p-type substrate 12 including p+ diffusion region 14 and n+ diffusion region 18, both formed through top major surface 16 of substrate 12.
  • Metal contacts 20 and 22 to regions 14 and 18, respectively, are insulated by dielectric layer 24.
  • a sin-SiN passivation layer 32 is formed over dielectric layer 24, layer 32 being patterned simultaneously with layer 24 to expose regions 14 and 18 for subsequent metallization.
  • An outer protective layer 34 of a low temperature dielectric, for example, silicon nitride, is utilized with this particular device structure.
  • FIG. 3 illustrates a slight modification of device 30 of FIG. 2.
  • a high voltage device 40 utilizes a relatively thin sin-SiN passivation layer 42 which is directly disposed over top major surface 16 of substrate 12. Insulation between active device regions is provided by a dielectric layer 44 which is formed over sin-SiN layer 42.
  • the outer protection layer 46 comprises a low temperature dielectric.
  • FIG. 4 illustrates yet another device structure which can be formed with the sin-SiN layer of the present invention.
  • a high voltage device 50 utilizes a conventional dielectric layer 24 over surface 16 of substrate 12.
  • a first layer 52 of a low temperature dielectric is disposed to cover the exposed portions of dielectric layer 24, as well as contacts 20 and 22.
  • a relatively thick sin-SiN passivation layer 54 is then deposited to completely cover layer 52.
  • Yet another alternative device structure 60 which may be formed utilizing the sin-SiN passivation layer of the present invention is illustrated in FIG. 5.
  • the dielectric layer of the other arrangements is replaced with a tri-level structure, including a first dielectric layer 62, a layer 64 of sin-SiN, and a final dielectric layer 66, disposed to cover the sin-SiN passivation layer.
  • This tri-level structure is then etched to expose regions 14 and 18 for contact for metallizations 20 and 22, respectively.
  • An outer layer 68 of a low temperature dielectric may then be utilized as the final layer of this particular structure.
  • any suitable deposition technique e.g., LPCVD, MOCVD, plasma
  • LPCVD LPCVD
  • MOCVD MOCVD
  • plasma any suitable deposition technique
  • the control of the N/Si ratio in the sin-SiN layer will affect is conductivity.
  • This relationship between the N/Si ratio and conductivity ⁇ is illustrated in FIG. 6 for two exemplary sin-SiN deposition processes.
  • the first process, a plasma deposition process utilizes the gases SiH 4 and NH 3 .
  • the plot of its conductivity (at an applied field of 1 ⁇ 10 5 V/cm) as a function of N/Si ratio is illustrated by the letter "P" in FIG. 6.
  • this particular plasma deposition process yields a film with the greatest conductivity (approximately 4 ⁇ 10 -10 ( ⁇ -cm) -1 ) with a N/Si ratio of about 1/5.
  • the conductivity then decreases in a somewhat linear fashion as the concentration of N is increased, until a conductivity of about 1 ⁇ 10 -19 is reached for a 1/1 N/Si ratio.
  • the conductivity as a function of N/Si is also illustrated in FIG. 6 for an exemplary LPCVD process which utilizes SiCl 2 H 2 and NH 3 to form the passivation layer.
  • the plot of this conductivity as a function of N/Si is denoted by the letter "L" in FIG. 6.
  • this curve roughly follows the contour of the P plot for the plasma deposition process, although yielding somewhat lower conductivity values for like N/Si ratios.
  • a N/Si ratio of 1/5 for the LPCVD process will yield a sin-SiN layer with a conductivity of approximately 1 ⁇ 10 -7 ( ⁇ -cm) -1 , over two orders of magnitude lower than that associated with the same ratio in the plasma process.
  • a 1/1 N/Si ratio in the LPCVD process results in the formation of a sin-SiN layer with a conductivity of approximately 1 ⁇ 10 -16 ( ⁇ -cm) -1 .
  • various other values of conductivity may be obtained, depending upon the deposition process, applied field, ambient temperature, and other conditions.
  • the two plots of FIG. 6 are meant to be exemplary only, teaching in principle that the conductivity of the sin-SiN passivation layer of the present invention may be modified to provide the value desired by the user.
  • the upper limit on conductivity can be dictated by the leakage requirements of the device at maximum operating voltage, minimum metal-to-metal spacing, and metal-to-field shield area ratio.
  • the lower limit may be determined by the minimum dielectric relaxation time ( ⁇ ) is given by:
  • is the resistivity of the film and ⁇ is the dielectric constant of the material.
  • is the dielectric constant of the material.
  • the dielectric constant ⁇ is approximately 8.
  • the lower limit on conductivity the inverse of the resistivity ⁇ from equation (1)
  • the lower limit on conductivity will be approximately 5 ⁇ 10 -13 ( ⁇ -cm) -1 .
  • a sin-SiN resistive field shield was deposited onto a set of gated diode crosspoint devices and associated control substrates in a hot wall horizontal tube plasma reactor operated at 400 kHz, 200 watts rf-power, and 360° C.
  • the gases used were NH 3 and SiH 4 .
  • the total pressure was 2 torr, and the total gas flow was kept at 1200 SCCM.
  • the NH 3 /SiH 4 ratio was varied from 5/1 to 1/2.
  • the films were deposited on aluminum-coated 100 mm oxidized (1 ⁇ m SiO 2 ) silicon wafers.
  • the aluminum thickness was 1.5 ⁇ m and the sin-SiN thickness was 1.2 ⁇ m. After the sin-SiN films were deposited, the wafers were annealed at 450° and 500° C. in nitrogen for 48 hours.
  • Table II contains the average thickness, refractive index, deposition rate, film stress and N/SI ratio for the various gas flow ratios.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A high voltage silicon device with a resistive field shield comprising semi-insulating silicon nitride (sin-SiN). The N/Si ratio is controlled to provide the resistive field shield with the desired conductivity. This resistive field shield material may also serve as an outer protection layer for the device.

