USH1333H - High strength reinforcement - Google Patents
High strength reinforcement Download PDFInfo
- Publication number
- USH1333H USH1333H US07/496,759 US49675990A USH1333H US H1333 H USH1333 H US H1333H US 49675990 A US49675990 A US 49675990A US H1333 H USH1333 H US H1333H
- Authority
- US
- United States
- Prior art keywords
- cord
- tire
- cords
- tensile
- belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/02—Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/0007—Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/2003—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
- B60C9/2006—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/062—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
- D07B1/0626—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0207—Elastomeric fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/08—Reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/34—Inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/30—Iron, e.g. steel
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2023—Strands with core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S57/00—Textiles: spinning, twisting, and twining
- Y10S57/902—Reinforcing or tire cords
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T152/00—Resilient tires and wheels
- Y10T152/10—Tires, resilient
- Y10T152/10495—Pneumatic tire or inner tube
- Y10T152/10765—Characterized by belt or breaker structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249933—Fiber embedded in or on the surface of a natural or synthetic rubber matrix
Definitions
- the present invention relates to cord, cord reinforced plies and radial tires for vehicles so reinforced.
- Radial tires are those tires wherein the cords of the carcass plies which extend from one bead to the other lie substantially on radial planes.
- the present invention relates to a cord reinforced composite having rubber where preferably the structure is for tires and a tire carcass or belt wherein at least one of two plies in the belt has the cords therein biased with respect to the direction of rotation of the tire.
- Reinforced elastomeric articles are well known in the art for example for conveyor or like type belts, tires etc., with cords of textile and/or fine steel wire, particularly belts for pneumatic tires with up to four plies with the cord reinforcement between adjacent plies being opposingly biased with respect to the direction of movement of the tire where it is desired to reinforce in the lateral direction in addition to the direction of rotation of the tire.
- cords made of multi twisted filaments of fine wire with two or more filaments in a single strand construction having a wrap filament therearound to reinforce the above structure have also been known. More recently multi strand cords such as 2+7 ⁇ 0.22+1 have been found necessary to meet the higher demand of fatigue life for composites in tire belts but are more expensive to make.
- the challenge was to determine cord structure which could take advantage of the new cord modulus while not adversely affecting cord volume to rubber volume ratio on lateral reinforcement.
- the present invention provided cords for truck tire Load Ranges E, F, G and H which substantially reduced the number of filaments for these Load Ranges. While a reduction in the number of filaments would lead one to expect a reduction in weight, this would not necessrily be the case where the filament size was increased. Under such circumstances, cord was found for use in the Load Ranges by varying the ends per inch (EPI) in the plies of the belt.
- EPI ends per inch
- Other advantages which exist in the present invention include improved rolling resistance in at least one instance and a reduction in the cord gum coat gauge between the cord layers in the belt in another instance.
- a weight reduction due to reduction in weight of reinforcement as well as reduction in an amount of gum gauge also result in a reduction in cost for the tire of the present invention.
- the new belt structure gives better rolling resistance perhaps because of the higher stiffness of the new cord over the old cord being used for reinforcement in the belt structure.
- the present invention will be shown to have substantially maintained the gross load for a tire belt while reducing weight and cost using stronger filament in cord constructions not useable previously, even with high tensile filaments, and accompanying cord volumes and angles which reduce material in the tire. Similar advantages have been achieved with carcass plies as well.
- TS tensile strength
- CBL cord break load in pounds
- this invention provides a pneumatic radial tire with a carcass having radial cords and two sidewalls spaced apart a distance which in the axial direction determines the width of the tire section.
- the tire has two beads each one of which around which are turned up, from the inside toward the outside, the ends of the cords of the carcass.
- a tread is disposed on the crown of the carcass, and a belt structure that is circumferentially inextensible is interposed between the tread and the carcass.
- the belt structure has a width that is substantially equal to that of the read and has two radially overlapped layers of elastomeric fabric reinforced with metallic cords.
- the metallic cords are parallel to each other in each layer and crossed with the cords of the facing layer and inclined at an angle of between 19° and 66° with respect to the equatorial plane of the tire.
- Super tensile cords of more than 6 filaments have also been developed and in some case the previous construction, whether normal or high tensile cord, has been simplified by reducing the number of filaments in the super tensile cord.
- the above cords have the advantages of a 7 to 9% increase in cord break load over a predecessor cord made of high tensile steel.
