JPH0324781B2 - - Google Patents
Info
- Publication number
- JPH0324781B2 JPH0324781B2 JP56167880A JP16788081A JPH0324781B2 JP H0324781 B2 JPH0324781 B2 JP H0324781B2 JP 56167880 A JP56167880 A JP 56167880A JP 16788081 A JP16788081 A JP 16788081A JP H0324781 B2 JPH0324781 B2 JP H0324781B2
- Authority
- JP
- Japan
- Prior art keywords
- thyristor
- layer
- semiconductor
- layers
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000137 annealing Methods 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000004642 Polyimide Substances 0.000 description 13
- 229920001721 polyimide Polymers 0.000 description 13
- 239000012535 impurity Substances 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
- H01L29/744—Gate-turn-off devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thyristors (AREA)
Description
【発明の詳細な説明】
この発明はサイリスタの製造方法に係わり、特
にpn接合が表面に露出するサイリスタ装置の表
面準位を減少するサイリスタの製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thyristor, and more particularly to a method for manufacturing a thyristor that reduces the surface level of a thyristor device in which a pn junction is exposed on the surface.
一般にMOSデバイス、バイポーラICなど半導
体基体の表面にpn接合を有し、その表面近傍の
電流、電界を制御することによつて動作する半導
体素子においてはpn接合の表面近傍に形成され
るチヤンネルを通して無効電流が流れ、頻々素子
特性の劣化をもたらす。これは一般にpn接合の
露出部を覆うようにSiO2,Si3N4などの絶縁膜が
設けられることが多く、この絶縁膜中に含まれる
電荷に誘起されて半導体表面にも電荷層が形成さ
れ、pn接合にバイアスが印加されるとその電荷
層中の電荷が移動するために起こるものである。
この問題を解決するために従来は絶縁膜中に不純
物原子をドープすることによつて実効電荷量を減
らしたり、水素の還元作用を利用して実効電荷を
少なくする水素アニール技術が使われてきた。 In general, in semiconductor devices such as MOS devices and bipolar ICs that have a pn junction on the surface of a semiconductor substrate and operate by controlling the current and electric field near the surface, there is no effect through a channel formed near the surface of the pn junction. Current flows, often resulting in deterioration of device characteristics. This is because an insulating film such as SiO 2 or Si 3 N 4 is generally provided to cover the exposed part of the pn junction, and a charge layer is also formed on the semiconductor surface due to the charge contained in this insulating film. This occurs because the charges in the charge layer move when a bias is applied to the pn junction.
To solve this problem, hydrogen annealing technology has traditionally been used to reduce the effective charge by doping impurity atoms into the insulating film, or to reduce the effective charge by utilizing the reduction effect of hydrogen. .
一方、サイリスタ、ゲートターンオフサイリス
タ(以下GTOと呼ぶ)などの数百Aを通電する
電力素子は(無効電流/通電電流)の比が極めて
小さいことのために制御電流、電圧が加わる領域
のチヤンネル形成は従来は大きな問題ではなかつ
た。すなわち、一般の電力用サイリスタのn−エ
ミツタタ,p−ベース,n−ベースで構成される
npnトランジスタの電流増幅率αnpnは約0.90であ
るのに対して、小型のバイポーラトランジスタの
hFEは500〜1000が普通であり、これをαに換算
すると、0.998〜0.999になる。しかし電力用サイ
リスタの中でもGTOのようにカソード電極が複
数個に分割される構造を有するサイリスタにおい
ては、n−エミツタ,pベースで形成されるエミ
ツタ接合の周囲長が一般のサイリスタに比べて数
10倍から100倍になるので前記チヤンネル効果は
無視できなくなる。すなわち直径5cmの一般のサ
イリスタのエミツタ接合全長は15.7cmに対して、
直径5cmの中に縦0.6mm、横0.15mmの長方形のエ
ミツタを8000個含むGTOのエミツタ接合全長は
12mの長さになり、後者/前者の比は76である。
つまりエミツタ接合の単位長当りの無効電流を一
定とすると、一般サイリスタに比べてGTOは76
倍の無効電流がエミツタ接合に流れることにな
る。言い換えれば他の条件を一定にするとGTO
のαnpnはサイリスタのそれに比べて低くなる。 On the other hand, power devices such as thyristors and gate turn-off thyristors (hereinafter referred to as GTOs) that carry several hundred amperes have an extremely small ratio of reactive current/carrying current, so a channel is formed in the region where control current and voltage are applied. was not a big problem in the past. In other words, it is composed of the n-emitter, p-base, and n-base of a general power thyristor.