Description

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to high voltage devices with improved resistive field shields and, more particularly, to high voltage devices with resistive field shields comprising a layer of semi-insulating silicon nitride (sin-SiN).
2. Description of the Prior Art
The breakdown voltage and/or leakage current of high voltage discrete devices and integrated circuits will be degraded by the presence of charge (usually ionic) on the top surface of the outermost passivation layer. These mobile charges may also form a surface channel which can effectively create a shunt resistor between the emitter-base, emitter-collector, or collector-base electrodes. In the presence of an electric field, high temperature, and/or moisture, these surface ions can redistribute and create large extrinsic potentials on the surface of the chip. Additionally, cracks or pinholes in the top passivation layer will allow charge to leak up into or on top of this layer and spread out from the point of origination. If the potential generated by this leakage charge is different from that of the silicon below it, field crowding results, leading to a degradation of both the breakdown voltage and leakage current of the high voltage device.
A technique for limiting this effect is to shield the surface of the device from the effects of the charge by using a resistive field shield which contacts the surface and makes electrical contact to conductors on the surface. A semi-insulating polysilicon (SIPOS) layer may be used as such a shield. A description of this type of field shield may be found in the article entitled "Characterisation and modelling of SIPOS on silicon high-voltage devices" by J. N. Sandoe et al. appearing in IEE Proceedings, Vol. 132, Pt. 1, No. 6, December 1985 at pp. 281-3. One problem created by the use of a SIPOS shield layer is that it introduces leakage which may be greater than is acceptable in some applications (extreme high voltage applications, for example).
One technique for increasing the effectiveness of a SIPOS field shield is disclosed in U.S. Pat. No. 4,580,156 issued to R. B. Comizzoli on Apr. 1, 1986. A segmented SIPOS layer is used by Comizzoli as a resistive field shield, where the segmentation of the layer significantly increases the resistance thereof and thereby limits the leakage generated by the layer. The segmentation, however, adds to the complexity of the device fabrication process. An alternative method of improving SIPOS passivation is disclosed in U.S. Pat. No. 4,297,149 issued to P. R. Koons et al. on Oct. 27, 1981. This method requires the annealing of the device at a temperature of approximately 550° C. prior to metallization and alloying of the metal electrodes at a temperature less than 425° C. It is thought that this temperature control technique changes the types of oxygen-silicon bonds present in the SIPOS layer so as to improve the device performance. However, the device may never again be exposed to temperatures greater than 425° C., or the breakdown problem will return.
As a material, SIPOS has further problems which limit its usefulness as a passivation material. Firstly, SIPOS is extremely reactive in a humid environment, experiencing drastic conductivity changes (both increases and decreases) which are neither well-controlled nor well-understood. In particular, when SIPOS is in contact with aluminum metallization, the aluminum will penetrate the surface, forming Al2 O3 at the interface. Thus, SIPOS is essentially limited to utilization with devices encased to hermetic packages, resulting in increasing the cost (and perhaps size) of the final packaged device. Additionally, when SIPOS is used with tri-level metal contacts (Ti-Pt-Au), the gold will migrate through the contact, forming various eutectic compounds with the SIPOS. Again, these compounds will seriously degrade the performance of the device.
Thus, a need remains in the prior art for a resistive field shield for high voltage devices which overcomes these and other limitations associated with SIPOS resistive field shields.
SUMMARY OF THE INVENTION
The present invention relates to a high voltage device with an improved resistive field shield and, more particularly, to a high voltage device with a semi-insulating silicon nitride (sin-SiN) resistive field shield.