- Those cords having a smaller cord diameter over previously used cord in a reinforcement of at least one layer of belt or ply of the present invention results in less rubber gauge being used where a comparable thickness of rubber is laid on each side of the reinforcing cord upon calendering.
- a smaller diameter cord results in less weight in the reinforcement resulting in lower rolling resistance for a tire thereby reinforced.
- FIGS. 1 and 2 illustrate tire sections having composite structures according to the present invention
- FIGS. 3-5 are cross sections through cords in accordance with an embodiment of the present invention.
- FIG. 6 is a schematic of a composite in accordance with the present invention.
- FIGS. 7-8 are graphs comparing fatigue of high tensile and super tensile cords.
- Bead means that part of the tire comprising an annular tensile member wrapped by ply cords and shaped, with or without other reinforcement elements such as flippers, chippers, apexes, toe guards and chafers, to fit the design rim.
- Belt structure means at least two layers or plies of parallel cords, woven or unwoven, underlying the tread, unanchored to the bead, and having both left and right cord angles in the range from 17 degrees to 27 degrees with respect to the equatorial plane of the tire.
- Carcass means the tire structure apart from the belt structure, tread, undertread, and sidewall rubber over the plies, but including the beads.
- Core means one or more of the reinforcement elements, formed by one or more filaments/wires which may or may not be twisted or otherwise formed which may further include strands so formed which strands may or may not be also so formed, of which the plies in the tire are comprised.
- “Crown” means that portion of the tire within the width limits of the tire tread.
- Density means quantity per unit length.
- Equatorial plane means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread.
- Load Range means load and inflation limits for a given tire used in a specific type of service as defined by tables in The Tire and Rim Association, Inc., 1989 Year Book.
- Ring and radially are used to mean directions radially toward or away from the axis of rotation of the tire.
- Ring means the open space between cords in a layer.
- “Section width” means the maximum linear distance parallel to the axis of the tire and between the exterior of its sidewalls when and after it has been inflated at normal pressure for 24 hours, but unloaded, excluding elevations of the sidewalls due to labeling, decoration or protective bands.
- “Stiffness Ratio” means the value of the control belt structure stiffness divided into the value of another belt structure when the values are determined by a fixed three (3) point bending test having both ends of the cord fixed and flexed by a load centered between the fixed ends.
- Thread means that portion of a tire that comes into contact with the road when the tire is normally inflated and under normal load.
- a ply 12 is shown within pneumatic tires 10 with a radial carcass wherein like elements have received like reference numerals.
- a tire has a radial ply carcass structure when the cords of the carcass reinforcing ply, or plies 12,14 are oriented at angles in the range of 75° to 90° with respect to the equatorial plane (EP) of the tire.
- EP equatorial plane
- the tire 10 has a pair of substantially inextensible annular beads 16,18 which are axially spaced apart from one another.
- Each of the beads 6,8 is located in a bead portion of the tire 10 which has exterior surfaces configured to be complimentary to the bead seats and retaining flanges of a rim (not shown) upon which the tire 10 is designed to be mounted.
- Plies may be of side-by-side reinforcing cords of polyester material, or of cord of the present invention and extend between the beads with an axially outer portion of the carcass structure folded about each of the beads. While in the embodiment of FIG. 1, the carcass ply structure comprises two plies of reinforcing material, it is understood that one or more carcass plies of any suitable material may be employed in certain embodiments and one or more plies of reinforcement according to this invention may be used as well.
- a layer of a low permeability material 20 may be disposed inwardly of the carcass plies 12,14 and contiguous to an inflation chamber defined by the tire and rim assembly. Elastomeric sidewalls 22,24 are disposed axially outwardly of the carcass structure.
- a circumferentially extending belt structure 26 comprising in the embodiments shown two layers 28,30 (FIG. 1), or four layers 28,30,32,34 (FIG. 2), each of which preferably comprises steel reinforcing cords 36 (FIG. 3) is characterized by the cords 36 having filaments 38,40,42 and 44 with a breaking strength of at least 3650 N/MM 2 . While two and four layer belts are illustrated, other numbers are applicable as well.
- the cords 36 are comprised of four filaments of finely drawn super tensile steel wire.
- the cords 36 are comprised of four filaments of finely drawn super tensile steel wire.