The current amplification factor αnpn of an npn transistor is approximately 0.90, while that of a small bipolar transistor
hFE is normally 500 to 1000, and when converted to α, it is 0.998 to 0.999. However, among power thyristors, in a thyristor with a structure in which the cathode electrode is divided into multiple parts, such as the GTO, the circumference of the emitter junction formed by the n-emitter and p-base is several times larger than that of a general thyristor.
Since it increases from 10 times to 100 times, the channel effect cannot be ignored. In other words, the total length of the emitter junction of a general thyristor with a diameter of 5 cm is 15.7 cm, whereas
The total length of the GTO emitter joint is 8000 rectangular emitters with a length of 0.6 mm and a width of 0.15 mm in a diameter of 5 cm.
The length is 12m, and the latter/former ratio is 76.
In other words, assuming that the reactive current per unit length of the emitter junction is constant, the GTO is 76
Double the amount of reactive current will flow through the emitter junction. In other words, holding other conditions constant, GTO
The αnpn of the thyristor is lower than that of the thyristor.
一方、電力用サイリスタのパツケージは一般に
平形の加圧接触型を用いるので、熱疲労試験
(TFT)等の信頼性テストを経れば、加圧接触を
受けるカソード電極の金属にダレを生じてゲート
電極金属に接触する短絡事故が頻々起こる。これ
を防ぐための方法としてゲート電極金属上に絶縁
物質を被覆する構造が用いられる。絶縁物質とし
てはSiO2,Si3N4,CVD膜、ガラス物質、固体フ
イルムポリイミドなどの高分子絶縁物があるが、
膜を比較的厚くできてクラツクが発生しない条件
を備えているポリイミドなどの高分子絶縁物が適
している。 On the other hand, the power thyristor package generally uses a flat pressure contact type, so if it goes through reliability tests such as thermal fatigue testing (TFT), the metal of the cathode electrode that is subjected to pressure contact will sag and the gate Short-circuit accidents due to contact with electrode metal frequently occur. To prevent this, a structure is used in which the gate electrode metal is coated with an insulating material. Insulating materials include polymeric insulating materials such as SiO 2 , Si 3 N 4 , CVD films, glass materials, and solid film polyimide.
A polymer insulating material such as polyimide is suitable because it can form a relatively thick film and does not cause cracks.
第1図に示すのは従来のサイリスタ構造を有す
る半導体装置の製造方法である。ここでは電力用
GTOを例にとり従来技術を説明する。先ず平均
不純物濃度が1012〜1014cm-3のn型Si基板1の両
面からガリウム,ボロンなどのp型不純物源を拡
散してp層2,n層3,P層4の3層を形成す
る。(第1図b)次に片面からりんなどのn型不
純物源を拡散してn層5を形成し、npnpの4層
とする。(第1図c)次に主面6にn層5とp層
2を分離するための溝7を形成し、カソードとな
るn層5を複数個に分割する。(第1図d)次に
主面8側から金などのライフタイムキラーを拡散
した後、n層5とp層2で形成されるpn接合を
パツシベーシヨンするための絶縁膜例えばSiO2
膜9を被覆する。(第1図e)次に電極形成のた
めにカソードとなるべきn層5、ゲートとなるベ
きp層2、アノードとなるべきp層4の絶縁膜9
を所定箇所取り除きAlやV,Ni,Avなど金属を
蒸着またはスパツタ等して各々カソード電極1
0、ゲート電極11、アノード電極12を形成す
る。これら金属と半導体を低抵抗接触するために
シンターをする。この時多孔質の絶縁膜9を通し
てエミツタ接合界面の表面準位を減少させるため
に頻々水素雰囲気中でアニールが施される。次に
ゲートの溝部7をポリイミドなどの高分子絶縁物
13を塗布した後、ゲート電極11を外部に取り
出すためにリード線14をボンデイングする。こ
の後平形外囲器に封入されるが本発明に直接係わ
りがないので省略する。 FIG. 1 shows a conventional method for manufacturing a semiconductor device having a thyristor structure. Here for power
The conventional technology will be explained using GTO as an example. First, a p-type impurity source such as gallium or boron is diffused from both sides of an n-type Si substrate 1 with an average impurity concentration of 10 12 to 10 14 cm -3 to form three layers, p-layer 2, n-layer 3, and p-layer 4. Form. (FIG. 1b) Next, an n-type impurity source such as phosphorus is diffused from one side to form an n-layer 5, resulting in four npnp layers. (FIG. 1c) Next, a groove 7 for separating the n-layer 5 and the p-layer 2 is formed in the main surface 6, and the n-layer 5, which will become a cathode, is divided into a plurality of pieces. (Fig. 1d) Next, after diffusing a lifetime killer such as gold from the main surface 8 side, an insulating film such as SiO 2 is formed to passivate the pn junction formed between the n layer 5 and the p layer 2 .