In the preferred embodiment, the present invention is directed to utilizing a sin-SiN passivation layer with a predetermined N/Si ratio so as to provide the necessary conductivity of the field shield layer.
It is an aspect of the present invention to provide a high voltage device capable of withstanding voltages greater than 1×105 V/cm, while exhibiting increased breakdown voltages over prior art devices in the range of 20-40 V.
Another aspect of the present invention is to utilize a resistive field shield as a top passivation layer for the device which is capable of shielding the device from surface charges.
These and other aspects of the present invention will be clearly understood from a reading of the following description and by reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
Referring now to the drawings,
FIGS. 1-5 illustrate, in cross-sectional views, various exemplary high voltage devices formed with a semi-insulating silicon nitride (sin-SiN) resistive field shield of the present invention; and
FIG. 6 is a graph illustrating the relationship between conductivity of the sin-SiN resistive field shield as a function of its N/Si ratio.
DETAILED DESCRIPTION
An exemplary high voltage device 10 formed with the semi-insulating silicon nitride (sin-SiN) resistive field shield layer of the present invention is illustrated in cross-sectional form in FIG. 1. Device 10 comprises a semiconductor substrate 12 of a first conductivity type, shown as p-type in FIG. 1. A first diffusion region 14 of the same conductivity type, but higher dopant concentration, is formed through surface 16 of substrate 12. A second diffusion region 18, of the opposite conductivity type, is also formed through surface 16, at a location spaced-apart from first diffusion region 14. A pair of metal electrodes 20,22 are formed to contact first and second diffusions 14 and 18, respectively. A dielectric layer 24 is disposed across surface 16 of substrate 12 to provide electrical isolation between electrodes 20 and 22.
In accordance with the present invention, the structure is then covered with a layer of semi-insulating silicon nitride (sin-SiN) which forms the resistive field shield 26 of the high voltage device. As described above, resistive field shield 26 function to isolate any charge in or on the device surface, shielding the active device regions formed below. The field of the ionic charge is essentially terminated in the resistive layer and does not reach or effect the silicon below.
In some instances, it may not be desirable to utilize the sin-SiN material as the outer protection layer of the device. Also, the use of a relatively thick sin-SiN layer, similar to layer 26 of FIG. 1, may be disadvantageous in some circumstances. An alternative high voltage structure 30 utilizing the sin-SiN passivation layer of the present invention is illustrated in FIG. 2. The identical active device is illustrated for the sake of comparison, namely, a p-type substrate 12 including p+ diffusion region 14 and n+ diffusion region 18, both formed through top major surface 16 of substrate 12. Metal contacts 20 and 22 to regions 14 and 18, respectively, are insulated by dielectric layer 24. In this particular embodiment, a sin-SiN passivation layer 32 is formed over dielectric layer 24, layer 32 being patterned simultaneously with layer 24 to expose regions 14 and 18 for subsequent metallization. An outer protective layer 34 of a low temperature dielectric, for example, silicon nitride, is utilized with this particular device structure. FIG. 3 illustrates a slight modification of device 30 of FIG. 2. Here, a high voltage device 40 utilizes a relatively thin sin-SiN passivation layer 42 which is directly disposed over top major surface 16 of substrate 12. Insulation between active device regions is provided by a dielectric layer 44 which is formed over sin-SiN layer 42. As with device 30 of FIG. 2, the outer protection layer 46 comprises a low temperature dielectric.