- ST super tensile
- Table 1 gives calculated values of filament break load for super tensile filaments in comparison to previous high tensile filaments for various filament diameters. The first group being filaments which were made and the second group additional sizes identified as useful and to be made. In each case the super tensile gives a higher value.
- the cords 36 used in the working example have a structure of four filaments 38,40,42 and 44 of 0.35 mm diameter super tensile steel wire and a cord 36 break strength of 1308 Newtons plus or minus 96 Newtons.
- Each cord 36 has two filaments 38,40 twisted together with a 16 mm lay length and these two filaments 38,40 are twisted at a 16 mm lay length together with the remaining two filaments 42,44 which are untwisted and parallel to each other when twisted together with the twisted filaments 38,40 all in the same twist direction.
- This cord is designated as 2+2 ⁇ 0.35ST.
- the 2+2 construction is known for its openness and good rubber penetration resulting from the openness.
- the 0.35 designates the filament diameter in millimeters and the ST designates the material being super tensile.
- the illustrated example and candidates 1 to 4 above show a reduction in, to less than equal, cord diameter with the first mentioned five candidates, items 1-4 and 10, further being of a simpler construction; i.e. fewer filaments of open construction to enhance corrosion resistance in addition to reducing gauge material and cost with the previously noted smaller diameter cord making the tires lighter in weight and less costly.
- CBL cord break strength
- CE cord efficiency
- Table 3 again compares high tensile and super tensile cord samples of 3 ⁇ 0.22/9 ⁇ 0.20+1 and 3 ⁇ 0.26/9 ⁇ 245+1 construction for fatigue properties with super tensile again exceeding high tensile in a three roll fatigue test.
- the three roll fatigue test consists of three rolls on 13/8" (34.9 MM) centers with 1 inch diameter pulleys, unless otherwise specified, cycled at 330 cycles per minute under a load which is 10% of cord breaking strength.
- the middle roll of the three rolls is offset from the remaining two rolls, and the cord, embedded in a strip of elastomer 1/4" ⁇ 1/2" ⁇ 22" (6.35 MM ⁇ 12.70 MM ⁇ 558.8 MM), is passed under the two rolls and over the middle roll in each cycle to reverse the bending on the cord as it passes over the rolls.
- Table 4 above compares high tensile and super tensile in a 2 ⁇ 0.30 cord where the fatigue test pulley diameter was varied to enhance the results and again shows a higher fatigue for the super tensile cord
- FIG. 7 is a graph of the same super tensile cord, both graphs illustrating the higher fatigue properties of super tensile cord.
- This cord is found to be particularly applicable to tire sidewall ply reinforcement where the super tensile cord has permitted a reduction in end count (EPI) of 2 EPI in going from high tensile cord to super tensile with no other changes occurring in the ply or cord.
- the super tensile cords have higher strength and fatigue life over predecessor high tensile cords, and the cord candidates the list following Table 1 also have their filaments all twisted in the same direction with the same lay length to accommodate single twist operations. These advantages lead to elastomer products which have less reinforcement material and thus lower weight and cost. Further the life of the product can be increased with the increase in fatigue life of the cord and its filaments.
- EPI end per inch
- Table 7 lists samples of high tensile and possible super tensile candidates showing the general increase in rivet as the increased strength of the super tensile samples allowed a reduction in EPI.
- the rivet is reduced as for Load Range H.
- a minimum rivet of 0.018" must be maintained to give proper penetration of elastomers between cords when they are so embedded. This minimum rivet is particularly obtainable with the smaller diameter and simpler (less filaments in a cord) cord construction.
- Table 8 compares a prior high tensile belt of four layers with two candidates of super tensile with comparable strength in radial medium truck tire belts of a load range G.
- the cords are from the preferred group identified above. Generally it can be observed that the smaller diameter super tensile cord requires more EPI, but not for the first layer which requires less because of the off-set of the larger diameter filaments.
- Table 9 is a strength analysis for the prior high tensile belt of Table 8.
- Table 10 gives a test sample tire belt and ply construction of super tensile material and two additional candidates. The satisfactory results of the test sample indicated improved rolling resistance and that super tensile could be used in all load ranges by varying the end count (EPI). Each of the reinforcement packages resulted in the listed belt inch strengths.
- the value of the above type constructions are also seen as applicable to and useful for light truck tires in load ranges E/F where belts of two layers are preferred as illustrated in FIG. 4 with 2+2 ⁇ 0.35ST cords at 6.9 ends per centimeter (17.5 EPI) with the angle ⁇ of one layer being approximately 191/2° and the other ply having an identical but opposing angle.