Coat the membrane 9. (Fig. 1 e) Next, to form electrodes, the insulating film 9 of the n layer 5 to become the cathode, the p layer 2 to become the gate, and the p layer 4 to become the anode.
are removed at predetermined locations and metals such as Al, V, Ni, and Av are vapor-deposited or sputtered to form cathode electrodes 1.
0, a gate electrode 11 and an anode electrode 12 are formed. Sintering is performed to make low-resistance contact between these metals and semiconductors. At this time, annealing is frequently performed in a hydrogen atmosphere through the porous insulating film 9 to reduce the surface level at the emitter junction interface. Next, a polymer insulator 13 such as polyimide is applied to the groove 7 of the gate, and then a lead wire 14 is bonded to take out the gate electrode 11 to the outside. Although it is then sealed in a flat envelope, it is not directly related to the present invention and will therefore be omitted.
以上説明したような従来製造技術を用いた
GTOは保持電流IH、オン電圧VTM特性が最終的に
劣化する。これは水素アニールを施すことによつ
ていつたん増加したαnpnがポリイミドを塗布し
た後の窒素中でのベーキングによつて低下するた
めである。 Using conventional manufacturing technology as explained above,
In GTO, the holding current I H and on-voltage V TM characteristics eventually deteriorate. This is because αnpn, which had once increased due to hydrogen annealing, is reduced by baking in nitrogen after coating the polyimide.
本発明は以上の欠点についてなされたもので、
水素アニール工程をポリイミド塗布後に施すこと
によつて最終的なサイリスタ素子のαnpnを増加
し、低い保持電流、低いオン電圧など好ましいサ
イリスタ特性が得られるサイリスタの製造方法を
提供するにある。 The present invention has been made to address the above drawbacks.
It is an object of the present invention to provide a method for manufacturing a thyristor, which increases αnpn of the final thyristor element by performing a hydrogen annealing step after coating polyimide, thereby obtaining favorable thyristor characteristics such as low holding current and low on-voltage.
本発明は拡散等で形成されたpnpnの4層を主
構造とする半導体基体の一主面にnエミツタを複
数個に分割し、かつnエミツタとpベースを露出
させる工程と、露出したnエミツタ、pベースの
接合を選択的にSiO2などの絶縁物で覆う工程と、
nエミツタ、pベース、pエミツタにオーミツク
接触をとるための金属を接着し各々カソード、ゲ
ート、アノード電極としてから水素雰囲気中でア
ニールする工程と、少なくともゲート電極上を
2μm以上の厚さを有する高分子絶縁物で覆う工程
と、水素雰囲気中で480℃のアニールをする工程
を順次行なうことを特徴とする。 The present invention involves a step of dividing an n-emitter into a plurality of pieces on one main surface of a semiconductor substrate mainly composed of four pnpn layers formed by diffusion, exposing the n-emitter and the p-base, and the process of exposing the n-emitter and p-base. , selectively covering the p-based junction with an insulator such as SiO2 ;
A step of bonding metal for making ohmic contact to the n-emitter, p-base, and p-emitter to form the cathode, gate, and anode electrodes, respectively, and then annealing in a hydrogen atmosphere;
It is characterized by sequentially performing a step of covering with a polymer insulator having a thickness of 2 μm or more and a step of annealing at 480° C. in a hydrogen atmosphere.
本発明と従来技術の対比を明確にするために第
2図aに本発明のサイリスタ製造方法を、第2図
bに従来方法を示す。本発明と従来法の違いはサ
イリスタの製造方法の最終工程で水素雰囲気中の
アニールを施すかどうかである。本発明に従えば
前記した効果によりαnpnが高く、その結果保持
電流IHが低く、オン電圧VTMが低くなる。 In order to clearly contrast the present invention with the prior art, FIG. 2a shows the thyristor manufacturing method of the present invention, and FIG. 2b shows the conventional method. The difference between the present invention and the conventional method is whether or not annealing in a hydrogen atmosphere is performed in the final step of the thyristor manufacturing method. According to the present invention, αnpn is high due to the above-described effects, and as a result, holding current I H is low and on-voltage V TM is low.