FIG. 4 illustrates yet another device structure which can be formed with the sin-SiN layer of the present invention. Here, a high voltage device 50 utilizes a conventional dielectric layer 24 over surface 16 of substrate 12. A first layer 52 of a low temperature dielectric is disposed to cover the exposed portions of dielectric layer 24, as well as contacts 20 and 22. A relatively thick sin-SiN passivation layer 54 is then deposited to completely cover layer 52. Yet another alternative device structure 60 which may be formed utilizing the sin-SiN passivation layer of the present invention is illustrated in FIG. 5. As shown, the dielectric layer of the other arrangements is replaced with a tri-level structure, including a first dielectric layer 62, a layer 64 of sin-SiN, and a final dielectric layer 66, disposed to cover the sin-SiN passivation layer. This tri-level structure is then etched to expose regions 14 and 18 for contact for metallizations 20 and 22, respectively. An outer layer 68 of a low temperature dielectric may then be utilized as the final layer of this particular structure.
In accordance with the teachings of the present invention, any suitable deposition technique (e.g., LPCVD, MOCVD, plasma) may be used to form the novel sin-SiN passivation layer. It has been found that regardless of the deposition technique, the control of the N/Si ratio in the sin-SiN layer will affect is conductivity. This relationship between the N/Si ratio and conductivity σ is illustrated in FIG. 6 for two exemplary sin-SiN deposition processes. The first process, a plasma deposition process, utilizes the gases SiH4 and NH3. The plot of its conductivity (at an applied field of 1×105 V/cm) as a function of N/Si ratio is illustrated by the letter "P" in FIG. 6. As seen, this particular plasma deposition process yields a film with the greatest conductivity (approximately 4×10-10 (Ω-cm)-1) with a N/Si ratio of about 1/5. The conductivity then decreases in a somewhat linear fashion as the concentration of N is increased, until a conductivity of about 1×10-19 is reached for a 1/1 N/Si ratio. The conductivity as a function of N/Si is also illustrated in FIG. 6 for an exemplary LPCVD process which utilizes SiCl2 H2 and NH3 to form the passivation layer. The plot of this conductivity as a function of N/Si is denoted by the letter "L" in FIG. 6. As can be seen, this curve roughly follows the contour of the P plot for the plasma deposition process, although yielding somewhat lower conductivity values for like N/Si ratios. For example, a N/Si ratio of 1/5 for the LPCVD process will yield a sin-SiN layer with a conductivity of approximately 1×10-7 (Ω-cm)-1, over two orders of magnitude lower than that associated with the same ratio in the plasma process. A 1/1 N/Si ratio in the LPCVD process results in the formation of a sin-SiN layer with a conductivity of approximately 1×10-16 (Ω-cm)-1. It is to be understood that various other values of conductivity may be obtained, depending upon the deposition process, applied field, ambient temperature, and other conditions. The two plots of FIG. 6 are meant to be exemplary only, teaching in principle that the conductivity of the sin-SiN passivation layer of the present invention may be modified to provide the value desired by the user.
In the formation of a specific device, there may exist upper and lower limits on the conductivity of a sin-SiN resistive layer. The upper limit on conductivity can be dictated by the leakage requirements of the device at maximum operating voltage, minimum metal-to-metal spacing, and metal-to-field shield area ratio. The lower limit may be determined by the minimum dielectric relaxation time (τ) is given by:
τ=ερ/4π                                 (1)
where ρ is the resistivity of the film and ε is the dielectric constant of the material. As long as τ is less than or equal to the mobility of the ions causing the device instability, the ions will be neutralized by the resistive field shield. For the sin-SiN film of the present invention, the dielectric constant ε is approximately 8. For a conventional relaxation time τ of 100 seconds, the lower limit on conductivity (the inverse of the resistivity ρ from equation (1)) will be approximately 5×10-13 (Ω-cm)-1.
EXAMPLE