- Another construction would be 3+2 ⁇ 0.35ST cords at 5.5 ends per centimeter (14 EPI) and the same angle as the first light truck tire example including two opposing layers.
- These constructions would replace a current construction of 3 ⁇ 0.265/9 ⁇ 0.245HT+1 at 4.7 and 5.5 ends per centimeter (12 and 14 EPI).
- Table 11 The above tire selections came only after extensive study and testing which included the lab test results in Table 11 below.
- this tire has a four layer belt as depicted in Tables 12 and 13 below for a prior belt and a super tensile belt, respectively together with a weight analysis.
- the reduction in weight of both cord and cord rubber of 4.7% results in a savings per tire in material alone of 25%.
- the belt structure for an 11R24.5 G167A truck tire with the above 2+2 ⁇ 0.35ST reinforcement has a stiffness of 36 Newtons/MM on a laboratory 3 point bending; i.e., knife edge ends center impingement, stiffness test as compared to 28 Newtons/MM for its predecessor, 3 ⁇ 0.265/9 ⁇ 0.245HT+1 at 12 EPI on the same test. This is a ratio of 1.29 of the new belt stiffness over the old (control). While not proven, theoretically the belt stiffness is responsible for, or at least contributes to, the improvement in rolling resistance.
- the 2 ⁇ 0.255ST candidate was placed in the belt of a P275/40ZR17 high performance tire in place of 2 ⁇ 0.30HT and was found to be better for dry handling giving a more solid feel and better oversteer but slightly less wet handling. Force and moment, high speed and subjective handling were found equal while rolling resistance was slightly worse and R5HT (torque) was better. Testing continues with further candidates in off-the-road tires such as 5/8/14 ⁇ 0.265ST+1 in the carcass and belts of 1800R33RL4J through 3600R51 size tires. Data is slow coming back on these large tires. In accordance with the provisions of the patent statutes, the principle and mode of operation of the tire have been explained and what is considered to be its best embodiment has been illustrated and described. It should, however, be understood that the invention may be practiced otherwise than as specifically illustrated and described without departing from its spirit and scope.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Tires In General (AREA)
- Ropes Or Cables (AREA)
- Moulding By Coating Moulds (AREA)
Priority Applications (31)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/496,759 USH1333H (en) | 1990-03-21 | 1990-03-21 | High strength reinforcement |
EP91905695A EP0527139B1 (en) | 1990-03-21 | 1991-03-11 | High strength cord |
CA002075041A CA2075041C (en) | 1990-03-21 | 1991-03-11 | High strength cord |
BR919106170A BR9106170A (pt) | 1990-03-21 | 1991-03-11 | Cordonel de alta resistencia |
ES91905695T ES2080943T3 (es) | 1990-03-21 | 1991-03-11 | Una cuerda y cubierta de neumatico reforzada con tal cuerda. |
JP91506192A JPH05505652A (ja) | 1990-03-21 | 1991-03-11 | 高張力コード |
PCT/US1991/001580 WO1991014811A1 (en) | 1990-03-21 | 1991-03-11 | High strength cord |
KR1019920702263A KR0182320B1 (ko) | 1990-03-21 | 1991-03-11 | 고강도 코드 |
AU74917/91A AU642996B2 (en) | 1990-03-21 | 1991-03-11 | High strength cord |
DE69114000T DE69114000T2 (de) | 1990-03-21 | 1991-03-11 | Hochfeste kordel. |
ZA911851A ZA911851B (en) | 1990-03-21 | 1991-03-13 | High strength cord |
ES91907545T ES2091326T3 (es) | 1990-03-21 | 1991-03-21 | Capa reforzada para neumaticos y neumaticos con refuerzo de alta resistencia. |
BR9106172A BR9106172A (pt) | 1990-03-21 | 1991-03-21 | Pneus com reforco de alta resistencia |
JP50730591A JP3704146B2 (ja) | 1990-03-21 | 1991-03-21 | 高強度補強タイヤ |
EP19910907545 EP0522058B1 (en) | 1990-03-21 | 1991-03-21 | Cord for tires and tires with high strength reinforcement |