これらの特性の差は以下の実施例によつて明ら
かになつた。平均不純物濃度が1×1014cm-3厚さ
300μmのn型基板の両面からガリウムを不純物源
として拡散しpnpを形成する。p層の表面不純物
濃度は1×1018cm-3、層の厚さは50μmであつた。
次に片面にリンを不純物源として拡散しpnpnを
形成する。nエミツタ層の表面不純物濃度は4×
1020cm-3,n層の厚さは12μmであつた。次にn
エミツタ側に写真蝕刻法とエツチングを用いてゲ
ートになるべき箇所に凹部を設けてnエミツタを
複数個に分割すると共にpベースを露出させる。
この実施例では凹部の深さは20μmであつた。次
に露出したnエミツタ、pベースの接合上に写真
蝕刻法を用いて厚さ約5000ÅのSiO2を被覆する。 The differences in these properties were clarified by the following examples. Average impurity concentration is 1×10 14 cm -3 thickness
Gallium is diffused as an impurity source from both sides of a 300 μm n-type substrate to form a PNP. The surface impurity concentration of the p layer was 1×10 18 cm −3 and the layer thickness was 50 μm.
Next, phosphorus is diffused onto one side as an impurity source to form pnpn. The surface impurity concentration of the n emitter layer is 4×
10 20 cm -3 , and the thickness of the n-layer was 12 μm. Then n
Using photolithography and etching, a recess is provided on the emitter side at the location where the gate is to be formed, thereby dividing the n emitter into a plurality of parts and exposing the p base.
In this example, the depth of the recess was 20 μm. Next, the exposed n-emitter and p-base junctions are coated with SiO 2 to a thickness of about 5000 Å using photolithography.
次にカソード、ゲート、アノード各電極を厚さ
10μmのアルミニウムを蒸着することによつて形
成した。アノード電極はさらに温度保償板として
厚さ2mmのタングステン板を共晶した。次に約
500℃の水素雰囲気中で10分間アニールした。こ
の工程を便宜上第1の水素アニールと呼ぶ。次に
ゲート電極上にポリイミドを塗布し、300℃の空
気中でベーキングし、その後再び約500℃の水素
雰囲気中で10分間アニールした。この工程を便宜
上第2の水素アニールと呼ぶ。その後は半導体基
体の周縁部にサンドブラストをかけ、その箇所を
エツチングして主耐圧を出し、パツシベーシヨン
のためにシリコンゴムをエンキヤツプしてから、
ゲートリード線をボンデイングし、平形外囲器に
封入する周知のサイリスタ技術を駆使した。 Next, the thickness of the cathode, gate, and anode electrodes is
It was formed by evaporating 10 μm of aluminum. The anode electrode was further eutecticized with a 2 mm thick tungsten plate as a temperature insulating plate. Then about
Annealing was performed for 10 minutes in a hydrogen atmosphere at 500°C. For convenience, this step is referred to as the first hydrogen annealing. Next, polyimide was applied onto the gate electrode, baked in air at 300°C, and then annealed again for 10 minutes in a hydrogen atmosphere at about 500°C. For convenience, this step is referred to as second hydrogen annealing. After that, we sandblast the periphery of the semiconductor substrate, etch that area to create the main breakdown voltage, and encapsulate silicone rubber for passivation.
We made full use of the well-known thyristor technology in which the gate lead wire is bonded and enclosed in a flat envelope.
第3図に第1水素アニール、ポリイミドベーキ
ング、第2の水素アニール工程における保持電流
IHの特性を示す。同図からわかるように本発明
(実線→a)のIHが1Aであるのに従来法(点線→
b)のIHは40Aであり、本発明の効果は明らかで
ある。その他の特性としてαnpnは本発明が0.98
に対して従来法が0.89,VTMは本発明が1.3Vに対
して従来法が2.1Vであつた。第2の水素アニー
ルの条件はアニール時間にはほとんど影響を受け
ないがアニール温度には強く影響される。アニー
ル時間を10分間一定としてアニール温度に対して
IH特性を見たところ、450℃以下ではIHはほとん
ど変わらず、従来法とほとんど同じの30A乃至
40Aであつたが450℃以上で急激に減少し、480℃
以上でほぼ一定の3A乃至1Aとなつた。従つて第
2の水素アニール温度は480℃以上であることが
必要である。 Figure 3 shows the holding current in the first hydrogen annealing, polyimide baking, and second hydrogen annealing steps.