A sin-SiN resistive field shield was deposited onto a set of gated diode crosspoint devices and associated control substrates in a hot wall horizontal tube plasma reactor operated at 400 kHz, 200 watts rf-power, and 360° C. The gases used were NH3 and SiH4. The total pressure was 2 torr, and the total gas flow was kept at 1200 SCCM. The NH3 /SiH4 ratio was varied from 5/1 to 1/2. The films were deposited on aluminum-coated 100 mm oxidized (1 μm SiO2) silicon wafers. The aluminum thickness was 1.5 μm and the sin-SiN thickness was 1.2 μm. After the sin-SiN films were deposited, the wafers were annealed at 450° and 500° C. in nitrogen for 48 hours.
The matrix of gas flow rates and deposition times were used are given below in Table I.
              TABLE I                                                     
______________________________________                                    
Deposition Conditions for the                                             
Plasma Deposited SinSiN Films                                             
       NH.sub.3 SiH.sub.4          Dep. time                              
Sample (SCCM)   (SCCM)     NH.sub.3 /Si.sub.4                             
                                   (min.)                                 
______________________________________                                    
1      1000     200        5.0     55                                     
2      960      240        4.0     40                                     
3      933      267        3.5     25                                     
4      900      300        3.0     25                                     
5      857      343        2.5     25                                     
6      800      400        2.0     25                                     
7      600      600        1.0     30                                     
8      400      800        0.5     30                                     
______________________________________                                    
Table II contains the average thickness, refractive index, deposition rate, film stress and N/SI ratio for the various gas flow ratios.
              TABLE II                                                    
______________________________________                                    
Stoichiometry, Refractive Index, Thickness,                               
Deposition Rate and Stress                                                
NH.sub.3 /                                                                
                    Thickness                                             
                            Dep. Rate                                     
                                    Stress                                
SiH.sub.4                                                                 
      N/Si   RI     (μm) (nm/min)                                      
                                    (10° dynes/cm.sup.2)           
______________________________________                                    
5.0   1.1    2.1    1.2     22      -3.0 ± 2.0                         
4.0   0.69   2.35   1.1     28      -2.8 ± 2.3                         
3.5   0.61   2.35   1.1     28      -2.8 ± 1.5                         
3.0   0.56   2.6    1.05    42      -4.0 ± 2.4                         
2.5   0.47   2.8    1.1     44      -4.0 ± 2.2                         
2.0   0.43   2.8    0.92    37      -4.6 ± 1.5                         
1.0   0.26   3.0    0.95    32      -6.0 ± 2.1                         
0.5   0.15   3.1    0.90    30      -9.0 ± 3.0                         
______________________________________                                    
From these results, it is clear that the N/SI flow ratio determines the stoichiometry of these films. This is expected since the only source of nitrogen is NH3 and the only source of silicon is SiH4.
Gated diode crosspoint devices passivated with a sin-SiN layer of the appropriate N/Si ratio exhibited breakdown voltages that were controlled solely by the intrinsic properties of the silicon, rather than by the extrinsic surface charges. These devices also exhibited increased breakdown over prior art arrangements, in the range of 20-40 V. Furthermore, it is no longer necessary to perform a burn-in step to eliminate mobile surface charges, as required for prior art structures, since the sin-SiN passivation layer of the present invention removes any device sensitivity to these charges. The elimination of this burn-in procedure directly results in improving the yield of the gated diode crosspoint devices.