DE69120669T DE69120669T2 (de) | 1990-03-21 | 1991-03-21 | Cord für reifen und reifen mit hochfester verstärkung |
ZA912134A ZA912134B (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
US07/937,864 US5616197A (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
AU76636/91A AU642013B2 (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
CA 2075066 CA2075066C (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcements |
PCT/US1991/001906 WO1991014573A1 (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
CA002317943A CA2317943C (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
CA002317915A CA2317915A1 (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
TR91/0285A TR25148A (tr) | 1990-03-21 | 1991-04-02 | YüKSEK DAYANIKLILIGA SAHIP KORD |
KR1019920702262A KR0171594B1 (en) | 1990-03-21 | 1992-09-19 | Tires with high strength reinforcement |
US08/129,614 US5318643A (en) | 1990-03-21 | 1993-09-30 | Vehicle tires including plies with high strength reinforcement |
US08/487,351 US5648153A (en) | 1990-03-21 | 1995-06-07 | Tires with high strength reinforcement |
US08/879,860 US6146760A (en) | 1989-10-02 | 1997-06-20 | High strength cord |
US09/455,258 US6705370B1 (en) | 1990-03-21 | 1999-12-06 | Load range C and D tires including metallic cord belt layer of specified inch strength |
JP2001001127U JP2001000033U (ja) | 1990-03-21 | 2001-03-06 | 高張力コード |
JP2005136337A JP3822896B2 (ja) | 1990-03-21 | 2005-05-09 | 高強度補強タイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/496,759 USH1333H (en) | 1990-03-21 | 1990-03-21 | High strength reinforcement |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US57502790A Continuation-In-Part | 1989-10-02 | 1990-08-30 | |
PCT/US1991/001906 Continuation-In-Part WO1991014573A1 (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
US07/937,864 Continuation-In-Part US5616197A (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
US08/129,614 Continuation-In-Part US5318643A (en) | 1990-03-21 | 1993-09-30 | Vehicle tires including plies with high strength reinforcement |
Publications (1)
Publication Number | Publication Date |
---|---|
USH1333H true USH1333H (en) | 1994-07-05 |
Family
ID=23974012
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/496,759 Abandoned USH1333H (en) | 1989-10-02 | 1990-03-21 | High strength reinforcement |
US07/937,864 Expired - Lifetime US5616197A (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
US08/487,351 Expired - Lifetime US5648153A (en) | 1990-03-21 | 1995-06-07 | Tires with high strength reinforcement |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/937,864 Expired - Lifetime US5616197A (en) | 1990-03-21 | 1991-03-21 | Tires with high strength reinforcement |
US08/487,351 Expired - Lifetime US5648153A (en) | 1990-03-21 | 1995-06-07 | Tires with high strength reinforcement |
Country Status (11)
Country | Link |
---|---|
US (3) | USH1333H (ko) |
EP (1) | EP0522058B1 (ko) |
JP (2) | JP3704146B2 (ko) |
KR (1) | KR0171594B1 (ko) |
AU (1) | AU642013B2 (ko) |
BR (1) | BR9106172A (ko) |
CA (1) | CA2075066C (ko) |
DE (1) | DE69120669T2 (ko) |
ES (1) | ES2091326T3 (ko) |
WO (1) | WO1991014573A1 (ko) |
ZA (2) | ZA911851B (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6247514B1 (en) * | 1994-12-20 | 2001-06-19 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US6305451B1 (en) * | 1998-06-23 | 2001-10-23 | Sumitomo Rubber Industries, Ltd. | Heavy-duty radial tire with specified steel amount in belt plies |
US20040007305A1 (en) * | 2001-04-16 | 2004-01-15 | Kiyoshi Ueyoko | Pneumatic tire |
US20050067080A1 (en) * | 2002-03-04 | 2005-03-31 | Michelin Recherche Et Technique S.A. | Crown reinforcement with shoulder ply |