Shows the characteristics of IH . As can be seen from the figure, the I H of the present invention (solid line → a) is 1A, while the conventional method (dotted line →
The I H of b) is 40A, and the effect of the present invention is clear. As for other characteristics, αnpn is 0.98 according to the present invention.
The conventional method had a V TM of 0.89, whereas the present invention had a V TM of 1.3 V, whereas the conventional method had a V TM of 2.1 V. The conditions for the second hydrogen annealing are hardly affected by the annealing time, but are strongly affected by the annealing temperature. For annealing temperature with constant annealing time of 10 minutes
Looking at the IH characteristics, we found that there was almost no change in IH below 450°C;
It was 40A, but it decreased rapidly above 450℃, and it decreased to 480℃.
With the above, the current was almost constant at 3A to 1A. Therefore, the second hydrogen annealing temperature needs to be 480°C or higher.
また絶縁用ポリイミドは400℃以上の熱処理を
すると一部蒸発して膜厚は減少する。その結果カ
ソード電極とゲード電極との絶縁に不良が生ずる
ことが、TFTなどの信頼性試験で明らかになつ
た。ポリイミド塗布の厚さと電極間短絡の頻度を
調べたところ、ポリイミドの厚さが2μm以上で
は、電極間短絡は全く起こらず、2μm未満では厚
さが減少するにつれて短絡頻度が増加する。従つ
てポリイミドの厚さを2μm以上になるように塗布
することが必要である。 Furthermore, when insulating polyimide is heat-treated at temperatures above 400°C, part of it evaporates and the film thickness decreases. Reliability tests on TFTs and other devices revealed that this resulted in poor insulation between the cathode and gate electrodes. When we investigated the thickness of polyimide coating and the frequency of short circuits between electrodes, we found that when the polyimide thickness was 2 μm or more, no short circuits occurred between electrodes, and when the thickness was less than 2 μm, the frequency of short circuits increased as the thickness decreased. Therefore, it is necessary to apply the polyimide to a thickness of 2 μm or more.
なお以上の実施例はカソード電極が1層で形成
される場合について示されたが、ゲート電極上に
塗布されるポリイミドの上にもう1層、すなわち
合わせて2層のカソード電極が配線される場合に
も本発明は当然適用される。その場合はすべての
電極金属配線とポリイミド塗布の後に水素アニー
ルすることが本発明の特徴となる。 Note that the above embodiments have been shown for the case where the cathode electrode is formed in one layer, but when another layer of cathode electrode is wired on top of the polyimide coated on the gate electrode, that is, two layers in total, the cathode electrode is wired. Naturally, the present invention is also applicable to the above. In that case, a feature of the present invention is to perform hydrogen annealing after all electrode metal wiring and polyimide coating.
第1図は従来のサイリスタ製造方法の工程図、
第2図は本発明と従来とを比較して示したサイリ
スタ製造方法のプロセスフローチヤート、第3図
は工程毎に測定されたGTOの保持電流IHを示す
図である。
1:n型Si基板、2,4:p層、3,5:n
層、9:SiO2膜、10:カソード電極、11:
ゲート電極、12:アノード電極。
Figure 1 is a process diagram of the conventional thyristor manufacturing method.
FIG. 2 is a process flowchart of a thyristor manufacturing method comparing the present invention and the conventional method, and FIG. 3 is a diagram showing the GTO holding current I H measured in each step. 1: n-type Si substrate, 2, 4: p layer, 3, 5: n
Layer, 9: SiO 2 film, 10: Cathode electrode, 11:
Gate electrode, 12: anode electrode.