Claims (5)

What is claimed is:
1. A semiconductor structure comprising
a semiconductor substrate of a first conductivity type, said substrate being defined as having top and bottom major surfaces;
a first semiconductor region of the first conductivity type more heavily doped than said substrate and formed in a portion of said semiconductor substrate so as to coincide with the top major surface;
a second semiconductor region of the second conductivity type more heavily doped than said substrate and formed in a portion of said semiconductor substrate so as to coincide with said top major surface and spaced-apart from said first semiconductor region;
first and second electrode means contacting said first and second semiconductor regions, respectively;
a dielectric insulating layer disposed over said substrate for electrically isolating said first and second semiconductor regions; and
a resistive field shield layer comprising semi-insulating silicon nitride (sin-SiN) for limiting the potential buildup caused by electrical charge on said dielectric insulating layer.
2. A semiconductor structure as defined in claim 1 wherein the semi-insulating silicon nitride resistive field shield layer comprises a N/Si ratio in the range of about 1/1 to about 1/5.
3. A semiconductor structure as defined in claim 1 wherein the semi-insulating silicon nitride resistive field shield layer is interposed between the semiconductor substrate and the dielectric insulating layer.
4. A semiconductor structure as defined in claim 1 wherein the dielectric insulating layer is interposed between the semiconductor substrate and the semi-insulating silicon nitride resistive field shield layer.
5. A semiconductor structure as defined in claim 1 wherein the dielectric insulating layer comprises at least two individual layers and the semi-insulating silicon nitride resistive field shield layer is interposed between the at least two individual layers.
US07/110,153 1987-10-19 1987-10-19 Resistive field shields for high voltage devices Abandoned USH665H (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/110,153 USH665H (en) 1987-10-19 1987-10-19 Resistive field shields for high voltage devices
EP88309483A EP0313249A1 (en) 1987-10-19 1988-10-10 Resistive field shields for high voltage devices
JP63259625A JPH02153529A (en) 1987-10-19 1988-10-17 Resistive electric field shield for high voltage device
CA000580461A CA1292327C (en) 1987-10-19 1988-10-18 Resistive field shields for high voltage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/110,153 USH665H (en) 1987-10-19 1987-10-19 Resistive field shields for high voltage devices

Publications (1)

Publication Number Publication Date
USH665H true USH665H (en) 1989-08-01

Family

ID=22331490

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/110,153 Abandoned USH665H (en) 1987-10-19 1987-10-19 Resistive field shields for high voltage devices

Country Status (4)