US20050121129A1 (en) * | 2002-07-15 | 2005-06-09 | Michelin Recherche Et Technique S.A. | Heavy vehicle tyre |
US20100119806A1 (en) * | 2005-07-20 | 2010-05-13 | Nv Bekaert Sa | Roll of preformed steel cord reinforced strip |
US9073389B2 (en) | 2011-10-21 | 2015-07-07 | Bridgestone Americas Tire Operations, Llc | All steel fabric radial construction for agricultural tires |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2070336A1 (en) * | 1992-01-31 | 1993-08-01 | Eric Charles Mizner | High strength reinforcement |
US6019736A (en) | 1995-11-06 | 2000-02-01 | Francisco J. Avellanet | Guidewire for catheter |
US5858137A (en) * | 1996-03-06 | 1999-01-12 | The Goodyear Tire & Rubber Company | Radial tires having at least two belt plies reinforced with steel monofilaments |
US6313409B1 (en) | 1997-05-02 | 2001-11-06 | General Science And Technology Corp | Electrical conductors and methods of making same |
US6449834B1 (en) | 1997-05-02 | 2002-09-17 | Scilogy Corp. | Electrical conductor coils and methods of making same |
US6215073B1 (en) | 1997-05-02 | 2001-04-10 | General Science And Technology Corp | Multifilament nickel-titanium alloy drawn superelastic wire |
US5994647A (en) | 1997-05-02 | 1999-11-30 | General Science And Technology Corp. | Electrical cables having low resistance and methods of making same |
US6399886B1 (en) | 1997-05-02 | 2002-06-04 | General Science & Technology Corp. | Multifilament drawn radiopaque high elastic cables and methods of making the same |
US6137060A (en) | 1997-05-02 | 2000-10-24 | General Science And Technology Corp | Multifilament drawn radiopaque highly elastic cables and methods of making the same |
US6049042A (en) * | 1997-05-02 | 2000-04-11 | Avellanet; Francisco J. | Electrical cables and methods of making same |
EP0905305A1 (en) * | 1997-09-11 | 1999-03-31 | Bridgestone Metalpha Corporation | Steel cord for reinforcing rubber product and pneumatic tyre using such steel cords |
US6041839A (en) * | 1998-01-19 | 2000-03-28 | The Goodyear Tire & Rubber Company | Metallic 4+3 cord for the reinforcement of elastomers |
BR9900564A (pt) * | 1998-02-19 | 2001-03-13 | Goodyear Tire & Rubber | Pneus radiais contendo cordões de filamentos de aço não torcidos em uma camada de lona de cinta |
CN100406278C (zh) * | 2002-06-28 | 2008-07-30 | 株式会社普利司通 | 充气轮胎 |
DE10354133A1 (de) * | 2003-11-19 | 2005-06-23 | Phoenix Ag | Fördergurt |
US7267149B2 (en) * | 2003-12-22 | 2007-09-11 | The Goodyear Tire & Rubber Company | Pneumatic tire with improved crown durability |
US7549454B2 (en) * | 2005-12-30 | 2009-06-23 | The Goodyear Tire & Rubber Company | Belt coat composition |
US20090095397A1 (en) * | 2007-10-15 | 2009-04-16 | Robert Anthony Neubauer | Floating two-ply tire |
US8056596B2 (en) * | 2007-10-22 | 2011-11-15 | The Goodyear Tire + Rubber Company, Inc. | Multiple ply modular construction |
US20100051162A1 (en) * | 2008-08-29 | 2010-03-04 | Robert Anthony Neubauer | Modular two-ply tire with directional side plies |
DE102010060993A1 (de) * | 2010-12-03 | 2012-06-06 | Continental Reifen Deutschland Gmbh | Nutzfahrzeugluftreifen |
DE102014220518A1 (de) * | 2014-10-09 | 2016-04-14 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen aufweisend eine Gürtelbandage |
FR3065910A1 (fr) * | 2017-05-05 | 2018-11-09 | Compagnie Generale Des Etablissements Michelin | Pneumatique a couches de travail comprenant des monofilaments |
EP3931392A1 (en) | 2019-02-26 | 2022-01-05 | NV Bekaert SA | A steel cord for rubber reinforcement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4363346A (en) | 1981-09-23 | 1982-12-14 | The Goodyear Tire & Rubber Company | Pneumatic tire including gas absorbing cords |
US4516395A (en) | 1983-08-23 | 1985-05-14 | The Goodyear Tire & Rubber Company | Metallic cable for reinforcing elastomeric articles |