Claims (1)
主面に導電型が異なり、少なくとも一方は複数個
に分割された2種類の半導体層を露出させる工程
と、半導体表面に露出するpn接合上に選択的に
絶縁物質を設ける工程と、前記導電型の異なる2
種類の半導体表面に各々金属を選択的に被覆し水
素雰囲気中でアニールする工程と、前記2種類の
半導体表面に形成された金属層のうちの一方の表
面上と前記絶縁物質上を2μm以上の厚さを有する
高分子絶縁物質で覆う工程から成るサイリスタの
製造方法において、前記全ての工程の後で水素ガ
スを含む雰囲気中で480℃以上の熱処理をするこ
とを特徴とするサイリスタの製造方法。1. A process of exposing two types of semiconductor layers of different conductivity types, at least one of which is divided into a plurality of pieces, on one main surface of a semiconductor substrate having a main structure of four pnpn layers, and a process of exposing two types of semiconductor layers, at least one of which is divided into a plurality of pieces, on one main surface of a semiconductor substrate having a main structure of four pnpn layers, and a process of exposing a pn junction exposed on the semiconductor surface. a step of selectively providing an insulating material on the two
A step of selectively coating the surfaces of each type of semiconductor with a metal and annealing in a hydrogen atmosphere, and a step of coating the surface of one of the metal layers formed on the surfaces of the two types of semiconductors and the insulating material with a thickness of 2 μm or more. A method for manufacturing a thyristor comprising a step of covering the thyristor with a thick polymeric insulating material, the method comprising: performing heat treatment at 480° C. or higher in an atmosphere containing hydrogen gas after all of the above steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16788081A JPS5870571A (en) | 1981-10-22 | 1981-10-22 | Manufacture of thyristor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16788081A JPS5870571A (en) | 1981-10-22 | 1981-10-22 | Manufacture of thyristor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5870571A JPS5870571A (en) | 1983-04-27 |
JPH0324781B2 true JPH0324781B2 (en) | 1991-04-04 |
Family
ID=15857789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16788081A Granted JPS5870571A (en) | 1981-10-22 | 1981-10-22 | Manufacture of thyristor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870571A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2558643B2 (en) * | 1986-08-12 | 1996-11-27 | 松下電子工業株式会社 | Method for manufacturing semiconductor device |
DE10150640B4 (en) * | 2001-10-12 | 2005-02-10 | eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG | Thyristor with integrated over-head protection and process for its production |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50120982A (en) * | 1974-03-09 | 1975-09-22 | ||
JPS5651867A (en) * | 1979-10-05 | 1981-05-09 | Hitachi Ltd | Manufacturing of semiconductor |
JPS56107562A (en) * | 1980-01-31 | 1981-08-26 | Toshiba Corp | Manufacture of semiconductor device |
-
1981
- 1981-10-22 JP JP16788081A patent/JPS5870571A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50120982A (en) * | 1974-03-09 | 1975-09-22 | ||
JPS5651867A (en) * | 1979-10-05 | 1981-05-09 | Hitachi Ltd | Manufacturing of semiconductor |
JPS56107562A (en) * | 1980-01-31 | 1981-08-26 | Toshiba Corp | Manufacture of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS5870571A (en) | 1983-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3226613A (en) | High voltage semiconductor device | |
JP2995723B2 (en) | Vertical current semiconductor device using wafer bonding and method of manufacturing the same | |
KR0161356B1 (en) | Method of manufacturing semiconductor | |
US4370180A (en) | Method for manufacturing power switching devices | |
US3249831A (en) | Semiconductor controlled rectifiers with a p-n junction having a shallow impurity concentration gradient | |
EP0345435A2 (en) | Semiconductor device with a high breakdown voltage and method for its manufacture | |
US3601888A (en) | Semiconductor fabrication technique and devices formed thereby utilizing a doped metal conductor | |
KR840001605B1 (en) | Thin film transistor | |
US3275910A (en) | Planar transistor with a relative higher-resistivity base region | |
US4177477A (en) | Semiconductor switching device | |
US2945286A (en) | Diffusion transistor and method of making it | |
US5223442A (en) | Method of making a semiconductor device of a high withstand voltage | |
JPH0324781B2 (en) | ||
US4165516A (en) | Semiconductor device and method of manufacturing same | |
US3277351A (en) | Method of manufacturing semiconductor devices | |
US3513363A (en) | Thyristor with particular doping | |
US3087100A (en) | Ohmic contacts to semiconductor devices | |
US4613381A (en) | Method for fabricating a thyristor | |
US3874956A (en) | Method for making a semiconductor switching device | |
US6084263A (en) | Power device having high breakdown voltage and method of manufacturing the same | |
US3821779A (en) | Semiconductor device with high conductivity and high resistivity collector portions to prevent surface inversion | |
US4397695A (en) | Method for stabilizing the current gain of NPN -silicon transistors | |
JPS6212669B2 (en) | ||
JPH0982955A (en) | Manufacture of semiconductor device | |
JP2002261269A (en) | Manufacturing method of mesa-type semiconductor device |