Country Link
US (1) USH665H (en)
EP (1) EP0313249A1 (en)
JP (1) JPH02153529A (en)
CA (1) CA1292327C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323041A (en) * 1991-06-21 1994-06-21 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor element
US5661079A (en) * 1994-07-12 1997-08-26 Temic Telefunken Microelectronic Gmbh Contacting process using O-SIPOS layer
US6316820B1 (en) 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
US6417527B1 (en) * 1999-10-12 2002-07-09 Matsushita Electric Industrial Co., Ltd. Diode, method for fabricating the diode, and coplanar waveguide
US7974150B2 (en) 2003-05-16 2011-07-05 Schlumberger Technology Corporation Methods and apparatus of source control for sequential firing of staggered air gun arrays in borehole seismic
DE102011090118A1 (en) * 2011-03-25 2012-09-27 Mitsubishi Electric Corp. Semiconductor device
US20140061871A1 (en) * 2012-09-03 2014-03-06 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US9576791B2 (en) * 2015-06-01 2017-02-21 GM Global Technology Operations LLC Semiconductor devices including semiconductor structures and methods of fabricating the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650122B1 (en) * 1989-07-21 1991-11-08 Motorola Semiconducteurs HIGH VOLTAGE SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
US5374843A (en) * 1991-05-06 1994-12-20 Silinconix, Inc. Lightly-doped drain MOSFET with improved breakdown characteristics
DE4137341C1 (en) * 1991-11-13 1993-04-29 Siemens Ag, 8000 Muenchen, De
JP2974003B2 (en) 1998-04-22 1999-11-08 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP2001057426A (en) * 1999-06-10 2001-02-27 Fuji Electric Co Ltd High voltage semiconductor device and method for fabrication
EP1063700B1 (en) * 1999-06-22 2012-07-25 Infineon Technologies AG Substrate for high voltage modules
WO2008044580A1 (en) * 2006-09-28 2008-04-17 Fujifilm Corporation Solid-state image sensor
US20100051085A1 (en) * 2008-08-27 2010-03-04 Weidman Timothy W Back contact solar cell modules
JP5637154B2 (en) 2012-02-22 2014-12-10 トヨタ自動車株式会社 Semiconductor device
CN107832749B (en) * 2017-12-14 2021-01-22 京东方科技集团股份有限公司 Array substrate, preparation method thereof, fingerprint identification method and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689392A (en) 1970-07-02 1972-09-05 Trw Inc Method of making a semiconductor device
US3717514A (en) 1970-10-06 1973-02-20 Motorola Inc Single crystal silicon contact for integrated circuits and method for making same
US3883889A (en) 1974-04-15 1975-05-13 Micro Power Systems Inc Silicon-oxygen-nitrogen layers for semiconductor devices
US4257832A (en) 1978-07-24 1981-03-24 Siemens Aktiengesellschaft Process for producing an integrated multi-layer insulator memory cell
US4297149A (en) 1980-05-05 1981-10-27 Rca Corporation Method of treating SiPOS passivated high voltage semiconductor device
US4399449A (en) 1980-11-17 1983-08-16 International Rectifier Corporation Composite metal and polysilicon field plate structure for high voltage semiconductor devices
US4430663A (en) 1981-03-25 1984-02-07 Bell Telephone Laboratories, Incorporated Prevention of surface channels in silicon semiconductor devices
US4580156A (en) 1983-12-30 1986-04-01 At&T Bell Laboratories Structured resistive field shields for low-leakage high voltage devices
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105362A (en) * 1982-12-08 1984-06-18 Matsushita Electronics Corp Semiconductor device
JPS6094757A (en) * 1983-10-20 1985-05-27 Fujitsu Ltd Resistor
JPS61114574A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Semiconductor device
JPS6276673A (en) * 1985-09-30 1987-04-08 Toshiba Corp High dielectric strength semiconductor device
JP2547729B2 (en) * 1986-01-16 1996-10-23 株式会社東芝 High voltage power integrated circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689392A (en) 1970-07-02 1972-09-05 Trw Inc Method of making a semiconductor device
US3717514A (en) 1970-10-06 1973-02-20 Motorola Inc Single crystal silicon contact for integrated circuits and method for making same
US3883889A (en) 1974-04-15 1975-05-13 Micro Power Systems Inc Silicon-oxygen-nitrogen layers for semiconductor devices
US4257832A (en) 1978-07-24 1981-03-24 Siemens Aktiengesellschaft Process for producing an integrated multi-layer insulator memory cell
US4297149A (en) 1980-05-05 1981-10-27 Rca Corporation Method of treating SiPOS passivated high voltage semiconductor device
US4399449A (en) 1980-11-17 1983-08-16 International Rectifier Corporation Composite metal and polysilicon field plate structure for high voltage semiconductor devices
US4430663A (en) 1981-03-25 1984-02-07 Bell Telephone Laboratories, Incorporated Prevention of surface channels in silicon semiconductor devices
US4737379A (en) 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4580156A (en) 1983-12-30 1986-04-01 At&T Bell Laboratories Structured resistive field shields for low-leakage high voltage devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Herstellungsverfahren fur eine Halbleiteranoronung," Neues aus der Technik, No. 3, vol. 15, Jun. 1974, p. 3.
Brown et al, "Electrical Characteristics of Silicon Nitride Films Prepared by Silane-Ammonia Reaction," J. Electrochem. Soc., vol. 115, No. 9, Sep. '68, 948-950.
Characterization and Modelling of SIPOS on Silicon High-Voltage Devices, J. N. Sandoe et al., IEE Proceedings, vol. 132, Pt. I, No. 6, Dec. 1985.
High-Voltage Planar Structure Using SiO2 -SIPOS-SiO2 Film, A. Mimura et al., IEEE Electron Device Letters, vol. EDL-6, No. 4, Apr. 1985.

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323041A (en) * 1991-06-21 1994-06-21 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor element
US5661079A (en) * 1994-07-12 1997-08-26 Temic Telefunken Microelectronic Gmbh Contacting process using O-SIPOS layer
US6316820B1 (en) 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
US6504235B2 (en) 1997-07-25 2003-01-07 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
US6417527B1 (en) * 1999-10-12 2002-07-09 Matsushita Electric Industrial Co., Ltd. Diode, method for fabricating the diode, and coplanar waveguide
US6710380B2 (en) 1999-10-12 2004-03-23 Matsushita Electric Industrial Co., Ltd. Diode, method for fabricating the diode, and coplanar waveguide
US7974150B2 (en) 2003-05-16 2011-07-05 Schlumberger Technology Corporation Methods and apparatus of source control for sequential firing of staggered air gun arrays in borehole seismic
DE102011090118A1 (en) * 2011-03-25 2012-09-27 Mitsubishi Electric Corp. Semiconductor device
US8872346B2 (en) 2011-03-25 2014-10-28 Mitsubishi Electric Corporation Semiconductor device
US9054039B2 (en) 2011-03-25 2015-06-09 Mitsubishi Electric Corporation Semiconductor device
DE102011090118B4 (en) 2011-03-25 2018-06-07 Mitsubishi Electric Corp. Semiconductor device
DE102011122927B3 (en) * 2011-03-25 2020-07-30 Mitsubishi Electric Corp. Semiconductor device
US20140061871A1 (en) * 2012-09-03 2014-03-06 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US9576791B2 (en) * 2015-06-01 2017-02-21 GM Global Technology Operations LLC Semiconductor devices including semiconductor structures and methods of fabricating the same

Also Published As

Publication number Publication date
EP0313249A1 (en) 1989-04-26
JPH02153529A (en) 1990-06-13
CA1292327C (en) 1991-11-19

Similar Documents

Publication Publication Date Title
USH665H (en) Resistive field shields for high voltage devices
US5246870A (en) Method for making an improved high voltage thin film transistor having a linear doping profile
Matsushita et al. Highly reliable high-voltage transistors by use of the SIPOS process
US5107323A (en) Protective layer for high voltage devices
USRE41866E1 (en) Semiconductor device and method of fabricating same
US3513364A (en) Field effect transistor with improved insulative layer between gate and channel
US4086613A (en) Semiconductor device having a passivated surface and method of manufacturing the device
US3649886A (en) Semiconductor device having a semiconductor body of which a surface is at least locally covered with an oxide film and method of manufacturing a planar semiconductor device
US4081292A (en) Method of manufacturing a semi-insulating silicon layer
US5031021A (en) Semiconductor device with a high breakdown voltage
US4001873A (en) Semiconductor device
US3363152A (en) Semiconductor devices with low leakage current across junction
US4890150A (en) Dielectric passivation
US3436612A (en) Semi-conductor device having dielectric and metal protectors
US4942446A (en) Semiconductor device for switching, and the manufacturing method therefor
US3462657A (en) Protection means for surface semiconductor devices having thin oxide films therein
US5449938A (en) MOS-controlled power semiconductor component
US6084263A (en) Power device having high breakdown voltage and method of manufacturing the same
Tanaka et al. Interface characteristics of the reactively sputtered Al2O3-Si structure
US4789886A (en) Method and apparatus for insulating high voltage semiconductor structures
US4717617A (en) Method for the passivation of silicon components
Burte et al. The correlation between the breakdown voltage of power devices passivated by semi-insulating polycrystalline silicon and the effective density of interface charges
KR800000889B1 (en) Semiconductor device
JPS5929425A (en) Manufacture of semiconductor device
JPH0324781B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNOLLE, WILLIAM R.;OSENBACH, JOHN W.;SIGNING DATES FROM 19871009 TO 19871016;REEL/FRAME:004800/0786

STCF Information on status: patent grant

Free format text: PATENTED CASE