US4586324A (en) | 1984-12-31 | 1986-05-06 | Tokyo Rope Mfg. Co., Ltd. | Metal cord for reinforcing rubber products |
US4785617A (en) | 1986-05-27 | 1988-11-22 | N.V. Bekaert S.A. | Production of steel cord |
US4960473A (en) | 1989-10-02 | 1990-10-02 | The Goodyear Tire & Rubber Company | Process for manufacturing steel filament |
US4966216A (en) | 1987-06-08 | 1990-10-30 | Bridgestone Corporation | Heavy duty radial tires with metallic carcass ply |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6717027A (ko) * | 1967-02-08 | 1968-08-09 | ||
US3607592A (en) * | 1969-12-18 | 1971-09-21 | Dunlop Rubber Co | Portable platforms |
BE859230A (nl) * | 1977-09-30 | 1978-03-30 | Bekaert Sa Nv | Staalkoordversterking voor rubbervoorwerpen, alsmede aldus versterkte voorwerpen |
US4399187A (en) * | 1980-07-26 | 1983-08-16 | W & A Bates Limited | Reinforced articles |
NL191315C (nl) * | 1981-05-08 | 1995-05-16 | Bekaert Sa Nv | Kabel voor het versterken van elastomeer materiaal en werkwijze voor het vervaardigen van een dergelijke kabel. |
LU84845A1 (de) * | 1983-06-03 | 1983-11-17 | Trefilarbed Sa | Seil aus metalldraehten zum verstaerken elastomerer produkte |
GB8332395D0 (en) * | 1983-12-05 | 1984-01-11 | Bekaert Sa Nv | Steel wires |
US4733706A (en) * | 1984-05-07 | 1988-03-29 | The Goodyear Tire & Rubber Company | Pneumatic tire |
MY100832A (en) * | 1986-03-06 | 1991-03-15 | Goodyear Tire & Rubber | Reinforced composite structure |
US5188685A (en) * | 1989-11-07 | 1993-02-23 | The Goodyear Tire & Rubber Company | Pneumatic radial tire including steel belt cords of 2+2x.30ht construction |
US5318643A (en) * | 1990-03-21 | 1994-06-07 | The Goodyear Tire & Rubber Company | Vehicle tires including plies with high strength reinforcement |
-
1990
- 1990-03-21 US US07/496,759 patent/USH1333H/en not_active Abandoned
-
1991
- 1991-03-13 ZA ZA911851A patent/ZA911851B/xx unknown
- 1991-03-21 DE DE69120669T patent/DE69120669T2/de not_active Expired - Fee Related
- 1991-03-21 EP EP19910907545 patent/EP0522058B1/en not_active Expired - Lifetime
- 1991-03-21 WO PCT/US1991/001906 patent/WO1991014573A1/en active IP Right Grant
- 1991-03-21 US US07/937,864 patent/US5616197A/en not_active Expired - Lifetime
- 1991-03-21 AU AU76636/91A patent/AU642013B2/en not_active Ceased
- 1991-03-21 JP JP50730591A patent/JP3704146B2/ja not_active Expired - Fee Related
- 1991-03-21 CA CA 2075066 patent/CA2075066C/en not_active Expired - Fee Related
- 1991-03-21 ZA ZA912134A patent/ZA912134B/xx unknown
- 1991-03-21 ES ES91907545T patent/ES2091326T3/es not_active Expired - Lifetime
- 1991-03-21 BR BR9106172A patent/BR9106172A/pt not_active IP Right Cessation
-
1992
- 1992-09-19 KR KR1019920702262A patent/KR0171594B1/ko not_active IP Right Cessation
-
1995
- 1995-06-07 US US08/487,351 patent/US5648153A/en not_active Expired - Lifetime
-
2005
- 2005-05-09 JP JP2005136337A patent/JP3822896B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4363346A (en) | 1981-09-23 | 1982-12-14 | The Goodyear Tire & Rubber Company | Pneumatic tire including gas absorbing cords |
US4516395A (en) | 1983-08-23 | 1985-05-14 | The Goodyear Tire & Rubber Company | Metallic cable for reinforcing elastomeric articles |
US4586324A (en) | 1984-12-31 | 1986-05-06 | Tokyo Rope Mfg. Co., Ltd. | Metal cord for reinforcing rubber products |
US4785617A (en) | 1986-05-27 | 1988-11-22 | N.V. Bekaert S.A. | Production of steel cord |
US4966216A (en) | 1987-06-08 | 1990-10-30 | Bridgestone Corporation | Heavy duty radial tires with metallic carcass ply |
US4960473A (en) | 1989-10-02 | 1990-10-02 | The Goodyear Tire & Rubber Company | Process for manufacturing steel filament |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082978B2 (en) | 1994-12-20 | 2006-08-01 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US20040016497A1 (en) * | 1994-12-20 | 2004-01-29 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US6691758B2 (en) | 1994-12-20 | 2004-02-17 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US6857458B2 (en) | 1994-12-20 | 2005-02-22 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US6247514B1 (en) * | 1994-12-20 | 2001-06-19 | The Goodyear Tire & Rubber Company | Tires with high strength reinforcement |
US6305451B1 (en) * | 1998-06-23 | 2001-10-23 | Sumitomo Rubber Industries, Ltd. | Heavy-duty radial tire with specified steel amount in belt plies |
US20040007305A1 (en) * | 2001-04-16 | 2004-01-15 | Kiyoshi Ueyoko | Pneumatic tire |
US20050067080A1 (en) * | 2002-03-04 | 2005-03-31 | Michelin Recherche Et Technique S.A. | Crown reinforcement with shoulder ply |
US7172000B2 (en) * | 2002-03-04 | 2007-02-06 | Michelin Recherche Et Technique S.A. | Crown reinforcement with shoulder ply |
US20050121129A1 (en) * | 2002-07-15 | 2005-06-09 | Michelin Recherche Et Technique S.A. | Heavy vehicle tyre |
US7252128B2 (en) * | 2002-07-15 | 2007-08-07 | Michelin Recherche Et Technique S.A. | Tire for heavy vehicles |
US20100119806A1 (en) * | 2005-07-20 | 2010-05-13 | Nv Bekaert Sa | Roll of preformed steel cord reinforced strip |
US7846539B2 (en) * | 2005-07-20 | 2010-12-07 | Nv Bekaert Sa | Roll of preformed steel cord reinforced strip |
US9073389B2 (en) | 2011-10-21 | 2015-07-07 | Bridgestone Americas Tire Operations, Llc | All steel fabric radial construction for agricultural tires |
Also Published As
Publication number | Publication date |
---|---|
DE69120669T2 (de) | 1997-02-13 |
EP0522058A1 (en) | 1993-01-13 |
JPH05505985A (ja) | 1993-09-02 |
BR9106172A (pt) | 1993-03-16 |
AU7663691A (en) | 1991-10-21 |
ZA911851B (en) | 1991-12-24 |
JP3822896B2 (ja) | 2006-09-20 |
EP0522058A4 (ko) | 1994-02-09 |
JP2005263218A (ja) | 2005-09-29 |
ES2091326T3 (es) | 1996-11-01 |
CA2075066C (en) | 2001-12-04 |
KR0171594B1 (en) | 1999-03-20 |
EP0522058B1 (en) | 1996-07-03 |
CA2075066A1 (en) | 1991-09-22 |
JP3704146B2 (ja) | 2005-10-05 |
DE69120669D1 (de) | 1996-08-08 |
ZA912134B (en) | 1991-12-24 |
US5616197A (en) | 1997-04-01 |
WO1991014573A1 (en) | 1991-10-03 |
US5648153A (en) | 1997-07-15 |
AU642013B2 (en) | 1993-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USH1333H (en) | High strength reinforcement | |
US6247514B1 (en) | Tires with high strength reinforcement | |
US5242001A (en) | Pneumatic radial tire including steel belt cords of 2+2 ST construction | |
US5318643A (en) | Vehicle tires including plies with high strength reinforcement | |
US6267165B1 (en) | Pneumatic tire with specified aramid belt | |
EP0987128A2 (en) | Tires with high strength reinforcement in the carcass | |
EP0916521B1 (en) | Pneumatic tire for passenger cars | |
EP2433814B1 (en) | Tires with high strengh reinforcement | |
US6273160B1 (en) | Tires with high strength reinforcement | |
US20120067487A1 (en) | Tires with high strength reinforcement | |
JP3764245B2 (ja) | 空気入りタイヤ | |
US20120067491A1 (en) | Tires with high strength reinforcement | |
CA2317943C (en) | Tires with high strength reinforcement | |
US20120067490A1 (en) | Tires with high strength reinforcement | |
EP0553391A1 (en) | High strength reinforcement | |
JPH08170283A (ja) | ゴム物品補強用スチールコードおよび空気入りタイヤ | |
US20120067488A1 (en) | Tires with high strength reinforcement | |
CA2100480C (en) | Belt reinforced pneumatic radial tire | |
JPH0649784A (ja) | エラストマー製品補強用複合コードおよび空気入りラジアルタイヤ | |
US20120067489A1 (en) | Tires with high strength reinforcement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |