US9976157B2 - Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics - Google Patents

Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics Download PDF

Info

Publication number
US9976157B2
US9976157B2 US14/239,787 US201214239787A US9976157B2 US 9976157 B2 US9976157 B2 US 9976157B2 US 201214239787 A US201214239787 A US 201214239787A US 9976157 B2 US9976157 B2 US 9976157B2
Authority
US
United States
Prior art keywords
plant
plants
seq
nucleic acid
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/239,787
Other versions
US20140289900A1 (en
Inventor
Limor Poraty-Gavra
Eyal Emmanuel
Hagai Karchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evogene Ltd
Original Assignee
Evogene Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evogene Ltd filed Critical Evogene Ltd
Priority to US14/239,787 priority Critical patent/US9976157B2/en
Assigned to EVOGENE LTD. reassignment EVOGENE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMMANUEL, EYAL, KARCHI, HAGAI, PORATY-GAVRA, LIMOR
Publication of US20140289900A1 publication Critical patent/US20140289900A1/en
Application granted granted Critical
Publication of US9976157B2 publication Critical patent/US9976157B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • ABS abiotic stress
  • fertilizer Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season, particularly for cereals, which comprise more than half of the cultivated areas worldwide.
  • inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea
  • NUE low nitrogen use efficiency
  • FUE fertilizer use efficiency
  • WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
  • the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
  • FIG. 5 is a schematic illustration of the pQYN plasmid.
  • novel polynucleotides were cloned into nucleic acid constructs (e.g., binary vectors, Table 51, Example 12 of the Examples section which follows), transformed into agrobacterium tumefaciens cells, and transgenic Arabidopsis plants transformed with the isolated polynucleotides were generated (Example 13 of the Examples section which follows) for evaluation of the effect of the transgene on plant performance.
  • Transgenic plants over-expressing the identified polynucleotides were found to exhibit increased seed yield, oil content, biomass, and growth rate (Tables 52-64; Examples 14-16 of the Examples section which follows), and increased tolerance to abiotic stress conditions.
  • nitrogen-limiting conditions refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
  • a level e.g., concentration
  • nitrogen e.g., ammonium or nitrate
  • Example of fiber producing plants include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra ), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, Spanish moss and Agave spp. (e.g. sisal).
  • agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra ), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, Spanish moss and Agave spp. (e.g. sisal).
  • Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.
  • fiber yield refers to the amount or quantity of fibers produced from the fiber producing plant.
  • phrases “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.
  • Homologous sequences include both orthologous and paralogous sequences.
  • paralogous relates to gene-duplications within the genome of a species leading to paralogous genes.
  • orthologous relates to homologous genes in different organisms due to ancestral relationship.
  • Identity e.g., percent homology
  • NCBI National Center of Biotechnology Information
  • Pairwise global alignment was defined by S. B. Needleman and C. D. Wunsch, “A general method applicable to the search of similarities in the amino acid sequence of two proteins” Journal of Molecular Biology, 1970, pages 443-53, volume 48).
  • fasta - fasta with seq type auto-detected.
  • gcg - gcg format type is auto-detected.
  • gcg9seq - gcg9 format type is auto-detected.
  • nbrf - nbrf seq type is auto-detected.
  • a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
  • the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177.
  • a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515,
  • complementary polynucleotide sequence refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
  • the exogenous polynucleotide is a non-coding RNA.
  • the invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177.
  • the amino acid sequence is capable of increasing yield, growth rate, vigor, biomass, oil content, fiber yield and/or quality, nitrogen use efficiency, fertilizer use efficiency, abiotic stress tolerance and/or water use efficiency of a plant.
  • the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
  • the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
  • a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
  • a coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.
  • a regulatory sequence e.g., promoter
  • GOS2 SEQ ID NO:8532, de Pater et al, Plant November; 2(6):837-44, 1992
  • Ubi 1 promoter SEQ ID NO:8533
  • RBCS promoter SEQ ID NO:8534
  • Rice cyclophilin Bucholz et al, Plant Mol. Biol. 25(5):837-43, 1994
  • Maize H3 histone Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992
  • Actin 2 Al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995).
  • the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome.
  • the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference.
  • a polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.
  • the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on yield, oil content, yield, seed yield, fiber yield, fiber quality, fiber length, growth rate, biomass, vigor, nitrogen use efficiency, fertilizer use efficiency, and/or abiotic stress tolerance of the plant.
  • expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides.
  • a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences.
  • Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.
  • transgenic plants described hereinabove which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).
  • a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • Such methods involve alignment and comparison of sequences.
  • the BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences.
  • the software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information.
  • Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA.
  • GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.
  • the query polypeptide sequences were SEQ ID NOs: 480-733, 8512, 8514, 8516, 8518, 8520, 8522 and 8524 (which are encoded by the polynucleotides SEQ ID NOs:1-277 and 8511, 8513, 8515, 8517, 8519, 8521 and 8523, shown in Table 1 above) and the identified orthologous and homologous sequences having at least 80% global sequence identity are provided in Table 2, below. These homologous genes are expected to increase plant yield, seed yield, oil yield, oil content, growth rate, fiber yield, fiber quality, biomass, vigor, ABST and/or NUE of a plant.
  • the output of the functional genomics approach described herein is a set of genes highly predicted to improve yield and/or other agronomic important traits such as growth rate, vigor, oil content, fiber yield and/or quality, biomass, growth rate, abiotic stress tolerance, nitrogen use efficiency, water use efficiency and fertilizer use efficiency of a plant by increasing their expression.
  • each gene is predicted to have its own impact, modifying the mode of expression of more than one gene is expected to provide an additive or synergistic effect on the plant yield and/or other agronomic important yields performance. Altering the expression of each gene described herein alone or a set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.
  • the total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.
  • the total grains from 5 spikes that were manually threshed were counted and weight.
  • the average weight was calculated by dividing the total weight by the total grain number.
  • Seed Oil yield Seed yield per plant (gr.)*Oil % in seed.
  • Drought 51 FW/Plant gr (based on plot), Drought 52 Leaf SPAD 64 DPS (Days Post Sowing), Drought 53 FW Heads/(FW Heads + FW Plants)(all plot), Drought 54 [Plant biomass (FW)/SPAD 64 DPS], Drought 55 Table 17.
  • correlations (R) between the expression levels of yield improving genes and their homologues in tissues [Flag leaf, Flower meristem, stem and Flower; Expression sets (Exp), Table 16] and the phenotypic performance in various yield, biomass, growth rate and/or vigor components [Correlation vector (corr.), corr. ID is provided in Table 17 above] under abiotic stress conditions [e.g., nutrient deficiency (low nitrogen) or drought stress], or normal conditions across Sorghum accessions.
  • P p value.
  • the mean spikelet number per head was calculated per plot.
  • a sample of ⁇ 200 grains was weighted, photographed and images were processed using the below described image processing system.
  • the grain area was measured from those images and was divided by the number of grains.
  • the ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
  • the ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.
  • the diameter of the base of the main branch (based diameter) average of three plants per plot.
  • 2 sets of primers were synthesized for the amplification of each gene from a cDNA or a genomic sequence; an external set of primers and an internal set (nested PCR primers).
  • an additional primer or two of the nested PCR primers was used.
  • an 8-12 bp extension was added to the 5′ of each primer.
  • the primer extension includes an endonuclease restriction site.
  • the restriction sites were selected using two parameters: (a). The site does not exist in the cDNA sequence; and (b).
  • the restriction sites in the forward and reverse primers are designed such that the digested cDNA is inserted in the sense formation into the binary vector utilized for transformation.
  • the pellets comprising Agrobacterium cells were resuspended in a transformation medium which contains half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 ⁇ M benzylamino purine (Sigma); 112 ⁇ g/L B5 Gam strig vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.
  • a laboratory image acquisition system which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 ⁇ 150 Watts light bulb) is used for capturing images of plant samples.
  • leaves data was calculated, including leaf number, rosette area, rosette diameter, and leaf blade area.
  • results from the independent transformation events tested were analyzed separately. Data was analyzed using Student's t-test and results were considered significant if the p value was less than 0.1.
  • the JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).

Abstract

Provided are isolated polynucleotides at least 80% identical to SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, 9096-9141 and 9142; and isolated polypeptides at least 80% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 624, 480-623, 625-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177, such as the polypeptides set forth in SEQ ID NO:480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177, nucleic acid constructs comprising same, transgenic cells and plants expressing same and methods of using same for increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, nitrogen use efficiency, and/or abiotic stress tolerance of a plant.

Description

RELATED APPLICATIONS
This application is a National Phase of PCT Patent Application No. PCT/IL2012/050327 having International filing date of Aug. 23, 2012, which claims the benefit of priority under 35 USC § 119(e) of U.S. Provisional Patent Application Nos. 61/526,299 filed on Aug. 23, 2011 and 61/585,688 filed on Jan. 12, 2012. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
SEQUENCE LISTING STATEMENT
The ASCII file, entitled 58501SequenceListing.txt, created on Feb. 13, 2014 comprising 20,892,831 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.
FIELD AND BACKGROUND OF THE INVENTION
The present invention, in some embodiments thereof, relates to isolated polynucleotides and polypeptides which can increase the yield (e.g., biomass, grain quantity and/or quality, seed yield, oil yield), growth rate, vigor, abiotic stress tolerance (ABST), water use efficiency (WUE), nitrogen use efficiency (NUE) and/or fertilizer use efficiency (FUE) of a plant.
The ever-increasing world population and the decreasing availability in arable land for agriculture affect the yield of plants and plant-related products. The global shortage of water supply, desertification, abiotic stress (ABS) conditions (e.g., salinity, drought, flood, suboptimal temperature and toxic chemical pollution), and/or limited nitrogen and fertilizer sources cause substantial damage to agricultural plants such as major alterations in the plant metabolism, cell death, and decreases in plant growth and crop productivity.
Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage, water supply shortage and increased susceptibility to various diseases.
Salinity, high salt levels, affects one in five hectares of irrigated land. None of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit, which leads to osmotic stress (similar to drought stress), and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population.
Suboptimal temperatures affect plant growth and development through the whole plant life cycle. Thus, low temperatures reduce germination rate and high temperatures result in leaf necrosis. In addition, mature plants that are exposed to excess heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in novel ways. Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. Excessive light conditions, which occur under clear atmospheric conditions subsequent to cold late summer/autumn nights, can lead to photoinhibition of photosynthesis (disruption of photosynthesis). In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.
Nutrient deficiencies cause adaptations of the root architecture, particularly notably for example is the root proliferation within nutrient rich patches to increase nutrient uptake. Nutrient deficiencies cause also the activation of plant metabolic pathways which maximize the absorption, assimilation and distribution processes such as by activating architectural changes. Engineering the expression of the triggered genes may cause the plant to exhibit the architectural changes and enhanced metabolism also under other conditions.
In addition, it is widely known that the plants usually respond to water deficiency by creating a deeper root system that allows access to moisture located in deeper soil layers. Triggering this effect will allow the plants to access nutrients and water located in deeper soil horizons particularly those readily dissolved in water like nitrates.
Suboptimal nutrient (macro and micro nutrient) affect plant growth and development through the whole plant life cycle. A common approach to promote plant growth has been, and continues to be, the use of natural as well as synthetic nutrients (fertilizers). Thus, fertilizers are the fuel behind the “green revolution”, directly responsible for the exceptional increase in crop yields during the last 40 years, and are considered the number one overhead expense in agriculture. Of the three macronutrients provided as main fertilizers [Nitrogen (N), Phosphate (P) and Potassium (K)], nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Nitrogen usually needs to be replenished every year, particularly for cereals, which comprise more than half of the cultivated areas worldwide. For example, inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea, typically accounts for about 40% of the costs associated with crops such as corn and wheat.
Nitrogen is an essential macronutrient for the plant, responsible for biosynthesis of amino acids and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like. In addition, nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogen. Thus, nitrogen is translocated to the shoot, where it is stored in the leaves and stalk during the rapid step of plant development and up until flowering. In corn for example, plants accumulate the bulk of their organic nitrogen during the period of grain germination, and until flowering. Once fertilization of the plant has occurred, grains begin to form and become the main sink of plant nitrogen. The stored nitrogen can be then redistributed from the leaves and stalk that served as storage compartments until grain formation. Phosphorous and Potassium have a direct correlation to yield and general plant tolerance.
Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season, particularly for cereals, which comprise more than half of the cultivated areas worldwide. For example, inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea, typically accounts for 40% of the costs associated with crops such as corn and wheat. In addition, the low nitrogen use efficiency (NUE) of the main crops (e.g., in the range of only 30-70%) negatively affects the input expenses for the farmer, due to the excess fertilizer applied. Moreover, the over and inefficient use of fertilizers are major factors responsible for environmental problems such as eutrophication of groundwater, lakes, rivers and seas, nitrate pollution in drinking water which can cause methemoglobinemia, phosphate pollution, atmospheric pollution and the like. However, in spite of the negative impact of fertilizers on the environment, and the limits on fertilizer use, which have been legislated in several countries, the use of fertilizers is expected to increase in order to support food and fiber production for rapid population growth on limited land resources. For example, it has been estimated that by 2050, more than 150 million tons of nitrogenous fertilizer will be used worldwide annually.
Increased use efficiency of nitrogen by plants should enable crops to be cultivated with lower fertilizer input, or alternatively to be cultivated on soils of poorer quality and would therefore have significant economic impact in both developed and developing agricultural systems.
Genetic improvement of fertilizer use efficiency (FUE) in plants can be generated either via traditional breeding or via genetic engineering. Attempts to generate plants with increased FUE have been described in U.S. Pat. Appl. No. 20020046419 to Choo, et al.; U.S. Pat. Appl. No. 20050108791 to Edgerton et al.; U.S. Pat. Appl. No. 20060179511 to Chomet et al.; Good, A, et al. 2007 (Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany 85: 252-262); and Good A G et al. 2004 (Trends Plant Sci. 9:597-605).
Yanagisawa et al. (Proc. Natl. Acad. Sci. U.S.A. 2004 101:7833-8) describe Dof1 transgenic plants which exhibit improved growth under low-nitrogen conditions.
U.S. Pat. No. 6,084,153 to Good et al. discloses the use of a stress responsive promoter to control the expression of Alanine Amine Transferase (AlaAT) and transgenic canola plants with improved drought and nitrogen deficiency tolerance when compared to control plants.
Yield is affected by various factors, such as, the number and size of the plant organs, plant architecture (for example, the number of branches), grains set length, number of filled grains, vigor (e.g. seedling), growth rate, root development, utilization of water, nutrients (e.g., nitrogen) and fertilizers, and stress tolerance.
Crops such as, corn, rice, wheat, canola and soybean account for over half of total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds or forage. Seeds are also a source of sugars, oils and metabolites used in industrial processes. The ability to increase plant yield, whether through increase dry matter accumulation rate, modifying cellulose or lignin composition, increase stalk strength, enlarge meristem size, change of plant branching pattern, erectness of levees, increase in fertilization efficiency, enhanced seed dry matter accumulation rate, modification of seed development, enhanced seed filling or by increasing the content of oil, starch or protein in the seeds would have many applications in agricultural and non-agricultural uses such as in the biotechnological production of pharmaceuticals, antibodies or vaccines.
Studies have shown that plant adaptations to adverse environmental conditions are complex genetic traits with polygenic nature. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, selective breeding is tedious, time consuming and has an unpredictable outcome. Furthermore, limited germplasm resources for yield improvement and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Advances in genetic engineering have allowed mankind to modify the germplasm of plants by expression of genes-of-interest in plants. Such a technology has the capacity to generate crops or plants with improved economic, agronomic or horticultural traits.
WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
WO publication No. 2004/111183 discloses nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same.
WO publication No. 2004/081173 discloses novel plant derived regulatory sequences and constructs and methods of using such sequences for directing expression of exogenous polynucleotide sequences in plants.
WO publication No. 2005/121364 discloses polynucleotides and polypeptides involved in plant fiber development and methods of using same for improving fiber quality, yield and/or biomass of a fiber producing plant.
WO publication No. 2007/049275 discloses isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same for increasing fertilizer use efficiency, plant abiotic stress tolerance and biomass.
WO publication No. 2007/020638 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
WO publication No. 2008/122980 discloses genes constructs and methods for increasing oil content, growth rate and biomass of plants.
WO publication No. 2008/075364 discloses polynucleotides involved in plant fiber development and methods of using same.
WO publication No. 2009/083958 discloses methods of increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plant and plants generated thereby.
WO publication No. 2009/141824 discloses isolated polynucleotides and methods using same for increasing plant utility.
WO publication No. 2009/013750 discloses genes, constructs and methods of increasing abiotic stress tolerance, biomass and/or yield in plants generated thereby.
WO publication No. 2010/020941 discloses methods of increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants and plants generated thereby.
WO publication No. 2010/076756 discloses isolated polynucleotides for increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.
WO2010/100595 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics.
WO publication No. 2010/049897 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.
WO2010/143138 publication discloses isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency.
WO publication No. 2011/080674 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.
WO2011/015985 publication discloses polynucleotides and polypeptides for increasing desirable plant qualities.
SUMMARY OF THE INVENTION
According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs:480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, 9096-9141 or 9142, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to an aspect of some embodiments of the present invention there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177, wherein the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO:1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, 9096-9141 or 9142, wherein the nucleic acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177, wherein the amino acid sequence is capable of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.
According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polypeptide of some embodiments of the invention.
According to an aspect of some embodiments of the present invention there is provided a transgenic plant comprising the nucleic acid construct of some embodiments of the invention.
According to some embodiments of the invention, the nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to some embodiments of the invention, the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to some embodiments of the invention, the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to some embodiments of the invention, the plant cell forms part of a plant.
According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
According to some embodiments of the invention, the yield comprises seed yield or oil yield.
According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under nitrogen-limiting conditions.
According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide.
According to some embodiments of the invention, the promoter is heterologous to the host cell.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO: 8529) and the GUSintron (pQYN 6669) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.
FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO: 8529) (pQFN or pQFNc) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.
FIGS. 3A-F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal (FIGS. 3A-B), osmotic stress (15% PEG; FIGS. 3C-D) or nitrogen-limiting (FIGS. 3E-F) conditions. The different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting. FIG. 3A—An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions. FIG. 3B—An image of root analysis of the plants shown in FIG. 3A in which the lengths of the roots measured are represented by arrows. FIG. 3C—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions. FIG. 3D—An image of root analysis of the plants shown in FIG. 3C in which the lengths of the roots measured are represented by arrows. FIG. 3E—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions. FIG. 3F—An image of root analysis of the plants shown in FIG. 3E in which the lengths of the roots measured are represented by arrows.
FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa RP; SEQ ID NO: 8541) used for expressing the isolated polynucleotide sequences of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal), The isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS of the vector.
FIG. 5 is a schematic illustration of the pQYN plasmid.
FIG. 6 is a schematic illustration of the pQFN plasmid.
FIG. 7 is a schematic illustration of the pQFYN plasmid.
FIG. 8 is a schematic illustration of pQXNc plasmid, which is a modified pGI binary plasmid used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; RE=any restriction enzyme; Poly-A signal (polyadenylation signal); 35S—the 35S promoter (SEQ ID NO:8525). The isolated polynucleotide sequences of some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.
DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION
The present invention, in some embodiments thereof, relates to isolated polynucleotides and polypeptides, nucleic acid constructs, transgenic cells and transgenic plants comprising same and methods of generating and using same, and, more particularly, but not exclusively, to methods of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality abiotic stress tolerance, and/or fertilizer use efficiency (e.g., nitrogen use efficiency) of a plant.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
The present inventors have identified novel polypeptides and polynucleotides which can be used to increase yield, growth rate, biomass, oil content, vigor, abiotic stress tolerance and/or fertilizer (e.g., nitrogen) use efficiency of a plant.
Thus, as shown in the Examples section which follows, the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance yield (e.g., seed yield, oil yield, oil content), growth rate, biomass, vigor, fiber yield and/or quality, abiotic stress tolerance and/or fertilizer (e.g., nitrogen) use efficiency of a plant. Genes which affect the trait-of-interest were identified based on expression profiles and gene copy number of genes of several Barley, Arabidopsis, Sorghum, Maize, Brachypodium, Foxtail Millet, and Soybean ecotypes, accessions and varieties in various tissues, developmental stages, ABST and fertilizer-limiting conditions; as well as homology with genes known to affect the trait-of-interest and using digital expression profile in specific tissues and conditions (Tables 1, 3-50, Examples 1 and 3-11 of the Examples section which follows). Homologous polypeptides and polynucleotides having the same function were also identified (Table 2, Example 2 of the Examples section which follows). The novel polynucleotides were cloned into nucleic acid constructs (e.g., binary vectors, Table 51, Example 12 of the Examples section which follows), transformed into agrobacterium tumefaciens cells, and transgenic Arabidopsis plants transformed with the isolated polynucleotides were generated (Example 13 of the Examples section which follows) for evaluation of the effect of the transgene on plant performance. Transgenic plants over-expressing the identified polynucleotides were found to exhibit increased seed yield, oil content, biomass, and growth rate (Tables 52-64; Examples 14-16 of the Examples section which follows), and increased tolerance to abiotic stress conditions. Altogether, these results suggest the use of the novel polynucleotides and polypeptides of the invention for increasing yield (including oil yield, seed yield and oil content, fiber yield and/or quality), growth rate, biomass, vigor, abiotic stress tolerance and/or fertilizer (e.g., nitrogen) use efficiency of a plant.
Thus, according to an aspect of some embodiments of the invention, there is provided method of increasing yield, growth rate, biomass, vigor, oil content, fiber yield, fiber quality, fertilizer use efficiency (e.g., nitrogen use efficiency) and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177, thereby increasing the yield, growth rate, biomass, vigor, oil content, fiber yield, fiber quality, fertilizer use efficiency (e.g., nitrogen use efficiency) and/or abiotic stress tolerance of the plant.
As used herein the phrase “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.
It should be noted that a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor; growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g. seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].
As used herein the phrase “seed yield” refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed. Hence seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content. Hence increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.
The term “seed” (also referred to as “grain” or “kernel”) as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.
The phrase “oil content” as used herein refers to the amount of lipids in a given plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).
It should be noted that oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.
In one embodiment, increase in oil content of the plant can be achieved by increasing the size/mass of a plant's tissue(s) which comprise oil per growth period. Thus, increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.
As used herein the phrase “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.
As used herein the phrase “growth rate” refers to the increase in plant organ/tissue size per time (can be measured in cm2 per day).
As used herein the phrase “plant vigor” refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand.
Improving early vigor is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigour. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigor into plants would be of great importance in agriculture. For example, poor early vigor has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.
It should be noted that a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.
As used herein, the phrase “non-stress conditions” refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again). Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.
The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation. The implications of abiotic stress are discussed in the Background section.
The phrase “abiotic stress tolerance” as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.
Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291). The Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter. In Mesembryanthemum crystallinum (ice plant), Patharker and Cushman have shown that a calcium-dependent protein kinase (McCDPK1) is induced by exposure to both drought and salt stresses (Patharker and Cushman (2000) Plant J. 24: 679-691). The stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress. Similarly, Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).
Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270). In addition to the induction of cold-acclimation proteins, strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production. In another example increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.
It will be appreciated that some pathways involved in resistance to one stress (as described above), will also be involved in resistance to other stresses, regulated by the same or homologous genes. Of course, the overall resistance pathways are related, not identical, and therefore not all genes controlling resistance to one stress will control resistance to the other stresses. Nonetheless, if a gene conditions resistance to one of these stresses, it would be apparent to one skilled in the art to test for resistance to these related stresses. Methods of assessing stress resistance are further provided in the Examples section which follows.
As used herein the phrase “water use efficiency (WUE)” refers to the level of organic matter produced per unit of water consumed by the plant, i.e., the dry weight of a plant in relation to the plant's water use, e.g., the biomass produced per unit transpiration.
As used herein the phrase “fertilizer use efficiency” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per fertilizer unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.
As used herein the phrase “fertilizer-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
As used herein the phrase “nitrogen use efficiency (NUE)” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant.
As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field. Thus, the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass. In addition, the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield.
It should be noted that improved ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.
The term “fiber” is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Hence, the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).
Example of fiber producing plants, include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, Spanish moss and Agave spp. (e.g. sisal).
As used herein the phrase “fiber quality” refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow). Examples of such parameters, include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow.
Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.
As used herein the phrase “fiber yield” refers to the amount or quantity of fibers produced from the fiber producing plant.
As used herein the term “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in yield, seed yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant as compared to a native plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention, e.g., a non-transformed plant of the same species which is grown under the same (e.g., identical) growth conditions].
The phrase “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.
As used herein “expressing” refers to expression at the mRNA and optionally polypeptide level.
As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.
The term “endogenous” as used herein refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof.
According to some embodiments of the invention, the exogenous polynucleotide of the invention comprises a nucleic acid sequence encoding a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177.
Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship.
One option to identify orthologues in monocot plant species is by performing a reciprocal blast search. This may be done by a first blast involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web(dot)ncbi(dot)nlm(dot)nih(dot)gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The blast results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second blast) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second blasts are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first blast identifies in the second blast the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web(dot)ebi(dot)ac(dot)uk/Tools/clustalw2/index dot)html], followed by a neighbor-joining tree (Hypertext Transfer Protocol://en(dot)wikipedia(dot)org/wiki/Neighbor-joining) which helps visualizing the clustering.
Homology (e.g., percent homology, identity+similarity) can be determined using any homology comparison software computing a pairwise sequence alignment.
Identity (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastN software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.
According to some embodiments of the invention, the identity is a global identity, i.e., an identity over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
According to some embodiments of the invention, the term “homology” or “homologous” refers to identity of two or more nucleic acid sequences; or identity of two or more amino acid sequences; or the identity of an amino acid sequence to one or more nucleic acid sequence.
According to some embodiments of the invention, the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
The degree of homology or identity between two or more sequences can be determined using various known sequence comparison tools. Following is a non-limiting description of such tools which can be used along with some embodiments of the invention.
Pairwise global alignment was defined by S. B. Needleman and C. D. Wunsch, “A general method applicable to the search of similarities in the amino acid sequence of two proteins” Journal of Molecular Biology, 1970, pages 443-53, volume 48).
For example, when starting from a polypeptide sequence and comparing to other polypeptide sequences, the EMBOSS-6.0.1 Needleman-Wunsch algorithm (available from http://emboss(dot)sourceforge(dot)net/apps/cvs/emboss/apps/needle(dot)html can be used) to find the optimum alignment (including gaps) of two sequences along their entire length—a “Global alignment”. Default parameters for Needleman-Wunsch algorithm (EMBOSS-6.0.1) include: gap—open=10; gapextend=0.5; datafile=EBLOSUM62; brief=YES.
According to some embodiments of the invention, the parameters used with the EMBOSS-6.0.1 tool (for protein-protein comparison) include: gapopen=8; gapextend=2; datafile=EBLOSUM62; brief=YES.
According to some embodiments of the invention, the threshold used to determine homology using the EMBOSS-6.0.1 Needleman-Wunsch algorithm is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
When starting from a polypeptide sequence and comparing to polynucleotide sequences, the OneModel FramePlus algorithm (Halperin, E., Faigler, S, and Gill-More, R. (1999)—FramePlus: aligning DNA to protein sequences. Bioinformatics, 15, 867-873) (available from http://www(dot)biocceleration(dot)com/Products(dot)html) can be used with following default parameters: model=frame+_p2n.model mode=local.
According to some embodiments of the invention, the parameters used with the OneModel FramePlus algorithm are model=frame+_p2n.model, mode=qglobal.
According to some embodiments of the invention, the threshold used to determine homology using the OneModel FramePlus algorithm is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
When starting with a polynucleotide sequence and comparing to other polynucleotide sequences the EMBOSS-6.0.1 Needleman-Wunsch algorithm (available from http://emboss(dot)sourceforge(dot)net/apps/cvs/emboss/apps/needle(dot)html) can be used with the following default parameters: (EMBOSS-6.0.1) gapopen=10; gapextend=0.5; datafile=EDNAFULL; brief=YES.
According to some embodiments of the invention, the parameters used with the EMBOSS-6.0.1 Needleman-Wunsch algorithm are gapopen=10; gapextend=0.2; datafile=EDNAFULL; brief=YES.
According to some embodiments of the invention, the threshold used to determine homology using the EMBOSS-6.0.1 Needleman-Wunsch algorithm for comparison of polynucleotides with polynucleotides is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
According to some embodiment, determination of the degree of homology further requires employing the Smith-Waterman algorithm (for protein-protein comparison or nucleotide-nucleotide comparison).
Default parameters for GenCore 6.0 Smith-Waterman algorithm include: model=sw.model.
According to some embodiments of the invention, the threshold used to determine homology using the Smith-Waterman algorithm is 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%.
According to some embodiments of the invention, the global homology is performed on sequences which are pre-selected by local homology to the polypeptide or polynucleotide of interest (e.g., 60% identity over 60% of the sequence length), prior to performing the global homology to the polypeptide or polynucleotide of interest (e.g., 80% global homology on the entire sequence). For example, homologous sequences are selected using the BLAST software with the Blastp and tBlastn algorithms as filters for the first stage, and the needle (EMBOSS package) or Frame+algorithm alignment for the second stage. Local identity (Blast alignments) is defined with a very permissive cutoff—60% Identity on a span of 60% of the sequences lengths because it use as only a filter for the global alignment stage. The default filtering of the Blast package was not utilized (by setting the parameter “-F F”).
In the second stage, homologs were defined based on a global identity of at least 80% to the core gene polypeptide sequence.
According to some embodiments of the invention, two distinct forms for finding the optimal global alignment for protein or nucleotide sequences are used:
1. Between Two Proteins (Following the Blastp Filter):
EMBOSS-6.0.1 Needleman-Wunsch algorithm with the following modified parameters: gapopen=8 gapextend=2. The rest of the parameters are unchanged from the default options listed here:
Standard (Mandatory) Qualifiers:
[-asequence]   sequence Sequence filename and optional format,
   or reference (input USA)
[-bsequence]   seqall Sequence(s) filename and optional format,
   or reference (input USA)
-gapopen  float [10.0 for any sequence] The gap open penalty
  is the score taken away when a gap is
  created. The best value depends on the
  choice of comparison matrix. The default
  value assumes you are using the EBLOSUM62
  matrix for protein sequences, and the
  EDNAFULL matrix for nucleotide sequences.
  (Floating point number from 1.0 to 100.0)
-gapextend  float [0.5 for any sequence] The gap extension.
   penalty is added to the standard gap penalty
   for each base or residue in the gap. This
   is how long gaps are penalized. Usually you
   will expect a few long gaps rather than many
   short gaps, so the gap extension penalty
   should be lower than the gap penalty. An
   exception is where one or both sequences are
   single reads with possible sequencing
   errors in which case you would expect many
   single base gaps. You can get this result by
   setting the gap open penalty to zero (or
   very low) and using the gap extension
   penalty to control gap scoring. (Floating
   point number from 0.0 to 10.0)
[-outfile] align [*.needle] Output alignment file name
Additional (Optional) Qualifiers:
-datafile matrixf [EBLOSUM62 for protein, EDNAFULL for DNA]
 This is the scoring matrix file used when
 comparing sequences. By default it is the
 file ′EBLOSUM62′ (for proteins) or the file
 ′EDNAFULL′ (for nucleic sequences). These
 files are found in the ′data′ directory of
 the EMBOSS installation.
Advanced (Unprompted) Qualifiers:
-[no]brief boolean [Y] Brief identity and similarity
Associated Qualifiers:
″-asequence″ associated qualifiers
-sbegin1 integer Start of the sequence to be used
-send1 integer End of the sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
″-bsequence″ associated qualifiers
-sbegin2 integer Start of each sequence to be used
-send2 integer End of each sequence to be used
-sreverse2 boolean Reverse (if DNA)
-sask2 boolean Ask for begin/end/reverse
-snucleotide2 boolean Sequence is nucleotide
-sprotein2 boolean Sequence is protein
-slower2 boolean Make lower case
-supper2 boolean Make upper case
-sformat2 string Input sequence format
-sdbname2 string Database name
-sid2 string Entryname
-ufo2 string UFO features
-fformat2 string Features format
-fopenfile2 string Features file name
″-outfile″ associated qualifiers
-aformat3 string Alignment format
-aextension3 string File name extension
-adirectory3 string Output directory
-aname3 string Base file name
-awidth3 integer Alignment width
-aaccshow3 boolean Show accession number in the header
-adesshow3 boolean Show description in the header
-ausashow3 boolean Show the full USA in the alignment
-aglobal3 boolean Show the full sequence in alignment
General Qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write first file to standard output
-filter boolean Read first file from standard input, write
first file to standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
2. Between a Protein Sequence and a Nucleotide Sequence (Following the tblastn Filter):
GenCore 6.0 OneModel application utilizing the Frame+algorithm with the following parameters: model=frame+_p2n.model mode=qglobal -q=protein.sequence -db=nucleotide.sequence. The rest of the parameters are unchanged from the default options:
Usage:
om -model=<model_fname> [-q=]query [-db=]database [options]
-model=<model_fname> Specifies the model that you want to run. All
models supplied by Compugen are located in the
directory $CGNROOT/models/.

Valid Command Line Parameters:
-dev=<dev_name> Selects the device to be used by the application.
Valid devices are:
 bic - Bioccelerator (valid for SW, XSW, FRAME_N2P,
and FRAME_P2N models).
 xlg - BioXL/G (valid for all models except XSW).
 xlp - BioXL/P (valid for SW, FRAME+_N2P, and
FRAME_P2N models),
 xlh - BioXL/H (valid for SW, FRAME+_N2P, and
FRAME_P2N models),
 soft - Software device (for all models).
  • -q=<query> Defines the query set. The query can be a sequence file or a database reference. You can specify a query by its name or by accession number. The format is detected automatically. However, you may specify a format using the -qfmt parameter. If you do not specify a query, the program prompts for one. If the query set is a database reference, an output file is produced for each sequence in the query.
  • -db=<database name> Chooses the database set. The database set can be a sequence file or a database reference. The database format is detected automatically. However, you may specify a format using -dfmt parameter.
  • -qacc Add this parameter to the command line if you specify a query using accession numbers.
  • -dacc Add this parameter to the command line if you specify a database using accession numbers.
  • -dfmt/-qfmt=<format_type> Chooses the database/query format type. Possible formats are:
fasta - fasta with seq type auto-detected.
fastap - fasta protein seq.
fastan - fasta nucleic seq.
gcg - gcg format, type is auto-detected.
gcg9seq - gcg9 format, type is auto-detected.
gcg9seqp - gcg9 format protein seq.
gcg9seqn - gcg9 format nucleic seq.
nbrf - nbrf seq, type is auto-detected.
nbrfp - nbrf protein seq.
nbrfn - nbrf nucleic seq.
embl - embl and swissprot format.
genbank - genbank format (nucleic).
blast - blast format.
nbrf_gcg - nbrf-gcg seq, type is auto-detected.
nbrf_gcgp - nbrf-gcg protein seq.
nbrf_gcgn - nbrf-gcg nucleic seq.
raw - raw ascii sequence, type is auto-detected.
rawp - raw ascii protein sequence.
rawn - raw ascii nucleic sequence.
pir - pir codata format, type is auto-detected.
profile - gcg profile (valid only for -qfmt
in SW, XSW, FRAME_P2N, and FRAME+_P2N).
  • -out=<out_fname> The name of the output file.
  • -suffix=<name> The output file name suffix.
  • -gapop=<n> Gap open penalty. This parameter is not valid for FRAME+. For FrameSearch the default is 12.0. For other searches the default is 10.0.
  • -gapext=<n> Gap extend penalty. This parameter is not valid for FRAME+. For FrameSearch the default is 4.0. For other models: the default for protein searches is 0.05, and the default for nucleic searches is 1.0.
  • -qgapop=<n> The penalty for opening a gap in the query sequence. The default is 10.0. Valid for XSW.
  • -qgapext=<n> The penalty for extending a gap in the query sequence. The default is 0.05. Valid for XSW.
  • -start=<n> The position in the query sequence to begin the search.
  • -end=<n> The position in the query sequence to stop the search.
  • -qtrans Performs a translated search, relevant for a nucleic query against a protein database. The nucleic query is translated to six reading frames and a result is given for each frame. Valid for SW and XSW.
  • -dtrans Performs a translated search, relevant for a protein query against a DNA database. Each database entry is translated to six reading frames and a result is given for each frame. Valid for SW and XSW.
  • Note: “-qtrans” and “-dtrans” options are mutually exclusive.
  • -matrix=<matrix_file> Specifies the comparison matrix to be used in the search. The matrix must be in the BLAST format. If the matrix file is not located in $CGNROOT/tables/matrix, specify the full path as the value of the -matrix parameter.
  • -trans=<transtab_name> Translation table. The default location for the table is $CGNROOT/tables/trans.
  • -onestrand Restricts the search to just the top strand of the query/database nucleic sequence.
  • -list=<n> The maximum size of the output hit list. The default is 50.
  • -docalign=<n> The number of documentation lines preceding each alignment. The default is 10.
  • -thr_score=<score_name> The score that places limits on the display of results. Scores that are smaller than -thr_min value or larger than -thr_max value are not shown. Valid options are:
    • quality.
    • zscore.
    • escore.
  • -thr_max=<n> The score upper threshold. Results that are larger than -thr_max value are not shown.
  • -thr_min=<n> The score lower threshold. Results that are lower than -thr_min value are not shown.
  • -align=<n> The number of alignments reported in the output file.
  • -noalign Do not display alignment.
  • Note: “-align” and “-noalign” parameters are mutually exclusive.
  • -outfmt=<format_name> Specifies the output format type. The default format is PFS. Possible values are:
    • PFS—PFS text format
    • FASTA—FASTA text format
    • BLAST—BLAST text format
  • -nonorm Do not perform score normalization.
  • -norm=<norm_name> Specifies the normalization method. Valid options are:
    • log—logarithm normalization.
    • std—standard normalization.
    • stat—Pearson statistical method.
  • Note: “-nonorm” and “-norm” parameters cannot be used together.
  • Note: Parameters -xgapop, -xgapext, -fgapop, -fgapext, -ygapop, -ygapext, -delop, and -delext apply only to FRAME+.
  • -xgapop=<n> The penalty for opening a gap when inserting a codon (triplet). The default is 12.0.
  • -xgapext=<n> The penalty for extending a gap when inserting a codon (triplet). The default is 4.0.
  • -ygapop=<n> The penalty for opening a gap when deleting an amino acid. The default is 12.0.
  • -ygapext=<n> The penalty for extending a gap when deleting an amino acid. The default is 4.0.
  • -fgapop=<n> The penalty for opening a gap when inserting a DNA base. The default is 6.0.
  • -fgapext=<n> The penalty for extending a gap when inserting a DNA base. The default is 7.0.
  • -delop=<n> The penalty for opening a gap when deleting a DNA base. The default is 6.0.
  • -delext=<n> The penalty for extending a gap when deleting a DNA base. The default is 7.0.
  • -silent No screen output is produced.
  • -host=<host_name> The name of the host on which the server runs. By default, the application uses the host specified in the file $CGNROOT/cgnhosts.
  • -wait Do not go to the background when the device is busy. This option is not relevant for the Parseq or Soft pseudo device.
  • -batch Run the job in the background. When this option is specified, the file “$CGNROOT/defaults/batch.defaults” is used for choosing the batch command. If this file does not exist, the command “at now” is used to run the job.
  • Note:“-batch” and “-wait” parameters are mutually exclusive.
  • -version Prints the software version number.
  • -help Displays this help message. To get more specific help type: “om -model=<model_fname> -help”.
According to some embodiments the homology is local homology or local identity.
Local alignments tools include, but are not limited to the BlastP, BlastN, BlastX or TBLASTN software of the National Center of Biotechnology Information (NCBI), FASTA, and the Smith-Waterman algorithm.
A tblastn search allows the comparison between a protein sequence to the six-frame translations of a nucleotide database. It can be a very productive way of finding homologous protein coding regions in unannotated nucleotide sequences such as expressed sequence tags (ESTs) and draft genome records (HTG), located in the BLAST databases est and htgs, respectively.
Default parameters for blastp include: Max target sequences: 100; Expected threshold: e−5; Word size: 3; Max matches in a query range: 0; Scoring parameters: Matrix—BLOSUM62; filters and masking: Filter—low complexity regions.
Local alignments tools, which can be used include, but are not limited to, the tBLASTX algorithm, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. Default parameters include: Max target sequences: 100; Expected threshold: 10; Word size: 3; Max matches in a query range: 0; Scoring parameters: Matrix—BLOSUM62; filters and masking: Filter—low complexity regions.
According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177.
According to some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177.
According to an aspect of some embodiments of the invention, the method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to an aspect of some embodiments of the invention, there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177.
According to some embodiments of the invention the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to an aspect of some embodiments of the invention, there is provided a method of increasing yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142, thereby increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, abiotic stress tolerance, and/or nitrogen use efficiency of the plant.
According to some embodiments of the invention the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to some embodiments of the invention the exogenous polynucleotide is set forth by SEQ ID NO: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, 9096-9141 or 9142.
According to some embodiments of the invention the exogenous polynucleotide is set forth by the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
As used herein the term “polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).
The term “isolated” refers to at least partially separated from the natural environment e.g., from a plant cell.
As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.
As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.
Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.
The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU=n=1 N [(Xn−Yn)/Yn]2/N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).
One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization Tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (Hypertext Transfer Protocol://World Wide Web(dot)kazusa(dot)or(dot)jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.
By using the above Tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively affect mRNA stability or expression.
The naturally-occurring encoding nucleotide sequence may already, in advance of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.
According to some embodiments of the invention, the exogenous polynucleotide is a non-coding RNA.
As used herein the phrase ‘non-coding RNA” refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide). Examples of such non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).
Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ ID NOs: 217, 218, 276, 277, 479, 928, 929, 930, 1045, 1876, 2326, 2374, 2375, 2451, 3045, 3046, 3053, 3200, 3208, 3212, 3217, 3223, 3227, 3298, 3394, 3427, 3428, 3463, 3464, 3572, 3573, 3574, 3575, 3581, 4017, 4064, 4065, 4066, 4068, 4071, 4073, 4075, 4076, 4078, 4409, 4413, 4415, 4420, 4422, 4425, 4426, 4428, 4429, 4430, 4439, 4442, 4443, 4461, 4465, 4466, 4470, 4475, 4480, 4481, 4482, 4493, 4496, 4557, 4564, 4568, 4644, 4692, 4693, 4694, 4698, 4699, 4700, 4701, 4702, 4703, 4704, 4705, 4707, 4716, 4722, 4726, 4730, 4736, 4744, 4746, 4747, 4753, 4760, 9100, 9104, 9109, 9112, 9116, 9118, 9124, 9129, 9130, 9133, 9134, and 9135.
Thus, the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.
The invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to some embodiments of the invention the nucleic acid sequence is capable of increasing yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, nitrogen use efficiency, fertilizer use efficiency, abiotic stress tolerance and/or water use efficiency of a plant.
According to some embodiments of the invention the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, and 9096-9142.
According to some embodiments of the invention the isolated polynucleotide is set forth by SEQ ID NO: 1-479, 813-5173, 8511, 8513, 8515, 8517, 8519, 8521, 8523, 9096-9141 or 9142.
The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177.
According to some embodiments of the invention the amino acid sequence is capable of increasing yield, growth rate, vigor, biomass, oil content, fiber yield and/or quality, nitrogen use efficiency, fertilizer use efficiency, abiotic stress tolerance and/or water use efficiency of a plant.
The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to an aspect of some embodiments of the invention, there is provided a nucleic acid construct comprising the isolated polynucleotide of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
The invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NO: 480-812, 5174-7015, 7017-7021, 7024, 7026-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9177.
According to some embodiments of the invention, the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, and 9143-9177.
According to some embodiments of the invention, the polypeptide is set forth by SEQ ID NO: 480-812, 5174-8510, 8512, 8514, 8516, 8518, 8520, 8522, 8524, 9143-9176 or 9177.
The invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.
The term “plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp, Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp, Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cyclonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cyclonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalypfus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp, Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussel sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barley, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.
According to some embodiments of the invention, the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
According to some embodiments of the invention the plant is a dicotyledonous plant.
According to some embodiments of the invention the plant is a monocotyledonous plant.
According to some embodiments of the invention, there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.
According to some embodiments of the invention, expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.
According to some embodiments of the invention, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.
As mentioned, the nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of the invention.
According to some embodiments of the invention, the isolated polynucleotide is operably linked to the promoter sequence.
A coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.
As used herein, the term “promoter” refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.
According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.
Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.
According to some embodiments of the invention, the promoter is a plant promoter, which is suitable for expression of the exogenous polynucleotide in a plant cell.
Suitable constitutive promoters include, for example, CaMV 35S promoter [SEQ ID NO: 8525 (pQFNC); SEQ ID NO: 8526 (PJJ 35S from Brachypodium); SEQ ID NO:8527 (Odell et al., Nature 313:810-812, 1985)], Arabidopsis At6669 promoter (SEQ ID NO:8528; see PCT Publication No. WO04081173A2 or the new At6669 promoter (SEQ ID NO:8529); maize Ubi 1 (maize polyubiquitin-1, SEQ ID NO:8530; Christensen et al., Plant Sol. Biol. 18:675-689, 1992; Taylor et al., Plant Cell Rep 12:491-495, 1993); rice actin 1 (SEQ ID NO:8531, McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al., Theor. Appl. Genet. 81:581-588, 1991); CaMV 19S (Nilsson et al., Physiol. Plant 100:456-462, 1997); GOS2 (SEQ ID NO:8532, de Pater et al, Plant November; 2(6):837-44, 1992); Ubi 1 promoter (SEQ ID NO:8533); RBCS promoter (SEQ ID NO:8534); Rice cyclophilin (Bucholz et al, Plant Mol. Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al, Mol. Gen. Genet. 231: 276-285, 1992); Actin 2 (An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608,144; 5,604,121; 5,569,597: 5,466,785; 5,399,680; 5,268,463; and 5,608,142.
Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [e.g., AT5G06690 (Thioredoxin) (high expression, SEQ ID NO:8535), AT5G61520 (AtSTP3) (low expression, SEQ ID NO:8536) described in Buttner et al 2000 Plant, Cell and Environment 23, 175-184, or the promoters described in Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993; as well as Arabidopsis STP3 (AT5G61520) promoter (Buttner et al., Plant, Cell and Environment 23:175-184, 2000)], seed-preferred promoters [e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et. al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO:8537 from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), rice PG5a (U.S. Pat. No. 7,700,835), early seed development Arabidopsis BAN (SEQ ID NO:8538, US 2009/0031450 A1), late seed development Arabidopsis ABI3 (SEQ ID NO:8539) (Ng et al., Plant Molecular Biology 54: 25-38, 2004), Brazil Nut albumin (Pearson' et al., Plant Mol. Biol. 18: 235-245, 1992), legumin (Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221: 43-47, 1987), Zein (Matzke et al Plant Mol Biol, 143). 323-32 1990), napA (Stalberg, et al, Planta 199: 515-519, 1996), Wheat SPA (Albanietal, Plant Cell, 9: 171-184, 1997), sunflower oleosin (Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992)], endosperm specific promoters [e.g., wheat LMW and HMW, glutenin-1 (Thomas and Flavell, The Plant Cell 2:1171-1180, 1990; Mol Gen Genet. 216:81-90, 1989; NAR 17:461-2), wheat a, b and g gliadins (EMBO3:1409-15, 1984), Barley ltrl promoter, barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet. 250:750-60, 1996), Barley DOF (Mena et al, The Plant Journal, 116(1): 53-62, 1998), Biz2 (EP99106056.7), Barley SS2 (Guerin and Carbonero Plant Physiology 114: 1 55-62, 1997), wheat Tarp60 (Kovalchuk et al., Plant Mol Biol 71:81-98, 2009), barley D-hordein (D-Hor) and B-hordein (B-Hor) (Agnelo Furtado, Robert J. Henry and Alessandro Pellegrineschi (2009)], Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice -globulin Glb-1 (Wu et al, Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorgum gamma-kafirin (PMB 32:1029-35, 1996)], embryo specific promoters [e.g., rice OSH1 (Sato et al, Proc. Natl. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma of al, Plant Mol. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen. Genet. 217:240-245; 1989), Arabidopsis apetala-3 (Tilly et al., Development. 125:1647-57, 1998), Arabidopsis APETALA 1 (AT1G69120, AP1) (SEQ ID NO:8540) (Hempel et al., Development 124:3845-3853, 1997)], and root promoters [e.g., the ROOTP promoter [SEQ ID NO: 8541]; rice ExpB5 and barley ExpB1 promoters (Won et al. Mol. Cells. 30: 369-376, 2010); arabidopsis monoterpene synthase (AT3G25820) promoter (Chen et al., Plant Phys 135:1956-66, 2004); arabidopsis Pho1 promoter (SEQ ID NO:8542, Hamburger et al., Plant Cell. 14: 889-902, 2002), which is also slightly induced Pi stress].
Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et. al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et. al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et. al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).
The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication. According to some embodiments of the invention, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.
There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).
The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:
(i) Agrobacterium-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S, and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.
(ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.
The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.
There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.
Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.
Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.
Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.
According to some embodiments of the invention, the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.
Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.
Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.
According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).
Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.
Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.
When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.
In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.
In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.
In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.
In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.
The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.
Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998; Maramorosh and Koprowski, eds. “Methods in Virology” 7 vols, Academic Press, New York 1967-1984; Hill, S. A. “Methods in Plant Virology”, Blackwell, Oxford, 1984; Walkey, D. G. A. “Applied Plant Virology”, Wiley, New York, 1985; and Kado and Agrawa, eds. “Principles and Techniques in Plant Virology”, Van Nostrand-Reinhold, New York.
In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.
A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.
For expression of a polypeptide-of-interest in a specific plant tissue or organelle, a signal peptide may be added to the coding sequence of the polypeptide. For example, a signal peptide for expression in a chloroplast of Arabidopsis is provided in SEQ ID NO:9178 (nucleic acid sequence) and SEQ ID NO:9179 (amino acid sequence). The sequence of the signal peptide may be introduced upstream of the coding sequence, e.g., by replacing the codon of the initiator methionine. For further description see Examples 1 and 12 of the Examples section which follows.
Since processes which increase yield, oil content, yield, seed yield, fiber yield, fiber quality, fiber length, growth rate, biomass, vigor, nitrogen use efficiency, fertilizer use efficiency, and/or abiotic stress tolerance of a plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on yield, oil content, yield, seed yield, fiber yield, fiber quality, fiber length, growth rate, biomass, vigor, nitrogen use efficiency, fertilizer use efficiency, and/or abiotic stress tolerance of the plant.
Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can then be regenerated into a mature plant using the methods described hereinabove.
Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic messenger RNA, the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.
The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.
Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield and/or vigor traits, using conventional plant breeding techniques.
According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
Non-limiting examples of abiotic stress conditions include, salinity, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature (e.g., cold stress), high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under fertilizer limiting conditions (e.g., nitrogen-limiting conditions). Non-limiting examples include growing the plant on soils with low nitrogen content (40-50% Nitrogen of the content present under normal or optimal conditions), or even under sever nitrogen deficiency (0-10% Nitrogen of the content present under normal or optimal conditions).
Thus, the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs and/or polypeptide(s) of the invention.
Once expressed within the plant cell or the entire plant, the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.
Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example, Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.
The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., biomass, growth rate, oil content, yield, abiotic stress tolerance, water use efficiency, nitrogen use efficiency and/or fertilizer use efficiency). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.
Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).
The polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.
Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.
Thus, according to an additional embodiment of the present invention, there is provided a method of evaluating a trait of a plant, the method comprising: (a) expressing in a plant or a portion thereof the nucleic acid construct of some embodiments of the invention; and (b) evaluating a trait of a plant as compared to a wild type plant of the same type (e.g., a plant not transformed with the claimed biomolecules); thereby evaluating the trait of the plant.
According to an aspect of some embodiments of the invention there is provided a method of growing a crop comprising seeding seeds and/or planting plantlets of a plant transformed with the exogenous polynucleotide of the invention, e.g., the polynucleotide which encodes the polypeptide of some embodiments of the invention, wherein the plant is derived from plants selected for at least one trait selected from the group consisting of increased abiotic stress tolerance, increased nitrogen use efficiency, increased biomass, increased growth rate, increased vigor, increased yield and increased fiber yield or quality as compared to a non-transformed plant.
The effect of the transgene (the exogenous polynucleotide encoding the polypeptide) on abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.
Abiotic Stress Tolerance—
Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.
Salinity Tolerance Assay—
Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York, 2002, and reference therein).
For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.
Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.
Osmotic Tolerance Test—
Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.
Drought Tolerance Assay/Osmoticum Assay—
Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.
Conversely, soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.
Cold Stress Tolerance—
To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.
Heat Stress Tolerance—
Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C. for a certain period. Plant tolerance is examined after transferring the plants back to 22° C. for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.
Water Use Efficiency—
can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:
RWC=[(FW−DW)/(TW−DW)]×100  Formula I
Fertilizer Use Efficiency—
To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.
Nitrogen Use Efficiency—
To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.
Nitrogen Use Efficiency Assay Using Plantlets—
The assay is done according to Yanagisawa-S. et al. with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5×MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually, 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.
Nitrogen Determination—
The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3 (Purcell and King 1996 Argon. J. 88:111-113, the modified Cd mediated reduction of NO3 to NO2 (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.
Germination Tests—
Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).
Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C. instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).
The effect of the transgene on plant's vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.
Plant Vigor—
The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.
Growth Rate—
The growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.
Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm2 per day of leaf area).
Relative Growth Area
can be calculated using Formula II.
Relative growth rate area=Regression coefficient of area along time course  Formula II:
Thus, the relative growth area rate is in units of 1/day and length growth rate is in units of 1/day.
Seed Yield—
Evaluation of the seed yield per plant can be done by measuring the amount (weight or size) or quantity (i.e., number) of dry seeds produced and harvested from 8-16 plants and divided by the number of plants.
For example, the total seeds from 8-16 plants can be collected, weighted using e.g., an analytical balance and the total weight can be divided by the number of plants. Seed yield per growing area can be calculated in the same manner while taking into account the growing area given to a single plant. Increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants capable of growing in a given area.
In addition, seed yield can be determined via the weight of 1000 seeds. The weight of 1000 seeds can be determined as follows: seeds are scattered on a glass tray and a picture is taken. Each sample is weighted and then using the digital analysis, the number of seeds in each sample is calculated.
The 1000 seeds weight can be calculated using formula III:
1000 Seed Weight=number of seed in sample/sample weight×1000  Formula III:
The Harvest Index can be calculated using Formula IV
Harvest Index=Average seed yield per plant/Average dry weight  Formula IV:
Grain Protein Concentration—
Grain protein content (g grain protein m−2) is estimated as the product of the mass of grain N (g grain N m−2) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg−1 grain).
Fiber Length—
Fiber length can be measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point (Hypertext Transfer Protocol://WorldWide Web(dot)cottoninc(dot)com/ClassificationofCotton/?Pg=4#Length).
According to some embodiments of the invention, increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.
As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
Oil Content—
The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F. and Earle F R., 1963, Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)]; the Near Infrared (NI) Spectroscopy, which utilizes the absorption of near infrared energy (1100-2500 nm) by the sample; and a method described in WO/2001/023884, which is based on extracting oil a solvent, evaporating the solvent in a gas stream which forms oil particles, and directing a light into the gas stream and oil particles which forms a detectable reflected light.
Thus, the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).
Any of the transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.
The transgenic plants described hereinabove, which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).
The plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients. The specific ingredients included in a product are determined according to the intended use. Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material. Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.
According to some embodiments of the invention, the oil comprises a seed oil.
According to some embodiments of the invention, the oil comprises a vegetative portion oil (oil of the vegetative portion of the plant).
According to another embodiment of the present invention, there is provided a food or feed comprising the plants or a portion thereof of the present invention.
According to some embodiments of the invention, the plant cell forms a part of a plant.
As used herein the term “about” refers to ±10%.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of” means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.
EXAMPLES
Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.
Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods in Enzymology” Vol. 1-317, Academic Press; “PCR Protocols: A Guide To Methods And Applications”, Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.
General Experimental and Bioinformatics Methods
RNA Extraction—
Tissues growing at various growth conditions (as described below) were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web(dot)invitrogen(dot)com/content (dot)cfm?pageid=469]. Approximately 30-50 mg of tissue was taken from samples. The weighed tissues were ground using pestle and mortar in liquid nitrogen and resuspended in 500 μl of TRIzol Reagent. To the homogenized lysate, 100 μl of chloroform was added followed by precipitation using isopropanol and two washes with 75% ethanol. The RNA was eluted in 30 μl of RNase-free water. RNA samples were cleaned up using Qiagen's RNeasy minikit clean-up protocol as per the manufacturer's protocol (QIAGEN Inc, CA USA). For convenience, each micro-array expression information tissue type has received an expression Set ID.
Correlation Analysis—
was performed for selected genes according to some embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptome, which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated (using Pearson correlation) along with a p-value for the significance of the correlation. When the correlation coefficient (R) between the levels of a gene's expression in a certain tissue and a phenotypic performance across ecotypes/variety/hybrid is high in absolute value (between 0.5-1), there is an association between the gene (specifically the expression level of this gene) the phenotypic characteristic (e.g., improved yield, growth rate, nitrogen use efficiency, abiotic stress tolerance and the like).
Example 1 Identifying Genes which Improve Yield and Agronomical Important Traits in Plants
The present inventors have identified polynucleotides which expression thereof in plants can increase yield, fiber yield, fiber quality, growth rate, vigor, biomass, growth rate, oil content, abiotic stress tolerance (ABST), fertilizer use efficiency (FUE) such as nitrogen use efficiency (NUE), and water use efficiency (WUE) of a plant, as follows.
All nucleotide sequence datasets used here were originated from publicly available databases or from performing sequencing using the Solexa technology (e.g. Barley and Sorghum). Sequence data from 100 different plant species was introduced into a single, comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated.
Major databases used include:
Genomes
    • Arabidopsis genome [TAIR genome version 6 (Hypertext Transfer Protocol://World Wide Web(dot)arabidopsis(dot)org/)]
    • Rice genome [IRGSP build 4.0 (Hypertext Transfer Protocol://rgp(dot)dna(dot)affrc(dot)go(dot)jp/IRGSP/)].
    • Poplar [Populus trichocarpa release 1.1 from JGI (assembly release v1.0) (Hypertext Transfer Protocol://World Wide Web(dot)genome(dot)jgi-psf(dot)org/)]
    • Brachypodium [JGI 4× assembly, Hypertext Transfer Protocol://World Wide Web(dot)brachpodium(dot)org)]
    • Soybean [DOE-JGI SCP, version Glyma0 (Hypertext Transfer Protocol://World Wide Web(dot)phytozome(dot)net/)]
    • Grape [French-Italian Public Consortium for Grapevine Genome Characterization grapevine genome (Hypertext Transfer Protocol://World Wide Web(dot)genoscope(dot)cns(dot)fr/)]
    • Castobean [TIGR/J Craig Venter Institute 4× assembly [(Hypertext Transfer Protocol://msc(dot)jcvi(dot)org/r communis]
    • Sorghum [DOE-JGI SCP, version Sbi1 [Hypertext Transfer Protocol://World Wide Web(dot)phytozome(dot)net/)].
    • Partially assembled genome of Maize [Hypertext Transfer Protocol://maizesequence(dot)org/]
Expressed EST and mRNA Sequences were Extracted from the Following Databases:
    • GenBank Hypertext Transfer Protocol://World Wide Web(dot)ncbi(dot)nlm(dot)nih(dot)gov/dbEST
    • RefSeq (Hypertext Transfer Protocol://World Wide Web(dot)ncbi(dot)nlm(dot)nih(dot)gov/RefSeq/).
    • TAR (Hypertext Transfer Protocol://World Wide Web(dot)arabidopsis (dot)org/).
Protein and Pathway Databases
    • Uniprot [Hypertext Transfer Protocol://World Wide Web(dot)uniprot(dot)org/]
    • AraCyc [Hypertext Transfer Protocol://World Wide Web(dot)arabidopsis (dot)org/biocyc/index(dot)jsp].
    • ENZYME [Hypertext Transfer Protocol://expasy(dot)org/enzyme/].
Microarray Datasets were Downloaded from:
    • GEO (Hypertext Transfer Protocol://World Wide Web.ncbi.nlm.nih.gov/geo/)
    • TAIR (Hypertext Transfer Protocol://World Wide Web.arabidopsis.org/).
    • Proprietary microarray data (WO2008/122980).
    • QTL and SNPs information
    • Gramene [Hypertext Transfer Protocol://World Wide Web(dot)gramene(dot)org/qtl/].
    • Panzea [Hypertext Transfer Protocol://World Wide Web(dot)panzea(dot)org/index(dot)html].
Database Assembly—
was performed to build a wide, rich, reliable annotated and easy to analyze database comprised of publicly available genomic mRNA, ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway data QTLs, and other relevant information.
Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project. Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene. The capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623), 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.
EST Clustering and Gene Assembly—
For gene clustering and assembly of organisms with available genome sequence data (arabidopsis, rice, castorbean, grape, brachypodium, poplar, soybean, sorghum) the genomic LEADS version (GANG) was employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.
For organisms with no available full genome sequence data, “expressed LEADS” clustering software was applied.
Gene Annotation—
Predicted genes and proteins were annotated as follows:
Blast search [Hypertext Transfer Protocol://blast(dot)ncbi(dot)nlm(dot)nih(dot)gov/Blast(dot)cgi] against all plant UniProt [Hypertext Transfer Protocol://World Wide Web(dot)uniprot(dot)org/] sequences was performed. Open reading frames of each putative transcript were analyzed and longest ORF with higher number of homologues was selected as predicted protein of the transcript. The predicted proteins were analyzed by InterPro [Hypertext Transfer Protocol://World Wide Web(dot)ebi(dot)ac(dot)uk/interpro/].
Blast against proteins from AraCyc and ENZYME databases was used to map the predicted transcripts to AraCyc pathways.
Predicted proteins from different species were compared using blast algorithm
[Hypertext Transfer Protocol://World Wide Web(dot)ncbi(dot)nlm(dot)nih(dot)gov/Blast(dot)cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.
Gene Expression Profiling—
Several data sources were exploited for gene expression profiling, namely microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes which are co-regulated under different development stages and environmental conditions and associated with different phenotypes.
Publicly available microarray datasets were downloaded from TAIR and NCBI GEO sites, renormalized, and integrated into the database. Expression profiling is one of the most important resource data for identifying genes important for yield.
A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster. Digital expression, also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster. The tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, the following is taken into consideration: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.
Recently, the accuracy of this system was demonstrated by Portnoy et al., 2009 (Analysis Of The Melon Fruit Transcriptome Based On 454 Pyrosequencing) in: Plant & Animal Genomes XVII Conference, San Diego, Calif. Transcriptomic analysis, based on relative EST abundance in data was performed by 454 pyrosequencing of cDNA representing mRNA of the melon fruit. Fourteen double strand cDNA samples obtained from two genotypes, two fruit tissues (flesh and rind) and four developmental stages were sequenced. GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags, that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs). Analysis of the data obtained against the Cucurbit Genomics Database [Hypertext Transfer Protocol://World Wide Web(dot)icugi(dot)org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR (quantitative reverse transcription-polymerase chain reaction) data.
Overall, 228 genes (SEQ ID NOs: 1-277 and 8511, 8513, 8515, 8517, 8519, 8521 and 8523 for polynucleotides and SEQ ID NOs: 480-733, 8512, 8514, 8516, 8518, 8520, 8522 and 8524 for polypeptides) were identified to have a major impact on plant yield, growth rate, vigor, biomass, growth rate, oil content, fiber quality, fiber yield, abiotic stress tolerance, nitrogen use efficiency, water use efficiency and fertilizer use efficiency when expression thereof is increased in plants. The identified genes, their curated polynucleotide and polypeptide sequences, as well as their updated sequences according to Genbank database are summarized in Table 1, hereinbelow.
TABLE 1
Identified genes for increasing yield, growth rate, vigor, biomass, growth rate, oil content,
abiotic stress tolerance, nitrogen use efficiency, water use efficiency and fertilizer use
efficiency of a plant
Polyn. Polyp.
SEQ ID SEQ ID
Gene Name Organism|Cluster Name NO: NO:
LYM521 barley|10v2|AV835023 1 480
LYM522 barley|10v2|AV835528 2 481
LYM523 barley|10v2|AV909896 3 482
LYM524 barley|10v2|BE193288 4 483
LYM525 barley|10v2|BE412904 5 484
LYM526 barley|10v2|BE421167XX1 6 485
LYM527 barley|10v2|BE421922 7 486
LYM528 barley|10v2|BE454463 8 487
LYM529 barley|10v2|BF619969 9 488
LYM530 barley|10v2|BG309276 10 489
LYM531 barley|10v2|BG417256 11 490
LYM532 barley|10v2|BI954139 12 491
LYM533 barley|10v2|BU983824 13 492
LYM535 brachypodium|09v1|DV477501 14 493
LYM536 brachypodium|09v1|DV485542 15 494
LYM537 brachypodium|09v1|GT773244 16 495
LYM538 brachypodium|09v1|GT805233 17 496
LYM539 brachypodium|09v1|GT827944 18 497
LYM540 foxtail_millet|10v2|FXTRMSLX03457717D1 19 498
LYM541 foxtail_millet|10v2|FXTRMSLX05531696D1 20 499
LYM543 foxtail_millet|10v2|OXFXTRMSLX00381957D1T1 21 500
LYM544 foxtail_millet|10v2|SICRP015693 22 501
LYM545 foxtail_millet|10v2|SICRP020126 23 502
LYM546 foxtail_millet|10v2|SICRP025730 24 503
LYM547 foxtail_millet|10v2|SICRP027169 25 504
LYM548 foxtail_millet|10v2|SICRP033760 26 505
LYM549 foxtail_millet|10v2|SICRP041745 27 506
LYM550 foxtail_millet|10v2|SICRP042104 28 507
LYM552 foxtail_millet|11v1||FOXTAILXMILLETX10 29 508
V2XFXTRMSLX00063087D1XT1
LYM553 foxtail_millet|11v1|FOXTAILXMILLETX10 30 509
V2XFXTRMSLX00097229D1XT1
LYM554 foxtail_millet|11v1|FOXTAILXMILLETX10 31 510
V2XFXTRMSLX00166958D2XT1
LYM555 foxtail_millet|11v1|FOXTAILXMILLETX10 32 511
V2XFXTRMSLX00424921XT1
LYM556 foxtail_millet|11v1|FOXTAILXMILLETX10 33 512
V2XFXTRMSLX00448399D2XT1
LYM557 foxtail_millet|11v1|FOXTAILXMILLETX10 34 513
V2XFXTRMSLX00706755D2XT1
LYM558 foxtail_millet|11v1|FOXTAILXMILLETX10 35 514
V2XFXTRMSLX00959728D1XT1
LYM559 foxtail_millet|11v1|FOXTAILXMILLETX10 36 515
V2XFXTRMSLX01366155D1XT1
LYM560 foxtail_millet|11v1|FOXTAILXMILLETX10 37 516
V2XFXTRMSLX01545798D1XT1
LYM561 foxtail_millet|11v1|FOXTAILXMILLETX10 38 517
V2XFXTRMSLX02070403D1XT1
LYM562 foxtail_millet|11v1|FOXTAILXMILLETX10 39 518
V2XFXTRMSLX04864194D2XT1
LYM563 foxtail_millet|11v1|FOXTAILXMILLETX10 40 519
V2XFXTRMSLX10859716D2XT1
LYM564 foxtail_millet|11v1|FOXTAILXMILLETX10 41 520
V2XSICRP012933XT1
LYM565 maize|10v1|AA072431 42 521
LYM566 maize|10v1|AA072467 43 522
LYM567 maize|10v1|AA979784 44 523
LYM568 maize|10v1|AA979964 45 524
LYM569 maize|10v1|AF055909 46 525
LYM570 maize|10v1|AI001334 47 526
LYM571 maize|10v1|AI372248 48 527
LYM572 maize|10v1|AI396035 49 528
LYM573 maize|10v1|AI438409 50 529
LYM574 maize|10v1|AI438928 51 530
LYM575 maize|10v1|AI491367 52 531
LYM576 maize|10v1|AI491557 53 532
LYM577 maize|10v1|AI586713 54 533
LYM578 maize|10v1|AI600403 55 534
LYM579 maize|10v1|AI600507 56 535
LYM580 maize|10v1|AI600515 57 536
LYM581 maize|10v1|AI600733 58 537
LYM582 maize|10v1|AI612407 59 538
LYM583 maize|10v1|AI615098 60 539
LYM585 maize|10v1|AI629688 61 540
LYM586 maize|10v1|AI629873 62 541
LYM587 maize|10v1|AI637040 63 542
LYM588 maize|10v1|AI637252 64 543
LYM589 maize|10v1|AI649568 65 544
LYM590 maize|10v1|AI649935 66 545
LYM591 maize|10v1|AI657300 67 546
LYM592 maize|10v1|AI666255 68 547
LYM593 maize|10v1|AI667844 69 548
LYM594 maize|10v1|AI667854 70 549
LYM595 maize|10v1|AI670363 71 550
LYM596 maize|10v1|AI670381 72 551
LYM598 maize|10v1|AI714403 73 552
LYM599 maize|10v1|AI737669 74 553
LYM600 maize|10v1|AI795494 75 554
LYM601 maize|10v1|AI861485 76 555
LYM602 maize|10v1|AI901512 77 556
LYM603 maize|10v1|AI901728 78 557
LYM604 maize|10v1|AI901848 79 558
LYM606 maize|10v1|AI947476 80 559
LYM607 maize|10v1|AI947520 81 560
LYM608 maize|10v1|AI947771 82 561
LYM609 maize|10v1|AI966935 83 562
LYM610 maize|10v1|AI973425 84 563
LYM611 maize|10v1|AW060148 85 564
LYM612 maize|10v1|AW066649 86 565
LYM613 maize|10v1|AW066717 87 566
LYM614 maize|10v1|AW066878 88 567
LYM615 maize|10v1|AW066932 89 568
LYM616 maize|10v1|AW129882 90 569
LYM617 maize|10v1|AW146650 91 570
LYM618 maize|10v1|AW165558 92 571
LYM619 maize|10v1|AW282383 93 572
LYM620 maize|10v1|AW288657 94 573
LYM621 maize|10v1|AW455616 95 574
LYM622 maize|10v1|AW497872 96 575
LYM623 maize|10v1|AW498234 97 576
LYM624 maize|10v1|AW562949 98 577
LYM625 maize|10v1|AW574438 99 578
LYM627 maize|10v1|AY530730 100 579
LYM628 maize|10v1|BE055960 101 580
LYM630 maize|10v1|BE511742 102 581
LYM631 maize|10v1|BE552767 103 582
LYM632 maize|10v1|BE553127 104 583
LYM634 maize|10v1|BG265855 105 584
LYM635 maize|10v1|BG317160 106 585
LYM636 maize|10v1|BG319843 107 586
LYM638 maize|10v1|BG321228 108 587
LYM639 maize|10v1|BG354339 109 588
LYM640 maize|10v1|BG360795 110 589
LYM642 maize|10v1|BG835850 111 590
LYM643 maize|10v1|BG841225 112 591
LYM644 maize|10v1|BG842956 113 592
LYM645 maize|10v1|BI233906 114 593
LYM646 maize|10v1|BI388911 115 594
LYM647 maize|10v1|BI679419 116 595
LYM648 maize|10v1|BM072733 117 596
LYM649 maize|10v1|BM075457 118 597
LYM650 maize|10v1|BM078303 119 598
LYM652 maize|10v1|BM348210 120 599
LYM653 maize|10v1|BM379855 121 600
LYM654 maize|10v1|BM381581 122 601
LYM655 maize|10v1|BM499069 123 602
LYM656 maize|10v1|BM500372 124 603
LYM657 maize|10v1|BM501213 125 604
LYM658 maize|10v1|BQ164220 126 605
LYM659 maize|10v1|BU197908 127 606
LYM660 maize|10v1|BU582167 128 607
LYM661 maize|10v1|CB331023 129 608
LYM662 maize|10v1|CD936450 130 609
LYM663 maize|10v1|CD943493 131 610
LYM665 maize|10v1|CF028749 132 611
LYM666 maize|10v1|CF650630 133 612
LYM667 maize|10v1|DR797784 134 613
LYM668 maize|10v1|DR802129 135 614
LYM669 maize|10v1|DW797958 136 615
LYM670 maize|10v1|DW833446 137 616
LYM671 maize|10v1|DY537984 138 617
LYM672 maize|10v1|EE162371 139 618
LYM673 maize|10v1|T12698 140 619
LYM674 maize|10v1|T18762 141 620
LYM675 maize|10v1|T18786 142 621
LYM677 maize|10v1|T20367 143 622
LYM678 maize|10v1|T70695 144 623
LYM679 maize|10v1|W21715 145 624
LYM680 maize|10v1|W59811 146 625
LYM682 maize|gb170|BM378498 147 626
LYM683 rice|gb170|OS03G50430 148 627
LYM684 rice|gb170|OS08G01380 149 628
LYM685 rice|gb170|OS09G38440 150 629
LYM686 rice|gb170|OS11G08330 151 630
LYM687 sorghum|09v1|CD204441 152 631
LYM688 sorghum|09v1|SB01G007070 153 632
LYM689 sorghum|09v1|SB01G008550 154 633
LYM690 sorghum|09v1|SB01G017160 155 634
LYM691 sorghum|09v1|SB01G019510 156 635
LYM692 sorghum|09v1|SB01G023260 157 636
LYM693 sorghum|09v1|SB01G028930 158 637
LYM694 sorghum|09v1|SB01G031740 159 638
LYM695 sorghum|09v1|SB01G034070 160 639
LYM697 sorghum|09v1|SB01G036360 161 640
LYM698 sorghum|09v1|SB01G045110 162 641
LYM699 sorghum|09v1|SB01G047160 163 642
LYM700 sorghum|09v1|SB02G003520 164 643
LYM701 sorghum|09v1|SB02G005780 165 644
LYM702 sorghum|09v1|SB02G020880 166 645
LYM703 sorghum|09v1|SB02G031600 167 646
LYM704 sorghum|09v1|SB02G034560 168 647
LYM705 sorghum|09v1|SB02G042910 169 648
LYM706 sorghum|09v1|SB02G043760 170 649
LYM707 sorghum|09v1|SB03G003100 171 650
LYM708 sorghum|09v1|SB03G020183 172 651
LYM709 sorghum|09v1|SB03G034280 173 652
LYM710 sorghum|09v1|SB03G038270 174 653
LYM711 sorghum|09v1|SB06G025710 175 654
LYM712 sorghum|09v1|SB04G006450 176 655
LYM713 sorghum|09v1|SB05G002380 177 656
LYM714 sorghum|09v1|SB06G020280 178 657
LYM715 sorghum|09v1|SB06G020440 179 658
LYM716 sorghum|09v1|SB06G021190 180 659
LYM717 sorghum|09v1|SB07G004900 181 660
LYM718 sorghum|09v1|SB07G024936 182 661
LYM719 sorghum|09v1|SB07G025570 183 662
LYM720 sorghum|09v1|SB07G026090 184 663
LYM721 sorghum|09v1|SB08G004193 185 664
LYM722 sorghum|09v1|SB08G004400 186 665
LYM723 sorghum|09v1|SB09G002700 187 666
LYM724 sorghum|09v1|SB09G003280 188 667
LYM725 sorghum|09v1|SB09G005930 189 668
LYM726 sorghum|09v1|SB09G023380 190 669
LYM727 sorghum|09v1|SB09G026280 191 670
LYM728 sorghum|09v1|SB09G027995 192 671
LYM729 sorghum|09v1|SB09G029480 193 672
LYM730 sorghum|09v1|SB09G029660 194 673
LYM731 sorghum|09v1|SB10G006950 195 674
LYM732 sorghum|09v1|SB10G023320 196 675
LYM733 sorghum|09v1|SB10G028690 197 676
LYM734 sorghum|09v1|SLXL50035388D1 198 677
LYM735 wheat|10v2|AL816373 199 678
LYM736 wheat|10v2|BE217006 200 679
LYM737 wheat|10v2|BE515545 201 680
LYM739 wheat|10v2|BQ804893 202 681
LYM740 wheat|10v2|CA691702 203 682
LYM741 wheat|10v2|WHTHBP1A 204 683
LYM742 barley|10v2|BF622991 205 684
LYM743 brachypodium|09v1|SRR031797S0088390 206 685
LYM744 maize|10v1|BM381972 207 686
LYM745 maize|10v1|CF040199 208 687
LYM746 sorghum|09v1|SB03G035130 209 688
LYM747 sorghum|09v1|SB04G006860 210 689
LYM748 sorghum|09v1|SB10G008610 211 690
LYM749 foxtail_millet|11v1|FOXTAILXMILLETX10 212 691
V2XFXTRMSLX00653965D1XT1
LYM750 maize|gb170|BE640144 213 692
LYM531_H6 maize|10v1|AI901736 214 693
LYM596_H9 brachypodium|09v1|DV469171 215 694
LYM701_H1 maize|10v1|AI586919 216 695
LYM534 barley|10v2|EX578703 217
LYM633 maize|10v1|BE639998 218
LYM522 barley|10v2|AV835528 219 696
LYM526 barley|10v2|BE421167XX1 220 485
LYM528 barley|10v2|BE454463 221 697
LYM529 barley|10v2|BF619969 222 698
LYM530 barley|10v2|BG309276 223 699
LYM531 barley|10v2|BG417256 224 700
LYM533 barley|10v2|BU983824 225 492
LYM537 brachypodium|09v1|GT773244 226 495
LYM538 brachypodium|09v1|GT805233 227 496
LYM539 brachypodium|09v1|GT827944 228 497
LYM541 foxtail_millet|10v2|FXTRMSLX05531696D1 229 701
LYM544 foxtail_millet|10v2|SICRP015693 230 702
LYM549 foxtail_millet|10v2|SICRP041745 231 703
LYM554 foxtail_millet|11v1|FOXTAILXMILLETX10 232 704
V2XFXTRMSLX00166958D2XT1
LYM561 foxtail_millet|11v1|FOXTAILXMILLETX10 233 517
V2XFXTRMSLX02070403D1XT1
LYM564 foxtail_millet|11v1|FOXTAILXMILLETX10 234 705
V2XSICRP012933XT1
LYM570 maize|10v1|AI001334 235 706
LYM571 maize|10v1|AI372248 236 527
LYM582 maize|10v1|AI612407 237 538
LYM586 maize|10v1|AI629873 238 541
LYM592 maize|10v1|AI666255 239 547
LYM596 maize|10v1|AI670381 240 707
LYM606 maize|10v1|AI947476 241 559
LYM642 maize|10v1|BG835850 242 708
LYM644 maize|10v1|BG842956 243 709
LYM649 maize|10v1|BM075457 244 710
LYM650 maize|10v1|BM078303 245 711
LYM661 maize|10v1|CB331023 246 712
LYM667 maize|10v1|DR797784 247 713
LYM668 maize|10v1|DR802129 248 714
LYM670 maize|10v1|DW833446 249 715
LYM670 maize|10v1|DW833446 250 716
LYM671 maize|10v1|DY537984 251 717
LYM672 maize|10v1|EE162371 252 718
LYM680 maize|10v1|W59811 253 719
LYM685 rice|gb170|OS09G38440 254 720
LYM686 rice|gb170|OS11G08330 255 630
LYM687 sorghum|09v1|CD204441 256 721
LYM689 sorghum|09v1|SB01G008550 257 722
LYM693 sorghum|09v1|SB01G028930 258 723
LYM700 sorghum|09v1|SB02G003520 259 724
LYM701 sorghum|09v1|SB02G005780 260 644
LYM702 sorghum|09v1|SB02G020880 261 725
LYM711 sorghum|09v1|SB03G047535 262 726
LYM712 sorghum|09v1|SB04G006450 263 655
LYM717 sorghum|09v1|SB07G004900 264 727
LYM721 sorghum|09v1|SB08G004193 265 728
LYM726 sorghum|09v1|SB09G023380 266 729
LYM729 sorghum|09v1|SB09G029480 267 672
LYM734 sorghum|09v1|SLXL50035388D1 268 730
LYM740 wheat|10v2|CA691702 269 731
LYM743 brachypodium|09v1|SRR031797S0088390 270 685
LYM744 maize|10v1|BM381972 271 732
LYM745 maize|10v1|CF040199 272 733
LYM748 sorghum|09v1|SB10G008610 273 690
LYM596_H9 brachypodium|09v1|DV469171 274 694
LYM701_H1 maize|10v1|AI586919 275 695
LYM633 maize|10v1|BE639998 276
LYM663 maize|10v1|ICD943493 277
LYM721 sorghum|09v1|SB08G004193 8511 8512
LYM721 sorghum|09v1|SB08G004193 8513 8514
LYM670 maize|10v1|DW833446 8515 8516
LYM670 maize|10v1|DW833446 8517 8518
LYM745 maize|10v1|CF040199 8519 8520
LYM745 maize|10v1|CF040199 8521 8522
LYM745 maize|10v1|CF040199 8523 8524
Table 1: Provided are the identified genes, their annotation, organism and polynucleotide and polypeptide sequence identifiers.
“polyn.” = polynucleotide; “polyp.” = polypeptide.
“SP” = signal peptide for expression in Arabidopsis chloroplast (SEQ ID NO: 9178 for nucleic acid sequence, and SEQ ID NO: 9179 for amino acid sequence).
It is noted that SEQ ID NO: 8511 (LYM721-EVO15070730) depicts a polynucleotide transcript with SP; SEQ ID NO: 8512 (LYM721-EVO15070730) depicts the protein with SP; SEQ ID NO: 8513 (LYM721-EVO15070730) depicts a polynucleotide transcript without SP; SEQ ID NO: 8514 (LYM721-EVO15070730) depicts a protein without SP; SEQ ID NO: 8515 (LYM670-EVO15070679) depicts a polynucleotide transcript with SP; SEQ ID NO: 8516 (LYM670-EVO15070679) depicts a protein with SP; SEQ ID NO: 8517 (LYM670-EVO15070679) depicts a polynucleotide transcript without SP; SEQ ID NO: 8518 (LYM670-EVO15070679) depicts a protein without SP; SEQ ID NO: 8519 (LYM745-EVO15070754) depicts a polynucleotide transcript full length with Thr as 1st amino acid; SEQ ID NO: 8520 (LYM745-EVO15070754) depicts a protein full length with Thr as 1st amino acid; SEQ ID NO: 8521 (LYM745-EVO15070754) transcript full length with Met as 1st amino acid; SEQ ID NO: 8522 (LYM745-EVO15070754) protein full length with Met as 1st amino acid; SEQ ID NO: 8523 (LYM745-EVO15070754) transcript about half length protein starting from 1st Met appearing in amino acid (aa) sequence; SEQ ID NO: 8524 (LYM745-EVO15070754) protein about half length protein starting from 1st Met appearing in aa sequence.
Example 2 Identification of Homologous Sequences that Increase Yield, Fiber Yield, Fiber Quality, Growth Rate, Biomass, Oil Content, Vigor, ABST, and/or NUE of a Plant
The concepts of orthology and paralogy have recently been applied to functional characterizations and classifications on the scale of whole-genome comparisons. Orthologs and paralogs constitute two major types of homologues: The first evolved from a common ancestor by specialization, and the latter are related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have diverged in function while true orthologs are more likely to retain identical function over evolutionary time.
To further investigate and identify putative orthologs of the genes affecting plant yield, oil yield, oil content, seed yield, growth rate, vigor, biomass, fiber yield, fiber quality, abiotic stress tolerance, and fertilizer use efficiency (FUE) genes and/or nitrogen use efficiency, all sequences were aligned using the BLAST (Basic Local Alignment Search Tool). Sequences sufficiently similar were tentatively grouped. These putative orthologs were further organized under a Phylogram—a branching diagram (tree) assumed to be a representation of the evolutionary relationships among the biological taxa. Putative ortholog groups were analyzed as to their agreement with the phylogram and in cases of disagreements these ortholog groups were broken accordingly.
Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed). The annotations from all the ESTs clustered to a gene were analyzed statistically by comparing their frequency in the cluster versus their abundance in the database, allowing the construction of a numeric and graphic expression profile of that gene, which is termed “digital expression”. The rationale of using these two complementary methods with methods of phenotypic association studies of QTLs, SNPs and phenotype expression correlation is based on the assumption that true orthologs are likely to retain identical function over evolutionary time. These methods provide different sets of indications on function similarities between two homologous genes, similarities in the sequence level—identical amino acids in the protein domains and similarity in expression profiles.
The search and identification of homologous genes involves the screening of sequence information available, for example, in public databases such as the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database. A number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequence queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, Trends in Biotechnology: 76-80, 1994; Birren et al., Genome Analysis, I: 543, 1997). Such methods involve alignment and comparison of sequences. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information. Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.
The homologous genes may belong to the same gene family. The analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W. A neighbour-joining tree of the proteins homologous to the genes in this invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (ortholog) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here. Advantageously, these family members may be useful in the methods of the invention. Example of other plants are included here but not limited to, barley (Hordeum vulgare), Arabidopsis (Arabidopsis thaliana), maize (Zea mays), cotton (Gossypium), Oilseed rape (Brassica napus), Rice (Oryza sativa), Sugar cane (Saccharum officinarum), Sorghum (Sorghum bicolor), Soybean (Glycine max), Sunflower (Helianthus annuus), Tomato (Lycopersicon esculentum), and Wheat (Triticum aestivum).
The above-mentioned analyses for sequence homology can be carried out on a full-length sequence, but may also be based on a comparison of certain regions such as conserved domains. The identification of such domains, would also be well within the realm of the person skilled in the art and would involve, for example, a computer readable format of the nucleic acids of the present invention, the use of alignment software programs and the use of publicly available information on protein domains, conserved motifs and boxes. This information is available in the PRODOM (Hypertext Transfer Protocol://World Wide Web(dot)biochem(dot)ucl(dot)ac(dot)uk/bsm/dbbrowser/protocol/prodomqry(dot)html), PR (Hypertext Transfer Protocol://pir(dot)Georgetown(dot)edu/) or Pfam (Hypertext Transfer Protocol://World Wide Web(dot)sanger(dot)ac(dot)uk/Software/Pfam/) database. Sequence analysis programs designed for motif searching may be used for identification of fragments, regions and conserved domains as mentioned above. Preferred computer programs include, but are not limited to, MEME, SIGNALSCAN, and GENESCAN.
A person skilled in the art may use the homologous sequences provided herein to find similar sequences in other species and other organisms. Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. To produce such homologues, amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break a-helical structures or 3-sheet structures). Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company). Homologues of a nucleic acid encompass nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.
Polynucleotides and polypeptides with significant homology to the identified genes described in Table 1 (Example 1 above) were identified from the databases using BLAST software with the Blastp and tBlastn algorithms as filters for the first stage, and the needle (EMBOSS package) or Frame+algorithm alignment for the second stage. Local identity (Blast alignments) was defined with a very permissive cutoff—60% Identity on a span of 60% of the sequences lengths because it use as only a filter for the global alignment stage. The default filtering of the Blast package was not utilized (by setting the parameter “—F F”).
In the second stage, homologs were defined based on a global identity of at least 80% to the core gene polypeptide sequence.
Two distinct forms for finding the optimal global alignment for protein or nucleotide sequences were used in this application:
1. Between two proteins (following the blastp filter):
EMBOSS-6.0.1 Needleman-Wunsch algorithm with the following modified parameters: gapopen=8 gapextend=2. The rest of the parameters were unchanged from the default options described hereinabove.
2. Between a protein sequence and a nucleotide sequence (following the tblastn filter):
GenCore 6.0 OneModel application utilizing the Frame+algorithm with the following parameters: model=frame+_p2n.model mode=qglobal -q=protein. sequence -db=nucleotide.sequence. The rest of the parameters are unchanged from the default options described hereinabove. The query polypeptide sequences were SEQ ID NOs: 480-733, 8512, 8514, 8516, 8518, 8520, 8522 and 8524 (which are encoded by the polynucleotides SEQ ID NOs:1-277 and 8511, 8513, 8515, 8517, 8519, 8521 and 8523, shown in Table 1 above) and the identified orthologous and homologous sequences having at least 80% global sequence identity are provided in Table 2, below. These homologous genes are expected to increase plant yield, seed yield, oil yield, oil content, growth rate, fiber yield, fiber quality, biomass, vigor, ABST and/or NUE of a plant.
TABLE 2
Homologues of the identified genes/polypeptides for increasing yield, seed yield, fiber yield,
fiber quality, growth rate, vigor, biomass, growth rate, abiotic stress tolerance, nitrogen
use efficiency, water use efficiency and/or fertilizer use efficiency of a plant
Nucl. Hom. to Polyp. Hom. to %
SEQ Gene SEQ SEQ global
ID NO: Name cluster name ID NO: ID NO: iden. Algor.
813 LYM521 wheat|10v2|BE427073 5174 480 92.4 globlastp
814 LYM521 wheat|10v2|BE497126 5175 480 89.5 globlastp
815 LYM521 rye|12v1|DRR001012.118652_P1 5176 480 88.9 globlastp
816 LYM521 leymus|gb166|EG375994_P1 5177 480 87.2 globlastp
817 LYM521 barley|10v2|BF065879_T1 5178 480 80.44 glotblastn
818 LYM522 wheat|10v2|BE500817 5179 481 98.8 globlastp
819 LYM522 rye|12v1|DRR001012.114121_P1 5180 481 98.3 globlastp
820 LYM522 brachypodium|09v1|DV470933 5181 481 82.4 globlastp
821 LYM522 brachypodium|12v1|BRADI5G22570T2_P1 5181 481 82.4 globlastp
822 LYM522 foxtail_millet|11v3|PHY7SI009409M_P1 5182 481 82.3 globlastp
823 LYM522 rice|11v1|AU069414_P1 5183 481 81.6 globlastp
824 LYM522 rice|gb170|OS04G53540 5183 481 81.6 globlastp
825 LYM524 rye|12v1|DRR001012.145703_P1 5184 483 97.6 globlastp
826 LYM524 rye|12v1|DRR001013.147777_P1 5184 483 97.6 globlastp
827 LYM524 rye|12v1|DRR001017.146458_P1 5184 483 97.6 globlastp
828 LYM524 wheat|10v2|BE424468 5184 483 97.6 globlastp
829 LYM524 wheat|10v2|BE497042 5184 483 97.6 globlastp
830 LYM524 wheat|10v2|BE518127 5185 483 97 globlastp
831 LYM524 brachypodium|09v1|SRR031795S0031948 5186 483 89.8 globlastp
832 LYM524 brachypodium|12v1|BRADI3G57530_P1 5186 483 89.8 globlastp
833 LYM524 rice|11v1|BM421486_P1 5187 483 86.1 globlastp
834 LYM524 rice|gb170|OS02G53320 5187 483 86.1 globlastp
835 LYM524 sorghum|09v1|SB04G034630 5188 483 86.1 globlastp
836 LYM524 sorghum|12v1|SB04G034630_P1 5188 483 86.1 globlastp
837 LYM524 switchgrass|gb167|FE631346 5189 483 84.2 globlastp
838 LYM524 foxtail_millet|11v3|PHY7SI018533M_P1 5190 483 83.6 globlastp
839 LYM524 millet|10v1|EVO454PM058146_P1 5191 483 83 globlastp
840 LYM524 maize|10v1|AI901933_P1 5192 483 81.2 globlastp
841 LYM525 leymus|gb166|EG377887_P1 5193 484 99.1 globlastp
842 LYM525 wheat|10v2|BE422948 5194 484 99.1 globlastp
843 LYM525 rye|12v1|DRR001012.101796_P1 5195 484 98.9 globlastp
844 LYM525 brachypodium|09v1|DV475357 5196 484 88.7 globlastp
845 LYM525 brachypodium|12v1|BRADI1G53920_P1 5196 484 88.7 globlastp
846 LYM525 oat|10v2|GR328188 5197 484 85.9 globlastp
847 LYM525 oat|11v1|GR328188_P1 5197 484 85.9 globlastp
848 LYM525 switchgrass|gb167|FE603554 5198 484 82.1 globlastp
849 LYM525 switchgrass|gb167|FL696864 5199 484 81.9 globlastp
850 LYM525 sorghum|09v1|SB02G006500 5200 484 81.6 globlastp
851 LYM525 sorghum|12v1|SB02G006500_P1 5200 484 81.6 globlastp
852 LYM525 millet|10v1|EVO454PM003745_P1 5201 484 81.4 globlastp
853 LYM525 foxtail_millet|11v3|PHY7SI029863M_P1 5202 484 81.2 globlastp
854 LYM525 sugarcane|10v1|BU102751 5203 484 81.2 globlastp
855 LYM525 foxtail_millet|10v2|SICRP004879 5204 484 81.18 glotblastn
856 LYM525 maize|10v1|AW224952_P1 5205 484 81 globlastp
857 LYM525 rice|gb170|OS07G12110 5206 484 81 globlastp
858 LYM525 rice|11v1|AA751455_P1 5207 484 80.7 globlastp
859 LYM525 maize|10v1|AW017682_P1 5208 484 80 globlastp
860 LYM526 wheat|10v2|BE490724 5209 485 94.3 globlastp
861 LYM526 wheat|10v2|CA634494 5210 485 94.3 globlastp
862 LYM526 wheat|10v2|CA678574XX1 5210 485 94.3 globlastp
863 LYM526 wheat|10v2|CD935038 5209 485 94.3 globlastp
864 LYM526 wheat|10v2|BG907254 5211 485 93.8 globlastp
865 LYM526 wheat|10v2|TAU73217 5212 485 93.8 globlastp
866 LYM526 rye|12v1|DRR001012.125475_P1 5213 485 93.2 globlastp
867 LYM526 rye|12v1|DRR001012.17351_P1 5214 485 92.6 globlastp
868 LYM526 leymus|gb166|EG394965_P1 5215 485 92.6 globlastp
869 LYM526 rye|12v1|DRR001012.147835_P1 5216 485 91.5 globlastp
870 LYM527 barley|10v2|BE421977_T1 5217 486 94.87 glotblastn
871 LYM527 oat|10v2|GR356711 5218 486 94.87 glotblastn
872 LYM527 wheat|10v2|BE428386 5218 486 94.87 glotblastn
873 LYM527 barley|10v2|BG300270_T1 5219 486 93.59 glotblastn
874 LYM527 foxtail_millet|10v2|FXTSLX00007922 5220 486 93.59 glotblastn
875 LYM527 wheat|10v2|BE493375 5221 486 93.59 glotblastn
876 LYM527 wheat|10v2|CA612298 5222 486 93.59 glotblastn
877 LYM527 wheat|10v2|CA623003 5220 486 93.59 glotblastn
878 LYM527 wheat|10v2|CJ564049 5222 486 93.59 glotblastn
879 LYM527 rye|12v1|DRR001012.100136_T1 5223 486 92.31 glotblastn
880 LYM527 rye|12v1|DRR001012.113458_T1 5224 486 92.31 glotblastn
881 LYM527 rye|12v1|DRR001012.159370_T1 5225 486 92.31 glotblastn
882 LYM527 rye|12v1|DRR001012.377636_T1 5223 486 92.31 glotblastn
883 LYM527 rye|12v1|EH412084_T1 5226 486 92.31 glotblastn
884 LYM527 rye|12v1|EH412124_T1 5226 486 92.31 glotblastn
885 LYM527 oat|11v1|GR359014_T1 5227 486 92.31 glotblastn
886 LYM527 wheat|10v2|BE419814 5228 486 92.31 glotblastn
887 LYM527 wheat|10v2|BE428533 5229 486 92.31 glotblastn
888 LYM527 wheat|10v2|BF292824 5230 486 92.31 glotblastn
889 LYM527 wheat|10v2|BF293139 5228 486 92.31 glotblastn
890 LYM527 wheat|10v2|BF294036 5228 486 92.31 glotblastn
891 LYM527 rye|12v1|BE704771_T1 5231 486 91.03 glotblastn
892 LYM527 rye|12v1|DRR001012.1049_T1 5231 486 91.03 glotblastn
893 LYM527 rye|12v1|DRR001012.10929_T1 5232 486 91.03 glotblastn
894 LYM527 rye|12v1|DRR001012.114999_T1 5231 486 91.03 glotblastn
895 LYM527 rye|12v1|DRR001012.161872_T1 5231 486 91.03 glotblastn
896 LYM527 rye|12v1|EH412093_T1 5231 486 91.03 glotblastn
897 LYM527 rye|gb164|BE704771 5233 486 91.03 glotblastn
898 LYM527 cotton|11v1|BM359628_T1 5234 486 91.03 glotblastn
899 LYM527 wheat|10v2|BE638072 5235 486 91.03 glotblastn
900 LYM527 wheat|10v2|SRR043328S0000958 5236 486 91.03 glotblastn
901 LYM527 rye|12v1|DRR001012.13265_T1 5237 486 89.74 glotblastn
902 LYM527 rye|12v1|DRR001012.18866_T1 5238 486 89.74 glotblastn
903 LYM527 wheat|10v2|CK217440 5239 486 88.5 globlastp
904 LYM527 rye|12v1|DRR001012.187695_T1 5240 486 88.46 glotblastn
905 LYM527 wheat|10v2|CA696958 5241 486 88.46 glotblastn
906 LYM527 rye|12v1|DRR001012.310554_P1 5242 486 87.2 globlastp
907 LYM527 rye|12v1|DRR001013.2682_P1 5242 486 87.2 globlastp
908 LYM527 rye|12v1|DRR001012.10446_T1 5243 486 87.18 glotblastn
909 LYM527 rye|12v1|DRR001012.152110_T1 5244 486 87.18 glotblastn
910 LYM527 rye|12v1|EH412086_T1 5245 486 87.18 glotblastn
911 LYM527 rye|12v1|DRR001012.121076_T1 5246 486 85.9 glotblastn
912 LYM527 wheat|10v2|CA691317 5247 486 85.9 globlastp
913 LYM527 rye|12v1|DRR001012.15316_T1 5248 486 82.05 glotblastn
914 LYM527 foxtail_millet|10v2|FXTSLX00058120 5249 486 80.77 glotblastn
915 LYM528 wheat|10v2|BG907262 5250 487 97.2 globlastp
916 LYM528 wheat|10v2|BE405512 5251 487 93.4 globlastp
917 LYM528 leymus|gb166|EG384174_P1 5252 487 87.9 globlastp
918 LYM528 oat|10v2|GO592969 5253 487 85.8 globlastp
919 LYM528 oat|11v1|GO592969_P1 5253 487 85.8 globlastp
920 LYM529 wheat|10v2|CA685625 5254 488 95.7 globlastp
921 LYM529 brachypodium|12v1|BRADI3G55570_P1 5255 488 89 globlastp
922 LYM529 rice|11v1|BQ060183_P1 5256 488 88.1 globlastp
923 LYM529 rice|gb170|OS02G57420 5256 488 88.1 globlastp
924 LYM529 foxtail_millet|11v3|PHY7SI017278M_P1 5257 488 87 globlastp
925 LYM529 maize|10v1|BM072806_P1 5258 488 85.3 globlastp
926 LYM529 sorghum|12v1|SB04G037460_P1 5259 488 84.3 globlastp
927 LYM529 maize|10v1|BE025441_P1 5260 488 80 globlastp
928 LYM530 b_rapa|11v1|BRA040977_T1 489 100 glotblastn
928 LYM745 b_rapa|11v1|BRA040977_T1 687 94.18 glotblastn
928 LYM721 b_rapa|11v1|BRA040977_T1 728 91.23 glotblastn
929 LYM530 b_rapa|11v1|BRA040981_T1 489 100 glotblastn
929 LYM721 b_rapa|11v1|BRA040981_T1 728 91.23 glotblastn
929 LYM745 b_rapa|11v1|BRA040981_T1 733 95.63 glotblastn
930 LYM530 wheat|10v2|SRR043326S0076204 489 100 glotblastn
930 LYM721 wheat|10v2|SRR043326S0076204 728 91.23 glotblastn
931 LYM530 brachypodium|09v1|CRPBD006396 5261 489 93.94 glotblastn
932 LYM530 brachypodium|09v1|CRPBD004062 5262 489 92.4 globlastp
933 LYM532 pseudoroegneria|gb167|FF357444 5263 491 95.69 glotblastn
934 LYM532 leymus|gb166|EG374930_P1 5264 491 95.1 globlastp
935 LYM532 rye|12v1|DRR001012.66265_P1 5265 491 94.6 globlastp
936 LYM532 rye|12v1|DRR001017.1042346_P1 5266 491 94.3 globlastp
937 LYM532 wheat|10v2|BE470582 5267 491 94.1 globlastp
938 LYM532 oat|11v1|GR313652_P1 5268 491 86.6 globlastp
939 LYM532 oat|10v2|GR313652 5269 491 86.3 globlastp
940 LYM532 sorghum|09v1|SB01G022490 5270 491 83.4 globlastp
941 LYM532 sorghum|12v1|SB01G022490_P1 5270 491 83.4 globlastp
942 LYM532 maize|10v1|CF273231_P1 5271 491 82.6 globlastp
943 LYM532 switchgrass|gb167|FE649610 5272 491 81.55 glotblastn
944 LYM532 wheat|10v2|BF485042 5273 491 81.55 glotblastn
945 LYM532 brachypodium|12v1|BRADI1G07560_P1 5274 491 81 globlastp
946 LYM532 leymus|gb166|EG397836_P1 5275 491 80.5 globlastp
947 LYM532 rye|12v1|DRR001012.201138_T1 5276 491 80.48 glotblastn
948 LYM532 brachypodium|09v1|DV475654 5277 491 80.43 glotblastn
949 LYM532 rye|12v1|DRR001012.14421_T1 5278 491 80.32 glotblastn
950 LYM532 rice|11v1|GFXAC083943X19_P1 5279 491 80.3 globlastp
951 LYM533 rye|12v1|DRR001012.410709_P1 5280 492 93.9 globlastp
952 LYM533 wheat|10v2|CJ808255 5280 492 93.9 globlastp
953 LYM533 wheat|10v2|CA646704 5281 492 92.4 globlastp
954 LYM533 rye|12v1|DRR001015.104637_T1 5282 492 89.39 glotblastn
955 LYM533 lolium|10v1|EB709728_T1 5283 492 84.85 glotblastn
956 LYM533 sorghum|12v1|SB10G030100_P1 5284 492 84.8 globlastp
957 LYM533 brachypodium|09v1|GT764798 5285 492 84.8 globlastp
958 LYM533 brachypodium|12v1|BRADI1G35150T2_P1 5285 492 84.8 globlastp
959 LYM533 sorghum|09v1|SB10G030100 5284 492 84.8 globlastp
960 LYM533 foxtail_millet|11v3|PHY7SI007768M_T1 5286 492 80.3 glotblastn
961 LYM535 wheat|10v2|BQ238549 5287 493 93.5 globlastp
962 LYM535 sugarcane|10v1|CA072504 5288 493 93.2 globlastp
963 LYM535 rye|12v1|BE494474_P1 5289 493 92.9 globlastp
964 LYM535 rye|12v1|DRR001012.234914_P1 5290 493 92.9 globlastp
965 LYM535 barley|10v2|BF625837_P1 5291 493 92.7 globlastp
966 LYM535 rice|11v1|BE040109_P1 5292 493 92.7 globlastp
967 LYM535 rice|gb170|OS01G55260 5292 493 92.7 globlastp
968 LYM535 sorghum|09v1|SB03G035010 5293 493 92.2 globlastp
969 LYM535 sorghum|12v1|SB03G035010_P1 5293 493 92.2 globlastp
970 LYM535 switchgrass|gb167|FE598871 5294 493 92 globlastp
971 LYM535 millet|10v1|EVO454PM140977_P1 5295 493 91.9 globlastp
972 LYM535 maize|10v1|AI600808_P1 5296 493 90.9 globlastp
973 LYM535 cenchrus|gb166|EB654148_P1 5297 493 90.4 globlastp
974 LYM535 switchgrass|gb167|FE644372 5298 493 90.4 globlastp
975 LYM535 foxtail_millet|11v3|PHY7SI004261M_P1 5299 493 90.2 globlastp
976 LYM535 foxtail_millet|10v2|FXTRMSLX01807035D1 5300 493 80.26 glotblastn
976 LYM749 foxtail_millet|10v2|FXTRMSLX01807035D1 5300 691 90.1 globlastp
977 LYM536 rye|12v1|DRR001012.129728_T1 5301 494 82.14 glotblastn
978 LYM536 wheat|10v2|BQ619946 5302 494 81.6 globlastp
979 LYM536 barley|10v2|BE411384_P1 5303 494 80.6 globlastp
980 LYM536 oat|11v1|GR319739_P1 5304 494 80 globlastp
981 LYM537 rice|11v1|CB639228_P1 5305 495 90.9 globlastp
982 LYM537 sorghum|09v1|SB10G030970 5306 495 89.6 globlastp
983 LYM537 sorghum|12v1|SB10G030970_P1 5306 495 89.6 globlastp
984 LYM537 maize|10v1|AI600399_P1 5307 495 88.8 globlastp
985 LYM537 foxtail_millet|11v3|PHY7SI005663M_T1 5308 495 88.57 glotblastn
986 LYM537 rye|12v1|DRR001012.106165_P1 5309 495 87.2 globlastp
987 LYM537 foxtail_millet|11v3|PHY7SI016067M_P1 5310 495 85.3 globlastp
988 LYM537 rice|11v1|AI978287_P1 5311 495 84.9 globlastp
989 LYM537 brachypodium|09v1|DV477985 5312 495 84.2 globlastp
990 LYM537 brachypodium|12v1|BRADI3G60790_P1 5312 495 84.2 globlastp
991 LYM537 sorghum|09v1|SB04G038510 5313 495 84.2 globlastp
992 LYM537 sorghum|12v1|SB04G038510_P1 5314 495 84 globlastp
993 LYM537 rice|gb170|OS06G51270 5315 495 82.2 globlastp
994 LYM537 rye|12v1|DRR001012.102789_T1 5316 495 82.06 glotblastn
995 LYM537 rye|12v1|DRR001012.102994_T1 5317 495 81.65 glotblastn
996 LYM538 wheat|10v2|BF291937 5318 496 86.5 globlastp
997 LYM538 wheat|10v2|BE418784 5319 496 85 globlastp
998 LYM538 pseudoroegneria|gb167|FF344261 5320 496 84.1 globlastp
999 LYM538 rye|12v1|DRR001012.111995_T1 5321 496 84.02 glotblastn
1000 LYM538 millet|10v1|EB411076_P1 5322 496 84 globlastp
1001 LYM538 foxtail_millet|11v3|PHY7SI010206M_P1 5323 496 83.8 globlastp
1002 LYM538 barley|10v2|BF623862_P1 5324 496 83.7 globlastp
1003 LYM538 switchgrass|gb167|FE600126 5325 496 83.2 globlastp
1004 LYM538 sorghum|09v1|SB06G019430 5326 496 81.3 globlastp
1005 LYM538 sorghum|12v1|SB06G019430_P1 5326 496 81.3 globlastp
1006 LYM538 maize|10v1|AW018143_P1 5327 496 81.2 globlastp
1007 LYM538 rice|11v1|AA749562_P1 5328 496 81.1 globlastp
1008 LYM538 rice|gb170|OS04G39270 5329 496 81.09 glotblastn
1009 LYM539 rye|12v1|DRR001012.102635_P1 5330 497 87.5 globlastp
1010 LYM539 rice|gb170|OS09G21230 5331 497 86.26 glotblastn
1011 LYM539 foxtail_millet|11v3|PHY7SI029298M_P1 5332 497 86.1 globlastp
1012 LYM539 rice|11v1|BI805208_P1 5333 497 86 globlastp
1013 LYM539 sorghum|09v1|SB02G023690 5334 497 85.1 globlastp
1014 LYM539 switchgrass|gb167|FL712273 5335 497 85 globlastp
1015 LYM539 sorghum|12v1|SB02G023690_P1 5336 497 84.8 globlastp
1016 LYM539 millet|10v1|EVO454PM001443_P1 5337 497 84.5 globlastp
1017 LYM539 maize|10v1|AI987500_P1 5338 497 83.6 globlastp
1018 LYM540 switchgrass|gb167|FE614537 5339 498 93.4 globlastp
1019 LYM540 switchgrass|gb167|FE619568 5340 498 90.5 globlastp
1020 LYM540 sorghum|09v1|SB06G032600 5341 498 88.2 globlastp
1021 LYM540 sorghum|12v1|SB06G032600_P1 5341 498 88.2 globlastp
1022 LYM540 cynodon|10v1|ES292366_P1 5342 498 87.2 globlastp
1023 LYM540 sugarcane|10v1|CA092460 5343 498 86.5 globlastp
1024 LYM540 leymus|gb166|EG394000_P1 5344 498 83.1 globlastp
1025 LYM540 wheat|10v2|BF484005 5345 498 83 globlastp
1026 LYM540 wheat|10v2|BG904388 5346 498 82.6 globlastp
1027 LYM540 rye|12v1|DRR001012.306230_P1 5347 498 82.3 globlastp
1028 LYM540 rye|12v1|DRR001012.283400_P1 5348 498 81.8 globlastp
1029 LYM540 oat|10v2|GR356404 5349 498 81.7 globlastp
1030 LYM540 oat|11v1|GR356404_P1 5349 498 81.7 globlastp
1031 LYM540 brachypodium|09v1|GT808574 5350 498 81.1 globlastp
1032 LYM540 brachypodium|12v1|BRADI5G25860_P1 5350 498 81.1 globlastp
1033 LYM540 barley|10v2|BI947806_P1 5351 498 80.9 globlastp
1034 LYM540 rye|12v1|DRR001012.34995_T1 5352 498 80.68 glotblastn
1035 LYM540 sugarcane|10v1|CF571505 5353 498 80.61 glotblastn
1036 LYM543 switchgrass|gb167|FL787260 5354 500 99.1 globlastp
1037 LYM543 switchgrass|gb167|FE599325 5355 500 98.1 globlastp
1038 LYM543 switchgrass|gb167|DN152239 5356 500 97.2 globlastp
1039 LYM543 rice|11v1|AA750424_P1 5357 500 96.8 globlastp
1040 LYM543 rice|gb170|BI795073 5357 500 96.8 globlastp
1041 LYM543 rice|gb170|OS08G44450 5358 500 96.8 globlastp
1042 LYM543 switchgrass|gb167|DN142407 5359 500 96.8 globlastp
1043 LYM543 switchgrass|gb167|FE608046 5359 500 96.8 globlastp
1044 LYM543 switchgrass|gb167|FE645014 5359 500 96.8 globlastp
1045 LYM543 rice|11v1|AF093786_T1 500 96.76 glotblastn
1046 LYM543 foxtail_millet|10v2|OXFXTRMSLX00171177D2T1 5360 500 96.3 globlastp
1047 LYM543 sugarcane|10v1|BQ529961 5361 500 96.3 globlastp
1048 LYM543 sugarcane|10v1|BQ537074 5361 500 96.3 globlastp
1049 LYM543 sorghum|09v1|SB07G024200 5362 500 95.8 globlastp
1050 LYM543 sorghum|12v1|SB07G024200_P1 5362 500 95.8 globlastp
1051 LYM543 sorghum|09v1|SB07G024210 5362 500 95.8 globlastp
1052 LYM543 sorghum|12v1|SB07G024210_P1 5362 500 95.8 globlastp
1053 LYM543 maize|10v1|T70669_P1 5363 500 94.4 globlastp
1054 LYM543 millet|10v1|EVO454PM000449_P1 5364 500 94.4 globlastp
1055 LYM543 millet|10v1|EVO454PM005384_P1 5364 500 94.4 globlastp
1056 LYM543 millet|10v1|EVO454PM447766_P1 5364 500 94.4 globlastp
1057 LYM543 brachypodium|09v1|DV471443 5365 500 93.5 globlastp
1058 LYM543 brachypodium|12v1|BRADI4G38510_P1 5365 500 93.5 globlastp
1059 LYM543 barley|10v2|BF257610_P1 5366 500 93.1 globlastp
1060 LYM543 cynodon|10v1|ES292982_P1 5367 500 93.1 globlastp
1061 LYM543 leymus|gb166|EG375129_P1 5368 500 93.1 globlastp
1062 LYM543 maize|10v1|AI615083_P1 5369 500 93.1 globlastp
1063 LYM543 pseudoroegneria|gb167|FF350081 5370 500 93.1 globlastp
1064 LYM543 oat|11v1|GO590662_P1 5371 500 92.6 globlastp
1065 LYM543 leymus|gb166|EG377276_P1 5372 500 92.6 globlastp
1066 LYM543 pineapple|10v1|CO731145_P1 5373 500 92.6 globlastp
1067 LYM543 wheat|10v2|BE498290 5374 500 92.6 globlastp
1068 LYM543 rye|12v1|DRR001012.553513_T1 5375 500 92.13 glotblastn
1069 LYM543 maize|10v1|GRMZM2G170561T01_T1 5376 500 92.13 glotblastn
1070 LYM543 rye|12v1|BE493774_P1 5377 500 92.1 globlastp
1071 LYM543 rye|12v1|BG263898_P1 5377 500 92.1 globlastp
1072 LYM543 rye|12v1|DRR001013.111633_P1 5377 500 92.1 globlastp
1073 LYM543 rye|12v1|DRR001013.12149_P1 5377 500 92.1 globlastp
1074 LYM543 rye|12v1|DRR001013.136831_P1 5377 500 92.1 globlastp
1075 LYM543 banana|10v1|BBS1965T3_P1 5378 500 92.1 globlastp
1076 LYM543 oat|10v2|GO584775 5379 500 92.1 globlastp
1077 LYM543 oat|11v1|GO590593_P1 5379 500 92.1 globlastp
1078 LYM543 oat|10v2|GO590662 5379 500 92.1 globlastp
1079 LYM543 oat|11v1|GR332001_P1 5379 500 92.1 globlastp
1080 LYM543 wheat|10v2|BE399095 5380 500 92.1 globlastp
1081 LYM543 banana|10v1|BBS2029T3_P1 5381 500 91.7 globlastp
1082 LYM543 banana|10v1|BBS3197T3_P1 5381 500 91.7 globlastp
1083 LYM543 banana|10v1|FF560632_P1 5382 500 91.7 globlastp
1084 LYM543 maize|10v1|DW846793_T1 5383 500 91.67 glotblastn
1085 LYM543 rice|11v1|BE228235_P1 5384 500 91.2 globlastp
1086 LYM543 rye|12v1|BF145257_P1 5385 500 91.2 globlastp
1087 LYM543 barley|10v2|BI950625_P1 5386 500 91.2 globlastp
1088 LYM543 wheat|10v2|BE405698 5386 500 91.2 globlastp
1089 LYM543 wheat|10v2|BE637952 5386 500 91.2 globlastp
1090 LYM543 wheat|10v2|BE638076 5386 500 91.2 globlastp
1091 LYM543 wheat|10v2|CD905356 5386 500 91.2 globlastp
1092 LYM543 maize|10v1|AI861331_T1 5387 500 90.74 glotblastn
1093 LYM543 amorphophallus|11v2|SRR089351X113366_P1 5388 500 90.7 globlastp
1094 LYM543 oil_palm|gb166|CN600379 5389 500 90.7 globlastp
1095 LYM543 oil_palm|gb166|EL681363 5390 500 90.7 globlastp
1096 LYM543 wheat|10v2|CA673311 5391 500 90.7 globlastp
1097 LYM543 distylium|11v1|SRR065077X101573_P1 5392 500 90.3 globlastp
1098 LYM543 kiwi|gb166|FG418372_P1 5393 500 90.3 globlastp
1099 LYM543 pseudoroegneria|gb167|FF347130 5394 500 90.3 globlastp
1100 LYM543 phalaenopsis|11v1|SRR125771.1033372_T1 5395 500 90.28 glotblastn
1101 LYM543 maize|10v1|DW916030_T1 5396 500 90.28 glotblastn
1102 LYM543 wheat|10v2|CA662666 5397 500 90.28 glotblastn
1103 LYM543 lovegrass|gb167|EH185205_T1 5398 500 89.81 glotblastn
1104 LYM543 chelidonium|11v1|SRR084752X100908_P1 5399 500 89.8 globlastp
1105 LYM543 chelidonium|11v1|SRR084752X101815_P1 5400 500 89.8 globlastp
1106 LYM543 oat|11v1|GO581903_P1 5401 500 89.8 globlastp
1107 LYM543 oil_palm|11v1|EE593325_P1 5402 500 89.8 globlastp
1108 LYM543 rice|11v1|AF093786_P1 5403 500 89.8 globlastp
1109 LYM543 aristolochia|10v1|SRR039082S0070766_P1 5404 500 89.8 globlastp
1110 LYM543 brachypodium|09v1|DV474207 5405 500 89.8 globlastp
1111 LYM543 brachypodium|12v1|BRADI3G42800T6_P1 5405 500 89.8 globlastp
1112 LYM543 nuphar|gb166|CK747559_P1 5406 500 89.8 globlastp
1113 LYM543 oat|10v2|CK780248 5401 500 89.8 globlastp
1114 LYM543 oil_palm|gb166|EE593325 5402 500 89.8 globlastp
1115 LYM543 rice|11v1|AA750592_P1 5407 500 89.8 globlastp
1116 LYM543 rice|gb170|OS02G21660 5407 500 89.8 globlastp
1117 LYM543 oat|11v1|CK780248_P1 5401 500 89.8 globlastp
1118 LYM543 humulus|11v1|GD242898_P1 5408 500 89.4 globlastp
1119 LYM543 maritime_pine|10v1|AL751307_P1 5409 500 89.4 globlastp
1120 LYM543 oil_palm|11v1|EY396835_P1 5410 500 89.4 globlastp
1121 LYM543 phalaenopsis|11v1|SRR125771.1004556_P1 5411 500 89.4 globlastp
1122 LYM543 sarracenia|11v1|SRR192669.103979_P1 5412 500 89.4 globlastp
1123 LYM543 spruce|11v1|ES245127_P1 5413 500 89.4 globlastp
1124 LYM543 spruce|11v1|EX347615_P1 5413 500 89.4 globlastp
1125 LYM543 tabernaemontana|11v1|SRR098689X11504_P1 5414 500 89.4 globlastp
1126 LYM543 avocado|10v1|CK748264_P1 5415 500 89.4 globlastp
1127 LYM543 ginseng|10v1|CN848206_P1 5416 500 89.4 globlastp
1128 LYM543 peanut|10v1|EE124950_P1 5417 500 89.4 globlastp
1129 LYM543 pine|10v2|AA556310_P1 5409 500 89.4 globlastp
1130 LYM543 pseudotsuga|10v1|SRR065119S0005295 5418 500 89.4 globlastp
1131 LYM543 soybean|11v1|GLYMA19G37980 5419 500 89.4 globlastp
1132 LYM543 spruce|11v1|EX350063_P1 5413 500 89.4 globlastp
1133 LYM543 spruce|gb162|CO230273 5413 500 89.4 globlastp
1134 LYM543 abies|11v2|SRR098676X106955_T1 5420 500 89.35 glotblastn
1135 LYM543 spruce|11v1|DR542779_T1 5421 500 89.35 glotblastn
1136 LYM543 oil_palm|11v1|EL691247_P1 5422 500 88.9 globlastp
1137 LYM543 phyla|11v2|SRR099035X104155_P1 5423 500 88.9 globlastp
1138 LYM543 poppy|11v1|FE964822_P1 5424 500 88.9 globlastp
1139 LYM543 aristolochia|10v1|SRR039082S0135731_P1 5425 500 88.9 globlastp
1140 LYM543 cacao|10v1|CF972749_P1 5426 500 88.9 globlastp
1141 LYM543 cyamopsis|10v1|EG977006_P1 5427 500 88.9 globlastp
1142 LYM543 cycas|gb166|CB089948_P1 5428 500 88.9 globlastp
1143 LYM543 ginseng|10v1|EW712050_P1 5429 500 88.9 globlastp
1144 LYM543 leymus|gb166|CN466494_P1 5430 500 88.9 globlastp
1145 LYM543 liquorice|gb171|FS239671_P1 5431 500 88.9 globlastp
1146 LYM543 liquorice|gb171|FS239752_P1 5431 500 88.9 globlastp
1147 LYM543 liriodendron|gb166|CK753392_P1 5432 500 88.9 globlastp
1148 LYM543 nuphar|gb166|CD474021_P1 5433 500 88.9 globlastp
1149 LYM543 oat|10v2|CN816132 5434 500 88.9 globlastp
1150 LYM543 sorghum|09v1|SB03G040550 5435 500 88.9 globlastp
1151 LYM543 sorghum|12v1|SB03G040550_P1 5435 500 88.9 globlastp
1152 LYM543 sugarcane|10v1|AA577661 5435 500 88.9 globlastp
1153 LYM543 zamia|gb166|DY031878 5436 500 88.9 globlastp
1154 LYM543 eschscholzia|11v1|CK750888_P1 5437 500 88.9 globlastp
1155 LYM543 amorphophallus|11v2|SRR089351X100060_T1 5438 500 88.89 glotblastn
1156 LYM543 primula|11v1|SRR098679X104520_T1 5439 500 88.89 glotblastn
1157 LYM543 tabernaemontana|11v1|SRR098689X122189_P1 5440 500 88.5 globlastp
1158 LYM543 citrus|gb166|CB304385 5441 500 88.5 globlastp
1159 LYM543 lovegrass|gb167|EH193399_T1 5442 500 88.43 glotblastn
1160 LYM543 millet|10v1|EVO454PM077721_T1 5443 500 88.43 glotblastn
1161 LYM543 bupleurum|11v1|SRR301254.11858_P1 5444 500 88.4 globlastp
1162 LYM543 catharanthus|11v1|EG562566_P1 5445 500 88.4 globlastp
1163 LYM543 cedrus|11v1|SRR065007X109999_P1 5446 500 88.4 globlastp
1164 LYM543 cotton|11v1|AI725849_P1 5447 500 88.4 globlastp
1165 LYM543 gossypium_raimondii|12v1|AI725849_P1 5447 500 88.4 globlastp
1166 LYM543 olea|11v1|SRR014463.11312_P1 5448 500 88.4 globlastp
1167 LYM543 platanus|11v1|SRR096786X120035_P1 5449 500 88.4 globlastp
1168 LYM543 poppy|11v1|SRR030259.101622_P1 5450 500 88.4 globlastp
1169 LYM543 poppy|11v1|SRR030259.115832_P1 5451 500 88.4 globlastp
1170 LYM543 poppy|11v1|SRR030259.210198_P1 5451 500 88.4 globlastp
1171 LYM543 poppy|11v1|SRR096789.100157_P1 5450 500 88.4 globlastp
1172 LYM543 pteridium|11v1|SRR043594X105469_P1 5452 500 88.4 globlastp
1173 LYM543 sarracenia|11v1|SRR192669.101116_P1 5453 500 88.4 globlastp
1174 LYM543 thalictrum|11v1|SRR096787X103466_P1 5454 500 88.4 globlastp
1175 LYM543 cryptomeria|gb166|BJ937459_P1 5455 500 88.4 globlastp
1176 LYM543 medicago|09v1|LLES610908 5456 500 88.4 globlastp
1177 LYM543 medicago|12v1|ES610908_P1 5456 500 88.4 globlastp
1178 LYM543 papaya|gb165|EX249851_P1 5457 500 88.4 globlastp
1179 LYM543 soybean|11v1|GLYMA12G31040 5458 500 88.4 globlastp
1180 LYM543 soybean|11v1|GLYMA13G39270 5459 500 88.4 globlastp
1181 LYM543 eschscholzia|11v1|CK766388_P1 5460 500 88.4 globlastp
1182 LYM543 catharanthus|11v1|EG558011_T1 5461 500 88.02 glotblastn
1183 LYM543 amsonia|11v1|SRR098688X104577_P1 5462 500 88 globlastp
1184 LYM543 beet|12v1|BI643115_P1 5463 500 88 globlastp
1185 LYM543 canola|11v1|DW998678_P1 5464 500 88 globlastp
1186 LYM543 cephalotaxus|11v1|SRR064395X151698_P1 5465 500 88 globlastp
1187 LYM543 cotton|11v1|AI726853_P1 5466 500 88 globlastp
1188 LYM543 cotton|11v1|BF270789_P1 5466 500 88 globlastp
1189 LYM543 cotton|11v1|CO084076_P1 5467 500 88 globlastp
1190 LYM543 eschscholzia|11v1|CD477238_P1 5468 500 88 globlastp
1191 LYM543 eschscholzia|11v1|CD478319_P1 5468 500 88 globlastp
1192 LYM543 eucalyptus|11v2|CU396236_P1 5469 500 88 globlastp
1193 LYM543 fagopyrum|11v1|SRR063689X107500_P1 5470 500 88 globlastp
1194 LYM543 fraxinus|11v1|SRR058827.117586_P1 5471 500 88 globlastp
1195 LYM543 gossypium_raimondii|12v1|AI726853_P1 5466 500 88 globlastp
1196 LYM543 gossypium_raimondii|12v1|BE054773_P1 5466 500 88 globlastp
1197 LYM543 gossypium_raimondii|12v1|BF270789_P1 5466 500 88 globlastp
1198 LYM543 olea|11v1|SRR014463.18658_P1 5472 500 88 globlastp
1199 LYM543 poppy|11v1|FE964490_P1 5473 500 88 globlastp
1200 LYM543 poppy|11v1|FG611847_P1 5474 500 88 globlastp
1201 LYM543 scabiosa|11v1|SRR063723X10991_P1 5475 500 88 globlastp
1202 LYM543 thellungiella_halophilum|11v1|DN774728_P1 5476 500 88 globlastp
1203 LYM543 antirrhinum|gb166|AJ560015_P1 5477 500 88 globlastp
1204 LYM543 b_juncea|10v2|E6ANDIZ01BL5SP_P1 5464 500 88 globlastp
1205 LYM543 b_rapa|11v1|H74781_P1 5464 500 88 globlastp
1206 LYM543 b_rapa|gb162|CX267538 5464 500 88 globlastp
1207 LYM543 basilicum|10v1|DY325036_P1 5478 500 88 globlastp
1208 LYM543 beet|gb162|BI643115 5463 500 88 globlastp
1209 LYM543 canola|10v1|DW998678 5464 500 88 globlastp
1210 LYM543 canola|11v1|EE480861_P1 5464 500 88 globlastp
1211 LYM543 canola|10v1|H74781 5464 500 88 globlastp
1212 LYM543 canola|11v1|AI352956_P1 5464 500 88 globlastp
1213 LYM543 catharanthus|gb166|EG558011 5479 500 88 globlastp
1214 LYM543 cenchrus|gb166|EB654688_P1 5480 500 88 globlastp
1215 LYM543 clementine|11v1|CB304385_P1 5481 500 88 globlastp
1216 LYM543 cotton|10v2|BE054773 5467 500 88 globlastp
1217 LYM543 cotton|11v1|BE054773XX1_P1 5466 500 88 globlastp
1218 LYM543 cotton|10v2|DT050220 5482 500 88 globlastp
1219 LYM543 cotton|10v2|OXDN779325T1 5466 500 88 globlastp
1220 LYM543 cotton|11v1|DN779325_P1 5466 500 88 globlastp
1221 LYM543 cowpea|gb166|FC459154_P1 5483 500 88 globlastp
1222 LYM543 eucalyptus|11v1|CU396236 5469 500 88 globlastp
1223 LYM543 fern|gb171|DK950017_P1 5484 500 88 globlastp
1224 LYM543 grape|gb160|BQ793957 5485 500 88 globlastp
1225 LYM543 grape|11v1|GSVIVT01033841001_P1 5486 500 88 globlastp
1226 LYM543 grape|gb160|BQ796293 5486 500 88 globlastp
1227 LYM543 heritiera|10v1|SRR005794S0003479_P1 5487 500 88 globlastp
1228 LYM543 lolium|10v1|AU249969_P1 5488 500 88 globlastp
1229 LYM543 orange|11v1|CB304385_P1 5481 500 88 globlastp
1230 LYM543 peanut|10v1|CX128153_P1 5489 500 88 globlastp
1231 LYM543 peanut|10v1|ES490866_P1 5489 500 88 globlastp
1232 LYM543 petunia|gb171|CV298098_P1 5490 500 88 globlastp
1233 LYM543 podocarpus|10v1|SRR065014S0012085_P1 5491 500 88 globlastp
1234 LYM543 poppy|gb166|FE964490 5473 500 88 globlastp
1235 LYM543 radish|gb164|EV525197 5492 500 88 globlastp
1236 LYM543 thellungiella|gb167|DN774728 5476 500 88 globlastp
1237 LYM543 fraxinus|11v1|SRR058827.142875_T1 5493 500 87.96 glotblastn
1238 LYM543 monkeyflower|10v1|DV206223_T1 5494 500 87.96 glotblastn
1239 LYM543 coffea|10v1|DV663604_P1 5495 500 87.6 globlastp
1240 LYM543 radish|gb164|EV526659 5496 500 87.6 globlastp
1241 LYM543 cotton|11v1|DW226888_P1 5497 500 87.5 globlastp
1242 LYM543 euonymus|11v1|SRR070038X114371_P1 5498 500 87.5 globlastp
1243 LYM543 euonymus|11v1|SRR070038X190637_P1 5498 500 87.5 globlastp
1244 LYM543 foxtail_millet|11v3|EC613830_P1 5499 500 87.5 globlastp
1245 LYM543 primula|11v1|SRR098679X113048_P1 5500 500 87.5 globlastp
1246 LYM543 rye|12v1|DRR001012.383124_T1 5501 500 87.5 glotblastn
1247 LYM543 thellungiella_halophilum|11v1|DN774951_P1 5502 500 87.5 globlastp
1248 LYM543 tripterygium|11v1|SRR098677X110207_P1 5503 500 87.5 globlastp
1249 LYM543 utricularia|11v1|SRR094438.102473_T1 5504 500 87.5 glotblastn
1250 LYM543 bean|12v1|AF293406_P1 5505 500 87.5 globlastp
1251 LYM543 bean|gb167|AF293406 5505 500 87.5 globlastp
1252 LYM543 cenchrus|gb166|BQ479113_P1 5506 500 87.5 globlastp
1253 LYM543 cotton|10v2|BG441535 5497 500 87.5 globlastp
1254 LYM543 cucumber|09v1|CK085743_P1 5507 500 87.5 globlastp
1255 LYM543 ipomoea_nil|10v1|BJ559365_P1 5508 500 87.5 globlastp
1256 LYM543 leymus|gb166|EG376201_P1 5509 500 87.5 globlastp
1257 LYM543 maize|10v1|AI619095_P1 5510 500 87.5 globlastp
1258 LYM543 melon|10v1|DV631956_P1 5507 500 87.5 globlastp
1259 LYM543 millet|10v1|EVO454PM022936_P1 5511 500 87.5 globlastp
1260 LYM543 momordica|10v1|SRR071315S0005611_P1 5512 500 87.5 globlastp
1261 LYM543 monkeyflower|10v1|DV206299_P1 5513 500 87.5 globlastp
1262 LYM543 nasturtium|10v1|SRR032558S0007114 5514 500 87.5 globlastp
1263 LYM543 nasturtium|11v1|SRR032558.101084_P1 5514 500 87.5 globlastp
1264 LYM543 orobanche|10v1|SRR023189S0001673_P1 5515 500 87.5 globlastp
1265 LYM543 petunia|gb171|CV294332_P1 5516 500 87.5 globlastp
1266 LYM543 petunia|gb171|CV299939_P1 5517 500 87.5 globlastp
1267 LYM543 sequoia|10v1|SRR065044S0003631 5518 500 87.5 globlastp
1268 LYM543 taxus|10v1|SRR032523S0015691 5519 500 87.5 glotblastn
1269 LYM543 thellungiella|gb167|DN774951 5502 500 87.5 globlastp
1270 LYM543 amsonia|11v1|SRR098688X106132_P1 5520 500 87.3 globlastp
1271 LYM543 vinca|11v1|SRR098690X102336_P1 5521 500 87.2 globlastp
1272 LYM543 vinca|11v1|SRR098690X107812_P1 5521 500 87.2 globlastp
1273 LYM543 valeriana|11v1|SRR099039X101941_P1 5522 500 87.1 globlastp
1274 LYM543 valeriana|11v1|SRR099039X111375_P1 5522 500 87.1 globlastp
1275 LYM543 b_juncea|10v2|E6ANDIZ01APK40_P1 5523 500 87.1 globlastp
1276 LYM543 b_juncea|10v2|E6ANDIZ01BBR0O_P1 5524 500 87.1 globlastp
1277 LYM543 b_oleracea|gb161|DY025831_P1 5525 500 87.1 globlastp
1278 LYM543 b_rapa|gb162|ES937363 5526 500 87.1 globlastp
1279 LYM543 canola|10v1|CD816651 5526 500 87.1 globlastp
1280 LYM543 canola|11v1|EE464344_P1 5526 500 87.1 globlastp
1281 LYM543 canola|10v1|CD832888 5526 500 87.1 globlastp
1282 LYM543 canola|11v1|CN726379_P1 5526 500 87.1 globlastp
1283 LYM543 b_rapa|11v1|CD832888_P1 5526 500 87.1 globlastp
1284 LYM543 cucurbita|11v1|SRR091276X105908_T1 5527 500 87.04 glotblastn
1285 LYM543 rye|12v1|DRR001012.509646_T1 5528 500 87.04 glotblastn
1286 LYM543 spruce|11v1|SRR064180X566232_T1 5529 500 87.04 glotblastn
1287 LYM543 curcuma|10v1|DY394111_T1 5530 500 87.04 glotblastn
1288 LYM543 aquilegia|10v1|DR919077_P1 5531 500 87 globlastp
1289 LYM543 cucurbita|11v1|FG227425_P1 5532 500 87 globlastp
1290 LYM543 cucurbita|11v1|SRR091276X104899_P1 5533 500 87 globlastp
1291 LYM543 euonymus|11v1|SRR070038X130859_P1 5534 500 87 globlastp
1292 LYM543 fagopyrum|11v1|SRR063703X113606_P1 5535 500 87 globlastp
1293 LYM543 humulus|11v1|ES654690_P1 5536 500 87 globlastp
1294 LYM543 olea|11v1|SRR014463.20541_P1 5537 500 87 globlastp
1295 LYM543 plantago|11v2|SRR066373X100572_P1 5538 500 87 globlastp
1296 LYM543 poppy|11v1|SRR030259.104279_P1 5539 500 87 globlastp
1297 LYM543 poppy|11v1|SRR030263.377362_P1 5539 500 87 globlastp
1298 LYM543 pteridium|11v1|GW575187_P1 5540 500 87 globlastp
1299 LYM543 rye|12v1|BE587503_P1 5541 500 87 globlastp
1300 LYM543 rye|12v1|BF145998_P1 5542 500 87 globlastp
1301 LYM543 tripterygium|11v1|SRR098677X111812_P1 5543 500 87 globlastp
1302 LYM543 watermelon|11v1|DV632976_P1 5544 500 87 globlastp
1303 LYM543 antirrhinum|gb166|AJ789157_P1 5545 500 87 globlastp
1304 LYM543 aquilegia|10v2|DR919077 5531 500 87 globlastp
1305 LYM543 aquilegia|10v2|DR921801 5531 500 87 globlastp
1306 LYM543 barley|10v2|AV833308_P1 5546 500 87 globlastp
1307 LYM543 cleome_spinosa|10v1|GR932294_P1 5547 500 87 globlastp
1308 LYM543 cleome_spinosa|10v1|SRR015531S0001904_P1 5548 500 87 globlastp
1309 LYM543 eggplant|10v1|FS002982_P1 5549 500 87 globlastp
1310 LYM543 kiwi|gb166|FG396759_P1 5550 500 87 globlastp
1311 LYM543 lotus|09v1|AW719561_P1 5551 500 87 globlastp
1312 LYM543 marchantia|gb166|BJ841118_P1 5552 500 87 globlastp
1313 LYM543 marchantia|gb166|C96032_P1 5552 500 87 globlastp
1314 LYM543 pepper|gb171|BM066423_P1 5553 500 87 globlastp
1315 LYM543 pigeonpea|10v1|SRR054580S0021257 5554 500 87 globlastp
1316 LYM543 pigeonpea|11v1|SRR054580X10220_P1 5554 500 87 globlastp
1317 LYM543 pseudoroegneria|gb167|FF340018 5546 500 87 globlastp
1318 LYM543 salvia|10v1|CV168785 5555 500 87 globlastp
1319 LYM543 soybean|11v1|GLYMA11G35450 5556 500 87 globlastp
1320 LYM543 soybean|11v1|GLYMA18G02970 5554 500 87 globlastp
1321 LYM543 tobacco|gb162|CV017229 5557 500 87 globlastp
1322 LYM543 tobacco|gb162|CV021769 5558 500 87 globlastp
1323 LYM543 tobacco|gb162|EB443361 5559 500 87 globlastp
1324 LYM543 wheat|10v2|BF199580 5541 500 87 globlastp
1325 LYM543 aquilegia|10v1|DR925946_P1 5560 500 86.6 globlastp
1326 LYM543 chickpea|11v1|SRR133517.100467XX1_P1 5561 500 86.6 globlastp
1327 LYM543 cirsium|11v1|SRR346952.115429_P1 5562 500 86.6 globlastp
1328 LYM543 cucurbita|11v1|SRR091276X104110_P1 5563 500 86.6 globlastp
1329 LYM543 euonymus|11v1|SRR070038X106585_P1 5564 500 86.6 globlastp
1330 LYM543 euonymus|11v1|SRR070038X127546_P1 5564 500 86.6 globlastp
1331 LYM543 fraxinus|11v1|SRR058827.101271_P1 5565 500 86.6 globlastp
1332 LYM543 hornbeam|12v1|SRR364455.100150_P1 5566 500 86.6 globlastp
1333 LYM543 platanus|11v1|SRR096786X10321_P1 5567 500 86.6 globlastp
1334 LYM543 thellungiella_parvulum|11v1|DN774728_P1 5568 500 86.6 globlastp
1335 LYM543 watermelon|11v1|AM716682_P1 5569 500 86.6 globlastp
1336 LYM543 aquilegia|10v2|DR925946 5560 500 86.6 globlastp
1337 LYM543 arabidopsis|10v1|AT5G22440_P1 5570 500 86.6 globlastp
1338 LYM543 b_juncea|10v2|E6ANDIZ01A0HZZ_P1 5571 500 86.6 globlastp
1339 LYM543 b_oleracea|gb161|DY026000_P1 5571 500 86.6 globlastp
1340 LYM543 b_rapa|gb162|CV432641 5571 500 86.6 globlastp
1341 LYM543 b_rapa|gb162|CX271881 5571 500 86.6 globlastp
1342 LYM543 bean|12v1|CA897536_P1 5572 500 86.6 globlastp
1343 LYM543 bean|gb167|CA897536 5572 500 86.6 globlastp
1344 LYM543 canola|10v1|CD816761 5573 500 86.6 globlastp
1345 LYM543 canola|11v1|CN730569_P1 5573 500 86.6 globlastp
1346 LYM543 canola|10v1|CD820505 5571 500 86.6 globlastp
1347 LYM543 canola|10v1|CD829083 5571 500 86.6 globlastp
1348 LYM543 canola|10v1|CN730444 5571 500 86.6 globlastp
1349 LYM543 cleome_gynandra|10v1|SRR015532S0001052_P1 5574 500 86.6 globlastp
1350 LYM543 cowpea|gb166|FF385658_P1 5572 500 86.6 globlastp
1351 LYM543 cynara|gb167|GE597248_P1 5562 500 86.6 globlastp
1352 LYM543 fescue|gb161|DT685613_P1 5575 500 86.6 globlastp
1353 LYM543 ipomoea_batatas|10v1|BM878842_P1 5576 500 86.6 globlastp
1354 LYM543 kiwi|gb166|FG416189_P1 5577 500 86.6 globlastp
1355 LYM543 nasturtium|10v1|GH162041 5578 500 86.6 globlastp
1356 LYM543 nasturtium|11v1|GH162041_P1 5578 500 86.6 globlastp
1357 LYM543 oat|10v2|GO589234 5579 500 86.6 globlastp
1358 LYM543 oat|11v1|GO589234_P1 5579 500 86.6 globlastp
1359 LYM543 pigeonpea|10v1|GW353422 5580 500 86.6 globlastp
1360 LYM543 radish|gb164|EV525236 5581 500 86.6 globlastp
1361 LYM543 radish|gb164|EV526900 5582 500 86.6 globlastp
1362 LYM543 radish|gb164|EV527619 5582 500 86.6 globlastp
1363 LYM543 radish|gb164|EV538757 5582 500 86.6 globlastp
1364 LYM543 taxus|10v1|SRR032523S0003326 5583 500 86.6 globlastp
1365 LYM543 tobacco|gb162|CV020196 5584 500 86.6 globlastp
1366 LYM543 tobacco|gb162|CV021457 5585 500 86.6 globlastp
1367 LYM543 b_rapa|11v1|H74539_P1 5571 500 86.6 globlastp
1368 LYM543 canola|11v1|CN730444_P1 5571 500 86.6 globlastp
1369 LYM543 pigeonpea|11v1|GW349485_P1 5580 500 86.6 globlastp
1370 LYM543 phyla|11v2|SRR099037X193979_T1 5586 500 86.57 glotblastn
1371 LYM543 rye|gb164|BE587503 5587 500 86.57 glotblastn
1372 LYM543 cannabis|12v1|GR221542_P1 5588 500 86.4 globlastp
1373 LYM543 rice|11v1|AU068303_T1 5589 500 86.32 glotblastn
1374 LYM543 vinca|11v1|SRR098690X100190_P1 5590 500 86.2 globlastp
1375 LYM543 arabidopsis_lyrata|09v1|JGIAL021924_P1 5591 500 86.2 globlastp
1376 LYM543 b_rapa|11v1|BG543378_P1 5592 500 86.2 globlastp
1377 LYM543 b_rapa|gb162|BG543378 5592 500 86.2 globlastp
1378 LYM543 canola|10v1|CD813152 5592 500 86.2 globlastp
1379 LYM543 canola|11v1|CN730954_P1 5592 500 86.2 globlastp
1380 LYM543 radish|gb164|EV528573 5593 500 86.2 globlastp
1381 LYM543 radish|gb164|EV546032 5593 500 86.2 globlastp
1382 LYM543 rye|12v1|DRR001012.426022_T1 5594 500 86.11 glotblastn
1383 LYM543 cryptomeria|gb166|BP174254_T1 5595 500 86.11 glotblastn
1384 LYM543 salvia|10v1|SRR014553S0014817 5596 500 86.11 glotblastn
1385 LYM543 cannabis|12v1|EW701238_P1 5597 500 86.1 globlastp
1386 LYM543 chickpea|11v1|ES560310_P1 5598 500 86.1 globlastp
1387 LYM543 chickpea|11v1|GR916830_P1 5599 500 86.1 globlastp
1388 LYM543 fagopyrum|11v1|SRR063689X108738_P1 5600 500 86.1 globlastp
1389 LYM543 amaranthus|10v1|SRR039411S0000047_P1 5601 500 86.1 globlastp
1390 LYM543 cichorium|gb171|DT213592_P1 5602 500 86.1 globlastp
1391 LYM543 eggplant|10v1|FS002308_P1 5603 500 86.1 globlastp
1392 LYM543 eggplant|10v1|FS002812_P1 5604 500 86.1 globlastp
1393 LYM543 eschscholzia|10v1|CK750888 5605 500 86.1 globlastp
1394 LYM543 pepper|gb171|BM060429_P1 5606 500 86.1 globlastp
1395 LYM543 pepper|gb171|BM062303_P1 5607 500 86.1 globlastp
1396 LYM543 radish|gb164|EX757054 5608 500 86.1 globlastp
1397 LYM543 foxtail_millet|11v3|EC613810_P1 5609 500 86 globlastp
1398 LYM543 rye|12v1|DRR001012.223688_T1 5610 500 85.65 glotblastn
1399 LYM543 antirrhinum|gb166|AJ789134_T1 5611 500 85.65 glotblastn
1400 LYM543 foxtail_millet|10v2|OXEC613830_T1 5612 500 85.65 glotblastn
1401 LYM543 amborella|12v2|CK757481_P1 5613 500 85.6 globlastp
1402 LYM543 arnica|11v1|SRR099034X106235_P1 5614 500 85.6 globlastp
1403 LYM543 arnica|11v1|SRR099034X117709_P1 5615 500 85.6 globlastp
1404 LYM543 canola|11v1|CN735991_P1 5616 500 85.6 globlastp
1405 LYM543 cirsium|11v1|SRR346952.1020901_P1 5617 500 85.6 globlastp
1406 LYM543 epimedium|11v1|SRR013502.10782_P1 5618 500 85.6 globlastp
1407 LYM543 eucalyptus|11v2|DR410017_P1 5619 500 85.6 globlastp
1408 LYM543 hornbeam|12v1|SRR364455.134704_P1 5620 500 85.6 globlastp
1409 LYM543 thellungiella_halophilum|11v1|EC599536_P1 5621 500 85.6 globlastp
1410 LYM543 thellungiella_parvulum|11v1|DN774951_P1 5622 500 85.6 globlastp
1411 LYM543 trigonella|11v1|SRR066194X109093_P1 5623 500 85.6 globlastp
1412 LYM543 b_oleracea|gb161|DY026477_P1 5616 500 85.6 globlastp
1413 LYM543 brachypodium|09v1|DV475206 5624 500 85.6 globlastp
1414 LYM543 brachypodium|12v1|BRADI2G55600_P1 5624 500 85.6 globlastp
1415 LYM543 canola|10v1|CX193827 5616 500 85.6 globlastp
1416 LYM543 centaurea|gb166|EH755136_P1 5625 500 85.6 globlastp
1417 LYM543 chestnut|gb170|SRR006295S0014019_P1 5626 500 85.6 globlastp
1418 LYM543 cucumber|09v1|CK085995_P1 5627 500 85.6 globlastp
1419 LYM543 dandelion|10v1|DR398518_P1 5628 500 85.6 globlastp
1420 LYM543 eucalyptus|11v1|DR410017 5619 500 85.6 globlastp
1421 LYM543 kiwi|gb166|FG397268_P1 5629 500 85.6 globlastp
1422 LYM543 medicago|09v1|AA660463 5630 500 85.6 globlastp
1423 LYM543 medicago|12v1|AA660463_P1 5630 500 85.6 globlastp
1424 LYM543 medicago|09v1|LLBG644354 5631 500 85.6 globlastp
1425 LYM543 melon|10v1|AM716682_P1 5627 500 85.6 globlastp
1426 LYM543 oak|10v1|DB998778_P1 5626 500 85.6 globlastp
1427 LYM543 potato|10v1|BF153577_P1 5632 500 85.6 globlastp
1428 LYM543 potato|10v1|BG350267_P1 5631 500 85.6 globlastp
1429 LYM543 safflower|gb162|EL389709 5625 500 85.6 globlastp
1430 LYM543 solanum_phureja|09v1|SPHBG123290 5631 500 85.6 globlastp
1431 LYM543 solanum_phureja|09v1|SPHBG123407 5632 500 85.6 globlastp
1432 LYM543 strawberry|11v1|DV440222 5633 500 85.6 globlastp
1433 LYM543 thellungiella|gb167|EC599536 5621 500 85.6 globlastp
1434 LYM543 tomato|09v1|BG123290 5631 500 85.6 globlastp
1435 LYM543 tomato|11v1|BG123290_P1 5631 500 85.6 globlastp
1436 LYM543 tomato|09v1|BG123407 5634 500 85.6 globlastp
1437 LYM543 tomato|11v1|BG123407_P1 5634 500 85.6 globlastp
1438 LYM543 tomato|09v1|BG126695 5635 500 85.6 globlastp
1439 LYM543 tomato|11v1|BG126695_P1 5635 500 85.6 globlastp
1440 LYM543 tragopogon|10v1|SRR020205S0005773 5636 500 85.6 globlastp
1441 LYM543 tragopogon|10v1|SRR020205S0054300 5637 500 85.6 globlastp
1442 LYM543 triphysaria|10v1|BE574961 5638 500 85.6 globlastp
1443 LYM543 fraxinus|11v1|SRR058827.149429_T1 5639 500 85.25 glotblastn
1444 LYM543 amborella|12v2|CK754386_P1 5640 500 85.2 globlastp
1445 LYM543 ambrosia|11v1|GR935615_P1 5641 500 85.2 globlastp
1446 LYM543 ambrosia|11v1|SRR346935.197056_P1 5642 500 85.2 globlastp
1447 LYM543 ambrosia|11v1|SRR346935.207821_P1 5641 500 85.2 globlastp
1448 LYM543 ambrosia|11v1|SRR346943.100852_P1 5643 500 85.2 globlastp
1449 LYM543 ambrosia|11v1|SRR346943.103647_P1 5644 500 85.2 globlastp
1450 LYM543 ambrosia|11v1|SRR346943.104242_P1 5645 500 85.2 globlastp
1451 LYM543 arnica|11v1|SRR099034X102057_P1 5646 500 85.2 globlastp
1452 LYM543 canola|11v1|EE476773_P1 5647 500 85.2 globlastp
1453 LYM543 cirsium|11v1|DV175371_P1 5648 500 85.2 globlastp
1454 LYM543 cirsium|11v1|SRR346952.100637_P1 5648 500 85.2 globlastp
1455 LYM543 flaveria|11v1|SRR149229.100897_P1 5649 500 85.2 globlastp
1456 LYM543 flaveria|11v1|SRR149229.105912_P1 5650 500 85.2 globlastp
1457 LYM543 flaveria|11v1|SRR149229.106781_P1 5650 500 85.2 globlastp
1458 LYM543 flaveria|11v1|SRR149229.106867_P1 5649 500 85.2 globlastp
1459 LYM543 flaveria|11v1|SRR149229.112923_P1 5650 500 85.2 globlastp
1460 LYM543 flaveria|11v1|SRR149229.416813_P1 5650 500 85.2 globlastp
1461 LYM543 flaveria|11v1|SRR149232.102816_P1 5650 500 85.2 globlastp
1462 LYM543 flaveria|11v1|SRR149232.115803_P1 5650 500 85.2 globlastp
1463 LYM543 flaveria|11v1|SRR149232.115954_P1 5650 500 85.2 globlastp
1464 LYM543 flaveria|11v1|SRR149232.120376_P1 5650 500 85.2 globlastp
1465 LYM543 sunflower|12v1|CD847389_P1 5646 500 85.2 globlastp
1466 LYM543 sunflower|12v1|CD851020_P1 5646 500 85.2 globlastp
1467 LYM543 sunflower|12v1|CD851044_P1 5646 500 85.2 globlastp
1468 LYM543 sunflower|12v1|CD855240_P1 5646 500 85.2 globlastp
1469 LYM543 sunflower|12v1|CX946517_P1 5646 500 85.2 globlastp
1470 LYM543 sunflower|12v1|DY906251_P1 5646 500 85.2 globlastp
1471 LYM543 sunflower|12v1|DY910888_P1 5646 500 85.2 globlastp
1472 LYM543 sunflower|12v1|DY915779_P1 5646 500 85.2 globlastp
1473 LYM543 sunflower|12v1|DY957371_P1 5646 500 85.2 globlastp
1474 LYM543 arabidopsis_lyrata|09v1|JGIAL000800_P1 5651 500 85.2 globlastp
1475 LYM543 arabidopsis_lyrata|09v1|JGIAL013873_P1 5652 500 85.2 globlastp
1476 LYM543 b_juncea|10v2|E6ANDIZ01A7SAU_P1 5647 500 85.2 globlastp
1477 LYM543 b_rapa|11v1|L47936_P1 5647 500 85.2 globlastp
1478 LYM543 b_rapa|gb162|L47936 5647 500 85.2 globlastp
1479 LYM543 canola|10v1|CX195592 5647 500 85.2 globlastp
1480 LYM543 centaurea|gb166|EH726717_P1 5648 500 85.2 globlastp
1481 LYM543 centaurea|gb166|EH729121_P1 5648 500 85.2 globlastp
1482 LYM543 cichorium|gb171|DT211948_P1 5646 500 85.2 globlastp
1483 LYM543 cynara|gb167|GE585793_P1 5648 500 85.2 globlastp
1484 LYM543 dandelion|10v1|DY812444_P1 5646 500 85.2 globlastp
1485 LYM543 gerbera|09v1|AJ752617_P1 5648 500 85.2 globlastp
1486 LYM543 lettuce|10v1|DW044045_P1 5646 500 85.2 globlastp
1487 LYM543 lettuce|10v1|DW044239_P1 5646 500 85.2 globlastp
1488 LYM543 lettuce|10v1|DW074550_P1 5653 500 85.2 globlastp
1489 LYM543 lettuce|10v1|DW076627_P1 5646 500 85.2 globlastp
1490 LYM543 lettuce|10v1|DY968057_P1 5646 500 85.2 globlastp
1491 LYM543 parthenium|10v1|GW776856_P1 5654 500 85.2 globlastp
1492 LYM543 potato|10v1|BF459989_P1 5655 500 85.2 globlastp
1493 LYM543 radish|gb164|EV534979 5656 500 85.2 globlastp
1494 LYM543 radish|gb164|EW721761 5656 500 85.2 globlastp
1495 LYM543 safflower|gb162|EL380734 5648 500 85.2 globlastp
1496 LYM543 solanum_phureja|09v1|SPHBG126695 5655 500 85.2 globlastp
1497 LYM543 sunflower|10v1|CD847389 5646 500 85.2 globlastp
1498 LYM543 sunflower|12v1|AJ437818_P1 5646 500 85.2 globlastp
1499 LYM543 sunflower|10v1|CD851020 5646 500 85.2 globlastp
1500 LYM543 sunflower|12v1|DY915698_P1 5646 500 85.2 globlastp
1501 LYM543 sunflower|10v1|CD853149 5646 500 85.2 globlastp
1502 LYM543 sunflower|12v1|DY938198_P1 5646 500 85.2 globlastp
1503 LYM543 sunflower|10v1|CX946517 5646 500 85.2 globlastp
1504 LYM543 sunflower|12v1|EE641606_P1 5646 500 85.2 globlastp
1505 LYM543 sunflower|10v1|DY910888 5646 500 85.2 globlastp
1506 LYM543 sunflower|12v1|CD853149_P1 5646 500 85.2 globlastp
1507 LYM543 triphysaria|10v1|BM356583 5657 500 85.2 globlastp
1508 LYM543 walnuts|gb166|CV198171 5658 500 85.2 globlastp
1509 LYM543 medicago|12v1|AL366013_P1 5659 500 85.2 globlastp
1510 LYM543 canola|11v1|CN735729_P1 5647 500 85.2 globlastp
1511 LYM543 canola|11v1|DY005869_T1 5660 500 85.19 glotblastn
1512 LYM543 peanut|10v1|SRR042413S0058358_T1 5661 500 85.19 glotblastn
1513 LYM543 prunus|10v1|CB819399 5662 500 85.19 glotblastn
1514 LYM543 plantago|11v2|SRR066373X105277_P1 5663 500 84.9 globlastp
1515 LYM543 lovegrass|gb167|DN480083_P1 5664 500 84.9 globlastp
1516 LYM543 cacao|10v1|CU484457_T1 5665 500 84.79 glotblastn
1517 LYM543 ambrosia|11v1|SRR346935.167042_T1 5666 500 84.72 glotblastn
1518 LYM543 ambrosia|11v1|SRR346943.459404_T1 5667 500 84.72 glotblastn
1519 LYM543 arnica|11v1|SRR099034X109759_T1 5668 500 84.72 glotblastn
1520 LYM543 b_rapa|11v1|ES944278_T1 5669 500 84.72 glotblastn
1521 LYM543 flaveria|11v1|SRR149229.447389_T1 5670 500 84.72 glotblastn
1522 LYM543 thellungiella_parvulum|11v1|EC599536_T1 5671 500 84.72 glotblastn
1523 LYM543 amborella|gb166|CK757481 5672 500 84.72 glotblastn
1524 LYM543 radish|gb164|EW718139 5673 500 84.72 glotblastn
1525 LYM543 ambrosia|11v1|SRR346935.155011_P1 5674 500 84.7 globlastp
1526 LYM543 beech|11v1|SRR006293.11211_P1 5675 500 84.7 globlastp
1527 LYM543 castorbean|11v1|EV520609_P1 5676 500 84.7 globlastp
1528 LYM543 epimedium|11v1|SRR013502.10210_P1 5677 500 84.7 globlastp
1529 LYM543 sunflower|12v1|EL466589_P1 5678 500 84.7 globlastp
1530 LYM543 thalictrum|11v1|SRR096787X107013_P1 5679 500 84.7 globlastp
1531 LYM543 trigonella|11v1|SRR066194X100308_P1 5680 500 84.7 globlastp
1532 LYM543 arabidopsis|10v1|AT1G08360_P1 5681 500 84.7 globlastp
1533 LYM543 arabidopsis|10v1|AT2G27530_P1 5682 500 84.7 globlastp
1534 LYM543 cassava|09v1|CK643284_P1 5683 500 84.7 globlastp
1535 LYM543 castorbean|09v1|EV519873 5684 500 84.7 globlastp
1536 LYM543 castorbean|11v1|EV519873_P1 5684 500 84.7 globlastp
1537 LYM543 cichorium|gb171|DT211200_P1 5685 500 84.7 globlastp
1538 LYM543 clover|gb162|BB918218_P1 5686 500 84.7 globlastp
1539 LYM543 cynara|gb167|GE589205_P1 5687 500 84.7 globlastp
1540 LYM543 lotus|09v1|BF177566_P1 5688 500 84.7 globlastp
1541 LYM543 medicago|09v1|AW698717 5689 500 84.7 globlastp
1542 LYM543 medicago|12v1|AJ389005_P1 5689 500 84.7 globlastp
1543 LYM543 parthenium|10v1|GW779249_P1 5690 500 84.7 globlastp
1544 LYM543 rose|10v1|EC586926 5691 500 84.7 globlastp
1545 LYM543 rose|12v1|EC586926_P1 5691 500 84.7 globlastp
1546 LYM543 sequoia|10v1|SRR065044S0005324 5692 500 84.7 globlastp
1547 LYM543 strawberry|11v1|CO379723 5693 500 84.7 globlastp
1548 LYM543 euphorbia|11v1|BE095315_P1 5694 500 84.3 globlastp
1549 LYM543 fagopyrum|11v1|SRR063689X100987_P1 5695 500 84.3 globlastp
1550 LYM543 flaveria|11v1|SRR149232.135928_P1 5696 500 84.3 globlastp
1551 LYM543 rose|12v1|EC587592_P1 5697 500 84.3 globlastp
1552 LYM543 sunflower|12v1|CD853307_P1 5698 500 84.3 globlastp
1553 LYM543 b_rapa|gb162|CX268507 5699 500 84.3 globlastp
1554 LYM543 catharanthus|gb166|EG562566 5700 500 84.3 globlastp
1555 LYM543 hevea|10v1|EC602536_P1 5701 500 84.3 globlastp
1556 LYM543 iceplant|gb164|BE035816_P1 5702 500 84.3 globlastp
1557 LYM543 jatropha|09v1|FM892483_P1 5703 500 84.3 globlastp
1558 LYM543 pea|11v1|AM161930_P1 5704 500 84.3 globlastp
1559 LYM543 spurge|gb161|BG354971 5694 500 84.3 globlastp
1560 LYM543 triphysaria|10v1|BE574747 5705 500 84.3 globlastp
1561 LYM543 ambrosia|11v1|SRR346935.124048_T1 5706 500 84.26 glotblastn
1562 LYM543 flaveria|11v1|SRR149241.2888_T1 5707 500 84.26 glotblastn
1563 LYM543 cassava|09v1|CK646659_T1 5708 500 84.26 glotblastn
1564 LYM543 gerbera|09v1|AJ752767_T1 5709 500 84.26 glotblastn
1565 LYM543 ipomoea_nil|10v1|BJ563006_T1 5710 500 84.26 glotblastn
1566 LYM543 lotus|09v1|LLBW598038_T1 5711 500 84.26 glotblastn
1567 LYM543 pigeonpea|10v1|SRR054580S0101999 5712 500 84.26 glotblastn
1568 LYM543 tea|10v1|CV014124 5713 500 83.9 globlastp
1569 LYM543 ambrosia|11v1|SRR346947.105064_T1 5714 500 83.87 glotblastn
1570 LYM543 orange|11v1|CX290604_T1 5715 500 83.87 glotblastn
1571 LYM543 ambrosia|11v1|SRR346943.102888_T1 5716 500 83.8 glotblastn
1572 LYM543 apple|11v1|CN444544_P1 5717 500 83.8 globlastp
1573 LYM543 apple|11v1|CN493453_P1 5718 500 83.8 globlastp
1574 LYM543 beech|11v1|FR596070_T1 5719 500 83.8 glotblastn
1575 LYM543 beech|11v1|SRR006293.19342_T1 5719 500 83.8 glotblastn
1576 LYM543 cephalotaxus|11v1|SRR064395X116623_P1 5720 500 83.8 globlastp
1577 LYM543 fagopyrum|11v1|SRR063703X113882_T1 5721 500 83.8 glotblastn
1578 LYM543 flaveria|11v1|SRR149244.11798_P1 5722 500 83.8 globlastp
1579 LYM543 flax|11v1|JG081784_P1 5723 500 83.8 globlastp
1580 LYM543 fraxinus|11v1|SRR058827.114519_T1 5724 500 83.8 glotblastn
1581 LYM543 silene|11v1|GH293964_P1 5725 500 83.8 globlastp
1582 LYM543 sunflower|12v1|EE626584_P1 5726 500 83.8 globlastp
1583 LYM543 apple|gb171|CN444544 5717 500 83.8 globlastp
1584 LYM543 apple|gb171|CN490874 5717 500 83.8 globlastp
1585 LYM543 ceratodon|10v1|SRR074890S0000846_P1 5727 500 83.8 globlastp
1586 LYM543 iceplant|gb164|BE035700_T1 5728 500 83.8 glotblastn
1587 LYM543 oak|10v1|DN950333_P1 5729 500 83.8 globlastp
1588 LYM543 physcomitrella|10v1|AW126854_P1 5730 500 83.8 globlastp
1589 LYM543 artemisia|10v1|EY043816_P1 5731 500 83.4 globlastp
1590 LYM543 guizotia|10v1|GE552355_T1 5732 500 83.33 glotblastn
1591 LYM543 pine|10v2|SRR063935S0108204_T1 5733 500 83.33 glotblastn
1592 LYM543 flax|11v1|EU828962_P1 5734 500 83.3 globlastp
1593 LYM543 flax|11v1|JG019452_P1 5735 500 83.3 globlastp
1594 LYM543 basilicum|10v1|DY336374_P1 5736 500 83.3 globlastp
1595 LYM543 chestnut|gb170|SRR006295S0001232_P1 5737 500 83.3 globlastp
1596 LYM543 prunus|10v1|CB822822 5738 500 83.3 globlastp
1597 LYM543 flax|11v1|JG083051_P1 5739 500 83.3 globlastp
1598 LYM543 euphorbia|11v1|SRR098678X101209_P1 5740 500 82.9 globlastp
1599 LYM543 flax|11v1|EU829030_P1 5741 500 82.9 globlastp
1600 LYM543 amborella|gb166|CK762906 5742 500 82.9 globlastp
1601 LYM543 banana|10v1|FF557809_P1 5743 500 82.9 globlastp
1602 LYM543 fern|gb171|DK953007_P1 5744 500 82.9 globlastp
1603 LYM543 physcomitrella|10v1|Z98058_P1 5745 500 82.9 globlastp
1604 LYM543 flax|09v1|EU829030 5746 500 82.87 glotblastn
1605 LYM543 rice|gb170|OS01G64090 5747 500 82.8 globlastp
1606 LYM543 sarracenia|11v1|SRR192669.11631_P1 5748 500 82.5 globlastp
1607 LYM543 artemisia|10v1|EY044623_T1 5749 500 82.49 glotblastn
1608 LYM543 wheat|10v2|CA616880 5750 500 82.41 glotblastn
1609 LYM543 b_rapa|11v1|EH425238_P1 5751 500 82.4 globlastp
1610 LYM543 physcomitrella|10v1|AW497015_P1 5752 500 82.4 globlastp
1611 LYM543 clementine|11v1|CX290604_T1 5753 500 82.03 glotblastn
1612 LYM543 ginger|gb164|DY349497_P1 5754 500 81.9 globlastp
1613 LYM543 parthenium|10v1|GW780345_P1 5755 500 81.9 globlastp
1614 LYM543 euphorbia|11v1|SRR098678X101198_P1 5756 500 81.5 globlastp
1615 LYM543 silene|11v1|SRR096785X100437_P1 5757 500 81.5 globlastp
1616 LYM543 medicago|09v1|AL366014 5758 500 81.5 globlastp
1617 LYM543 lovegrass|gb167|EH190969_T1 5759 500 81 glotblastn
1618 LYM543 watermelon|11v1|CO998703_T1 5760 500 80.91 glotblastn
1619 LYM543 b_juncea|10v2|E6ANDIZ01AGJZF_P1 5761 500 80.6 globlastp
1620 LYM543 eschscholzia|10v1|CK766388 5762 500 80.6 globlastp
1621 LYM543 poplar|10v1|AI162305_P1 5763 500 80.6 globlastp
1622 LYM543 ambrosia|11v1|SRR346935.5183_T1 5667 500 80.44 glotblastn
1623 LYM543 flaveria|11v1|SRR149241.110115_P1 5764 500 80.1 globlastp
1624 LYM543 b_oleracea|gb161|DY026267_P1 5765 500 80.1 globlastp
1625 LYM543 poplar|10v1|AI162200_P1 5766 500 80.1 globlastp
1626 LYM545 sorghum|12v1|SB04G030700_P1 5767 502 95.9 globlastp
1627 LYM545 sorghum|09v1|SB04G030700 5768 502 95.75 glotblastn
1628 LYM545 maize|10v1|BE552884_P1 5769 502 93.7 globlastp
1629 LYM545 millet|10v1|EVO454PM057362_T1 5770 502 93.35 glotblastn
1630 LYM545 switchgrass|gb167|FE611636 5771 502 92.24 glotblastn
1631 LYM545 maize|10v1|DN207302_P1 5772 502 91.5 globlastp
1632 LYM545 rice|11v1|AU031668_P1 5773 502 86.7 globlastp
1633 LYM545 rice|gb170|OS02G47420 5773 502 86.7 globlastp
1634 LYM545 rye|12v1|DRR001012.131020_P1 5774 502 85.5 globlastp
1635 LYM545 barley|10v2|BG309774_P1 5775 502 85.3 globlastp
1636 LYM545 brachypodium|09v1|GT783994 5776 502 85.1 globlastp
1637 LYM545 brachypodium|12v1|BRADI3G52620_P1 5776 502 85.1 globlastp
1638 LYM549 switchgrass|gb167|FE625533 5777 506 89.5 globlastp
1639 LYM549 switchgrass|gb167|FL852134 5778 506 87.86 glotblastn
1640 LYM550 switchgrass|gb167|FE643278 5779 507 94.8 globlastp
1641 LYM550 millet|10v1|EVO454PM215501_P1 5780 507 92.9 globlastp
1642 LYM550 sorghum|09v1|SB04G031540 5781 507 90.9 globlastp
1643 LYM550 sorghum|12v1|SB04G031540_P1 5781 507 90.9 globlastp
1644 LYM550 sugarcane|10v1|CA118190 5782 507 90.9 globlastp
1645 LYM550 maize|10v1|AW258099_P1 5783 507 90.2 globlastp
1646 LYM552 sorghum|12v1|SB06G025390_P1 5784 508 82.6 globlastp
1647 LYM553 switchgrass|gb167|FL709136 5785 509 84 globlastp
1648 LYM553 sorghum|09v1|SB02G035940 5786 509 83.8 globlastp
1649 LYM553 sorghum|12v1|SB02G035940_P1 5786 509 83.8 globlastp
1650 LYM553 maize|10v1|AI783093_P1 5787 509 82.6 globlastp
1651 LYM555 millet|10v1|EVO454PM013045_P1 5788 511 96.5 globlastp
1652 LYM555 sugarcane|10v1|CA099222 5789 511 96.2 globlastp
1653 LYM555 sorghum|09v1|SB03G025740 5790 511 95.9 globlastp
1654 LYM555 sorghum|12v1|SB03G025740_P1 5790 511 95.9 globlastp
1655 LYM555 switchgrass|gb167|DN146315 5791 511 95.3 globlastp
1656 LYM555 maize|10v1|AI622613_P1 5792 511 94.4 globlastp
1657 LYM555 rice|11v1|D39392_P1 5793 511 91.8 globlastp
1658 LYM555 brachypodium|09v1|GT758302 5794 511 91.8 globlastp
1659 LYM555 brachypodium|12v1|BRADI2G41500_P1 5794 511 91.8 globlastp
1660 LYM555 wheat|10v2|BE414525XX2 5795 511 88.6 globlastp
1661 LYM556 foxtail_millet|11v3|PHY7SI013140M_P1 5796 512 96.8 globlastp
1662 LYM556 sorghum|09v1|SB07G019240 5797 512 89.4 globlastp
1663 LYM556 sorghum|12v1|SB07G019240_P1 5797 512 89.4 globlastp
1664 LYM556 maize|10v1|CD946745_P1 5798 512 89 globlastp
1665 LYM556 brachypodium|09v1|GT772760 5799 512 82.9 globlastp
1666 LYM556 brachypodium|12v1|BRADI3G35000_P1 5799 512 82.9 globlastp
1667 LYM556 rice|11v1|CA761057_P1 5800 512 80.9 globlastp
1668 LYM556 rice|gb170|OS08G29150 5800 512 80.9 globlastp
1669 LYM557 switchgrass|gb167|DN145513 5801 513 95.3 globlastp
1670 LYM557 switchgrass|gb167|DN143225 5802 513 94 globlastp
1671 LYM557 oil_palm|11v1|SRR190702.278168_T1 5803 513 93.33 glotblastn
1672 LYM557 cynodon|10v1|ES291891_P1 5804 513 91.9 globlastp
1673 LYM557 lovegrass|gb167|DN480936_P1 5805 513 90.7 globlastp
1674 LYM557 maize|10v1|T12659_P1 5806 513 90 globlastp
1675 LYM557 foxtail_millet|10v2|OXEC613026_T1 5807 513 89.1 globlastp
1676 LYM557 wheat|10v2|CA484105 5808 513 87 globlastp
1677 LYM557 sorghum|09v1|SB08G005300 5809 513 86.6 globlastp
1678 LYM557 sorghum|12v1|SB08G005300_P1 5809 513 86.6 globlastp
1679 LYM557 rice|11v1|AA753190_P1 5810 513 86.1 globlastp
1680 LYM557 rice|gb170|OS12G08770 5810 513 86.1 globlastp
1681 LYM557 oat|11v1|CN817367_P1 5811 513 83.4 globlastp
1682 LYM557 oat|11v1|GR319490_P1 5811 513 83.4 globlastp
1683 LYM557 fescue|gb161|DT683395_P1 5812 513 83.4 globlastp
1684 LYM557 fescue|gb161|DT696789_P1 5812 513 83.4 globlastp
1685 LYM557 lolium|10v1|AU246931_P1 5812 513 83.4 globlastp
1686 LYM557 oat|10v2|CN817367 5811 513 83.4 globlastp
1687 LYM557 rye|gb164|BE494977 5813 513 83.33 glotblastn
1688 LYM557 rye|12v1|BE494977_P1 5814 513 83.3 globlastp
1689 LYM557 rye|12v1|BE704643_P1 5814 513 83.3 globlastp
1690 LYM557 leymus|gb166|CD809087_P1 5815 513 83.3 globlastp
1691 LYM557 pseudoroegneria|gb167|FF340056 5814 513 83.3 globlastp
1692 LYM557 oat|11v1|CN817438_T1 5816 513 82.78 glotblastn
1693 LYM557 wheat|10v2|BE401605 5817 513 82.7 globlastp
1694 LYM557 brachypodium|09v1|DV475775 5818 513 82 globlastp
1695 LYM557 brachypodium|12v1|BRADI4G40780_P1 5818 513 82 globlastp
1696 LYM557 wheat|10v2|BI751261 5819 513 82 globlastp
1697 LYM557 barley|10v2|X66428_P1 5820 513 81.3 globlastp
1698 LYM558 switchgrass|gb167|FL711630 5821 514 86.8 globlastp
1699 LYM558 sorghum|09v1|SB09G028990 5822 514 83.8 globlastp
1700 LYM558 sorghum|12v1|SB09G028990_P1 5822 514 83.8 globlastp
1701 LYM558 sugarcane|10v1|BU103681 5823 514 82.8 globlastp
1702 LYM559 foxtail_millet|10v2|SICRP003418 5824 515 92.08 glotblastn
1703 LYM559 sorghum|09v1|SB02G026450 5825 515 87.8 globlastp
1704 LYM559 sorghum|12v1|SB02G026450_P1 5825 515 87.8 globlastp
1705 LYM559 maize|10v1|BM350744_P1 5826 515 86.3 globlastp
1706 LYM559 foxtail_millet|10v2|FXTRMSLX01366155D1 5827 515 83.05 glotblastn
1707 LYM560 foxtail_millet|10v2|SICRP015240 5828 516 94.42 glotblastn
1708 LYM560 switchgrass|gb167|DN141011 5829 516 83 globlastp
1709 LYM561 foxtail_millet|11v3|PHY7SI025849M_T1 5830 517 89.55 glotblastn
1710 LYM561 sorghum|09v1|SB02G039350 5831 517 80.16 glotblastn
1711 LYM562 foxtail_millet|10v2|FXTRMSLX06600357D1 5832 518 82 globlastp
1712 LYM563 foxtail_millet|10v2|SICRP004257 5833 519 97.4 globlastp
1713 LYM563 maize|10v1|AW267479_P1 5834 519 85.8 globlastp
1714 LYM563 sorghum|09v1|SB05G004540 5835 519 85.6 globlastp
1715 LYM563 switchgrass|gb167|FL711224 5836 519 80.81 glotblastn
1716 LYM563 rice|11v1|BI805043_P1 5837 519 80 globlastp
1717 LYM563 rice|gb170|OS11G06900 5837 519 80 globlastp
1718 LYM564 foxtail_millet|11v3|SOLX00016276_P1 5838 520 95.7 globlastp
1719 LYM564 foxtail_millet|11v3|EC613248_P1 5839 520 92.3 globlastp
1720 LYM564 switchgrass|gb167|FE632843 5840 520 88.5 globlastp
1721 LYM564 switchgrass|gb167|FE637402 5841 520 87.1 globlastp
1722 LYM564 sugarcane|10v1|CA134086 5842 520 84.3 globlastp
1723 LYM564 sorghum|09v1|SB08G001140 5843 520 84.13 glotblastn
1724 LYM564 sorghum|12v1|SB08G001140_T1 5843 520 84.13 glotblastn
1725 LYM564 sugarcane|10v1|CA150206 5844 520 84.13 glotblastn
1726 LYM564 sorghum|09v1|SB05G002590 5845 520 83.5 globlastp
1727 LYM564 sorghum|12v1|SB05G002590_P1 5846 520 83 globlastp
1728 LYM565 foxtail_millet|11v3|PHY7SI036120M_P1 5847 521 86.3 globlastp
1729 LYM567 maize|10v1|AI711933_P1 5848 523 98.9 globlastp
1730 LYM567 maize|10v1|AI649845_P1 5849 523 89 globlastp
1731 LYM567 maize|10v1|AW562839_T1 5850 523 83.15 glotblastn
1732 LYM567 sugarcane|10v1|AY093807 5851 523 82 globlastp
1733 LYM567 sugarcane|10v1|CF570865 5851 523 82 globlastp
1734 LYM568 sorghum|09v1|SB10G024430 5852 524 88.2 globlastp
1735 LYM568 sorghum|12v1|SB10G024430_P1 5852 524 88.2 globlastp
1736 LYM568 foxtail_millet|11v3|EC613377_P1 5853 524 84.5 globlastp
1737 LYM568 foxtail_millet|10v2|SICRP023543 5853 524 84.5 globlastp
1738 LYM568 switchgrass|gb167|FL856967 5854 524 81.9 globlastp
1739 LYM569 sorghum|09v1|SB10G001000 5855 525 99.1 globlastp
1740 LYM569 sorghum|12v1|SB10G001000_P1 5855 525 99.1 globlastp
1741 LYM569 sugarcane|10v1|CA102886 5855 525 99.1 globlastp
1742 LYM569 rice|11v1|AA751733_P1 5856 525 97.4 globlastp
1743 LYM569 rice|gb170|OS04G32550 5856 525 97.4 globlastp
1744 LYM569 foxtail_millet|11v3|PHY7SI007563M_P1 5857 525 96.5 globlastp
1745 LYM569 millet|10v1|CD724342_T1 5858 525 96.49 glotblastn
1746 LYM569 millet|10v1|EVO454PM061583_P1 5859 525 95.6 globlastp
1747 LYM569 switchgrass|gb167|FL731047 5860 525 95.6 globlastp
1748 LYM569 switchgrass|gb167|FL737252 5861 525 95.6 globlastp
1749 LYM569 switchgrass|gb167|DN152051 5862 525 93.9 globlastp
1750 LYM569 switchgrass|gb167|FL847271 5863 525 93.9 globlastp
1751 LYM569 lovegrass|gb167|EH186168_P1 5864 525 93 globlastp
1752 LYM569 foxtail_millet|10v2|SICRP022725 5865 525 92.98 glotblastn
1753 LYM569 rye|12v1|DRR001012.135665_P1 5866 525 92.1 globlastp
1754 LYM569 rye|12v1|DRR001012.166400_P1 5867 525 92.1 globlastp
1755 LYM569 rye|12v1|DRR001012.433699_P1 5867 525 92.1 globlastp
1756 LYM569 rye|12v1|DRR001012.57130_P1 5867 525 92.1 globlastp
1757 LYM569 rye|12v1|DRR001013.84512_P1 5867 525 92.1 globlastp
1758 LYM569 cynodon|10v1|ES293242_P1 5868 525 92.1 globlastp
1759 LYM569 oat|10v2|GO595608 5869 525 92.1 globlastp
1760 LYM569 oat|11v1|GO595608_P1 5869 525 92.1 globlastp
1761 LYM569 pseudoroegneria|gb167|FF352787 5870 525 92.1 globlastp
1762 LYM569 barley|10v2|AJ133277_P1 5871 525 91.2 globlastp
1763 LYM569 brachypodium|09v1|DV478300 5872 525 91.2 globlastp
1764 LYM569 brachypodium|12v1|BRADI1G50180_P1 5872 525 91.2 globlastp
1765 LYM569 oat|10v2|GO589295 5873 525 91.2 globlastp
1766 LYM569 oat|11v1|GR332022_P1 5873 525 91.2 globlastp
1767 LYM569 wheat|10v2|BG274246 5874 525 91.2 globlastp
1768 LYM569 wheat|10v2|CA678648 5875 525 91.2 globlastp
1769 LYM569 barley|10v2|AJ133276_P1 5876 525 90.4 globlastp
1770 LYM569 lovegrass|gb167|DN480812_P1 5877 525 90.4 globlastp
1771 LYM569 oat|11v1|CN815213_P1 5878 525 90.4 globlastp
1772 LYM569 oat|11v1|GO589295_T1 5879 525 90.35 glotblastn
1773 LYM569 rye|12v1|DRR001018.26070_P1 5880 525 89.5 globlastp
1774 LYM569 rye|12v1|DRR001012.112809_P1 5881 525 88.6 globlastp
1775 LYM569 rye|12v1|DRR001012.236543_P1 5882 525 88.6 globlastp
1776 LYM569 wheat|10v2|AL824839 5883 525 88.6 globlastp
1777 LYM569 cleome_spinosa|10v1|GR934275_P1 5884 525 87.8 globlastp
1778 LYM569 castorbean|09v1|XM002518942 5885 525 87 globlastp
1779 LYM569 nasturtium|10v1|SRR032558S0002326 5886 525 87 globlastp
1780 LYM569 nasturtium|11v1|SRR032558.11557_P1 5886 525 87 globlastp
1781 LYM569 beech|11v1|SRR006293.23795_P1 5887 525 87 globlastp
1782 LYM569 castorbean|11v1|XM_002518942_T1 5888 525 86.96 glotblastn
1783 LYM569 rye|12v1|DRR001013.178697_P1 5889 525 86.3 globlastp
1784 LYM569 hornbeam|12v1|SRR364455.100879_P1 5890 525 86.1 globlastp
1785 LYM569 thellungiella_halophilum|11v1|EHJGI11000488_P1 5891 525 86.1 globlastp
1786 LYM569 amaranthus|10v1|SRR039411S0053406_P1 5892 525 86.1 globlastp
1787 LYM569 cassava|09v1|CK645867_P1 5893 525 86.1 globlastp
1788 LYM569 cassava|09v1|CK650484_P1 5894 525 86.1 globlastp
1789 LYM569 citrus|gb166|AB011799 5895 525 86.1 globlastp
1790 LYM569 clementine|11v1|AB011799_P1 5895 525 86.1 globlastp
1791 LYM569 poplar|10v1|BI124668_P1 5896 525 86.1 globlastp
1792 LYM569 fagopyrum|11v1|SRR063689X101291_T1 5897 525 86.09 glotblastn
1793 LYM569 rye|12v1|DRR001015.117089_T1 5898 525 86.09 glotblastn
1794 LYM569 beech|gb170|SRR006293S0002706 5899 525 86.09 glotblastn
1795 LYM569 coffea|10v1|DV672822_P1 5900 525 85.3 globlastp
1796 LYM569 pepper|gb171|BM063546_P1 5901 525 85.3 globlastp
1797 LYM569 eucalyptus|11v2|CT980471_P1 5902 525 85.2 globlastp
1798 LYM569 thellungiella_halophilum|11v1|EHJGI11005759_P1 5903 525 85.2 globlastp
1799 LYM569 watermelon|11v1|CV002048_P1 5904 525 85.2 globlastp
1800 LYM569 arabidopsis_lyrata|09v1|JGIAL003345_P1 5903 525 85.2 globlastp
1801 LYM569 arabidopsis|10v1|AT2G35520_P1 5905 525 85.2 globlastp
1802 LYM569 aristolochia|10v1|FD750442_P1 5906 525 85.2 globlastp
1803 LYM569 b_juncea|10v2|E6ANDIZ01A8DK2_P1 5907 525 85.2 globlastp
1804 LYM569 banana|10v1|FF557800_P1 5908 525 85.2 globlastp
1805 LYM569 castorbean|09v1|XM002521492 5909 525 85.2 globlastp
1806 LYM569 castorbean|11v1|XM_002521492_P1 5909 525 85.2 globlastp
1807 LYM569 chestnut|gb170|SRR006295S0004082_P1 5910 525 85.2 globlastp
1808 LYM569 cucumber|09v1|CV002048_P1 5911 525 85.2 globlastp
1809 LYM569 eucalyptus|11v1|CT980471 5902 525 85.2 globlastp
1810 LYM569 melon|10v1|AM715563_P1 5912 525 85.2 globlastp
1811 LYM569 momordica|10v1|SRR071315S0004489_P1 5913 525 85.2 globlastp
1812 LYM569 papaya|gb165|EX259202_P1 5914 525 85.2 globlastp
1813 LYM569 radish|gb164|EV544740 5907 525 85.2 globlastp
1814 LYM569 radish|gb164|EW716733 5907 525 85.2 globlastp
1815 LYM569 radish|gb164|EX775751 5907 525 85.2 globlastp
1816 LYM569 aquilegia|10v2|JGIAC001698 5915 525 85.09 glotblastn
1817 LYM569 bupleurum|11v1|SRR301254.10188_P1 5916 525 84.6 globlastp
1818 LYM569 bupleurum|11v1|SRR301254.103177_P1 5916 525 84.6 globlastp
1819 LYM569 bupleurum|11v1|SRR301254.116549_P1 5916 525 84.6 globlastp
1820 LYM569 arabidopsis_lyrata|09v1|JGIAL014691_P1 5917 525 84.5 globlastp
1821 LYM569 potato|10v1|BG591267_P1 5918 525 84.5 globlastp
1822 LYM569 canola|11v1|SRR329661.114307_T1 5919 525 84.35 glotblastn
1823 LYM569 cucurbita|11v1|SRR091276X112807_T1 5920 525 84.35 glotblastn
1824 LYM569 cucurbita|11v1|SRR091276X116524_T1 5921 525 84.35 glotblastn
1825 LYM569 cucurbita|11v1|SRR091276X130274XX1_T1 5921 525 84.35 glotblastn
1826 LYM569 fagopyrum|11v1|SRR063703X10184_T1 5922 525 84.35 glotblastn
1827 LYM569 canola|11v1|CN736367_P1 5923 525 84.3 globlastp
1828 LYM569 euonymus|11v1|SRR070038X105435_P1 5924 525 84.3 globlastp
1829 LYM569 fagopyrum|11v1|SRR063689X100301_P1 5925 525 84.3 globlastp
1830 LYM569 fagopyrum|11v1|SRR063703X102261_P1 5925 525 84.3 globlastp
1831 LYM569 humulus|11v1|GD242916_P1 5926 525 84.3 globlastp
1832 LYM569 phalaenopsis|11v1|SRR125771.100895_P1 5927 525 84.3 globlastp
1833 LYM569 thellungiella_parvulum|11v1|EPPRD000939_P1 5928 525 84.3 globlastp
1834 LYM569 arabidopsis|10v1|AT1G32210_P1 5929 525 84.3 globlastp
1835 LYM569 b_juncea|10v2|E6ANDIZ01A500U_P1 5923 525 84.3 globlastp
1836 LYM569 b_juncea|10v2|E6ANDIZ01DNBNW_P1 5930 525 84.3 globlastp
1837 LYM569 b_rapa|11v1|CD812217_P1 5923 525 84.3 globlastp
1838 LYM569 b_rapa|gb162|DN191621 5923 525 84.3 globlastp
1839 LYM569 b_rapa|11v1|DN191822_P1 5930 525 84.3 globlastp
1840 LYM569 b_rapa|gb162|DN191822 5930 525 84.3 globlastp
1841 LYM569 bean|12v1|CA898853_P1 5931 525 84.3 globlastp
1842 LYM569 bean|gb167|CA898853 5931 525 84.3 globlastp
1843 LYM569 canola|10v1|CD822400 5923 525 84.3 globlastp
1844 LYM569 canola|11v1|CN734981_P1 5923 525 84.3 globlastp
1845 LYM569 cleome_gynandra|10v1|SRR015532S0014291_P1 5932 525 84.3 globlastp
1846 LYM569 cyamopsis|10v1|EG984797_P1 5933 525 84.3 globlastp
1847 LYM569 liquorice|gb171|FS249339_P1 5934 525 84.3 globlastp
1848 LYM569 pigeonpea|10v1|SRR054580S0016324 5935 525 84.3 globlastp
1849 LYM569 pigeonpea|11v1|SRR054580X142008_P1 5935 525 84.3 globlastp
1850 LYM569 poplar|10v1|AI166745_P1 5936 525 84.3 globlastp
1851 LYM569 radish|gb164|EV544449 5923 525 84.3 globlastp
1852 LYM569 cichorium|gb171|EL365522_T1 5937 525 84.21 glotblastn
1853 LYM569 lettuce|10v1|DW044153_T1 5938 525 84.21 glotblastn
1854 LYM569 centaurea|gb166|EH715505_P1 5939 525 83.8 globlastp
1855 LYM569 senecio|gb170|SRR006592S0005216 5940 525 83.6 globlastp
1856 LYM569 solanum_phureja|09v1|SPHBG124835 5941 525 83.6 globlastp
1857 LYM569 tomato|09v1|BG124835 5941 525 83.6 globlastp
1858 LYM569 euonymus|11v1|SRR070038X134639_P1 5942 525 83.5 globlastp
1859 LYM569 flax|11v1|JG022750_P1 5943 525 83.5 globlastp
1860 LYM569 flax|11v1|JG028460_P1 5944 525 83.5 globlastp
1861 LYM569 phalaenopsis|11v1|SRR125771.1011736_P1 5945 525 83.5 globlastp
1862 LYM569 plantago|11v2|AM156929_P1 5946 525 83.5 globlastp
1863 LYM569 b_juncea|10v2|E6ANDIZ01ATXEV_P1 5947 525 83.5 globlastp
1864 LYM569 b_oleracea|gb161|DY026178_P1 5948 525 83.5 globlastp
1865 LYM569 beet|12v1|CK136226_P1 5949 525 83.5 globlastp
1866 LYM569 beet|gb162|BQ585754 5949 525 83.5 globlastp
1867 LYM569 canola|10v1|CD812217 5948 525 83.5 globlastp
1868 LYM569 canola|11v1|CN726552_P1 5948 525 83.5 globlastp
1869 LYM569 clementine|11v1|BQ623910_P1 5950 525 83.5 globlastp
1870 LYM569 cowpea|gb166|FF383181_P1 5951 525 83.5 globlastp
1871 LYM569 peanut|10v1|EE123987_P1 5952 525 83.5 globlastp
1872 LYM569 cucurbita|11v1|SRR091276X109664_T1 5953 525 83.48 glotblastn
1873 LYM569 cleome_spinosa|10v1|SRR015531S0046425_T1 5954 525 83.33 glotblastn
1874 LYM569 prunus|10v1|BU047738 5955 525 83.33 glotblastn
1875 LYM569 heritiera|10v1|SRR005795S0011088_P1 5956 525 83.3 globlastp
1876 LYM569 cotton|10v2|BF274764 525 82.91 glotblastn
1877 LYM569 bupleurum|11v1|SRR301254.22559_P1 5957 525 82.9 globlastp
1878 LYM569 cotton|11v1|BE053073_P1 5958 525 82.9 globlastp
1879 LYM569 cotton|11v1|DW512115_P1 5959 525 82.9 globlastp
1880 LYM569 gossypium_raimondii|12v1|BE053073_P1 5958 525 82.9 globlastp
1881 LYM569 gossypium_raimondii|12v1|BF276515_P1 5959 525 82.9 globlastp
1882 LYM569 cotton|11v1|BF274764XX1_P1 5959 525 82.9 globlastp
1883 LYM569 tragopogon|10v1|SRR020205S0030697 5960 525 82.9 globlastp
1884 LYM569 olea|11v1|SRR014463.48353_P1 5961 525 82.8 globlastp
1885 LYM569 scabiosa|11v1|SRR063723X100675_P1 5962 525 82.8 globlastp
1886 LYM569 valeriana|11v1|SRR099039X102388_P1 5963 525 82.8 globlastp
1887 LYM569 eggplant|10v1|FS007622_P1 5964 525 82.8 globlastp
1888 LYM569 heritiera|10v1|SRR005794S0000485_P1 5965 525 82.8 globlastp
1889 LYM569 kiwi|gb166|FG468889_P1 5966 525 82.8 globlastp
1890 LYM569 kiwi|gb166|FG502864_P1 5967 525 82.8 globlastp
1891 LYM569 petunia|gb1711AY227437_P1 5968 525 82.8 globlastp
1892 LYM569 tea|10v1|GE651415 5969 525 82.8 globlastp
1893 LYM569 platanus|11v1|SRR096786X201688_T1 5937 525 82.61 glotblastn
1894 LYM569 tamarix|gb166|EH050677 5970 525 82.61 glotblastn
1895 LYM569 amorphophallus|11v2|SRR089351X106271_P1 5971 525 82.6 globlastp
1896 LYM569 amorphophallus|11v2|SRR089351X109124_P1 5972 525 82.6 globlastp
1897 LYM569 cannabis|12v1|SOLX00017739_P1 5973 525 82.6 globlastp
1898 LYM569 oil_palm|11v1|EL692917_P1 5974 525 82.6 globlastp
1899 LYM569 oil_palm|11v1|EY412992_P1 5975 525 82.6 globlastp
1900 LYM569 banana|10v1|FF559065_P1 5976 525 82.6 globlastp
1901 LYM569 lotus|09v1|LLCB829384_P1 5977 525 82.6 globlastp
1902 LYM569 oil_palm|gb166|EL692917 5974 525 82.6 globlastp
1903 LYM569 eschscholzia|11v1|CD478253_T1 5978 525 82.46 glotblastn
1904 LYM569 sarracenia|11v1|SRR192669.102986_T1 5979 525 82.46 glotblastn
1905 LYM569 strawberry|11v1|DY673771 5980 525 82.46 glotblastn
1906 LYM569 triphysaria|10v1|EY131424 5981 525 82.46 glotblastn
1907 LYM569 tabernaemontana|11v1|SRR098689X101117_P1 5982 525 82.4 globlastp
1908 LYM569 vinca|11v1|SRR098690X222500_P1 5983 525 82.4 globlastp
1909 LYM569 flaveria|11v1|SRR149229.10081_P1 5984 525 82.1 globlastp
1910 LYM569 flaveria|11v1|SRR149229.230770_P1 5985 525 82.1 globlastp
1911 LYM569 flaveria|11v1|SRR149232.118105_P1 5984 525 82.1 globlastp
1912 LYM569 flaveria|11v1|SRR149232.123588_P1 5986 525 82.1 globlastp
1913 LYM569 sunflower|12v1|CD846762_P1 5987 525 82.1 globlastp
1914 LYM569 dandelion|10v1|DY810922_P1 5988 525 82.1 globlastp
1915 LYM569 sunflower|10v1|EE657889 5989 525 82.1 globlastp
1916 LYM569 sunflower|12v1|DY916109_P1 5989 525 82.1 globlastp
1917 LYM569 flaveria|11v1|SRR149229.105886_P1 5990 525 81.9 globlastp
1918 LYM569 fraxinus|11v1|SRR058827.103870_P1 5991 525 81.9 globlastp
1919 LYM569 phyla|11v2|SRR099037X116212_P1 5992 525 81.9 globlastp
1920 LYM569 soybean|11v1|GLYMA14G38220 5993 525 81.9 globlastp
1921 LYM569 tea|10v1|GE652807 5994 525 81.9 globlastp
1922 LYM569 tobacco|gb162|AB219466 5995 525 81.9 globlastp
1923 LYM569 oak|10v1|CR627568_T1 5996 525 81.74 glotblastn
1924 LYM569 safflower|gb162|EL400737 5997 525 81.74 glotblastn
1925 LYM569 euphorbia|11v1|BP961349_P1 5998 525 81.7 globlastp
1926 LYM569 antirrhinum|gb166|AJ559287_P1 5999 525 81.7 globlastp
1927 LYM569 cleome_gynandra|10v1|SRR015532S0012292_P1 6000 525 81.7 globlastp
1928 LYM569 ginger|gb164|DY362521_P1 6001 525 81.7 globlastp
1929 LYM569 grape|11v1|GSVIVT01013064001_P1 6002 525 81.7 globlastp
1930 LYM569 grape|gb160|CB340205 6002 525 81.7 globlastp
1931 LYM569 silene|11v1|SRR096785X105699_T1 6003 525 81.58 glotblastn
1932 LYM569 prunus|10v1|MDU68560 6004 525 81.58 glotblastn
1933 LYM569 soybean|11v1|GLYMA09G34100 6005 525 81.58 glotblastn
1934 LYM569 cirsium|11v1|SRR346952.118405_P1 6006 525 81.4 globlastp
1935 LYM569 lettuce|10v1|DW064197_P1 6007 525 81.4 globlastp
1936 LYM569 lettuce|10v1|DW077121_P1 6007 525 81.4 globlastp
1937 LYM569 sunflower|10v1|CD853666 6008 525 81.4 globlastp
1938 LYM569 sunflower|12v1|CD853666_P1 6008 525 81.4 globlastp
1939 LYM569 arnica|11v1|SRR099034X119762_P1 6009 525 81.2 globlastp
1940 LYM569 cirsium|11v1|SRR346952.101479_P1 6010 525 81.2 globlastp
1941 LYM569 cirsium|11v1|SRR346952.1015198_P1 6011 525 81.2 globlastp
1942 LYM569 flaveria|11v1|SRR149232.113067_P1 6012 525 81.2 globlastp
1943 LYM569 flaveria|11v1|SRR149232.176507_P1 6013 525 81.2 globlastp
1944 LYM569 flaveria|11v1|SRR149244.165800_P1 6014 525 81.2 globlastp
1945 LYM569 sunflower|12v1|EE657889_P1 6015 525 81.2 globlastp
1946 LYM569 utricularia|11v1|SRR094438.104568_P1 6016 525 81.2 globlastp
1947 LYM569 artemisia|10v1|EY036948_T1 6017 525 81.2 glotblastn
1948 LYM569 cynara|gb167|GE590262_P1 6010 525 81.2 globlastp
1949 LYM569 ginseng|10v1|DV554463_P1 6018 525 81.2 globlastp
1950 LYM569 sunflower|10v1|AJ828597 6015 525 81.2 globlastp
1951 LYM569 sunflower|10v1|CD846762 6019 525 81.2 globlastp
1952 LYM569 sunflower|12v1|AJ828597_P1 6015 525 81.2 globlastp
1953 LYM569 sunflower|12v1|EL465354_P1 6020 525 81.2 globlastp
1954 LYM569 euphorbia|11v1|BP953547_P1 6021 525 81 globlastp
1955 LYM569 olea|11v1|SRR014463.1314_P1 6022 525 81 globlastp
1956 LYM569 phyla|11v2|SRR099035X134712_P1 6023 525 81 globlastp
1957 LYM569 ipomoea_nil|10v1|BJ562169_P1 6024 525 81 globlastp
1958 LYM569 salvia|10v1|CV162894 6025 525 81 globlastp
1959 LYM569 salvia|10v1|SRR014553S0008302 6026 525 81 globlastp
1960 LYM569 sesame|10v1|BU670529 6027 525 81 globlastp
1961 LYM569 ginger|gb164|DY359761_P1 6028 525 80.9 globlastp
1962 LYM569 triphysaria|10v1|EY016755 6029 525 80.9 globlastp
1963 LYM569 acacia|10v1|GR480985_T1 6030 525 80.87 glotblastn
1964 LYM569 catharanthus|11v1|EG562088_P1 6031 525 80.8 globlastp
1965 LYM569 ambrosia|11v1|SRR346935.378400_P1 6032 525 80.7 globlastp
1966 LYM569 ambrosia|11v1|SRR346943.158491_P1 6032 525 80.7 globlastp
1967 LYM569 phyla|11v2|SRR099037X119521_T1 6033 525 80.7 glotblastn
1968 LYM569 avocado|10v1|DT594689_P1 6034 525 80.7 globlastp
1969 LYM569 tobacco|gb162|EB445698 6035 525 80.7 glotblastn
1970 LYM569 triphysaria|10v1|EY157452 6036 525 80.7 glotblastn
1971 LYM569 rose|10v1|BQ105582 6037 525 80.67 glotblastn
1972 LYM569 rose|12v1|BQ105582_T1 6038 525 80.67 glotblastn
1973 LYM569 ambrosia|11v1|SRR346943.100571_T1 6039 525 80.51 glotblastn
1974 LYM569 cichorium|gb171|EH706520_P1 6040 525 80.5 globlastp
1975 LYM569 cynara|gb167|GE586619_P1 6041 525 80.5 globlastp
1976 LYM569 dandelion|10v1|DY821857_P1 6042 525 80.5 globlastp
1977 LYM569 aquilegia|10v2|JGIAC000753 6043 525 80.33 glotblastn
1978 LYM569 sunflower|12v1|EL431559_P1 6044 525 80.3 globlastp
1979 LYM569 gerbera|09v1|AJ751921_P1 6045 525 80.3 globlastp
1980 LYM569 sunflower|10v1|EL431559 6046 525 80.3 globlastp
1981 LYM569 sarracenia|11v1|SRR192669.101455_P1 6047 525 80.2 globlastp
1982 LYM569 sarracenia|11v1|SRR192669.115702_P1 6047 525 80.2 globlastp
1983 LYM569 amborella|12v2|CK763832_T1 6048 525 80.17 glotblastn
1984 LYM569 amborella|gb166|CK763832 6048 525 80.17 glotblastn
1985 LYM569 medicago|09v1|BF637130 6049 525 80 globlastp
1986 LYM569 medicago|12v1|BF637130_P1 6049 525 80 globlastp
1987 LYM569 tamarix|gb166|EG970118 6050 525 80 globlastp
1988 LYM570 sorghum|09v1|SB03G045180 6051 526 96.4 globlastp
1989 LYM570 sorghum|12v1|SB03G045180_P1 6051 526 96.4 globlastp
1990 LYM570 foxtail_millet|11v3|PHY7SI000375M_P1 6052 526 94.8 globlastp
1991 LYM570 foxtail_millet|10v2|FXTRMSLX00164057D1 6052 526 94.8 globlastp
1992 LYM570 millet|10v1|EVO454PM002284_P1 6053 526 93.7 globlastp
1993 LYM570 brachypodium|12v1|BRADI2G60090T2_P1 6054 526 88.8 globlastp
1994 LYM570 brachypodium|09v1|GT820385 6055 526 88.78 glotblastn
1995 LYM570 rice|11v1|CA998043_P1 6056 526 86.6 globlastp
1996 LYM570 rice|gb170|OS01G70940 6056 526 86.6 globlastp
1997 LYM571 sorghum|09v1|SB01G008860 6057 527 99.2 globlastp
1998 LYM571 sorghum|12v1|SB01G008860_P1 6057 527 99.2 globlastp
1999 LYM571 maize|10v1|AI857221_P1 6058 527 98.6 globlastp
2000 LYM571 switchgrass|gb167|DN144097 6059 527 97.4 globlastp
2001 LYM571 millet|10v1|EVO454PM003239_P1 6060 527 96.6 globlastp
2002 LYM571 foxtail_millet|11v3|PHY7SI034713M_P1 6061 527 96.3 globlastp
2003 LYM571 rice|11v1|BI807786_P1 6062 527 93.1 globlastp
2004 LYM571 rice|gb170|OS03G52630 6062 527 93.1 globlastp
2005 LYM571 sugarcane|10v1|AA577635 6063 527 90.8 globlastp
2006 LYM571 wheat|10v2|BE415051 6064 527 90.2 globlastp
2007 LYM571 wheat|10v2|BE418416 6064 527 90.2 globlastp
2008 LYM571 wheat|10v2|BE428212 6065 527 90.2 globlastp
2009 LYM571 barley|10v2|BE438872_P1 6066 527 90 globlastp
2010 LYM571 rye|12v1|BE704520_P1 6067 527 89.5 globlastp
2011 LYM571 rye|12v1|DRR001012.1053_P1 6067 527 89.5 globlastp
2012 LYM571 brachypodium|09v1|DV473285 6068 527 89.5 globlastp
2013 LYM571 brachypodium|12v1|BRADI1G09460_P1 6068 527 89.5 globlastp
2014 LYM571 fescue|gb161|DT680982_P1 6069 527 88.9 globlastp
2015 LYM571 foxtail_millet|10v2|OXFXTRMSLX00047633D1T1 6070 527 80.4 globlastp
2016 LYM572 sugarcane|10v1|CA072190 6071 528 91.5 globlastp
2017 LYM572 maize|10v1|AI691251_P1 6072 528 90.4 globlastp
2018 LYM572 sorghum|09v1|SB10G000380 6073 528 88.2 globlastp
2019 LYM572 sorghum|12v1|SB10G000380_P1 6073 528 88.2 globlastp
2020 LYM572 foxtail_millet|11v3|PHY7SI007383M_T1 6074 528 80 glotblastn
2021 LYM572 foxtail_millet|10v2|SICRP029027 6074 528 80 glotblastn
2022 LYM573 foxtail_millet|11v3|PHY7SI018343M_P1 6075 529 99.1 globlastp
2023 LYM573 sugarcane|10v1|CA073883 6076 529 99.1 globlastp
2024 LYM573 switchgrass|gb167|DN144521 6075 529 99.1 globlastp
2025 LYM573 millet|10v1|EVO454PM023683_P1 6077 529 98.1 globlastp
2026 LYM573 sorghum|09v1|SB04G027340 6078 529 98.1 globlastp
2027 LYM573 sorghum|12v1|SB04G027340_P1 6078 529 98.1 globlastp
2028 LYM573 switchgrass|gb167|FL691983 6079 529 98.1 globlastp
2029 LYM573 maize|10v1|AW331231_P1 6080 529 97.6 globlastp
2030 LYM573 rice|11v1|BE228347_P1 6081 529 97.6 globlastp
2031 LYM573 rice|gb170|OS02G52140 6081 529 97.6 globlastp
2032 LYM573 rye|12v1|BE586765_P1 6082 529 93.4 globlastp
2033 LYM573 wheat|10v2|BE427321 6083 529 93.4 globlastp
2034 LYM573 barley|10v2|BF621384_P1 6084 529 92.9 globlastp
2035 LYM573 pseudoroegneria|gb167|FF355079 6085 529 92.9 globlastp
2036 LYM573 brachypodium|12v1|BRADI3G58600_P1 6086 529 92.5 globlastp
2037 LYM573 oat|11v1|GO592519_P1 6087 529 92 globlastp
2038 LYM573 brachypodium|09v1|DV483604 6088 529 92 globlastp
2039 LYM573 oat|10v2|GO592519 6087 529 92 globlastp
2040 LYM574 foxtail_millet|11v3|PHY7SI000317M_P1 6089 530 93.7 globlastp
2041 LYM574 rice|gb170|OS01G39830 6090 530 91.9 globlastp
2042 LYM574 sorghum|12v1|SB03G025990_P1 6091 530 91.8 globlastp
2043 LYM574 sorghum|09v1|SB03G025990 6092 530 91.5 globlastp
2044 LYM574 foxtail_millet|10v2|SICRP002221 6093 530 91.4 globlastp
2045 LYM574 brachypodium|12v1|BRADI2G41830_P1 6094 530 89.5 globlastp
2046 LYM574 brachypodium|09v1|GT802010 6095 530 89.2 globlastp
2047 LYM575 sorghum|09v1|SB10G002480 6096 531 97.6 glotblastn
2048 LYM575 sorghum|12v1|SB10G002480_T1 6096 531 97.6 glotblastn
2049 LYM575 sugarcane|10v1|CA087099 6097 531 96.58 glotblastn
2050 LYM575 foxtail_millet|11v3|PHY7SI006886M_T1 6098 531 94.52 glotblastn
2051 LYM575 switchgrass|gb167|FE652315 6099 531 93.84 glotblastn
2052 LYM575 millet|10v1|EVO454PM002489_T1 6100 531 93.49 glotblastn
2053 LYM575 cynodon|10v1|ES305015_T1 6101 531 92.81 glotblastn
2054 LYM575 rice|11v1|AA754422_T1 6102 531 91.47 glotblastn
2055 LYM575 rice|gb170|OS06G04530 6102 531 91.47 glotblastn
2056 LYM575 brachypodium|09v1|DV479696 6103 531 89.73 glotblastn
2057 LYM575 brachypodium|12v1|BRADI1G51530_T1 6103 531 89.73 glotblastn
2058 LYM575 barley|10v2|BF622202_T1 6104 531 88.44 glotblastn
2059 LYM575 rye|12v1|DRR001012.126953_T1 6105 531 88.1 glotblastn
2060 LYM575 leymus|gb166|EG379612_T1 6105 531 88.1 glotblastn
2061 LYM575 oat|10v2|GO597038 6106 531 88.1 glotblastn
2062 LYM575 oat|11v1|GO597038_T1 6106 531 88.1 glotblastn
2063 LYM575 wheat|10v2|BE490526 6105 531 88.1 glotblastn
2064 LYM575 wheat|10v2|BM137263 6105 531 88.1 glotblastn
2065 LYM576 sorghum|09v1|SB01G029740 6107 532 86.46 glotblastn
2066 LYM576 sorghum|12v1|SB01G029740_T1 6107 532 86.46 glotblastn
2067 LYM576 maize|10v1|AI621448_P1 6108 532 84 globlastp
2068 LYM578 sugarcane|10v1|CA095149 6109 534 92.1 globlastp
2069 LYM578 cynodon|10v1|ES303046_P1 6110 534 92 globlastp
2070 LYM578 foxtail_millet|11v3|PHY7SI038043M_P1 6111 534 91.3 globlastp
2071 LYM578 foxtail_millet|10v2|SICRP032527 6111 534 91.3 globlastp
2072 LYM578 sorghum|09v1|SB01G032750 6112 534 88.4 globlastp
2073 LYM578 sorghum|12v1|SB01G032750_P1 6112 534 88.4 globlastp
2074 LYM578 maize|10v1|EG042492_P1 6113 534 86.5 globlastp
2075 LYM578 maize|10v1|DV163270_T1 6114 534 85.71 glotblastn
2076 LYM578 brachypodium|09v1|GT777927 6115 534 82.4 globlastp
2077 LYM578 brachypodium|12v1|BRADI1G60090_P1 6115 534 82.4 globlastp
2078 LYM578 millet|10v1|PMSLX0031289D1_P1 6116 534 81 globlastp
2079 LYM579 foxtail_millet|11v3|PHY7SI026009M_P1 6117 535 87.5 globlastp
2080 LYM579 foxtail_millet|10v2|SICRP022362 6118 535 85.47 glotblastn
2081 LYM581 sorghum|09v1|SB04G006360 6119 537 93.6 globlastp
2082 LYM581 sorghum|12v1|SB04G006360_P1 6119 537 93.6 globlastp
2083 LYM581 sugarcane|10v1|CA072430 6120 537 88.97 glotblastn
2084 LYM581 switchgrass|gb167|FL712856 6121 537 85.2 globlastp
2085 LYM581 foxtail_millet|11v3|PHY7SI018199M_P1 6122 537 84.5 globlastp
2086 LYM581 foxtail_millet|10v2|SICRP023465 6123 537 84.5 globlastp
2087 LYM581 switchgrass|gb167|FE601968 6124 537 83.8 globlastp
2088 LYM581 millet|10v1|EVO454PM002178_P1 6125 537 81.7 globlastp
2089 LYM583 sugarcane|10v1|BQ530047 6126 539 94.2 globlastp
2090 LYM583 sorghum|09v1|SB03G041910 6127 539 93.7 globlastp
2091 LYM583 sorghum|12v1|SB03G041910_P1 6127 539 93.7 globlastp
2092 LYM583 foxtail_millet|11v3|PHY7SI000354M_P1 6128 539 90.1 globlastp
2093 LYM583 foxtail_millet|10v2|SICRP023514 6128 539 90.1 globlastp
2094 LYM583 millet|10v1|EVO454PM000626_P1 6129 539 89.6 globlastp
2095 LYM583 switchgrass|gb167|FE607270 6130 539 88.6 globlastp
2096 LYM583 barley|10v2|BG344022_P1 6131 539 81.5 globlastp
2097 LYM583 wheat|10v2|BQ294593 6132 539 80.7 globlastp
2098 LYM583 rye|12v1|DRR001012.103327_P1 6133 539 80.6 globlastp
2099 LYM583 rye|12v1|BQ160585XX2_P1 6134 539 80.5 globlastp
2100 LYM583 wheat|10v2|BE585615 6135 539 80.3 globlastp
2101 LYM583 rye|12v1|DRR001012.147086XX2_T1 6136 539 80.07 glotblastn
2102 LYM585 sorghum|09v1|SB06G032890 6137 540 92.8 globlastp
2103 LYM585 sorghum|12v1|SB06G032890_P1 6137 540 92.8 globlastp
2104 LYM585 foxtail_millet|11v3|PHY7SI022259M_P1 6138 540 88.4 globlastp
2105 LYM585 foxtail_millet|10v2|SICRP019592 6138 540 88.4 globlastp
2106 LYM585 switchgrass|gb167|FE607227 6139 540 86.4 globlastp
2107 LYM585 brachypodium|09v1|GT778319 6140 540 81.7 globlastp
2108 LYM585 brachypodium|12v1|BRADI5G26120_P1 6140 540 81.7 globlastp
2109 LYM585 rice|11v1|AU093213_P1 6141 540 81.6 globlastp
2110 LYM585 rice|gb170|OS04G58060 6141 540 81.6 globlastp
2111 LYM585 rye|12v1|DRR001012.149666_P1 6142 540 81.3 globlastp
2112 LYM586 sorghum|09v1|SB04G002980 6143 541 93.3 globlastp
2113 LYM586 sorghum|12v1|SB04G002980_P1 6143 541 93.3 globlastp
2114 LYM586 foxtail_millet|11v3|EC613688_P1 6144 541 89.8 globlastp
2115 LYM586 millet|10v1|CD725090_T1 6145 541 88.35 glotblastn
2116 LYM586 brachypodium|09v1|GT772136 6146 541 85.61 glotblastn
2117 LYM586 brachypodium|12v1|BRADI3G03270_P1 6147 541 85.3 globlastp
2118 LYM586 switchgrass|gb167|FL737274 6148 541 84.73 glotblastn
2119 LYM586 barley|10v2|BF624787_P1 6149 541 84.5 globlastp
2120 LYM586 foxtail_millet|10v2|OXEC613688T1 6150 541 84.4 globlastp
2121 LYM586 oat|10v2|CN820415 6151 541 83.8 globlastp
2122 LYM586 oat|11v1|CN820415_P1 6151 541 83.8 globlastp
2123 LYM586 rice|11v1|BE230735_T1 6152 541 83.58 glotblastn
2124 LYM586 rice|gb170|OS02G04460 6152 541 83.58 glotblastn
2125 LYM586 rye|12v1|BE637196_P1 6153 541 82.6 globlastp
2126 LYM586 leymus|gb166|EG381321_T1 6154 541 82.58 glotblastn
2127 LYM587 sorghum|09v1|SB01G011650 6155 542 83.1 globlastp
2128 LYM587 sorghum|12v1|SB01G011650_P1 6155 542 83.1 globlastp
2129 LYM588 maize|10v1|T18664_P1 6156 543 92.7 globlastp
2130 LYM588 sorghum|09v1|SB01G009660 6157 543 92.7 globlastp
2131 LYM588 sorghum|12v1|SB01G009660_P1 6157 543 92.7 globlastp
2132 LYM588 switchgrass|gb167|FE617171 6158 543 88.5 globlastp
2133 LYM588 foxtail_millet|11v3|PHY7SI038206M_P1 6159 543 86.6 globlastp
2134 LYM588 foxtail_millet|10v2|FXTRMSLX02301729D2 6159 543 86.6 globlastp
2135 LYM588 switchgrass|gb167|FL955271 6160 543 86.5 globlastp
2136 LYM588 millet|10v1|EVO454PM063942_P1 6161 543 85.6 globlastp
2137 LYM588 rye|12v1|DRR001012.526849_P1 6162 543 82.3 globlastp
2138 LYM588 rye|12v1|DRR001012.550326_P1 6162 543 82.3 globlastp
2139 LYM588 barley|10v2|BF259015_P1 6163 543 82.3 globlastp
2140 LYM588 wheat|10v2|BQ905713 6162 543 82.3 globlastp
2141 LYM588 oat|11v1|GO582922_P1 6164 543 82.1 globlastp
2142 LYM588 rice|11v1|AU093128_P1 6165 543 82.1 globlastp
2143 LYM588 rice|gb170|OS03G51459 6165 543 82.1 globlastp
2144 LYM588 rice|11v1|AA754479_P1 6166 543 82.1 globlastp
2145 LYM588 rice|gb170|OS08G10400 6166 543 82.1 globlastp
2146 LYM588 wheat|10v2|CJ586657 6167 543 81.4 globlastp
2147 LYM588 rye|12v1|DRR001012.144212_P1 6168 543 81.2 globlastp
2148 LYM588 wheat|10v2|BF200273 6169 543 81.2 globlastp
2149 LYM588 brachypodium|09v1|GT764665 6170 543 81.1 globlastp
2150 LYM588 brachypodium|12v1|BRADI1G10250_P1 6170 543 81.1 globlastp
2151 LYM588 rye|12v1|DRR001012.250612_P1 6171 543 80.6 globlastp
2152 LYM588 cynodon|10v1|ES293189_P1 6172 543 80.4 globlastp
2153 LYM588 pseudoroegneria|gb167|FF344761 6173 543 80.21 glotblastn
2154 LYM588 barley|10v2|CB862485_P1 6174 543 80.2 globlastp
2155 LYM588 wheat|10v2|CA603660 6175 543 80.2 globlastp
2156 LYM589 switchgrass|gb167|DN149831 6176 544 87.95 glotblastn
2157 LYM589 foxtail_millet|11v3|PHY7SI003130M_P1 6177 544 87.5 globlastp
2158 LYM589 millet|10v1|PMSLX0020370D1_P1 6178 544 86.7 globlastp
2159 LYM590 sorghum|09v1|SB03G030040 6179 545 96.2 globlastp
2160 LYM590 sorghum|12v1|SB03G030040_P1 6179 545 96.2 globlastp
2161 LYM590 foxtail_millet|11v3|PHY7SI002304M_P1 6180 545 95.3 globlastp
2162 LYM590 switchgrass|gb167|DN140932 6181 545 94.6 globlastp
2163 LYM590 rice|11v1|AU031037_P1 6182 545 89.2 globlastp
2164 LYM590 rice|gb170|OS01G46950 6182 545 89.2 globlastp
2165 LYM590 brachypodium|09v1|TMPLOS01G46950T1 6183 545 88.61 glotblastn
2166 LYM590 millet|10v1|EVO454PM129494_T1 6184 545 81.33 glotblastn
2167 LYM590 rice|11v1|CB644577_P1 6185 545 80 globlastp
2168 LYM590 rice|gb170|OS05G49430 6185 545 80 globlastp
2169 LYM591 sorghum|12v1|SB10G006300_P1 6186 546 93.2 globlastp
2170 LYM591 sorghum|09v1|SB10G006280 6187 546 92.9 globlastp
2171 LYM591 sorghum|12v1|SB10G006280_P1 6188 546 92.7 globlastp
2172 LYM591 sugarcane|10v1|CA082557 6189 546 91.8 globlastp
2173 LYM591 sorghum|12v1|SB10G006290_P1 6190 546 91.2 globlastp
2174 LYM591 sorghum|09v1|SB10G006290 6190 546 91.2 globlastp
2175 LYM591 switchgrass|gb167|FE598390 6191 546 90.4 globlastp
2176 LYM591 millet|10v1|EVO454PM040744_P1 6192 546 89.3 globlastp
2177 LYM591 maize|10v1|CF004658_P1 6193 546 86.7 globlastp
2178 LYM591 foxtail_millet|11v3|PHY7SI039271M_T1 6194 546 85.88 glotblastn
2179 LYM591 rice|11v1|AU101335_P1 6195 546 84.5 globlastp
2180 LYM591 rice|gb170|OS10G11810 6195 546 84.5 globlastp
2181 LYM591 cynodon|10v1|ES293072_P1 6196 546 84.2 globlastp
2182 LYM591 foxtail_millet|11v3|PHY7SI039594M_T1 6197 546 83.38 glotblastn
2183 LYM591 rye|12v1|DRR001014.696550_T1 6198 546 83.33 glotblastn
2184 LYM591 brachypodium|09v1|GT758287 6199 546 83.3 globlastp
2185 LYM591 brachypodium|12v1|BRADI3G22980_P1 6199 546 83.3 globlastp
2186 LYM591 sorghum|09v1|SB10G006270 6200 546 82.07 glotblastn
2187 LYM591 sorghum|12v1|SB10G006270_T1 6201 546 81.79 glotblastn
2188 LYM592 sugarcane|10v1|BQ537065 6202 547 92.9 globlastp
2189 LYM592 sorghum|09v1|SB09G026770 6203 547 90.9 globlastp
2190 LYM592 sorghum|12v1|SB09G026770_P1 6203 547 90.9 globlastp
2191 LYM592 maize|10v1|AW573446_P1 6204 547 90.3 globlastp
2192 LYM592 foxtail_millet|11v3|PHY7SI021603M_P1 6205 547 85 globlastp
2193 LYM592 foxtail_millet|10v2|OXFXTSLX00042279D1T1 6205 547 85 globlastp
2194 LYM592 switchgrass|gb167|FE609717 6206 547 84.3 globlastp
2195 LYM592 millet|10v1|EVO454PM002747_P1 6207 547 83.7 globlastp
2196 LYM592 switchgrass|gb167|FL691765 6208 547 83.3 globlastp
2197 LYM593 sugarcane|10v1|CA094158 6209 548 94.1 globlastp
2198 LYM593 sorghum|09v1|SB06G020520 6210 548 93.4 globlastp
2199 LYM593 sorghum|12v1|SB06G020520_P1 6210 548 93.4 globlastp
2200 LYM593 foxtail_millet|11v3|PHY7SI009554M_P1 6211 548 89.6 globlastp
2201 LYM593 switchgrass|gb167|FE629929 6212 548 89 globlastp
2202 LYM593 oat|10v2|GO588188 6213 548 84.21 glotblastn
2203 LYM593 brachypodium|09v1|DV489073 6214 548 83.8 globlastp
2204 LYM593 brachypodium|12v1|BRADI5G13700_P1 6214 548 83.8 globlastp
2205 LYM593 millet|10v1|CD726589_P1 6215 548 83 globlastp
2206 LYM593 rice|11v1|AA750700_P1 6216 548 82.7 globlastp
2207 LYM593 rice|gb170|OS04G40660 6216 548 82.7 globlastp
2208 LYM593 wheat|10v2|BQ802296 6217 548 80.6 globlastp
2209 LYM593 rye|12v1|DRR001012.100510_P1 6218 548 80 globlastp
2210 LYM594 foxtail_millet|11v3|SOLX00020230_T1 6219 549 80.8 glotblastn
2211 LYM595 sorghum|09v1|SB01G015780 6220 550 83 globlastp
2212 LYM595 sorghum|12v1|SB01G015780_P1 6220 550 83 globlastp
2213 LYM595 sugarcane|10v1|BQ535312 6221 550 82.1 globlastp
2214 LYM595 foxtail_millet|11v3|PHY7SI038239M_P1 6222 550 80.9 globlastp
2215 LYM596 sugarcane|10v1|BQ537035 6223 551 97.7 globlastp
2216 LYM596 sorghum|12v1|SB04G017430_P1 6224 551 97.2 globlastp
2217 LYM596 sorghum|09v1|SB04G017430 6224 551 97.2 globlastp
2218 LYM596 foxtail_millet|11v3|PHY7SI018314M_P1 6225 551 93.1 globlastp
2219 LYM596 foxtail_millet|10v2|SICRP035834 6225 551 93.1 globlastp
2220 LYM596 cenchrus|gb166|EB655382_P1 6226 551 91.7 globlastp
2221 LYM596 switchgrass|gb167|FE616504 6227 551 90.8 globlastp
2222 LYM596 millet|10v1|EVO454PM152449_P1 6228 551 90.5 globlastp
2223 LYM596 switchgrass|gb167|DN141665 6229 551 89.9 globlastp
2224 LYM596 rice|11v1|AA750280_P1 6230 551 87.6 globlastp
2225 LYM596 rice|gb170|OS02G26700 6230 551 87.6 globlastp
2226 LYM596 brachypodium|12v1|BRADI3G43137_P1  694 551 87.6 globlastp
2227 LYM596 euonymus|11v1|HS011083_T1 6231 551 84.4 glotblastn
2228 LYM596 leymus|gb166|EG391468_P1 6232 551 83.5 globlastp
2229 LYM596 rye|12v1|BE588144_P1 6233 551 83.5 globlastp
2230 LYM596 barley|10v2|BE413546_P1 6234 551 83.5 globlastp
2231 LYM596 pseudoroegneria|gb167|FF339860_P1 6235 551 83 globlastp
2232 LYM596 wheat|10v2|BE398695 6236 551 83 globlastp
2233 LYM596 fescue|gb161|CK802837_P1 6237 551 82.6 globlastp
2234 LYM596 wheat|10v2|BE406054_P1 6238 551 82.6 globlastp
2235 LYM596 wheat|10v2|BE427500_P1 6239 551 82.6 globlastp
2236 LYM596 wheat|10v2|BE419394_P1 6240 551 81.7 globlastp
2237 LYM596 oat|11v1|CN815629_P1 6241 551 81.2 globlastp
2238 LYM598 sorghum|12v1|BG357441_P1 6242 552 86 globlastp
2239 LYM598 sorghum|09v1|SB01G047550 6242 552 86 globlastp
2240 LYM598 sugarcane|10v1|CA078943 6243 552 85.8 globlastp
2241 LYM599 sugarcane|10v1|CA125737 6244 553 88.4 globlastp
2242 LYM599 sorghum|09v1|SB01G001060 6245 553 84.7 globlastp
2243 LYM599 sorghum|12v1|SB01G001060_P1 6245 553 84.7 globlastp
2244 LYM599 foxtail_millet|11v3|PHY7SI010847M_P1 6246 553 80.6 globlastp
2245 LYM599 foxtail_millet|10v2|SICRP002576 6246 553 80.6 globlastp
2246 LYM600 sugarcane|10v1|CA093963  554 554 100 globlastp
2247 LYM600 sorghum|09v1|SB09G030810 6247 554 99 globlastp
2248 LYM600 sorghum|12v1|SB09G030810_P1 6247 554 99 globlastp
2249 LYM600 switchgrass|gb167|FL731766 6248 554 94.9 globlastp
2250 LYM600 switchgrass|gb167|FL943548 6248 554 94.9 globlastp
2251 LYM600 foxtail_millet|11v3|PHY7SI023768M_P1 6249 554 93.9 globlastp
2252 LYM600 foxtail_millet|10v2|FXTRMSLX00734388D1 6249 554 93.9 globlastp
2253 LYM600 cynodon|10v1|ES293199_P1 6250 554 92.9 globlastp
2254 LYM600 oat|10v2|GO585886 6251 554 92.9 globlastp
2255 LYM600 oat|10v2|GO589084 6251 554 92.9 globlastp
2256 LYM600 oat|11v1|GO585886_P1 6251 554 92.9 globlastp
2257 LYM600 rye|12v1|DRR001012.111431_P1 6252 554 91.9 globlastp
2258 LYM600 brachypodium|09v1|GT804298 6253 554 91.9 globlastp
2259 LYM600 brachypodium|12v1|BRADI2G14260_P1 6253 554 91.9 globlastp
2260 LYM600 leymus|gb166|EG391342_P1 6252 554 91.9 globlastp
2261 LYM600 millet|10v1|EVO454PM162788_P1 6254 554 91.9 globlastp
2262 LYM600 wheat|10v2|CA597133 6252 554 91.9 globlastp
2263 LYM600 rice|11v1|BI798272_P1 6255 554 90.9 globlastp
2264 LYM600 rice|gb170|OS05G51650 6255 554 90.9 globlastp
2265 LYM600 cucurbita|11v1|SRR091276X120709_P1 6256 554 88.9 globlastp
2266 LYM600 platanus|11v1|SRR096786X130411_P1 6256 554 88.9 globlastp
2267 LYM600 platanus|11v1|SRR096786X355108_P1 6256 554 88.9 globlastp
2268 LYM600 poppy|11v1|SRR030259.117391_P1 6257 554 88.9 globlastp
2269 LYM600 trigonella|11v1|SRR066194X157903_P1 6258 554 88.9 globlastp
2270 LYM600 watermelon|11v1|VMEL03913326553522_P1 6256 554 88.9 globlastp
2271 LYM600 tobacco|gb162|EH620887 6259 554 88.9 globlastp
2272 LYM600 banana|10v1|FL657298_P1 6260 554 87.9 globlastp
2273 LYM600 clementine|11v1|CF504147_P1 6261 554 87.9 globlastp
2274 LYM600 coffea|10v1|DV712995_P1 6262 554 87.9 globlastp
2275 LYM600 cucumber|09v1|AM722106_P1 6263 554 87.9 globlastp
2276 LYM600 melon|10v1|AM722106_P1 6263 554 87.9 globlastp
2277 LYM600 soybean|11v1|GLYMA08G18410 6264 554 87.9 globlastp
2278 LYM600 soybean|11v1|GLYMA15G40590 6264 554 87.9 globlastp
2279 LYM600 tomato|09v1|BG130709 6262 554 87.9 globlastp
2280 LYM600 tomato|11v1|BG130709_P1 6262 554 87.9 globlastp
2281 LYM600 amsonia|11v1|SRR098688X38847_P1 6265 554 86.9 globlastp
2282 LYM600 cotton|11v1|BG447136_P1 6266 554 86.9 globlastp
2283 LYM600 cotton|11v1|SRR032367.1000742_P1 6266 554 86.9 globlastp
2284 LYM600 cotton|11v1|SRR032368.1019733_P1 6266 554 86.9 globlastp
2285 LYM600 flax|11v1|JG031667_P1 6267 554 86.9 globlastp
2286 LYM600 flax|11v1|JG109780_P1 6268 554 86.9 globlastp
2287 LYM600 gossypium_raimondii|12v1|CO082941_P1 6266 554 86.9 globlastp
2288 LYM600 gossypium_raimondii|12v1|ES816805_P1 6266 554 86.9 globlastp
2289 LYM600 phalaenopsis|11v1|SRR125771.1149762_P1 6269 554 86.9 globlastp
2290 LYM600 amborella|gb166|CK755640 6270 554 86.9 globlastp
2291 LYM600 barley|10v2|BF625348_P1 6271 554 86.9 globlastp
2292 LYM600 bean|12v1|CA914223_P1 6272 554 86.9 globlastp
2293 LYM600 bean|gb167|CA914223 6272 554 86.9 globlastp
2294 LYM600 cacao|10v1|CU504428_P1 6273 554 86.9 globlastp
2295 LYM600 citrus|gb166|CF504147 6274 554 86.9 globlastp
2296 LYM600 coffea|10v1|EE191840_P1 6275 554 86.9 globlastp
2297 LYM600 cotton|10v2|BG447136 6266 554 86.9 globlastp
2298 LYM600 cotton|10v2|SRR032367S0171409 6266 554 86.9 globlastp
2299 LYM600 cowpea|gb166|FF392565_P1 6276 554 86.9 globlastp
2300 LYM600 heritiera|10v1|SRR005794S0000480_P1 6266 554 86.9 globlastp
2301 LYM600 oak|10v1|FP068885_P1 6277 554 86.9 globlastp
2302 LYM600 orange|11v1|CF504147_P1 6274 554 86.9 globlastp
2303 LYM600 pigeonpea|10v1|SRR054580S0035235 6272 554 86.9 globlastp
2304 LYM600 pigeonpea|11v1|SRR054580X230616_P1 6272 554 86.9 globlastp
2305 LYM600 solanum_phureja|09v1|SPHBG130709 6278 554 86.9 globlastp
2306 LYM600 beech|11v1|SRR364434.64959_P1 6279 554 85.9 globlastp
2307 LYM600 bupleurum|11v1|SRR301254.139455_P1 6280 554 85.9 globlastp
2308 LYM600 bupleurum|11v1|SRR301254.15817_P1 6281 554 85.9 globlastp
2309 LYM600 chickpea|11v1|GR408995_P1 6282 554 85.9 globlastp
2310 LYM600 eucalyptus|11v2|ES592357_P1 6283 554 85.9 globlastp
2311 LYM600 fagopyrum|11v1|SRR063689X105178_P1 6284 554 85.9 globlastp
2312 LYM600 medicago|12v1|BQ144100_P1 6285 554 85.9 globlastp
2313 LYM600 sarracenia|11v1|SRR192669.112573_P1 6286 554 85.9 globlastp
2314 LYM600 utricularia|11v1|SRR094438.103235_P1 6287 554 85.9 globlastp
2315 LYM600 antirrhinum|gb166|AJ559733_P1 6288 554 85.9 globlastp
2316 LYM600 aquilegia|10v2|JGIAC023381 6289 554 85.9 globlastp
2317 LYM600 cassava|09v1|JGICASSAVA31061VALIDM1_P1 6290 554 85.9 globlastp
2318 LYM600 eggplant|10v1|FS007562_P1 6291 554 85.9 globlastp
2319 LYM600 eucalyptus|11v1|ES592357 6283 554 85.9 globlastp
2320 LYM600 grape|11v1|GSVIVT01024237001_P1 6292 554 85.9 globlastp
2321 LYM600 grape|gb160|DT015350 6292 554 85.9 globlastp
2322 LYM600 ipomoea_nil|10v1|CJ753581_P1 6293 554 85.9 globlastp
2323 LYM600 jatropha|09v1|FM891742_P1 6294 554 85.9 globlastp
2324 LYM600 pineapple|10v1|CO731536_P1 6295 554 85.9 globlastp
2325 LYM600 salvia|10v1|FE536863 6296 554 85.9 globlastp
2326 LYM600 pea|11v1|FG535244_T1 554 85.86 glotblastn
2327 LYM600 amorphophallus|11v2|SRR089351X119533_P1 6297 554 84.8 globlastp
2328 LYM600 catharanthus|11v1|EG557252_P1 6298 554 84.8 globlastp
2329 LYM600 eucalyptus|11v2|ES588366_P1 6299 554 84.8 globlastp
2330 LYM600 euonymus|11v1|SRR070038X161992_P1 6300 554 84.8 globlastp
2331 LYM600 euonymus|11v1|SRR070038X427194_P1 6300 554 84.8 globlastp
2332 LYM600 euonymus|11v1|SRR070038X545766_P1 6300 554 84.8 globlastp
2333 LYM600 nasturtium|11v1|GH167276_P1 6301 554 84.8 globlastp
2334 LYM600 tabernaemontana|11v1|SRR098689X130803_P1 6302 554 84.8 globlastp
2335 LYM600 acacia|10v1|FS586254_P1 6303 554 84.8 globlastp
2336 LYM600 cassava|09v1|DV455379_P1 6304 554 84.8 globlastp
2337 LYM600 eucalyptus|11v1|ES588366 6299 554 84.8 globlastp
2338 LYM600 peanut|10v1|ES717776_P1 6305 554 84.8 globlastp
2339 LYM600 chickpea|09v2|GR408995 6306 554 83.84 glotblastn
2340 LYM600 nasturtium|10v1|GH167276 6307 554 83.84 glotblastn
2341 LYM600 cirsium|11v1|SRR346952.1006577_P1 6308 554 83.8 globlastp
2342 LYM600 cirsium|11v1|SRR346952.1063347_P1 6308 554 83.8 globlastp
2343 LYM600 cirsium|11v1|SRR346952.106494_P1 6309 554 83.8 globlastp
2344 LYM600 euonymus|11v1|SRR070038X316257_P1 6310 554 83.8 globlastp
2345 LYM600 oil_palm|11v1|EL690671_P1 6311 554 83.8 globlastp
2346 LYM600 plantago|11v2|SRR066373X134434_P1 6312 554 83.8 globlastp
2347 LYM600 tripterygium|11v1|SRR098677X236783_P1 6313 554 83.8 globlastp
2348 LYM600 vinca|11v1|SRR098690X147661_P1 6314 554 83.8 globlastp
2349 LYM600 avocado|10v1|FD506766_P1 6315 554 83.8 globlastp
2350 LYM600 centaurea|gb166|EH739616_P1 6316 554 83.8 globlastp
2351 LYM600 centaurea|gb166|EH742668_P1 6308 554 83.8 globlastp
2352 LYM600 cichorium|gb171|EL371031_P1 6317 554 83.8 globlastp
2353 LYM600 cynara|gb167|GE591637_P1 6318 554 83.8 globlastp
2354 LYM600 hevea|10v1|EC600278_P1 6319 554 83.8 globlastp
2355 LYM600 monkeyflower|10v1|DV209693_P1 6320 554 83.8 globlastp
2356 LYM600 triphysaria|10v1|EY125732 6321 554 83.8 globlastp
2357 LYM600 cannabis|12v1|SOLX00063103_P1 6322 554 82.8 globlastp
2358 LYM600 cirsium|11v1|SRR346952.125654_P1 6323 554 82.8 globlastp
2359 LYM600 flaveria|11v1|SRR149229.21124_P1 6324 554 82.8 globlastp
2360 LYM600 humulus|11v1|SRR098683X111685_P1 6322 554 82.8 globlastp
2361 LYM600 olea|11v1|SRR014464.32155_P1 6325 554 82.8 globlastp
2362 LYM600 rose|12v1|SRR397984.29539_P1 6326 554 82.8 globlastp
2363 LYM600 aristolochia|10v1|SRR039082S0054216_P1 6327 554 82.8 globlastp
2364 LYM600 artemisia|10v1|SRR019254S0103015_P1 6328 554 82.8 globlastp
2365 LYM600 cynara|gb167|GE590619_P1 6329 554 82.8 globlastp
2366 LYM600 dandelion|10v1|GO665877_P1 6330 554 82.8 globlastp
2367 LYM600 lotus|09v1|AU251384_P1 6331 554 82.8 globlastp
2368 LYM600 poplar|10v1|BI121188_P1 6332 554 82.8 globlastp
2369 LYM600 strawberry|11v1|CO381503 6326 554 82.8 globlastp
2370 LYM600 sunflower|10v1|EE611564 6324 554 82.8 globlastp
2371 LYM600 sunflower|12v1|EE611564_P1 6324 554 82.8 globlastp
2372 LYM600 zinnia|gb171|AU307714 6333 554 82.8 globlastp
2373 LYM600 momordica|10v1|SRR071315S0102256_P1 6334 554 82 globlastp
2374 LYM600 ambrosia|11v1|SRR346943.132542_T1 554 81.82 glotblastn
2375 LYM600 flaveria|11v1|SRR149232.381162_T1 554 81.82 glotblastn
2376 LYM600 ambrosia|11v1|SRR346943.120806_P1 6335 554 81.8 globlastp
2377 LYM600 b_rapa|11v1|CX281114_P1 6336 554 81.8 globlastp
2378 LYM600 euphorbia|11v1|DV119892_P1 6337 554 81.8 globlastp
2379 LYM600 euphorbia|11v1|SRR098678X107103_P1 6338 554 81.8 globlastp
2380 LYM600 flaveria|11v1|SRR149229.317100_P1 6335 554 81.8 globlastp
2381 LYM600 flaveria|11v1|SRR149232.156175_P1 6335 554 81.8 globlastp
2382 LYM600 sunflower|12v1|EL432223_P1 6335 554 81.8 globlastp
2383 LYM600 thellungiella_halophilum|11v1|EHJGI11011720_P1 6339 554 81.8 globlastp
2384 LYM600 artemisia|10v1|EY064441_P1 6340 554 81.8 globlastp
2385 LYM600 radish|gb164|EX748624 6341 554 81.8 globlastp
2386 LYM600 spurge|gb161|DV119892 6337 554 81.8 globlastp
2387 LYM600 sunflower|10v1|CD854782 6335 554 81.8 globlastp
2388 LYM600 sunflower|12v1|CD854782_P1 6335 554 81.8 globlastp
2389 LYM600 sunflower|10v1|EE652689 6335 554 81.8 globlastp
2390 LYM600 sunflower|12v1|EE652689_P1 6335 554 81.8 globlastp
2391 LYM600 zostera|10v1|SRR057351S0102941 6342 554 81.8 globlastp
2392 LYM600 valeriana|11v1|SRR099039X175201_P1 6343 554 81.2 globlastp
2393 LYM600 chestnut|gb170|SRR006295S0081537_T1 6344 554 81 glotblastn
2394 LYM600 foxtail_millet|10v2|SICRP005742 6345 554 80.81 glotblastn
2395 LYM600 primula|11v1|SRR098679X61753_P1 6346 554 80.8 globlastp
2396 LYM600 arabidopsis|10v1|AT1G65700_P1 6347 554 80.8 globlastp
2397 LYM600 b_juncea|10v2|E6ANDIZ01A1MXB1_P1 6348 554 80.8 globlastp
2398 LYM600 b_oleracea|gb161|EE534039_P1 6348 554 80.8 globlastp
2399 LYM600 b_rapa|11v1|CD818907_P1 6348 554 80.8 globlastp
2400 LYM600 b_rapa|gb162|CA992000 6348 554 80.8 globlastp
2401 LYM600 canola|10v1|CD818907 6348 554 80.8 globlastp
2402 LYM600 canola|10v1|CD821357 6348 554 80.8 globlastp
2403 LYM600 canola|10v1|CN732235 6348 554 80.8 globlastp
2404 LYM600 castorbean|09v1|XM002523821 6349 554 80.8 globlastp
2405 LYM600 castorbean|11v1|XM_002523821_P1 6349 554 80.8 globlastp
2406 LYM600 lettuce|10v1|DW154030_P1 6350 554 80.8 globlastp
2407 LYM600 lotus|09v1|AV426525_P1 6351 554 80.8 globlastp
2408 LYM600 papaya|gb165|EX252216_P1 6352 554 80.8 globlastp
2409 LYM600 radish|gb164|EY895818 6353 554 80.8 globlastp
2410 LYM600 sequoia|10v1|SRR065044S0138565 6354 554 80.8 globlastp
2411 LYM600 canola|11v1|CN732235_P1 6348 554 80.8 globlastp
2412 LYM601 sorghum|09v1|SB07G007750 6355 555 98.1 globlastp
2413 LYM601 sorghum|12v1|SB07G007750_P1 6355 555 98.1 globlastp
2414 LYM601 foxtail_millet|11v3|PHY7SI013402M_P1 6356 555 95.8 globlastp
2415 LYM601 rice|11v1|BI813578_P1 6357 555 90.2 globlastp
2416 LYM601 rice|gb170|OS08G14620 6357 555 90.2 globlastp
2417 LYM601 brachypodium|09v1|DV474658 6358 555 88.7 globlastp
2418 LYM601 brachypodium|12v1|BRADI3G18920_P1 6358 555 88.7 globlastp
2419 LYM601 rye|12v1|DRR001012.128982_T1 6359 555 86.05 glotblastn
2420 LYM601 rye|12v1|DRR001012.104980_P1 6360 555 85.6 globlastp
2421 LYM602 sorghum|09v1|SB04G022140 6361 556 95.8 globlastp
2422 LYM602 sorghum|12v1|SB04G022140_P1 6362 556 95.6 globlastp
2423 LYM602 switchgrass|gb167|FL690824 6363 556 92.1 globlastp
2424 LYM602 foxtail_millet|11v3|EC612280_P1 6364 556 90.2 globlastp
2425 LYM602 foxtail_millet|10v2|SICRP032110 6364 556 90.2 globlastp
2426 LYM602 oat|10v2|GR333470 6365 556 87.8 globlastp
2427 LYM602 oat|11v1|GR333470_P1 6365 556 87.8 globlastp
2428 LYM602 rice|11v1|BE040097_P1 6366 556 87.3 globlastp
2429 LYM602 rice|gb170|OS02G33710 6366 556 87.3 globlastp
2430 LYM602 brachypodium|09v1|DV469217 6367 556 86.7 globlastp
2431 LYM602 brachypodium|12v1|BRADI3G45260_P1 6367 556 86.7 globlastp
2432 LYM602 wheat|10v2|BE213243 6368 556 83 globlastp
2433 LYM602 rye|12v1|BE493876_P1 6369 556 82.6 globlastp
2434 LYM602 rye|12v1|DRR001012.179873_T1 6370 556 81.58 glotblastn
2435 LYM603 sugarcane|10v1|CA074471 6371 557 98.7 globlastp
2436 LYM603 sorghum|09v1|SB01G027790 6372 557 98.1 globlastp
2437 LYM603 sorghum|12v1|SB01G027790_P1 6372 557 98.1 globlastp
2438 LYM603 foxtail_millet|11v3|PHY7SI037847M_P1 6373 557 95 globlastp
2439 LYM603 foxtail_millet|10v2|OXFXTSLX00004096D1T1 6373 557 95 globlastp
2440 LYM603 millet|10v1|EVO454PM055842_P1 6374 557 93.7 globlastp
2441 LYM603 cynodon|10v1|ES297680_P1 6375 557 93.2 globlastp
2442 LYM603 switchgrass|gb167|DN143865 6376 557 93.1 globlastp
2443 LYM603 switchgrass|gb167|FE629735 6377 557 90.6 globlastp
2444 LYM603 lovegrass|gb167|EH184835_P1 6378 557 89.4 globlastp
2445 LYM603 rice|11v1|BI306142_P1 6379 557 88.1 globlastp
2446 LYM603 rice|gb170|OS10G42840 6379 557 88.1 globlastp
2447 LYM603 barley|10v2|BE411720_P1 6380 557 85 globlastp
2448 LYM603 brachypodium|09v1|DV479530 6381 557 85 globlastp
2449 LYM603 brachypodium|12v1|BRADI3G34557_P1 6381 557 85 globlastp
2450 LYM603 pseudoroegneria|gb167|FF339930 6382 557 84.4 globlastp
2451 LYM603 maize|10v1|BE056112_T1 557 83.95 glotblastn
2452 LYM603 rye|12v1|BE494038_P1 6383 557 83.8 globlastp
2453 LYM603 fescue|gb161|DT701118_P1 6384 557 83.8 globlastp
2454 LYM603 oat|10v2|CN815694 6385 557 83.8 globlastp
2455 LYM603 oat|11v1|CN815694_P1 6385 557 83.8 globlastp
2456 LYM603 oat|10v2|GO582267 6385 557 83.8 globlastp
2457 LYM603 oat|11v1|GO582267_P1 6386 557 83.8 globlastp
2458 LYM603 rye|gb164|BE494038 6383 557 83.8 globlastp
2459 LYM603 rye|12v1|DRR001014.113006_T1 6387 557 83.02 glotblastn
2460 LYM603 oil_palm|11v1|EY397025_P1 6388 557 80.5 globlastp
2461 LYM604 sorghum|09v1|SB06G021810 6389 558 95.3 globlastp
2462 LYM604 sorghum|12v1|SB06G021810_P1 6389 558 95.3 globlastp
2463 LYM604 sugarcane|10v1|CA222951 6390 558 94.4 globlastp
2464 LYM604 switchgrass|gb167|DW177305 6391 558 91.2 globlastp
2465 LYM604 millet|10v1|EVO454PM004605_P1 6392 558 88.4 globlastp
2466 LYM604 foxtail_millet|11v3|PHY7SI011051M_P1 6393 558 87.9 globlastp
2467 LYM604 foxtail_millet|10v2|SICRP021182 6393 558 87.9 globlastp
2468 LYM604 brachypodium|09v1|DV485200 6394 558 84.1 globlastp
2469 LYM604 brachypodium|12v1|BRADI5G14910_P1 6394 558 84.1 globlastp
2470 LYM604 wheat|10v2|BE638059 6395 558 82.2 globlastp
2471 LYM604 rye|12v1|BE705236_P1 6396 558 81.8 globlastp
2472 LYM604 pseudoroegneria|gb167|FF350465 6397 558 81.3 globlastp
2473 LYM604 rye|12v1|DRR001012.134837_T1 6398 558 80.84 glotblastn
2474 LYM606 sorghum|09v1|SB10G025050 6399 559 95.9 globlastp
2475 LYM606 sorghum|12v1|SB10G025050_P1 6399 559 95.9 globlastp
2476 LYM606 maize|10v1|AW563059_P1 6400 559 95.3 globlastp
2477 LYM606 foxtail_millet|11v3|GT228203_P1 6401 559 94.7 globlastp
2478 LYM606 rice|11v1|BE607436_P1 6402 559 89.2 globlastp
2479 LYM606 rice|gb170|OS06G43210 6402 559 89.2 globlastp
2480 LYM606 brachypodium|09v1|DV476163 6403 559 87.6 globlastp
2481 LYM606 brachypodium|12v1|BRADI1G30330_P1 6403 559 87.6 globlastp
2482 LYM606 rye|12v1|DRR001012.25717_P1 6404 559 86.7 globlastp
2483 LYM606 rye|12v1|DRR001012.108444_P1 6405 559 85.6 globlastp
2484 LYM606 rye|12v1|DRR001012.127359_P1 6406 559 84.1 globlastp
2485 LYM606 rye|12v1|DRR001012.176109_T1 6407 559 83.65 glotblastn
2486 LYM606 switchgrass|gb167|FL696179 6408 559 81.94 glotblastn
2487 LYM608 sorghum|12v1|SB03G010320_P1 6409 561 92.7 globlastp
2488 LYM608 sorghum|09v1|SB03G010320 6410 561 92.4 globlastp
2489 LYM608 switchgrass|gb167|DN140772 6411 561 90.8 globlastp
2490 LYM609 sorghum|12v1|SB10G029300_P1 6412 562 87.4 globlastp
2491 LYM609 sorghum|09v1|SB10G029300 6412 562 87.4 globlastp
2492 LYM609 foxtail_millet|10v2|SICRP011813 6413 562 81 globlastp
2493 LYM611 sorghum|09v1|SB01G043220 6414 564 98.9 globlastp
2494 LYM611 sorghum|12v1|SB01G043220_P1 6414 564 98.9 globlastp
2495 LYM611 sugarcane|10v1|BQ533221 6414 564 98.9 globlastp
2496 LYM611 maize|10v1|AI491301_P1 6415 564 98.2 globlastp
2497 LYM611 switchgrass|gb167|FE600476 6416 564 97.5 globlastp
2498 LYM611 foxtail_millet|11v3|PHY7SI006022M_P1 6417 564 97.3 globlastp
2499 LYM611 rice|gb170|OS06G34690 6418 564 97.1 globlastp
2500 LYM611 foxtail_millet|10v2|OXFXTRMSLX00145499D1T1 6419 564 96.77 glotblastn
2501 LYM611 brachypodium|09v1|GT767056 6420 564 96.6 globlastp
2502 LYM611 brachypodium|12v1|BRADI1G39090_P1 6420 564 96.6 globlastp
2503 LYM611 brachypodium|12v1|BRADI2G26420_T1 6421 564 95.34 glotblastn
2504 LYM611 brachypodium|09v1|SRR031797S0049352 6421 564 95.34 glotblastn
2505 LYM611 oat|11v1|GO598901_P1 6422 564 95.3 globlastp
2506 LYM611 oat|10v2|GO598901 6423 564 95.2 globlastp
2507 LYM611 rice|gb170|OS02G14929 6424 564 94.1 globlastp
2508 LYM611 wheat|10v2|BE404300 6425 564 93.5 globlastp
2509 LYM611 wheat|10v2|BE399770 6426 564 93.4 globlastp
2510 LYM611 rye|12v1|DRR001012.108353_P1 6427 564 93.2 globlastp
2511 LYM611 rye|12v1|DRR001012.248343_P1 6427 564 93.2 globlastp
2512 LYM611 rye|12v1|DRR001012.155827_P1 6428 564 93 globlastp
2513 LYM611 oil_palm|11v1|EY409424_T1 6429 564 90.16 glotblastn
2514 LYM611 oil_palm|11v1|EY407670_P1 6430 564 90 globlastp
2515 LYM611 castorbean|11v1|EG692210_P1 6431 564 89.4 globlastp
2516 LYM611 watermelon|11v1|BI740251_P1 6432 564 89.4 globlastp
2517 LYM611 cassava|09v1|BM259914_P1 6433 564 89.4 globlastp
2518 LYM611 tripterygium|11v1|SRR098677Xl00547_P1 6434 564 89.3 globlastp
2519 LYM611 citrus|gb166|CB304914 6435 564 89.1 globlastp
2520 LYM611 clementine|11v1|CB304914_P1 6436 564 89.1 globlastp
2521 LYM611 orange|11v1|CB304914_P1 6436 564 89.1 globlastp
2522 LYM611 melon|10v1|AM727766_T1 6437 564 88.89 glotblastn
2523 LYM611 euonymus|11v1|SRR070038X115804_P1 6438 564 88.7 globlastp
2524 LYM611 euphorbia|11v1|BG317307_P1 6439 564 88.7 globlastp
2525 LYM611 cotton|10v2|BE055074 6440 564 88.7 globlastp
2526 LYM611 cotton|11v1|AI727905_P1 6440 564 88.7 globlastp
2527 LYM611 euonymus|11v1|SRR070038X112478_P1 6441 564 88.6 globlastp
2528 LYM611 grape|11v1|GSVIVT01007770001_P1 6442 564 88.6 globlastp
2529 LYM611 millet|10v1|EVO454PM001315_P1 6443 564 88.5 globlastp
2530 LYM611 eucalyptus|11v2|ES590324_P1 6444 564 88.4 globlastp
2531 LYM611 grape|11v1|GSVIVT01000263001_P1 6445 564 88.4 globlastp
2532 LYM611 ambrosia|11v1|SRR346935.104108_T1 6446 564 88.35 glotblastn
2533 LYM611 catharanthus|11v1|EG555556_P1 6447 564 88.2 globlastp
2534 LYM611 tabernaemontana|11v1|SRR098689X100220_P1 6448 564 88.2 globlastp
2535 LYM611 poplar|10v1|BI120102_P1 6449 564 88.2 globlastp
2536 LYM611 eucalyptus|11v1|ES590324 6450 564 88.19 glotblastn
2537 LYM611 ambrosia|11v1|SRR346935.307154_T1 6451 564 88.17 glotblastn
2538 LYM611 flaveria|11v1|SRR149229.102721_P1 6452 564 88 globlastp
2539 LYM611 poplar|10v1|AI162988_P1 6453 564 88 globlastp
2540 LYM611 sunflower|10v1|CD853266 6454 564 88 globlastp
2541 LYM611 sunflower|12v1|DY931786_P1 6454 564 88 globlastp
2542 LYM611 triphysaria|10v1|EX988156 6455 564 87.81 glotblastn
2543 LYM611 cichorium|gb171|EH675116_P1 6456 564 87.8 globlastp
2544 LYM611 oak|10v1|CU656729_P1 6457 564 87.8 globlastp
2545 LYM611 tragopogon|10v1|SRR020205S0004863 6458 564 87.8 globlastp
2546 LYM611 amsonia|11v1|SRR098688X107521_P1 6459 564 87.7 globlastp
2547 LYM611 orange|11v1|CF506647_P1 6460 564 87.7 globlastp
2548 LYM611 triphysaria|10v1|DR173475 6461 564 87.6 globlastp
2549 LYM611 castorbean|09v1|EG692210 6462 564 87.52 glotblastn
2550 LYM611 artemisia|10v1|EY036781_P1 6463 564 87.5 globlastp
2551 LYM611 citrus|gb166|CF506647 6464 564 87.5 globlastp
2552 LYM611 clementine|11v1|CF506647_P1 6465 564 87.5 globlastp
2553 LYM611 coffea|10v1|DV675662_P1 6466 564 87.5 globlastp
2554 LYM611 momordica|10v1|SRR071315S0009397_P1 6467 564 87.5 globlastp
2555 LYM611 monkeyflower|10v1|DV208694_P1 6468 564 87.5 globlastp
2556 LYM611 nasturtium|10v1|GH162060 6469 564 87.5 globlastp
2557 LYM611 nasturtium|11v1|GH162060_T1 6470 564 87.46 glotblastn
2558 LYM611 prunus|10v1|CN993152 6471 564 87.37 glotblastn
2559 LYM611 cirsium|11v1|SRR346952.1017142_P1 6472 564 87.3 globlastp
2560 LYM611 pigeonpea|11v1|SRR054580X100373_P1 6473 564 87.3 globlastp
2561 LYM611 ambrosia|11v1|SRR346935.65560_T1 6474 564 87.28 glotblastn
2562 LYM611 flaveria|11v1|SRR149229.231079XX2_T1 6475 564 87.28 glotblastn
2563 LYM611 cirsium|11v1|SRR346952.162014_P1 6476 564 87.1 globlastp
2564 LYM611 sunflower|12v1|CD853266_T1 6477 564 87.1 glotblastn
2565 LYM611 valeriana|11v1|SRR099039X10437_P1 6478 564 87.1 globlastp
2566 LYM611 vinca|11v1|SRR098690X110682_P1 6479 564 87.1 globlastp
2567 LYM611 arabidopsis_lyrata|09v1|JGIAL022374_P1 6480 564 87.1 globlastp
2568 LYM611 aristolochia|10v1|SRR039082S0101548_P1 6481 564 87.1 globlastp
2569 LYM611 sunflower|10v1|DY911131 6482 564 87.1 glotblastn
2570 LYM611 amorphophallus|11v2|SRR089351X108628_T1 6483 564 86.94 glotblastn
2571 LYM611 b_rapa|11v1|CD826108_P1 6484 564 86.9 globlastp
2572 LYM611 canola|11v1|DT469126XX1_P1 6484 564 86.9 globlastp
2573 LYM611 canola|11v1|EE472123_P1 6484 564 86.9 globlastp
2574 LYM611 canola|11v1|EE549209_T1 6485 564 86.74 glotblastn
2575 LYM611 trigonella|11v1|SRR066194X122711_P1 6486 564 86.7 globlastp
2576 LYM611 arabidopsis|10v1|AT5G26360_P1 6487 564 86.7 globlastp
2577 LYM611 radish|gb164|EW717942 6488 564 86.7 globlastp
2578 LYM611 amborella|12v2|SRR038634.26959_P1 6489 564 86.6 globlastp
2579 LYM611 chestnut|gb170|SRR006295S0028395_P1 6490 564 86.6 globlastp
2580 LYM611 orobanche|10v1|SRR023189S0002940_P1 6491 564 86.6 globlastp
2581 LYM611 soybean|11v1|GLYMA09G28650 6492 564 86.6 globlastp
2582 LYM611 phalaenopsis|11v1|SRR125771.1000872_T1 6493 564 86.58 glotblastn
2583 LYM611 beet|12v1|BQ488783_P1 6494 564 86.4 globlastp
2584 LYM611 thellungiella_halophilum|11v1|BY810123_P1 6495 564 86.4 globlastp
2585 LYM611 medicago|09v1|LLAW684643 6496 564 86.4 globlastp
2586 LYM611 soybean|11v1|GLYMA16G33380 6497 564 86.4 globlastp
2587 LYM611 tomato|09v1|AW041240 6498 564 86.4 globlastp
2588 LYM611 tomato|11v1|AW041240_P1 6498 564 86.4 globlastp
2589 LYM611 dandelion|10v1|DR400237_T1 6499 564 86.38 glotblastn
2590 LYM611 bean|12v1|CA906417_P1 6500 564 86.2 globlastp
2591 LYM611 sunflower|12v1|EE620205_P1 6501 564 86.2 globlastp
2592 LYM611 thellungiella_halophilum|11v1|BY801043_P1 6502 564 86.2 globlastp
2593 LYM611 radish|gb164|EX751194 6503 564 86.2 glotblastn
2594 LYM611 b_rapa|11v1|L38155_P1 6504 564 86 globlastp
2595 LYM611 chickpea|11v1|CD051320_P1 6505 564 86 globlastp
2596 LYM611 eschscholzia|11v1|CK751932_P1 6506 564 86 globlastp
2597 LYM611 poppy|11v1|FE965011_P1 6507 564 86 globlastp
2598 LYM611 poppy|11v1|SRR030259.194142_P1 6508 564 86 globlastp
2599 LYM611 thellungiella_parvulum|11v1|BY810123_P1 6509 564 86 globlastp
2600 LYM611 chelidonium|11v1|SRR084752X114234_T1 6510 564 85.84 glotblastn
2601 LYM611 thellungiella_parvulum|11v1|BY801043_P1 6511 564 85.8 globlastp
2602 LYM611 kiwi|gb166|FG418221_P1 6512 564 85.8 globlastp
2603 LYM611 solanum_phureja|09v1|SPHAW041240 6513 564 85.7 globlastp
2604 LYM611 b_oleracea|gb161|DY023459_T1 6514 564 85.66 glotblastn
2605 LYM611 vinca|11v1|SRR098690X123290_P1 6515 564 85.5 globlastp
2606 LYM611 rye|12v1|BE704833_P1 6516 564 85.4 globlastp
2607 LYM611 aquilegia|10v2|DR926350 6517 564 85.23 glotblastn
2608 LYM611 abies|11v2|SRR098676X124250_T1 6518 564 85.13 glotblastn
2609 LYM611 ambrosia|11v1|SRR346935.126014_P1 6519 564 84.9 globlastp
2610 LYM611 pseudotsuga|10v1|SRR065119S0004989 6520 564 84.9 globlastp
2611 LYM611 strawberry|11v1|CO817045 6521 564 84.9 globlastp
2612 LYM611 maritime_pine|10v1|BX250540_P1 6522 564 84.8 globlastp
2613 LYM611 pine|10v2|AW056700_P1 6523 564 84.6 globlastp
2614 LYM611 gossypium_raimondii|12v1|AI727905_T1 6524 564 84.47 glotblastn
2615 LYM611 silene|11v1|SRR096785X110757_P1 6525 564 84.1 globlastp
2616 LYM611 zostera|10v1|SRR057351S0000590 6526 564 84.1 globlastp
2617 LYM611 sunflower|12v1|DY911131_P1 6527 564 83.7 globlastp
2618 LYM611 zostera|10v1|AM767310 6528 564 83.57 glotblastn
2619 LYM611 arabidopsis_lyrata|09v1|JGIAL008982_T1 6529 564 83.15 glotblastn
2620 LYM611 phyla|11v2|SRR099035X100113_P1 6530 564 82.3 globlastp
2621 LYM611 podocarpus|10v1|SRR065014S0030106_P1 6531 564 82.1 globlastp
2622 LYM611 sciadopitys|10v1|SRR065035S0022639 6532 564 81.9 globlastp
2623 LYM611 euonymus|11v1|SRR070038X118006_T1 6533 564 81.54 glotblastn
2624 LYM611 cynara|gb167|GE577561_T1 6534 564 81.36 glotblastn
2625 LYM611 flaveria|11v1|SRR149229.376402XX1_T1 6535 564 81.18 glotblastn
2626 LYM611 pigeonpea|11v1|SRR054580X165407_P1 6536 564 80.9 globlastp
2627 LYM611 distylium|11v1|SRR065077X111648_P1 6537 564 80.5 globlastp
2628 LYM612 sorghum|09v1|SB04G037820 6538 565 89.4 globlastp
2629 LYM612 sorghum|12v1|SB04G037820_P1 6538 565 89.4 globlastp
2630 LYM612 sugarcane|10v1|CA137382 6539 565 86.4 globlastp
2631 LYM612 wheat|10v2|BE403878 6540 565 82.8 globlastp
2632 LYM612 pseudoroegneria|gb167|FF356910 6541 565 82.7 globlastp
2633 LYM612 foxtail_millet|11v3|PHY7SI020460M_T1 6542 565 82.35 glotblastn
2634 LYM612 switchgrass|gb167|FL732578 6543 565 82.09 glotblastn
2635 LYM612 rye|12v1|DRR001012.156852_T1 6544 565 81.02 glotblastn
2636 LYM612 rye|12v1|DRR001012.455264_P1 6545 565 80.2 globlastp
2637 LYM612 rice|11v1|OSU16257_P1 6546 565 80 globlastp
2638 LYM612 rice|gb170|OS02G57760 6546 565 80 globlastp
2639 LYM613 rice|11v1|AA753385_P1 6547 566 88.7 globlastp
2640 LYM613 rice|gb170|OS01G14950 6547 566 88.7 globlastp
2641 LYM613 sunflower|12v1|CD854960_P1 6548 566 83.7 globlastp
2642 LYM613 nicotiana_benthamiana|gb162|CN748020_P1 6549 566 83.2 globlastp
2643 LYM613 cotton|10v2|CO071731 6550 566 82.5 globlastp
2644 LYM613 euonymus|11v1|SRR070038X108680_P1 6551 566 82.3 globlastp
2645 LYM613 cotton|11v1|EV483104_P1 6552 566 82.1 globlastp
2646 LYM613 cotton|10v2|SRR032367S0114652 6553 566 82.1 globlastp
2647 LYM613 gossypium_raimondii|12v1|DV849345_P1 6554 566 82 globlastp
2648 LYM613 cotton|11v1|DW480993_P1 6554 566 82 globlastp
2649 LYM613 ambrosia|11v1|SRR346943.236458_T1 6555 566 81.92 glotblastn
2650 LYM613 ambrosia|11v1|SRR346935.121691_T1 6556 566 81.77 glotblastn
2651 LYM613 sunflower|12v1|DY941579_T1 6557 566 81.54 glotblastn
2652 LYM613 triphysaria|10v1|EX999372 6558 566 80 globlastp
2653 LYM614 sorghum|09v1|SB03G044840 6559 567 90.7 globlastp
2654 LYM614 sorghum|12v1|SB03G044840_P1 6559 567 90.7 globlastp
2655 LYM614 foxtail_millet|11v3|PHY7SI002254M_P1 6560 567 84.4 globlastp
2656 LYM614 switchgrass|gb167|FE601061 6561 567 83.3 globlastp
2657 LYM615 sorghum|09v1|SB01G041310 6562 568 97 globlastp
2658 LYM615 sorghum|12v1|SB01G041310_P1 6562 568 97 globlastp
2659 LYM615 sugarcane|10v1|CA082257 6563 568 93.9 globlastp
2660 LYM615 foxtail_millet|11v3|PHY7SI034968M_P1 6564 568 93.8 globlastp
2661 LYM615 foxtail_millet|10v2|SICRP005786 6565 568 92.69 glotblastn
2662 LYM615 switchgrass|gb167|FE650016 6566 568 92.4 globlastp
2663 LYM615 rice|11v1|BE229586_P1 6567 568 86.5 globlastp
2664 LYM615 rice|gb170|OS03G14010 6567 568 86.5 globlastp
2665 LYM615 brachypodium|09v1|DV482321 6568 568 85.3 globlastp
2666 LYM615 brachypodium|12v1|BRADI1G68310_P1 6568 568 85.3 globlastp
2667 LYM615 rye|12v1|DRR001012.124283_P1 6569 568 84.3 globlastp
2668 LYM615 barley|10v2|AV834621_T1 6570 568 83.42 glotblastn
2669 LYM615 wheat|10v2|CA656584 6571 568 82.4 globlastp
2670 LYM616 sorghum|09v1|SB03G030390 6572 569 94.4 globlastp
2671 LYM616 sorghum|12v1|SB03G030390_P1 6572 569 94.4 globlastp
2672 LYM616 foxtail_millet|11v3|PHY7SI000874M_P1 6573 569 89.8 globlastp
2673 LYM616 rice|11v1|CB214022_P1 6574 569 82.4 globlastp
2674 LYM616 rice|gb170|OS01G47460 6574 569 82.4 globlastp
2675 LYM616 brachypodium|09v1|DV486637 6575 569 80.1 globlastp
2676 LYM616 brachypodium|12v1|BRADI2G45840_P1 6575 569 80.1 globlastp
2677 LYM617 maize|10v1|AW171786_P1 6576 570 93.1 globlastp
2678 LYM617 sorghum|09v1|SB08G015570 6577 570 90.3 globlastp
2679 LYM617 sorghum|12v1|SB08G015570_P1 6577 570 90.3 globlastp
2680 LYM617 sugarcane|10v1|CA103075 6578 570 87.2 globlastp
2681 LYM617 foxtail_millet|11v3|PHY7SI022909M_P1 6579 570 86.2 globlastp
2682 LYM618 maize|10v1|AI438430_P1 6580 571 98.4 globlastp
2683 LYM618 cynodon|10v1|ES294929_P1 6581 571 98 globlastp
2684 LYM618 sugarcane|10v1|AA842746 6582 571 98 globlastp
2685 LYM618 sugarcane|10v1|BQ536636 6583 571 98 globlastp
2686 LYM618 sorghum|09v1|SB02G040990 6584 571 97.6 globlastp
2687 LYM618 sorghum|12v1|SB02G040990_P1 6584 571 97.6 globlastp
2688 LYM618 cenchrus|gb166|EB658585_P1 6585 571 97.2 globlastp
2689 LYM618 maize|10v1|AI943816_P1 6586 571 97.2 globlastp
2690 LYM618 millet|10v1|EVO454PM004421_P1 6587 571 97.2 globlastp
2691 LYM618 switchgrass|gb167|DN143286 6588 571 97.2 globlastp
2692 LYM618 foxtail_millet|11v3|PHY7SI002675M_P1 6589 571 96.8 globlastp
2693 LYM618 foxtail_millet|10v2|SICRP018121 6589 571 96.8 globlastp
2694 LYM618 rice|11v1|BM420295_P1 6590 571 96.8 globlastp
2695 LYM618 rice|gb170|OS01G59600 6590 571 96.8 globlastp
2696 LYM618 sorghum|09v1|SB03G037640 6591 571 96.8 globlastp
2697 LYM618 sorghum|12v1|SB03G037640_P1 6591 571 96.8 globlastp
2698 LYM618 switchgrass|gb167|FE604411 6592 571 96.8 globlastp
2699 LYM618 sugarcane|10v1|CA072118 6593 571 96.4 globlastp
2700 LYM618 brachypodium|09v1|GT761626 6594 571 93.6 globlastp
2701 LYM618 brachypodium|12v1|BRADI2G21510_P1 6594 571 93.6 globlastp
2702 LYM618 rice|11v1|AA750193_P1 6595 571 93.2 globlastp
2703 LYM618 rice|gb170|OS05G41180 6595 571 93.2 globlastp
2704 LYM618 rye|12v1|DRR001012.178515_P1 6596 571 92.8 globlastp
2705 LYM618 rye|12v1|DRR001012.303733_P1 6596 571 92.8 globlastp
2706 LYM618 wheat|10v2|BE404474 6596 571 92.8 globlastp
2707 LYM618 oat|11v1|GO583329_P1 6597 571 92.4 globlastp
2708 LYM618 rye|12v1|BE586303_P1 6598 571 92.4 globlastp
2709 LYM618 rye|12v1|DRR001012.197950_P1 6598 571 92.4 globlastp
2710 LYM618 barley|10v2|BF623820_P1 6598 571 92.4 globlastp
2711 LYM618 oat|10v2|GO583329 6599 571 92.4 globlastp
2712 LYM618 oat|10v2|GO592015 6597 571 92.4 globlastp
2713 LYM618 oat|11v1|GO592141_P1 6597 571 92.4 globlastp
2714 LYM618 wheat|10v2|BE399052 6598 571 92.4 globlastp
2715 LYM618 platanus|11v1|SRR096786X124431_P1 6600 571 90.4 globlastp
2716 LYM618 tripterygium|11v1|SRR098677X100363_P1 6601 571 90 globlastp
2717 LYM618 solanum_phureja|09v1|SPHAI488953 6602 571 90 globlastp
2718 LYM618 euonymus|11v1|SRR070038X215578_P1 6603 571 89.6 globlastp
2719 LYM618 platanus|11v1|SRR096786X131437_P1 6604 571 89.6 globlastp
2720 LYM618 pineapple|10v1|CO731274_P1 6605 571 89.6 globlastp
2721 LYM618 potato|10v1|BG594265_P1 6606 571 89.6 globlastp
2722 LYM618 tomato|09v1|AI488953 6606 571 89.6 globlastp
2723 LYM618 tomato|11v1|AI488953_P1 6606 571 89.6 globlastp
2724 LYM618 walnuts|gb166|CV196428 6607 571 89.6 globlastp
2725 LYM618 oil_palm|11v1|EL691488_P1 6608 571 89.2 globlastp
2726 LYM618 phalaenopsis|11v1|CK857600_P1 6609 571 89.2 globlastp
2727 LYM618 phalaenopsis|11v1|CK858273_P1 6609 571 89.2 globlastp
2728 LYM618 citrus|gb166|CB304559 6610 571 89.2 globlastp
2729 LYM618 clementine|11v1|CB304559_P1 6610 571 89.2 globlastp
2730 LYM618 eggplant|10v1|FS001536_P1 6611 571 89.2 globlastp
2731 LYM618 oil_palm|gb166|EL691488 6608 571 89.2 globlastp
2732 LYM618 orange|11v1|CB304559_P1 6610 571 89.2 globlastp
2733 LYM618 potato|10v1|BQ117432_P1 6612 571 89.2 globlastp
2734 LYM618 solanum_phureja|09v1|SPHBG126931 6612 571 89.2 globlastp
2735 LYM618 tobacco|gb162|CV016306 6613 571 89.2 globlastp
2736 LYM618 flax|11v1|GW865887_P1 6614 571 88.8 globlastp
2737 LYM618 oil_palm|11v1|SRR190698.146841_P1 6615 571 88.8 globlastp
2738 LYM618 olea|11v1|SRR014463.10628_P1 6616 571 88.8 globlastp
2739 LYM618 watermelon|11v1|DV634469_P1 6617 571 88.8 globlastp
2740 LYM618 cucumber|09v1|CK085605_P1 6618 571 88.8 globlastp
2741 LYM618 ipomoea_nil|10v1|CJ747523_P1 6619 571 88.8 globlastp
2742 LYM618 melon|10v1|DV631752_P1 6620 571 88.8 globlastp
2743 LYM618 sunflower|10v1|CD852210 6621 571 88.8 globlastp
2744 LYM618 sunflower|12v1|CD852210_P1 6621 571 88.8 globlastp
2745 LYM618 ambrosia|11v1|SRR346935.264705_P1 6622 571 88.4 globlastp
2746 LYM618 aquilegia|10v1|DT745261_P1 6623 571 88.4 globlastp
2747 LYM618 cucurbita|11v1|FG227439_P1 6624 571 88.4 globlastp
2748 LYM618 euonymus|11v1|SRR070038X120289_P1 6625 571 88.4 globlastp
2749 LYM618 chestnut|gb170|SRR006295S0019528_P1 6626 571 88.4 globlastp
2750 LYM618 gerbera|09v1|AJ758761_P1 6627 571 88.4 globlastp
2751 LYM618 peanut|10v1|ES490885_P1 6628 571 88.4 globlastp
2752 LYM618 peanut|10v1|ES722433_P1 6628 571 88.4 globlastp
2753 LYM618 pepper|gb171|BM063024_P1 6629 571 88.4 globlastp
2754 LYM618 tomato|09v1|BG126931 6630 571 88.4 globlastp
2755 LYM618 tomato|11v1|BG126931_P1 6630 571 88.4 globlastp
2756 LYM618 tragopogon|10v1|SRR020205S0020529 6631 571 88.4 globlastp
2757 LYM618 zostera|10v1|SRR057351S0008909 6632 571 88.4 globlastp
2758 LYM618 chelidonium|11v1|SRR084752X117011_T1 6633 571 88.35 glotblastn
2759 LYM618 amborella|12v2|SRR038634.8195_P1 6634 571 88 globlastp
2760 LYM618 amorphophallus|11v2|SRR089351X325197_P1 6635 571 88 globlastp
2761 LYM618 cucurbita|11v1|SRR091276X113571_P1 6636 571 88 globlastp
2762 LYM618 phyla|11v2|SRR099037X118182_P1 6637 571 88 globlastp
2763 LYM618 aquilegia|10v2|DT745261 6638 571 88 globlastp
2764 LYM618 cichorium|gb171|DT214124_P1 6639 571 88 globlastp
2765 LYM618 pepper|gb171|BM065004_P1 6640 571 88 globlastp
2766 LYM618 safflower|gb162|EL378335 6641 571 88 globlastp
2767 LYM618 sunflower|10v1|DY913072 6642 571 88 globlastp
2768 LYM618 aristolochia|10v1|SRR039085S0175270_T1 6643 571 87.95 glotblastn
2769 LYM618 amsonia|11v1|SRR098688X109897_P1 6644 571 87.6 globlastp
2770 LYM618 apple|11v1|CN883649_P1 6645 571 87.6 globlastp
2771 LYM618 arnica|11v1|SRR099034X105811_P1 6646 571 87.6 globlastp
2772 LYM618 arnica|11v1|SRR099034X112592XX2_P1 6647 571 87.6 globlastp
2773 LYM618 catharanthus|11v1|EG557339_P1 6648 571 87.6 globlastp
2774 LYM618 eschscholzia|11v1|SRR014116.104619_P1 6649 571 87.6 globlastp
2775 LYM618 eschscholzia|11v1|SRR014116.127866_P1 6650 571 87.6 globlastp
2776 LYM618 sunflower|12v1|DY913072_P1 6651 571 87.6 globlastp
2777 LYM618 apple|gb171|CN493150 6645 571 87.6 globlastp
2778 LYM618 basilicum|10v1|DY336625_P1 6652 571 87.6 globlastp
2779 LYM618 cassava|09v1|FF380265_P1 6653 571 87.6 globlastp
2780 LYM618 centaurea|gb166|EH711172_P1 6654 571 87.6 globlastp
2781 LYM618 centaurea|gb166|EH714679_P1 6655 571 87.6 globlastp
2782 LYM618 coffea|10v1|DQ124065_P1 6656 571 87.6 globlastp
2783 LYM618 dandelion|10v1|DR400215_P1 6657 571 87.6 globlastp
2784 LYM618 grape|11v1|GSVIVT01025839001_P1 6658 571 87.6 globlastp
2785 LYM618 grape|gb160|BQ792102 6658 571 87.6 globlastp
2786 LYM618 lettuce|10v1|DW044895_P1 6659 571 87.6 globlastp
2787 LYM618 liriodendron|gb166|CK759778_P1 6660 571 87.6 globlastp
2788 LYM618 oak|10v1|DB996700_P1 6661 571 87.6 globlastp
2789 LYM618 petunia|gb171|CV300555_P1 6662 571 87.6 globlastp
2790 LYM618 prunus|10v1|CB823004 6663 571 87.6 globlastp
2791 LYM618 soybean|11v1|GLYMA05G14330 6664 571 87.6 globlastp
2792 LYM618 strawberry|11v1|CO378625 6665 571 87.6 globlastp
2793 LYM618 tobacco|gb162|EB424607 6666 571 87.6 globlastp
2794 LYM618 ambrosia|11v1|SRR346935.124143_T1 6667 571 87.55 glotblastn
2795 LYM618 beech|11v1|SRR006293.15566_T1 6668 571 87.55 glotblastn
2796 LYM618 cirsium|11v1|SRR346952.1000620_T1 6669 571 87.15 glotblastn
2797 LYM618 apple|11v1|CN490111_P1 6670 571 87.1 globlastp
2798 LYM618 rose|12v1|BQ104516_P1 6671 571 87.1 globlastp
2799 LYM618 sunflower|12v1|CF086123_P1 6672 571 87.1 globlastp
2800 LYM618 tabernaemontana|11v1|SRR098689X112460_P1 6673 571 87.1 globlastp
2801 LYM618 tabernaemontana|11v1|SRR098689X112536_P1 6674 571 87.1 globlastp
2802 LYM618 vinca|11v1|SRR098690X120702_P1 6675 571 87.1 globlastp
2803 LYM618 apple|gb171|CN490111 6670 571 87.1 globlastp
2804 LYM618 cleome_spinosa|10v1|GR933889_P1 6676 571 87.1 globlastp
2805 LYM618 monkeyflower|10v1|DV207163_P1 6677 571 87.1 globlastp
2806 LYM618 nicotiana_benthamiana|gb162|CN743481_P1 6678 571 87.1 globlastp
2807 LYM618 pigeonpea|10v1|SRR054580S0009847 6679 571 87.1 globlastp
2808 LYM618 pigeonpea|11v1|SRR054580X101219_P1 6679 571 87.1 globlastp
2809 LYM618 senecio|gb170|CO553167 6680 571 87.1 globlastp
2810 LYM618 soybean|11v1|GLYMA19G17920 6681 571 87.1 globlastp
2811 LYM618 tobacco|gb162|DV157641 6682 571 87.1 globlastp
2812 LYM618 walnuts|gb166|CV197554 6683 571 87.1 globlastp
2813 LYM618 cannabis|12v1|JK493807_P1 6684 571 86.7 globlastp
2814 LYM618 cotton|11v1|BF272183XX1_P1 6685 571 86.7 globlastp
2815 LYM618 fagopyrum|11v1|SRR063689X100335_P1 6686 571 86.7 globlastp
2816 LYM618 flaveria|11v1|SRR149229.121715_P1 6687 571 86.7 globlastp
2817 LYM618 flaveria|11v1|SRR149229.18262_P1 6687 571 86.7 globlastp
2818 LYM618 flaveria|11v1|SRR149232.226868_P1 6688 571 86.7 globlastp
2819 LYM618 gossypium_raimondii|12v1|BF272183_P1 6685 571 86.7 globlastp
2820 LYM618 sarracenia|11v1|SRR192669.102682_P1 6689 571 86.7 globlastp
2821 LYM618 antirrhinum|gb166|AJ559235_P1 6690 571 86.7 globlastp
2822 LYM618 bean|12v1|CA905802_P1 6691 571 86.7 globlastp
2823 LYM618 bean|gb167|CA905802 6691 571 86.7 globlastp
2824 LYM618 cacao|10v1|CU577695_P1 6692 571 86.7 globlastp
2825 LYM618 clover|gb162|BB903744_P1 6693 571 86.7 globlastp
2826 LYM618 cowpea|gb166|FC458472_P1 6694 571 86.7 globlastp
2827 LYM618 kiwi|gb166|FG405965_P1 6695 571 86.7 globlastp
2828 LYM618 monkeyflower|10v1|CV521520_P1 6696 571 86.7 globlastp
2829 LYM618 poplar|10v1|AI163521_P1 6697 571 86.7 globlastp
2830 LYM618 zostera|10v1|AM768788 6698 571 86.7 globlastp
2831 LYM618 beet|12v1|BE590418_P1 6699 571 86.3 globlastp
2832 LYM618 fagopyrum|11v1|SRR063689X103805_P1 6700 571 86.3 globlastp
2833 LYM618 fagopyrum|11v1|SRR063689X141652_P1 6700 571 86.3 globlastp
2834 LYM618 silene|11v1|GH293083_P1 6701 571 86.3 globlastp
2835 LYM618 vinca|11v1|SRR098690X103571_P1 6702 571 86.3 globlastp
2836 LYM618 cacao|10v1|CU485045_P1 6703 571 86.3 globlastp
2837 LYM618 cotton|10v2|SRR032367S0071053 6704 571 86.3 globlastp
2838 LYM618 ginseng|10v1|CN846008_P1 6705 571 86.3 globlastp
2839 LYM618 lotus|09v1|BI419229_P1 6706 571 86.3 globlastp
2840 LYM618 nasturtium|10v1|SRR032558S0004295 6707 571 86.3 globlastp
2841 LYM618 nasturtium|11v1|SRR032558.115231_P1 6707 571 86.3 globlastp
2842 LYM618 orobanche|10v1|SRR023189S0003207_P1 6708 571 86.3 globlastp
2843 LYM618 taxus|10v1|SRR032523S0026069 6709 571 86.3 globlastp
2844 LYM618 flaveria|11v1|SRR149229.10776_T1 6710 571 85.94 glotblastn
2845 LYM618 cephalotaxus|11v1|SRR064395X102481_P1 6711 571 85.9 globlastp
2846 LYM618 chickpea|11v1|GR407793_P1 6712 571 85.9 globlastp
2847 LYM618 eucalyptus|11v2|CB967808_P1 6713 571 85.9 globlastp
2848 LYM618 euphorbia|11v1|BP961149_P1 6714 571 85.9 globlastp
2849 LYM618 gossypium_raimondii|12v1|AI729204_P1 6715 571 85.9 globlastp
2850 LYM618 phyla|11v2|SRR099035X135361_P1 6716 571 85.9 globlastp
2851 LYM618 plantago|11v2|SRR066373X101438_P1 6717 571 85.9 globlastp
2852 LYM618 poppy|11v1|FE964927_P1 6718 571 85.9 globlastp
2853 LYM618 poppy|11v1|SRR030259.197569_P1 6718 571 85.9 globlastp
2854 LYM618 trigonella|11v1|SRR066194X106460_P1 6719 571 85.9 globlastp
2855 LYM618 cotton|10v2|BF278408 6715 571 85.9 globlastp
2856 LYM618 cotton|11v1|AI729204_P1 6715 571 85.9 globlastp
2857 LYM618 eucalyptus|11v1|CB967808 6713 571 85.9 globlastp
2858 LYM618 medicago|09v1|LLAW685471 6720 571 85.9 globlastp
2859 LYM618 medicago|12v1|AW685471_P1 6720 571 85.9 globlastp
2860 LYM618 nasturtium|10v1|GH162890 6721 571 85.9 globlastp
2861 LYM618 nasturtium|11v1|GH162890_P1 6721 571 85.9 globlastp
2862 LYM618 sciadopitys|10v1|SRR065035S0020951 6722 571 85.9 globlastp
2863 LYM618 tamarix|gb166|EG970613 6723 571 85.9 globlastp
2864 LYM618 cedrus|11v1|SRR065007X105181_P1 6724 571 85.5 globlastp
2865 LYM618 euphorbia|11v1|DV123915_P1 6725 571 85.5 globlastp
2866 LYM618 gossypium_raimondii|12v1|AI728999_P1 6726 571 85.5 globlastp
2867 LYM618 cotton|10v2|BQ404009 6726 571 85.5 globlastp
2868 LYM618 cotton|11v1|AI728999_P1 6726 571 85.5 globlastp
2869 LYM618 podocarpus|10v1|SRR065014S0002788_P1 6727 571 85.5 globlastp
2870 LYM618 poplar|10v1|AI161591_P1 6728 571 85.5 globlastp
2871 LYM618 spurge|gb161|DV123915 6725 571 85.5 globlastp
2872 LYM618 abies|11v2|SRR098676X108000_P1 6729 571 85.1 globlastp
2873 LYM618 canola|11v1|SRR329661.178392_P1 6730 571 85.1 globlastp
2874 LYM618 distylium|11v1|SRR065077X10715_P1 6731 571 85.1 globlastp
2875 LYM618 euphorbia|11v1|SRR098678X105123_P1 6732 571 85.1 globlastp
2876 LYM618 thellungiella_parvulum|11v1|EPCRP000355_P1 6733 571 85.1 globlastp
2877 LYM618 valeriana|11v1|SRR099039X102057_P1 6734 571 85.1 globlastp
2878 LYM618 sequoia|10v1|SRR065044S0008978 6735 571 85.1 globlastp
2879 LYM618 spruce|11v1|ES860369_P1 6736 571 85.1 globlastp
2880 LYM618 spruce|gb162|CO232377 6736 571 85.1 globlastp
2881 LYM618 triphysaria|10v1|EY020960 6737 571 85.1 globlastp
2882 LYM618 ambrosia|11v1|SRR346935.193248_P1 6738 571 85 globlastp
2883 LYM618 cephalotaxus|11v1|SRR064395X117699_P1 6739 571 84.7 globlastp
2884 LYM618 arabidopsis_lyrata|09v1|JGIAL013640_P1 6740 571 84.7 globlastp
2885 LYM618 maize|10v1|AI901972_P1 6741 571 84.7 globlastp
2886 LYM618 pine|10v2|AA739655_P1 6742 571 84.7 globlastp
2887 LYM618 pseudotsuga|10v1|SRR065119S0002247 6743 571 84.7 globlastp
2888 LYM618 pteridium|11v1|SRR043594X105305_P1 6744 571 84.4 globlastp
2889 LYM618 maritime_pine|10v1|BX253443XX1_T1 6745 571 84.34 glotblastn
2890 LYM618 canola|11v1|DY030602_P1 6746 571 84.3 globlastp
2891 LYM618 thellungiella_halophilum|11v1|DN779086_P1 6746 571 84.3 globlastp
2892 LYM618 arabidopsis|10v1|AT2G27020_P1 6747 571 84.3 globlastp
2893 LYM618 b_rapa|11v1|CD813166_P1 6746 571 84.3 globlastp
2894 LYM618 b_rapa|gb162|DN960579 6746 571 84.3 globlastp
2895 LYM618 b_rapa|11v1|CD838453_P1 6748 571 84.3 globlastp
2896 LYM618 b_rapa|gb162|DY010259 6746 571 84.3 globlastp
2897 LYM618 canola|10v1|CD813166 6746 571 84.3 globlastp
2898 LYM618 canola|10v1|CD838453 6746 571 84.3 globlastp
2899 LYM618 pseudoroegneria|gb167|FF351474 6749 571 84.3 globlastp
2900 LYM618 radish|gb164|EV527775 6746 571 84.3 globlastp
2901 LYM618 radish|gb164|EV530225 6746 571 84.3 globlastp
2902 LYM618 radish|gb164|EV537779 6746 571 84.3 globlastp
2903 LYM618 thellungiella|gb167|DN779086 6746 571 84.3 globlastp
2904 LYM618 canola|11v1|CN737103_P1 6746 571 84.3 globlastp
2905 LYM618 lovegrass|gb167|EH184070_T1 6750 571 83.94 glotblastn
2906 LYM618 thellungiella_parvulum|11v1|DN779086_P1 6751 571 83.9 globlastp
2907 LYM618 canola|10v1|CX281705 6752 571 83.9 globlastp
2908 LYM618 radish|gb164|EV525491 6751 571 83.9 globlastp
2909 LYM618 catharanthus|gb166|EG557339 6753 571 83.6 globlastp
2910 LYM618 canola|10v1|CD818595 6754 571 83.5 globlastp
2911 LYM618 canola|11v1|EE439992_P1 6754 571 83.5 globlastp
2912 LYM618 radish|gb164|EX888489 6755 571 83.13 glotblastn
2913 LYM618 momordica|10v1|SRR071315S0001940_P1 6756 571 83.1 globlastp
2914 LYM618 triphysaria|10v1|EY138636 6757 571 82.8 globlastp
2915 LYM618 canola|11v1|DY004370XX1_T1 6758 571 82.73 glotblastn
2916 LYM618 ambrosia|11v1|SRR346935.195528_P1 6759 571 81.9 globlastp
2917 LYM618 acacia|10v1|FS583849_P1 6760 571 81.9 globlastp
2918 LYM618 onion|gb162|CF440672_P1 6761 571 81.9 globlastp
2919 LYM618 cynara|gb167|GE592900_P1 6762 571 81.7 globlastp
2920 LYM618 fraxinus|11v1|SRR058827.100577_P1 6763 571 81.5 globlastp
2921 LYM618 marchantia|gb166|C95781_P1 6764 571 81.2 globlastp
2922 LYM618 antirrhinum|gb166|AJ568496_T1 6765 571 81.12 glotblastn
2923 LYM618 banana|10v1|BBS3018T3_P1 6766 571 80.8 globlastp
2924 LYM618 utricularia|11v1|SRR094438.101641_T1 6767 571 80.32 glotblastn
2925 LYM619 sorghum|09v1|SB03G046760 6768 572 84.7 globlastp
2926 LYM619 sorghum|12v1|SB03G046760_P1 6768 572 84.7 globlastp
2927 LYM620 maize|10v1|EY954874_P1 6769 573 87.4 globlastp
2928 LYM620 sorghum|09v1|SB07G024120 6770 573 86.8 globlastp
2929 LYM620 sorghum|12v1|SB07G024120_P1 6770 573 86.8 globlastp
2930 LYM620 wheat|10v2|CA485488 6770 573 86.8 globlastp
2931 LYM620 millet|10v1|CD725000_P1 6771 573 86.2 globlastp
2932 LYM620 sugarcane|10v1|CA071057 6772 573 85.1 globlastp
2933 LYM620 switchgrass|gb167|FE653731 6773 573 83.1 globlastp
2934 LYM620 lovegrass|gb167|DN481354_P1 6774 573 82 globlastp
2935 LYM620 cynodon|10v1|ES293660_P1 6775 573 81.8 globlastp
2936 LYM621 sugarcane|10v1|BQ537527 6776 574 90.8 globlastp
2937 LYM621 sorghum|09v1|SB03G027650 6777 574 90.6 globlastp
2938 LYM621 sorghum|12v1|SB03G027650_P1 6777 574 90.6 globlastp
2939 LYM621 switchgrass|gb167|FE626940 6778 574 89.8 globlastp
2940 LYM621 switchgrass|gb167|FL750423 6779 574 89.8 globlastp
2941 LYM621 foxtail_millet|11v3|PHY7SI001055M_P1 6780 574 89.5 globlastp
2942 LYM621 foxtail_millet|10v2|SICRP006619 6780 574 89.5 globlastp
2943 LYM621 rice|gb170|OS01G42520 6781 574 85.6 globlastp
2944 LYM621 foxtail_millet|11v3|SICRP068714_P1 6782 574 84.3 globlastp
2945 LYM621 sorghum|12v1|SB12V1CRP050477_P1 6783 574 84.3 globlastp
2946 LYM621 rice|11v1|CF956339_P1 6784 574 82.2 globlastp
2947 LYM621 leymus|gb166|EG375712_P1 6785 574 82.2 globlastp
2948 LYM621 wheat|10v2|BE496946 6786 574 82.2 globlastp
2949 LYM621 leymus|gb166|EG378713_P1 6787 574 81.9 globlastp
2950 LYM621 wheat|10v2|BF293727 6788 574 81.9 globlastp
2951 LYM621 leymus|gb166|EG377756_P1 6789 574 81.6 globlastp
2952 LYM621 rye|12v1|BF145856_P1 6790 574 81.4 globlastp
2953 LYM621 rye|12v1|DRR001012.101816_P1 6790 574 81.4 globlastp
2954 LYM621 rye|12v1|DRR001012.106046_P1 6791 574 81.4 globlastp
2955 LYM621 rye|12v1|DRR001012.104176_P1 6792 574 81.2 globlastp
2956 LYM621 rye|12v1|DRR001012.109716_P1 6793 574 81.1 globlastp
2957 LYM621 brachypodium|09v1|DV474047 6794 574 81.1 globlastp
2958 LYM621 brachypodium|12v1|BRADI2G43230_P1 6794 574 81.1 globlastp
2959 LYM621 rye|12v1|DRR001012.116443_P1 6795 574 80.9 globlastp
2960 LYM621 rye|12v1|DRR001012.107834_P1 6796 574 80.8 globlastp
2961 LYM621 rye|12v1|DRR001013.132894_T1 6797 574 80.63 glotblastn
2962 LYM621 barley|10v2|BE412553_P1 6798 574 80.6 globlastp
2963 LYM622 sorghum|09v1|SB02G003270 6799 575 91.1 globlastp
2964 LYM622 sorghum|12v1|SB02G003270_P1 6799 575 91.1 globlastp
2965 LYM622 foxtail_millet|11v3|PHY7SI029481M_T1 6800 575 89.51 glotblastn
2966 LYM622 switchgrass|gb167|FE620397 6801 575 85.8 globlastp
2967 LYM622 brachypodium|09v1|GT794739 6802 575 85.4 globlastp
2968 LYM622 brachypodium|12v1|BRADI1G57360_P1 6802 575 85.4 globlastp
2969 LYM622 wheat|10v2|BE430489 6803 575 85.1 globlastp
2970 LYM622 rye|12v1|DRR001012.11553_P1 6804 575 84.8 globlastp
2971 LYM622 rice|11v1|BI805150_P1 6805 575 84 globlastp
2972 LYM622 rice|gb170|OS07G06080 6805 575 84 globlastp
2973 LYM622 barley|10v2|BF626156_P1 6806 575 83.9 globlastp
2974 LYM622 leymus|gb166|EG402765_T1 6807 575 80.83 glotblastn
2975 LYM623 foxtail_millet|11v3|PHY7SI029615M_T1 6808 576 87.4 glotblastn
2976 LYM623 sorghum|09v1|SB02G036640 6809 576 84.6 globlastp
2977 LYM623 sorghum|12v1|SB02G036640_P1 6809 576 84.6 globlastp
2978 LYM623 rice|11v1|CI533235_T1 6810 576 82.18 glotblastn
2979 LYM623 rice|gb170|OS07G37960 6810 576 82.18 glotblastn
2980 LYM623 brachypodium|09v1|SRR031797S0060563 6811 576 80.59 glotblastn
2981 LYM623 brachypodium|12v1|BRADI1G24360_T1 6811 576 80.59 glotblastn
2982 LYM624 sorghum|09v1|SB01G009950 6812 577 92.2 globlastp
2983 LYM624 sorghum|12v1|SB01G009950_P1 6812 577 92.2 globlastp
2984 LYM624 millet|10v1|PMSLX0002798D1_P1 6813 577 89.7 globlastp
2985 LYM624 foxtail_millet|11v3|PHY7SI036077M_P1 6814 577 89.4 globlastp
2986 LYM624 maize|10v1|T12728_P1 6815 577 89.2 globlastp
2987 LYM624 switchgrass|gb167|DN147363 6816 577 88.6 globlastp
2988 LYM624 rice|11v1|AA752952_P1 6817 577 83.1 globlastp
2989 LYM624 rice|gb170|OS03G51010 6817 577 83.1 globlastp
2990 LYM625 sorghum|09v1|SB08G019430 6818 578 83 globlastp
2991 LYM625 sorghum|12v1|SB08G019430_P1 6818 578 83 globlastp
2992 LYM628 sugarcane|10v1|CA075372 6819 580 83.1 globlastp
2993 LYM630 sorghum|09v1|SB02G006130 6820 581 96.6 globlastp
2994 LYM630 sorghum|12v1|SB02G006130_P1 6820 581 96.6 globlastp
2995 LYM630 sugarcane|10v1|CA073637 6821 581 96.2 globlastp
2996 LYM630 switchgrass|gb167|DN145768 6822 581 95 globlastp
2997 LYM630 foxtail_millet|11v3|PHY7SI029978M_P1 6823 581 94 globlastp
2998 LYM630 foxtail_millet|10v2|SICRP009824 6823 581 94 globlastp
2999 LYM630 millet|10v1|EVO454PM054544_P1 6824 581 94 globlastp
3000 LYM630 brachypodium|09v1|DV487106 6825 581 88.5 globlastp
3001 LYM630 brachypodium|12v1|BRADI1G54360_P1 6825 581 88.5 globlastp
3002 LYM630 rice|11v1|AU064337_P1 6826 581 87.9 globlastp
3003 LYM630 rice|gb170|OS07G10530 6826 581 87.9 globlastp
3004 LYM630 sugarcane|10v1|BQ535880 6827 581 85.1 globlastp
3005 LYM630 foxtail_millet|11v3|PHY7SI035911M_P1 6828 581 84.6 globlastp
3006 LYM630 sorghum|09v1|SB01G004360 6829 581 84.4 globlastp
3007 LYM630 sorghum|12v1|SB01G004360_P1 6829 581 84.4 globlastp
3008 LYM630 switchgrass|gb167|FE637298 6830 581 84.1 globlastp
3009 LYM630 rice|11v1|AU068694_P1 6831 581 83.7 globlastp
3010 LYM630 rice|gb170|OS03G59240 6831 581 83.7 globlastp
3011 LYM630 wheat|10v2|BE399278 6832 581 82.3 globlastp
3012 LYM630 brachypodium|09v1|SRR031797S0002191 6833 581 81.8 globlastp
3013 LYM630 brachypodium|12v1|BRADI1G04720_P1 6833 581 81.8 globlastp
3014 LYM630 wheat|10v2|BQ788715 6834 581 81.3 globlastp
3015 LYM630 maize|10v1|AW066813_P1 6835 581 80.7 globlastp
3016 LYM630 barley|10v2|AW982668_P1 6836 581 80.1 globlastp
3017 LYM631 sorghum|09v1|SB03G040920 6837 582 96.8 globlastp
3018 LYM631 sorghum|12v1|SB03G040920_P1 6837 582 96.8 globlastp
3019 LYM631 sugarcane|10v1|BQ533810 6837 582 96.8 globlastp
3020 LYM631 switchgrass|gb167|FE637312 6838 582 96.8 globlastp
3021 LYM631 foxtail_millet|11v3|PHY7SI003506M_P1 6839 582 95.8 globlastp
3022 LYM631 foxtail_millet|10v2|FXTRMSLX00614452D2 6839 582 95.8 globlastp
3023 LYM631 millet|10v1|EVO454PM674974_P1 6840 582 94.7 globlastp
3024 LYM631 switchgrass|gb167|FE609269 6841 582 94.7 globlastp
3025 LYM631 rice|gb170|OS01G64680 6842 582 93.8 globlastp
3026 LYM631 rice|11v1|BE530946_T1 6843 582 93.75 glotblastn
3027 LYM631 wheat|10v2|CA486181 6844 582 93.7 globlastp
3028 LYM631 brachypodium|09v1|GT784099 6845 582 91.6 globlastp
3029 LYM631 brachypodium|12v1|BRADI2G56050_P1 6845 582 91.6 globlastp
3030 LYM631 rye|12v1|DRR001012.138833_P1 6846 582 86.6 globlastp
3031 LYM631 oat|10v2|SRR020741S0119334 6847 582 86.6 globlastp
3032 LYM631 rye|12v1|DRR001012.131290_P1 6848 582 85.6 globlastp
3033 LYM631 rye|12v1|DRR001012.104073_P1 6849 582 85.4 globlastp
3034 LYM631 oat|11v1|SRR020741.119335_P1 6850 582 85.4 globlastp
3035 LYM631 rye|12v1|DRR001016.410628_P1 6851 582 85.3 globlastp
3036 LYM631 wheat|10v2|BQ841327 6852 582 83.7 globlastp
3037 LYM631 barley|10v2|BF626072_P1 6853 582 81.4 globlastp
3038 LYM632 sorghum|09v1|SB02G033900 6854 583 95 globlastp
3039 LYM632 sorghum|12v1|SB02G033900_P1 6854 583 95 globlastp
3040 LYM632 foxtail_millet|11v3|PHY7SI030364M_P1 6855 583 91.1 globlastp
3041 LYM632 rice|11v1|BE040705_P1 6856 583 87.4 globlastp
3042 LYM632 rice|gb170|OS07G31430 6856 583 87.4 globlastp
3043 LYM632 brachypodium|12v1|BRADI1G26950_P1 6857 583 82.5 globlastp
3044 LYM632 brachypodium|09v1|DV472875 6857 583 82.5 globlastp
3045 LYM635 sorghum|12v1|AW287172_T1 585 99.42 glotblastn
3045 LYM745 sorghum|12v1|AW287172_T1 733 95.63 glotblastn
3046 LYM635 brachypodium|12v1|BDPRD12V1011015_T1 585 97.12 glotblastn
3046 LYM721 brachypodium|12v1|BDPRD12V1011015_T1 664 92.57 glotblastn
3047 LYM635 brachypodium|09v1|CRPBD011704 6858 585 96.55 glotblastn
3048 LYM635 maize|10v1|AI621976_P1 6859 585 96.2 globlastp
3049 LYM635 sorghum|09v1|AW282689 6860 585 96 globlastp
3050 LYM635 maize|10v1|ZMCRP2V108755_P1 6861 585 95.8 globlastp
3051 LYM635 rice|11v1|OSCRP133177_P1 6862 585 95.4 globlastp
3052 LYM635 rice|11v1|OSCRP096191_P1 6863 585 95.2 globlastp
3053 LYM635 castorbean|11v1|SRR020784.100826_T1 585 94.24 glotblastn
3054 LYM635 poplar|10v1|GFXAF315314X1_T1 6864 585 91.76 glotblastn
3055 LYM635 castorbean|09v1|XM002519733 6865 585 91.17 glotblastn
3056 LYM635 castorbean|09v1|XM002519744 6866 585 90.4 glotblastn
3057 LYM635 lotus|09v1|GFXAP002983X34_P1 6867 585 90.2 globlastp
3058 LYM635 medicago|09v1|GFXNC003119X7 6868 585 89.6 globlastp
3059 LYM635 prunus|10v1|CN854620 6869 585 89.25 glotblastn
3060 LYM635 brachypodium|09v1|CRPBD026436 6870 585 89 globlastp
3061 LYM635 brachypodium|12v1|BDCRP12V1055702_P1 6870 585 89 globlastp
3062 LYM635 tomato|09v1|SRR027942S0156718 6871 585 87.91 glotblastn
3063 LYM635 coffea|10v1|GFXEF044213X25_P1 6872 585 86.9 globlastp
3064 LYM635 castorbean|09v1|CRPRC000955 6873 585 81.96 glotblastn
3065 LYM639 sorghum|09v1|SB05G018990 6874 588 84.1 globlastp
3066 LYM639 sorghum|12v1|SB05G018990_P1 6874 588 84.1 globlastp
3067 LYM639 sugarcane|10v1|CA118613 6875 588 81.5 globlastp
3068 LYM640 sorghum|09v1|SB07G029170 6876 589 93.7 globlastp
3069 LYM640 sorghum|12v1|SB07G029170_P1 6876 589 93.7 globlastp
3070 LYM640 foxtail_millet|11v3|EC613790_P1 6877 589 86.9 globlastp
3071 LYM640 rice|11v1|BF430574_P1 6878 589 85.8 globlastp
3072 LYM640 rice|gb170|OS08G37600 6878 589 85.8 globlastp
3073 LYM640 oat|10v2|GR324784 6879 589 85.7 globlastp
3074 LYM640 oat|11v1|GR324784_P1 6879 589 85.7 globlastp
3075 LYM640 brachypodium|09v1|DV475291 6880 589 84.9 globlastp
3076 LYM640 brachypodium|12v1|BRADI3G38580_P1 6880 589 84.9 globlastp
3077 LYM640 rye|12v1|BE587614_P1 6881 589 84.4 globlastp
3078 LYM640 wheat|10v2|BE398737 6882 589 84.2 globlastp
3079 LYM640 sorghum|09v1|SB07G029165 6883 589 80 globlastp
3080 LYM640 sorghum|12v1|SB07G029165_P1 6883 589 80 globlastp
3081 LYM643 maize|10v1|T18840_P1 6884 591 81.1 globlastp
3082 LYM643 sugarcane|10v1|CA124122 6885 591 80.6 globlastp
3083 LYM645 sorghum|09v1|SB09G025090 6886 593 91.8 globlastp
3084 LYM645 sorghum|12v1|SB09G025090_P1 6886 593 91.8 globlastp
3085 LYM645 rice|11v1|BI807977_P1 6887 593 80.4 globlastp
3086 LYM645 rice|gb170|OS05G43460 6887 593 80.4 globlastp
3087 LYM646 foxtail_millet|11v3|SOLX00022687_P1 6888 594 81.8 globlastp
3088 LYM646 maize|10v1|BI396341_P1 6889 594 81 globlastp
3089 LYM647 sorghum|12v1|SB10G026520_P1 6890 595 86.8 globlastp
3090 LYM647 foxtail_millet|10v2|SICRP016294 6891 595 84.5 globlastp
3091 LYM647 sorghum|12v1|CN139880_T1 6892 595 83.18 glotblastn
3092 LYM647 sorghum|09v1|SB10G026510 6892 595 83.18 glotblastn
3093 LYM647 switchgrass|gb167|DN147679 6893 595 81.4 globlastp
3094 LYM648 sorghum|12v1|SB05G017110_P1 6894 596 86.2 globlastp
3095 LYM648 sorghum|09v1|SB05G017110 6894 596 86.2 globlastp
3096 LYM648 foxtail_millet|11v3|PHY7SI026434M_P1 6895 596 80.1 globlastp
3097 LYM649 sugarcane|10v1|CA148427_P1 6896 597 82 globlastp
3098 LYM652 sorghum|09v1|SB06G017360 6897 599 86.7 globlastp
3099 LYM652 sorghum|12v1|SB06G017360_P1 6897 599 86.7 globlastp
3100 LYM652 maize|10v1|AI622174_P1 6898 599 83.4 globlastp
3101 LYM652 foxtail_millet|11v3|EC612877_P1 6899 599 83 globlastp
3102 LYM652 switchgrass|gb167|DN150296_T1 6900 599 82.78 glotblastn
3103 LYM652 millet|10v1|CD726751_P1 6901 599 82.3 globlastp
3104 LYM653 sugarcane|10v1|CA065443 6902 600 96.7 globlastp
3105 LYM653 foxtail_millet|11v3|PHY7SI034645M_P1 6903 600 94.2 globlastp
3106 LYM653 switchgrass|gb167|DN149945 6904 600 93.7 globlastp
3107 LYM653 foxtail_millet|10v2|SICRP027576 6905 600 93.6 globlastp
3108 LYM653 rice|gb170|OS10G36690 6906 600 87.6 globlastp
3109 LYM653 brachypodium|09v1|GT777348 6907 600 85.9 globlastp
3110 LYM653 brachypodium|12v1|BRADI3G30670_P1 6907 600 85.9 globlastp
3111 LYM653 barley|10v2|BE060545_P1 6908 600 82.4 globlastp
3112 LYM653 rye|12v1|DRR001012.172560_T1 6909 600 82.39 glotblastn
3113 LYM654 sugarcane|10v1|CA115439 6910 601 87.4 globlastp
3114 LYM654 sorghum|09v1|SB02G038200 6911 601 86.9 globlastp
3115 LYM654 sorghum|12v1|SB02G038200_P1 6911 601 86.9 globlastp
3116 LYM654 foxtail_millet|11v3|PHY7SI030978M_P1 6912 601 83.3 globlastp
3117 LYM654 switchgrass|gb167|DN145463 6913 601 81.7 globlastp
3118 LYM655 sorghum|09v1|SB01G038960 6914 602 94.5 globlastp
3119 LYM655 sorghum|12v1|SB01G038960_P1 6914 602 94.5 globlastp
3120 LYM655 foxtail_millet|11v3|PHY7SI033954M_T1 6915 602 91.54 glotblastn
3121 LYM655 foxtail_millet|11v3|SICRP058614_P1 6916 602 91.5 globlastp
3122 LYM656 sorghum|12v1|SB06G022540_P1 6917 603 88.4 globlastp
3123 LYM656 sorghum|09v1|SB06G022530 6918 603 87.88 glotblastn
3124 LYM657 sorghum|09v1|SB03G027120 6919 604 81.3 globlastp
3125 LYM657 sorghum|12v1|SB03G027120_P1 6919 604 81.3 globlastp
3126 LYM657 sugarcane|10v1|CA067004 6920 604 81.27 glotblastn
3127 LYM658 sorghum|09v1|SB04G024620 6921 605 95.4 globlastp
3128 LYM658 sorghum|12v1|SB04G024620_P1 6921 605 95.4 globlastp
3129 LYM658 maize|10v1|AI622810_P1 6922 605 92.8 globlastp
3130 LYM658 foxtail_millet|11v3|PHY7SI016680M_P1 6923 605 92.6 globlastp
3131 LYM658 millet|10v1|EVO454PM030910_P1 6924 605 91.7 globlastp
3132 LYM658 foxtail_millet|11v3|EC613383_P1 6925 605 90.2 globlastp
3133 LYM658 foxtail_millet|10v2|EC613383 6926 605 90 globlastp
3134 LYM658 foxtail_millet|10v2|SICRP004546 6927 605 88.76 glotblastn
3135 LYM658 rye|12v1|DRR001012.375564_P1 6928 605 88.5 globlastp
3136 LYM658 rice|11v1|AU055799_P1 6929 605 88.5 globlastp
3137 LYM658 rice|gb170|OS05G34820 6929 605 88.5 globlastp
3138 LYM658 brachypodium|09v1|GT768950 6930 605 88.1 globlastp
3139 LYM658 brachypodium|12v1|BRADI5G18230_P1 6930 605 88.1 globlastp
3140 LYM658 rice|11v1|OSPRD071902_T1 6931 605 86.99 glotblastn
3141 LYM658 brachypodium|09v1|GT815201 6932 605 86.7 globlastp
3142 LYM658 brachypodium|12v1|BRADI4G29160_P1 6932 605 86.7 globlastp
3143 LYM658 brachypodium|12v1|SRR031797.131015_T1 6933 605 86.18 glotblastn
3144 LYM658 oil_palm|11v1|SRR190698.26385_T1 6934 605 84.64 glotblastn
3145 LYM658 castorbean|09v1|XM002533162 6935 605 82.03 glotblastn
3146 LYM658 castorbean|11v1|XM_002533162_T1 6935 605 82.03 glotblastn
3147 LYM658 poplar|10v1|DT470271_T1 6936 605 81.89 glotblastn
3148 LYM658 pigeonpea|11v1|SRR054580X100449_T1 6937 605 81.7 glotblastn
3149 LYM658 cassava|09v1|JGICASSAVA866VALIDM1_T1 6938 605 81.57 glotblastn
3150 LYM658 cacao|10v1|CU539770_T1 6939 605 81.43 glotblastn
3151 LYM658 gossypium_raimondii|12v1|AI725465_T1 6940 605 81.27 glotblastn
3152 LYM658 cotton|10v2|BQ404230 6941 605 81.27 glotblastn
3153 LYM658 bean|12v1|SRR001334.79706_T1 6942 605 81.21 glotblastn
3154 LYM658 soybean|11v1|GLYMA05G31280 6943 605 81.21 glotblastn
3155 LYM658 soybean|11v1|GLYMA08G14500 6944 605 81.21 glotblastn
3156 LYM658 oak|10v1|FP054498_P1 6945 605 81.2 globlastp
3157 LYM658 cotton|11v1|AI725465_T1 6946 605 81.11 glotblastn
3158 LYM658 cotton|11v1|BE053910_T1 6947 605 81.11 glotblastn
3159 LYM658 chickpea|11v1|FE671239_P1 6948 605 81.1 globlastp
3160 LYM658 prunus|10v1|BU041739 6949 605 81.07 glotblastn
3161 LYM658 poppy|11v1|SRR030259.145619_T1 6950 605 81.05 glotblastn
3162 LYM658 amorphophallus|11v2|SRR089351X156162_P1 6951 605 81 globlastp
3163 LYM658 aristolochia|10v1|SRR039082S0005698_T1 6952 605 80.97 glotblastn
3164 LYM658 strawberry|11v1|CX661662 6953 605 80.94 glotblastn
3165 LYM658 poplar|10v1|CX170200_T1 6954 605 80.91 glotblastn
3166 LYM658 cassava|09v1|JGICASSAVA31188VALIDM1_T1 6955 605 80.88 glotblastn
3167 LYM658 solanum_phureja|09v1|SPHBG133286 6956 605 80.84 glotblastn
3168 LYM658 tomato|09v1|BG133286 6957 605 80.84 glotblastn
3169 LYM658 tomato|11v1|BG133286_T1 6957 605 80.84 glotblastn
3170 LYM658 aquilegia|10v2|DR921454 6958 605 80.39 glotblastn
3171 LYM658 clementine|11v1|CK702125_T1 6959 605 80.39 glotblastn
3172 LYM658 euphorbia|11v1|BP955632XX2_T1 6960 605 80.36 glotblastn
3173 LYM658 cucumber|09v1|AM728627_T1 6961 605 80.33 glotblastn
3174 LYM658 watermelon|11v1|VMEL01756238391244_T1 6962 605 80 glotblastn
3175 LYM660 foxtail_millet|11v3|PHY7SI025448M_P1 6963 607 85.5 globlastp
3176 LYM660 maize|10v1|AI734690_P1 6964 607 85.4 globlastp
3177 LYM660 sorghum|09v1|SB09G021150 6965 607 83 globlastp
3178 LYM660 sorghum|12v1|SB09G021150_P1 6965 607 83 globlastp
3179 LYM660 rye|12v1|DRR001012.685021_P1 6966 607 80.9 globlastp
3180 LYM660 wheat|10v2|BF201764 6967 607 80.7 globlastp
3181 LYM660 rye|12v1|DRR001012.102693_T1 6968 607 80.08 glotblastn
3182 LYM662 maize|10v1|EU944134_P1 6969 609 86.9 globlastp
3183 LYM662 sorghum|09v1|SB08G006420 6970 609 81.9 globlastp
3184 LYM662 sorghum|12v1|SB08G006420_P1 6970 609 81.9 globlastp
3185 LYM663 sorghum|12v1|SB03G002950_P1 6971 610 87 globlastp
3186 LYM663 foxtail_millet|11v3|PHY7SI000132M_P1 6972 610 86.7 globlastp
3187 LYM665 sorghum|09v1|BE600472 6973 611 81.5 globlastp
3188 LYM665 sorghum|12v1|BE600472_P1 6973 611 81.5 globlastp
3189 LYM665 wheat|10v2|CA486824 6973 611 81.5 globlastp
3190 LYM666 sorghum|12v1|SB10G029540_P1 6974 612 80.2 globlastp
3191 LYM666 sorghum|09v1|SB10G029540 6974 612 80.2 globlastp
3192 LYM667 foxtail_millet|11v3|PHY7SI009269M_P1 6975 613 92.6 globlastp
3193 LYM667 rice|11v1|CA761879_P1 6976 613 85.8 globlastp
3194 LYM667 brachypodium|12v1|BRADI5G13680_P1 6977 613 85.2 globlastp
3195 LYM668 sorghum|09v1|SB10G006400 6978 614 89.5 globlastp
3196 LYM668 foxtail_millet|11v3|PHY7SI006927M_P1 6979 614 85.3 globlastp
3197 LYM668 switchgrass|gb167|FL743676 6980 614 84.3 globlastp
3198 LYM668 millet|10v1|EVO454PM070569_P1 6981 614 82.2 globlastp
3199 LYM668 foxtail_millet|10v2|SICRP026837 6982 614 80.6 globlastp
3200 LYM670 sorghum|12v1|SB12V1CRP127261_T1 616 99.72 glotblastn
3201 LYM670 sorghum|12v1|SB03G020184_P1  795 616 99.6 globlastp
3202 LYM670 maize|10v1|BI398383_T1 6983 616 98.89 glotblastn
3202 LYM708 maize|10v1|BI398383_T1 6983 651 98.61 glotblastn
3203 LYM670 b_rapa|11v1|BRA041038_T1 6984 616 98.24 glotblastn
3203 LYM708 b_rapa|11v1|BRA041038_T1 6984 651 98.33 glotblastn
3204 LYM670 b_rapa|11v1|BRARACRP076788_T1 6984 616 98.24 glotblastn
3204 LYM708 b_rapa|11v1|BRARACRP076788_T1 6984 651 98.33 glotblastn
3205 LYM670 foxtail_millet|11v3|SICRP067741_T1 6985 616 98.14 glotblastn
3205 LYM708 foxtail_millet|11v3|SICRP067741_T1 6985 651 98.23 glotblastn
3206 LYM670 rice|11v1|OSCRP167188_P1 6986 616 98.1 globlastp
3206 LYM708 rice|11v1|OSCRP167188_P1 6986 651 98.2 globlastp
3207 LYM670 rice|gb170|OSP1G00240 6986 616 98.1 globlastp
3207 LYM708 rice|gb170|OSP1G00240 6986 651 98.2 globlastp
3208 LYM670 rice|11v1|CA764315_T1 616 98.05 glotblastn
3208 LYM708 rice|11v1|CA764315_T1 651 98.14 glotblastn
3209 LYM670 rice|11v1|BI796832_P1 6987 616 98 globlastp
3209 LYM708 rice|11v1|BI796832_P1 6987 651 98.1 globlastp
3210 LYM670 rice|gb170|OS04G16820 6988 616 98 globlastp
3210 LYM708 rice|gb170|OS04G16820 6988 651 98.1 globlastp
3211 LYM670 brachypodium|09v1|CRPBD020464 6989 616 96.38 glotblastn
3211 LYM708 brachypodium|09v1|CRPBD020464 6989 651 96.47 glotblastn
3212 LYM670 brachypodium|12v1|SOLX00012727_T1 616 96.38 glotblastn
3212 LYM708 brachypodium|12v1|SOLX00012727_T1 651 96.47 glotblastn
3213 LYM670 brachypodium|12v1|SRR031797.122789_P1 6990 616 92.5 globlastp
3213 LYM708 brachypodium|12v1|SRR031797.122789_P1 6990 651 92.6 globlastp
3214 LYM670 rice|11v1|BI306246_T1 6991 616 91.07 glotblastn
3214 LYM708 rice|11v1|BI306246_T1 6991 651 91.26 glotblastn
3215 LYM670 brachypodium|09v1|CRPBD021288 6992 616 88.7 globlastp
3215 LYM708 brachypodium|09v1|CRPBD021288 6992 795 88.7 globlastp
3216 LYM670 maize|10v1|DW725983_T1 6993 616 85.77 glotblastn
3216 LYM708 maize|10v1|DW725983_T1 6993 651 85.67 glotblastn
3217 LYM670 aristolochia|10v1|GFXAF528920X1_T1 616 81.53 glotblastn
3217 LYM708 aristolochia|10v1|GFXAF528920X1_T1 651 81.63 glotblastn
3218 LYM670 grape|11v1|GSVIVT01016016001_P1 6994 616 81.5 globlastp
3218 LYM708 grape|11v1|GSVIVT01016016001_P1 6994 795 81.6 globlastp
3219 LYM670 grape|11v1|VVCRP205380_P1 6994 616 81.5 globlastp
3219 LYM708 grape|11v1|VVCRP205380_P1 6994 795 81.6 globlastp
3220 LYM670 grape|11v1|VVCRP205512_P1 6994 616 81.5 globlastp
3220 LYM708 grape|11v1|VVCRP205512_P1 6994 795 81.6 globlastp
3221 LYM670 grape|11v1|CB001417_P1 6994 616 81.5 globlastp
3221 LYM708 grape|11v1|CB001417_P1 6994 795 81.6 globlastp
3222 LYM670 grape|gb160|CA817136 6994 616 81.5 globlastp
3222 LYM708 grape|gb160|CA817136 6994 795 81.6 globlastp
3223 LYM670 grape|11v1|CB001417_T1 616 81.26 glotblastn
3223 LYM708 grape|11v1|CB001417_T1 795 81.35 glotblastn
3224 LYM670 eucalyptus|11v2|CT980503_P1 6995 616 81.2 globlastp
3224 LYM708 eucalyptus|11v2|CT980503_P1 6995 651 81.3 globlastp
3225 LYM670 castorbean|11v1|AM267450_P1 6996 616 80.7 globlastp
3225 LYM708 castorbean|11v1|AM267450_P1 6996 651 80.8 globlastp
3226 LYM670 castorbean|11v1|RCCRP021877_P1 6996 616 80.7 globlastp
3226 LYM708 castorbean|11v1|RCCRP021877_P1 6996 651 80.8 globlastp
3227 LYM670 castorbean|11v1|EE253794_T1 616 80.7 glotblastn
3227 LYM708 castorbean|11v1|EE253794_T1 651 80.79 glotblastn
3228 LYM670 brachypodium|09v1|GFXEU325680X7 6997 616 80.32 glotblastn
3228 LYM708 brachypodium|09v1|GFXEU325680X7 6997 651 80.58 glotblastn
3229 LYM670 rice|gb170|OS10G21230 6998 616 80.32 glotblastn
3229 LYM708 rice|gb170|OS10G21230 6998 651 80.58 glotblastn
3230 LYM670 cannabis|12v1|MDCRP043432_P1 6999 616 80.3 globlastp
3230 LYM708 cannabis|12v1|MDCRP043432_P1 6999 651 80.4 globlastp
3231 LYM670 cannabis|12v1|SOLX00002586_T1 7000 616 80.15 glotblastn
3231 LYM708 cannabis|12v1|SOLX00002586_T1 7000 651 80.24 glotblastn
3232 LYM670 amborella|12v2|SRR038634.9338_P1 7001 616 80.1 globlastp
3232 LYM708 amborella|12v2|SRR038634.9338_P1 7001 651 80 globlastp
3233 LYM670 apple|11v1|CN854599_P1 7002 616 80.1 globlastp
3233 LYM708 apple|11v1|CN854599_P1 7002 651 80.2 globlastp
3234 LYM670 amborella|12v2|GFXAJ506156X4_T1 7003 616 80.07 glotblastn
3235 LYM671 foxtail_millet|11v3|PHY7SI006289M_P1 7004 617 91.1 globlastp
3236 LYM671 maize|10v1|AI001225_P1 7005 617 80.2 globlastp
3237 LYM672 sorghum|12v1|SB03G012590_P1 7006 618 83.1 globlastp
3238 LYM673 sorghum|09v1|SB08G005500 7007 619 91.7 globlastp
3239 LYM673 sorghum|12v1|SB08G005500_P1 7007 619 91.7 globlastp
3240 LYM673 foxtail_millet|11v3|PHY7SI022373M_P1 7008 619 91.5 globlastp
3241 LYM673 foxtail_millet|10v2|SICRP013927 7008 619 91.5 globlastp
3242 LYM673 cynodon|10v1|ES294980_P1 7009 619 91 globlastp
3243 LYM673 switchgrass|gb167|DN143249 7010 619 91 globlastp
3244 LYM673 rice|11v1|AA751889_P1 7011 619 88.1 globlastp
3245 LYM673 rice|gb170|OS12G23180 7011 619 88.1 globlastp
3246 LYM673 fescue|gb161|DT680081_P1 7012 619 85.8 globlastp
3247 LYM673 oat|10v2|GR313014 7013 619 85 globlastp
3248 LYM673 oat|11v1|CN818621_P1 7013 619 85 globlastp
3249 LYM673 oat|10v2|GR317699 7014 619 84.92 glotblastn
3250 LYM673 oat|10v2|GR313013 7015 619 84.7 globlastp
3251 LYM673 oat|11v1|GR317699_P1 7016 619 84.7 globlastp
3252 LYM673 leymus|gb166|CD808800_P1 7017 619 83.9 globlastp
3253 LYM673 wheat|10v2|BE213409 7018 619 83.9 globlastp
3254 LYM673 leymus|gb166|EG374703_P1 7019 619 83.8 globlastp
3255 LYM673 rye|12v1|DRR001012.105025_P1 7020 619 83.6 globlastp
3256 LYM673 barley|10v2|BE420859_P1 7020 619 83.6 globlastp
3257 LYM673 pseudoroegneria|gb167|FF342518 7021 619 83.6 globlastp
3258 LYM673 wheat|10v2|BE412371 7020 619 83.6 globlastp
3259 LYM673 rye|12v1|DRR001012.101368_P1 7022 619 83.4 globlastp
3260 LYM673 rye|12v1|DRR001012.180409_P1 7023 619 83.4 globlastp
3261 LYM673 rye|12v1|BF146083_P1 7024 619 83.1 globlastp
3262 LYM673 rye|12v1|BE705085_T1 7025 619 83.07 glotblastn
3263 LYM673 rye|12v1|BE704974_T1 7026 619 82.85 glotblastn
3264 LYM674 cenchrus|gb166|EB661653_P1 7027 620 96.8 globlastp
3265 LYM674 foxtail_millet|10v2|OXFXTSLX00011060D1T1 7027 620 96.8 globlastp
3266 LYM674 lovegrass|gb167|EH186316_P1 7028 620 96.8 globlastp
3267 LYM674 maize|10v1|AI901386_P1 7027 620 96.8 globlastp
3268 LYM674 millet|10v1|EVO454PM002889_P1 7027 620 96.8 globlastp
3269 LYM674 millet|10v1|PMSLX0006387D1_P1 7027 620 96.8 globlastp
3270 LYM674 sorghum|09v1|SB10G027860 7027 620 96.8 globlastp
3271 LYM674 sorghum|12v1|SB10G027860_P1 7027 620 96.8 globlastp
3272 LYM674 sugarcane|10v1|BQ478936 7029 620 96.8 globlastp
3273 LYM674 sugarcane|10v1|BU103503 7029 620 96.8 globlastp
3274 LYM674 wheat|10v2|CA485619 7027 620 96.8 globlastp
3275 LYM674 wheat|10v2|CA618076 7030 620 96.77 glotblastn
3276 LYM674 cynodon|10v1|ES294067_P1 7031 620 95.2 globlastp
3277 LYM674 switchgrass|gb167|FE622613 7032 620 95.2 globlastp
3278 LYM674 rice|11v1|BI795125_P1 7033 620 93.7 globlastp
3279 LYM674 rice|gb170|OS06G47230 7033 620 93.7 globlastp
3280 LYM674 switchgrass|gb167|FL724429 7034 620 93.5 globlastp
3281 LYM674 fagopyrum|11v1|SRR063689X106965_P1 7035 620 91.9 globlastp
3282 LYM674 fagopyrum|11v1|SRR063703X102206_P1 7035 620 91.9 globlastp
3283 LYM674 cynodon|10v1|ES291885_P1 7036 620 91.9 globlastp
3284 LYM674 brachypodium|09v1|DV480073 7037 620 90.5 globlastp
3285 LYM674 brachypodium|12v1|BRADHG33240_P1 7037 620 90.5 globlastp
3286 LYM674 bupleurum|11v1|SRR301254.100076XX1_P1 7038 620 87.5 globlastp
3287 LYM674 bupleurum|11v1|SRR301254.100467_P1 7038 620 87.5 globlastp
3288 LYM674 bupleurum|11v1|SRR301254.10098_P1 7038 620 87.5 globlastp
3289 LYM674 bupleurum|11v1|SRR301254.10148_P1 7038 620 87.5 globlastp
3290 LYM674 bupleurum|11v1|SRR301254.102821_P1 7038 620 87.5 globlastp
3291 LYM674 bupleurum|11v1|SRR301254.117013_P1 7038 620 87.5 globlastp
3292 LYM674 eucalyptus|11v2|CT980761_P1 7039 620 87.5 globlastp
3293 LYM674 castorbean|09v1|EE260650 7040 620 87.5 globlastp
3294 LYM674 castorbean|11v1|EE260650_P1 7040 620 87.5 globlastp
3295 LYM674 eucalyptus|11v1|CT980761 7039 620 87.5 globlastp
3296 LYM674 bupleurum|11v1|SRR301254.147563_T1 7041 620 87.3 glotblastn
3297 LYM674 vinca|11v1|SRR098690X122147_P1 7042 620 87.3 globlastp
3298 LYM674 fraxinus|11v1|SRR058827.100960_T1 620 87.1 glotblastn
3299 LYM674 apple|11v1|CN444624_P1 7043 620 85.9 globlastp
3300 LYM674 apple|11v1|CN491546_P1 7044 620 85.9 globlastp
3301 LYM674 phyla|11v2|SRR099038X42348_P1 7045 620 85.9 globlastp
3302 LYM674 apple|gb171|CN444624 7043 620 85.9 globlastp
3303 LYM674 apple|gb171|CN491546 7044 620 85.9 globlastp
3304 LYM674 arabidopsis_lyrata|09v1|JGIAL001611_P1 7046 620 85.9 globlastp
3305 LYM674 arabidopsis|10v1|AT1G15270_P1 7046 620 85.9 globlastp
3306 LYM674 ginseng|10v1|GR873071_P1 7047 620 85.9 globlastp
3307 LYM674 canola|10v1|CN731983 7048 620 85.71 glotblastn
3308 LYM674 canola|11v1|CN731983_T1 7048 620 85.71 glotblastn
3309 LYM674 radish|gb164|FD954820 7049 620 85.71 glotblastn
3310 LYM674 vinca|11v1|SRR098690X184375_P1 7050 620 85.7 globlastp
3311 LYM674 eggplant|10v1|FS001349_P1 7051 620 85.7 globlastp
3312 LYM674 fescue|gb161|DT699350_P1 7052 620 85.7 globlastp
3313 LYM674 ipomoea_batatas|10v1|EE875248_P1 7053 620 85.7 globlastp
3314 LYM674 lolium|10v1|AU249250_P1 7052 620 85.7 globlastp
3315 LYM674 fraxinus|11v1|SRR058827.132445_T1 7054 620 85.48 glotblastn
3316 LYM674 amorphophallus|11v2|SRR089351X100345_P1 7055 620 84.4 globlastp
3317 LYM674 b_rapa|11v1|CD812699_P1 7056 620 84.4 globlastp
3318 LYM674 b_rapa|11v1|EL590863_P1 7056 620 84.4 globlastp
3319 LYM674 canola|11v1|EG019446_P1 7056 620 84.4 globlastp
3320 LYM674 canola|11v1|SRR019556.1930_P1 7056 620 84.4 globlastp
3321 LYM674 phyla|11v2|SRR099037X11804_P1 7057 620 84.4 globlastp
3322 LYM674 thellungiella_parvulum|11v1|BY814668_P1 7056 620 84.4 globlastp
3323 LYM674 b_juncea|10v2|BJ1SLX00016707D1_P1 7056 620 84.4 globlastp
3324 LYM674 b_juncea|10v2|BJlSLX00100868D1_P1 7056 620 84.4 globlastp
3325 LYM674 b_juncea|10v2|BJlSLX00386056D1_P1 7056 620 84.4 globlastp
3326 LYM674 b_juncea|10v2|BJlSLX00418015D1_P1 7056 620 84.4 globlastp
3327 LYM674 b_juncea|10v2|E6ANDIZ01AL5MQ_P1 7056 620 84.4 globlastp
3328 LYM674 b_juncea|10v2|E6ANDIZ01AYWME_P1 7056 620 84.4 globlastp
3329 LYM674 b_juncea|10v2|E6ANDIZ01B86FS_P1 7058 620 84.4 globlastp
3330 LYM674 b_juncea|10v2|E6ANDIZ02IIRX5_P1 7056 620 84.4 globlastp
3331 LYM674 b_juncea|10v2|OXBJ1SLX00007417D1T1_P1 7056 620 84.4 globlastp
3332 LYM674 b_juncea|10v2|OXBJ1SLX00008884D1T1_P1 7056 620 84.4 globlastp
3333 LYM674 b_oleracea|gb161|AM395498_P1 7056 620 84.4 globlastp
3334 LYM674 b_rapa|gb162|CA991716 7056 620 84.4 globlastp
3335 LYM674 b_rapa|11v1|BQ704619_P1 7056 620 84.4 globlastp
3336 LYM674 b_rapa|gb162|CX269074 7056 620 84.4 globlastp
3337 LYM674 bruguiera|gb166|BP939355_P1 7059 620 84.4 globlastp
3338 LYM674 canola|10v1|CD813828 7056 620 84.4 globlastp
3339 LYM674 canola|10v1|CD814514 7056 620 84.4 globlastp
3340 LYM674 canola|11v1|DW998592_P1 7056 620 84.4 globlastp
3341 LYM674 canola|10v1|CD816847 7056 620 84.4 globlastp
3342 LYM674 canola|10v1|EE403709 7058 620 84.4 globlastp
3343 LYM674 coffea|10v1|DV667153_P1 7060 620 84.4 globlastp
3344 LYM674 grape|11v1|GSVIVT01017091001_P1 7061 620 84.4 globlastp
3345 LYM674 grape|gb160|BM436597 7061 620 84.4 globlastp
3346 LYM674 radish|gb164|EV537168 7056 620 84.4 globlastp
3347 LYM674 radish|gb164|EV566491 7056 620 84.4 globlastp
3348 LYM674 radish|gb164|EV572866 7056 620 84.4 globlastp
3349 LYM674 radish|gb164|FD968152 7056 620 84.4 globlastp
3350 LYM674 salvia|10v1|SRR014553S0002535 7062 620 84.4 globlastp
3351 LYM674 sesame|10v1|BU668569 7063 620 84.4 globlastp
3352 LYM674 strawberry|11v1|CO379849 7064 620 84.4 globlastp
3353 LYM674 tea|10v1|CV013795 7065 620 84.4 globlastp
3354 LYM674 triphysaria|10v1|DR171571 7066 620 84.4 globlastp
3355 LYM674 triphysaria|10v1|SRR023500S0007334 7066 620 84.4 globlastp
3356 LYM674 zostera|10v1|AM766369 7067 620 84.4 globlastp
3357 LYM674 canola|11v1|EG019622_P1 7056 620 84.4 globlastp
3358 LYM674 phalaenopsis|11v1|SRR125771.1002229XX1_T1 7068 620 84.38 glotblastn
3359 LYM674 rye|gb164|BE495087 7069 620 84.13 glotblastn
3360 LYM674 euphorbia|11v1|DV119597_P1 7070 620 84.1 globlastp
3361 LYM674 fraxinus|11v1|SRR058827.100992XX1_P1 7071 620 84.1 globlastp
3362 LYM674 fraxinus|11v1|SRR058827.105740_P1 7072 620 84.1 globlastp
3363 LYM674 fraxinus|11v1|SRR058827.109819_P1 7071 620 84.1 globlastp
3364 LYM674 fraxinus|11v1|SRR058827.112998_P1 7071 620 84.1 globlastp
3365 LYM674 fraxinus|11v1|SRR058827.130969_P1 7071 620 84.1 globlastp
3366 LYM674 hornbeam|12v1|SRR364455.101509_P1 7073 620 84.1 globlastp
3367 LYM674 oat|11v1|GR331754_P1 7074 620 84.1 globlastp
3368 LYM674 olea|11v1|GO244557XX1_P1 7075 620 84.1 globlastp
3369 LYM674 olea|11v1|SRR014463.10998_P1 7076 620 84.1 globlastp
3370 LYM674 plantago|11v2|SRR066373X102021_P1 7077 620 84.1 globlastp
3371 LYM674 primula|11v1|SRR098679X13011_P1 7078 620 84.1 globlastp
3372 LYM674 rye|12v1|BE495087_P1 7074 620 84.1 globlastp
3373 LYM674 rye|12v1|DRR001012.11810_P1 7074 620 84.1 globlastp
3374 LYM674 antirrhinum|gb166|AJ559847_P1 7079 620 84.1 globlastp
3375 LYM674 barley|10v2|BE413024_P1 7074 620 84.1 globlastp
3376 LYM674 foxtail_millet|10v2|FXTSLX00051477 7074 620 84.1 globlastp
3377 LYM674 foxtail_millet|10v2|FXTSLX00060886 7074 620 84.1 globlastp
3378 LYM674 oat|10v2|CN816415 7074 620 84.1 globlastp
3379 LYM674 oat|11v1|CN816415_P1 7074 620 84.1 globlastp
3380 LYM674 oat|10v2|CN816764 7074 620 84.1 globlastp
3381 LYM674 oat|11v1|CN816764_P1 7074 620 84.1 globlastp
3382 LYM674 pepper|gb171|BM062934_P1 7080 620 84.1 globlastp
3383 LYM674 spurge|gb161|DV119597 7070 620 84.1 globlastp
3384 LYM674 walnuts|gb166|CV195464 7081 620 84.1 globlastp
3385 LYM674 wheat|10v2|BE398947 7074 620 84.1 globlastp
3386 LYM674 wheat|10v2|BE404637 7074 620 84.1 globlastp
3387 LYM674 wheat|10v2|BE415811 7074 620 84.1 globlastp
3388 LYM674 wheat|10v2|BE429982 7074 620 84.1 globlastp
3389 LYM674 wheat|10v2|CA602404 7074 620 84.1 globlastp
3390 LYM674 cirsium|11v1|SRR346952.1008085_T1 7082 620 83.87 glotblastn
3391 LYM674 cirsium|11v1|SRR346952.1008892_T1 7083 620 83.87 glotblastn
3392 LYM674 fraxinus|11v1|SRR058827.100487_T1 7084 620 83.87 glotblastn
3393 LYM674 safflower|gb162|EL510084 7085 620 83.87 glotblastn
3394 LYM674 cucurbita|11v1|SRR091276X105643_T1 620 83.87 glotblastn
3395 LYM674 abies|11v2|SRR098676X103278_P1 7086 620 82.8 globlastp
3396 LYM674 amsonia|11v1|SRR098688X122830_P1 7087 620 82.8 globlastp
3397 LYM674 chickpea|11v1|DY475173_P1 7088 620 82.8 globlastp
3398 LYM674 cucurbita|11v1|SRR091276X101559_P1 7089 620 82.8 globlastp
3399 LYM674 distylium|11v1|SRR065077X107460XX1_P1 7090 620 82.8 globlastp
3400 LYM674 euonymus|11v1|SRR070038X102260_P1 7091 620 82.8 globlastp
3401 LYM674 euonymus|11v1|SRR070038X141304_P1 7091 620 82.8 globlastp
3402 LYM674 nasturtium|11v1|GH163719_P1 7092 620 82.8 globlastp
3403 LYM674 phyla|11v2|SRR099038X76130_P1 7093 620 82.8 globlastp
3404 LYM674 trigonella|11v1|SRR066194X100086_P1 7094 620 82.8 globlastp
3405 LYM674 valeriana|11v1|SRR099039X147982_P1 7095 620 82.8 globlastp
3406 LYM674 valeriana|11v1|SRR099040X71022_P1 7095 620 82.8 globlastp
3407 LYM674 b_juncea|10v2|E6ANDIZ01B0PNZ_P1 7096 620 82.8 globlastp
3408 LYM674 basilicum|10v1|DY322210_P1 7097 620 82.8 globlastp
3409 LYM674 basilicum|10v1|DY325883_P1 7098 620 82.8 globlastp
3410 LYM674 cassava|09v1|CK641727_P1 7099 620 82.8 globlastp
3411 LYM674 chickpea|09v2|DY475173 7088 620 82.8 globlastp
3412 LYM674 citrus|gb166|BQ623463 7100 620 82.8 globlastp
3413 LYM674 clementine|11v1|BQ623463_P1 7100 620 82.8 globlastp
3413 LYM674 orange|11v1|BQ623463_P1 7100 620 82.8 globlastp
3414 LYM674 cycas|gb166|EX927396_P1 7101 620 82.8 globlastp
3415 LYM674 ginger|gb164|DY350028_P1 7102 620 82.8 globlastp
3416 LYM674 medicago|09v1|AW698603 7094 620 82.8 globlastp
3417 LYM674 medicago|12v1|AW698603_P1 7094 620 82.8 globlastp
3418 LYM674 monkeyflower|10v1|GO997665_P1 7103 620 82.8 globlastp
3419 LYM674 nasturtium|10v1|GH163719 7092 620 82.8 globlastp
3420 LYM674 radish|gb164|EV528224 7104 620 82.8 globlastp
3421 LYM674 rose|10v1|BQ105053 7105 620 82.8 globlastp
3422 LYM674 rose|12v1|BQ105053_P1 7105 620 82.8 globlastp
3423 LYM674 triphysaria|10v1|SRR023500S0063788 7106 620 82.8 globlastp
3424 LYM674 sarracenia|11v1|SRR192669.100650_T1 7107 620 82.54 glotblastn
3425 LYM674 b_juncea|10v2|BJ1SLX00165391D1_T1 7108 620 82.54 glotblastn
3426 LYM674 oil_palm|gb166|CN599767 7109 620 82.54 glotblastn
3427 LYM674 bupleurum|11v1|SRR301254.104289XX1_T1 620 82.54 glotblastn
3428 LYM674 cephalotaxus|11v1|SRR064395X101889_T1 620 82.54 glotblastn
3429 LYM674 ambrosia|11v1|SRR346935.190011_P1 7110 620 82.5 globlastp
3430 LYM674 ambrosia|11v1|SRR346935.432767_P1 7110 620 82.5 globlastp
3431 LYM674 ambrosia|11v1|SRR346943.139663_P1 7110 620 82.5 globlastp
3432 LYM674 beech|11v1|SRR006293.11676_P1 7111 620 82.5 globlastp
3433 LYM674 cirsium|11v1|SRR346952.261183_P1 7112 620 82.5 globlastp
3434 LYM674 cirsium|11v1|SRR349641.110690_P1 7112 620 82.5 globlastp
3435 LYM674 cirsium|11v1|SRR349641.123007_P1 7112 620 82.5 globlastp
3436 LYM674 plantago|11v2|AJ843980_P1 7113 620 82.5 globlastp
3437 LYM674 sunflower|12v1|CD845926_P1 7114 620 82.5 globlastp
3438 LYM674 artemisia|10v1|EY037715_P1 7115 620 82.5 globlastp
3439 LYM674 artemisia|10v1|EY055263_P1 7115 620 82.5 globlastp
3440 LYM674 artemisia|10v1|SRRO19254S0009767_P1 7115 620 82.5 globlastp
3441 LYM674 artemisia|10v1|SRRO19254S0088250_P1 7115 620 82.5 globlastp
3442 LYM674 artemisia|10v1|SRRO19550S0004626_P1 7115 620 82.5 globlastp
3443 LYM674 beech|11v1|SRR006293.11312_P1 7111 620 82.5 globlastp
3444 LYM674 beech|gb170|SRR006293S0003713 7111 620 82.5 globlastp
3445 LYM674 centaurea|gb166|EH739812_P1 7112 620 82.5 globlastp
3446 LYM674 cichorium|gb171|DT212035_P1 7114 620 82.5 globlastp
3447 LYM674 cynara|gb167|GE595140_P1 7112 620 82.5 globlastp
3448 LYM674 gerbera|09v1|AJ750498_P1 7110 620 82.5 globlastp
3449 LYM674 gerbera|09v1|AJ750942_P1 7110 620 82.5 globlastp
3450 LYM674 lolium|10v1|SRR029311S0016269_P1 7116 620 82.5 globlastp
3451 LYM674 petunia|gb171|CV296824_P1 7117 620 82.5 globlastp
3452 LYM674 potato|10v1|BG592556_P1 7118 620 82.5 globlastp
3453 LYM674 potato|10v1|BI406653_P1 7118 620 82.5 globlastp
3454 LYM674 safflower|gb162|EL372981 7110 620 82.5 globlastp
3455 LYM674 solanum_phureja|09v1|SPHBG124390 7118 620 82.5 globlastp
3456 LYM674 sunflower|10v1|DY955654 7114 620 82.5 globlastp
3457 LYM674 tomato|09v1|BG124390 7119 620 82.5 globlastp
3458 LYM674 tomato|11v1|BG124390_P1 7119 620 82.5 globlastp
3459 LYM674 tragopogon|10v1|SRR020205S0037348 7120 620 82.5 globlastp
3460 LYM674 tragopogon|10v1|SRR020205S0060119 7114 620 82.5 globlastp
3461 LYM674 triphysaria|10v1|EX982507 7121 620 82.5 globlastp
3462 LYM674 walnuts|gb166|EL893725 7122 620 82.5 globlastp
3463 LYM674 arnica|11v1|SRR099034X549516_T1 620 82.26 glotblastn
3464 LYM674 epimedium|11v1|SRR013506.42109_T1 620 81.25 glotblastn
3465 LYM674 cannabis|12v1|EW701093_P1 7123 620 81.2 globlastp
3466 LYM674 chelidonium|11v1|SRR084752X10734_P1 7124 620 81.2 globlastp
3467 LYM674 chickpea|11v1|GR391874_P1 7125 620 81.2 globlastp
3468 LYM674 humulus|11v1|ES654110_P1 7126 620 81.2 globlastp
3469 LYM674 oil_palm|11v1|EL681728_P1 7127 620 81.2 globlastp
3470 LYM674 platanus|11v1|SRR096786X118170_P1 7128 620 81.2 globlastp
3471 LYM674 poppy|11v1|SRR030259.105139_P1 7129 620 81.2 globlastp
3472 LYM674 sarracenia|11v1|SRR192669.100480_P1 7130 620 81.2 globlastp
3473 LYM674 sarracenia|11v1|SRR192669.127001_P1 7131 620 81.2 globlastp
3474 LYM674 sarracenia|11v1|SRR192669.140494_P1 7130 620 81.2 globlastp
3475 LYM674 spruce|11v1|ES245011_P1 7132 620 81.2 globlastp
3476 LYM674 spruce|11v1|ES662265_P1 7132 620 81.2 globlastp
3477 LYM674 spruce|11v1|ES861458_P1 7132 620 81.2 globlastp
3478 LYM674 spruce|11v1|EX308248_P1 7132 620 81.2 globlastp
3479 LYM674 spruce|11v1|EX347962_P1 7132 620 81.2 globlastp
3480 LYM674 spruce|11v1|SRR064180X104566_P1 7133 620 81.2 globlastp
3481 LYM674 thellungiella_halophilum|11v1|BY814668_P1 7134 620 81.2 globlastp
3482 LYM674 tripterygium|11v1|SRR098677X101722_P1 7135 620 81.2 globlastp
3483 LYM674 utricularia|11v1|SRR094438.147614_P1 7136 620 81.2 globlastp
3484 LYM674 b_juncea|10v2|E6ANDIZ01BP8EC_P1 7137 620 81.2 globlastp
3485 LYM674 b_juncea|10v2|OXBJ1SLX00000479D1T1_P1 7134 620 81.2 globlastp
3486 LYM674 b_oleracea|gb161|DY027289_P1 7134 620 81.2 globlastp
3487 LYM674 banana|10v1|DN239342_P1 7138 620 81.2 globlastp
3488 LYM674 bean|gb167|CB542614 7139 620 81.2 globlastp
3489 LYM674 bean|gb167|FD784717 7140 620 81.2 globlastp
3490 LYM674 canola|10v1|CD812699 7134 620 81.2 globlastp
3491 LYM674 canola|11v1|DY006098_P1 7134 620 81.2 globlastp
3492 LYM674 cowpea|gb166|FC456845_P1 7141 620 81.2 globlastp
3493 LYM674 cryptomeria|gb166|BP174151_P1 7142 620 81.2 globlastp
3494 LYM674 gnetum|10v1|SRR064399S0012509_P1 7143 620 81.2 globlastp
3495 LYM674 heritiera|10v1|SRR005795S0009522_P1 7144 620 81.2 globlastp
3496 LYM674 liquorice|gb171|FS240048_P1 7145 620 81.2 globlastp
3497 LYM674 liquorice|gb171|FS269845_P1 7145 620 81.2 globlastp
3498 LYM674 peanut|10v1|CD037541_P1 7141 620 81.2 globlastp
3499 LYM674 pea|11v1|GH720947_P1 7146 620 81.2 globlastp
3500 LYM674 pigeonpea|10v1|GW346281 7145 620 81.2 globlastp
3501 LYM674 pigeonpea|11v1|EE604871_P1 7145 620 81.2 globlastp
3502 LYM674 podocarpus|10v1|SRR065014S0043830_P1 7147 620 81.2 globlastp
3503 LYM674 poplar|10v1|AI163654_P1 7148 620 81.2 globlastp
3504 LYM674 sciadopitys|10v1|SRR065035S0001739 7149 620 81.2 globlastp
3505 LYM674 soybean|11v1|GLYMA07G00760 7150 620 81.2 globlastp
3506 LYM674 soybean|11v1|GLYMA08G22020 7141 620 81.2 globlastp
3507 LYM674 spruce|11v1|GT885557_P1 7133 620 81.2 globlastp
3508 LYM674 spruce|gb162|CO215989 7132 620 81.2 globlastp
3509 LYM674 tamarix|gb166|CF200182 7151 620 81.2 globlastp
3510 LYM674 thellungiella|gb167|BY814668 7134 620 81.2 globlastp
3511 LYM674 bean|12v1|CA899342_P1 7139 620 81.2 globlastp
3512 LYM674 catharanthus|11v1|EG557229_P1 7152 620 81 globlastp
3513 LYM674 euphorbia|11v1|BP959954_P1 7153 620 81 globlastp
3514 LYM674 flaveria|11v1|SRR149229.103149_P1 7154 620 81 globlastp
3515 LYM674 flaveria|11v1|SRR149229.141868_P1 7154 620 81 globlastp
3516 LYM674 flaveria|11v1|SRR149241.71553_P1 7155 620 81 globlastp
3517 LYM674 flax|11v1|EU828871_P1 7156 620 81 globlastp
3518 LYM674 flax|11v1|JG023940_P1 7156 620 81 globlastp
3519 LYM674 olea|11v1|SRR014463.10408_P1 7157 620 81 globlastp
3520 LYM674 sunflower|12v1|CX944167_P1 7154 620 81 globlastp
3521 LYM674 sunflower|12v1|DY954421_P1 7154 620 81 globlastp
3522 LYM674 catharanthus|gb166|EG557229 7152 620 81 globlastp
3523 LYM674 cleome_spinosa|10v1|SRR015531S0048063_P1 7158 620 81 globlastp
3524 LYM674 dandelion|10v1|DR402597_P1 7159 620 81 globlastp
3525 LYM674 dandelion|10v1|DY839578_P1 7159 620 81 globlastp
3526 LYM674 flax|09v1|EU828871 7156 620 81 globlastp
3527 LYM674 flax|11v1|JG018793_P1 7156 620 81 globlastp
3528 LYM674 lettuce|10v1|DW045542_P1 7159 620 81 globlastp
3529 LYM674 lettuce|10v1|DW049157_P1 7159 620 81 globlastp
3530 LYM674 lettuce|10v1|DW081949_P1 7159 620 81 globlastp
3531 LYM674 lettuce|10v1|DW105339_P1 7159 620 81 globlastp
3532 LYM674 oak|10v1|CU657033_P1 7160 620 81 globlastp
3533 LYM674 orobanche|10v1|SRR023495S0003009_P1 7161 620 81 globlastp
3534 LYM674 sunflower|10v1|CX944167 7154 620 81 globlastp
3535 LYM674 sunflower|12v1|DY927773_P1 7154 620 81 globlastp
3536 LYM674 tamarix|gb166|EG967706 7162 620 81 globlastp
3537 LYM674 tobacco|gb162|CV016496 7161 620 81 globlastp
3538 LYM674 amborella|12v2|SRR038634.18378_T1 7163 620 80.95 glotblastn
3539 LYM674 cedrus|11v1|SRR065007X104650_T1 7164 620 80.95 glotblastn
3540 LYM674 cucurbita|11v1|SRR091276X103882_T1 7165 620 80.95 glotblastn
3541 LYM674 cucurbita|11v1|SRR091276X113394_T1 7165 620 80.95 glotblastn
3542 LYM674 cucurbita|11v1|SRR091276X134114_T1 7165 620 80.95 glotblastn
3543 LYM674 cucurbita|11v1|SRR091276X278302_T1 7165 620 80.95 glotblastn
3544 LYM674 euonymus|11v1|SRR070038X121832_T1 7166 620 80.95 glotblastn
3545 LYM674 euonymus|11v1|SRR070038X177346_T1 7166 620 80.95 glotblastn
3546 LYM674 gossypium_raimondii|12v1|AW187456_T1 7167 620 80.95 glotblastn
3547 LYM674 maritime_pine|10v1|AL751079_T1 7168 620 80.95 glotblastn
3548 LYM674 maritime_pine|10v1|BX249285_T1 7169 620 80.95 glotblastn
3549 LYM674 phyla|11v2|SRR099035X175078_T1 7170 620 80.95 glotblastn
3550 LYM674 sarracenia|11v1|SRR192669.117747_T1 7171 620 80.95 glotblastn
3551 LYM674 scabiosa|11v1|SRR063723X101722_T1 7172 620 80.95 glotblastn
3552 LYM674 spruce|11v1|EX337565_T1 7173 620 80.95 glotblastn
3553 LYM674 thalictrum|11v1|SRR096787X100350_T1 7174 620 80.95 glotblastn
3554 LYM674 banana|10v1|DN239162_T1 7175 620 80.95 glotblastn
3555 LYM674 banana|10v1|FL657761_T1 7176 620 80.95 glotblastn
3556 LYM674 cotton|10v2|BF274781 7167 620 80.95 glotblastn
3557 LYM674 hevea|10v1|CB376964_T1 7177 620 80.95 glotblastn
3558 LYM674 iceplant|gb164|BE035656_T1 7178 620 80.95 glotblastn
3559 LYM674 jatropha|09v1|GO247022_T1 7179 620 80.95 glotblastn
3560 LYM674 liriodendron|gb166|CK745299_T1 7180 620 80.95 glotblastn
3561 LYM674 lotus|09v1|LLBW595688_T1 7181 620 80.95 glotblastn
3562 LYM674 monkeyflower|10v1|DV209526_T1 7182 620 80.95 glotblastn
3563 LYM674 orobanche|10v1|SRR023189S0005134_T1 7183 620 80.95 glotblastn
3564 LYM674 pineapple|10v1|CO731246_T1 7184 620 80.95 glotblastn
3565 LYM674 pine|10v2|AA739523_T1 7185 620 80.95 glotblastn
3566 LYM674 pine|10v2|AL751079_T1 7168 620 80.95 glotblastn
3567 LYM674 pine|10v2|AW056549_T1 7168 620 80.95 glotblastn
3568 LYM674 prunus|10v1|BU042914 7186 620 80.95 glotblastn
3569 LYM674 pseudotsuga|10v1|SRR065119S0000572 7187 620 80.95 glotblastn
3570 LYM674 salvia|10v1|SRR014553S0005217 7188 620 80.95 glotblastn
3571 LYM674 wheat|10v2|DR737521 7189 620 80.95 glotblastn
3572 LYM674 rose|12v1|SRR397984.107520_T1 620 80.95 glotblastn
3573 LYM674 spruce|11v1|SRR065813X262115XX1_T1 620 80.95 glotblastn
3574 LYM674 ceratodon|10v1|SRR074893S0834293_T1 620 80.95 glotblastn
3575 LYM674 sequoia|10v1|SRR065044S0003578 620 80.95 glotblastn
3576 LYM674 flax|11v1|JG038241_T1 7190 620 80.65 glotblastn
3577 LYM674 flax|11v1|JG089040_T1 7191 620 80.65 glotblastn
3578 LYM674 chestnut|gb170|SRR006295S0002353_T1 7192 620 80.65 glotblastn
3579 LYM674 cichorium|gb171|FL679916_T1 7193 620 80.65 glotblastn
3580 LYM674 cleome_gynandra|10v1|SRR015532S0003740_T1 7194 620 80.65 glotblastn
3581 LYM674 sarracenia|11v1|SRR192669.353196_T1 620 80.65 glotblastn
3582 LYM674 orobanche|10v1|SRR023189S0000941_P1 7195 620 80 globlastp
3583 LYM674 physcomitrella|10v1|AW477225_P1 7196 620 80 globlastp
3584 LYM675 sugarcane|10v1|CA070384 7197 621 88.2 globlastp
3585 LYM675 sorghum|09v1|SB07G025450 7198 621 87.8 globlastp
3586 LYM675 sorghum|12v1|SB07G025450_P1 7198 621 87.8 globlastp
3587 LYM675 maize|10v1|AI737083_P1 7199 621 86.6 globlastp
3588 LYM675 foxtail_millet|11v3|EC612552_P1 7200 621 85.1 globlastp
3589 LYM675 foxtail_millet|10v2|SICRP008086 7200 621 85.1 globlastp
3590 LYM675 millet|10v1|EVO454PM039897_P1 7201 621 82.1 globlastp
3591 LYM677 sorghum|09v1|SB06G032040 7202 622 99.5 globlastp
3592 LYM677 sorghum|12v1|SB06G032040_P1 7202 622 99.5 globlastp
3593 LYM677 sugarcane|10v1|CA077520 7202 622 99.5 globlastp
3594 LYM677 maize|10v1|T14783_P1 7203 622 98.4 globlastp
3595 LYM677 foxtail_millet|10v2|SICRP016599 7204 622 97.3 globlastp
3596 LYM677 switchgrass|gb167|FE618307 7205 622 95.7 globlastp
3597 LYM677 rice|11v1|AU030396_P1 7206 622 95.2 globlastp
3598 LYM677 rice|gb170|OS03G28389 7206 622 95.2 globlastp
3599 LYM677 rice|11v1|AA751807_P1 7206 622 95.2 globlastp
3600 LYM677 rice|gb170|OS07G44790 7206 622 95.2 globlastp
3601 LYM677 brachypodium|09v1|DV469647 7207 622 94.12 glotblastn
3602 LYM677 brachypodium|12v1|BRADHG19830_P1 7208 622 94.1 globlastp
3603 LYM677 oat|11v1|CN819457_P1 7209 622 94.1 globlastp
3604 LYM677 rye|12v1|BE494707_P1 7210 622 93.6 globlastp
3605 LYM677 barley|10v2|BG299682_P1 7210 622 93.6 globlastp
3606 LYM677 wheat|10v2|BM135008 7211 622 92.5 globlastp
3607 LYM677 pseudoroegneria|gb167|FF360551 7212 622 91.9 globlastp
3608 LYM677 coffea|10v1|DV663567_P1 7213 622 90.9 globlastp
3609 LYM677 catharanthus|11v1|EG557262_P1 7214 622 89.8 globlastp
3610 LYM677 tabernaemontana|11v1|SRR098689X208821_P1 7215 622 89.8 globlastp
3611 LYM677 catharanthus|gb166|EG557262 7214 622 89.8 globlastp
3612 LYM677 oat|11v1|CN820916_P1 7216 622 89.2 globlastp
3613 LYM677 oil_palm|11v1|SRR190698.109247_P1 7217 622 88.7 globlastp
3614 LYM677 antirrhinum|gb166|AJ558624_P1 7218 622 88.7 globlastp
3615 LYM677 nuphar|gb166|ES731316_P1 7219 622 88.6 globlastp
3616 LYM677 oat|10v2|CN820916 7220 622 88.6 globlastp
3617 LYM677 olea|11v1|SRR014463.24625_P1 7221 622 88.2 globlastp
3618 LYM677 poppy|11v1|SRR030259.138488_P1 7222 622 88.2 globlastp
3619 LYM677 aquilegia|10v2|DT747028 7223 622 88.2 globlastp
3620 LYM677 aristolochia|10v1|SRR039082S0056492_P1 7224 622 88.2 globlastp
3621 LYM677 banana|10v1|DT723846_P1 7225 622 88.2 globlastp
3622 LYM677 orobanche|10v1|SRR023189S0011635_P1 7226 622 88.2 globlastp
3623 LYM677 rye|gb164|BE494707 7227 622 88.2 globlastp
3624 LYM677 vinca|11v1|SRR098690X154197_P1 7228 622 87.8 globlastp
3625 LYM677 chelidonium|11v1|SRR084752X100611_P1 7229 622 87.6 globlastp
3626 LYM677 gossypium_raimondii|12v1|AI725571_P1 7230 622 87.6 globlastp
3627 LYM677 humulus|11v1|EX516220_P1 7231 622 87.6 globlastp
3628 LYM677 watermelon|11v1|AM720076_P1 7232 622 87.6 globlastp
3629 LYM677 cacao|10v1|CU493627_P1 7233 622 87.6 globlastp
3630 LYM677 cotton|10v2|DR456565 7230 622 87.6 globlastp
3631 LYM677 cotton|11v1|AI725571_P1 7230 622 87.6 globlastp
3632 LYM677 ginger|gb164|DY360037_P1 7234 622 87.6 globlastp
3633 LYM677 grape|11v1|GSVIVT01002004001_P1 7235 622 87.6 globlastp
3634 LYM677 grape|gb160|BQ797758 7235 622 87.6 globlastp
3635 LYM677 euphorbia|11v1|DV127349_P1 7236 622 87.2 globlastp
3636 LYM677 cirsium|11v1|SRR346952.1037943_P1 7237 622 87.1 globlastp
3637 LYM677 oil_palm|11v1|SRR190698.178734_P1 7238 622 87.1 globlastp
3638 LYM677 phyla|11v2|SRR099037X115792_P1 7239 622 87.1 globlastp
3639 LYM677 platanus|11v1|SRR096786X101972_P1 7240 622 87.1 globlastp
3640 LYM677 avocado|10v1|CK756098_P1 7241 622 87.1 globlastp
3641 LYM677 melon|10v1|AM720076_P1 7242 622 87.1 globlastp
3642 LYM677 oak|10v1|DB999164_P1 7243 622 87.1 globlastp
3643 LYM677 poplar|10v1|AI164377_P1 7244 622 87.1 globlastp
3644 LYM677 spurge|gb161|DV127349 7245 622 87.1 globlastp
3645 LYM677 bupleurum|11v1|SRR301254.171937_P1 7246 622 86.6 globlastp
3646 LYM677 cirsium|11v1|SRR346952.1029416_P1 7247 622 86.6 globlastp
3647 LYM677 cucurbita|11v1|FG227637XX1_P1 7248 622 86.6 globlastp
3648 LYM677 flaveria|11v1|SRR149229.120871_P1 7249 622 86.6 globlastp
3649 LYM677 flaveria|11v1|SRR149229.257301_P1 7250 622 86.6 globlastp
3650 LYM677 flaveria|11v1|SRR149241.26086_P1 7251 622 86.6 globlastp
3651 LYM677 phalaenopsis|11v1|SRR125771.1013792_P1 7252 622 86.6 globlastp
3652 LYM677 poppy|11v1|FE966644_P1 7253 622 86.6 globlastp
3653 LYM677 poppy|11v1|SRR030259.12973_P1 7253 622 86.6 globlastp
3654 LYM677 silene|11v1|SRR096785X10886_P1 7254 622 86.6 globlastp
3655 LYM677 centaurea|gb166|EH715632_P1 7255 622 86.6 globlastp
3656 LYM677 chestnut|gb170|SRR006295S0025391_P1 7256 622 86.6 globlastp
3657 LYM677 poppy|gb166|FE966644 7253 622 86.6 globlastp
3658 LYM677 strawberry|11v1|CO380775 7257 622 86.6 globlastp
3659 LYM677 triphysaria|10v1|EY129481 7258 622 86.6 globlastp
3660 LYM677 rose|12v1|BQ105782_P1 7257 622 86.6 globlastp
3661 LYM677 momordica|10v1|SRR071315S0003440_T1 7259 622 86.56 glotblastn
3662 LYM677 eschscholzia|11v1|SRR014116.137043_P1 7260 622 86.5 globlastp
3663 LYM677 triphysaria|10v1|EY006476 7261 622 86.1 globlastp
3664 LYM677 apple|11v1|CN876233_P1 7262 622 86 globlastp
3665 LYM677 arnica|11v1|SRR099034X136477_P1 7263 622 86 globlastp
3666 LYM677 euonymus|11v1|SRR070038X166437_P1 7264 622 86 globlastp
3667 LYM677 euphorbia|11v1|BP956101_P1 7265 622 86 globlastp
3668 LYM677 flaveria|11v1|SRR149244.104981_P1 7266 622 86 globlastp
3669 LYM677 phyla|11v2|SRR099035X111531_P1 7267 622 86 globlastp
3670 LYM677 sarracenia|11v1|SRR192669.110514_P1 7268 622 86 globlastp
3671 LYM677 sunflower|12v1|DY952649_P1 7269 622 86 globlastp
3672 LYM677 acacia|10v1|FS584802_P1 7270 622 86 globlastp
3673 LYM677 apple|gb171|CN876233 7262 622 86 globlastp
3674 LYM677 castorbean|09v1|EE255402 7271 622 86 globlastp
3675 LYM677 castorbean|11v1|EE255402_P1 7271 622 86 globlastp
3676 LYM677 centaurea|gb166|EH779021_P1 7272 622 86 globlastp
3677 LYM677 monkeyflower|10v1|DV208150_P1 7273 622 86 globlastp
3678 LYM677 petunia|gb171|CV295259_P1 7274 622 86 globlastp
3679 LYM677 prunus|10v1|BU044840 7275 622 86 globlastp
3680 LYM677 rose|10v1|BQ105782 7276 622 86 globlastp
3681 LYM677 salvia|10v1|CV163987 7277 622 86 globlastp
3682 LYM677 sunflower|12v1|CD848737_P1 7269 622 86 globlastp
3683 LYM677 heritiera|10v1|SRR005795S0009606_T1 7278 622 85.95 glotblastn
3684 LYM677 beech|11v1|SRR006294.11031_P1 7279 622 85.5 globlastp
3685 LYM677 cucurbita|11v1|SRR091276X112632_P1 7280 622 85.5 globlastp
3686 LYM677 euonymus|11v1|SRR070038X145995_P1 7281 622 85.5 globlastp
3687 LYM677 sarracenia|11v1|SRR192669.105920_P1 7282 622 85.5 globlastp
3688 LYM677 sunflower|12v1|EE608284_P1 7283 622 85.5 globlastp
3689 LYM677 apple|gb171|CN887142 7284 622 85.5 globlastp
3690 LYM677 dandelion|10v1|DR400203_P1 7285 622 85.5 globlastp
3691 LYM677 lotus|09v1|AV411597_P1 7286 622 85.5 globlastp
3692 LYM677 nicotiana_benthamiana|gb162|CN744405_P1 7287 622 85.5 globlastp
3693 LYM677 potato|10v1|BE924616_P1 7288 622 85.5 globlastp
3694 LYM677 safflower|gb162|EL401519 7289 622 85.5 globlastp
3695 LYM677 solanum_phureja|09v1|SPHBG133730 7290 622 85.5 globlastp
3696 LYM677 tobacco|gb162|CN949741 7291 622 85.5 globlastp
3697 LYM677 tomato|09v1|BG133730 7290 622 85.5 globlastp
3698 LYM677 tomato|11v1|BG133730_P1 7290 622 85.5 globlastp
3699 LYM677 flaveria|11v1|SRR149229.183404_T1 7292 622 85.41 glotblastn
3700 LYM677 primula|11v1|SRR098679X165172_P1 7293 622 85.1 globlastp
3701 LYM677 ambrosia|11v1|SRR346935.236909_P1 7294 622 84.9 globlastp
3702 LYM677 ambrosia|11v1|SRR346946.102089_P1 7295 622 84.9 globlastp
3703 LYM677 bean|12v1|CA907588_P1 7296 622 84.9 globlastp
3704 LYM677 chickpea|11v1|FE669068_P1 7297 622 84.9 globlastp
3705 LYM677 eucalyptus|11v2|SRR001659X125325_P1 7298 622 84.9 globlastp
3706 LYM677 flax|11v1|JG019406_P1 7299 622 84.9 globlastp
3707 LYM677 trigonella|11v1|SRR066194X135604_P1 7300 622 84.9 globlastp
3708 LYM677 artemisia|10v1|EY075435_P1 7301 622 84.9 globlastp
3709 LYM677 cichorium|gb171|EH691297_P1 7302 622 84.9 globlastp
3710 LYM677 eggplant|10v1|FS039205_P1 7303 622 84.9 globlastp
3711 LYM677 lettuce|10v1|DW067400_P1 7304 622 84.9 globlastp
3712 LYM677 monkeyflower|10v1|CV518652_P1 7305 622 84.9 globlastp
3713 LYM677 pea|11v1|EX569416_P1 7300 622 84.9 globlastp
3714 LYM677 potato|10v1|BG589677_P1 7306 622 84.9 globlastp
3715 LYM677 solanum_phureja|09v1|SPHBG627529 7306 622 84.9 globlastp
3716 LYM677 tragopogon|10v1|SRR020205S0006671 7307 622 84.9 globlastp
3717 LYM677 ambrosia|11v1|SRR346935.125104_T1 7308 622 84.86 glotblastn
3718 LYM677 flaveria|11v1|SRR149229.44212_T1 7309 622 84.86 glotblastn
3719 LYM677 poppy|11v1|SRR096789.253655_T1 7310 622 84.86 glotblastn
3720 LYM677 eucalyptus|11v2|SRR001658X10263_P1 7311 622 84.5 globlastp
3721 LYM677 eucalyptus|11v1|SRR001659X109109 7311 622 84.5 globlastp
3722 LYM677 euonymus|11v1|SRR070038X220716_T1 7312 622 84.41 glotblastn
3723 LYM677 flax|11v1|JG021135_P1 7313 622 84.4 globlastp
3724 LYM677 hornbeam|12v1|SRR364455.130896_P1 7314 622 84.4 globlastp
3725 LYM677 beet|12v1|BQ487784_P1 7315 622 84.4 globlastp
3726 LYM677 beet|gb162|BQ487784 7315 622 84.4 globlastp
3727 LYM677 chickpea|09v2|FE669068 7316 622 84.4 globlastp
3728 LYM677 cichorium|gb171|EL359267_P1 7317 622 84.4 globlastp
3729 LYM677 citrus|gb166|CF829290 7318 622 84.4 globlastp
3730 LYM677 clementine|11v1|CF829290_P1 7318 622 84.4 globlastp
3731 LYM677 eggplant|10v1|FS011059_P1 7319 622 84.4 globlastp
3732 LYM677 eucalyptus|11v1|SRR001659X100605 7320 622 84.4 globlastp
3733 LYM677 nasturtium|10v1|GH169509 7321 622 84.4 globlastp
3734 LYM677 nasturtium|11v1|GH169509_P1 7321 622 84.4 globlastp
3735 LYM677 orange|11v1|CF829290_P1 7318 622 84.4 globlastp
3736 LYM677 peanut|10v1|GO325595_P1 7322 622 84.4 globlastp
3737 LYM677 pepper|gb171|GD115586_P1 7323 622 84.4 globlastp
3738 LYM677 sunflower|10v1|CD848737 7324 622 84.4 globlastp
3739 LYM677 tobacco|gb162|EB443399 7325 622 84.4 globlastp
3740 LYM677 bupleurum|11v1|SRR301254.158856_T1 7326 622 84.32 glotblastn
3741 LYM677 guizotia|10v1|GE558322_T1 7327 622 84.32 glotblastn
3742 LYM677 onion|gb162|CF434763_T1 7328 622 84.32 glotblastn
3743 LYM677 cenchrus|gb166|EB654414_P1 7329 622 84.3 globlastp
3744 LYM677 ambrosia|11v1|SRR346935.379251_P1 7330 622 83.9 globlastp
3745 LYM677 eucalyptus|11v2|SRR001659X100605_P1 7331 622 83.9 globlastp
3746 LYM677 valeriana|11v1|SRR099039X158087_P1 7332 622 83.9 globlastp
3747 LYM677 arabidopsis_lyrata|09v1|JGIAL030010_P1 7333 622 83.9 globlastp
3748 LYM677 cleome_spinosa|10v1|GR932391_P1 7334 622 83.9 globlastp
3749 LYM677 curcuma|10v1|DY386428_P1 7335 622 83.9 globlastp
3750 LYM677 lettuce|10v1|DW077430_P1 7336 622 83.9 globlastp
3751 LYM677 nasturtium|10v1|SRR032558S0015778 7337 622 83.9 globlastp
3752 LYM677 peanut|10v1|EE126331_P1 7338 622 83.9 globlastp
3753 LYM677 soybean|11v1|GLYMA06G42050 7339 622 83.9 globlastp
3754 LYM677 soybean|11v1|GLYMA12G16400 7340 622 83.9 globlastp
3755 LYM677 tomato|09v1|BG627529 7341 622 83.9 globlastp
3756 LYM677 trigonella|11v1|SRR066194X158071_P1 7342 622 83.3 globlastp
3757 LYM677 arabidopsis|10v1|AT5G54750_P1 7343 622 83.3 globlastp
3758 LYM677 cleome_gynandra|10v1|SRR015532S0004358_P1 7344 622 83.3 globlastp
3759 LYM677 cowpea|gb166|FF382438_P1 7345 622 83.3 globlastp
3760 LYM677 cycas|gb166|EX809532_P1 7346 622 83.3 globlastp
3761 LYM677 medicago|09v1|AI974266 7347 622 83.3 globlastp
3762 LYM677 medicago|12v1|AI974266_P1 7347 622 83.3 globlastp
3763 LYM677 eschscholzia|11v1|SRR014116.52507_P1 7348 622 83.2 globlastp
3764 LYM677 spruce|11v1|ES249147_P1 7349 622 82.8 globlastp
3765 LYM677 thellungiella_halophilum|11v1|BY829428_P1 7350 622 82.8 globlastp
3766 LYM677 pigeonpea|10v1|SRR054580S0006090 7351 622 82.8 globlastp
3767 LYM677 pigeonpea|11v1|GW351324_P1 7351 622 82.8 globlastp
3768 LYM677 rhizophora|10v1|SRR005793S0004856 7352 622 82.8 globlastp
3769 LYM677 spruce|gb162|CO215431 7349 622 82.8 globlastp
3770 LYM677 thellungiella|gb167|BY829428 7350 622 82.8 globlastp
3771 LYM677 rhizophora|10v1|SRR005793S0039343 7353 622 82.7 glotblastn
3772 LYM677 abies|11v2|SRR098676X10670_P1 7354 622 82.3 globlastp
3773 LYM677 b_juncea|10v2|E6ANDIZ01AFTO1_P1 7355 622 82.3 globlastp
3774 LYM677 b_oleracea|gb161|DY025844_P1 7355 622 82.3 globlastp
3775 LYM677 b_rapa|11v1|CD818353_P1 7355 622 82.3 globlastp
3776 LYM677 b_rapa|gb162|CA992296 7355 622 82.3 globlastp
3777 LYM677 canola|10v1|CD818353 7355 622 82.3 globlastp
3778 LYM677 canola|10v1|CN736199 7355 622 82.3 globlastp
3779 LYM677 pine|10v2|BE451912_P1 7356 622 82.3 globlastp
3780 LYM677 radish|gb164|EV527496 7355 622 82.3 globlastp
3781 LYM677 canola|11v1|CN736123_P1 7355 622 82.3 globlastp
3782 LYM677 cynodon|10v1|ES296622_P1 7357 622 82.2 globlastp
3783 LYM677 flaveria|11v1|SRR149232.114650_T1 7358 622 82.16 glotblastn
3784 LYM677 cynara|gb167|GE592458_P1 7359 622 81.9 globlastp
3785 LYM677 maritime_pine|10v1|SRR073317S0010700_P1 7360 622 81.7 globlastp
3786 LYM677 thellungiella_parvulum|11v1|BY829428_P1 7361 622 81.7 globlastp
3787 LYM677 medicago|09v1|DW015568 7362 622 81.7 globlastp
3788 LYM677 medicago|12v1|DW015568_P1 7362 622 81.7 globlastp
3789 LYM677 vinca|11v1|SRR098690X119056_P1 7363 622 81.2 globlastp
3790 LYM677 gnetum|10v1|SRR064399S0040420_P1 7364 622 81.2 globlastp
3791 LYM677 podocarpus|10v1|SRR065014S0089867_P1 7365 622 81.1 globlastp
3792 LYM677 cryptomeria|gb166|BY881835_P1 7366 622 80.6 globlastp
3793 LYM677 ipomoea_nil|10v1|CJ738909_P1 7367 622 80.6 globlastp
3794 LYM677 sciadopitys|10v1|SRR065035S0003976 7368 622 80.6 globlastp
3795 LYM677 cephalotaxus|11v1|SRR064395X108699_P1 7369 622 80.1 globlastp
3796 LYM677 taxus|10v1|SRR032523S0001250 7370 622 80.1 globlastp
3797 LYM677 lovegrass|gb167|EH189762_P1 7371 622 80 globlastp
3798 LYM677 switchgrass|gb167|FL781655 7372 622 80 globlastp
3799 LYM677 zostera|10v1|AM767777 7373 622 80 globlastp
3800 LYM678 sugarcane|10v1|CA072005 7374 623 89.1 globlastp
3801 LYM678 sorghum|09v1|SB04G007110 7375 623 88.6 globlastp
3802 LYM678 sorghum|12v1|SB04G007110_P1 7376 623 84 globlastp
3803 LYM678 maize|10v1|AI948126_P1 7377 623 83.7 globlastp
3804 LYM678 foxtail_millet|11v3|EC611989_P1 7378 623 83.5 globlastp
3805 LYM678 foxtail_millet|10v2|EC611989 7378 623 83.5 globlastp
3806 LYM678 millet|10v1|CD724329_P1 7379 623 82.1 globlastp
3807 LYM678 switchgrass|gb167|DN143342 7380 623 80 globlastp
3808 LYM678 switchgrass|gb167|FE600092 7381 623 80 globlastp
3809 LYM679 sugarcane|10v1|CA107876 7382 624 90.3 globlastp
3810 LYM679 sorghum|12v1|SB03G029180_P1 7383 624 89.8 globlastp
3811 LYM679 maize|10v1|ZMU08403_P1 7384 624 89.8 globlastp
3812 LYM679 sorghum|09v1|SB03G029170 7385 624 89.05 glotblastn
3813 LYM679 sorghum|12v1|SB03G029170_T1 7386 624 86.41 glotblastn
3814 LYM679 maize|10v1|MZEORFN_T1 7387 624 85.92 glotblastn
3815 LYM679 sugarcane|10v1|CA275057 7388 624 85.9 globlastp
3816 LYM679 sugarcane|10v1|CA275015 7389 624 84.95 glotblastn
3817 LYM679 foxtail_millet|10v2|OXFXTRMSLX00044084D1T1 7390 624 83.01 glotblastn
3818 LYM679 foxtail_millet|11v3|EC612987_T1 7391 624 82.04 glotblastn
3819 LYM679 foxtail_millet|11v3|PHY7SI002140M_P1 7392 624 80.1 globlastp
3820 LYM679 brachypodium|09v1|DV471640 7393 624 80.1 glotblastn
3821 LYM679 brachypodium|12v1|BRADI2G44856_T1 7393 624 80.1 glotblastn
3822 LYM679 switchgrass|gb167|FL783152 7394 624 80.1 glotblastn
3823 LYM680 sugarcane|10v1|CA114943 7395 625 88.4 globlastp
3824 LYM680 sorghum|09v1|SB03G006340 7396 625 86.2 globlastp
3825 LYM680 sorghum|12v1|SB03G006340_P1 7396 625 86.2 globlastp
3826 LYM680 switchgrass|gb167|FE635568_P1 7397 625 80.4 globlastp
3827 LYM680 switchgrass|gb167|FE618862 7398 625 80.29 glotblastn
3828 LYM682 maize|10v1|CK985738_P1 7399 626 88.9 globlastp
3829 LYM682 foxtail_millet|11v3|PHY7SI007620M_P1 7400 626 86.7 globlastp
3830 LYM682 sorghum|09v1|SB10G007165 7401 626 85.9 globlastp
3831 LYM682 sorghum|12v1|SB10G007165_P1 7401 626 85.9 globlastp
3832 LYM682 wheat|10v2|CA622492 7402 626 85.6 globlastp
3833 LYM682 foxtail_millet|11v3|PHY7SI008755M_P1 7403 626 83.7 globlastp
3834 LYM682 foxtail_millet|11v3|SICRP097492_P1 7403 626 83.7 globlastp
3835 LYM682 foxtail_millet|10v2|SICRP004184 7404 626 82.7 globlastp
3836 LYM684 rice|11v1|AA754345_P1 7405 628 97.1 globlastp
3837 LYM684 foxtail_millet|11v3|PHY7SI014626M_P1 7406 628 81.4 globlastp
3838 LYM684 millet|10v1|EVO454PM010276_P1 7407 628 81 globlastp
3839 LYM684 foxtail_millet|10v2|SICRP029723 7408 628 80 globlastp
3840 LYM685 rice|11v1|BI805724_P1 7409 629 88.9 globlastp
3841 LYM686 foxtail_millet|11v3|PHY7SI025848M_P1 7410 630 94.6 globlastp
3842 LYM686 brachypodium|09v1|SRR031797S0079359 7411 630 93.9 globlastp
3843 LYM686 brachypodium|12v1|BRADI4G23600T2_P1 7411 630 93.9 globlastp
3844 LYM686 sorghum|09v1|SB05G005680 7412 630 93.8 globlastp
3845 LYM686 sorghum|12v1|SB05G005680_P1 7412 630 93.8 globlastp
3846 LYM686 sorghum|09v1|SB04G004200 7413 630 93.7 globlastp
3847 LYM686 sorghum|12v1|SB04G004200_P1 7413 630 93.7 globlastp
3848 LYM686 rye|12v1|DRR001012.114318_P1 7414 630 93.3 globlastp
3849 LYM686 gossypium_raimondii|12v1|DT458184_P1 7415 630 84.7 globlastp
3850 LYM686 eucalyptus|11v2|SRR001660X10716_P1 7416 630 84.1 globlastp
3851 LYM686 eucalyptus|11v1|SRR001660X10716 7416 630 84.1 globlastp
3852 LYM686 pigeonpea|11v1|SRR054580X112069_P1 7417 630 83.8 globlastp
3853 LYM686 watermelon|11v1|VMEL03432835211246_P1 7418 630 83.6 globlastp
3854 LYM686 soybean|11v1|GLYMA04G38800 7419 630 83.1 globlastp
3855 LYM686 clementine|11v1|CX298207_P1 7420 630 83 globlastp
3856 LYM686 soybean|11v1|GLYMA06G16110 7421 630 83 globlastp
3857 LYM686 prunus|10v1|BU039281 7422 630 82.8 globlastp
3858 LYM686 chickpea|11v1|SRR133517.112456_T1 7423 630 82.75 glotblastn
3859 LYM686 cacao|10v1|CGD0027220_P1 7424 630 82.2 globlastp
3860 LYM686 cucumber|09v1|CSCRP002267_T1 7425 630 81.83 glotblastn
3861 LYM686 tomato|11v1|AW154923_P1 7426 630 81.8 globlastp
3862 LYM686 poplar|10v1|CV261943_P1 7427 630 81.6 globlastp
3863 LYM686 aquilegia|10v2|DT762298 7428 630 81.5 globlastp
3864 LYM686 bean|12v1|CA902038_P1 7429 630 80.7 globlastp
3865 LYM686 thellungiella_parvulum|11v1|EPPRD023559_P1 7430 630 80.7 globlastp
3866 LYM686 arabidopsis|10v1|AT5G63960_P1 7431 630 80.5 globlastp
3867 LYM686 pine|10v2|DN612280_T1 7432 630 80.38 glotblastn
3868 LYM686 arabidopsis_lyrata|09v1|JGIAL031065_P1 7433 630 80.2 globlastp
3869 LYM686 monkeyflower|10v1|GR006937_P1 7434 630 80 globlastp
3870 LYM688 sugarcane|10v1|CA098697 7435 632 93 globlastp
3871 LYM688 maize|10v1|AI619320_P1 7436 632 86.9 globlastp
3872 LYM688 millet|10v1|PMSLX0065689D1_P1 7437 632 86 globlastp
3873 LYM688 switchgrass|gb167|FE646506 7438 632 85.5 globlastp
3874 LYM688 foxtail_millet|11v3|EC612848_P1 7439 632 81.3 globlastp
3875 LYM688 rice|11v1|OSCRP084058_P1 7440 632 81 globlastp
3876 LYM688 rice|11v1|AA750437_P1 7440 632 81 globlastp
3877 LYM688 rice|gb170|OS03G55670 7440 632 81 globlastp
3878 LYM690 maize|10v1|BM416926_P1 7441 634 90.6 globlastp
3879 LYM690 sorghum|09v1|SB01G017170 7442 634 88.8 globlastp
3880 LYM690 sorghum|12v1|SB01G017170_P1 7442 634 88.8 globlastp
3881 LYM690 switchgrass|gb167|DN143640 7443 634 84.6 globlastp
3882 LYM690 foxtail_millet|11v3|PHY7SI035215M_P1 7444 634 84.4 globlastp
3883 LYM690 foxtail_millet|11v3|SICRP001534_P1 7444 634 84.4 globlastp
3884 LYM690 foxtail_millet|10v2|SICRP017186 7445 634 82.38 glotblastn
3885 LYM690 foxtail_millet|11v3|SICRP062528_P1 7446 634 82.2 globlastp
3886 LYM690 foxtail_millet|11v3|PHY7SI029490M_P1 7447 634 82 globlastp
3887 LYM691 maize|10v1|AI977992_P1 7448 635 96.1 globlastp
3888 LYM691 foxtail_millet|11v3|EC612589_P1 7449 635 95.9 globlastp
3889 LYM691 switchgrass|gb167|FE599761 7450 635 95.6 globlastp
3890 LYM691 rice|11v1|GFXAC069145X21_P1 7451 635 90.8 globlastp
3891 LYM691 rice|gb170|OS10G33420 7451 635 90.8 globlastp
3892 LYM691 brachypodium|09v1|DV486633 7452 635 89.1 globlastp
3893 LYM691 brachypodium|12v1|BRADI3G28580_P1 7452 635 89.1 globlastp
3894 LYM691 wheat|10v2|BE431031 7453 635 88.9 globlastp
3895 LYM691 oil_palm|11v1|EL692412_P1 7454 635 81.7 globlastp
3896 LYM692 maize|10v1|AI941649_P1 7455 636 99 globlastp
3897 LYM692 rice|11v1|BI806997_P1 7456 636 92.8 globlastp
3898 LYM692 rice|gb170|OS10G25320 7456 636 92.8 globlastp
3899 LYM692 brachypodium|12v1|BRADI3G23230_P1 7457 636 91.6 globlastp
3900 LYM692 brachypodium|09v1|DV471548 7458 636 91.4 globlastp
3901 LYM692 oat|10v2|GR352336 7459 636 90.41 glotblastn
3902 LYM692 oat|11v1|GR352336_T1 7459 636 90.41 glotblastn
3903 LYM692 rye|12v1|BE636899_P1 7460 636 89.9 globlastp
3904 LYM692 wheat|10v2|BE406346 7461 636 89.9 globlastp
3905 LYM692 barley|10v2|AV835399_P1 7462 636 89.7 globlastp
3906 LYM692 switchgrass|gb167|DN149108 7463 636 84.62 glotblastn
3907 LYM692 oil_palm|11v1|SRR190698.115219_T1 7464 636 81.01 glotblastn
3908 LYM692 foxtail_millet|11v3|PHY7SI040283M_P1 7465 636 80.5 globlastp
3909 LYM694 sugarcane|10v1|CA180305 7466 638 93.9 globlastp
3910 LYM694 foxtail_millet|11v3|PHY7SI036577M_P1 7467 638 82.3 globlastp
3911 LYM695 maize|10v1|AI586634_P1 7468 639 95 globlastp
3912 LYM695 maize|10v1|AI622355_P1 7469 639 94.3 globlastp
3913 LYM695 foxtail_millet|11v3|EC613215_P1 7470 639 91 globlastp
3914 LYM695 switchgrass|gb167|FE615019 7471 639 89.85 glotblastn
3915 LYM695 foxtail_millet|10v2|EC613215 7472 639 85.8 globlastp
3916 LYM695 millet|10v1|EVO454PM035183_P1 7473 639 85.4 globlastp
3917 LYM695 rice|11v1|BM420914_P1 7474 639 83.5 globlastp
3918 LYM695 rice|gb170|OS03G25970 7474 639 83.5 globlastp
3919 LYM695 oat|11v1|GO592482_P1 7475 639 81.5 globlastp
3920 LYM695 oat|10v2|CN815746 7475 639 81.5 globlastp
3921 LYM695 brachypodium|09v1|DV471651 7476 639 81.1 globlastp
3922 LYM695 brachypodium|12v1|BRADI1G61240_P1 7477 639 80.8 globlastp
3923 LYM695 brachypodium|12v1|BRADI1G61230T2_P1 7478 639 80.2 globlastp
3924 LYM695 wheat|10v2|BE400923 7479 639 80 globlastp
3925 LYM697 maize|10v1|AW400131_P1 7480 640 94.6 globlastp
3926 LYM697 foxtail_millet|11v3|PHY7SI035194M_P1 7481 640 90.3 globlastp
3927 LYM697 switchgrass|gb167|DN142379 7482 640 90.3 globlastp
3928 LYM697 barley|10v2|BF620011_P1 7483 640 82.5 globlastp
3929 LYM697 brachypodium|09v1|GT775205 7484 640 82.3 globlastp
3930 LYM697 brachypodium|12v1|BRADI1G63460_P1 7484 640 82.3 globlastp
3931 LYM697 rye|12v1|DRR001012.175511_P1 7485 640 81.4 globlastp
3932 LYM698 foxtail_millet|11v3|EC613540_P1 7486 641 92.3 globlastp
3933 LYM698 millet|10v1|EVO454PM029595_P1 7487 641 91.5 globlastp
3934 LYM698 maize|10v1|BM336637_P1 7488 641 90.6 globlastp
3935 LYM698 sugarcane|10v1|BQ534279 7489 641 89 globlastp
3936 LYM698 maize|10v1|W21716_T1 7490 641 88.33 glotblastn
3937 LYM698 rice|11v1|GFXAC079633X19_P1 7491 641 86 globlastp
3938 LYM698 rice|gb170|OS03G08430 7492 641 85.9 globlastp
3939 LYM698 brachypodium|09v1|DV470400 7493 641 85.8 globlastp
3940 LYM698 brachypodium|12v1|BRADI1G72490_P1 7493 641 85.8 globlastp
3941 LYM698 barley|10v2|BI950205_P1 7494 641 84.9 globlastp
3942 LYM698 oat|10v2|GR323328 7495 641 84.9 globlastp
3943 LYM698 rye|12v1|DRR001012.175542_T1 7496 641 84.44 glotblastn
3944 LYM698 rye|12v1|DRR001012.138647_P1 7497 641 84.4 globlastp
3945 LYM698 rye|12v1|DRR001012.169487_P1 7498 641 84.4 globlastp
3946 LYM698 wheat|10v2|BE418843 7499 641 83.65 glotblastn
3947 LYM699 maize|10v1|AW313142_P1 7500 642 92.1 globlastp
3948 LYM699 switchgrass|gb167|FE644672 7501 642 91.7 globlastp
3949 LYM699 foxtail_millet|11v3|PHY7SI037050M_P1 7502 642 90.6 globlastp
3950 LYM699 foxtail_millet|10v2|FXTRMSLX00105561D1 7502 642 90.6 globlastp
3951 LYM699 rice|gb170|OS03G05270 7503 642 87.2 globlastp
3952 LYM699 sugarcane|10v1|CA111273 7504 642 83.39 glotblastn
3953 LYM701 brachypodium|09v1|DV481080 7505 644 85 globlastp
3954 LYM701 brachypodium|12v1|BRADI1G54650_P1 7505 644 85 globlastp
3955 LYM701 rice|11v1|CV730758_P1 7506 644 82.1 globlastp
3956 LYM701 rice|gb170|OS07G09670 7506 644 82.1 globlastp
3957 LYM703 maize|10v1|BG268618_P1 7507 646 95.6 globlastp
3958 LYM703 maize|10v1|BM333127_P1 7508 646 95.1 globlastp
3959 LYM703 foxtail_millet|11v3|GT228310_P1 7509 646 94.2 globlastp
3960 LYM703 switchgrass|gb167|FE598821 7510 646 91.1 globlastp
3961 LYM703 sugarcane|10v1|CA096456 7511 646 90.6 globlastp
3962 LYM703 brachypodium|09v1|DV478121 7512 646 90.1 globlastp
3963 LYM703 brachypodium|12v1|BRADI4G36880_P1 7512 646 90.1 globlastp
3964 LYM703 rice|11v1|BE039673_P1 7513 646 89.8 globlastp
3965 LYM703 rice|gb170|OS09G37230 7513 646 89.8 globlastp
3966 LYM703 barley|10v2|AV833260_P1 7514 646 85.9 globlastp
3967 LYM703 rye|12v1|DRR001012.104477_T1 7515 646 83.36 glotblastn
3968 LYM703 rye|12v1|BE586340_T1 7516 646 83.22 glotblastn
3969 LYM703 wheat|10v2|BF200601 7517 646 80 globlastp
3970 LYM704 rice|11v1|CA760512_P1 7518 647 82.8 globlastp
3971 LYM704 rice|gb170|OS06G07010 7518 647 82.8 globlastp
3972 LYM705 maize|10v1|DN226591_P1 7519 648 85.3 globlastp
3973 LYM705 maize|10v1|DV020636_P1 7520 648 83.7 globlastp
3974 LYM705 foxtail_millet|11v3|PHY7SI029903M_P1 7521 648 81.2 globlastp
3975 LYM705 switchgrass|gb167|DN144329 7522 648 80.4 glotblastn
3976 LYM706 maize|10v1|AW066558_P1 7523 649 97.9 globlastp
3977 LYM706 switchgrass|gb167|DN141533 7524 649 97 globlastp
3978 LYM706 millet|10v1|EVO454PM007397_P1 7525 649 96.8 globlastp
3979 LYM706 foxtail_millet|11v3|PHY7SI029911M_P1 7526 649 96.7 globlastp
3980 LYM706 foxtail_millet|10v2|SICRP002176 7526 649 96.7 globlastp
3981 LYM706 maize|10v1|BM498927_P1 7527 649 96.5 globlastp
3982 LYM706 barley|10v2|BE413453_P1 7528 649 92.4 globlastp
3983 LYM706 rye|12v1|DRR001012.171379_P1 7529 649 92 globlastp
3984 LYM706 wheat|10v2|BE403351 7529 649 92 globlastp
3985 LYM706 rice|11v1|BI808461_P1 7530 649 91.4 globlastp
3986 LYM706 rice|gb170|OS07G49040 7530 649 91.4 globlastp
3987 LYM706 brachypodium|09v1|GT808814 7531 649 91 globlastp
3988 LYM706 brachypodium|12v1|BRADHG16810_P1 7531 649 91 globlastp
3989 LYM706 foxtail_millet|11v3|PHY7SI035800M_P1 7532 649 87 globlastp
3990 LYM706 rice|11v1|AU160985_P1 7533 649 86.6 globlastp
3991 LYM706 rice|gb170|OS03G18970 7533 649 86.6 globlastp
3992 LYM706 sorghum|09v1|SB01G037810 7534 649 85.6 globlastp
3993 LYM706 sorghum|12v1|SB01G037810_P1 7534 649 85.6 globlastp
3994 LYM706 brachypodium|09v1|GT833085 7535 649 85.5 globlastp
3995 LYM706 brachypodium|12v1|BRADI1G64780_P1 7535 649 85.5 globlastp
3996 LYM706 rye|12v1|BE704716_T1 7536 649 84.3 glotblastn
3997 LYM708 brachypodium|12v1|SOLX00061016_T1 7537 651 87.08 glotblastn
3997 LYM670 brachypodium|12v1|SOLX00061016_T1 7537 716 90.3 glotblastn
3998 LYM708 pigeonpea|11v1|SRR054580X519963_T1 7538 651 80.13 glotblastn
3999 LYM709 maize|10v1|AW231372_P1 7539 652 96.1 globlastp
4000 LYM709 millet|10v1|EVO454PM000622_P1 7540 652 92.9 globlastp
4001 LYM709 switchgrass|gb167|DN151776 7541 652 91.7 globlastp
4002 LYM709 rice|11v1|BI800490_P1 7542 652 90.1 globlastp
4003 LYM709 foxtail_millet|10v2|SICRP003330 7543 652 89.9 globlastp
4004 LYM709 rice|gb170|OS01G54030 7544 652 88.7 globlastp
4005 LYM709 brachypodium|12v1|BRADI2G49540_P1 7545 652 88.6 globlastp
4006 LYM709 wheat|10v2|BE604295 7546 652 88 globlastp
4007 LYM709 brachypodium|09v1|GT864163 7547 652 87.2 globlastp
4008 LYM709 barley|10v2|BI948169_P1 7548 652 86.6 globlastp
4009 LYM709 foxtail_millet|11v3|PHY7SI000808M_P1 7549 652 85.7 globlastp
4010 LYM709 brachypodium|12v1|GT864163_T1 7550 652 80.41 glotblastn
4011 LYM710 maize|10v1|AI668327_P1 7551 653 85.7 globlastp
4012 LYM710 foxtail_millet|11v3|PHY7SI003822M_P1 7552 653 81.6 globlastp
4013 LYM711 maize|10v1|AW055988_P1 7553 654 83.8 globlastp
4014 LYM711 switchgrass|gb167|FL703610_T1 7554 654 83.71 glotblastn
4015 LYM711 foxtail_millet|11v3|SOLX00023920_P1 7555 654 82.8 globlastp
4016 LYM712 foxtail_millet|11v3|PHY7SI019853M_P1 7556 655 84.7 globlastp
4017 LYM712 rice|11v1|C19393_T1 655 84.44 glotblastn
4018 LYM712 rice|gb170|OS02G10080 7557 655 84.4 globlastp
4019 LYM712 sugarcane|10v1|AA080627 7558 655 80.5 globlastp
4020 LYM713 maize|10v1|BM660506_P1 7559 656 92.4 globlastp
4021 LYM713 foxtail_millet|11v3|EC612684_P1 7560 656 90.6 globlastp
4022 LYM713 foxtail_millet|11v3|PHY7SI025871M_P1 7561 656 90.5 globlastp
4023 LYM713 sorghum|09v1|SB08G001260 7562 656 89.7 globlastp
4024 LYM713 sorghum|12v1|SB08G001260_P1 7562 656 89.7 globlastp
4025 LYM713 rice|11v1|BI808936_T1 7563 656 87.02 glotblastn
4026 LYM713 brachypodium|09v1|GT762130 7564 656 87 globlastp
4027 LYM713 brachypodium|12v1|BRADI4G43300_P1 7564 656 87 globlastp
4028 LYM713 rice|11v1|CA766334_P1 7565 656 86.6 globlastp
4029 LYM713 rice|gb170|OS12G04220 7565 656 86.6 globlastp
4030 LYM713 rice|gb170|OS11G04460 7566 656 85.5 globlastp
4031 LYM713 oat|10v2|CN815947 7567 656 84.32 glotblastn
4032 LYM713 millet|10v1|EVO454PM000493_P1 7568 656 84.1 globlastp
4033 LYM714 foxtail_millet|11v3|PHY7SI009328M_T1 7569 657 82.05 glotblastn
4034 LYM715 foxtail_millet|11v3|PHY7SI029664M_P1 7570 658 83.7 globlastp
4035 LYM715 foxtail_millet|10v2|SICRP012612 7571 658 81.7 globlastp
4036 LYM716 switchgrass|gb167|DN152507 7572 659 91.2 globlastp
4037 LYM716 maize|10v1|BM417588_P1 7573 659 90.7 globlastp
4038 LYM716 foxtail_millet|11v3|PHY7SI011224M_P1 7574 659 90.6 globlastp
4039 LYM716 foxtail_millet|10v2|SICRP000100 7575 659 90.6 globlastp
4040 LYM716 sugarcane|10v1|CA093825 7576 659 89.38 glotblastn
4041 LYM716 millet|10v1|PMSLX0039181D2_P1 7577 659 87.5 globlastp
4042 LYM716 maize|10v1|AI861116_P1 7578 659 84.4 globlastp
4043 LYM716 wheat|10v2|BE413786 7579 659 84.2 globlastp
4044 LYM716 pseudoroegneria|gb167|FF345192 7580 659 83.4 globlastp
4045 LYM716 leymus|gb166|EG388433_P1 7581 659 82.8 globlastp
4046 LYM716 wheat|10v2|BE423792 7582 659 81 globlastp
4047 LYM716 rye|12v1|DRR001016.527591_T1 7583 659 80.12 glotblastn
4048 LYM717 maize|10v1|CF046464_P1 7584 660 83.6 globlastp
4049 LYM718 maize|10v1|CF032989_P1 7585 661 84.1 globlastp
4050 LYM719 sugarcane|10v1|BQ478958 7586 662 98.7 globlastp
4051 LYM719 foxtail_millet|10v2|SICRP036358 7587 662 90.2 globlastp
4052 LYM719 switchgrass|gb167|DN149929 7588 662 90 globlastp
4053 LYM719 millet|10v1|CD725672_P1 7589 662 88.3 globlastp
4054 LYM719 maize|10v1|BU101389_T1 7590 662 88.21 glotblastn
4055 LYM719 foxtail_millet|11v3|PHY7SI013599M_T1 7591 662 84.73 glotblastn
4056 LYM719 rice|11v1|BI806794_P1 7592 662 82.7 globlastp
4057 LYM719 rice|gb170|OS08G42740T3 7592 662 82.7 globlastp
4058 LYM719 wheat|10v2|BE403726 7593 662 80.4 globlastp
4059 LYM721 maize|10v1|ZMCRP2V003729_P1 7594 664 99.4 globlastp
4060 LYM721 foxtail_millet|11v3|PHY7SI020861M_T1 7595 664 98.84 glotblastn
4061 LYM721 rice|11v1|CI745404_T1 7596 664 98.84 glotblastn
4062 LYM721 rice|gb170|OS04G16804 7596 664 98.84 glotblastn
4063 LYM721 rice|gb170|OSP1G00800 7597 664 98.84 glotblastn
4064 LYM721 rice|11v1|OSCRP021109_T1 664 98.84 glotblastn
4065 LYM721 rice|11v1|OSCRP167245_T1 664 98.84 glotblastn
4066 LYM721 rice|11v1|OSPRD087046_T1 664 98.84 glotblastn
4067 LYM721 rice|gb170|OS05G22868 7598 664 98.27 glotblastn
4068 LYM721 rice|11v1|OSCRP111880_T1 664 98.27 glotblastn
4069 LYM721 maize|10v1|DN560320_T1 7599 664 97.71 glotblastn
4070 LYM721 maize|10v1|GRMZM2G474515T01_T1 7600 664 97.11 glotblastn
4071 LYM721 foxtail_millet|11v3|GT090903_T1 664 97.11 glotblastn
4072 LYM721 rice|gb170|GFXAC092750X9 7601 664 96.53 glotblastn
4073 LYM721 rice|11v1|OSCRP026625_T1 664 96.53 glotblastn
4074 LYM721 brachypodium|09v1|CRPBD006459 7602 664 93.71 glotblastn
4075 LYM721 brachypodium|12v1|BDPRD12V1000513_T1 664 93.71 glotblastn
4076 LYM721 brachypodium|12v1|BDPRD12V1002850_T1 664 93.71 glotblastn
4076 LYM745 brachypodium|12v1|BDPRD12V1002850_T1 687 97.44 glotblastn
4076 LYM530 brachypodium|12v1|BDPRD12V1002850_T1 699 93.91 glotblastn
4077 LYM721 brachypodium|09v1|CRPBD010137 7603 664 92.57 glotblastn
4078 LYM721 brachypodium|12v1|BDCRP12V1047739_T1 664 92.57 glotblastn
4079 LYM722 maize|10v1|AW324687_P1 7604 665 92.8 globlastp
4080 LYM722 switchgrass|gb167|FE600976 7605 665 92 globlastp
4081 LYM722 foxtail_millet|11v3|PHY7SI009631M_P1 7606 665 90.9 globlastp
4082 LYM722 foxtail_millet|10v2|SICRP009170 7607 665 87.6 globlastp
4083 LYM722 oat|10v2|GR343028 7608 665 83.9 globlastp
4084 LYM722 rye|12v1|DRR001012.171596_P1 7609 665 83.6 globlastp
4085 LYM722 rice|11v1|BM420357_P1 7610 665 83.6 globlastp
4086 LYM722 rice|gb170|OS12G07150 7610 665 83.6 globlastp
4087 LYM722 wheat|10v2|BE412127 7611 665 83.6 globlastp
4088 LYM722 brachypodium|09v1|DV473390 7612 665 83.4 globlastp
4089 LYM722 brachypodium|12v1|BRADI4G41550_P1 7612 665 83.4 globlastp
4090 LYM723 foxtail_millet|11v3|PHY7SI021418M_P1 7613 666 81.5 globlastp
4091 LYM724 maize|10v1|AI491594_P1 7614 667 96.6 globlastp
4092 LYM724 foxtail_millet|11v3|PHY7SI021645M_P1 7615 667 96.2 globlastp
4093 LYM724 switchgrass|gb167|DN151456 7616 667 95 globlastp
4094 LYM724 foxtail_millet|10v2|SICRP007323 7617 667 94.1 globlastp
4095 LYM724 millet|10v1|EVO454PM015167_P1 7618 667 93 globlastp
4096 LYM724 maize|10v1|AW787842_P1 7619 667 92.4 globlastp
4097 LYM724 rice|11v1|BI809532_P1 7620 667 86 globlastp
4098 LYM724 rice|gb170|OS05G05160 7620 667 86 globlastp
4099 LYM724 rice|11v1|AA749635_T1 7621 667 85.33 glotblastn
4100 LYM724 rice|gb170|OSHG17080 7621 667 85.33 glotblastn
4101 LYM724 brachypodium|12v1|BRADI2G36470_P1 7622 667 83.8 globlastp
4102 LYM724 foxtail_millet|11v3|PHY7SI026197M_P1 7623 667 83.5 globlastp
4103 LYM724 barley|10v2|AV836613_P1 7624 667 83 globlastp
4104 LYM724 rye|12v1|BE496211_T1 7625 667 82.8 glotblastn
4105 LYM724 wheat|10v2|BE400523 7626 667 82.8 globlastp
4106 LYM724 rye|12v1|DRR001012.133023_P1 7627 667 82.4 globlastp
4107 LYM724 rye|12v1|DRR001012.301113_P1 7627 667 82.4 globlastp
4108 LYM724 rye|12v1|DRR001012.119583_P1 7628 667 82.3 globlastp
4109 LYM724 sorghum|09v1|SB05G010000 7629 667 82.2 globlastp
4110 LYM724 sorghum|12v1|SB05G010000_P1 7629 667 82.2 globlastp
4111 LYM724 wheat|10v2|BE470969 7630 667 82.1 globlastp
4112 LYM724 wheat|10v2|BF482328 7631 667 81.4 globlastp
4113 LYM725 maize|10v1|AI734661_P1 7632 668 86.7 globlastp
4114 LYM725 foxtail_millet|11v3|PHY7SI025029M_P1 7633 668 84.6 globlastp
4115 LYM725 foxtail_millet|10v2|SICRP041430 7634 668 83.99 glotblastn
4116 LYM726 maize|10v1|AI947940_P1 7635 669 92.5 globlastp
4117 LYM726 foxtail_millet|11v3|PHY7SI024545M_P1 7636 669 89.6 globlastp
4118 LYM726 brachypodium|12v1|BRADI2G22320_T1 7637 669 80.23 glotblastn
4119 LYM726 rye|12v1|DRR001012.224605_P1 7638 669 80.2 globlastp
4120 LYM727 sorghum|12v1|SB09G026270_P1 7639 670 85.6 globlastp
4121 LYM731 maize|10v1|DV540487_P1 7640 674 89.2 globlastp
4122 LYM731 sugarcane|10v1|CA069954 7641 674 85.8 globlastp
4123 LYM732 maize|10v1|AI600558_P1 7642 675 88.2 globlastp
4124 LYM732 foxtail_millet|11v3|PHY7SI017313M_P1 7643 675 87.9 globlastp
4125 LYM732 sorghum|09v1|SB04G007170 7644 675 87.9 globlastp
4126 LYM732 sorghum|12v1|SB04G007170_P1 7644 675 87.9 globlastp
4127 LYM732 rice|11v1|BE040375_P1 7645 675 87.8 globlastp
4128 LYM732 rice|gb170|OS02G11050 7645 675 87.8 globlastp
4129 LYM732 switchgrass|gb167|FE612096 7646 675 87.8 globlastp
4130 LYM732 barley|10v2|BF624269_P1 7647 675 87.7 globlastp
4131 LYM732 maize|10v1|W49855_P1 7648 675 87.7 globlastp
4132 LYM732 switchgrass|gb167|FE641383 7649 675 87.7 globlastp
4133 LYM732 wheat|10v2|BE422591 7647 675 87.7 globlastp
4134 LYM732 wheat|10v2|BQ237242 7647 675 87.7 globlastp
4135 LYM732 rye|12v1|BE494211_P1 7650 675 87.6 globlastp
4136 LYM732 barley|10v2|BE421969XX1_P1 7651 675 87.6 globlastp
4137 LYM732 brachypodium|09v1|DV485498 7652 675 87.6 globlastp
4138 LYM732 brachypodium|12v1|BRADI3G07700_P1 7652 675 87.6 globlastp
4139 LYM732 leymus|gb166|EG389317_P1 7651 675 87.6 globlastp
4140 LYM732 millet|10v1|EVO454PM017118_P1 7653 675 87.6 globlastp
4141 LYM732 wheat|10v2|BE416312 7651 675 87.6 globlastp
4142 LYM732 rye|12v1|DRR001012.112840_P1 7654 675 87.5 globlastp
4143 LYM732 rye|12v1|DRR001012.134226_P1 7654 675 87.5 globlastp
4144 LYM732 pseudoroegneria|gb167|FF340342 7655 675 87.4 globlastp
4145 LYM732 wheat|10v2|CA620330 7656 675 87.4 globlastp
4146 LYM732 brachypodium|12v1|BRADHG36830_P1 7657 675 87 globlastp
4147 LYM732 oat|10v2|CN817787 7658 675 86.9 globlastp
4148 LYM732 oat|11v1|CN817787_P1 7658 675 86.9 globlastp
4149 LYM732 oat|10v2|GO582156 7659 675 86.9 globlastp
4150 LYM732 oat|11v1|GO582123_P1 7659 675 86.9 globlastp
4151 LYM732 phalaenopsis|11v1|CK858753_P1 7660 675 86 globlastp
4152 LYM732 phalaenopsis|11v1|SRR125771.1026916_P1 7661 675 86 globlastp
4153 LYM732 aristolochia|10v1|FD752980_P1 7662 675 86 globlastp
4154 LYM732 grape|gb160|CB004906 7663 675 86 globlastp
4155 LYM732 ambrosia|11v1|SRR346943.112590_P1 7664 675 85.7 globlastp
4156 LYM732 cotton|11v1|BE052760_P1 7665 675 85.7 globlastp
4157 LYM732 gossypium_raimondii|12v1|BE055647_P1 7666 675 85.7 globlastp
4158 LYM732 olea|11v1|SRR014463.16487_P1 7667 675 85.7 globlastp
4159 LYM732 platanus|11v1|SRR096786X101189_P1 7668 675 85.7 globlastp
4160 LYM732 cotton|10v2|BE055642 7666 675 85.7 globlastp
4161 LYM732 cotton|11v1|BE055642_P1 7666 675 85.7 globlastp
4162 LYM732 oak|10v1|FP030715_P1 7669 675 85.7 globlastp
4163 LYM732 amorphophallus|11v2|SRR089351X154410_P1 7670 675 85.6 globlastp
4164 LYM732 euonymus|11v1|SRR070038X108655_P1 7671 675 85.5 globlastp
4165 LYM732 gossypium_raimondii|12v1|BE052760_P1 7672 675 85.5 globlastp
4166 LYM732 grape|11v1|GSVIVT01017222001_P1 7673 675 85.5 globlastp
4167 LYM732 artemisia|10v1|EY035921_P1 7674 675 85.5 globlastp
4168 LYM732 cotton|10v2|BE052760 7672 675 85.5 globlastp
4169 LYM732 cotton|11v1|DT048786_P1 7672 675 85.5 globlastp
4170 LYM732 grape|11v1|GSVIVT01035767001_P1 7675 675 85.5 globlastp
4171 LYM732 grape|gb160|BQ796970 7675 675 85.5 globlastp
4172 LYM732 monkeyflower|10v1|GO973088_P1 7676 675 85.5 globlastp
4173 LYM732 prunus|10v1|BU039992 7677 675 85.5 globlastp
4174 LYM732 foxtail_millet|11v3|PHY7SI006523M_T1 7678 675 85.48 glotblastn
4175 LYM732 ambrosia|11v1|SRR346935.102367_P1 7679 675 85.3 globlastp
4176 LYM732 ambrosia|11v1|SRR346935.102836_P1 7679 675 85.3 globlastp
4177 LYM732 chelidonium|11v1|SRR084752X10130XX1_P1 7680 675 85.3 globlastp
4178 LYM732 tabernaemontana|11v1|SRR098689X102019_P1 7681 675 85.3 globlastp
4179 LYM732 utricularia|11v1|SRR094438.100168_P1 7682 675 85.3 globlastp
4180 LYM732 cassava|09v1|CK644652_P1 7683 675 85.3 globlastp
4181 LYM732 cassava|09v1|DR087232_P1 7684 675 85.3 globlastp
4182 LYM732 cotton|11v1|CO103563XX1_T1 7685 675 85.27 glotblastn
4183 LYM732 ipomoea_nil|10v1|BJ560298_T1 7686 675 85.24 glotblastn
4184 LYM732 apple|11v1|CN493163_P1 7687 675 85.2 globlastp
4185 LYM732 orobanche|10v1|SRR023189S0024830_P1 7688 675 85.2 globlastp
4186 LYM732 catharanthus|11v1|EG558267_P1 7689 675 85.1 globlastp
4187 LYM732 citrus|gb166|CB611197 7690 675 85.04 glotblastn
4188 LYM732 apple|11v1|CN890053_P1 7691 675 85 globlastp
4189 LYM732 cannabis|12v1|JK495288_P1 7692 675 85 globlastp
4190 LYM732 flaveria|11v1|SRR149229.100470_P1 7693 675 85 globlastp
4191 LYM732 flaveria|11v1|SRR149229.126130_P1 7693 675 85 globlastp
4192 LYM732 flaveria|11v1|SRR149232.108448_P1 7693 675 85 globlastp
4193 LYM732 gossypium_raimondii|12v1|AI727523_P1 7694 675 85 globlastp
4194 LYM732 phyla|11v2|SRR099035X100142_P1 7695 675 85 globlastp
4195 LYM732 platanus|11v1|SRR096786X101928_P1 7696 675 85 globlastp
4196 LYM732 trigonella|11v1|SRR066194X106107_P1 7697 675 85 globlastp
4197 LYM732 centaurea|gb166|EH726046_P1 7698 675 85 globlastp
4198 LYM732 clementine|11v1|CB611197_P1 7699 675 85 globlastp
4199 LYM732 lotus|09v1|LLB1418881_P1 7700 675 85 globlastp
4200 LYM732 millet|10v1|EVO454PM005100_P1 7701 675 85 globlastp
4201 LYM732 monkeyflower|10v1|GO982695_P1 7702 675 85 globlastp
4202 LYM732 nasturtium|10v1|SRR032558S0002899 7703 675 85 globlastp
4203 LYM732 nasturtium|11v1|SRR032558.102915_P1 7703 675 85 globlastp
4204 LYM732 orange|11v1|CB611197_P1 7699 675 85 globlastp
4205 LYM732 nasturtium|10v1|GH168766 7704 675 84.9 globlastp
4206 LYM732 nasturtium|11v1|GH168766_P1 7704 675 84.9 globlastp
4207 LYM732 arnica|11v1|SRR099034X108350_P1 7705 675 84.8 globlastp
4208 LYM732 canola|11v1|CN725971_T1 7706 675 84.8 glotblastn
4209 LYM732 canola|11v1|EE436954_P1 7707 675 84.8 globlastp
4210 LYM732 canola|11v1|EE476649_P1 7708 675 84.8 globlastp
4211 LYM732 chickpea|11v1|FE671678_P1 7709 675 84.8 globlastp
4212 LYM732 flaveria|11v1|SRR149229.122029_P1 7710 675 84.8 globlastp
4213 LYM732 phyla|11v2|SRR099037X106234_P1 7711 675 84.8 globlastp
4214 LYM732 sunflower|12v1|CD845885_P1 7712 675 84.8 globlastp
4215 LYM732 vinca|11v1|SRR098690X124323_P1 7713 675 84.8 globlastp
4216 LYM732 watermelon|11v1|DV632112_P1 7714 675 84.8 globlastp
4217 LYM732 arabidopsis|10v1|AT5G19990_P1 7715 675 84.8 globlastp
4218 LYM732 b_oleracea|gb161|AM385131_P1 7716 675 84.8 globlastp
4219 LYM732 b_rapa|gb162|CV433791 7708 675 84.8 globlastp
4220 LYM732 banana|10v1|AY463021_T1 7717 675 84.8 glotblastn
4221 LYM732 canola|10v1|CD815847 7718 675 84.8 globlastp
4222 LYM732 canola|11v1|EE452913_P1 7718 675 84.8 globlastp
4223 LYM732 cotton|10v2|AI727523 7719 675 84.8 globlastp
4224 LYM732 cotton|11v1|AI727523_P1 7719 675 84.8 globlastp
4225 LYM732 medicago|09v1|LLAA660628 7720 675 84.8 globlastp
4226 LYM732 medicago|12v1|AA660628_P1 7720 675 84.8 globlastp
4227 LYM732 melon|10v1|DV632112_P1 7721 675 84.8 globlastp
4228 LYM732 melon|10v1|DV633274_T1 7722 675 84.8 glotblastn
4229 LYM732 poplar|10v1|BU825403_P1 7723 675 84.8 globlastp
4230 LYM732 momordica|10v1|SRR071315S0011108_T1 7724 675 84.76 glotblastn
4231 LYM732 amsonia|11v1|SRR098688X10079_P1 7725 675 84.6 globlastp
4232 LYM732 amsonia|11v1|SRR098688X111547_P1 7726 675 84.6 globlastp
4233 LYM732 arnica|11v1|SRR099034X108322_P1 7727 675 84.6 globlastp
4234 LYM732 cirsium|11v1|SRR346952.1011032XX1_P1 7728 675 84.6 globlastp
4235 LYM732 sunflower|12v1|CF097925_P1 7729 675 84.6 globlastp
4236 LYM732 watermelon|11v1|DV633274_P1 7730 675 84.6 globlastp
4237 LYM732 arabidopsis|10v1|AT5G20000_P1 7731 675 84.6 globlastp
4238 LYM732 b_rapa|11v1|CD815847_P1 7732 675 84.6 globlastp
4239 LYM732 b_rapa|gb162|CV544357 7732 675 84.6 globlastp
4240 LYM732 cucumber|09v1|DN910444_P1 7733 675 84.6 globlastp
4241 LYM732 cucumber|09v1|DV633274_P1 7734 675 84.6 globlastp
4242 LYM732 eschscholzia|11v1|CD480449_P1 7735 675 84.5 globlastp
4243 LYM732 eucalyptus|11v2|CD668547_P1 7736 675 84.5 globlastp
4244 LYM732 euphorbia|11v1|SRR098678X106410_P1 7737 675 84.5 globlastp
4245 LYM732 pigeonpea|11v1|SRR054580X100279_P1 7738 675 84.5 globlastp
4246 LYM732 cichorium|gb171|DT212089_P1 7739 675 84.5 globlastp
4247 LYM732 coffea|10v1|CF588948_P1 7740 675 84.5 globlastp
4248 LYM732 potato|10v1|BF459871_P1 7741 675 84.5 globlastp
4249 LYM732 rice|11v1|BM420871_P1 7742 675 84.5 globlastp
4250 LYM732 rice|gb170|OS06G39870 7742 675 84.5 globlastp
4251 LYM732 solanum_phureja|09v1|SPHBG130427 7741 675 84.5 globlastp
4252 LYM732 soybean|11v1|GLYMA08G24000 7743 675 84.5 globlastp
4253 LYM732 sugarcane|10v1|BU102866 7744 675 84.5 globlastp
4254 LYM732 triphysaria|10v1|CB815068 7745 675 84.5 globlastp
4255 LYM732 canola|11v1|CN828972_P1 7746 675 84.4 globlastp
4256 LYM732 canola|11v1|EE479032_P1 7747 675 84.4 globlastp
4257 LYM732 cirsium|11v1|SRR346952.103555_P1 7748 675 84.4 globlastp
4258 LYM732 rose|12v1|BI978986_P1 7749 675 84.4 globlastp
4259 LYM732 sunflower|12v1|CF098017_P1 7750 675 84.4 globlastp
4260 LYM732 b_rapa|11v1|CD817817_P1 7751 675 84.4 globlastp
4261 LYM732 b_rapa|gb162|CX273134 7747 675 84.4 globlastp
4262 LYM732 radish|gb164|EV527043 7752 675 84.4 globlastp
4263 LYM732 radish|gb164|EV566516 7753 675 84.4 globlastp
4264 LYM732 cotton|11v1|CO082793_P1 7754 675 84.3 globlastp
4265 LYM732 poppy|11v1|SRR030259.110320_P1 7755 675 84.3 globlastp
4266 LYM732 beech|11v1|AJ251819_P1 7756 675 84.3 globlastp
4267 LYM732 tomato|11v1|BG629755_P1 7757 675 84.3 globlastp
4268 LYM732 cucurbita|11v1|SRR091276X104784_T1 7758 675 84.29 glotblastn
4269 LYM732 centaurea|gb166|EH714022_P1 7759 675 84.2 globlastp
4270 LYM732 tragopogon|10v1|SRR020205S0013091 7760 675 84.16 glotblastn
4271 LYM732 sunflower|12v1|DY922301_T1 7761 675 84.12 glotblastn
4272 LYM732 aquilegia|10v1|DR912932_P1 7762 675 84.1 globlastp
4273 LYM732 thellungiella_halophilum|11v1|DN773759_P1 7763 675 84.1 globlastp
4274 LYM732 b_rapa|11v1|CD813845_P1 7764 675 84.1 globlastp
4275 LYM732 strawberry|11v1|CO381023 7765 675 84.1 globlastp
4276 LYM732 cichorium|gb171|EH701464_T1 7766 675 84.09 glotblastn
4277 LYM732 eschscholzia|11v1|CD481664_P1 7767 675 84 globlastp
4278 LYM732 poplar|10v1|BI120145_P1 7768 675 84 globlastp
4279 LYM732 soybean|11v1|GLYMA07G00420 7769 675 84 globlastp
4280 LYM732 flaveria|11v1|SRR149232.14242_P1 7770 675 83.9 globlastp
4281 LYM732 vinca|11v1|SRR098690X117569 7771 675 83.85 glotblastn
4282 LYM732 ambrosia|11v1|SRR346935.120689_P1 7772 675 83.8 globlastp
4283 LYM732 distylium|11v1|SRR065077X10332_P1 7773 675 83.8 globlastp
4284 LYM732 valeriana|11v1|SRR099039X102285_P1 7774 675 83.8 globlastp
4285 LYM732 aquilegia|10v2|DR912932 7775 675 83.8 globlastp
4286 LYM732 bean|12v1|CA905844_P1 7776 675 83.8 globlastp
4287 LYM732 bean|gb167|CA905844 7776 675 83.8 globlastp
4288 LYM732 fescue|gb161|DT683905_P1 7777 675 83.8 globlastp
4289 LYM732 peanut|10v1|EE124392_P1 7778 675 83.8 globlastp
4290 LYM732 plantago|11v2|SRR066373X111867_T1 7779 675 83.76 glotblastn
4291 LYM732 cephalotaxus|11v1|SRR064395X111026_P1 7780 675 83.7 globlastp
4292 LYM732 vinca|11v1|SRR098690X111800_P1 7781 675 83.7 globlastp
4293 LYM732 tomato|09v1|BG130427 7782 675 83.7 globlastp
4294 LYM732 tomato|11v1|BG130427_P1 7782 675 83.7 globlastp
4295 LYM732 amborella|12v2|FD426294_P1 7783 675 83.6 globlastp
4296 LYM732 amborella|12v2|FD432605_P1 7784 675 83.6 globlastp
4297 LYM732 cephalotaxus|11v1|SRR064395X14548_P1 7785 675 83.6 globlastp
4298 LYM732 oil_palm|11v1|EE593289_P1 7786 675 83.6 globlastp
4299 LYM732 brachypodium|09v1|DV469847 7787 675 83.41 glotblastn
4300 LYM732 maritime_pine|10v1|CT574903_P1 7788 675 83.4 globlastp
4301 LYM732 pine|10v2|AI813002_P1 7788 675 83.4 globlastp
4302 LYM732 pine|10v2|AW009983_P1 7788 675 83.4 globlastp
4303 LYM732 pine|10v2|DR072525_P1 7788 675 83.4 globlastp
4304 LYM732 zostera|10v1|AM770544 7789 675 83.4 globlastp
4305 LYM732 ambrosia|11v1|SRR346943.101350_T1 7790 675 83.33 glotblastn
4306 LYM732 cowpea|gb166|FF388322_P1 7791 675 83.3 globlastp
4307 LYM732 gnetum|10v1|SRR064399S0017610_P1 7792 675 83.3 globlastp
4308 LYM732 marchantia|gb166|BJ852337_P1 7793 675 83.3 globlastp
4309 LYM732 taxus|10v1|SRR032523S0001172 7794 675 83.3 globlastp
4310 LYM732 ambrosia|11v1|SRR346935.103060_T1 7795 675 83.1 glotblastn
4311 LYM732 cedrus|11v1|SRR065007X103547_P1 7796 675 83.1 globlastp
4312 LYM732 fraxinus|11v1|SRR058827.12308_T1 7797 675 83.1 glotblastn
4313 LYM732 zostera|10v1|SRR057351S0018576 7798 675 83.1 globlastp
4314 LYM732 beet|12v1|BI096091_P1 7799 675 83 globlastp
4315 LYM732 ceratodon|10v1|AW086694_P1 7800 675 82.9 globlastp
4316 LYM732 podocarpus|10v1|SRR065014S0003863_P1 7801 675 82.9 globlastp
4317 LYM732 artemisia|10v1|EY114257_P1 7802 675 82.8 globlastp
4318 LYM732 ambrosia|11v1|SRR346935.427394_P1 7803 675 82.6 globlastp
4319 LYM732 ambrosia|11v1|SRR346943.171955_P1 7804 675 82.6 globlastp
4320 LYM732 nuphar|gb166|CD473821_P1 7805 675 82.6 globlastp
4321 LYM732 beech|gb170|AJ251819 7806 675 82.51 glotblastn
4322 LYM732 beet|12v1|BQ490531_P1 7807 675 82.3 globlastp
4323 LYM732 amborella|gb166|FD426360 7808 675 82.1 globlastp
4324 LYM732 rye|12v1|DRR001013.288275_T1 7809 675 81.82 glotblastn
4325 LYM732 abies|11v2|SRR098676X104019_P1 7810 675 81.8 globlastp
4326 LYM732 silene|11v1|GH292895_P1 7811 675 81.8 globlastp
4327 LYM732 pseudotsuga|10v1|SRR065119SO001943 7812 675 81.8 globlastp
4328 LYM732 sciadopitys|10v1|SRR065035S0039368 7813 675 81.8 globlastp
4329 LYM732 chickpea|11v1|SRR133517.110130_P1 7814 675 81.7 globlastp
4330 LYM732 physcomitrella|10v1|BY960531_P1 7815 675 81.7 globlastp
4331 LYM732 flaveria|11v1|SRR149229.147122_T1 7816 675 81.52 glotblastn
4332 LYM732 arabidopsis_lyrata|09v1|JGIAL021741_T1 7817 675 81.52 glotblastn
4333 LYM732 poppy|11v1|FG610521_P1 7818 675 81.5 globlastp
4334 LYM732 cryptomeria|gb166|BP175599_P1 7819 675 81.5 globlastp
4335 LYM732 kiwi|gb166|FG406821_P1 7820 675 81.5 globlastp
4336 LYM732 cycas|gb166|CB088913_P1 7821 675 81.2 globlastp
4337 LYM732 spikemoss|gb165|FE446127 7822 675 81.2 globlastp
4338 LYM732 spikemoss|gb165|FE449444 7823 675 81.2 globlastp
4339 LYM732 solanum_phureja|09v1|SPHBG132493 7824 675 81.1 globlastp
4340 LYM732 spruce|11v1|AF051251_P1 7825 675 80.8 globlastp
4341 LYM732 spruce|gb162|AF051251 7825 675 80.8 globlastp
4342 LYM732 tomato|09v1|BG629755 7826 675 80.8 globlastp
4343 LYM732 euphorbia|11v1|SRR098678X139562_T1 7827 675 80.71 glotblastn
4344 LYM732 humulus|11v1|FG346179_P1 7828 675 80.5 globlastp
4345 LYM732 pteridium|11v1|GW574939_P1 7829 675 80.5 globlastp
4346 LYM732 sequoia|10v1|SRR065044S0002707 7830 675 80.5 globlastp
4347 LYM732 silene|11v1|SRR096785X140908_P1 7831 675 80.3 globlastp
4348 LYM732 poppy|11v1|SRR030259.288771_T1 7832 675 80 glotblastn
4349 LYM734 maize|10v1|CF003105_P1 7833 677 95.4 globlastp
4350 LYM734 maize|10v1|DW835384_P1 7834 677 91.6 globlastp
4351 LYM734 foxtail_millet|11v3|PHY7SI030285M_P1 7835 677 87.9 globlastp
4352 LYM734 brachypodium|12v1|BRADI1G23510_P1 7836 677 85.7 globlastp
4353 LYM734 switchgrass|gb167|DN141284_T1 7837 677 83.11 glotblastn
4354 LYM734 rye|12v1|BE588050_P1 7838 677 83.1 globlastp
4355 LYM734 rice|11v1|BQ908579_P1 7839 677 83 globlastp
4356 LYM734 wheat|10v2|CA601486_P1 7840 677 82.5 globlastp
4357 LYM735 wheat|10v2|BE404166 7841 678 96.77 glotblastn
4358 LYM735 b_rapa|11v1|BRARAPRD100942_T1 7842 678 95.31 glotblastn
4359 LYM735 b_rapa|11v1|SOLX00075735_T1 7843 678 95.31 glotblastn
4360 LYM736 rye|12v1|DRR001012.109929_P1  679 679 100 globlastp
4361 LYM736 pseudoroegneria|gb167|FF340042  679 679 100 globlastp
4362 LYM736 rye|12v1|BE495770_P1 7844 679 99.3 globlastp
4363 LYM736 leymus|gb166|CD809029_P1 7845 679 99.3 globlastp
4364 LYM736 rye|gb164|BE495770 7846 679 98.6 globlastp
4365 LYM736 oat|11v1|CN817222_P1 7847 679 91.7 globlastp
4366 LYM736 oat|10v2|CN817222 7847 679 91.7 globlastp
4367 LYM736 oat|11v1|CN817582_P1 7847 679 91.7 globlastp
4368 LYM736 fescue|gb161|CK800822_P1 7848 679 91 globlastp
4369 LYM736 lolium|10v1|AU246424_P1 7849 679 91 globlastp
4370 LYM739 rye|12v1|DRR001012.179917_P1 7850 681 99.2 globlastp
4371 LYM739 rye|12v1|DRR001012.341099_P1 7851 681 98.5 globlastp
4372 LYM739 rye|12v1|DRR001012.439165_P1 7852 681 97.7 globlastp
4373 LYM739 barley|10v2|BE602109_P1 7853 681 96.9 globlastp
4374 LYM739 pseudoroegneria|gb167|FF350119 7854 681 96.2 globlastp
4375 LYM739 oat|10v2|GO596443 7855 681 93.13 glotblastn
4376 LYM739 oat|11v1|GO596443_T1 7856 681 88.55 glotblastn
4377 LYM739 brachypodium|09v1|GT765667 7857 681 87.8 globlastp
4378 LYM739 brachypodium|12v1|BRADI4G35390_P1 7857 681 87.8 globlastp
4379 LYM739 rye|gb164|BE705354 7858 681 83.97 glotblastn
4380 LYM739 cynodon|10v1|ES300861_P1 7859 681 80.9 globlastp
4381 LYM739 rice|11v1|AU097200_P1 7860 681 80.9 globlastp
4382 LYM739 rice|gb170|OS09G34850 7860 681 80.9 globlastp
4383 LYM740 rye|12v1|DRR001012.212513_P1 7861 682 89.1 globlastp
4384 LYM740 rye|12v1|DRR001012.117478_P1 7862 682 82.1 globlastp
4385 LYM741 wheat|10v2|BM134749 7863 683 97.7 globlastp
4386 LYM741 rye|12v1|DRR001012.383108_T1 7864 683 91.09 glotblastn
4387 LYM741 rye|12v1|DRR001012.402448_T1 7865 683 89.94 glotblastn
4388 LYM741 brachypodium|12v1|BRADI3G02730_P1 7866 683 89.1 globlastp
4389 LYM741 brachypodium|09v1|GT765922 7866 683 89.1 globlastp
4390 LYM742 leymus|gb166|EG389023_P1 7867 684 97.5 globlastp
4391 LYM742 wheat|10v2|BM134693 7868 684 96.8 globlastp
4392 LYM742 wheat|10v2|BE498269 7869 684 96.5 globlastp
4393 LYM742 rye|12v1|DRR001012.110932_P1 7870 684 96.2 globlastp
4394 LYM742 wheat|10v2|BE499790 7871 684 95.9 globlastp
4395 LYM742 rye|12v1|BE705529_P1 7872 684 95.6 globlastp
4396 LYM742 pseudoroegneria|gb167|FF346294 7873 684 95.6 globlastp
4397 LYM742 oat|10v2|GO588827 7874 684 89.7 globlastp
4398 LYM742 oat|11v1|GO588827_P1 7874 684 89.7 globlastp
4399 LYM742 brachypodium|09v1|DV478227 7875 684 88.1 globlastp
4400 LYM742 brachypodium|12v1|BRADI1G02960_P1 7875 684 88.1 globlastp
4401 LYM743 barley|10v2|BI959370_P1 7876 685 90.4 globlastp
4402 LYM743 rye|12v1|DRR001012.316165_P1 7877 685 87.7 globlastp
4403 LYM743 wheat|10v2|BE425228 7878 685 87.7 globlastp
4404 LYM743 oat|10v2|SRR020741S0038528 7879 685 85.77 glotblastn
4405 LYM743 oat|11v1|SRR020741.119245_T1 7880 685 85.77 glotblastn
4406 LYM745 sugarcane|10v1|CA167334_T1 7881 687 99.63 glotblastn
4407 LYM745 sorghum|12v1|GFXNC008602X25_P1 7882 687 98.9 globlastp
4408 LYM745 maize|10v1|AI065541_T1 7883 687 98.53 glotblastn
4409 LYM745 foxtail_millet|11v3|SICRP015276_T1 687 98.17 glotblastn
4410 LYM745 lolium|10v1|GFXAM777385X23_T1 7884 687 97.8 glotblastn
4411 LYM745 barley|10v2|BE437649_P1 7885 687 97.8 globlastp
4412 LYM745 wheat|10v2|CA593542 7885 687 97.8 globlastp
4413 LYM745 rye|12v1|GFXAY115960X1_T1 687 97.8 glotblastn
4414 LYM745 brachypodium|12v1|BDPRD12V1004106_T1 7886 687 97.44 glotblastn
4415 LYM745 brachypodium|12v1|BRADI4G08053_T1 687 97.44 glotblastn
4416 LYM745 rice|gb170|OS04G16772 7887 687 97.4 globlastp
4417 LYM745 rice|gb170|OS08G15262 7888 687 97.4 globlastp
4418 LYM745 rice|11v1|GFXRICCPRPMX1_P1 7887 687 97.4 globlastp
4419 LYM745 rice|gb170|OS10G21354 7889 687 97.07 glotblastn
4420 LYM745 rice|11v1|OSPRD098636_T1 687 97.07 glotblastn
4421 LYM745 sorghum|12v1|SB0506S002020_P1 7890 687 96.8 globlastp
4422 LYM745 rice|11v1|OSCRP026632_T1 687 96.7 glotblastn
4423 LYM745 maize|10v1|BI245198_T1 7891 687 96.45 glotblastn
4424 LYM745 brachypodium|12v1|BRADI1G05800_P1 7892 687 95.7 globlastp
4425 LYM745 rice|11v1|CB619074_T1 687 94.68 glotblastn
4426 LYM745 rice|11v1|CB662204_T1 687 94.68 glotblastn
4427 LYM745 brachypodium|09v1|GFXEU325680X23 7893 687 94.33 glotblastn
4428 LYM745 brachypodium|12v1|BDCRP12V1063443_T1 687 94.33 glotblastn
4429 LYM745 rice|11v1|OSCRP021034_T1 687 94.33 glotblastn
4430 LYM745 brachypodium|12v1|SOLX00008440_T1 687 94.33 glotblastn
4431 LYM745 pseudoroegneria|gb167|FF350971_T1 7894 687 93.41 glotblastn
4432 LYM745 rice|11v1|CA766685_P1 7895 687 93 globlastp
4433 LYM745 brachypodium|12v1|BDCRP12V1040005_P1 7896 687 92.7 globlastp
4434 LYM745 rice|11v1|OSCRP099684_P1 7897 687 92.6 globlastp
4435 LYM745 oil_palm|11v1|GFXEU016904X1_T1 7898 687 91.58 glotblastn
4436 LYM745 amorphophallus|11v2|SRR089351X115215_T1 7899 687 90.84 glotblastn
4437 LYM745 oil_palm|11v1|CN601318XX1_P1 7900 687 90.5 globlastp
4438 LYM745 rice|11v1|OSCRP155559_P1 7901 687 89.9 globlastp
4439 LYM745 amborella|12v2|FD428869_T1 687 89.89 glotblastn
4440 LYM745 arabidopsis|10v1|ATCG00740_T1 7902 687 89.74 glotblastn
4441 LYM745 banana|10v1|GFXEU017004X1_T1 7903 687 89.74 glotblastn
4442 LYM745 tabernaemontana|11v1|SRR098689X10070_T1 687 89.38 glotblastn
4443 LYM745 vinca|11v1|SRR098690X100243XX2_T1 687 89.38 glotblastn
4444 LYM745 gossypium_raimondii|12v1|BF276612_P1 7904 687 89.1 globlastp
4445 LYM745 gossypium_raimondii|12v1|DT460790_P1 7904 687 89.1 globlastp
4446 LYM745 gossypium_raimondii|12v1|SRR391534.857701_P1 7904 687 89.1 globlastp
4447 LYM745 petunia|gb171|CV300349_P1 7905 687 89.1 globlastp
4448 LYM745 potato|10v1|BE922679_P1 7906 687 89.1 globlastp
4449 LYM745 solanum_phureja|09v1|SPHBG134352_P1 7906 687 89.1 globlastp
4450 LYM745 tobacco|gb162|CN949757_P1 7907 687 89.1 globlastp
4451 LYM745 poppy|11v1|FG598695XX1_T1 7908 687 89.05 glotblastn
4452 LYM745 catharanthus|11v1|SRR098691X100542_P1 7909 687 88.7 globlastp
4453 LYM745 eggplant|10v1|FS001598_P1 7910 687 88.7 globlastp
4454 LYM745 grape|11v1|GSVIVT01023979001_P1 7911 687 88.7 globlastp
4455 LYM745 heritiera|10v1|SRR005794S0008515_P1 7912 687 88.7 globlastp
4456 LYM745 radish|gb164|EV526012_P1 7913 687 88.7 globlastp
4457 LYM745 cucumber|09v1|GFXAJ970307X24_P1 7914 687 88.3 globlastp
4458 LYM745 ginseng|10v1|GFXAY582139X24_P1 7915 687 88.3 globlastp
4459 LYM745 poppy|11v1|SRR030259.152815_P1 7916 687 88.3 globlastp
4460 LYM745 silene|11v1|GFXAB189069X7_T1 7917 687 88.28 glotblastn
4461 LYM745 canola|11v1|DY010946XX1_T1 687 88.28 glotblastn
4462 LYM745 arabidopsis_lyrata|09v1|JGIAL003215_T1 7918 687 88.09 glotblastn
4463 LYM745 antirrhinum|gb166|AJ558610_P1 7919 687 88 globlastp
4464 LYM745 apple|11v1|CN857372_T1 7920 687 87.91 glotblastn
4465 LYM745 ambrosia|11v1|SRR346935.101008_T1 687 87.91 glotblastn
4466 LYM745 grape|11v1|BQ792705_T1 687 87.73 glotblastn
4467 LYM745 guizotia|10v1|GE552365_P1 7921 687 87.6 globlastp
4468 LYM745 euphorbia|11v1|DV143422_T1 7922 687 87.55 glotblastn
4469 LYM745 zostera|10v1|AM766297_T1 7923 687 87.55 glotblastn
4470 LYM745 sunflower|12v1|CD848067_T1 687 87.55 glotblastn
4471 LYM745 triphysaria|10v1|DR171572_P1 7924 687 87.2 globlastp
4472 LYM745 cannabis|12v1|GR222152_T1 7925 687 87.18 glotblastn
4473 LYM745 cynara|gb167|GE580888_T1 7926 687 87.18 glotblastn
4474 LYM745 thellungiella_halophilum|11v1|EHJGI11000012_T1 7927 687 87.18 glotblastn
4475 LYM745 oak|10v1|GFXGQ998675X1_T1 687 87.18 glotblastn
4476 LYM745 castorbean|11v1|XM_002514958_P1 7928 687 87 globlastp
4477 LYM745 cowpea|gb166|GFXAF536225X1_P1 7929 687 86.9 globlastp
4478 LYM745 lettuce|10v1|GFXAP007232X27_P1 7930 687 86.9 globlastp
4479 LYM745 tripterygium|11v1|SRR098677X118761XX3_T1 7931 687 86.81 glotblastn
4480 LYM745 thellungiella_halophilum|11v1|EHPRD058324_T1 687 86.81 glotblastn
4481 LYM745 amborella|12v2|AMB12V2CRP112003_T1 687 86.64 glotblastn
4482 LYM745 thellungiella_halophilum|11v1|EHJGI11000033_T1 687 86.64 glotblastn
4483 LYM745 bean|12v1|CA897065_P1 7932 687 86.5 globlastp
4484 LYM745 arabidopsis_lyrata|09v1|JGIAL006480_P1 7933 687 86.3 globlastp
4485 LYM745 cannabis|12v1|MDCRP100988_P1 7934 687 86.3 globlastp
4486 LYM745 soybean|11v1|BM107765_P1 7935 687 86.3 globlastp
4487 LYM745 arabidopsis_lyrata|09v1|JGIAL003213_T1 7936 687 86.28 glotblastn
4488 LYM745 bean|12v1|SRR001334.102521_P1 7937 687 86.1 globlastp
4489 LYM745 trigonella|11v1|SRR066194X102109_P1 7938 687 86.1 globlastp
4490 LYM745 plantago|11v2|SRR066373X101440_T1 7939 687 86.08 glotblastn
4491 LYM745 thellungiella_halophilum|11v1|EHJGI11009861_P1 7940 687 86 globlastp
4492 LYM745 lotus|09v1|GFXAP002983X29_P1 7941 687 85.6 globlastp
4493 LYM745 fagopyrum|11v1|GFXEU254477X24_T1 687 85.35 glotblastn
4494 LYM745 tabernaemontana|11v1|SRR098689X115121_T1 7942 687 84.98 glotblastn
4495 LYM745 cassava|09v1|TMPLFM887223T1_T1 7943 687 84.64 glotblastn
4496 LYM745 castorbean|11v1|RCPRD015773_T1 687 84.64 glotblastn
4497 LYM745 pineapple|10v1|GFXAY147693X1_T1 7944 687 84.62 glotblastn
4498 LYM745 pea|11v1|GFXAY007495X1_T1 7945 687 84.25 glotblastn
4499 LYM745 jatropha|09v1|GFXFJ695500X22_P1 7946 687 84 globlastp
4500 LYM745 canola|11v1|EE566866_T1 7947 687 83.88 glotblastn
4501 LYM745 tripterygium|11v1|SRR098677X100034XX1_P1 7948 687 83.2 globlastp
4502 LYM745 medicago|12v1|MTPRD043867_T1 7949 687 83.15 glotblastn
4503 LYM745 castorbean|11v1|EG659525_P1 7950 687 83.1 globlastp
4504 LYM745 leymus|gb166|DY895747_T1 7951 687 82.78 glotblastn
4505 LYM745 lotus|09v1|CRPLJ020612_T1 7952 687 82.67 glotblastn
4506 LYM745 liriodendron|gb166|GFXAF123796X1_P1 7953 687 82.4 globlastp
4507 LYM745 cassava|09v1|DB949589_T1 7954 687 81.79 glotblastn
4508 LYM745 soybean|11v1|BM107730_P1 7955 687 81.7 globlastp
4509 LYM745 castorbean|11v1|SRR020784.101388_T1 7956 687 81.07 glotblastn
4510 LYM745 melon|10v1|DV633575_P1 7957 687 81 globlastp
4511 LYM745 brachypodium|12v1|SOLX00058314_P1 7958 687 80.7 globlastp
4512 LYM746 switchgrass|gb167|FE605357 7959 688 93.9 globlastp
4513 LYM746 foxtail_millet|11v3|PHY7SI002693M_P1 7960 688 93.1 globlastp
4514 LYM746 foxtail_millet|10v2|SICRP035625 7960 688 93.1 globlastp
4515 LYM746 millet|10v1|EVO454PM020658_P1 7961 688 93.1 globlastp
4516 LYM746 brachypodium|09v1|GT763524 7962 688 86.2 globlastp
4517 LYM746 brachypodium|12v1|BRADI4G11670_P1 7962 688 86.2 globlastp
4518 LYM746 rice|11v1|AA750636_P1 7963 688 85.6 globlastp
4519 LYM746 rice|gb170|OS04G06790 7963 688 85.6 globlastp
4520 LYM746 rye|12v1|DRR001012.107420_P1 7964 688 84.6 globlastp
4521 LYM746 barley|10v2|AV833511_P1 7965 688 84.6 globlastp
4522 LYM746 wheat|10v2|BE426721 7966 688 83.7 globlastp
4523 LYM746 oat|11v1|BE439057_P1 7967 688 82.9 globlastp
4524 LYM746 oat|10v2|BE439057 7968 688 82.52 glotblastn
4525 LYM747 maize|10v1|AI395922_T1 7969 689 84.95 glotblastn
4526 LYM747 maize|10v1|AI902085_P1 7970 689 80.3 globlastp
4527 LYM748 foxtail_millet|11v3|PHY7SI006345M_P1 7971 690 88 globlastp
4528 LYM748 maize|10v1|EC856046_P1 7972 690 85.8 globlastp
4529 LYM749 sorghum|09v1|SB03G030830 7973 691 92.9 globlastp
4530 LYM749 sorghum|12v1|SB03G030830_P1 7973 691 92.9 globlastp
4531 LYM749 sugarcane|10v1|BQ535821 7974 691 92.65 glotblastn
4532 LYM749 switchgrass|gb167|FL743504 7975 691 92.4 globlastp
4533 LYM749 maize|10v1|AI944087_P1 7976 691 91.1 globlastp
4534 LYM749 rice|11v1|AU055909_P1 7977 691 88.8 globlastp
4535 LYM749 rice|gb170|OS01G48270 7977 691 88.8 globlastp
4536 LYM749 brachypodium|09v1|GT792764 7978 691 86.2 globlastp
4537 LYM749 brachypodium|12v1|BRADI2G46277_P1 7978 691 86.2 globlastp
4538 LYM749 wheat|10v2|BE403474 7979 691 86 globlastp
4539 LYM749 rye|12v1|BE495584_P1 7980 691 85.7 globlastp
4540 LYM749 oat|10v2|GR351452 7981 691 85.7 globlastp
4541 LYM749 oat|11v1|GR351452_P1 7981 691 85.7 globlastp
4542 LYM749 barley|10v2|BE437488_P1 7982 691 85.5 globlastp
4543 LYM749 maize|10v1|AY107250_T1 7983 691 80 glotblastn
4544 LYM750 amorphophallus|11v2|SRR089351X105880_P1 7984 692 80 globlastp
4545 LYM522 rice|11v1|BI796416_T1 7985 696 81.72 glotblastn
4546 LYM522 rice|gb170|OS08G08820 7985 696 81.72 glotblastn
4547 LYM522 sorghum|09v1|SB07G005180 7986 696 80.34 glotblastn
4548 LYM522 sorghum|12v1|SB07G005180_T1 7986 696 80.34 glotblastn
4549 LYM522 switchgrass|gb167|FL704309 7987 696 80.3 globlastp
4550 LYM522 maize|10v1|AI734422_T1 7988 696 80.27 glotblastn
4551 LYM529 rye|12v1|DRR001012.178161_T1 7989 698 99.18 glotblastn
4552 LYM529 rye|12v1|DRR001012.198916_T1 7990 698 98.77 glotblastn
4553 LYM529 brachypodium|09v1|DV477678 7991 698 94.26 glotblastn
4554 LYM529 sorghum|09v1|SB04G037460 7992 698 86.94 glotblastn
4555 LYM529 millet|10v1|PMSLX0029507D1_T1 7993 698 83.87 glotblastn
4556 LYM530 brachypodium|09v1|CRPBD010426 5261 699 93.91 glotblastn
4557 LYM530 brachypodium|12v1|SOLX00039853_T1 699 93.91 glotblastn
4557 LYM721 brachypodium|12v1|SOLX00039853_T1 728 90.91 glotblastn
4557 LYM745 brachypodium|12v1|SOLX00039853_T1 733 92.9 glotblastn
4558 LYM530 brachypodium|12v1|BDPRD12V1000412_P1 7994 699 93.9 globlastp
4559 LYM531 rye|12v1|DRR001012.124816_T1 7995 700 97.62 glotblastn
4560 LYM531 brachypodium|12v1|BRADI1G47050_T1 7996 700 92.01 glotblastn
4561 LYM531 brachypodium|09v1|SRR031797S0149787 7996 700 92.01 glotblastn
4562 LYM531 rye|12v1|DRR001012.574074_P1 7997 700 90.3 globlastp
4563 LYM531 maize|10v1|BM074329_T1 7998 700 88.77 glotblastn
4564 LYM531 foxtail_millet|11v3|PHY7SI005876M_T1 700 88.55 glotblastn
4565 LYM531 sorghum|09v1|SB10G005910 7999 700 88.34 glotblastn
4566 LYM531 sorghum|12v1|SB10G005910_T1 7999 700 88.34 glotblastn
4567 LYM531 rice|gb170|OS06G08790 8000 700 88.12 glotblastn
4568 LYM531 rice|11v1|AU174293_T1 700 88.12 glotblastn
4569 LYM531 switchgrass|gb167|FL690317 8001 700 87.9 glotblastn
4570 LYM541 switchgrass|gb167|FL735921 8002 701 82.35 glotblastn
4571 LYM544 switchgrass|gb167|FE607989 8003 702 81.94 glotblastn
4572 LYM544 sorghum|12v1|SB01G002350_T1 8004 702 80.56 glotblastn
4573 LYM544 sorghum|12v1|SB12V1CRP000248_T1 8005 702 80.56 glotblastn
4574 LYM544 sorghum|09v1|SB01G002340 8005 702 80.56 glotblastn
4575 LYM564 foxtail_millet|10v2|SICRP012933 8006 705 93.8 globlastp
4576 LYM564 foxtail_millet|11v3|SOLX00011677_P1 8007 705 91.1 globlastp
4577 LYM564 millet|10v1|EVO454PM424359_T1 8008 705 88.8 glotblastn
4578 LYM570 switchgrass|gb167|FL692342 8009 706 80.08 glotblastn
4579 LYM642 maize|10v1|EU944193_T1 8010 708 94.95 glotblastn
4580 LYM642 sorghum|09v1|SB02G034180 8011 708 88.46 glotblastn
4581 LYM642 sorghum|12v1|SB02G034180_T1 8011 708 88.46 glotblastn
4582 LYM650 foxtail_millet|10v2|FXTRMSLX02911418D1 8012 711 99.19 glotblastn
4583 LYM650 millet|10v1|EVO454PM086729_P1 8013 711 95.7 globlastp
4584 LYM650 rye|12v1|DRR001012.290741_T1 8014 711 94.74 glotblastn
4585 LYM650 wheat|10v2|CA484427 8015 711 94.74 glotblastn
4586 LYM667 sorghum|09v1|SB06G020470 8016 713 95.5 globlastp
4587 LYM667 sorghum|12v1|SB06G020470_P1 8016 713 95.5 globlastp
4588 LYM667 maize|10v1|CD573002_P1 8017 713 91 globlastp
4589 LYM668 sorghum|12v1|SB10G006400_T1 8018 714 98.46 glotblastn
4590 LYM668 maize|10v1|BM348103_P1 8019 714 88.5 globlastp
4591 LYM668 cannabis|12v1|SOLX00047290_T1 8020 714 84.62 glotblastn
4592 LYM668 eschscholzia|11v1|CK759888_T1 8021 714 84.62 glotblastn
4593 LYM668 apple|gb171|CN906716 8022 714 84.62 glotblastn
4594 LYM668 amborella|12v2|SRR038637.200754_P1 8023 714 84.6 globlastp
4595 LYM668 abies|11v2|SRR098676X204510_T1 8024 714 83.85 glotblastn
4596 LYM668 cannabis|12v1|JK498546_T1 8025 714 83.85 glotblastn
4597 LYM668 humulus|11v1|SRR098684X111065_T1 8026 714 83.85 glotblastn
4598 LYM668 poplar|10v1|BU814436_T1 8027 714 83.85 glotblastn
4599 LYM668 soybean|11v1|GLYMA13G17370 8028 714 83.46 glotblastn
4600 LYM668 amorphophallus|11v2|SRR089351X113896_T1 8029 714 83.08 glotblastn
4601 LYM668 oil_palm|11v1|SRR190698.296095_T1 8030 714 83.08 glotblastn
4602 LYM668 soybean|11v1|GLYMA17G05130 8031 714 82.71 glotblastn
4603 LYM668 pigeonpea|11v1|SRR054580X100880_T1 8032 714 82.71 glotblastn
4604 LYM668 maritime_pine|10v1|SRR073317S0031341_T1 8033 714 82.31 glotblastn
4605 LYM668 pine|10v2|BF221069_T1 8034 714 82.31 glotblastn
4606 LYM668 poplar|10v1|BU878791_T1 8035 714 82.31 glotblastn
4607 LYM668 sequoia|10v1|SRR065044S0195288 8036 714 82.31 glotblastn
4608 LYM668 spruce|11v1|ES671248_T1 8037 714 82.31 glotblastn
4609 LYM668 spruce|gb162|CO486574 8038 714 82.31 glotblastn
4610 LYM668 taxus|10v1|SRR032523S0026526 8039 714 82.31 glotblastn
4611 LYM668 platanus|11v1|SRR096786X262173_P1 8040 714 82.3 globlastp
4612 LYM668 tobacco|gb162|AM817735 8041 714 82.3 globlastp
4613 LYM668 canola|11v1|EE451910_T1 8042 714 81.54 glotblastn
4614 LYM668 eucalyptus|11v2|CT986494_T1 8043 714 81.54 glotblastn
4615 LYM668 foxtail_millet|11v3|PHY7SI031622M_T1 8044 714 81.54 glotblastn
4616 LYM668 gossypium_raimondii|12v1|SRR032367.174585_T1 8045 714 81.54 glotblastn
4617 LYM668 hornbeam|12v1|SRR364455.120144_T1 8046 714 81.54 glotblastn
4618 LYM668 maritime_pine|10v1|CR393505_T1 8047 714 81.54 glotblastn
4619 LYM668 spruce|11v1|ES259643_T1 8048 714 81.54 glotblastn
4620 LYM668 foxtail_millet|10v2|SICRP002011 8049 714 81.54 glotblastn
4621 LYM668 guizotia|10v1|GE557732_T1 8050 714 81.54 glotblastn
4622 LYM668 lotus|09v1|CRPLJ004951_T1 8051 714 81.54 glotblastn
4623 LYM668 pigeonpea|10v1|SRR054580S0047273 8052 714 81.54 glotblastn
4624 LYM668 sciadopitys|10v1|SRR065035S0161405 8053 714 81.54 glotblastn
4625 LYM668 cephalotaxus|11v1|SRR064395X196722_P1 8054 714 81.5 globlastp
4626 LYM668 chestnut|gb170|SRR006300S0024280_P1 8055 714 81.5 globlastp
4627 LYM668 strawberry|11v1|DY673440 8056 714 81.34 glotblastn
4628 LYM668 trigonella|11v1|SRR066194X265059_T1 8057 714 81.2 glotblastn
4629 LYM668 bean|12v1|SRR001334.152798_T1 8058 714 81.2 glotblastn
4630 LYM668 bean|gb167|FE695052 8058 714 81.2 glotblastn
4631 LYM668 castorbean|09v1|EG685855 8059 714 81.2 glotblastn
4632 LYM668 castorbean|11v1|EG685855_T1 8059 714 81.2 glotblastn
4633 LYM668 peanut|10v1|EE125934_T1 8060 714 81.16 glotblastn
4634 LYM668 tripterygium|11v1|SRR098677X113789_P1 8061 714 81.1 globlastp
4635 LYM668 watermelon|11v1|AM715941_T1 8062 714 81.06 glotblastn
4636 LYM668 tripterygium|11v1|SRR098677X225048_P1 8063 714 80.8 globlastp
4637 LYM668 cannabis|12v1|JK501057_T1 8064 714 80.77 glotblastn
4638 LYM668 humulus|11v1|SRR098684X164760_T1 8065 714 80.77 glotblastn
4639 LYM668 canola|10v1|DY025012 8066 714 80.77 glotblastn
4640 LYM668 canola|11v1|DY025012_T1 8067 714 80.77 glotblastn
4641 LYM668 cichorium|gb171|EH700156_T1 8068 714 80.77 glotblastn
4642 LYM668 pine|10v2|AW736908_T1 8069 714 80.77 glotblastn
4643 LYM668 pseudotsuga|10v1|SRR065119S0002637 8070 714 80.77 glotblastn
4644 LYM668 eucalyptus|11v1|CT986494 714 80.77 glotblastn
4645 LYM668 brachypodium|09v1|GT759895 8071 714 80.71 glotblastn
4646 LYM668 brachypodium|12v1|BRADI1G46640T2_T1 8071 714 80.71 glotblastn
4647 LYM668 papaya|gb165|EX256125_T1 8072 714 80.6 glotblastn
4648 LYM668 bean|12v1|SRR001334.139328_T1 8073 714 80.45 glotblastn
4649 LYM668 beech|11v1|SRR006293.18600_T1 8074 714 80.45 glotblastn
4650 LYM668 lettuce|10v1|DW090021_T1 8075 714 80.45 glotblastn
4651 LYM668 melon|10v1|AM715941_T1 8076 714 80.3 glotblastn
4652 LYM668 cucurbita|11v1|SRR091276X123019_T1 8077 714 80.15 glotblastn
4653 LYM668 rice|11v1|CF321426_T1 8078 714 80.15 glotblastn
4654 LYM668 rice|gb170|OS09G26650 8078 714 80.15 glotblastn
4655 LYM668 euonymus|11v1|SRR070038X164269_T1 8079 714 80 glotblastn
4656 LYM668 olea|11v1|SRR014464.38760_T1 8080 714 80 glotblastn
4657 LYM668 vinca|11v1|SRR098690X22825_T1 8081 714 80 glotblastn
4658 LYM668 arabidopsis|10v1|AT4G21090_T1 8082 714 80 glotblastn
4659 LYM668 cucumber|09v1|AM715941_T1 8083 714 80 glotblastn
4660 LYM668 millet|10v1|EVO454PM067685_T1 8084 714 80 glotblastn
4661 LYM668 physcomitrella|10v1|AW145591_T1 8085 714 80 glotblastn
4662 LYM668 rose|10v1|BQ106539 8086 714 80 globlastp
4663 LYM668 rose|12v1|BQ106539_P1 8086 714 80 globlastp
4664 LYM670 maize|10v1|CF011760_T1 8087 715 81.31 glotblastn
4665 LYM670 sugarcane|10v1|CA236985 8088 715 81.31 glotblastn
4666 LYM689 sugarcane|10v1|BQ537171 8089 722 92.8 globlastp
4667 LYM689 maize|10v1|BU037187_P1 8090 722 89.1 globlastp
4668 LYM689 foxtail_millet|11v3|PHY7SI036039M_P1 8091 722 88.3 globlastp
4669 LYM689 maize|10v1|AI948187_P1 8092 722 87.6 globlastp
4670 LYM689 rice|11v1|AI978441_P1 8093 722 82.3 globlastp
4671 LYM689 rice|gb170|OS03G53050 8093 722 82.3 globlastp
4672 LYM700 sorghum|09v1|SB02G003530 8094 724 97.1 globlastp
4673 LYM700 sorghum|12v1|SB02G003530_P1 8094 724 97.1 globlastp
4674 LYM700 sugarcane|10v1|CA098469 8095 724 94.8 globlastp
4675 LYM700 maize|10v1|AI901919_P1 8096 724 94.5 globlastp
4676 LYM700 maize|10v1|AI619119_P1 8097 724 92.3 globlastp
4677 LYM700 millet|10v1|EVO454PM005298_P1 8098 724 86.5 globlastp
4678 LYM700 foxtail_millet|11v3|EC612450_P1 8099 724 86.2 globlastp
4679 LYM700 switchgrass|gb167|FE609578 8100 724 83.9 globlastp
4680 LYM700 rice|11v1|BE230084_T1 8101 724 80.96 glotblastn
4681 LYM700 rice|gb170|OS02G20360 8101 724 80.96 glotblastn
4682 LYM721 maize|10v1|GRMZM2G065016T01_T1 8102 728 96.36 glotblastn
4683 LYM721 maize|10v1|GRMZM2G108362T01_T1 8103 728 96.36 glotblastn
4684 LYM721 maize|10v1|GRMZM2G417523T01_T1 8104 728 96.36 glotblastn
4685 LYM721 rye|12v1|DRR001012.144513_T1 8105 728 89.47 glotblastn
4686 LYM721 foxtail_millet|11v3|PHY7SI020884M_T1 8106 728 83.64 glotblastn
4687 LYM744 foxtail_millet|11v3|PHY7SI029484M_T1 8107 732 81.5 glotblastn
4688 LYM745 maize|10v1|BE639329_T1 8108 733 98.91 glotblastn
4689 LYM745 maize|10v1|AI444745_T1 8109 733 97.27 glotblastn
4690 LYM745 maize|10v1|BI096827_T1 8110 733 97.27 glotblastn
4691 LYM745 maize|10v1|EG116126_T1 8111 733 97.27 glotblastn
4692 LYM745 foxtail_millet|11v3|GFXFJ766320X1_T1 733 97.27 glotblastn
4693 LYM745 foxtail_millet|11v3|PHY7SI020886M_T1 733 97.27 glotblastn
4694 LYM745 millet|10v1|CD726710_T1 733 97.27 glotblastn
4695 LYM745 maize|10v1|SRR014549S0096484_T1 8112 733 96.72 glotblastn
4696 LYM745 maize|10v1|DW909238_T1 8113 733 96.17 glotblastn
4697 LYM745 rice|gb170|OSP1G00730 8114 733 96.17 glotblastn
4698 LYM745 foxtail_millet|11v3|SOLX00021157_T1 733 96.17 glotblastn
4699 LYM745 rice|11v1|BI796291_T1 733 96.17 glotblastn
4700 LYM745 rice|11v1|CI751746_T1 733 96.17 glotblastn
4701 LYM745 rice|11v1|OSCRP167596_T1 733 96.17 glotblastn
4702 LYM745 rice|11v1|BI795166_T1 733 96.17 glotblastn
4703 LYM745 sorghum|12v1|BG048733_T1 733 95.63 glotblastn
4704 LYM745 sorghum|12v1|SB12V1CUFF43842T1P2_T1 733 95.63 glotblastn
4705 LYM745 foxtail_millet|11v3|PHY7SI012211M_T1 733 93.99 glotblastn
4706 LYM745 brachypodium|09v1|SRR031795S0021480 8115 733 92.9 glotblastn
4707 LYM745 brachypodium|12v1|BDCRP12V1033046_T1 733 92.9 glotblastn
4708 LYM745 lovegrass|gb167|EH190665_T1 8116 733 92.35 glotblastn
4709 LYM745 maize|10v1|BI478992_T1 8117 733 92.35 glotblastn
4710 LYM745 maize|10v1|BQ293870_P1 8118 733 90.2 globlastp
4711 LYM745 brachypodium|09v1|CRPBD020292 8119 733 90.16 glotblastn
4712 LYM745 sorghum|09v1|SBGWP040163 8120 733 89.6 globlastp
4713 LYM745 rice|11v1|BM421245_P1 8121 733 88 globlastp
4714 LYM745 rice|11v1|CB681406_T1 8122 733 87.43 glotblastn
4715 LYM745 oil_palm|gb166|GFXEU016904X1 8123 733 87.43 glotblastn
4716 LYM745 oil_palm|11v1|GH637135_T1 733 86.34 glotblastn
4717 LYM745 oil_palm|11v1|SRR190698.185164XX1_T1 8124 733 85.25 glotblastn
4718 LYM745 grape|11v1|BQ792101_T1 8125 733 84.24 glotblastn
4719 LYM745 grape|gb160|BQ792101 8125 733 84.24 glotblastn
4720 LYM745 grape|gb160|BQ792399 8126 733 84.24 glotblastn
4721 LYM745 amborella|12v2|GFXAF235047X1_T1 8127 733 84.15 glotblastn
4722 LYM745 amborella|12v2|GFXAJ506156X22_T1 733 84.15 glotblastn
4723 LYM745 platanus|11v1|GFXDQ923116X23_T1 8128 733 83.7 glotblastn
4724 LYM745 amborella|12v2|SRR038634.10442_T1 8129 733 83.61 glotblastn
4725 LYM745 amsonia|11v1|SRR098688X100366_T1 8130 733 83.06 glotblastn
4726 LYM745 aristolochia|10v1|GFXAF528893X1_T1 733 83.06 glotblastn
4727 LYM745 apple|11v1|CN855347_T1 8131 733 82.51 glotblastn
4728 LYM745 apple|gb171|CN848687 8132 733 82.51 glotblastn
4729 LYM745 tragopogon|10v1|SRR020205S0000675 8133 733 82.51 glotblastn
4730 LYM745 apple|11v1|CN848687_T1 733 82.51 glotblastn
4731 LYM745 nasturtium|10v1|SRR032558S0003041 8134 733 81.82 glotblastn
4732 LYM745 medicago|12v1|AW256478_T1 8135 733 81.62 glotblastn
4733 LYM745 medicago|12v1|AW559313_T1 8135 733 81.62 glotblastn
4734 LYM745 oil_palm|11v1|SRR190699.654961_T1 8136 733 81.62 glotblastn
4735 LYM745 rhizophora|10v1|SRR005792S0004605 8137 733 81.42 glotblastn
4736 LYM745 euonymus|11v1|GFXGQ998190X1_T1 733 81.42 glotblastn
4737 LYM745 castorbean|09v1|SRR020784S0000204 8138 733 81.28 glotblastn
4738 LYM745 maize|10v1|BU093266_P1 8139 733 80.9 globlastp
4739 LYM745 sorghum|09v1|SB0506S002020 8139 733 80.9 globlastp
4740 LYM745 cucurbita|11v1|SRR091276X10414_T1 8140 733 80.87 glotblastn
4741 LYM745 prunus|10v1|CN848687_T1 8141 733 80.87 glotblastn
4742 LYM745 maize|10v1|DW960265_T1 8142 733 80.87 glotblastn
4743 LYM745 salvia|10v1|FE536543 8143 733 80.87 glotblastn
4744 LYM745 cannabis|12v1|GR221477_T1 733 80.87 glotblastn
4745 LYM745 watermelon|11v1|VMEL00019515920119_T1 8144 733 80.75 glotblastn
4746 LYM745 castorbean|11v1|SRR020784.117261_T1 733 80.75 glotblastn
4747 LYM745 hornbeam|12v1|SRR364455.100793_T1 733 80.75 glotblastn
4748 LYM745 tomato|11v1|BG124274_T1 8145 733 80.42 glotblastn
4749 LYM745 momordica|10v1|SRR071315S0000098_T1 8146 733 80.33 glotblastn
4750 LYM745 poppy|gb166|FG598929 8147 733 80.32 glotblastn
4751 LYM745 euphorbia|11v1|DV124656_T1 8148 733 80.21 glotblastn
4752 LYM745 pepper|gb171|BM062022_T1 8149 733 80.21 glotblastn
4753 LYM745 tabernaemontana|11v1|SRR098689X100380_T1 733 80.21 glotblastn
4754 LYM745 b_rapa|11v1|BG544136_T1 8150 733 80.1 glotblastn
4755 LYM745 b_rapa|11v1|CV545773_T1 8151 733 80.1 glotblastn
4756 LYM745 b_juncea|10v2|E7FJH303C1ZH42_T1 8152 733 80.1 glotblastn
4757 LYM745 b_oleracea|gb161|AM394621_T1 8153 733 80.1 glotblastn
4758 LYM745 b_rapa|gb162|BG544136 8154 733 80.1 glotblastn
4759 LYM745 canola|10v1|CN729435 8154 733 80.1 glotblastn
4760 LYM745 b_rapa|11v1|AT000620_T1 733 80.1 glotblastn
4761 LYM522 sorghum|12v1|SB06G029270_P1 8155 734 80.3 globlastp
4762 LYM523 rye|12v1|DRR001012.18480_P1 8156 735 95 globlastp
4763 LYM523 wheat|10v2|BE401228 8157 735 93.1 globlastp
4764 LYM528 rye|12v1|DRR001012.116265_P1 8158 736 96.1 globlastp
4765 LYM543 spruce|11v1|SRR064180X557368_P1 8159 737 89.8 globlastp
4766 LYM543 spruce|11v1|ES252261_P1 8160 737 88.9 globlastp
4767 LYM543 spruce|11v1|ES260391_P1 8160 737 88.9 globlastp
4768 LYM543 pine|10v2|AW042577_P1 8161 737 88.9 globlastp
4769 LYM543 pseudotsuga|10v1|SRR065119SO049481 8162 737 88.9 globlastp
4770 LYM543 spruce|gb162|CO219270 8160 737 88.9 globlastp
4771 LYM543 spruce|11v1|SRR065813X15381_T1 8163 737 88.89 glotblastn
4772 LYM543 cedrus|11v1|SRR065007X112403_T1 8164 737 88.43 glotblastn
4773 LYM543 abies|11v2|SRR098676X100684_P1 8165 737 88.4 globlastp
4774 LYM543 maritime_pine|10v1|BX250001_P1 8166 737 88.4 globlastp
4775 LYM543 spruce|11v1|SRR064180X217507_T1 8167 737 87.5 glotblastn
4776 LYM543 spruce|11v1|SRR065813X15250_T1 8168 737 87.5 glotblastn
4777 LYM543 zostera|10v1|AM766384 8169 737 82.4 globlastp
4778 LYM543 spruce|11v1|SRR065813X398459XX1_T1 8170 737 81.94 glotblastn
4779 LYM544 foxtail_millet|11v3|PHY7SI039847M_P1 8171 738 87.9 globlastp
4780 LYM546 millet|10v1|PMSLX003 8646_T1 8172 739 87.46 glotblastn
4781 LYM548 foxtail_millet|11v3|PHY7SI006270M_P1 8173 740 99.2 globlastp
4782 LYM548 sorghum|12v1|SB10G025110_P1 8174 740 82.2 globlastp
4783 LYM552 sorghum|09v1|SB06G025390 8175 741 88.2 globlastp
4784 LYM552 brachypodium|09v1|GT799879 8176 741 85 globlastp
4785 LYM552 rice|gb170|OS04G47590 8177 741 83.27 glotblastn
4786 LYM565 sorghum|09v1|SB01G028150 8178 743 91.9 globlastp
4787 LYM565 sorghum|12v1|SB01G028150_P1 8178 743 91.9 globlastp
4788 LYM570 barley|10v2|BU985758_P1 8179 745 87.4 globlastp
4789 LYM570 wheat|10v2|BG274796 8180 745 87.4 globlastp
4790 LYM570 rye|12v1|DRR001012.116829_P1 8181 745 83.3 globlastp
4791 LYM577 sorghum|12v1|SB04G024430_T1 8182 746 91.85 glotblastn
4792 LYM577 sorghum|09v1|SB06G028430 8183 746 91.7 globlastp
4793 LYM577 sorghum|12v1|SB06G028430_P1 8183 746 91.7 globlastp
4794 LYM577 sorghum|09v1|SB04G024425 8184 746 91.55 glotblastn
4795 LYM577 maize|10v1|AY027539_P1 8185 746 90.8 globlastp
4796 LYM577 foxtail_millet|11v3|PHY7SI033890M_T1 8186 746 86.27 glotblastn
4797 LYM577 millet|10v1|EVO454PM002339_P1 8187 746 83.9 globlastp
4798 LYM580 sorghum|12v1|SB01G033630_P1 8188 747 87 globlastp
4799 LYM582 sorghum|09v1|SB06G025650 8189 748 88 globlastp
4800 LYM582 sorghum|12v1|SB06G025650_P1 8189 748 88 globlastp
4801 LYM583 rice|11v1|BIS11269_P1 8190 749 80.7 globlastp
4802 LYM583 rice|gb170|OS01G66110 8190 749 80.7 globlastp
4803 LYM583 brachypodium|09v1|GT763030 8191 749 80.1 globlastp
4804 LYM583 brachypodium|12v1|BRADI2G57087_P1 8191 749 80.1 globlastp
4805 LYM589 sugarcane|10v1|CA066616 8192 750 98.8 globlastp
4806 LYM589 sorghum|09v1|SB03G012520 8193 750 97.6 globlastp
4807 LYM589 sorghum|12v1|SB03G012520_P1 8193 750 97.6 globlastp
4808 LYM589 foxtail_millet|10v2|SICRP007101 8194 750 84.8 globlastp
4809 LYM589 rice|11v1|AA751909_T1 8195 750 80.61 glotblastn
4810 LYM589 rice|gb170|OS01G19820 8195 750 80.61 glotblastn
4811 LYM591 wheat|10v2|BE442759 8196 751 83.7 globlastp
4812 LYM591 oat|11v1|GO582747_T1 8197 751 83.62 glotblastn
4813 LYM591 wheat|10v2|BE405359 8198 751 83.3 globlastp
4814 LYM591 wheat|10v2|BE493444 8199 751 83.1 globlastp
4815 LYM591 leymus|gb166|EG384632_P1 8200 751 83.1 globlastp
4816 LYM591 wheat|10v2|CA714711 8201 751 82.9 globlastp
4817 LYM591 rye|12v1|DRR001012.132893_P1 8202 751 82.3 globlastp
4818 LYM591 rye|12v1|DRR001012.232984_P1 8203 751 82.3 globlastp
4819 LYM591 barley|10v2|BI956152_P1 8204 751 82.3 globlastp
4820 LYM591 rye|12v1|DRR001012.319403_T1 8205 751 80.79 glotblastn
4821 LYM594 maize|10v1|CF648433_P1 8206 754 81.4 globlastp
4822 LYM594 sorghum|09v1|SB02G027510 8207 754 81.2 globlastp
4823 LYM594 sorghum|12v1|SB02G027510_P1 8207 754 81.2 globlastp
4824 LYM602 millet|10v1|EVO454PM006476_P1 8208 755 90.3 globlastp
4825 LYM602 brachypodium|09v1|SRR031795S0043310 8209 755 82.8 globlastp
4826 LYM602 brachypodium|12v1|BRADI5G09817_P1 8209 755 82.8 globlastp
4827 LYM602 barley|10v2|BJ469937_T1 8210 755 81.98 glotblastn
4828 LYM606 wheat|10v2|BE419171 8211 757 87.1 globlastp
4829 LYM608 millet|10v1|EVO454PM023380_P1 8212 758 91.5 globlastp
4830 LYM608 foxtail_millet|11v3|PHY7SI002286M_P1 8213 758 88.7 globlastp
4831 LYM608 foxtail_millet|10v2|OXFXTSLX00011421D1T1 8214 758 88.7 globlastp
4832 LYM608 rice|11v1|BI804402_P1 8215 758 80.1 globlastp
4833 LYM610 sorghum|12v1|SB01G007170_P1 8216 759 84.1 globlastp
4834 LYM610 sorghum|09v1|SB01G007170 8217 759 83.73 glotblastn
4835 LYM613 maize|10v1|AI782899_P1 8218 760 97 globlastp
4836 LYM613 switchgrass|gb167|DN141434 8219 760 95.6 globlastp
4837 LYM613 sorghum|09v1|SB03G009700 8220 760 95.1 globlastp
4838 LYM613 sorghum|12v1|SB03G009700_P1 8220 760 95.1 globlastp
4839 LYM613 foxtail_millet|11v3|EC612476_P1 8221 760 94.9 globlastp
4840 LYM613 foxtail_millet|10v2|SICRP010674 8221 760 94.9 globlastp
4841 LYM613 millet|10v1|CD724629_P1 8222 760 93.9 globlastp
4842 LYM613 barley|10v2|AV834710_P1 8223 760 88.8 globlastp
4843 LYM613 wheat|10v2|BE401965 8224 760 88.8 globlastp
4844 LYM613 rye|12v1|DRR001012.101407_P1 8225 760 88.6 globlastp
4845 LYM613 oat|10v2|CN814753 8226 760 87.3 globlastp
4846 LYM613 brachypodium|09v1|DV483417 8227 760 87.1 globlastp
4847 LYM613 brachypodium|12v1|BRADI2G08960_P1 8227 760 87.1 globlastp
4848 LYM613 fescue|gb161|DT679374_P1 8228 760 86.7 globlastp
4849 LYM613 cassava|09v1|DV441758_P1 8229 760 85.3 globlastp
4850 LYM613 eucalyptus|11v2|CD668810_P1 8230 760 85.2 globlastp
4851 LYM613 oil_palm|11v1|EL686708_P1 8231 760 85.2 globlastp
4852 LYM613 eucalyptus|11v1|CD668810 8230 760 85.2 globlastp
4853 LYM613 oil_palm|11v1|EL688441_P1 8232 760 85 globlastp
4854 LYM613 amorphophallus|11v2|SRR089351X2550_P1 8233 760 84.9 globlastp
4855 LYM613 cassava|09v1|JGICASSAVA12817VALIDM1_P1 8234 760 84.8 globlastp
4856 LYM613 aquilegia|10v2|DR928227 8235 760 84.3 globlastp
4857 LYM613 cacao|10v1|CU476740_P1 8236 760 84.3 globlastp
4858 LYM613 aristolochia|10v1|SRR039082S0002761_P1 8237 760 84.2 globlastp
4859 LYM613 pigeonpea|11v1|SRR054580X10008_P1 8238 760 84.1 globlastp
4860 LYM613 soybean|11v1|GLYMA10G29000 8239 760 84.1 globlastp
4861 LYM613 grape|11v1|GSVIVT01035047001_P1 8240 760 84 globlastp
4862 LYM613 castorbean|09v1|XM002512439 8241 760 83.9 globlastp
4863 LYM613 castorbean|11v1|XM_002512439_P1 8241 760 83.9 globlastp
4864 LYM613 poplar|10v1|BI070314_P1 8242 760 83.8 globlastp
4865 LYM613 soybean|11v1|GLYMA20G38320 8243 760 83.7 globlastp
4866 LYM613 amorphophallus|11v2|SRR089351X188349_P1 8244 760 83.6 globlastp
4867 LYM613 cirsium|11v1|SRR346952.1038670_P1 8245 760 83.6 globlastp
4868 LYM613 cannabis|12v1|JK496040_P1 8246 760 83.5 globlastp
4869 LYM613 euphorbia|11v1|BI961995_P1 8247 760 83.5 globlastp
4870 LYM613 arnica|11v1|SRR099034X100054_P1 8248 760 83.4 globlastp
4871 LYM613 cirsium|11v1|SRR346952.206135_P1 8249 760 83.4 globlastp
4872 LYM613 grape|11v1|GSVIVT01031205001_P1 8250 760 83.4 globlastp
4873 LYM613 pigeonpea|11v1|SRR054580X137243_P1 8251 760 83.4 globlastp
4874 LYM613 centaurea|gb166|EH712147_P1 8252 760 83.4 globlastp
4875 LYM613 poplar|10v1|AI165556_P1 8253 760 83.3 globlastp
4876 LYM613 spurge|gb161|BI961995 8254 760 83.3 globlastp
4877 LYM613 cirsium|11v1|SRR346952.1011854_P1 8255 760 83.2 globlastp
4878 LYM613 tabernaemontana|11v1|SRR098689X114962_P1 8256 760 83.2 globlastp
4879 LYM613 flaveria|11v1|SRR149229.56663_P1 8257 760 83.1 globlastp
4880 LYM613 humulus|11v1|GD242787_P1 8258 760 83.1 globlastp
4881 LYM613 medicago|09v1|AI974575 8259 760 83 globlastp
4882 LYM613 medicago|12v1|AI974575_P1 8259 760 83 globlastp
4883 LYM613 lettuce|10v1|DW046351_P1 8260 760 83 globlastp
4884 LYM613 cirsium|11v1|SRR346952.145853_P1 8261 760 82.9 globlastp
4885 LYM613 watermelon|11v1|AM728431_P1 8262 760 82.9 globlastp
4886 LYM613 soybean|11v1|GLYMA09G04430 8263 760 82.9 globlastp
4887 LYM613 soybean|11v1|GLYMA15G15480 8264 760 82.9 globlastp
4888 LYM613 sunflower|10v1|DY906438 8265 760 82.9 globlastp
4889 LYM613 sunflower|12v1|DY906438_P1 8265 760 82.9 globlastp
4890 LYM613 melon|10v1|AM728431_P1 8262 760 82.9 globlastp
4891 LYM613 soybean|11v1|GLYMA17G03430 8266 760 82.9 globlastp
4892 LYM613 catharanthus|11v1|EG558780_P1 8267 760 82.8 globlastp
4893 LYM613 vinca|11v1|SRR098690X101115_P1 8268 760 82.8 globlastp
4894 LYM613 bean|12v1|FE898145_P1 8269 760 82.7 globlastp
4895 LYM613 flaveria|11v1|SRR149229.155880_P1 8270 760 82.7 globlastp
4896 LYM613 watermelon|11v1|AM721237_P1 8271 760 82.7 globlastp
4897 LYM613 prunus|10v1|BU042321 8272 760 82.7 globlastp
4898 LYM613 sequoia|10v1|SRR065044S0000578 8273 760 82.6 globlastp
4899 LYM613 chelidonium|11v1|SRR084752X118599_P1 8274 760 82.5 globlastp
4900 LYM613 prunus|10v1|BU573305 8275 760 82.5 globlastp
4901 LYM613 cephalotaxus|11v1|SRR064395X100052_P1 8276 760 82.4 globlastp
4902 LYM613 medicago|09v1|BE187613 8277 760 82.4 globlastp
4903 LYM613 medicago|12v1|BE187613_P1 8277 760 82.4 globlastp
4904 LYM613 clover|gb162|AB236757_P1 8278 760 82.4 globlastp
4905 LYM613 ambrosia|11v1|SRR346935.136110_P1 8279 760 82.3 globlastp
4906 LYM613 melon|10v1|DV631718_P1 8280 760 82.3 globlastp
4907 LYM613 pigeonpea|11v1|SRR054580X125130_T1 8281 760 82.23 glotblastn
4908 LYM613 amsonia|11v1|SRR098688X100899_P1 8282 760 82.2 globlastp
4909 LYM613 eucalyptus|11v2|CD668073_P1 8283 760 82.2 globlastp
4910 LYM613 trigonella|11v1|SRR066194X146772_P1 8284 760 82.2 globlastp
4911 LYM613 cucumber|09v1|AM728431_P1 8285 760 82.2 globlastp
4912 LYM613 eucalyptus|11v1|CD668073 8283 760 82.2 globlastp
4913 LYM613 chickpea|11v1|FE671245_P1 8286 760 82.1 globlastp
4914 LYM613 gossypium_raimondii|12v1|AI728649_P1 8287 760 82.1 globlastp
4915 LYM613 gossypium_raimondii|12v1|DT547712_P1 8288 760 82.1 globlastp
4916 LYM613 cichorium|gb171|EH673771_P1 8289 760 82.1 globlastp
4917 LYM613 cotton|10v2|DT549479 8290 760 82.1 globlastp
4918 LYM613 lotus|09v1|CRPLJ011361_P1 8291 760 82.1 globlastp
4919 LYM613 pepper|gb1711AF369707_P1 8292 760 82.1 globlastp
4920 LYM613 poplar|10v1|CA924614_P1 8293 760 82.1 globlastp
4921 LYM613 cotton|11v1|AI728649_P1 8287 760 82.1 globlastp
4922 LYM613 cucumber|09v1|DN909459_P1 8294 760 82.1 globlastp
4923 LYM613 taxus|10v1|SRR032523S0008792 8295 760 82.02 glotblastn
4924 LYM613 catharanthus|11v1|EG560749_P1 8296 760 82 globlastp
4925 LYM613 eschscholzia|11v1|CK752191_P1 8297 760 82 globlastp
4926 LYM613 euonymus|11v1|SRR070038X117930_P1 8298 760 82 globlastp
4927 LYM613 maritime_pine|10v1|BX250058_P1 8299 760 82 globlastp
4928 LYM613 strawberry|11v1|CO378810 8300 760 82 globlastp
4929 LYM613 soybean|11v1|GLYMA03G39210 8301 760 82 globlastp
4930 LYM613 soybean|11v1|GLYMA19G41770 8302 760 82 globlastp
4931 LYM613 bean|12v1|CA899390_P1 8303 760 82 globlastp
4932 LYM613 pine|10v2|AA556627_P1 8299 760 82 globlastp
4933 LYM613 podocarpus|10v1|SRR065014S0001157_P1 8304 760 82 globlastp
4934 LYM613 spruce|gb162|CO216885 8305 760 82 globlastp
4935 LYM613 gossypium_raimondii|12v1|AI729294_P1 8306 760 81.9 globlastp
4936 LYM613 cotton|11v1|CO082221_P1 8307 760 81.9 globlastp
4937 LYM613 cotton|10v2|BG447346 8308 760 81.9 globlastp
4938 LYM613 cotton|11v1|AI729294_P1 8308 760 81.9 globlastp
4939 LYM613 peanut|10v1|GO258144_T1 8309 760 81.89 glotblastn
4940 LYM613 phalaenopsis|11v1|HO059358_P1 8310 760 81.8 globlastp
4941 LYM613 rose|12v1|SRR397984.103369_P1 8311 760 81.8 globlastp
4942 LYM613 oak|10v1|DB998642_P1 8312 760 81.8 globlastp
4943 LYM613 pseudotsuga|10v1|SRR065119S0006823 8313 760 81.8 globlastp
4944 LYM613 bean|12v1|FG232922_T1 8314 760 81.77 glotblastn
4945 LYM613 cotton|10v2|CA992748 8315 760 81.75 glotblastn
4946 LYM613 potato|10v1|BG350070_P1 8316 760 81.7 globlastp
4947 LYM613 solanum_phureja|09v1|SPHBG127084 8316 760 81.7 globlastp
4948 LYM613 tomato|09v1|BG127084 8317 760 81.7 globlastp
4949 LYM613 bean|gb167|CA899390 8318 760 81.61 glotblastn
4950 LYM613 ambrosia|11v1|SRR346935.134706_P1 8319 760 81.6 globlastp
4951 LYM613 castorbean|11v1|EE257564_P1 8320 760 81.6 globlastp
4952 LYM613 apple|11v1|CN491386_P1 8321 760 81.5 globlastp
4953 LYM613 arnica|11v1|SRR099034X101482_P1 8322 760 81.5 globlastp
4954 LYM613 beet|12v1|BQ489081_P1 8323 760 81.5 globlastp
4955 LYM613 cedrus|11v1|SRR065007X104038_P1 8324 760 81.5 globlastp
4956 LYM613 flaveria|11v1|SRR149229.11178_P1 8325 760 81.5 globlastp
4957 LYM613 phyla|11v2|SRR099035X111448_P1 8326 760 81.5 globlastp
4958 LYM613 sunflower|12v1|CD857229_P1 8327 760 81.5 globlastp
4959 LYM613 cacao|10v1|CU500965_P1 8328 760 81.5 globlastp
4960 LYM613 chestnut|gb170|SRR006295S0025538_P1 8329 760 81.5 globlastp
4961 LYM613 dandelion|10v1|DR398918_T1 8330 760 81.5 glotblastn
4962 LYM613 lettuce|10v1|DW112072_P1 8331 760 81.5 globlastp
4963 LYM613 arnica|11v1|SRR099034X104265_T1 8332 760 81.46 glotblastn
4964 LYM613 poplar|10v1|CN523665_P1 8333 760 81.4 globlastp
4965 LYM613 sunflower|10v1|CD853290 8334 760 81.4 globlastp
4966 LYM613 sunflower|12v1|CD853290_P1 8335 760 81.4 globlastp
4967 LYM613 flaveria|11v1|SRR149229.11815_T1 8336 760 81.36 glotblastn
4968 LYM613 abies|11v2|SRR098676X100270_P1 8337 760 81.3 globlastp
4969 LYM613 amborella|12v2|CK758678_P1 8338 760 81.3 globlastp
4970 LYM613 cirsium|11v1|SRR346952.1131212_P1 8339 760 81.3 globlastp
4971 LYM613 citrus|gb166|CK665649 8340 760 81.3 globlastp
4972 LYM613 oak|10v1|FP042090_P1 8341 760 81.3 globlastp
4973 LYM613 sunflower|12v1|CD849801_P1 8342 760 81.3 globlastp
4974 LYM613 eschscholzia|11v1|SRR014116.19395_P1 8343 760 81.2 globlastp
4975 LYM613 eucalyptus|11v2|ES592214_P1 8344 760 81.2 globlastp
4976 LYM613 grape|11v1|GSVIVT01028079001_P1 8345 760 81.2 globlastp
4977 LYM613 phalaenopsis|11v1|SRR125771.1003109_P1 8346 760 81.2 globlastp
4978 LYM613 eucalyptus|11v1|ES592214 8344 760 81.2 globlastp
4979 LYM613 ambrosia|11v1|SRR346935.11371_T1 8347 760 81.19 glotblastn
4980 LYM613 peanut|10v1|EE123670_T1 8348 760 81.19 glotblastn
4981 LYM613 beech|11v1|SRR006293.17569_P1 8349 760 81.1 globlastp
4982 LYM613 vinca|11v1|SRR098690X131031_P1 8350 760 81.1 globlastp
4983 LYM613 apple|gb171|CN863481 8351 760 81.1 globlastp
4984 LYM613 oak|10v1|DB997296_P1 8352 760 81.1 globlastp
4985 LYM613 orange|11v1|CK665649_P1 8353 760 81.1 globlastp
4986 LYM613 tomato|09v1|BG131430 8354 760 81.1 globlastp
4987 LYM613 tomato|11v1|BG131430_P1 8354 760 81.1 globlastp
4988 LYM613 medicago|09v1|AW257189 8355 760 81.1 globlastp
4989 LYM613 medicago|12v1|AW257189_P1 8355 760 81.1 globlastp
4990 LYM613 valeriana|11v1|SRR099039X106946_T1 8356 760 81.02 glotblastn
4991 LYM613 artemisia|10v1|EY111321_T1 8357 760 81.01 glotblastn
4992 LYM613 artemisia|10v1|EY085219_P1 8358 760 81 globlastp
4993 LYM613 cacao|10v1|CU473459_P1 8359 760 81 globlastp
4994 LYM613 ambrosia|11v1|SRR346935.144595_T1 8360 760 80.98 glotblastn
4995 LYM613 trigonella|11v1|SRR066194X248935_T1 8361 760 80.9 glotblastn
4996 LYM613 cassava|09v1|CK642920_T1 8362 760 80.9 glotblastn
4997 LYM613 citrus|gb166|CF419828 8363 760 80.9 globlastp
4998 LYM613 clementine|11v1|CF419828_P1 8363 760 80.9 globlastp
4999 LYM613 clementine|11v1|CK665649_P1 8364 760 80.9 globlastp
5000 LYM613 orange|11v1|CF419828_P1 8363 760 80.9 globlastp
5001 LYM613 strawberry|11v1|DY666898 8365 760 80.9 globlastp
5002 LYM613 poppy|11v1|SRR030259.106518_P1 8366 760 80.8 globlastp
5003 LYM613 cynara|gb167|GE577965_P1 8367 760 80.8 globlastp
5004 LYM613 potato|10v1|BG594078_P1 8368 760 80.8 globlastp
5005 LYM613 solanum_phureja|09v1|SPHBG131430 8368 760 80.8 globlastp
5006 LYM613 soybean|11v1|GLYMA07G37180 8369 760 80.8 globlastp
5007 LYM613 cotton|11v1|BG444336_P1 8370 760 80.8 globlastp
5008 LYM613 apple|11v1|CN489875_P1 8371 760 80.7 globlastp
5009 LYM613 sunflower|10v1|CD849801 8372 760 80.7 globlastp
5010 LYM613 gossypium_raimondii|12v1|DW491896_P1 8373 760 80.6 globlastp
5011 LYM613 cotton|10v2|BG444336 8374 760 80.6 globlastp
5012 LYM613 rice|11v1|AU077990_P1 8375 760 80.6 globlastp
5013 LYM613 rice|gb170|OS05G06350 8375 760 80.6 globlastp
5014 LYM613 trigonella|11v1|SRR066194X168106_P1 8376 760 80.5 globlastp
5015 LYM613 nasturtium|10v1|SRR032558S0000067 8377 760 80.5 globlastp
5016 LYM613 orobanche|10v1|SRR023189S0019902_P1 8378 760 80.5 globlastp
5017 LYM613 ambrosia|11v1|SRR346935.120699_P1 8379 760 80.4 globlastp
5018 LYM613 arabidopsis|10v1|AT4G16143_P1 8380 760 80.4 globlastp
5019 LYM613 arabidopsis lyrata|09v1|JGIAL026620_P1 8381 760 80.3 globlastp
5020 LYM613 canola|11v1|CN728836_P1 8382 760 80.3 globlastp
5021 LYM613 chickpea|11v1|FE668766_P1 8383 760 80.3 globlastp
5022 LYM613 thellungiella_halophilum|11v1|BY815722_P1 8384 760 80.3 globlastp
5023 LYM613 b_rapa|11v1|L47920_P1 8385 760 80.1 globlastp
5024 LYM613 tabernaemontana|11v1|SRR098689X103178XX1_P1 8386 760 80.1 globlastp
5025 LYM613 sugarcane|10v1|CA067990 8387 760 80.1 globlastp
5026 LYM613 zostera|10v1|SRR057351S0003096_T1 8388 760 80.04 glotblastn
5027 LYM613 castorbean|11v1|CF981412_P1 8389 760 80 globlastp
5028 LYM613 gossypium_raimondii|12v1|BQ409584_P1 8390 760 80 globlastp
5029 LYM613 cassava|09v1|JGICASSAVA23756VALIDM1_P1 8391 760 80 globlastp
5030 LYM627 sorghum|09v1|SLXL50313361Dl 8392 764 89.8 globlastp
5031 LYM627 sorghum|12v1|SB12VlCRP006190_P1 8392 764 89.8 globlastp
5032 LYM627 foxtail_millet|10v2|SICRP014424 8393 764 83 globlastp
5033 LYM627 foxtail_millet|11v3|PHY7SI000891M_T1 8394 764 82.64 glotblastn
5034 LYM627 foxtail_millet|11v3|SICRP013249_P1 8395 764 82.6 globlastp
5035 LYM634 maize|10v1|BM332469_T1 8396 766 80.81 glotblastn
5036 LYM635 wheat|10v2|BE401041XX2 8397 767 98.04 glotblastn
5037 LYM635 amorphophallus|11v2|SRR089351X107338_T1 8398 767 96.47 glotblastn
5038 LYM635 sorghum|12v1|GFXEF115542X26_P1 8399 767 95.3 globlastp
5039 LYM635 sugarcane|10v1|CA273314 8399 767 95.3 globlastp
5040 LYM635 barley|10v2|GFXEF115541X24_P1 8400 767 94.9 globlastp
5041 LYM635 rice|11v1|GFXAP006728X29_P1 8401 767 94.7 globlastp
5042 LYM635 brachypodium|09v1|TMPLOS04G16714T1 8401 767 94.7 globlastp
5043 LYM635 rice|gb170|OS04G16714 8401 767 94.7 globlastp
5044 LYM635 brachypodium|09v1|GFXEU325680X24 8402 767 94.7 globlastp
5045 LYM635 brachypodium|12v1|BRADI4G37052_P1 8402 767 94.7 globlastp
5046 LYM635 rice|gb170|OS04G16742 8403 767 94.5 globlastp
5047 LYM635 rice|gb170|OS04G16854 8404 767 94.5 globlastp
5048 LYM635 lolium|10v1|GFXAM777385X24_P1 8405 767 94.3 globlastp
5049 LYM635 amorphophallus|11v2|SRR089351X300894_P1 8406 767 94.1 globlastp
5050 LYM635 euonymus|11v1|GFXAY237135X2_T1 8407 767 93.74 glotblastn
5051 LYM635 pineapple|10v1|GFXAY147458X2_P1 8408 767 93.7 globlastp
5052 LYM635 soybean|11v1|GFXDQ317523X26 8409 767 92.55 glotblastn
5053 LYM635 cotton|10v2|GFXAP009123X1 8410 767 92.2 globlastp
5054 LYM635 gossypium_raimondii|12v1|DN799892_P1 8411 767 92 globlastp
5055 LYM635 eucalyptus|11v2|CT981419_P1 8412 767 91.6 globlastp
5056 LYM635 eucalyptus|11v2|GFXAY780259X26_P1 8412 767 91.6 globlastp
5057 LYM635 potato|10v1|GFXDQ231562X23_P1 8413 767 91.6 globlastp
5058 LYM635 solanum_phureja|09v1|SPHGFXAM087200X24 8414 767 91.6 globlastp
5059 LYM635 eucalyptus|11v1|GFXAY780259X26 8412 767 91.6 globlastp
5060 LYM635 sunflower|12v1|AJ519778_P1 8415 767 91.6 globlastp
5061 LYM635 bean|12v1|SRR001335.428244_T1 8416 767 91.57 glotblastn
5062 LYM635 gossypium_raimondii|12v1|DW487737_P1 8417 767 91.4 globlastp
5063 LYM635 medicago|12v1|BG644701_P1 8418 767 91.4 globlastp
5064 LYM635 olea|11v1|SRR014465.6187_P1 8419 767 91.4 globlastp
5065 LYM635 ginseng|10v1|GFXAY582139X25_P1 8420 767 91.4 globlastp
5066 LYM635 prunus|10v1|CN856608 8421 767 91.4 globlastp
5067 LYM635 guizotia|10v1|GE572902_P1 8422 767 91.4 globlastp
5068 LYM635 amborella|12v2|FD429846_P1 8423 767 91.2 globlastp
5069 LYM635 grape|11v1|CD009046_P1 8424 767 91.2 globlastp
5070 LYM635 grape|11v1|GFXDQ424856X25_P1 8424 767 91.2 globlastp
5071 LYM635 lettuce|10v1|GFXAP007232X29_P1 8425 767 91.2 globlastp
5072 LYM635 b_rapa|11v1|GFXAF126026X1_P1 8426 767 91 globlastp
5073 LYM635 fagopyrum|11v1|GFXEU254477X25_P1 8427 767 91 globlastp
5074 LYM635 sunflower|10v1|AJ519778 8428 767 91 globlastp
5075 LYM635 arabidopsis_lyrata|09v1|JGIAL003825_P1 8429 767 90.8 globlastp
5076 LYM635 castorbean|11v1|SRR020785.64944_P1 8430 767 90.6 globlastp
5077 LYM635 arabidopsis|10v1|ATCG00065_P1 8431 767 90.4 globlastp
5078 LYM635 canola|10v1|GFXAF126026X1 8432 767 90.2 globlastp
5079 LYM635 chickpea|09v2|GFXEU835853X25 8433 767 89.6 globlastp
5080 LYM635 jatropha|09v1|GFXFJ695500X23_P1 8434 767 89.4 globlastp
5081 LYM635 pea|11v1|GFXAF238072X1_P1 8435 767 88.1 globlastp
5082 LYM635 liriodendron|gb166|GFXAF123782X3_P1 8436 767 86.7 globlastp
5083 LYM635 bean|12v1|Z80873_P1 8437 767 84.3 globlastp
5084 LYM635 zamia|gb166|GFXAF188850X3 8438 767 84 globlastp
5085 LYM635 pine|10v2|GFXEF421242X1_P1 8439 767 83.3 globlastp
5086 LYM636 sorghum|09v1|SB04G004490 8440 768 89.1 globlastp
5087 LYM636 sorghum|12v1|SB04G004490_P1 8440 768 89.1 globlastp
5088 LYM636 switchgrass|gb167|FE597550 8441 768 85 globlastp
5089 LYM636 foxtail_millet|11v3|PHY7SI017893M_P1 8442 768 84.6 globlastp
5090 LYM636 switchgrass|gb167|FE597549 8443 768 84 globlastp
5091 LYM636 cenchrus|gb166|EB655195_P1 8444 768 82.7 globlastp
5092 LYM636 oat|10v2|GR321147 8445 768 80.1 globlastp
5093 LYM636 oat|11v1|GR321147_P1 8445 768 80.1 globlastp
5094 LYM638 sorghum|09v1|SB10G025230 8446 769 89.4 globlastp
5095 LYM638 sorghum|12v1|SB10G025230_P1 8446 769 89.4 globlastp
5096 LYM638 foxtail_millet|11v3|PHY7SI006693M_P1 8447 769 89.1 globlastp
5097 LYM638 millet|10v1|PMSLX0008794D1_P1 8448 769 88.3 globlastp
5098 LYM645 switchgrass|gb167|FE646200 8449 772 83.7 globlastp
5099 LYM645 foxtail_millet|11v3|PHY7SI023114M_P1 8450 772 83.2 globlastp
5100 LYM645 foxtail_millet|10v2|SICRP019944 8450 772 83.2 globlastp
5101 LYM650 sorghum|09v1|SB10G005880 8451 775 98.9 globlastp
5102 LYM650 foxtail_millet|11v3|PHY7SI006087M_P1 8452 775 98.4 globlastp
5103 LYM650 switchgrass|gb167|FE621615 8453 775 96.9 globlastp
5104 LYM650 rice|11v1|AU182694_P1 8454 775 96.1 globlastp
5105 LYM650 brachypodium|09v1|GT799154 8455 775 94.3 globlastp
5106 LYM650 brachypodium|12v1|BRADI1G47080_P1 8455 775 94.3 globlastp
5107 LYM650 sorghum|12v1|SB10G005880_P1 8456 775 91.2 globlastp
5108 LYM650 rice|gb170|OS06G08730 8457 775 90.8 globlastp
5109 LYM653 sorghum|09v1|SB01G017340 8458 776 96.4 globlastp
5110 LYM653 sorghum|12v1|SB01G017340_P1 8458 776 96.4 globlastp
5111 LYM653 millet|10v1|EVO454PM025779_P1 8459 776 93.6 globlastp
5112 LYM653 rye|12v1|DRR001012.1142_P1 8460 776 82.4 globlastp
5113 LYM653 wheat|10v2|BG274425 8461 776 82.3 globlastp
5114 LYM653 wheat|10v2|BF473382 8462 776 82.1 globlastp
5115 LYM669 maize|10v1|BM380027_P1 8463 783 97.7 globlastp
5116 LYM671 sorghum|12v1|SB10G024680_P1 8464 784 95.8 globlastp
5117 LYM671 switchgrass|gb167|FE604403_T1 8465 784 88.6 glotblastn
5118 LYM671 rice|11v1|AU032635_P1 8466 784 86.3 globlastp
5119 LYM671 rye|12v1|DRR001012.117974_P1 8467 784 83.9 globlastp
5120 LYM671 oat|11v1|GR344397_P1 8468 784 83.5 globlastp
5121 LYM671 wheat|10v2|BM138514_P1 8469 784 83.5 globlastp
5122 LYM671 brachypodium|12v1|BRADI1G35600_P1 8470 784 83.3 globlastp
5123 LYM671 barley|10v2|BE214251_P1 8471 784 83.1 globlastp
5124 LYM673 brachypodium|12v1|BRADI4G08030_P1 8472 786 85 globlastp
5125 LYM673 brachypodium|09v1|DV473324 8473 786 84.74 glotblastn
5126 LYM702 maize|10v1|BG901364_P1 8474 790 83.5 globlastp
5127 LYM704 maize|10v1|AI855140_P1 8475 792 95.7 globlastp
5128 LYM704 foxtail_millet|10v2|SICRP011153 8476 792 91 globlastp
5129 LYM704 foxtail_millet|11v3|PHY7SI029002M_P1 8477 792 88.3 globlastp
5130 LYM704 brachypodium|09v1|GT779639 8478 792 80.48 glotblastn
5131 LYM704 brachypodium|12v1|BRADI1G48350_T1 8478 792 80.48 glotblastn
5132 LYM716 rice|11v1|AA749684_P1 8479 797 88.1 globlastp
5133 LYM716 rice|gb170|OS04G41570 8479 797 88.1 globlastp
5134 LYM716 leymus|gb166|EG379262_P1 8480 797 86.3 globlastp
5135 LYM716 brachypodium|09v1|DV485204 8481 797 85.2 globlastp
5136 LYM716 brachypodium|12v1|BRADI5G14260_P1 8481 797 85.2 globlastp
5137 LYM716 oat|10v2|GO589230 8482 797 83 globlastp
5138 LYM716 oat|11v1|GO589230_P1 8482 797 83 globlastp
5139 LYM720 maize|10v1|DN230533_P1 8483 798 85.3 globlastp
5140 LYM720 foxtail_millet|11v3|PHY7SI013494M_P1 8484 798 83.5 globlastp
5141 LYM720 foxtail_millet|10v2|SICRP011571 8484 798 83.5 globlastp
5142 LYM731 maize|10v1|BE050512_P1 8485 801 87.8 globlastp
5143 LYM736 barley|10v2|BE421336XX1_P1  804 804 100 globlastp
5144 LYM737 rye|12v1|DRR001012.136191_T1 8486 805 96.18 glotblastn
5145 LYM737 rye|12v1|DRR001012.280837_T1 8487 805 95.42 glotblastn
5146 LYM737 leymus|gb166|EG390543_P1 8488 805 95.3 globlastp
5147 LYM737 barley|10v2|BI947744_T1 8489 805 95.08 glotblastn
5148 LYM737 rye|12v1|DRR001012.233208_T1 8490 805 93.51 glotblastn
5149 LYM737 rye|12v1|DRR001012.413549_P1 8491 805 85.5 globlastp
5150 LYM737 rye|12v1|DRR001012.188590_P1 8492 805 82.4 globlastp
5151 LYM737 rye|12v1|DRR001012.205247_P1 8493 805 82.1 globlastp
5152 LYM737 rye|12v1|DRR001012.183230_P1 8494 805 81 globlastp
5153 LYM744 sorghum|09v1|SB02G043130 8495 809 86 globlastp
5154 LYM744 sorghum|12v1|SB02G043130_P1 8495 809 86 globlastp
5155 LYM746 sugarcane|10v1|CA106251 8496 810 97.2 globlastp
5156 LYM746 maize|10v1|AI491693_P1 8497 810 95.9 globlastp
5157 LYM746 maize|10v1|AI629829_P1 8498 810 95.9 globlastp
5158 LYM750 maize|10v1|AI855202_P1 8499 812 98.6 globlastp
5159 LYM750 sorghum|09v1|SB10G001780 8499 812 98.6 globlastp
5160 LYM750 sorghum|12v1|SB10G001780_P1 8499 812 98.6 globlastp
5161 LYM750 foxtail_millet|10v2|EC612212 8500 812 97.1 globlastp
5162 LYM750 foxtail_millet|11v3|EC612212_P1 8501 812 95.7 globlastp
5163 LYM750 millet|10v1|EVO454PM039273_T1 8502 812 95.65 glotblastn
5164 LYM750 sugarcane|10v1|CF572309_T1 8503 812 94.2 glotblastn
5165 LYM750 switchgrass|gb167|DN140668 8504 812 94.2 globlastp
5166 LYM750 switchgrass|gb167|FL773601 8505 812 92.8 globlastp
5167 LYM750 rice|11v1|AA751440_P1 8506 812 87 globlastp
5168 LYM750 rice|gb170|OS04G56540 8506 812 87 globlastp
5169 LYM750 oat|10v2|GO587692 8507 812 82.6 globlastp
5170 LYM750 oat|11v1|GR341598_P1 8507 812 82.6 globlastp
5171 LYM750 lolium|10v1|AU247800_P1 8508 812 81.2 globlastp
5172 LYM750 fescue|gb161|DT690833_T1 8509 812 81.16 glotblastn
5173 LYM750 onion|gb162|CF449681_P1 8510 812 80 globlastp
9096 LYM745 gossypium_raimondii|12v1|GR12V1PRD003294 9143 8524 82.8 globlastp
9097 LYM745 amaranthus|10v1|SRR039411S0011389 9144 8524 81.33 glotblastn
9098 LYM745 phyla|11v2|SRR099035X115605 9145 8524 84.67 glotblastn
9099 LYM745 ginseng|10v1|EC599983 9146 8524 86 glotblastn
9100 LYM745 strawberry|11v1|GFXDQ768221X1 8524 82 glotblastn
9101 LYM745 medicago|12v1|MTPRD023600 9147 8524 87.33 glotblastn
9102 LYM745 clover|gb162|BB920596 9148 8524 84.8 globlastp
9103 LYM745 centaurea|gb166|EH785657 9149 8524 83.33 glotblastn
9104 LYM745 pigeonpea|11v1|SRR054580X130289 8524 84 glotblastn
9105 LYM745 lotus|09v1|CRPLJ011653 9150 8524 86.67 glotblastn
9106 LYM745 phyla|11v2|SRR099037X11582 9151 8524 82.1 globlastp
9107 LYM745 arnica|11v1|SRR099034X10033 9152 8524 84.67 glotblastn
9108 LYM745 castorbean|11v1|SRR020784.10090 9153 8524 85.33 glotblastn
9109 LYM745 poppy|11v1|FG599496 8524 86 glotblastn
9110 LYM745 pigeonpea|11v1|GW350557 9154 8524 82.1 globlastp
9111 LYM745 maize|10v1|ZMCRP2V177380 9155 8524 85.3 globlastp
9112 LYM745 brachypodium|12v1|BDPRD12V1004628 8524 86 glotblastn
9113 LYM745 castorbean|11v1|SOLX00036571 9156 8524 80.67 glotblastn
9114 LYM745 ceratodon|10v1|SRR074891S0680381XX1 9157 8524 81.33 glotblastn
9115 LYM745 tripterygium|11v1|SRR098677Xl00669XX1 9158 8524 83.33 glotblastn
9116 LYM745 bean|12v1|CA903678 8524 84.67 glotblastn
9117 LYM745 castorbean|11v1|SRR020784.3466 9159 8524 83.33 glotblastn
9118 LYM745 gossypium_raimondii|12v1|AI728038 8524 86.67 glotblastn
9119 LYM745 medicago|12v1|MTPRDO17482 9160 8524 85.71 glotblastn
9120 LYM745 pigeonpea|11v1|CCIIPG11044979 9161 8524 82.1 globlastp
9121 LYM745 orobanche|10v1|SRR023189S0001383 9162 8524 82.67 glotblastn
9122 LYM745 artemisia|10v1|SRR019254S0053783 9163 8524 81.17 glotblastn
9123 LYM745 lotus|09v1|CRPLJ040450 9164 8524 87.7 globlastp
9124 LYM745 tripterygium|11v1|SRR098677X106141 8524 83.33 glotblastn
9125 LYM745 lotus|09v1|CRPLJ003115 9165 8524 82.1 globlastp
9126 LYM745 walnuts|gb166|CB303946 9166 8524 84.1 globlastp
9127 LYM745 conyza|10v1|SRR035294S0015476 9167 8524 90 glotblastn
9128 LYM745 eucalyptus|11v2|SRR001659X124697 9168 8524 83.4 globlastp
9129 LYM745 phyla|11v2|SRR099035X10108 8524 84 glotblastn
9130 LYM745 castorbean|11v1|EE258340 8524 85.33 glotblastn
9131 LYM745 coffea|10v1|CF588735 9169 8524 86 glotblastn
9132 LYM745 peanut|10v1|EG029006 9170 8524 84.67 glotblastn
9133 LYM745 vinca|11v1|SRR098690X109897XX3 8524 86 glotblastn
9134 LYM745 gossypium_raimondii|12v1|ES806126 8524 86.67 glotblastn
9135 LYM745 sorghum|12v1|SB12V1CRP123950 8524 82.67 glotblastn
9136 LYM745 avocado|10v1|CK743333 9171 8524 83.33 glotblastn
9137 LYM745 bean|12v1|SRR001334.14961 9172 8524 84.67 glotblastn
9138 LYM745 ipomoea_batatas|10v1|CB330910 9173 8524 88 glotblastn
9139 LYM745 lotus|09v1|CRPLJ016207 9174 8524 84.1 globlastp
9140 LYM745 medicago|12v1|MTPRD016895 9175 8524 86.36 glotblastn
9141 LYM745 tobacco|gb162|AM840441 9176 8524 84.1 globlastp
9142 LYM745 lotus|09v1|CRPLJ031511 9177 8524 84.1 globlastp
Table 2: Provided are the homologous polypeptides and polynucleotides of the genes for increasing yield (e.g., oil yield, seed yield, fiber yield and/or quality), growth rate, vigor, biomass, abiotic stress tolerance, nitrogen use efficiency, water use efficiency and/or fertilizer use efficiency genes of a plant which are listed in Table 1 above and in Table 51 of the cloned genes below. Homology was calculated as % of identity over the aligned sequences. The query sequences were polynucleotide sequences SEQ ID NOs: 1-277 and 8511, 8513, 8515, 8517, 8519, 8521, 8523 and 277-479; and polypeptide SEQ ID NOs: 480-733, 8512, 8514, 8516, 8518, 8520, 8522, 8524 and 734-812 and the subject sequences are protein sequences identified in the database based on greater than 80% global identity to the predicted translated sequences of the query nucleotide sequences or to the polypeptide sequences. “Nucl.” = polynucleotide; “polyp.” = polypeptide; “Algor.” = algorithm (used for sequence alignment and determination of percent homology); “Hom.”—homology; “iden.”—identity.
The output of the functional genomics approach described herein is a set of genes highly predicted to improve yield and/or other agronomic important traits such as growth rate, vigor, oil content, fiber yield and/or quality, biomass, growth rate, abiotic stress tolerance, nitrogen use efficiency, water use efficiency and fertilizer use efficiency of a plant by increasing their expression. Although each gene is predicted to have its own impact, modifying the mode of expression of more than one gene is expected to provide an additive or synergistic effect on the plant yield and/or other agronomic important yields performance. Altering the expression of each gene described herein alone or a set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.
Example 3 Production of Barley Transcriptom and High Throughput Correlation Analysis Using 44K Barley Oligonucleotide Micro-Array
In order to produce a high throughput correlation analysis, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 47,500 Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 25 different Barley accessions were analyzed. Among them, 13 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Five tissues at different developmental stages [meristem, flower, booting spike, and stem], representing different plant characteristics, were sampled and RNA was extracted as described hereinabove under “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”.
For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 3 below.
TABLE 3
Barley transcriptom expression sets
Expression Set Set ID
booting spike 1
stem 2
flowering spike 3
meristem 4
Table 3: Provided are the identification (ID) letters of each of the Barley expression sets.
Barley Yield Components and Vigor Related Parameters Assessment—
13 Barley accessions in 4 repetitive blocks (named A, B, C, and D), each containing 4 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 4, below). Harvest was conducted while 50% of the spikes were dry to avoid spontaneous release of the seeds. Plants were separated to the vegetative part and spikes, of them, 5 spikes were threshed (grains were separated from the glumes) for additional grain analysis such as size measurement, grain count per spike and grain yield per spike. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
TABLE 4
Barley standard descriptors
Trait Parameter Range Description
Growth habit Scoring 1-9 Prostrate (1) or Erect (9)
Hairiness of Scoring P (Presence)/ Absence (1) or Presence (2)
basal leaves A (Absence)
Stem Scoring 1-5 Green (1), Basal only or
pigmentation Half or more (5)
Days to Days Days from sowing to
Flowering emergence of awns
Plant height Centimeter Height from ground level to
(cm) top of the longest spike
excluding awns
Spikes per plant Number Terminal Counting
Spike length Centimeter Terminal Counting 5 spikes
(cm) per plant
Grains per spike Number Terminal Counting 5 spikes
per plant
Vegetative dry Gram Oven-dried for 48 hours at
weight 70° C.
Spikes dry Gram Oven-dried for 48 hours at
weight 30° C.
Table 4.
At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected, and the following measurements were performed:
(i) Grains Per Spike—
The total number of grains from 5 spikes that were manually threshed was counted. The average grain per spike was calculated by dividing the total grain number by the number of spikes.
(ii) Grain Average Size (cm)—
The total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.
(iii) Grain Average Weight (mgr)—
The total grains from 5 spikes that were manually threshed were counted and weight. The average weight was calculated by dividing the total weight by the total grain number.
(iv) Grain Yield Per Spike (gr)—
The total grains from 5 spikes that were manually threshed were weight. The grain yield was calculated by dividing the total weight by the spike number.
(v) Spike Length Analysis—
The five chosen spikes per plant were measured using measuring tape excluding the awns.
(vi) Spike Number Analysis—
The spikes per plant were counted.
Additional parameters were measured as follows:
Growth Habit Scoring—
At growth stage 10 (booting), each of the plants was scored for its growth habit nature. The scale that was used was 1 for prostate nature till 9 for erect.
Hairiness of Basal Leaves—
At growth stage 5 (leaf sheath strongly erect; end of tillering), each of the plants was scored for its hairiness nature of the leaf before the last. The scale that was used was 1 for prostate nature till 9 for erect.
Plant Height—
At harvest stage (50% of spikes were dry), each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns.
Days to Flowering—
Each of the plants was monitored for flowering date. Days of flowering was calculated from sowing date till flowering date.
Stem Pigmentation—
At growth stage 10 (booting), each of the plants was scored for its stem color. The scale that was used was 1 for green till 5 for full purple.
Vegetative Dry Weight and Spike Yield—
At the end of the experiment (50% of the spikes were dry) all spikes and vegetative material from plots within blocks A-D are collected. The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.
Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours.
Spike Yield Per Plant=
total spike weight per plant (gr) after drying at 30° C. in oven for 48 hours.
TABLE 5
Barley correlated parameters (vectors)
Correlation
Correlated parameter with ID
Days to flowering (days) 1
Grain weight (miligrams) 2
Spike length (cm) 3
Grains size (mm2) 4
Grains per spike (numbers) 5
Growth habit (scores 1-9) 6
Hairiness of basal leaves (scoring 1-2) 7
Plant height (cm) 8
Grain Yield per spike (gr/spike) 9
Stem pigmentation (scoring 1-5) 10
Vegetative dry weight (gram) 11
Spikes per plant (numbers) 12
Table 5. Provided are the Barley correlated parameters (vectors).
Experimental Results
13 different Barley accessions were grown and characterized for 12 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 6 and 7 below. Subsequent correlation analysis between the various transcriptom expression sets (Table 3) and the average parameters was conducted. Follow, results were integrated to the database (Table 8 below).
TABLE 6
Measured parameters of correlation Ids in Barley accessions
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7
1 62.40 64.08 65.15 58.92 63.00 70.54 52.80
2 35.05 28.06 28.76 17.87 41.22 29.73 25.22
3 12.04 10.93 11.83 9.90 11.68 11.53 8.86
4 0.27 0.23 0.24 0.17 0.29 0.28 0.22
5 20.23 17.98 17.27 17.73 14.47 16.78 12.12
6 2.60 2.00 1.92 3.17 4.33 2.69 3.60
7 1.53 1.33 1.69 1.08 1.42 1.69 1.30
8 134.27 130.50 138.77 114.58 127.75 129.38 103.89
9 3.56 2.54 2.58 1.57 3.03 2.52 1.55
10 1.13 2.50 1.69 1.75 2.33 2.31 1.70
11 78.87 66.14 68.49 53.39 68.30 74.17 35.35
12 48.85 48.27 37.42 61.92 33.27 41.69 40.00
Table 6. Provided are the values of each of the parameters measured in Barley accessions (ecotypes, line number) according to the correlation identifications (see Table 5).
TABLE 7
Barley accessions, additional measured parameters
Corr. Ecotype
ID Line-8 Line-9 Line-10 Line-11 Line-12 Line-13
1 60.88 58.10 60.40 53.00 64.58 56.00
2 34.99 20.58 37.13 27.50 29.56 19.58
3 11.22 11.11 10.18 8.58 10.51 9.80
4 0.28 0.19 0.27 0.22 0.27 0.18
5 14.07 21.54 13.40 12.10 15.28 17.07
6 3.50 3.00 2.47 3.67 3.50 3.00
7 1.19 1.00 1.60 1.17 1.08 1.17
8 121.63 126.80 121.40 99.83 118.42 117.17
9 2.62 2.30 2.68 1.68 2.35 1.67
10 2.19 2.30 3.07 1.83 1.58 2.17
11 58.33 62.23 68.31 38.32 56.15 42.68
12 40.63 62.00 50.60 49.33 43.09 51.40
Table 7. Provided are the values of each of the parameters measured in Barley accessions (ecotypes, line number) according to the correlation identifications (see Table 5).
TABLE 8
Correlation between the expression level of the selected polynucleotides
of the invention and their homologues in specific tissues or developmental
stages and the phenotypic performance across Barley accessions
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set vector Name R P value set vector
LYM521 0.75 3.09E−02 3 4 LYM521 0.87 5.21E−03 3 1
LYM522 0.72 2.95E−02 1 7 LYM522 0.88 3.91E−04 4 12
LYM525 0.83 1.07E−02 3 4 LYM525 0.84 8.42E−03 3 2
LYM525 0.77 2.45E−02 3 1 LYM525 0.75 1.28E−02 3 7
LYM525 0.89 1.22E−03 4 4 LYM525 0.90 1.03E−03 4 2
LYM525 0.71 3.30E−02 4 9 LYM526 0.76 2.95E−02 3 10
LYM529 0.72 4.43E−02 1 12 LYM530 0.77 1.44E−02 4 4
LYM530 0.78 4.48E−03 4 2 LYM531 0.87 4.94E−03 4 12
LYM531 0.87 2.47E−03 4 5 LYM532 0.79 1.10E−02 4 9
LYM532 0.73 2.50E−02 4 11 LYM533 0.80 8.96E−03 1 4
LYM533 0.85 3.54E−03 1 2 LYM533 0.89 1.33E−03 1 9
LYM533 0.76 1.65E−02 1 11 LYM533 0.75 7.56E−03 1 7
LYM534 0.81 8.38E−03 4 4 LYM534 0.80 3.22E−03 4 2
LYM679 0.74 2.23E−02 4 4 LYM679 0.73 1.03E−02 4 2
LYM742 0.74 2.31E−02 1 7 LYM742 0.82 4.05E−03 3 9
LYM742 0.73 1.76E−02 3 11
Table 8. Provided are the correlations (R) and p-values (P) between the expression levels of selected genes of some embodiments of the invention in various tissues or developmental stages [Expression (Exp.) sets] and the phenotypic performance in various yield (seed yield, oil yield, oil content), biomass, growth rate and/or vigor components [Correlation (Corr.) vector (Vec.) specified in Tables 5, 6 and 7]; Exp. Set = expression set specified in Table 3.
Example 4 Production of Arabidopsis Transcriptom and High Throughput Correlation Analysis of Yield, Biomass and/or Vigor Related Parameters Using 44K Arabidopsis Full Genome Oligonucleotide Micro-Array
To produce a high throughput correlation analysis, the present inventors utilized an Arabidopsis thaliana oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot) com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 40,000 A. thaliana genes and transcripts designed based on data from the TIGR ATH1 v.5 database and Arabidopsis MPSS (University of Delaware) databases. To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 15 different Arabidopsis ecotypes were analyzed. Among them, nine ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Analyzed Arabidopsis Tissues—
Five tissues at different developmental stages including root, leaf, flower at anthesis, seed at 5 days after flowering (DAF) and seed at 12 DAF, representing different plant characteristics, were sampled and RNA was extracted as described as described hereinabove under “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 9 below.
TABLE 9
Tissues used for Arabidopsis transcriptom expression sets
Expression Set Set ID
Root A
Leaf B
Flower C
Seed 5 DAF  D
Seed
12 DAF E
Table 9. Provided are the identification (ID) letters of each of the Arabidopsis expression sets (A-E).
DAF = days after flowering.
Yield Components and Vigor Related Parameters Assessment—
Eight out of the nine Arabidopsis ecotypes were used in each of 5 repetitive blocks (named A, B, C, D and E), each containing 20 plants per plot. The plants were grown in a greenhouse at controlled conditions in 22° C., and the N:P:K fertilizer (20:20:20; weight ratios) [nitrogen (N), phosphorus (P) and potassium (K)] was added. During this time data was collected, documented and analyzed. Additional data was collected through the seedling stage of plants grown in a tissue culture in vertical grown transparent agar plates. Most of chosen parameters were analyzed by digital imaging.
Digital Imaging in Tissue Culture—
A laboratory image acquisition system was used for capturing images of plantlets sawn in square agar plates. The image acquisition system consists of a digital reflex camera (Canon EOS 300D) attached to a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4×150 Watts light bulb) and located in a darkroom.
Digital Imaging in Greenhouse—
The image capturing process was repeated every 3-4 days starting at day 7 till day 30. The same camera attached to a 24 mm focal length lens (Canon EF series), placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The white tubs were square shape with measurements of 36×26.2 cm and 7.5 cm deep. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows. This process was repeated every 3-4 days for up to 30 days.
An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing program, which was developed at the U.S National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/. Images were captured in resolution of 6 Mega Pixels (3072×2048 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Leaf Analysis—
Using the digital analysis leaves data was calculated, including leaf number, area, perimeter, length and width. On day 30, 3-4 representative plants were chosen from each plot of blocks A, B and C. The plants were dissected, each leaf was separated and was introduced between two glass trays, a photo of each plant was taken and the various parameters (such as leaf total area, laminar length etc.) were calculated from the images. The blade circularity was calculated as laminar width divided by laminar length.
Root Analysis—
During 17 days, the different ecotypes were grown in transparent agar plates. The plates were photographed every 3 days starting at day 7 in the photography room and the roots development was documented (see examples in FIGS. 3A-F). The growth rate of roots was calculated according to Formula V.
Relative growth rate of root coverage=Regression coefficient of root coverage along time course.  Formula V:
Vegetative Growth Rate Analysis—
was calculated according to Formula VI. The analysis was ended with the appearance of overlapping plants.
Relative vegetative growth rate area=Regression coefficient of vegetative area along time course.  Formula VI
For comparison between ecotypes the calculated rate was normalized using plant developmental stage as represented by the number of true leaves. In cases where plants with 8 leaves had been sampled twice (for example at day 10 and day 13), only the largest sample was chosen and added to the Anova comparison.
Seeds in Siliques Analysis—
On day 70, 15-17 siliques were collected from each plot in blocks D and E. The chosen siliques were light brown color but still intact. The siliques were opened in the photography room and the seeds were scatter on a glass tray, a high resolution digital picture was taken for each plot. Using the images the number of seeds per silique was determined.
Seeds Average Weight—
At the end of the experiment all seeds from plots of blocks A-C were collected. An average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
Oil Percentage in Seeds—
At the end of the experiment all seeds from plots of blocks A-C were collected. Columbia seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra—Oxford Instrument) and its MultiQuant software package.
Silique Length Analysis—
On day 50 from sowing, 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.
Dry Weight and Seed Yield—
On day 80 from sowing, the plants from blocks A-C were harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot was separated, measured and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber; Seed yield per plant=total seed weight per plant (gr).
Oil Yield—
The oil yield was calculated using Formula VII.
Seed Oil yield=Seed yield per plant (gr.)*Oil % in seed.  Formula VII:
Harvest Index (Seed)—
The harvest index was calculated using Formula IV (described above): Harvest Index=Average seed yield per plant/Average dry weight.
Experimental Results
Nine different Arabidopsis ecotypes were grown and characterized for 18 parameters (named as vectors).
TABLE 10
Arabidopsis correlated parameters (vectors)
Correlation
Correlated parameter with ID
Root length day 13 (cm) 1
Root length day 7 (cm) 2
Relative root growth (cm/day) day 13 3
Fresh weight per plant (gr) at bolting stage 4
Dry matter per plant (gr) 5
Vegetative growth rate (cm2/day) till 8 true leaves 6
Blade circularity 7
Lamina width (cm) 8
Lamina length (cm) 9
Total leaf area per plant (cm) 10
1000 Seed weight (gr) 11
Oil % per seed 12
Seeds per silique 13
Silique length (cm) 14
Seed yield per plant (gr) 15
Oil yield per plant (mg) 16
Harvest Index 17
Leaf width/length 18
Table 10. Provided are the Arabidopsis correlated parameters (correlation ID Nos. 1-18).
Abbreviations: Cm = centimeter(s); cm2 = squared centimeters; gr = gram(s); mg = milligram(s).
The characterized values are summarized in Tables 11 and 12 below.
TABLE 11
Measured parameters in Arabidopsis ecotypes
Corr. Parameter
Ecotype
15 16 12 11 5 17 10 13 14
An-1 0.34 118.63 34.42 0.0203 0.64 0.53 46.86 45.44 1.06
Col-0 0.44 138.73 31.19 0.0230 1.27 0.35 109.89 53.47 1.26
Ct-1 0.59 224.06 38.05 0.0252 1.05 0.56 58.36 58.47 1.31
Cvi (N8580) 0.42 116.26 27.76 0.0344 1.28 0.33 56.80 35.27 1.47
Gr-6 0.61 218.27 35.49 0.0202 1.69 0.37 114.66 48.56 1.24
Kondara 0.43 142.11 32.91 0.0263 1.34 0.32 110.82 37.00 1.09
Ler-1 0.36 114.15 31.56 0.0205 0.81 0.45 88.49 39.38 1.18
Mt-0 0.62 190.06 30.79 0.0226 1.21 0.51 121.79 40.53 1.18
Shakdara 0.55 187.62 34.02 0.0235 1.35 0.41 93.04 25.53 1.00
Table 11. Provided are the values of each of the correlated (Corr.) parameters measured (According to Table 10 above) in Arabidopsis ecotypes: 15 = Seed yield per plant (gram); 16 = oil yield per plant (mg); 12 = oil % per seed; 11 = 1000 seed weight (gr); 5 = dry matter per plant (gr); 17 = harvest index; 10 = total leaf area per plant (cm); 13 = seeds per silique; 14 = Silique length (cm).
TABLE 12
Additional measured parameters in Arabidopsis ecotypes
Corr. Parameter
Ecotype 6 3 2 1 4 9 8 18 7
An-1 0.313 0.631 0.937 4.419 1.510 2.767 1.385 0.353 0.509
Col-0 0.378 0.664 1.759 8.530 3.607 3.544 1.697 0.288 0.481
Ct-1 0.484 1.176 0.701 5.621 1.935 3.274 1.460 0.316 0.450
Cvi (N8580) 0.474 1.089 0.728 4.834 2.082 3.785 1.374 0.258 0.370
Gr-6 0.425 0.907 0.991 5.957 3.556 3.690 1.828 0.356 0.501
Kondara 0.645 0.774 1.163 6.372 4.338 4.597 1.650 0.273 0.376
Ler-1 0.430 0.606 1.284 5.649 3.467 3.877 1.510 0.305 0.394
Mt-0 0.384 0.701 1.414 7.060 3.479 3.717 1.817 0.335 0.491
Shakdara 0.471 0.782 1.251 7.041 3.710 4.149 1.668 0.307 0.409
Table 12. Provided are the values of each of the correlated (Corr.) parameters measured (According to Table 10 above) in Arabidopsis ecotypes: 6 = Vegetative growth rate (cm2/day) until 8 true leaves; 3 = relative root growth (cm/day) (day 13); 2 = Root length day 7 (cm); 1 = Root length day 13 (cm); 4 = fresh weight per plant (gr.) at bolting stage; 9. = Lamina length (cm); 8 = Lamina width (cm); 18 = Leaf width/length; 7 = Blade circularity.
Example 5 Production of Arabidopsis Transcriptom and High Throughput Correlation Analysis of Normal and Nitrogen Limiting Conditions Using 44K Arabidopsis Oligonucleotide Micro-Array
In order to produce a high throughput correlation analysis, the present inventors utilized an Arabidopsis oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 44,000 Arabidopsis genes and transcripts. To define correlations between the levels of RNA expression with NUE, yield components or vigor related parameters various plant characteristics of 14 different Arabidopsis ecotypes were analyzed. Among them, ten ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Two tissues of plants [leaves and stems] growing at two different nitrogen fertilization levels (1.5 mM Nitrogen or 6 mM Nitrogen) were sampled and RNA was extracted as described hereinabove under “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 13 below.
TABLE 13
Tissues used for Arabidopsis transcriptom expression sets
Expression Set Set ID
Leaves at 1.5 mM Nitrogen fertilization A
Leaves at 6 mM Nitrogen fertilization B
Stems at 1.5 mM Nitrogen fertilization C
Stem at 6 mM Nitrogen fertilization D
Table 13. Provided are the identification (ID) letters of each of the Arabidopsis expression sets.
Assessment of Arabidopsis Yield Components and Vigor Related Parameters Under Different Nitrogen Fertilization Levels—
10 Arabidopsis accessions in 2 repetitive plots each containing 8 plants per plot were grown at greenhouse. The growing protocol used was as follows: surface sterilized seeds were sown in Eppendorf tubes containing 0.5× Murashige-Skoog basal salt medium and grown at 23° C. under 12-hour light and 12-hour dark daily cycles for 10 days. Then, seedlings of similar size were carefully transferred to pots filled with a mix of perlite and peat in a 1:1 ratio. Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 5 mM KCl, 0.01 mM H3BO3 and microelements, while normal irrigation conditions (Normal Nitrogen conditions) was achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3, supplemented with 2 mM CaCl2, 1.25 mM KH2PO4, 1.50 mM MgSO4, 0.01 mM H3BO3 and microelements. To follow plant growth, trays were photographed the day nitrogen limiting conditions were initiated and subsequently every 3 days for about 15 additional days. Rosette plant area was then determined from the digital pictures. ImageJ software was used for quantifying the plant size from the digital pictures [Hypertext Transfer Protocol://rsb(dot)info(dot)nih(dot)gov/ij/] utilizing proprietary scripts designed to analyze the size of rosette area from individual plants as a function of time. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Data parameters collected are summarized in Table 14, hereinbelow.
TABLE 14
Arabidopsis correlated parameters (vectors)
Correlation
Correlated parameter with Id
N 1.5 mM; Rosette Area at day 8 [cm2] 1
N 1.5 mM; Rosette Area at day 10 [cm2] 2
N 1.5 mM; Plot Coverage at day 8 [%] 3
N 1.5 mM; Plot Coverage at day 10 [%] 4
N 1.5 mM; Leaf Number at day 10 5
N 1.5 mM; Leaf Blade Area at day 10 [cm2] 6
N 1.5 mM; RGR of Rosette Area at day 3 [cm2/day] 7
N 1.5 mM; t50 Flowering [day] 8
N 1.5 mM; Dry Weight [gr./plant] 9
N 1.5 mM; Seed Yield [gr./plant] 10
N 1.5 mM; Harvest Index 11
N 1.5 mM; 1000 Seeds weight [gr.] 12
N 1.5 mM; seed yield/rosette area at day 10 [gr./cm2] 13
N 1.5 mM; seed yield/leaf blade [gr./cm2] 14
N 1.5 mM; % Seed yield reduction compared to N 6 mM 15
N 1.5 mM; % Biomass reduction compared to N 6 mM 16
N 1.5 mM; N level/DW [SPAD unit/gr.] 17
N 1.5 mM; DW/N level [gr/SPAD unit] 18
N 1.5 mM; seed yield/N level [gr/SPAD unit] 19
N 6 mM; Rosette Area at day 8 [cm2] 20
N 6 mM; Rosette Area at day 10 [cm2] 21
N 6 mM; Plot Coverage at day 8 [%] 22
N 6 mM; Plot Coverage at day 10 [%] 23
N 6 mM; Leaf Number at day 10 24
N 6 mM; Leaf Blade Area at day 10 25
N 6 mM; RGR of Rosette Area at day 3 [cm2/gr.] 26
N 6 mM; t50 Flowering [day] 27
N 6 mM; Dry Weight [gr./plant] 28
N 6 mM; Seed Yield [gr./plant] 29
N 6 mM; Harvest Index 30
N 6 mM; 1000 Seeds weight [gr.] 31
N 6 mM; seed yield/rosette area day at day 10 [gr./cm2] 32
N 6 mM; seed yield/leaf blade [gr./cm2] 33
N 6 mM; N level/FW 34
N 6 mM; DW/N level [gr./SPAD unit] 35
N 6 mM; N level/DW (SPAD unit/gr. plant) 36
N 6 mM; Seed yield/N unit [gr./SPAD unit] 37
Table 14. Provided are the Arabidopsis correlated parameters (vectors).
“N ” = Nitrogen at the noted concentrations; “gr .” = grams; “SPAD” = chlorophyll levels; “t50” = time where 50% of plants flowered; “gr./SPAD unit” = plant biomass expressed in grams per unit of nitrogen in plant measured by SPAD.
“DW” = Plant Dry Weight; “FW” = Plant Fresh weight; “N level/DW” = plant Nitrogen level measured in SPAD unit per plant biomass [gr.]; “DW/N level” = plant biomass per plant [gr.]/SPAD unit; Rosette Area (measured using digital analysis); Plot Coverage at the indicated day [%] (calculated by the dividing the total plant area with the total plot area); Leaf Blade Area at the indicated day [cm2] (measured using digital analysis); RGR (relative growth rate) of Rosette Area at the indicated day [cm2/day]; t50 Flowering [day] (the day in which 50% of plant flower); seed yield/rosette area at day 10 [gr/cm2] (calculated); seed yield/leaf blade [gr/cm2] (calculated); seed yield/N level [gr/SPAD unit] (calculated).
Assessment of NUE, Yield Components and Vigor-Related Parameters—
Ten Arabidopsis ecotypes were grown in trays, each containing 8 plants per plot, in a greenhouse with controlled temperature conditions for about 12 weeks. Plants were irrigated with different nitrogen concentration as described above depending on the treatment applied. During this time, data was collected documented and analyzed. Most of chosen parameters were analyzed by digital imaging.
Digital Imaging—Greenhouse Assay
An image acquisition system, which consists of a digital reflex camera (Canon EOS 400D) attached with a 55 mm focal length lens (Canon EF-S series) placed in a custom made Aluminum mount, was used for capturing images of plants planted in containers within an environmental controlled greenhouse. The image capturing process is repeated every 2-3 days starting at day 9-12 till day 16-19 (respectively) from transplanting.
The image processing system which was used is described in Example 4 above.
Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
Leaf Analysis—
Using the digital analysis leaves data was calculated, including leaf number, leaf blade area, plot coverage, Rosette diameter and Rosette area.
Relative Growth Rate Area:
The relative growth rate area of the rosette and the leaves was calculated according to Formulas VIII and IX, respectively.
Relative growth rate of rosette area=Regression coefficient of rosette area along time course.  Formula VIII:
Relative growth rate of plant leaf number=Regression coefficient of plant leaf number along time course.  Formula IX
Seed Yield and 1000 Seeds Weight—
At the end of the experiment all seeds from all plots were collected and weighed in order to measure seed yield per plant in terms of total seed weight per plant (gr.). For the calculation of 1000 seed weight, an average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
Dry Weight and Seed Yield—
At the end of the experiment, plant were harvested and left to dry at 30° C. in a drying chamber. The biomass was separated from the seeds, weighed and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber.
Harvest Index (Seed)—
The harvest index was calculated using Formula IV as described above [Harvest Index=Average seed yield per plant/Average dry weight].
T50 Days to Flowering—
Each of the repeats was monitored for flowering date. Days of flowering was calculated from sowing date till 50% of the plots flowered.
Plant Nitrogen Level—
The chlorophyll content of leaves is a good indicator of the nitrogen plant status since the degree of leaf greenness is highly correlated to this parameter. Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Based on this measurement, parameters such as the ratio between seed yield per nitrogen unit [seed yield/N level=seed yield per plant [gr.]/SPAD unit], plant DW per nitrogen unit [DW/N level=plant biomass per plant [gr.]/SPAD unit], and nitrogen level per gram of biomass [N level/DW=SPAD unit/plant biomass per plant (gr.)] were calculated.
Percent of Seed Yield Reduction—
measures the amount of seeds obtained in plants when grown under nitrogen-limiting conditions compared to seed yield produced at normal nitrogen levels expressed in percentages (%).
Experimental Results
10 different Arabidopsis accessions (ecotypes) were grown and characterized for 37 parameters as described above. The average for each of the measured parameters was calculated using the JMP software (Table 15 below). Subsequent correlation analysis between the various transcriptom sets (Table 13) and the average parameters were conducted.
TABLE 15
Measured parameters in Arabidopsis accessions
Ecotype
Treatment Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 Line-8 Line-9 Line-10
N 1.5 mM; Rosette Area 0.760 0.709 1.061 1.157 0.996 1.000 0.910 0.942 1.118 0.638
at day 8
N 1.5 mM; Rosette Area 1.430 1.325 1.766 1.971 1.754 1.832 1.818 1.636 1.996 1.150
at day 10
N 1.5 mM; Plot 3.221 3.003 4.497 4.902 4.220 4.238 3.858 3.990 4.738 2.705
Coverage % at day 8
N 1.5 mM; Plot 6.058 5.614 7.484 8.351 7.432 7.764 7.702 6.933 8.458 4.871
Coverage % at day 10
N 1.5 mM; Leaf Number 6.875 7.313 7.313 7.875 7.938 7.750 7.625 7.188 8.625 5.929
at day 10
N 1.5 mM; Leaf Blade 0.335 0.266 0.374 0.387 0.373 0.370 0.386 0.350 0.379 0.307
Area at day 10
N 1.5 mM; RGR of 0.631 0.793 0.502 0.491 0.605 0.720 0.825 0.646 0.668 0.636
Rosette Area at day 3
N 1.5 mM; t50 15.967 20.968 14.836 24.708 23.566 23.698 18.059 19.488 23.568 21.888
Flowering [day]
N 1.5 mM; Dry Weight 0.164 0.124 0.082 0.113 0.184 0.124 0.134 0.106 0.148 0.171
[gr/plant]
N 1.5 mM; Seed Yield 0.032 0.025 0.023 0.010 0.006 0.009 0.032 0.019 0.012 0.014
[gr/plant]
N 1.5 mM; Harvest 0.192 0.203 0.295 0.085 0.031 0.071 0.241 0.179 0.081 0.079
Index
N 1.5 mM; 1000 Seeds 0.016 0.016 0.018 0.014 0.018 0.022 0.015 0.014 0.022 0.019
weight[gr]
N 1.5 mM; seed yield/ 0.022 0.019 0.014 0.005 0.003 0.005 0.018 0.013 0.007 0.012
rosette area day at
day 10
N 1.5 mM; seed 0.095 0.095 0.063 0.026 0.015 0.024 0.084 0.059 0.034 0.044
yield/leaf blade
N 1.5 mM; % Seed yield 72.559 84.701 78.784 87.996 91.820 92.622 76.710 81.938 91.301 85.757
reduction compared to
6 mM
N 1.5 mM; % Biomass 60.746 76.706 78.560 78.140 62.972 78.641 73.192 83.068 77.190 70.120
reduction compared to
6 mM
N 1.5 mM; Spad/FW 45.590 42.108 28.151 53.111 67.000
N 1.5 mM; SPAD/DW 167.300 241.061 157.823 194.977 169.343
N 1.5 mM; DW/SPAD 0.006 0.004 0.006 0.005 0.006
N 1.5 mM; seed 0.001 0.000 0.000 0.001 0.000
yield/spad
N 6 mM; Rosette Area at 0.759 0.857 1.477 1.278 1.224 1.095 1.236 1.094 1.410 0.891
day 8
N 6 mM; Rosette Area at 1.406 1.570 2.673 2.418 2.207 2.142 2.474 1.965 2.721 1.642
day 10
N 6 mM; Plot 3.216 3.631 6.259 5.413 5.187 4.641 5.236 4.634 5.974 3.774
Coverage % at day 8
N 6 mM; Plot 5.957 6.654 11.324 10.244 9.352 9.076 10.485 8.327 11.528 6.958
Coverage % at day 10
N 6 mM; Leaf Number 6.250 7.313 8.063 8.750 8.063 8.750 8.375 7.125 9.438 6.313
at day 10
N 6 mM; Leaf Blade 0.342 0.315 0.523 0.449 0.430 0.430 0.497 0.428 0.509 0.405
Area at day 10
N 6 mM; RGR of Rosette 0.689 1.024 0.614 0.601 0.477 0.651 0.676 0.584 0.613 0.515
Area at day 3
N 6 mM; t50 Flowering 16.371 20.500 14.635 24.000 23.378 23.595 15.033 19.750 22.887 18.804
[day]
N 6 mM; Dry Weight 0.419 0.531 0.382 0.518 0.496 0.579 0.501 0.628 0.649 0.573
[gr/plant]
N 6 mM; Seed Yield 0.116 0.165 0.108 0.082 0.068 0.119 0.139 0.107 0.138 0.095
[gr/plant]
N 6 mM; Harvest Index 0.280 0.309 0.284 0.158 0.136 0.206 0.276 0.171 0.212 0.166
N 6 mM; 1000 Seeds 0.015 0.017 0.018 0.012 0.016 0.016 0.015 0.014 0.017 0.016
weight [gr]
N 6 mM; seed yield/ 0.082 0.106 0.041 0.034 0.031 0.056 0.057 0.055 0.051 0.058
rosette area day at
day 10
N 6 mM; seed yield/leaf 0.339 0.526 0.207 0.183 0.158 0.277 0.281 0.252 0.271 0.235
blade
N 6 mM; Spad/FW 22.489 28.268 17.641 33.323 39.003
N 6 mM; DW/SPAD 0.019 0.018 0.028 0.015 0.015
(biomass/N unit)
N 6 mM; spad/DW (gN/g 53.705 54.625 35.548 66.479 68.054
plant)
N 6 mM; Seed yield/N 0.004 0.003 0.002 0.005 0.003
unit
Table 15. Provided are the measured parameters under various treatments in various ecotypes (Arabidopsis accessions).
Example 6 Production of Sorghum Transcriptom and High Throughput Correlation Analysis with ABST Related Parameters Using 44K Sorghum Oligonucleotide Micro-Arrays
In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a sorghum oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 44,000 sorghum genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield and NUE components or vigor related parameters, various plant characteristics of 17 different sorghum hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
I. Correlation of Sorghum Varieties Across Ecotypes Grown Under Regular Growth Conditions, Severe Drought Conditions and Low Nitrogen Conditions
Experimental Procedures
17 Sorghum varieties were grown in 3 repetitive plots, in field. Briefly, the growing protocol was as follows:
1. Regular Growth Conditions:
sorghum plants were grown in the field using commercial fertilization and irrigation protocols (370 liter per meter, fertilization of 14 units of 21% urea per entire growth period).
2. Drought Conditions:
sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around stage V8 (eight green leaves are fully expanded, booting not started yet). At this point, irrigation was stopped, and severe drought stress was developed.
3. Low Nitrogen Fertilization Conditions:
sorghum plants were fertilized with 50% less amount of nitrogen in the field than the amount of nitrogen applied in the regular growth treatment. All the fertilizer was applied before flowering.
Analyzed Sorghum Tissues—
All 10 selected Sorghum hybrids were sample per each treatment. Tissues [Flag leaf, Flower meristem and Flower] from plants growing under normal conditions, severe drought stress and low nitrogen conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 16 below.
TABLE 16
Sorghum transcriptom expression sets
Expression Set Set ID
Flag leaf Normal 1
Flower meristem Normal 2
Flower Normal 3
Flag leaf low nitrogen (N) 4
Flower meristem low nitrogen (N) 5
Flower low nitrogen (N) 6
Flag leaf Drought 7
Flower meristem Drought 8
Flower Drought 9
Table 16: Provided are the sorghum transcriptom expression sets 1-9.
Flag leaf = the leaf below the flower;
Flower meristem = Apical meristem following panicle initiation;
Flower = the flower at the anthesis day.
Expression sets 1, 2 and 3 are from plants grown under normal conditions.
Expression sets 4-6 are from plants grown under low nitrogen conditions.
Expression sets 7-9 are from plants grown under drought stress conditions.
The following parameters were collected using digital imaging system:
At the end of the growing period the grains were separated from the Plant ‘Head’ and the following parameters were measured and collected:
Average Grain Area (cm2)—
A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
(ii) Upper and Lower Ratio Average of Grain Area, Width, Diameter and Perimeter—
Grain projection of area, width, diameter and perimeter were extracted from the digital images using open source package imagej (nih). Seed data was analyzed in plot average levels as follows:
Average of all seeds;
Average of upper 20% fraction—contained upper 20% fraction of seeds; and
Average of lower 20% fraction—contained lower 20% fraction of seeds;
Further on, ratio between each fraction and the plot average was calculated for each of the data parameters.
At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system.
(i) Head Average Area (cm2)—
At the end of the growing period 5 ‘Heads’ were photographed and images were processed using the below described image processing system. The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
(ii) Head Average Length (cm)—
At the end of the growing period 5 ‘Heads’ were photographed and images were processed using the below described image processing system. The ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.
(iii) Head Average Width (cm)—
At the end of the growing period 5 ‘Heads’ were photographed and images were processed using the below described image processing system. The ‘Head’ width was measured from those images and was divided by the number of ‘Heads’.
(iiii) Head Average Width (cm)—
At the end of the growing period 5 ‘Heads’ were photographed and images were processed using the below described image processing system. The ‘Head’ perimeter was measured from those images and was divided by the number of ‘Heads’.
The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.
Total Grain Weight/Head (gr.) (Grain Yield)—
At the end of the experiment (plant ‘Heads’) heads from plots within blocks A-C were collected. 5 heads were separately threshed and grains were weighted, all additional heads were threshed together and weighted as well. The average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot). In case of 5 heads, the total grains weight of 5 heads was divided by 5.
FW Head/Plant gram—
At the end of the experiment (when heads were harvested) total and 5 selected heads per plots within blocks A-C were collected separately. The heads (total and 5) were weighted (gr.) separately and the average fresh weight per plant was calculated for total (FW Head/Plant gr. based on plot) and for 5 (FW Head/Plant gr. based on 5 plants).
Plant Height—
Plants were characterized for height during growing period at 5 time points. In each measure, plants were measured for their height using a measuring tape. Height was measured from ground level to top of the longest leaf.
SPAD—
Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
Vegetative Fresh Weight and Heads—
At the end of the experiment (when Inflorescence were dry) all Inflorescence and vegetative material from plots within blocks A-C were collected. The biomass and Heads weight of each plot was separated, measured and divided by the number of Heads.
Plant Biomass (Fresh Weight)—
At the end of the experiment (when Inflorescence were dry) the vegetative material from plots within blocks A-C were collected. The plants biomass without the Inflorescence were measured and divided by the number of Plants.
FW Heads/(FW Heads+FW Plants)—
The total fresh weight of heads and their respective plant biomass were measured at the harvest day. The heads weight was divided by the sum of weights of heads and plants.
Experimental Results
17 different sorghum varieties were grown and characterized for different parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 18-19) and a subsequent correlation analysis between the various transcriptom sets (Table 16) and the average parameters (Tables 17-19), was conducted (Table 20). Results were then integrated to the database.
TABLE 17
Sorghum correlated parameters (vectors)
Correlated parameter with Correlation ID
Total grain weight/Head gr (based on plot), Normal 1
Total grain weight/Head gr (based on 5 heads), Normal 2
Head Average Area (cm2), Normal 3
Head Average Perimeter (cm), Normal 4
Head Average Length (cm), Normal 5
Head Average Width (cm), Normal 6
Average Grain Area (cm2), Normal 7
Upper Ratio Average Grain Area, Normal 8
Lower Ratio Average Grain Area, Normal 9
Lower Ratio Average Grain Perimeter, Normal 10
Lower Ratio Average Grain Length, Normal 11
Lower Ratio Average Grain Width, Normal 12
Final Plant Height (cm), Normal 13
FW - Head/Plant gr (based on 5 plants), Normal 14
FW - Head/Plant gr (based on plot), Normal 15
FW/Plant gr (based on plot), Normal 16
Leaf SPAD 64 DPS (Days Post Sowing), Normal 17
FW Heads/(FW Heads + FW Plants) (all plot), Normal 18
[Plant biomass (FW)/SPAD 64 DPS], Normal 19
[Grain Yield + plant biomass/SPAD 64 DPS], Normal 20
[Grain yield/SPAD 64 DPS], Normal 21
Total grain weight/Head (based on plot) gr, Low N 22
Total grain weight/Head gr (based on 5 heads), Low N 23
Head Average Area (cm2), Low N 24
Head Average Perimeter (cm), Low N 25
Head Average Length (cm), Low N 26
Head Average Width (cm), Low N 27
Average Grain Area (cm2), Low N 28
Upper Ratio Average Grain Area, Low N 29
Lower Ratio Average Grain Area, Low N 30
Lower Ratio Average Grain Perimeter, Low N 31
Lower Ratio Average Grain Length, Low N 32
Lower Ratio Average Grain Width, Low N 33
Final Plant Height (cm), Low N 34
FW - Head/Plant gr (based on 5 plants), Low N 35
FW - Head/Plant gr (based on plot), Low N 36
FW/Plant gr (based on plot), Low N 37
Leaf SPAD 64 DPS (Days Post Sowing), Low N 38
FW Heads/(FW Heads + FW Plants) (all plot), Low N 39
[Plant biomass (FW)/SPAD 64 DPS], Low N 40
[Grain Yield + plant biomass/SPAD 64 DPS], Low N 41
[Grain yield/SPAD 64 DPS], Low N 42
Total grain weight/Head gr, (based on plot) Drought 43
Head Average Area (cm2), Drought 44
Head Average Perimeter (cm), Drought 45
Head Average Length (cm), Drought 46
Head Average Width (cm), Drought 47
Average Grain Area (cm2), Drought 48
Upper Ratio Average Grain Area, Drought 49
Final Plant Height (cm), Drought 50
FW - Head/Plant gr. (based on plot), Drought 51
FW/Plant gr (based on plot), Drought 52
Leaf SPAD 64 DPS (Days Post Sowing), Drought 53
FW Heads/(FW Heads + FW Plants)(all plot), Drought 54
[Plant biomass (FW)/SPAD 64 DPS], Drought 55
Table 17. Provided are the Sorghum correlated parameters (vectors).
“gr.” = grams;
“SPAD” = chlorophyll levels;
“FW” = Plant Fresh weight;
“normal” = standard growth conditions.
TABLE 18
Measured parameters in Sorghum accessions
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 Line-8 Line-9
1 31.12 26.35 18.72 38.38 26.67 28.84 47.67 31.00 39.99
2 47.40 46.30 28.37 70.40 32.15 49.23 63.45 44.45 56.65
3 120.14 167.6 85.14 157.26 104.00 102.48 168.54 109.32 135.13
4 61.22 67.90 56.26 65.38 67.46 67.46 74.35 56.16 61.64
5 25.58 26.84 21.02 26.84 23.14 21.82 31.33 23.18 25.70
6 5.97 7.92 4.87 7.43 5.58 5.88 6.78 5.99 6.62
7 0.10 0.11 0.13 0.13 0.14 0.14 0.11 0.11 0.10
8 1.22 1.30 1.13 1.14 1.16 1.15 1.19 1.23 1.25
9 0.83 0.74 0.78 0.80 0.70 0.70 0.83 0.81 0.84
10 0.91 0.87 0.91 0.95 0.90 0.91 0.91 0.91 0.92
11 0.91 0.88 0.92 0.91 0.89 0.88 0.91 0.90 0.92
12 0.91 0.83 0.85 0.87 0.79 0.80 0.90 0.89 0.91
13 95.25 79.20 197.85 234.20 189.40 194.67 117.25 92.80 112.65
14 406.50 518.0 148.00 423.00 92.00 101.33 423.50 386.50 409.50
15 175.15 223.49 56.40 111.62 67.34 66.90 126.18 107.74 123.86
16 162.56 212.59 334.83 313.46 462.28 318.26 151.13 137.60 167.98
17 43.01 43.26 44.74 45.76 41.61 45.21 45.14 43.03
18 0.51 0.51 0.12 0.26 0.12 0.18 0.46 0.43 0.42
19 0.72 0.43 0.86 0.58 0.69 1.05 0.69 0.93 0.84
20 4.50 8.17 7.87 10.68 8.34 4.40 3.74 4.83 3.67
21 3.78 7.74 7.01 10.10 7.65 3.34 3.05 3.90 2.83
22 25.95 30.57 19.37 35.62 25.18 22.18 49.96 27.48 51.12
23 50.27 50.93 36.13 73.10 37.87 36.40 71.67 35.00 76.73
24 96.24 214.72 98.59 182.83 119.64 110.19 172.36 84.81 156.25
25 56.32 79.20 53.25 76.21 67.27 59.49 79.28 51.52 69.88
26 23.22 25.58 20.93 28.43 24.32 22.63 32.11 20.38 26.69
27 5.26 10.41 5.93 8.25 6.19 6.12 6.80 5.25 7.52
28 0.11 0.11 0.14 0.12 0.14 0.13 0.12 0.12 0.12
29 1.18 1.31 1.11 1.21 1.19 1.18 1.16 1.23 1.17
30 0.82 0.77 0.81 0.79 0.78 0.80 0.83 0.79 0.81
31 0.90 0.88 0.92 0.90 0.92 0.92 0.92 0.89 0.90
32 0.91 0.90 0.92 0.90 0.91 0.93 0.92 0.89 0.90
33 0.90 0.85 0.89 0.88 0.86 0.87 0.91 0.89 0.90
34 104.00 80.93 204.73 125.40 225.40 208.07 121.40 100.27 121.13
35 388.00 428.67 297.67 280.00 208.33 303.67 436.00 376.33 474.67
36 214.78 205.05 73.49 122.96 153.07 93.23 134.11 77.43 129.63
37 204.78 199.64 340.51 240.60 537.78 359.40 149.20 129.06 178.71
38 38.33 38.98 42.33 40.90 43.15 39.85 42.68 43.31 39.01
39 0.51 0.51 0.17 0.39 0.21 0.19 0.48 0.37 0.42
40 5.34 5.12 8.05 5.88 12.46 9.02 3.50 2.98 4.58
41 6.02 5.91 8.50 6.75 13.05 9.58 4.67 3.61 5.89
42 0.68 0.78 0.46 0.87 0.58 0.56 1.17 0.63 1.31
43 22.11 16.77 9.19 104.44 3.24 22.00 9.97 18.58 29.27
44 83.14 107.79 88.68 135.91 90.76 123.95 86.06 85.20 113.10
45 52.78 64.49 56.59 64.37 53.21 71.66 55.61 52.96 69.83
46 21.63 21.94 21.57 22.01 20.99 28.60 21.35 20.81 24.68
47 4.83 6.31 5.16 7.78 5.28 5.49 5.04 5.07 5.77
48 0.10 0.11 0.11 0.09 0.09 0.11
49 1.31 1.19 1.29 1.46 1.21 1.21
50 89.40 75.73 92.10 94.30 150.80 110.73 99.20 84.00 99.00
51 154.90 122.02 130.51 241.11 69.03 186.41 62.11 39.02 58.94
52 207.99 138.02 255.41 402.22 233.55 391.75 89.31 50.61 87.02
53 40.58 40.88 45.01 42.30 45.24 40.56 44.80 45.07 40.65
54 0.42 0.47 0.42 0.37 0.23 0.31 0.41 0.44 0.40
55 5.13 3.38 5.67 9.51 5.16 9.66 1.99 1.12 2.14
Table 18: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (ecotype) under normal, low nitrogen and drought conditions. Growth conditions are specified in the experimental procedure section.
TABLE 19
Additional measured parameters in Sorghum accessions
Corr. Ecotype
ID Line-10 Line-11 Line-12 Line-13 Line-14 Line-15 Line-16 Line-17
1 38.36 32.10 32.69 32.79 51.53 35.71 38.31 42.44
2 60.00 45.45 58.19 70.60 70.10 53.95 59.87 52.65
3 169.03 156.10 112.14 154.74 171.70 168.51 162.51 170.46
4 71.40 68.56 56.44 67.79 71.54 78.94 67.03 74.11
5 28.82 28.13 22.97 28.09 30.00 30.54 27.17 29.26
6 7.42 6.98 6.19 7.02 7.18 7.00 7.39 7.35
7 0.12 0.12 0.11 0.12 0.11 0.10 0.11 0.11
8 1.24 1.32 1.22 1.18 1.18 1.22 1.25 1.22
9 0.79 0.77 0.80 0.81 0.82 0.81 0.82 0.82
10 0.93 0.91 0.92 0.90 0.91 0.90 0.91 0.91
11 0.92 0.89 0.91 0.91 0.91 0.90 0.90 0.91
12 0.85 0.86 0.88 0.90 0.90 0.91 0.90 0.90
13 97.50 98.00 100.00 105.60 151.15 117.10 124.45 126.50
14 328.95 391.00 435.75 429.50 441.00 415.75 429.50 428.50
15 102.75 82.33 77.59 91.17 150.44 109.10 107.58 130.88
16 128.97 97.62 99.32 112.24 157.42 130.55 135.66 209.21
17 45.59 44.83 45.33 46.54 43.99 45.09 45.14 43.13
18 0.44 0.46 0.45 0.45 0.51 0.46 0.44 0.39
19 0.72 0.72 0.70 1.17 0.79 0.85 0.98
20 2.89 2.91 3.12 4.75 3.69 3.85 5.84
21 2.18 2.19 2.41 3.58 2.90 3.01 4.85
22 36.84 29.45 26.70 29.42 51.12 37.04 39.85 41.78
23 57.58 42.93 36.47 68.60 71.80 49.27 43.87 52.07
24 136.71 137.70 96.54 158.19 163.95 138.39 135.46 165.64
25 66.17 67.37 57.90 70.61 73.76 66.87 65.40 75.97
26 26.31 25.43 23.11 27.87 28.88 27.64 25.52 30.33
27 6.59 6.85 5.32 7.25 7.19 6.27 6.57 6.82
28 0.13 0.13 0.12 0.12 0.11 0.11 0.12 0.11
29 1.22 1.24 1.19 1.23 1.16 1.34 1.21 1.21
30 0.77 0.74 0.80 0.79 0.82 0.80 0.81 0.81
31 0.91 0.89 0.90 0.90 0.91 0.89 0.90 0.90
32 0.91 0.89 0.90 0.89 0.91 0.89 0.89 0.90
33 0.86 0.84 0.90 0.89 0.91 0.90 0.90 0.90
34 94.53 110.00 115.07 104.73 173.67 115.60 138.80 144.40
35 437.67 383.00 375.00 425.00 434.00 408.67 378.50 432.00
36 99.83 76.95 84.25 92.24 138.83 113.32 95.50 129.49
37 124.27 101.33 132.12 117.90 176.99 143.67 126.98 180.45
38 42.71 40.08 43.98 45.44 44.75 42.58 43.81 46.73
39 0.44 0.43 0.39 0.44 0.44 0.44 0.43 0.42
40 2.91 2.53 3.00 2.60 3.96 3.38 2.90 3.86
41 3.77 3.26 3.61 3.24 5.10 4.25 3.81 4.76
42 0.86 0.73 0.61 0.65 1.14 0.87 0.91 0.89
43 10.45 14.77 12.86 18.24 11.60 18.65 16.36
44 100.79 80.41 126.89 86.41 92.29 77.89 76.93
45 65.14 55.27 69.06 53.32 56.29 49.12 51.88
46 24.28 21.95 24.98 19.49 20.42 16.81 18.88
47 5.37 4.66 6.35 5.58 5.76 5.86 5.10
48
49
50 92.20 81.93 98.80 86.47 99.60 83.00 83.53 92.30
51 76.37 33.47 42.20 41.53 131.67 60.84 44.33 185.44
52 120.43 37.21 48.18 44.20 231.60 116.01 123.08 342.50
53 45.43 42.58 44.18 44.60 42.41 43.25 40.30 40.75
54 0.44 0.47 0.47 0.48 0.35 0.35 0.23 0.33
55 2.65 0.87 1.09 0.99 5.46 2.68 3.05 8.40
Table 19: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (ecotype) under normal, low nitrogen and drought conditions. Growth conditions are specified in the experimental procedure section.
TABLE 20
Correlation between the expression level of selected genes of some embodiments
of the invention in various tissues and the phenotypic performance under
normal or abiotic stress conditions across Sorghum accessions
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM687 0.88 7.92E−04 4 34 LYM687 0.90 3.59E−04 1 13
LYM687 0.82 3.81E−03 1 1 LYM687 0.88 8.40E−04 1 2
LYM687 0.77 9.28E−03 9 53 LYM687 0.78 7.69E−03 7 50
LYM688 0.82 3.93E−03 2 8 LYM688 0.81 4.83E−03 4 34
LYM688 0.82 3.80E−03 6 28 LYM688 0.73 1.57E−02 1 13
LYM688 0.72 1.90E−02 1 2 LYM689 0.81 4.58E−03 2 13
LYM689 0.74 1.48E−02 2 1 LYM689 0.83 2.91E−03 3 2
LYM689 0.85 1.77E−03 8 55 LYM689 0.76 1.03E−02 8 51
LYM689 0.87 1.23E−03 8 52 LYM689 0.76 1.11E−02 6 39
LYM689 0.71 2.23E−02 6 32 LYM690 0.83 3.00E−03 4 22
LYM690 0.73 1.70E−02 4 32 LYM690 0.81 4.88E−03 4 42
LYM690 0.84 2.09E−03 4 31 LYM690 0.79 6.91E−03 6 22
LYM690 0.74 1.51E−02 6 42 LYM690 0.76 1.14E−02 6 34
LYM690 0.72 1.88E−02 1 16 LYM691 0.84 2.19E−03 2 7
LYM691 0.82 3.77E−03 3 13 LYM691 0.71 2.05E−02 3 1
LYM691 0.83 2.94E−03 3 2 LYM691 0.73 1.73E−02 8 53
LYM692 0.80 5.97E−03 2 13 LYM692 0.74 1.52E−02 2 1
LYM692 0.81 4.34E−03 2 2 LYM692 0.90 3.96E−04 9 53
LYM693 0.85 1.65E−03 2 21 LYM693 0.81 4.87E−03 2 15
LYM693 0.77 8.47E−03 2 16 LYM693 0.83 2.83E−03 2 20
LYM693 0.83 2.77E−03 3 2 LYM693 0.78 8.20E−03 8 51
LYM693 0.72 2.90E−02 9 44 LYM694 0.80 5.05E−03 2 7
LYM694 0.71 3.30E−02 9 47 LYM695 0.83 3.13E−03 2 13
LYM695 0.88 6.68E−04 2 1 LYM695 0.87 1.08E−03 8 55
LYM695 0.81 4.53E−03 8 51 LYM695 0.88 7.40E−04 8 52
LYM695 0.85 1.67E−03 5 35 LYM695 0.71 2.09E−02 5 41
LYM695 0.71 2.13E−02 5 22 LYM695 0.77 9.21E−03 5 32
LYM695 0.74 1.38E−02 5 37 LYM695 0.75 1.34E−02 5 23
LYM695 0.73 1.66E−02 5 42 LYM695 0.77 9.44E−03 1 1
LYM695 0.78 7.74E−03 1 2 LYM697 0.88 6.67E−04 4 34
LYM697 0.75 1.26E−02 6 36 LYM697 0.71 2.27E−02 6 41
LYM697 0.83 2.87E−03 6 39 LYM697 0.93 3.02E−04 1 21
LYM697 0.83 3.24E−03 1 15 LYM697 0.89 1.34E−03 1 20
LYM698 0.75 1.22E−02 2 7 LYM698 0.80 5.06E−03 3 13
LYM698 0.77 9.14E−03 3 5 LYM698 0.89 5.80E−04 3 1
LYM698 0.74 1.42E−02 1 1 LYM698 0.74 1.42E−02 1 2
LYM698 0.84 4.55E−03 7 46 LYM699 0.76 1.03E−02 2 21
LYM699 0.78 8.38E−03 2 20 LYM699 0.78 1.25E−02 3 19
LYM699 0.71 2.06E−02 4 28 LYM699 0.74 1.49E−02 1 7
LYM700 0.72 1.78E−02 3 15 LYM700 0.72 1.92E−02 3 16
LYM700 0.71 2.09E−02 5 22 LYM700 0.70 2.35E−02 5 42
LYM700 0.71 2.24E−02 5 34 LYM701 0.76 1.04E−02 3 4
LYM701 0.80 5.59E−03 3 5 LYM701 0.71 2.07E−02 4 35
LYM701 0.87 1.22E−03 4 22 LYM701 0.80 5.89E−03 4 26
LYM701 0.81 4.35E−03 4 42 LYM701 0.72 1.94E−02 4 31
LYM701 0.77 9.83E−03 4 34 LYM701 0.72 1.87E−02 8 55
LYM701 0.82 3.44E−03 8 51 LYM701 0.72 1.80E−02 8 52
LYM701 0.72 1.95E−02 6 34 LYM701 0.72 1.88E−02 5 27
LYM701 0.91 7.48E−04 1 21 LYM701 0.91 2.52E−04 1 15
LYM701 0.71 2.15E−02 1 16 LYM701 0.86 2.85E−03 1 20
LYM701 0.83 2.94E−03 1 14 LYM702 0.77 8.66E−03 2 18
LYM702 0.79 6.09E−03 2 15 LYM702 0.83 2.86E−03 2 16
LYM702 0.76 1.15E−02 3 13 LYM702 0.72 1.94E−02 3 1
LYM702 0.88 7.41E−04 3 2 LYM702 0.70 2.29E−02 1 2
LYM702 0.83 5.58E−03 9 47 LYM703 0.83 2.99E−03 3 7
LYM703 0.72 1.96E−02 4 34 LYM703 0.76 1.64E−02 8 47
LYM703 0.70 2.30E−02 1 13 LYM703 0.70 2.34E−02 1 3
LYM703 0.87 1.03E−03 1 2 LYM704 0.91 2.71E−04 2 13
LYM704 0.73 1.62E−02 2 5 LYM704 0.89 6.47E−04 2 1
LYM704 0.81 4.20E−03 8 55 LYM704 0.82 3.74E−03 8 52
LYM704 0.73 1.56E−02 5 30 LYM704 0.94 4.09E−05 5 22
LYM704 0.74 1.52E−02 5 26 LYM704 0.72 1.97E−02 5 32
LYM704 0.92 1.90E−04 5 42 LYM704 0.71 2.11E−02 5 31
LYM704 0.78 7.45E−03 5 34 LYM704 0.88 7.54E−04 1 2
LYM705 0.78 7.48E−03 3 13 LYM705 0.81 4.24E−03 8 55
LYM705 0.77 9.36E−03 8 51 LYM705 0.82 3.64E−03 8 52
LYM705 0.81 4.63E−03 6 22 LYM705 0.83 2.94E−03 6 32
LYM705 0.77 9.85E−03 6 23 LYM705 0.78 7.54E−03 6 42
LYM705 0.82 3.32E−03 6 31 LYM705 0.78 7.79E−03 6 34
LYM705 0.78 8.20E−03 5 27 LYM705 0.76 1.65E−02 1 21
LYM705 0.76 1.16E−02 1 15 LYM705 0.76 1.63E−02 1 20
LYM706 0.83 3.22E−03 2 13 LYM706 0.85 1.73E−03 2 1
LYM706 0.76 1.06E−02 8 55 LYM706 0.77 9.58E−03 8 52
LYM706 0.78 7.33E−03 6 23 LYM706 0.91 3.14E−04 5 36
LYM706 0.91 2.60E−04 5 41 LYM706 0.94 6.98E−05 5 40
LYM706 0.88 7.64E−04 5 37 LYM706 0.74 1.51E−02 1 7
LYM706 0.79 6.56E−03 7 50 LYM707 0.82 3.52E−03 2 7
LYM707 0.71 2.23E−02 3 13 LYM707 0.87 1.14E−03 4 22
LYM707 0.80 5.04E−03 4 42 LYM707 0.73 1.72E−02 4 31
LYM707 0.92 1.83E−04 4 34 LYM707 0.70 2.35E−02 8 53
LYM707 0.71 2.23E−02 6 34 LYM707 0.74 1.41E−02 1 13
LYM707 0.78 8.42E−03 1 1 LYM708 0.74 1.39E−02 2 1
LYM708 0.76 1.09E−02 2 11 LYM708 0.77 9.57E−03 4 26
LYM708 0.88 7.17E−04 4 23 LYM708 0.78 8.45E−03 4 31
LYM708 0.76 1.06E−02 6 39 LYM708 0.82 3.53E−03 5 35
LYM708 0.82 3.47E−03 5 30 LYM708 0.90 4.19E−04 5 22
LYM708 0.77 8.79E−03 5 33 LYM708 0.83 2.65E−03 5 26
LYM708 0.79 6.67E−03 5 32 LYM708 0.80 5.76E−03 5 25
LYM708 0.89 6.08E−04 5 42 LYM708 0.76 1.12E−02 5 31
LYM708 0.75 1.21E−02 5 34 LYM708 0.82 3.41E−03 1 13
LYM708 0.70 2.31E−02 1 17 LYM708 0.71 2.13E−02 1 12
LYM708 0.76 1.77E−02 1 19 LYM708 0.72 1.98E−02 1 1
LYM709 0.89 5.72E−04 3 13 LYM709 0.95 2.97E−05 3 1
LYM709 0.75 1.32E−02 6 31 LYM709 0.84 2.64E−03 6 34
LYM709 0.71 2.22E−02 1 13 LYM710 0.87 1.18E−03 2 8
LYM710 0.91 3.13E−04 3 13 LYM710 0.77 8.76E−03 3 1
LYM710 0.72 1.78E−02 6 30 LYM710 0.75 1.17E−02 6 32
LYM710 0.75 1.24E−02 1 15 LYM710 0.84 2.34E−03 1 14
LYM710 0.77 1.47E−02 9 47 LYM711 0.91 2.85E−04 2 18
LYM711 0.93 7.46E−05 2 15 LYM711 0.88 6.70E−04 2 16
LYM711 0.81 4.21E−03 3 7 LYM711 0.72 1.90E−02 4 38
LYM711 0.86 1.55E−03 4 34 LYM711 0.73 1.77E−02 1 1
LYM712 0.72 1.87E−02 2 1 LYM712 0.81 4.70E−03 3 7
LYM712 0.86 1.34E−03 8 55 LYM712 0.73 1.74E−02 8 51
LYM712 0.87 1.14E−03 8 52 LYM714 0.75 1.21E−02 4 36
LYM714 0.82 3.74E−03 4 41 LYM714 0.80 5.34E−03 4 40
LYM714 0.72 1.83E−02 4 32 LYM714 0.79 7.09E−03 4 37
LYM714 0.76 1.06E−02 1 15 LYM714 0.71 2.11E−02 1 3
LYM715 0.86 1.44E−03 3 4 LYM715 0.74 1.38E−02 3 3
LYM715 0.92 1.99E−04 3 5 LYM715 0.73 1.75E−02 3 1
LYM715 0.79 6.60E−03 4 23 LYM716 0.87 1.04E−03 4 22
LYM716 0.74 1.37E−02 4 26 LYM716 0.81 4.10E−03 4 42
LYM716 0.82 3.72E−03 4 34 LYM716 0.84 4.56E−03 1 21
LYM716 0.91 2.35E−04 1 15 LYM716 0.80 9.97E−03 1 20
LYM716 0.72 1.78E−02 1 14 LYM717 0.85 2.04E−03 2 13
LYM717 0.79 6.99E−03 3 2 LYM717 0.70 2.34E−02 6 32
LYM717 0.71 2.09E−02 6 23 LYM717 0.78 7.41E−03 6 31
LYM717 0.75 1.20E−02 1 13 LYM717 0.71 2.02E−02 1 2
LYM718 0.77 8.94E−03 3 4 LYM718 0.70 2.29E−02 3 12
LYM718 0.77 9.76E−03 3 5 LYM718 0.71 2.10E−02 3 16
LYM718 0.72 1.79E−02 3 2 LYM718 0.76 1.13E−02 3 9
LYM718 0.75 1.17E−02 4 23 LYM718 0.83 2.96E−03 8 55
LYM718 0.75 1.16E−02 8 51 LYM718 0.84 2.48E−03 8 52
LYM718 0.73 1.61E−02 5 37 LYM719 0.73 1.56E−02 2 17
LYM719 0.73 1.73E−02 2 10 LYM719 0.81 4.74E−03 2 11
LYM719 0.89 1.22E−03 1 21 LYM719 0.71 2.05E−02 1 17
LYM719 0.73 1.58E−02 1 2 LYM719 0.89 1.44E−03 1 20
LYM719 0.72 1.83E−02 7 50 LYM720 0.85 2.01E−03 3 2
LYM720 0.88 6.72E−04 8 55 LYM720 0.78 8.11E−03 8 51
LYM720 0.89 5.89E−04 8 52 LYM720 0.85 1.86E−03 6 31
LYM720 0.79 1.16E−02 1 21 LYM720 0.88 7.68E−04 1 15
LYM720 0.85 1.87E−03 1 16 LYM720 0.77 1.45E−02 1 20
LYM720 0.75 1.93E−02 9 47 LYM721 0.73 1.75E−02 2 7
LYM721 0.81 4.59E−03 4 26 LYM721 0.83 2.78E−03 4 23
LYM721 0.71 2.09E−02 4 31 LYM721 0.73 1.75E−02 5 31
LYM722 0.79 6.44E−03 3 2 LYM722 0.85 3.92E−03 9 44
LYM722 0.79 1.08E−02 9 47 LYM722 0.80 9.63E−03 9 45
LYM723 0.82 3.34E−03 2 13 LYM723 0.77 9.66E−03 2 1
LYM723 0.91 2.65E−04 8 55 LYM723 0.80 5.00E−03 8 51
LYM723 0.92 1.89E−04 8 52 LYM723 0.79 6.48E−03 5 36
LYM723 0.86 1.48E−03 5 41 LYM723 0.81 4.77E−03 5 40
LYM723 0.91 2.73E−04 5 37 LYM724 0.84 2.40E−03 3 13
LYM724 0.71 2.26E−02 3 5 LYM724 0.79 6.31E−03 3 1
LYM724 0.72 1.82E−02 3 2 LYM724 0.71 2.18E−02 6 34
LYM725 0.82 3.49E−03 2 13 LYM725 0.81 4.37E−03 2 1
LYM725 0.84 2.11E−03 8 55 LYM725 0.82 3.43E−03 8 51
LYM725 0.85 1.93E−03 8 52 LYM725 0.80 9.68E−03 9 47
LYM726 0.91 2.71E−04 3 13 LYM726 0.75 1.19E−02 3 1
LYM726 0.76 1.15E−02 6 31 LYM726 0.71 2.15E−02 1 16
LYM727 0.79 6.05E−03 2 8 LYM727 0.76 9.99E−03 2 7
LYM727 0.72 1.85E−02 3 5 LYM727 0.81 4.14E−03 4 22
LYM727 0.72 1.86E−02 4 32 LYM727 0.77 9.04E−03 4 23
LYM727 0.80 5.45E−03 4 42 LYM727 0.82 3.87E−03 4 31
LYM727 0.74 1.35E−02 6 22 LYM727 0.71 2.15E−02 6 42
LYM727 0.78 8.11E−03 5 28 LYM728 0.86 1.28E−03 2 13
LYM728 0.81 4.46E−03 2 1 LYM728 0.77 9.63E−03 3 13
LYM728 0.70 2.33E−02 3 4 LYM728 0.74 1.38E−02 3 3
LYM728 0.72 1.91E−02 3 5 LYM728 0.80 5.31E−03 3 2
LYM728 0.74 1.49E−02 7 55 LYM728 0.73 1.59E−02 7 52
LYM729 0.80 5.88E−03 2 21 LYM729 0.82 3.82E−03 2 20
LYM729 0.76 1.02E−02 3 4 LYM729 0.83 2.80E−03 3 5
LYM729 0.78 7.25E−03 1 13 LYM729 0.86 1.29E−03 1 1
LYM730 0.81 4.75E−03 3 13 LYM730 0.74 1.48E−02 3 1
LYM730 0.73 1.75E−02 4 30 LYM730 0.77 9.35E−03 4 33
LYM730 0.87 1.01E−03 4 31 LYM730 0.77 8.81E−03 4 34
LYM730 0.74 1.43E−02 1 13 LYM730 0.76 1.02E−02 1 5
LYM730 0.78 8.01E−03 1 1 LYM730 0.71 2.05E−02 1 2
LYM731 0.90 3.23E−04 3 13 LYM731 0.83 2.70E−03 3 1
LYM731 0.73 1.58E−02 3 2 LYM731 0.71 2.24E−02 8 53
LYM731 0.72 1.89E−02 6 34 LYM731 0.77 9.30E−03 7 53
LYM732 0.87 1.13E−03 2 13 LYM732 0.74 1.45E−02 2 12
LYM732 0.84 2.14E−03 2 1 LYM732 0.71 2.08E−02 2 2
LYM732 0.72 1.86E−02 2 9 LYM732 0.79 6.43E−03 5 34
LYM733 0.77 9.71E−03 2 8 LYM733 0.79 7.08E−03 2 7
LYM733 0.74 2.19E−02 1 19 LYM733 0.81 4.27E−03 1 2
LYM734 0.71 2.06E−02 2 6 LYM734 0.81 4.78E−03 2 21
LYM734 0.72 1.84E−02 2 15 LYM734 0.77 8.95E−03 2 16
LYM734 0.81 4.37E−03 2 20 LYM734 0.72 1.99E−02 2 14
LYM734 0.72 1.83E−02 8 55 LYM734 0.78 7.86E−03 8 51
LYM734 0.72 1.80E−02 8 52 LYM734 0.70 2.38E−02 6 31
LYM734 0.78 7.50E−03 1 17 LYM734 0.71 2.28E−02 1 12
LYM734 0.72 1.81E−02 1 10 LYM734 0.75 1.24E−02 1 11
LYM734 0.71 2.06E−02 1 9 LYM746 0.77 9.65E−03 2 13
LYM746 0.71 2.27E−02 2 12 LYM746 0.76 1.06E−02 2 1
LYM746 0.86 1.26E−03 8 55 LYM746 0.79 6.99E−03 8 51
LYM746 0.87 9.58E−04 8 52 LYM746 0.72 1.86E−02 5 36
LYM746 0.78 8.27E−03 5 24 LYM746 0.75 1.26E−02 5 41
LYM746 0.71 2.15E−02 5 40 LYM746 0.80 4.98E−03 5 27
LYM746 0.76 1.05E−02 5 37 LYM747 0.77 9.47E−03 3 14
LYM747 0.91 2.81E−04 4 36 LYM747 0.84 2.41E−03 4 41
LYM747 0.91 2.48E−04 4 40 LYM747 0.74 1.37E−02 4 39
LYM747 0.81 4.68E−03 4 37 LYM747 0.72 2.91E−02 1 21
LYM747 0.82 3.62E−03 1 18 LYM747 0.96 1.61E−05 1 15
LYM747 0.71 2.22E−02 1 14 LYM747 0.74 1.42E−02 7 51
LYM748 0.86 1.34E−03 3 13 LYM748 0.71 2.07E−02 3 1
Table 20. Provided are the correlations (R) between the expression levels of yield improving genes and their homologues in tissues [Flag leaf, Flower meristem, stem and Flower; Expression sets (Exp), Table 16] and the phenotypic performance in various yield, biomass, growth rate and/or vigor components [Correlation vector (corr.), corr. ID is provided in Table 17 above] under abiotic stress conditions [e.g., nutrient deficiency (low nitrogen) or drought stress], or normal conditions across Sorghum accessions. P = p value.
II. Correlation of Sorghum Varieties Across Ecotype Grown Under Salinity Stress and Cold Stress Conditions
Sorghum Vigor Related Parameters Under 100 mM NaCl and Low Temperature (10±2° C.)—
Ten Sorghum varieties were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Sorghum seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (100 mM NaCl in addition to the Full Hogland solution), low temperature (10±2° C. in the presence of Full Hogland solution) or at Normal growth solution [Full Hogland solution at 28±2° C.].
Full Hogland solution consists of: KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter, KH2PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]-40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].
All 10 selected Sorghum varieties were sampled per each treatment. Two tissues [leaves and roots] growing at 100 mM NaCl, low temperature (10±2° C.) or under Normal conditions (full Hogland at a temperature between 28±2° C.) were sampled and RNA was extracted as described hereinabove under “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”.
TABLE 21
Sorghum transcriptom expression sets
Expression Set Set ID
Sorghum bath/NUE/root 1
Sorghum bath/NaCl/root 2
Sorghum bath/Cold/vegetative meristem 3
Sorghum bath/Normal/vegetative meristem 4
Sorghum bath/NUE/vegetative meristem 5
Sorghum bath/NaCl/vegetative meristem 6
Sorghum bath/Normal/root 7
Sorghum bath/Cold/root 8
Table 21: Provided are the Sorghum transcriptom expression sets.
Cold conditions = 10 ± 2 ° C.;
NaCl = 100 mM NaCl;
low nitrogen = 1.2 mM Nitrogen;
Normal conditions = 16 mM Nitrogen.
Experimental Results
10 different Sorghum varieties were grown and characterized for the following parameters: “Leaf number Normal”=leaf number per plant under normal conditions (average of five plants); “Plant Height Normal”=plant height under normal conditions (average of five plants); “Root DW 100 mM NaCl”—root dry weight per plant under salinity conditions (average of five plants); The average for each of the measured parameters was calculated using the JMP software and values are summarized in Table 23 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters were conducted (Table 24). Results were then integrated to the database.
TABLE 22
Sorghum correlated parameters (vectors)
Correlated parameter with Correlation ID
DW Root/Plant - 100 mM NaCl 26
DW Root/Plant - Cold 34
DW Root/Plant - Low Nitrogen 17
DW Root/Plant - Normal 7
DW Shoot/Plant - Low Nitrogen 16
DW Shoot/Plant - 100 mM NaCl 25
DW Shoot/Plant - Cold 33
DW Shoot/Plant - Normal 6
Leaf num Cold 55
Leaf num Low Nitrogen 41
Leaf num NaCl 48
Leaf num Normal 36
Plant Height Low Nitrogen 42
Plant Height Cold 56
Plant Height NaCl 49
Plant Height Normal 37
Table 22: Provided are the Sorghum correlated parameters.
Cold conditions = 10 ± 2 ° C.;
NaCl = 100 mM NaCl;
low nitrogen = 1.2 mM Nitrogen;
Normal conditions = 16 mM Nitrogen.
“DW” = dry weight.
TABLE 23
Sorghum accessions, measured parameters
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 Line-8 Line-9 Line-10
6 0.10 0.24 0.31 0.16 0.19 0.19 0.24 0.24 0.19 0.24
7 0.05 0.13 0.17 0.10 0.11 0.12 0.14 0.12 0.10 0.11
16 0.08 0.19 0.33 0.16 0.16 0.16 0.26 0.20 0.13 0.18
17 0.04 0.11 0.20 0.10 0.08 0.09 0.13 0.09 0.09 0.09
25 0.09 0.19 0.20 0.14 0.13 0.13 0.15 0.19 0.10 0.12
26 0.05 0.10 0.12 0.07 0.08 0.08 0.14 0.10 0.16 0.14
33 0.08 0.15 0.19 0.11 0.13 0.16 0.15 0.15 0.11 0.14
34 0.07 0.11 0.16 0.09 0.08 0.11 0.14 0.13 0.11 0.14
36 4.17 4.48 4.93 4.53 4.52 4.64 4.49 4.79 4.37 4.54
37 11.22 13.77 17.48 13.08 13.50 13.53 16.75 16.15 13.95 15.28
41 3.63 3.99 4.51 4.17 4.03 4.13 4.24 4.28 3.90 3.91
42 14.09 20.49 23.69 18.91 19.98 19.43 21.00 21.54 18.50 19.98
48 3.67 3.88 4.28 4.03 3.97 3.98 3.90 4.18 3.70 3.82
49 14.63 16.31 20.56 14.70 16.43 16.12 15.61 18.71 13.65 15.72
55 3.88 4.16 4.52 4.28 4.33 4.17 3.94 4.26 4.20 4.04
56 8.83 12.32 14.42 9.50 12.53 11.82 11.28 13.22 9.97 10.02
Table 23: Provided are the measured parameters under 100 mM NaCl and low temperature (8-10° C.) conditions of Sorghum accessions (Seed ID) according to the Correlation ID numbers (described in Table 22 above).
TABLE 24
Correlation between the expression level of selected genes of some embodiments
of the invention in roots and the phenotypic performance under normal
or abiotic stress conditions across Sorghum accessions
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM687 0.76 4.87E−02 1 17 LYM687 0.74 1.38E−02 8 34
LYM692 0.79 3.59E−02 1 41 LYM692 0.79 1.06E−02 3 33
LYM692 0.80 9.45E−03 3 56 LYM692 0.73 2.59E−02 5 42
LYM695 0.82 6.77E−03 3 33 LYM695 0.73 2.65E−02 3 56
LYM702 0.71 7.20E−02 1 41 LYM702 0.90 1.02E−03 5 17
LYM702 0.95 9.24E−05 5 42 LYM702 0.91 7.80E−04 5 16
LYM702 0.95 9.70E−05 5 41 LYM705 0.73 6.45E−02 1 17
LYM706 0.78 3.73E−02 1 17 LYM706 0.90 5.08E−03 1 42
LYM706 0.84 1.93E−02 1 16 LYM706 0.85 1.59E−02 1 41
LYM708 0.78 1.27E−02 3 34 LYM708 0.82 6.71E−03 3 33
LYM708 0.81 8.71E−03 3 56 LYM708 0.74 2.26E−02 5 17
LYM708 0.73 2.55E−02 5 42 LYM708 0.72 2.87E−02 5 16
LYM708 0.71 3.04E−02 5 41 LYM708 0.73 2.51E−02 6 26
LYM709 0.84 4.82E−03 3 56 LYM709 0.84 4.27E−03 5 17
LYM709 0.74 2.38E−02 5 16 LYM711 0.83 5.19E−03 3 55
LYM711 0.77 1.55E−02 3 33 LYM711 0.81 7.90E−03 3 56
LYM711 0.81 8.02E−03 5 17 LYM711 0.75 1.88E−02 5 42
LYM711 0.76 1.65E−02 5 16 LYM711 0.82 6.69E−03 5 41
LYM715 0.81 7.61E−03 6 48 LYM717 0.76 1.86E−02 4 36
LYM717 0.82 6.72E−03 4 6 LYM717 0.79 1.18E−02 4 7
LYM718 0.81 2.64E−02 1 42 LYM718 0.72 6.66E−02 1 16
LYM718 0.74 2.40E−02 3 55 LYM718 0.83 5.37E−03 3 56
LYM725 0.71 3.09E−02 3 56 LYM725 0.70 3.53E−02 4 37
LYM725 0.74 2.19E−02 5 16 LYM726 0.84 4.78E−03 4 37
LYM726 0.72 3.00E−02 4 36 LYM726 0.75 2.02E−02 4 6
LYM726 0.76 1.65E−02 4 7 LYM728 0.79 1.11E−02 3 34
LYM728 0.83 6.08E−03 4 37 LYM728 0.71 3.18E−02 4 7
LYM728 0.74 2.24E−02 5 17 LYM728 0.92 4.14E−04 5 42
LYM728 0.82 6.59E−03 5 16 LYM728 0.86 3.01E−03 5 41
LYM728 0.74 2.34E−02 7 36 LYM732 0.80 9.16E−03 3 33
LYM732 0.77 1.50E−02 3 56 LYM746 0.77 1.61E−02 5 17
LYM746 0.84 4.56E−03 5 42 LYM746 0.76 1.68E−02 5 16
LYM746 0.77 1.61E−02 5 41
Table 24. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression sets (Exp), Table 21] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector)] under abiotic stress conditions (salinity, cold stress) or normal conditions across Sorghum accessions. Corr.—Correlation vector ID as described hereinabove (Table 22). P = p value.
Example 7 Production of Maize Transcriptom and High Throughput Correlation Analysis Using 60K Maize Oligonucleotide Micro-Array
To produce a high throughput correlation analysis, the present inventors utilized a Maize oligonucleotide micro-array, produced by Agilent Technologies [Hypertxt Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 60K Maize genes and transcripts designed based on data from Public databases (Example 1). To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 12 different Maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Four tissues at different developmental stages including Ear (R1-R2), leaf (R1-R2; and V2-V3), Grain from the distal part of the ear (R4-R5), and Internode (upper internode; R1-R2, R3-R4, V6-V8) representing different plant characteristics, were sampled and RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS”. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 25 below.
TABLE 25
Tissues used for Maize
transcriptom expression sets
Expression Set Set ID
Ear (R1-R2) 1
Internode (R3-R4) 3
Grain distal (R4-R5) 4
Leaf (V6-V8) 6
Leaf (V2-V3) 7
Internode (R1-R2) 8
Internode (R3-R4) 9
Ear (R3-R4) 12
Internode (R1-R2) 14
Leaf (R1-R2) 15
Leaf (R1-R2) 16
Grain distal (R3-R4) 17
Ear (R1-R2) 18
Internode (V2-V3) 20
Ear (R3-R4) 22
Internode (V6-V8) 24
Table 25: Provided are the identification (ID) number of each of the Maize expression sets.
V1-V8 = represent vegetative stages of Maize development;
R1-R5 = represent reproductive stages of Maize development.
The following parameters were collected:
Grain Area (cm2)—
At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
Grain Length and Grain Width (cm)—
At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.
Ear Area (cm2)—
At the end of the growing period 6 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
Ear Length and Ear Width (cm)—
At the end of the growing period 6 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.
Filled per Whole Ear—
was calculated as the length of the ear with grains out of the total ear.
Percent Filled Ear—
At the end of the growing period 6 ears were, photographed and images were processed using the below described image processing system. The percent filled Ear grain was the ear with grains out of the total ear and was measured from those images and was divided by the number of Ears.
The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.
Normalized Grain Weight Per Plant (gr.)(Yield)—
At the end of the experiment all ears from plots within blocks A-C were collected. 6 ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The grain weight was normalized using the relative humidity to be 0%. The normalized average grain weight per ear was calculated by dividing the total normalized grain weight by the total number of ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.
Ear FW (gr.)—
At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).
Plant Height and Ear Height—
Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located.
Leaf Number Per Plant—
Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
Relative Growth Rate—
was calculated using regression coefficient of leaf number change a long time course.
SPAD—
Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS).
Dry Weight Per Plant—
At the end of the experiment when all vegetative material from plots within blocks A-C were collected, weight and divided by the number of plants.
Ear Diameter [cm]—
The diameter of the ear at the mid of the ear was measured using a ruler.
Cob Diameter [cm]—
The diameter of the cob without grains was measured using a ruler.
Kernel Row Number Per Ear—
The number of rows in each ear was counted. The average of 6 ears per plot was calculated.
Leaf Area Index [LAI]=
total leaf area of all plants in a plot. Measurement was performed using a Leaf area-meter.
Yield/LAI [kg]—
is the ratio between total grain yields and total leaf area index.
TABLE 26
Maize correlated parameters (vectors)
Correlated parameter Correlation ID
Normal - LAI 73
Normal - Yield/LAI (gr) 74
Growth Rate Leaf Num 75
Plant Height per Plot cm 76
Ear Height cm 77
Leaf Number per Plant 78
Ear Length cm 79
Percent Filled Ear 80
Cob Diameter mm 81
Kernel Row Number per Ear 82
DW per Plant based on 6 gr 83
Ear FW per Plant based on 6 gr 84
Normalized Grain Weight per 85
plant based on 6 gr
Ears FW per plant based on all gr 86
Normalized Grain Weight per 87
Plant based on all gr
Ear Area cm2 88
Ear Width cm 89
Filled per Whole Ear 90
Grain Area cm2 91
Grain Length cm 92
Grain Width cm 93
Table 26.
Twelve maize varieties were grown, and characterized for parameters, as described above. The average for each parameter was calculated using the JMP software, and values are summarized in Tables 27-28 below. Subsequent correlation between the various transcriptom sets for all or sub set of lines was done by the bioinformatic unit and results were integrated into the database (Table 29 below).
TABLE 27
Measured parameters in Maize Hybrid
Ecotype/Corr. ID Line-1 Line-2 Line-3 Line-4 Line-5
73 3.21 3.95 3.33 4.01 3.86
74 426.09 312.97 307.28 362.44 314.14
75 0.28 0.22 0.28 0.27 0.31
76 278.08 260.50 275.13 238.50 286.94
77 135.17 122.33 131.97 114.00 135.28
78 12.00 11.11 11.69 11.78 11.94
79 19.69 19.05 20.52 21.34 20.92
80 80.62 86.76 82.14 92.71 80.38
81 28.96 25.08 28.05 25.73 28.72
82 16.17 14.67 16.20 15.89 16.17
83 657.50 491.67 641.11 580.56 655.56
84 245.83 208.33 262.22 263.89 272.22
85 140.68 139.54 153.67 176.98 156.61
86 278.19 217.50 288.28 247.88 280.11
87 153.90 135.88 152.50 159.16 140.46
88 85.06 85.84 90.51 95.95 91.62
89 5.58 5.15 5.67 5.53 5.73
90 0.92 0.92 0.93 0.92 0.91
91 0.75 0.71 0.75 0.77 0.81
92 1.17 1.09 1.18 1.20 1.23
93 0.81 0.81 0.80 0.80 0.82
Table 27.
TABLE 28
Measured parameters in Maize Hybrid additional parameters
Corr. Ecotype
ID Line-6 Line-7 Line-8 Line-10 Line-11 Line-13
73 4.19 3.97 4.32 2.89 4.31
74 224.58 266.44 261.66 482.33
75 0.24 0.24 0.27 0.19 0.30
76 224.83 264.44 251.61 163.78 278.44
77 94.28 120.94 107.72 60.44 112.50
78 12.33 12.44 12.22 9.28 12.56
79 18.23 19.02 18.57 16.69 21.70
80 82.76 73.25 81.06 81.06 91.60
81 25.78 26.43 25.19 26.67
82 15.17 16.00 14.83 14.27 15.39
83 569.44 511.11 544.44 574.17 522.22
84 177.78 188.89 197.22 141.11 261.11
85 119.67 119.69 133.51 54.32 173.23
86 175.84 192.47 204.70 142.72 264.24
87 117.14 123.24 131.27 40.84 170.66
88 72.41 74.03 76.53 55.20 95.36
89 5.23 5.22 5.33 4.12 5.58
90 0.95 0.87 0.94 0.80 0.96
91 0.71 0.71 0.75 0.50 0.76
92 1.12 1.14 1.13 0.92 1.18
93 0.80 0.79 0.84 0.67 0.81
Table 28.
TABLE 29
Correlation between the expression level of selected genes of some
embodiments of the invention in various tissues and the phenotypic
performance under normal conditions across maize varieties
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM565 0.80 3.21E−02 14 90 LYM565 0.72 6.67E−02 14 76
LYM565 0.71 7.13E−02 15 88 LYM565 0.73 6.18E−02 15 77
LYM566 0.78 2.38E−02 4 74 LYM566 0.74 5.81E−02 15 88
LYM566 0.70 7.79E−02 15 87 LYM566 0.75 5.04E−02 15 82
LYM566 0.82 2.42E−02 15 75 LYM566 0.85 1.47E−02 15 79
LYM566 0.84 1.91E−02 15 86 LYM566 0.83 2.13E−02 15 84
LYM566 0.80 5.58E−02 16 74 LYM566 0.84 8.61E−03 17 81
LYM566 0.71 4.93E−02 17 75 LYM566 0.71 4.67E−02 17 91
LYM566 0.85 8.06E−03 17 76 LYM566 0.73 3.81E−02 17 83
LYM566 0.86 6.34E−03 17 77 LYM566 0.71 4.76E−02 17 89
LYM566 0.76 2.72E−02 17 86 LYM566 0.72 4.44E−02 17 84
LYM566 0.78 6.95E−02 22 90 LYM566 0.72 1.03E−01 22 93
LYM567 0.92 9.20E−03 1 74 LYM567 0.97 1.10E−03 8 74
LYM567 0.73 9.63E−02 12 74 LYM567 0.79 3.36E−02 14 88
LYM567 0.88 8.58E−03 14 79 LYM567 0.89 7.61E−03 14 80
LYM567 0.70 7.84E−02 14 86 LYM567 0.79 3.41E−02 14 84
LYM567 0.74 5.85E−02 14 85 LYM567 0.85 3.08E−02 16 74
LYM567 0.80 1.74E−02 17 81 LYM567 0.83 1.01E−02 17 83
LYM567 0.81 2.74E−02 18 88 LYM567 0.77 4.23E−02 18 87
LYM567 0.82 2.45E−02 18 75 LYM567 0.91 5.07E−03 18 79
LYM567 0.70 7.95E−02 18 80 LYM567 0.70 7.92E−02 18 76
LYM567 0.82 2.43E−02 18 86 LYM567 0.85 1.62E−02 18 84
LYM567 0.77 4.29E−02 18 85 LYM567 0.77 7.54E−02 22 90
LYM567 0.91 1.11E−02 22 80 LYM568 0.80 5.68E−02 15 81
LYM568 0.85 3.35E−02 22 90 LYM569 0.74 1.47E−02 7 88
LYM569 0.70 2.31E−02 7 87 LYM569 0.70 2.38E−02 7 82
LYM569 0.74 1.51E−02 7 92 LYM569 0.72 1.97E−02 7 79
LYM569 0.72 1.80E−02 7 84 LYM569 0.74 1.36E−02 7 85
LYM569 0.85 1.65E−02 14 88 LYM569 0.81 2.87E−02 14 87
LYM569 0.79 3.27E−02 14 82 LYM569 0.85 1.44E−02 14 92
LYM569 0.77 4.32E−02 14 79 LYM569 0.80 3.13E−02 14 91
LYM569 0.83 2.08E−02 14 77 LYM569 0.80 2.93E−02 14 89
LYM569 0.70 7.78E−02 14 86 LYM569 0.78 3.71E−02 14 93
LYM569 0.80 3.14E−02 14 84 LYM569 0.85 1.43E−02 14 85
LYM569 0.87 1.18E−02 15 88 LYM569 0.76 4.86E−02 15 87
LYM569 0.74 5.54E−02 15 82 LYM569 0.75 5.36E−02 15 92
LYM569 0.90 5.57E−03 15 79 LYM569 0.86 1.33E−02 15 80
LYM569 0.76 4.60E−02 15 77 LYM569 0.71 7.52E−02 15 89
LYM569 0.81 2.89E−02 15 86 LYM569 0.88 8.90E−03 15 84
LYM569 0.83 2.21E−02 15 85 LYM569 0.75 5.14E−02 18 87
LYM569 0.80 3.19E−02 18 92 LYM569 0.73 5.99E−02 18 90
LYM569 0.85 1.63E−02 18 91 LYM569 0.80 2.90E−02 18 76
LYM569 0.90 6.15E−03 18 77 LYM569 0.85 1.52E−02 18 89
LYM569 0.72 6.98E−02 18 86 LYM569 0.84 1.93E−02 18 93
LYM569 0.70 7.77E−02 18 85 LYM569 0.71 3.13E−02 20 78
LYM569 0.77 1.60E−02 20 92 LYM569 0.82 7.04E−03 20 91
LYM569 0.78 1.33E−02 20 76 LYM569 0.82 7.15E−03 20 77
LYM569 0.73 2.48E−02 20 89 LYM569 0.84 4.60E−03 20 93
LYM569 0.74 9.31E−02 22 92 LYM569 0.77 7.26E−02 22 91
LYM569 0.81 4.89E−02 22 76 LYM569 0.82 4.66E−02 22 77
LYM569 0.78 6.82E−02 22 89 LYM569 0.81 4.91E−02 22 86
LYM569 0.75 8.77E−02 22 84 LYM570 0.87 2.49E−02 1 74
LYM570 0.79 1.93E−02 4 74 LYM570 0.74 1.37E−02 7 78
LYM570 0.76 1.13E−02 7 93 LYM570 0.79 6.11E−02 8 73
LYM570 0.71 7.55E−02 15 90 LYM570 0.72 6.73E−02 18 82
LYM570 0.86 2.67E−02 22 78 LYM570 0.95 2.56E−04 24 74
LYM571 0.89 1.61E−02 1 74 LYM571 0.85 7.31E−03 3 92
LYM571 0.71 4.85E−02 3 79 LYM571 0.70 5.21E−02 3 90
LYM571 0.76 2.93E−02 3 93 LYM571 0.80 2.91E−02 14 88
LYM571 0.83 2.22E−02 14 87 LYM571 0.77 4.10E−02 14 82
LYM571 0.87 1.13E−02 14 75 LYM571 0.78 4.07E−02 14 92
LYM571 0.81 2.64E−02 14 79 LYM571 0.75 5.20E−02 14 91
LYM571 0.89 7.09E−03 14 76 LYM571 0.83 2.18E−02 14 77
LYM571 0.84 1.68E−02 14 89 LYM571 0.95 1.05E−03 14 86
LYM571 0.87 1.12E−02 14 84 LYM571 0.78 3.94E−02 14 85
LYM571 0.70 7.79E−02 15 87 LYM571 0.84 1.94E−02 15 78
LYM571 0.81 2.57E−02 15 75 LYM571 0.83 2.21E−02 15 90
LYM571 0.74 5.70E−02 15 91 LYM571 0.82 2.38E−02 15 76
LYM571 0.74 5.77E−02 15 89 LYM571 0.76 4.79E−02 15 93
LYM571 0.87 1.11E−02 18 88 LYM571 0.81 2.89E−02 18 87
LYM571 0.83 2.00E−02 18 82 LYM571 0.84 1.87E−02 18 75
LYM571 0.78 4.02E−02 18 92 LYM571 0.96 5.72E−04 18 79
LYM571 0.72 6.76E−02 18 80 LYM571 0.76 4.77E−02 18 89
LYM571 0.88 8.33E−03 18 86 LYM571 0.93 2.04E−03 18 84
LYM571 0.83 2.02E−02 18 85 LYM571 0.72 1.09E−01 22 79
LYM571 0.93 7.39E−03 22 90 LYM571 0.91 1.28E−02 22 80
LYM571 0.81 4.85E−02 22 85 LYM572 0.76 7.94E−02 1 73
LYM572 0.71 4.69E−02 17 91 LYM573 0.83 3.98E−02 1 73
LYM573 0.73 1.02E−01 8 73 LYM573 0.75 8.62E−02 14 81
LYM573 0.86 2.82E−02 16 73 LYM573 0.83 4.05E−02 16 74
LYM573 0.73 6.21E−02 18 76 LYM573 0.73 2.66E−02 20 87
LYM573 0.80 9.78E−03 20 78 LYM573 0.75 2.00E−02 20 75
LYM573 0.75 1.93E−02 20 92 LYM573 0.79 1.12E−02 20 79
LYM573 0.72 2.99E−02 20 89 LYM573 0.74 2.17E−02 20 85
LYM573 0.74 3.61E−02 24 73 LYM574 0.72 4.26E−02 3 93
LYM574 0.93 6.55E−03 8 73 LYM574 0.84 8.48E−03 17 81
LYM574 0.76 2.87E−02 17 75 LYM574 0.85 7.48E−03 17 83
LYM574 0.81 2.89E−02 18 78 LYM574 0.84 1.68E−02 18 90
LYM574 0.77 4.23E−02 18 93 LYM575 0.78 2.26E−02 3 88
LYM575 0.71 4.86E−02 3 87 LYM575 0.86 6.57E−03 3 80
LYM575 0.73 3.88E−02 3 85 LYM575 0.80 9.73E−03 6 74
LYM575 0.79 2.03E−02 9 74 LYM575 0.89 1.89E−02 14 81
LYM575 0.87 1.02E−02 14 83 LYM575 0.84 1.77E−02 15 88
LYM575 0.93 2.39E−03 15 87 LYM575 0.75 5.38E−02 15 82
LYM575 0.86 1.29E−02 15 78 LYM575 0.79 3.50E−02 15 75
LYM575 0.95 8.40E−04 15 92 LYM575 0.74 5.84E−02 15 79
LYM575 0.90 5.21E−03 15 90 LYM575 0.98 9.44E−05 15 91
LYM575 0.75 5.09E−02 15 80 LYM575 0.90 6.12E−03 15 76
LYM575 0.92 3.22E−03 15 77 LYM575 0.98 1.57E−04 15 89
LYM575 0.79 3.36E−02 15 86 LYM575 0.93 2.03E−03 15 93
LYM575 0.79 3.54E−02 15 84 LYM575 0.90 6.21E−03 15 85
LYM575 0.82 4.55E−02 16 74 LYM575 0.76 4.57E−02 18 87
LYM575 0.80 2.94E−02 18 78 LYM575 0.70 7.75E−02 18 75
LYM575 0.75 5.42E−02 18 92 LYM575 0.86 1.28E−02 18 90
LYM575 0.85 1.48E−02 18 91 LYM575 0.89 6.88E−03 18 76
LYM575 0.82 2.29E−02 18 77 LYM575 0.83 2.19E−02 18 89
LYM575 0.91 4.17E−03 18 93 LYM575 0.73 2.59E−02 20 78
LYM575 0.85 3.76E−03 20 75 LYM575 0.71 3.18E−02 20 92
LYM575 0.75 2.05E−02 20 91 LYM575 0.75 2.07E−02 20 93
LYM575 0.70 1.19E−01 22 82 LYM575 0.76 8.00E−02 22 92
LYM575 0.78 6.60E−02 22 79 LYM575 0.78 6.73E−02 22 89
LYM576 0.75 8.42E−02 8 73 LYM576 0.92 1.01E−02 16 73
LYM576 0.76 2.96E−02 20 81 LYM576 0.77 1.44E−02 20 82
LYM576 0.79 1.13E−02 20 75 LYM576 0.76 1.87E−02 20 92
LYM576 0.70 3.53E−02 20 91 LYM576 0.71 3.26E−02 20 84
LYM577 0.74 9.17E−02 1 73 LYM577 0.73 1.00E−01 8 73
LYM577 0.74 3.76E−02 17 82 LYM577 0.88 3.79E−03 17 75
LYM577 0.94 4.15E−04 17 92 LYM577 0.80 1.80E−02 17 79
LYM577 0.86 6.71E−03 17 91 LYM577 0.83 1.17E−02 17 83
LYM577 0.89 3.10E−03 17 89 LYM577 0.70 5.15E−02 17 86
LYM577 0.81 1.46E−02 17 84 LYM577 0.72 4.47E−02 17 85
LYM577 0.77 7.39E−02 22 82 LYM577 0.74 8.96E−02 22 77
LYM578 0.71 4.73E−02 3 82 LYM578 0.75 3.32E−02 3 92
LYM578 0.79 3.39E−02 14 76 LYM578 0.78 3.82E−02 14 77
LYM578 0.86 1.28E−02 14 86 LYM578 0.74 5.90E−02 14 84
LYM578 0.83 4.14E−02 22 90 LYM578 0.91 1.25E−02 22 80
LYM578 0.74 9.54E−02 22 85 LYM579 0.84 9.78E−03 3 93
LYM579 0.77 2.47E−02 17 75 LYM579 0.72 4.39E−02 17 91
LYM579 0.71 4.78E−02 17 83 LYM579 0.75 3.33E−02 24 73
LYM580 0.85 3.17E−02 1 74 LYM580 0.71 3.20E−02 7 81
LYM580 0.73 1.75E−02 7 83 LYM580 0.72 1.06E−01 8 73
LYM580 0.85 3.04E−02 18 81 LYM580 0.75 8.58E−02 22 90
LYM581 0.77 2.67E−02 3 90 LYM581 0.76 7.77E−02 14 81
LYM581 0.78 3.66E−02 14 83 LYM581 0.73 1.01E−01 16 74
LYM581 0.95 1.11E−03 18 88 LYM581 1.00 3.36E−07 18 87
LYM581 0.75 5.17E−02 18 82 LYM581 0.86 1.32E−02 18 78
LYM581 0.88 9.40E−03 18 75 LYM581 0.97 2.60E−04 18 92
LYM581 0.90 6.14E−03 18 79 LYM581 0.89 7.63E−03 18 90
LYM581 0.97 2.98E−04 18 91 LYM581 0.93 2.44E−03 18 76
LYM581 0.89 6.70E−03 18 77 LYM581 0.98 1.04E−04 18 89
LYM581 0.87 1.06E−02 18 86 LYM581 0.88 9.25E−03 18 93
LYM581 0.90 5.82E−03 18 84 LYM581 0.98 9.29E−05 18 85
LYM581 0.77 7.54E−02 22 82 LYM582 0.73 3.99E−02 3 90
LYM582 0.74 3.57E−02 4 74 LYM582 0.74 5.55E−02 14 88
LYM582 0.74 5.62E−02 14 82 LYM582 0.70 7.74E−02 14 92
LYM582 0.75 5.40E−02 14 79 LYM582 0.71 7.51E−02 14 91
LYM582 0.72 6.66E−02 14 80 LYM582 0.76 4.94E−02 14 84
LYM582 0.73 6.04E−02 14 85 LYM582 0.71 7.35E−02 15 76
LYM582 0.79 3.26E−02 15 77 LYM582 0.81 2.65E−02 15 93
LYM582 0.94 1.63E−03 18 88 LYM582 0.94 1.57E−03 18 87
LYM582 0.86 1.23E−02 18 82 LYM582 0.88 8.28E−03 18 78
LYM582 0.77 4.10E−02 18 75 LYM582 0.94 1.65E−03 18 92
LYM582 0.88 9.28E−03 18 79 LYM582 0.94 1.64E−03 18 90
LYM582 0.98 5.28E−05 18 91 LYM582 0.92 3.84E−03 18 76
LYM582 0.93 2.57E−03 18 77 LYM582 0.96 4.88E−04 18 89
LYM582 0.92 3.57E−03 18 86 LYM582 0.97 4.01E−04 18 93
LYM582 0.92 3.31E−03 18 84 LYM582 0.93 2.57E−03 18 85
LYM582 0.81 8.19E−03 20 78 LYM582 0.76 1.87E−02 20 75
LYM582 0.79 1.05E−02 20 92 LYM582 0.75 2.09E−02 20 91
LYM582 0.73 2.45E−02 20 89 LYM582 0.79 6.27E−02 22 78
LYM583 0.85 7.54E−03 3 78 LYM583 0.85 1.59E−02 14 88
LYM583 0.89 7.61E−03 14 87 LYM583 0.82 2.36E−02 14 82
LYM583 0.72 6.90E−02 14 78 LYM583 0.85 1.44E−02 14 75
LYM583 0.86 1.27E−02 14 92 LYM583 0.81 2.64E−02 14 79
LYM583 0.76 4.61E−02 14 90 LYM583 0.85 1.59E−02 14 91
LYM583 0.93 2.27E−03 14 76 LYM583 0.91 4.81E−03 14 77
LYM583 0.92 2.88E−03 14 89 LYM583 0.94 1.45E−03 14 86
LYM583 0.83 2.08E−02 14 93 LYM583 0.87 9.99E−03 14 84
LYM583 0.84 1.83E−02 14 85 LYM583 0.72 4.38E−02 17 81
LYM583 0.74 3.62E−02 17 83 LYM583 0.73 6.12E−02 18 92
LYM583 0.73 6.21E−02 18 90 LYM583 0.76 4.76E−02 18 91
LYM583 0.77 4.36E−02 18 77 LYM583 0.78 3.70E−02 18 89
LYM583 0.74 5.50E−02 18 93 LYM583 0.80 1.00E−02 20 78
LYM583 0.77 1.50E−02 20 75 LYM583 0.87 2.37E−03 20 92
LYM583 0.76 1.67E−02 20 90 LYM583 0.89 1.30E−03 20 91
LYM583 0.77 1.47E−02 20 76 LYM583 0.71 3.25E−02 20 77
LYM583 0.81 7.94E−03 20 89 LYM583 0.91 7.68E−04 20 93
LYM583 0.74 2.24E−02 20 85 LYM583 0.70 1.21E−01 22 78
LYM583 0.76 2.87E−02 24 74 LYM585 0.88 2.00E−02 14 81
LYM585 0.88 8.09E−03 14 83 LYM585 0.71 4.97E−02 17 81
LYM585 0.70 5.23E−02 17 82 LYM585 0.83 1.07E−02 17 75
LYM585 0.85 7.41E−03 17 92 LYM585 0.86 6.17E−03 17 91
LYM585 0.76 2.75E−02 17 89 LYM585 0.72 4.24E−02 17 84
LYM585 0.86 1.23E−02 18 75 LYM585 0.70 1.21E−01 22 78
LYM586 0.70 5.19E−02 3 88 LYM586 0.80 5.61E−03 7 78
LYM586 0.71 2.15E−02 7 93 LYM586 0.73 6.34E−02 14 76
LYM586 0.83 2.15E−02 14 77 LYM586 0.71 7.57E−02 14 86
LYM586 0.78 3.73E−02 18 88 LYM586 0.78 4.05E−02 18 87
LYM586 0.73 6.15E−02 18 91 LYM586 0.91 4.42E−03 18 76
LYM586 0.96 5.62E−04 18 77 LYM586 0.76 4.83E−02 18 89
LYM586 0.82 2.47E−02 18 86 LYM586 0.75 5.34E−02 18 93
LYM586 0.72 7.06E−02 18 84 LYM586 0.74 5.70E−02 18 85
LYM586 0.79 1.15E−02 20 88 LYM586 0.76 1.78E−02 20 87
LYM586 0.72 2.75E−02 20 82 LYM586 0.79 1.22E−02 20 76
LYM586 0.87 2.46E−03 20 77 LYM586 0.76 1.70E−02 20 89
LYM586 0.84 4.15E−03 20 86 LYM586 0.79 1.20E−02 20 84
LYM586 0.72 2.82E−02 20 85 LYM587 0.81 5.13E−02 1 74
LYM587 0.75 1.87E−02 6 73 LYM587 0.93 7.47E−03 8 73
LYM587 0.86 2.97E−02 12 73 LYM587 0.77 7.03E−02 22 93
LYM588 0.73 1.59E−02 7 88 LYM588 0.83 4.04E−02 8 74
LYM588 0.71 7.40E−02 14 80 LYM588 0.74 9.02E−02 16 74
LYM588 0.94 1.40E−03 18 88 LYM588 0.90 6.34E−03 18 87
LYM588 0.91 4.04E−03 18 82 LYM588 0.79 3.41E−02 18 75
LYM588 0.88 8.49E−03 18 92 LYM588 0.93 2.76E−03 18 79
LYM588 0.81 2.77E−02 18 91 LYM588 0.81 2.59E−02 18 76
LYM588 0.88 9.28E−03 18 77 LYM588 0.89 6.93E−03 18 89
LYM588 0.97 3.46E−04 18 86 LYM588 0.98 1.80E−04 18 84
LYM588 0.91 4.69E−03 18 85 LYM588 0.73 2.45E−02 20 87
LYM588 0.80 9.69E−03 20 78 LYM588 0.75 1.99E−02 20 92
LYM588 0.79 1.16E−02 20 90 LYM588 0.78 1.38E−02 20 91
LYM588 0.74 2.38E−02 20 89 LYM588 0.80 8.92E−03 20 93
LYM588 0.75 1.96E−02 20 85 LYM589 0.84 3.79E−02 1 74
LYM589 0.80 1.79E−02 3 78 LYM589 0.76 1.69E−02 20 87
LYM589 0.74 2.30E−02 20 78 LYM589 0.76 1.87E−02 20 75
LYM589 0.75 1.88E−02 20 92 LYM589 0.88 1.98E−03 20 90
LYM589 0.83 6.04E−03 20 91 LYM589 0.79 1.12E−02 20 89
LYM589 0.86 2.82E−03 20 93 LYM589 0.75 1.98E−02 20 85
LYM589 0.72 1.08E−01 22 88 LYM589 0.72 1.05E−01 22 92
LYM589 0.79 6.01E−02 22 89 LYM589 0.74 9.47E−02 22 86
LYM589 0.75 8.56E−02 22 84 LYM590 0.71 3.36E−02 7 81
LYM590 0.93 2.30E−03 14 88 LYM590 0.99 2.65E−05 14 87
LYM590 0.79 3.64E−02 14 82 LYM590 0.87 1.06E−02 14 78
LYM590 0.92 3.01E−03 14 75 LYM590 0.98 5.29E−05 14 92
LYM590 0.89 7.49E−03 14 79 LYM590 0.88 9.37E−03 14 90
LYM590 0.98 1.26E−04 14 91 LYM590 0.93 2.19E−03 14 76
LYM590 0.89 7.95E−03 14 77 LYM590 0.99 1.42E−05 14 89
LYM590 0.88 9.57E−03 14 86 LYM590 0.88 8.54E−03 14 93
LYM590 0.90 5.51E−03 14 84 LYM590 0.97 2.23E−04 14 85
LYM590 0.77 4.30E−02 15 88 LYM590 0.75 5.13E−02 15 87
LYM590 0.83 2.15E−02 15 75 LYM590 0.88 9.09E−03 15 79
LYM590 0.73 6.43E−02 15 80 LYM590 0.74 5.49E−02 15 86
LYM590 0.79 3.28E−02 15 84 LYM590 0.75 5.08E−02 15 85
LYM590 0.94 4.96E−03 16 74 LYM590 0.90 2.10E−03 17 81
LYM590 0.87 4.81E−03 17 75 LYM590 0.71 4.97E−02 17 92
LYM590 0.73 4.12E−02 17 91 LYM590 0.91 1.49E−03 17 83
LYM590 0.80 1.82E−02 17 89 LYM590 0.74 5.50E−02 18 78
LYM590 0.74 5.68E−02 18 92 LYM590 0.80 3.20E−02 18 90
LYM590 0.84 1.92E−02 18 91 LYM590 0.73 6.38E−02 18 76
LYM590 0.78 3.86E−02 18 77 LYM590 0.78 3.69E−02 18 89
LYM590 0.90 5.69E−03 18 93 LYM591 0.73 1.01E−01 14 81
LYM591 0.82 2.28E−02 14 82 LYM591 0.78 3.73E−02 14 75
LYM591 0.82 2.49E−02 14 79 LYM591 0.78 3.72E−02 14 86
LYM591 0.80 3.00E−02 14 84 LYM591 0.75 5.42E−02 18 76
LYM592 0.73 4.03E−02 3 88 LYM592 0.75 3.29E−02 3 92
LYM592 0.71 4.84E−02 3 84 LYM592 0.78 2.15E−02 3 85
LYM592 0.71 7.12E−02 15 82 LYM592 0.75 3.38E−02 17 88
LYM592 0.76 2.79E−02 17 87 LYM592 0.79 2.06E−02 17 79
LYM592 0.71 4.73E−02 17 80 LYM592 0.87 5.33E−03 17 85
LYM592 0.76 4.60E−02 18 82 LYM592 0.73 9.67E−02 22 80
LYM593 0.71 5.03E−02 17 78 LYM593 0.95 3.23E−03 18 81
LYM593 0.84 1.72E−02 18 83 LYM594 0.74 9.55E−02 12 74
LYM594 0.75 5.00E−02 14 78 LYM594 0.78 3.76E−02 14 90
LYM594 0.78 3.91E−02 14 93 LYM594 0.75 3.06E−02 17 81
LYM594 0.78 2.17E−02 17 75 LYM594 0.70 5.26E−02 17 91
LYM594 0.73 3.91E−02 17 83 LYM594 0.70 5.32E−02 17 89
LYM594 0.76 4.66E−02 18 78 LYM594 0.72 7.00E−02 18 90
LYM594 0.71 7.37E−02 18 91 LYM594 0.77 4.33E−02 18 93
LYM594 0.78 6.75E−02 22 79 LYM594 0.81 5.09E−02 22 80
LYM594 0.78 6.63E−02 22 85 LYM595 0.81 4.83E−02 1 74
LYM595 0.81 1.46E−02 3 79 LYM595 0.76 2.93E−02 3 85
LYM595 0.75 1.29E−02 7 79 LYM595 0.91 1.11E−02 8 74
LYM595 0.74 9.08E−02 12 74 LYM595 0.71 7.12E−02 14 75
LYM595 0.84 1.68E−02 14 79 LYM595 0.76 4.64E−02 14 80
LYM595 0.77 4.29E−02 14 84 LYM595 0.90 6.28E−03 15 88
LYM595 0.78 3.97E−02 15 87 LYM595 0.71 7.40E−02 15 82
LYM595 0.71 7.67E−02 15 75 LYM595 0.72 7.03E−02 15 92
LYM595 0.95 8.52E−04 15 79 LYM595 0.86 1.33E−02 15 80
LYM595 0.83 1.97E−02 15 86 LYM595 0.93 2.57E−03 15 84
LYM595 0.84 1.70E−02 15 85 LYM595 0.81 5.03E−02 16 74
LYM595 0.82 1.36E−02 17 88 LYM595 0.81 1.43E−02 17 87
LYM595 0.71 4.70E−02 17 92 LYM595 0.87 4.62E−03 17 79
LYM595 0.77 2.57E−02 17 84 LYM595 0.90 2.37E−03 17 85
LYM595 0.77 4.35E−02 18 88 LYM595 0.77 4.26E−02 18 82
LYM595 0.76 4.66E−02 18 75 LYM595 0.91 4.91E−03 18 79
LYM595 0.78 3.95E−02 18 80 LYM595 0.75 5.25E−02 18 86
LYM595 0.86 1.37E−02 18 84 LYM595 0.74 5.52E−02 18 85
LYM595 0.78 2.21E−02 20 81 LYM595 0.71 1.17E−01 22 87
LYM595 0.79 5.90E−02 22 79 LYM595 0.77 7.05E−02 22 80
LYM595 0.79 6.20E−02 22 85 LYM595 0.86 6.54E−03 24 74
LYM596 0.86 2.64E−02 8 73 LYM596 0.72 6.55E−02 14 83
LYM596 0.71 1.18E−01 22 83 LYM596 0.87 2.37E−02 22 93
LYM598 0.77 2.51E−02 3 78 LYM598 0.73 6.23E−02 14 76
LYM598 0.71 7.14E−02 15 75 LYM598 0.76 8.17E−02 22 90
LYM598 0.72 1.04E−01 22 93 LYM599 0.85 8.24E−03 3 90
LYM599 0.78 2.33E−02 3 80 LYM599 0.73 6.34E−02 14 88
LYM599 0.77 4.47E−02 14 87 LYM599 0.83 1.95E−02 14 82
LYM599 0.78 3.78E−02 14 78 LYM599 0.72 7.01E−02 14 75
LYM599 0.87 1.09E−02 14 92 LYM599 0.75 5.01E−02 14 79
LYM599 0.75 5.21E−02 14 90 LYM599 0.79 3.51E−02 14 91
LYM599 0.82 2.37E−02 14 89 LYM599 0.72 6.68E−02 14 84
LYM599 0.78 3.79E−02 14 85 LYM599 0.76 4.64E−02 15 88
LYM599 0.82 2.33E−02 15 79 LYM599 0.87 1.12E−02 15 80
LYM599 0.73 6.28E−02 15 84 LYM599 0.72 7.07E−02 15 85
LYM599 0.78 6.55E−02 16 74 LYM599 0.72 4.26E−02 17 75
LYM599 0.75 3.32E−02 17 91 LYM599 0.80 1.62E−02 17 83
LYM599 0.72 4.36E−02 17 89 LYM599 0.77 1.60E−02 20 78
LYM599 0.96 1.90E−03 22 78 LYM600 0.85 3.33E−02 22 82
LYM601 0.86 2.92E−02 18 81 LYM602 0.70 5.21E−02 3 93
LYM602 0.79 6.13E−02 8 74 LYM602 0.72 1.04E−01 12 73
LYM602 0.76 8.26E−02 15 81 LYM602 0.71 7.45E−02 15 86
LYM602 0.85 3.20E−02 16 74 LYM602 0.83 9.90E−03 17 81
LYM602 0.87 4.78E−03 17 75 LYM602 0.74 3.52E−02 17 92
LYM602 0.81 1.53E−02 17 91 LYM602 0.82 1.22E−02 17 83
LYM602 0.76 2.99E−02 17 89 LYM602 0.79 6.18E−02 18 81
LYM602 0.85 1.49E−02 18 82 LYM602 0.77 4.28E−02 18 83
LYM602 0.70 7.79E−02 18 77 LYM602 0.88 8.38E−03 18 86
LYM602 0.78 3.68E−02 18 84 LYM602 0.72 1.06E−01 22 90
LYM602 0.84 3.44E−02 22 93 LYM603 0.73 3.79E−02 3 76
LYM603 0.76 2.70E−02 17 81 LYM603 0.74 3.76E−02 17 75
LYM603 0.79 1.91E−02 17 83 LYM603 0.75 3.32E−02 17 89
LYM603 0.70 3.54E−02 20 78 LYM603 0.73 2.65E−02 20 92
LYM603 0.72 2.83E−02 20 91 LYM603 0.77 7.21E−02 22 78
LYM606 0.80 1.79E−02 3 90 LYM606 0.79 2.07E−02 3 93
LYM606 0.76 2.74E−02 4 73 LYM606 0.71 7.48E−02 14 78
LYM606 0.71 3.15E−02 20 93 LYM606 0.99 3.31E−04 22 90
LYM606 0.93 6.58E−03 22 80 LYM607 0.86 2.92E−02 1 74
LYM607 0.75 8.49E−02 22 90 LYM607 0.73 9.81E−02 22 80
LYM608 0.79 6.30E−02 1 74 LYM608 0.74 3.71E−02 3 88
LYM608 0.73 4.03E−02 3 86 LYM608 0.74 3.62E−02 3 84
LYM608 0.80 5.44E−02 8 73 LYM608 0.71 4.62E−02 17 75
LYM608 0.72 4.32E−02 17 83 LYM608 0.71 4.89E−02 17 93
LYM608 0.91 1.24E−02 22 90 LYM608 0.77 7.56E−02 22 80
LYM608 0.79 5.90E−02 22 93 LYM609 0.74 9.55E−02 12 74
LYM609 0.70 7.92E−02 14 87 LYM609 0.71 7.46E−02 14 90
LYM609 0.91 3.93E−03 14 76 LYM609 0.83 2.01E−02 14 77
LYM609 0.74 5.89E−02 14 86 LYM609 0.75 5.03E−02 14 93
LYM609 0.86 2.68E−02 15 81 LYM609 0.84 1.68E−02 15 88
LYM609 0.84 1.68E−02 15 87 LYM609 0.73 6.18E−02 15 92
LYM609 0.79 3.44E−02 15 79 LYM609 0.76 4.55E−02 15 90
LYM609 0.73 6.36E−02 15 91 LYM609 0.74 5.91E−02 15 80
LYM609 0.79 3.58E−02 15 76 LYM609 0.75 5.43E−02 15 83
LYM609 0.71 7.18E−02 15 77 LYM609 0.74 5.53E−02 15 89
LYM609 0.73 6.42E−02 15 84 LYM609 0.83 2.18E−02 15 85
LYM609 0.74 9.42E−02 16 74 LYM609 0.71 4.93E−02 17 76
LYM609 0.83 2.01E−02 18 82 LYM609 0.71 7.66E−02 18 92
LYM609 0.72 7.05E−02 18 91 LYM609 0.76 4.93E−02 18 76
LYM609 0.86 1.23E−02 18 77 LYM609 0.78 3.69E−02 18 89
LYM609 0.81 2.87E−02 18 86 LYM609 0.73 2.44E−02 20 77
LYM609 0.78 6.75E−02 22 79 LYM609 0.81 5.09E−02 22 80
LYM609 0.78 6.63E−02 22 85 LYM610 0.80 1.66E−02 3 88
LYM610 0.74 3.39E−02 3 87 LYM610 0.71 4.74E−02 3 92
LYM610 0.76 2.97E−02 3 79 LYM610 0.72 4.61E−02 3 80
LYM610 0.80 1.77E−02 3 84 LYM610 0.79 1.85E−02 3 85
LYM610 0.82 6.80E−03 6 73 LYM610 0.78 2.38E−02 9 74
LYM610 0.86 2.65E−02 22 90 LYM610 0.82 4.50E−02 22 93
LYM611 0.76 8.03E−02 1 74 LYM611 0.77 7.43E−02 8 74
LYM611 0.74 3.75E−02 17 85 LYM611 0.87 2.40E−02 22 88
LYM611 0.75 8.77E−02 22 87 LYM611 0.72 1.09E−01 22 82
LYM611 0.85 3.29E−02 22 92 LYM611 0.88 1.94E−02 22 79
LYM611 0.73 9.69E−02 22 77 LYM611 0.77 7.50E−02 22 89
LYM611 0.73 1.02E−01 22 86 LYM611 0.82 4.35E−02 22 84
LYM611 0.84 3.84E−02 22 85 LYM612 0.74 9.56E−02 1 74
LYM612 0.72 4.60E−02 4 74 LYM612 0.71 7.48E−02 14 88
LYM612 0.71 7.15E−02 14 87 LYM612 0.73 6.37E−02 14 90
LYM612 0.71 7.35E−02 14 76 LYM612 0.70 7.71E−02 14 89
LYM612 0.79 2.02E−02 17 81 LYM612 0.77 2.54E−02 17 75
LYM612 0.71 4.98E−02 17 91 LYM612 0.75 3.38E−02 17 83
LYM612 0.70 5.20E−02 17 89 LYM612 0.92 3.12E−03 18 88
LYM612 0.83 2.12E−02 18 87 LYM612 0.77 4.27E−02 18 82
LYM612 0.78 3.88E−02 18 92 LYM612 0.87 1.10E−02 18 79
LYM612 0.73 6.37E−02 18 91 LYM612 0.78 3.67E−02 18 76
LYM612 0.88 8.21E−03 18 77 LYM612 0.78 3.84E−02 18 89
LYM612 0.93 2.42E−03 18 86 LYM612 0.92 3.20E−03 18 84
LYM612 0.86 1.30E−02 18 85 LYM612 0.72 4.34E−02 24 73
LYM613 0.76 7.85E−02 1 73 LYM613 0.72 2.72E−02 6 73
LYM613 0.82 4.72E−02 8 73 LYM613 0.79 6.13E−02 16 73
LYM614 0.90 1.45E−02 1 73 LYM614 0.73 4.02E−02 3 88
LYM614 0.80 1.71E−02 3 80 LYM614 0.93 7.01E−03 8 74
LYM614 0.90 5.60E−03 15 82 LYM614 0.71 7.40E−02 15 75
LYM614 0.71 7.28E−02 15 92 LYM614 0.74 5.55E−02 15 83
LYM614 0.72 7.04E−02 15 89 LYM614 0.72 6.82E−02 15 86
LYM614 0.97 9.45E−05 17 75 LYM614 0.84 8.78E−03 17 92
LYM614 0.93 9.01E−04 17 91 LYM614 0.79 1.90E−02 17 83
LYM614 0.90 2.33E−03 17 89 LYM614 0.74 3.55E−02 17 86
LYM614 0.74 3.68E−02 17 84 LYM614 0.78 3.87E−02 18 78
LYM614 0.76 4.67E−02 18 90 LYM614 0.72 6.62E−02 18 91
LYM614 0.82 2.24E−02 18 93 LYM614 0.76 7.77E−02 22 82
LYM615 0.76 2.75E−02 3 83 LYM615 0.71 1.17E−01 12 73
LYM615 0.72 6.85E−02 14 78 LYM615 0.77 4.48E−02 14 90
LYM615 0.74 5.86E−02 14 76 LYM615 0.78 3.71E−02 14 93
LYM615 0.87 5.34E−03 17 81 LYM615 0.82 1.29E−02 17 75
LYM615 0.73 4.18E−02 17 91 LYM615 0.82 1.22E−02 17 83
LYM615 0.72 4.24E−02 17 89 LYM615 0.72 1.05E−01 18 81
LYM615 0.75 5.36E−02 18 83 LYM615 0.90 1.40E−02 22 93
LYM616 0.73 1.56E−02 7 87 LYM616 0.88 7.16E−04 7 78
LYM616 0.83 2.74E−03 7 92 LYM616 0.85 1.95E−03 7 90
LYM616 0.86 1.39E−03 7 91 LYM616 0.74 1.38E−02 7 76
LYM616 0.70 2.42E−02 7 77 LYM616 0.83 2.86E−03 7 89
LYM616 0.88 8.82E−04 7 93 LYM616 0.72 7.05E−02 14 88
LYM616 0.82 2.40E−02 14 87 LYM616 0.70 7.92E−02 14 82
LYM616 0.88 9.18E−03 14 78 LYM616 0.92 3.46E−03 14 92
LYM616 0.87 1.08E−02 14 90 LYM616 0.91 3.88E−03 14 91
LYM616 0.70 7.96E−02 14 77 LYM616 0.88 8.53E−03 14 89
LYM616 0.86 1.36E−02 14 93 LYM616 0.82 2.47E−02 14 85
LYM616 0.88 9.37E−03 15 78 LYM616 0.71 7.64E−02 15 92
LYM616 0.89 7.84E−03 15 90 LYM616 0.76 4.79E−02 15 91
LYM616 0.82 2.49E−02 15 93 LYM616 0.90 6.19E−03 18 78
LYM616 0.79 3.33E−02 18 92 LYM616 0.90 6.44E−03 18 90
LYM616 0.81 2.69E−02 18 91 LYM616 0.81 2.68E−02 18 89
LYM616 0.79 3.40E−02 18 93 LYM616 0.75 1.94E−02 20 87
LYM616 0.84 5.09E−03 20 78 LYM616 0.76 1.65E−02 20 92
LYM616 0.81 7.52E−03 20 90 LYM616 0.78 1.41E−02 20 91
LYM616 0.74 2.20E−02 20 89 LYM616 0.78 1.30E−02 20 93
LYM616 0.74 2.13E−02 20 85 LYM616 0.78 6.64E−02 22 78
LYM617 0.72 1.09E−01 14 81 LYM617 0.74 5.74E−02 18 76
LYM617 0.85 3.32E−02 22 78 LYM618 0.75 8.53E−02 8 74
LYM618 0.73 9.94E−02 14 81 LYM618 0.77 7.52E−02 15 81
LYM618 0.80 5.84E−02 16 74 LYM618 0.71 5.01E−02 17 81
LYM618 0.77 2.41E−02 17 82 LYM618 0.72 4.36E−02 17 75
LYM619 0.74 3.76E−02 3 75 LYM619 0.78 2.14E−02 3 89
LYM620 0.89 1.69E−02 18 81 LYM620 0.78 3.99E−02 18 83
LYM620 0.77 1.61E−02 20 83 LYM620 0.72 1.05E−01 22 82
LYM621 0.78 2.31E−02 3 78 LYM621 0.89 1.76E−02 16 74
LYM621 0.84 8.30E−03 17 81 LYM621 0.91 1.57E−03 17 75
LYM621 0.79 1.91E−02 17 92 LYM621 0.85 7.84E−03 17 91
LYM621 0.92 1.33E−03 17 83 LYM621 0.87 4.70E−03 17 89
LYM621 0.78 2.31E−02 17 86 LYM621 0.74 3.40E−02 17 84
LYM621 0.75 8.71E−02 22 90 LYM621 0.78 6.73E−02 22 80
LYM621 0.72 1.08E−01 22 93 LYM622 0.70 5.21E−02 3 78
LYM623 0.73 4.17E−02 3 80 LYM623 0.82 3.56E−03 7 80
LYM623 0.91 1.19E−02 8 73 LYM623 0.85 8.01E−03 9 74
LYM623 0.74 9.19E−02 15 81 LYM623 0.74 8.96E−02 22 93
LYM624 0.85 3.15E−02 12 73 LYM624 0.72 6.84E−02 18 88
LYM624 0.75 4.98E−02 18 76 LYM624 0.79 3.26E−02 18 77
LYM624 0.73 6.19E−02 18 93 LYM624 0.79 6.03E−02 22 93
LYM625 0.72 1.09E−01 8 73 LYM625 0.88 9.51E−03 14 88
LYM625 0.81 2.71E−02 14 87 LYM625 0.91 4.07E−03 14 82
LYM625 0.87 1.05E−02 14 92 LYM625 0.88 9.01E−03 14 79
LYM625 0.78 3.97E−02 14 91 LYM625 0.76 4.92E−02 14 77
LYM625 0.82 2.24E−02 14 89 LYM625 0.82 2.29E−02 14 86
LYM625 0.91 4.69E−03 14 84 LYM625 0.87 1.18E−02 14 85
LYM625 0.73 6.48E−02 15 88 LYM625 0.71 7.36E−02 15 82
LYM625 0.81 2.85E−02 15 79 LYM625 0.80 3.02E−02 15 80
LYM625 0.78 3.69E−02 15 84 LYM625 0.76 2.76E−02 17 87
LYM625 0.81 1.55E−02 17 83 LYM625 0.80 1.78E−02 17 89
LYM625 0.74 3.58E−02 17 86 LYM625 0.75 3.22E−02 17 84
LYM625 0.72 1.04E−01 22 79 LYM625 0.87 2.26E−02 22 80
LYM625 0.79 6.02E−02 22 85 LYM627 0.74 3.56E−02 9 74
LYM627 0.75 8.52E−02 12 74 LYM627 0.81 2.63E−02 14 88
LYM627 0.89 7.03E−03 14 87 LYM627 0.84 1.86E−02 14 82
LYM627 0.85 1.56E−02 14 78 LYM627 0.92 3.14E−03 14 75
LYM627 0.91 4.58E−03 14 92 LYM627 0.82 2.49E−02 14 79
LYM627 0.84 1.69E−02 14 90 LYM627 0.88 9.27E−03 14 91
LYM627 0.87 1.06E−02 14 76 LYM627 0.80 3.15E−02 14 77
LYM627 0.95 1.31E−03 14 89 LYM627 0.86 1.25E−02 14 86
LYM627 0.75 5.26E−02 14 93 LYM627 0.84 1.90E−02 14 84
LYM627 0.85 1.66E−02 14 85 LYM627 0.72 6.59E−02 15 87
LYM627 0.72 6.87E−02 15 78 LYM627 0.76 4.66E−02 15 75
LYM627 0.82 2.43E−02 15 92 LYM627 0.84 1.94E−02 15 91
LYM627 0.80 2.99E−02 15 89 LYM627 0.77 4.17E−02 15 93
LYM627 0.72 6.60E−02 15 85 LYM627 0.78 2.34E−02 17 88
LYM627 0.84 8.93E−03 17 87 LYM627 0.71 5.05E−02 17 89
LYM627 0.87 5.50E−03 17 86 LYM627 0.79 1.90E−02 17 84
LYM627 0.76 4.69E−02 18 88 LYM627 0.81 2.65E−02 18 87
LYM627 0.81 2.87E−02 18 82 LYM627 0.88 8.52E−03 18 75
LYM627 0.80 3.22E−02 18 92 LYM627 0.77 4.13E−02 18 79
LYM627 0.70 7.78E−02 18 90 LYM627 0.77 4.36E−02 18 91
LYM627 0.87 1.08E−02 18 76 LYM627 0.80 3.13E−02 18 77
LYM627 0.86 1.20E−02 18 89 LYM627 0.91 4.54E−03 18 86
LYM627 0.83 2.17E−02 18 84 LYM627 0.76 4.96E−02 18 85
LYM627 0.91 7.13E−04 20 88 LYM627 0.85 3.71E−03 20 87
LYM627 0.80 9.24E−03 20 82 LYM627 0.83 5.90E−03 20 75
LYM627 0.88 1.73E−03 20 92 LYM627 0.86 3.22E−03 20 79
LYM627 0.85 3.96E−03 20 91 LYM627 0.89 1.44E−03 20 76
LYM627 0.91 7.86E−04 20 77 LYM627 0.92 4.29E−04 20 89
LYM627 0.96 4.29E−05 20 86 LYM627 0.70 3.39E−02 20 93
LYM627 0.95 1.01E−04 20 84 LYM627 0.87 2.52E−03 20 85
LYM627 0.72 1.09E−01 22 87 LYM627 0.73 1.00E−01 22 75
LYM627 0.71 1.11E−01 22 79 LYM627 0.83 3.87E−02 22 80
LYM627 0.77 7.35E−02 22 85 LYM628 0.86 2.68E−02 15 81
LYM628 0.87 2.60E−02 16 74 LYM628 0.85 3.06E−02 18 81
LYM628 0.83 2.05E−02 18 83 LYM630 0.88 3.63E−03 4 74
LYM630 0.71 1.15E−01 8 73 LYM630 0.76 8.05E−02 15 81
LYM630 0.86 6.11E−03 17 81 LYM630 0.83 1.16E−02 17 75
LYM630 0.74 3.75E−02 17 91 LYM630 0.84 8.75E−03 17 83
LYM630 0.77 2.60E−02 17 89 LYM630 0.72 4.53E−02 17 86
LYM630 0.72 6.79E−02 18 91 LYM630 0.73 6.41E−02 18 77
LYM630 0.76 4.54E−02 18 93 LYM631 0.93 7.40E−03 1 73
LYM631 0.74 1.41E−02 7 91 LYM631 0.71 2.24E−02 7 76
LYM631 0.80 5.02E−03 7 77 LYM631 0.72 1.84E−02 7 89
LYM631 0.78 7.21E−03 7 93 LYM631 0.96 2.20E−03 8 73
LYM631 0.70 7.74E−02 15 88 LYM631 0.75 5.27E−02 15 87
LYM631 0.70 7.90E−02 15 82 LYM631 0.83 2.18E−02 15 92
LYM631 0.73 6.49E−02 15 90 LYM631 0.83 2.05E−02 15 91
LYM631 0.79 3.38E−02 15 77 LYM631 0.81 2.80E−02 15 89
LYM631 0.79 3.38E−02 15 93 LYM631 0.76 4.94E−02 15 85
LYM631 0.78 2.24E−02 17 80 LYM631 0.77 2.62E−02 17 93
LYM631 0.80 1.61E−02 17 85 LYM631 0.73 6.00E−02 18 93
LYM632 0.72 7.02E−02 14 88 LYM632 0.94 1.55E−03 14 82
LYM632 0.76 4.58E−02 14 79 LYM632 0.84 1.71E−02 14 86
LYM632 0.82 2.30E−02 14 84 LYM632 0.75 8.45E−02 16 73
LYM632 0.85 3.39E−02 22 90 LYM632 0.76 7.68E−02 22 80
LYM632 0.81 5.32E−02 22 93 LYM633 0.81 2.66E−02 18 87
LYM633 0.88 9.71E−03 18 78 LYM633 0.86 1.30E−02 18 75
LYM633 0.85 1.54E−02 18 92 LYM633 0.90 5.98E−03 18 90
LYM633 0.89 7.48E−03 18 91 LYM633 0.88 8.21E−03 18 76
LYM633 0.81 2.66E−02 18 77 LYM633 0.91 4.19E−03 18 89
LYM633 0.76 4.85E−02 18 86 LYM633 0.86 1.31E−02 18 93
LYM633 0.73 6.07E−02 18 85 LYM633 0.77 1.48E−02 20 82
LYM633 0.70 3.43E−02 20 92 LYM633 0.76 1.83E−02 20 77
LYM633 0.83 3.86E−02 22 93 LYM634 0.74 9.59E−02 8 73
LYM634 0.75 8.50E−02 15 81 LYM634 0.91 1.99E−03 17 81
LYM634 0.78 2.15E−02 17 82 LYM634 0.85 7.46E−03 17 75
LYM634 0.76 2.72E−02 17 92 LYM634 0.76 2.94E−02 17 76
LYM634 0.92 1.37E−03 17 83 LYM634 0.79 2.08E−02 17 77
LYM634 0.81 1.58E−02 17 89 LYM634 0.85 7.81E−03 17 86
LYM634 0.73 3.96E−02 17 84 LYM634 0.76 7.66E−02 18 81
LYM634 0.79 6.08E−02 22 82 LYM634 0.77 7.60E−02 22 92
LYM634 0.84 3.67E−02 22 76 LYM634 0.87 2.27E−02 22 77
LYM634 0.73 1.03E−01 22 89 LYM634 0.81 5.00E−02 22 86
LYM634 0.74 9.41E−02 22 84 LYM635 0.85 7.26E−03 3 90
LYM635 0.73 3.89E−02 3 76 LYM635 0.79 1.88E−02 3 77
LYM635 0.87 2.39E−02 12 73 LYM635 0.81 5.31E−02 14 81
LYM635 0.72 6.84E−02 14 82 LYM635 0.80 2.99E−02 14 83
LYM635 0.78 4.04E−02 14 77 LYM635 0.83 2.13E−02 14 86
LYM635 0.91 1.06E−02 16 73 LYM635 0.73 4.07E−02 17 81
LYM635 0.71 4.67E−02 17 75 LYM635 0.80 1.69E−02 17 83
LYM635 0.74 8.97E−02 18 81 LYM635 0.76 4.81E−02 18 83
LYM635 0.74 2.22E−02 20 82 LYM635 0.73 2.45E−02 20 75
LYM635 0.71 3.28E−02 20 92 LYM635 0.76 1.86E−02 20 76
LYM635 0.72 2.96E−02 20 77 LYM635 0.71 3.08E−02 20 89
LYM635 0.71 3.07E−02 20 86 LYM635 0.78 6.92E−02 22 93
LYM638 0.76 2.80E−02 3 80 LYM638 0.79 2.08E−02 4 74
LYM638 0.91 4.56E−03 14 88 LYM638 0.86 1.37E−02 14 87
LYM638 0.92 3.09E−03 14 82 LYM638 0.79 3.58E−02 14 75
LYM638 0.86 1.36E−02 14 92 LYM638 0.93 2.13E−03 14 79
LYM638 0.75 5.14E−02 14 91 LYM638 0.73 6.29E−02 14 76
LYM638 0.76 4.56E−02 14 77 LYM638 0.85 1.55E−02 14 89
LYM638 0.91 4.53E−03 14 86 LYM638 0.95 1.29E−03 14 84
LYM638 0.88 9.65E−03 14 85 LYM638 0.86 2.68E−02 15 81
LYM638 0.78 3.70E−02 15 82 LYM638 0.73 6.32E−02 15 92
LYM638 0.75 5.43E−02 15 83 LYM638 0.83 1.02E−02 17 81
LYM638 0.91 1.96E−03 17 82 LYM638 0.73 4.05E−02 17 77
LYM638 0.91 1.06E−02 22 93 LYM639 0.70 5.19E−02 4 74
LYM639 0.77 4.15E−02 15 82 LYM639 0.80 3.24E−02 15 78
LYM639 0.86 1.41E−02 15 92 LYM639 0.73 6.50E−02 15 90
LYM639 0.81 2.56E−02 15 91 LYM639 0.81 2.77E−02 15 89
LYM639 0.71 7.41E−02 15 93 LYM639 0.80 1.63E−02 17 81
LYM639 0.71 4.69E−02 17 75 LYM639 0.71 4.80E−02 17 83
LYM639 0.86 1.36E−02 18 82 LYM639 0.81 2.82E−02 18 77
LYM639 0.72 6.65E−02 18 89 LYM639 0.85 1.50E−02 18 86
LYM639 0.76 4.91E−02 18 84 LYM640 0.70 5.19E−02 3 93
LYM640 0.83 9.98E−03 4 74 LYM640 0.71 1.12E−01 8 73
LYM640 0.94 1.73E−03 14 82 LYM640 0.71 7.27E−02 14 86
LYM640 0.73 6.47E−02 14 84 LYM640 0.74 3.77E−02 17 82
LYM640 0.73 3.85E−02 17 75 LYM640 0.80 1.78E−02 17 92
LYM640 0.80 1.76E−02 17 83 LYM640 0.74 3.40E−02 17 89
LYM640 0.71 1.12E−01 18 81 LYM640 0.71 3.28E−02 20 78
LYM640 0.73 9.83E−02 22 91 LYM640 0.78 6.68E−02 22 83
LYM640 0.72 1.05E−01 22 89 LYM640 0.77 7.37E−02 22 85
LYM642 0.76 4.63E−02 14 88 LYM642 0.82 2.38E−02 14 87
LYM642 0.80 3.00E−02 14 92 LYM642 0.72 6.67E−02 14 90
LYM642 0.87 1.14E−02 14 91 LYM642 0.75 5.46E−02 14 76
LYM642 0.78 3.86E−02 14 77 LYM642 0.78 3.72E−02 14 89
LYM642 0.88 9.10E−03 14 93 LYM642 0.83 2.11E−02 14 85
LYM642 0.71 7.23E−02 15 93 LYM642 0.77 2.59E−02 17 81
LYM642 0.73 4.07E−02 17 75 LYM642 0.71 7.30E−02 18 88
LYM642 0.81 2.80E−02 18 87 LYM642 0.78 3.78E−02 18 78
LYM642 0.84 1.87E−02 18 92 LYM642 0.83 2.01E−02 18 90
LYM642 0.90 5.17E−03 18 91 LYM642 0.86 1.41E−02 18 76
LYM642 0.92 3.16E−03 18 77 LYM642 0.89 7.20E−03 18 89
LYM642 0.74 5.86E−02 18 86 LYM642 0.94 1.42E−03 18 93
LYM642 0.76 4.88E−02 18 85 LYM643 0.78 2.35E−02 9 73
LYM643 0.89 1.83E−02 12 73 LYM643 0.77 4.39E−02 18 80
LYM644 0.78 2.34E−02 3 90 LYM644 0.75 1.33E−02 7 80
LYM644 0.77 4.16E−02 14 78 LYM644 0.78 3.70E−02 14 90
LYM644 0.73 6.17E−02 14 76 LYM644 0.70 7.71E−02 14 93
LYM644 0.85 7.19E−03 17 78 LYM644 0.82 4.74E−02 18 81
LYM644 0.80 3.17E−02 18 83 LYM644 0.76 1.76E−02 20 80
LYM644 0.84 3.58E−02 22 90 LYM644 0.92 9.27E−03 22 80
LYM644 0.95 3.66E−03 22 93 LYM644 0.86 5.98E−03 24 73
LYM644 0.94 4.22E−04 24 74 LYM645 0.76 1.16E−02 7 93
LYM645 0.71 7.33E−02 14 87 LYM645 0.79 3.56E−02 14 82
LYM645 0.82 2.52E−02 14 92 LYM645 0.81 2.79E−02 14 91
LYM645 0.79 3.31E−02 14 77 LYM645 0.81 2.60E−02 14 89
LYM645 0.75 5.35E−02 14 93 LYM645 0.71 7.60E−02 14 85
LYM645 0.71 4.85E−02 17 81 LYM645 0.78 3.74E−02 18 93
LYM645 0.91 1.29E−02 22 93 LYM646 0.80 9.62E−03 6 74
LYM646 0.85 3.08E−02 16 74 LYM646 0.91 1.73E−03 17 81
LYM646 0.82 1.34E−02 17 75 LYM646 0.72 4.50E−02 17 91
LYM646 0.90 2.04E−03 17 83 LYM646 0.79 1.91E−02 17 89
LYM646 0.74 3.56E−02 17 86 LYM646 0.79 3.52E−02 18 87
LYM646 0.86 1.38E−02 18 82 LYM646 0.85 1.47E−02 18 78
LYM646 0.80 3.25E−02 18 75 LYM646 0.89 7.46E−03 18 92
LYM646 0.83 1.97E−02 18 90 LYM646 0.91 4.48E−03 18 91
LYM646 0.76 4.66E−02 18 76 LYM646 0.77 4.17E−02 18 77
LYM646 0.91 4.63E−03 18 89 LYM646 0.86 1.31E−02 18 93
LYM646 0.75 5.38E−02 18 85 LYM646 0.76 7.64E−02 22 78
LYM647 0.79 2.04E−02 3 80 LYM647 0.78 4.04E−02 14 88
LYM647 0.79 3.41E−02 14 87 LYM647 0.72 6.94E−02 14 79
LYM647 0.93 2.67E−03 14 76 LYM647 0.85 1.65E−02 14 77
LYM647 0.75 5.05E−02 14 89 LYM647 0.85 1.42E−02 14 86
LYM647 0.75 5.02E−02 14 84 LYM647 0.72 6.74E−02 14 85
LYM647 0.72 6.86E−02 15 80 LYM647 0.78 3.79E−02 18 76
LYM647 0.85 3.24E−02 22 83 LYM648 0.78 6.78E−02 8 73
LYM648 0.89 1.84E−02 16 74 LYM648 0.89 2.89E−03 17 93
LYM648 0.71 4.72E−02 20 81 LYM649 0.86 1.26E−02 14 82
LYM649 0.72 6.56E−02 14 83 LYM650 0.76 4.88E−02 14 78
LYM650 0.73 3.91E−02 17 75 LYM650 0.76 2.97E−02 17 91
LYM650 0.86 2.62E−03 20 78 LYM652 0.87 2.35E−02 14 81
LYM652 0.76 4.59E−02 14 83 LYM652 0.73 9.71E−02 15 81
LYM652 0.73 6.44E−02 18 77 LYM653 0.76 4.87E−02 14 77
LYM653 0.91 1.95E−03 17 81 LYM653 0.81 1.42E−02 17 75
LYM653 0.91 1.69E−03 17 83 LYM653 0.77 2.55E−02 17 89
LYM653 0.72 4.40E−02 17 86 LYM653 0.82 4.66E−02 18 81
LYM653 0.75 5.04E−02 18 83 LYM653 0.75 1.90E−02 20 83
LYM653 0.83 4.09E−02 22 93 LYM654 0.77 8.59E−03 7 78
LYM654 0.82 3.31E−03 7 90 LYM654 0.72 6.79E−02 15 90
LYM654 0.87 5.35E−03 17 81 LYM654 0.81 1.39E−02 17 75
LYM654 0.73 3.79E−02 17 91 LYM654 0.73 4.05E−02 17 76
LYM654 0.81 1.57E−02 17 83 LYM654 0.75 3.30E−02 17 89
LYM654 0.70 7.85E−02 18 90 LYM654 0.72 2.84E−02 20 92
LYM654 0.73 2.42E−02 20 79 LYM654 0.72 2.90E−02 20 76
LYM654 0.71 1.12E−01 22 78 LYM655 0.79 3.31E−02 14 76
LYM655 0.91 4.42E−03 14 77 LYM655 0.74 5.87E−02 14 89
LYM655 0.71 7.35E−02 14 86 LYM655 0.72 1.09E−01 18 81
LYM655 0.86 1.30E−02 18 82 LYM655 0.72 6.60E−02 18 83
LYM655 0.77 4.30E−02 18 77 LYM655 0.74 5.71E−02 18 89
LYM655 0.76 4.56E−02 18 86 LYM655 0.72 4.41E−02 20 81
LYM655 0.80 8.88E−03 20 82 LYM655 0.73 2.54E−02 20 77
LYM655 0.74 2.40E−02 20 86 LYM656 0.94 4.83E−04 3 88
LYM656 0.86 5.64E−03 3 87 LYM656 0.73 3.78E−02 3 92
LYM656 0.92 1.11E−03 3 79 LYM656 0.76 2.97E−02 3 86
LYM656 0.90 2.33E−03 3 84 LYM656 0.92 1.25E−03 3 85
LYM656 0.71 4.89E−02 9 74 LYM656 0.83 4.07E−02 22 93
LYM657 0.79 6.26E−02 8 73 LYM658 0.73 6.43E−02 14 90
LYM658 0.71 7.23E−02 14 76 LYM658 0.79 3.32E−02 14 93
LYM658 0.72 4.37E−02 17 93 LYM658 0.75 5.25E−02 18 78
LYM658 0.83 2.01E−02 18 90 LYM658 0.70 7.79E−02 18 91
LYM658 0.79 3.57E−02 18 93 LYM658 0.77 1.57E−02 20 78
LYM658 0.79 1.17E−02 20 75 LYM658 0.83 6.03E−03 20 92
LYM658 0.73 2.58E−02 20 90 LYM658 0.83 5.94E−03 20 91
LYM658 0.78 1.35E−02 20 89 LYM658 0.76 1.79E−02 20 93
LYM658 0.74 2.26E−02 20 85 LYM659 0.76 2.80E−02 4 74
LYM659 0.77 9.82E−03 7 88 LYM659 0.70 2.37E−02 7 92
LYM659 0.71 2.20E−02 7 89 LYM659 0.74 1.53E−02 7 86
LYM659 0.78 7.40E−03 7 84 LYM659 0.73 1.61E−02 7 85
LYM659 0.73 1.02E−01 16 73 LYM659 0.72 2.78E−02 20 92
LYM659 0.74 2.22E−02 20 91 LYM659 0.89 1.60E−02 22 78
LYM659 0.80 5.60E−02 22 90 LYM659 0.72 1.08E−01 22 80
LYM660 0.86 6.57E−03 17 81 LYM660 0.77 2.64E−02 17 75
LYM660 0.80 1.74E−02 17 83 LYM660 0.72 4.53E−02 17 89
LYM660 0.76 8.15E−02 22 78 LYM661 0.90 2.19E−03 17 81
LYM661 0.81 1.41E−02 17 82 LYM661 0.94 5.79E−04 17 75
LYM661 0.87 4.57E−03 17 92 LYM661 0.86 6.19E−03 17 91
LYM661 0.74 3.66E−02 17 76 LYM661 0.87 4.60E−03 17 83
LYM661 0.73 4.09E−02 17 77 LYM661 0.92 1.00E−03 17 89
LYM661 0.82 1.19E−02 17 86 LYM661 0.79 1.89E−02 17 84
LYM661 0.75 5.42E−02 18 87 LYM661 0.84 1.72E−02 18 82
LYM661 0.82 2.44E−02 18 78 LYM661 0.73 6.12E−02 18 75
LYM661 0.89 7.91E−03 18 92 LYM661 0.79 3.28E−02 18 90
LYM661 0.85 1.51E−02 18 91 LYM661 0.86 1.25E−02 18 89
LYM661 0.75 5.04E−02 18 93 LYM661 0.74 5.88E−02 18 85
LYM662 0.77 7.16E−02 14 81 LYM662 0.72 6.81E−02 14 83
LYM662 0.87 2.26E−02 22 90 LYM662 0.72 1.04E−01 22 91
LYM662 0.79 5.88E−02 22 80 LYM663 0.72 4.38E−02 9 74
LYM663 0.85 1.48E−02 14 88 LYM663 0.95 1.19E−03 14 87
LYM663 0.88 9.88E−03 14 78 LYM663 0.82 2.25E−02 14 75
LYM663 0.90 6.22E−03 14 92 LYM663 0.76 4.74E−02 14 79
LYM663 0.94 1.56E−03 14 90 LYM663 0.96 6.69E−04 14 91
LYM663 0.98 6.53E−05 14 76 LYM663 0.92 3.48E−03 14 77
LYM663 0.95 1.19E−03 14 89 LYM663 0.82 2.49E−02 14 86
LYM663 0.96 7.18E−04 14 93 LYM663 0.79 3.65E−02 14 84
LYM663 0.89 7.10E−03 14 85 LYM663 0.71 4.74E−02 17 81
LYM663 0.78 6.54E−02 22 78 LYM665 0.73 9.65E−02 1 73
LYM665 0.86 2.93E−02 8 73 LYM665 0.84 8.36E−03 17 81
LYM665 0.87 5.09E−03 17 83 LYM665 0.72 7.02E−02 18 82
LYM665 0.75 8.53E−02 22 82 LYM665 0.73 1.00E−01 22 77
LYM667 0.85 7.89E−03 17 81 LYM667 0.84 9.53E−03 17 75
LYM667 0.76 2.88E−02 17 91 LYM667 0.78 2.29E−02 17 83
LYM667 0.73 3.81E−02 17 89 LYM667 0.85 1.64E−02 18 78
LYM667 0.77 4.30E−02 18 92 LYM667 0.86 1.27E−02 18 90
LYM667 0.83 2.19E−02 18 91 LYM667 0.71 7.45E−02 18 76
LYM667 0.77 4.18E−02 18 77 LYM667 0.82 2.51E−02 18 89
LYM667 0.89 7.16E−03 18 93 LYM669 0.75 5.29E−02 18 77
LYM669 0.70 7.92E−02 18 93 LYM669 0.73 4.04E−02 24 74
LYM670 0.73 9.64E−02 1 73 LYM670 0.78 2.28E−02 3 90
LYM670 0.91 1.14E−02 8 73 LYM670 0.84 3.47E−02 12 73
LYM670 0.79 3.45E−02 14 83 LYM670 0.84 5.02E−03 20 82
LYM670 0.71 3.20E−02 20 92 LYM670 0.72 1.04E−01 22 90
LYM671 0.73 9.60E−02 1 73 LYM671 0.80 3.11E−02 14 76
LYM671 0.91 4.47E−03 14 77 LYM671 0.71 7.21E−02 14 86
LYM671 0.73 1.02E−01 16 73 LYM671 0.81 5.14E−02 22 93
LYM672 0.97 1.01E−03 1 74 LYM672 0.75 3.28E−02 4 74
LYM672 0.77 7.63E−02 22 93 LYM673 0.85 3.30E−02 1 74
LYM673 0.92 3.63E−03 14 88 LYM673 0.81 2.63E−02 14 87
LYM673 0.73 6.37E−02 14 82 LYM673 0.72 6.74E−02 14 92
LYM673 0.86 1.25E−02 14 79 LYM673 0.75 5.24E−02 14 76
LYM673 0.83 1.99E−02 14 77 LYM673 0.74 5.93E−02 14 89
LYM673 0.87 1.01E−02 14 86 LYM673 0.89 7.41E−03 14 84
LYM673 0.83 2.03E−02 14 85 LYM673 0.93 2.81E−03 18 88
LYM673 0.90 5.29E−03 18 87 LYM673 0.83 2.21E−02 18 92
LYM673 0.86 1.19E−02 18 79 LYM673 0.76 4.83E−02 18 90
LYM673 0.80 3.08E−02 18 91 LYM673 0.78 3.73E−02 18 80
LYM673 0.79 3.28E−02 18 76 LYM673 0.79 3.49E−02 18 77
LYM673 0.82 2.44E−02 18 89 LYM673 0.76 4.79E−02 18 86
LYM673 0.70 7.81E−02 18 93 LYM673 0.83 2.20E−02 18 84
LYM673 0.91 4.54E−03 18 85 LYM674 0.79 6.79E−03 7 87
LYM674 0.74 1.46E−02 7 90 LYM674 0.72 1.81E−02 7 91
LYM674 0.76 1.14E−02 7 76 LYM674 0.78 7.37E−03 7 77
LYM674 0.76 1.11E−02 7 89 LYM674 0.79 6.82E−03 7 93
LYM674 0.76 4.80E−02 14 83 LYM674 0.73 3.94E−02 17 90
LYM674 0.82 4.37E−02 22 90 LYM674 0.76 8.23E−02 22 80
LYM674 0.80 1.74E−02 24 74 LYM675 0.80 1.63E−02 17 80
LYM677 0.91 1.76E−03 3 78 LYM677 0.70 7.74E−02 14 83
LYM677 0.88 4.22E−03 17 81 LYM677 0.81 1.44E−02 17 82
LYM677 0.94 4.35E−04 17 75 LYM677 0.92 1.03E−03 17 92
LYM677 0.74 3.41E−02 17 79 LYM677 0.88 4.14E−03 17 91
LYM677 0.85 7.64E−03 17 76 LYM677 0.92 1.24E−03 17 83
LYM677 0.82 1.31E−02 17 77 LYM677 0.95 3.32E−04 17 89
LYM677 0.82 1.37E−02 17 86 LYM677 0.83 1.09E−02 17 84
LYM677 0.80 9.48E−03 20 78 LYM677 0.71 1.11E−01 22 78
LYM678 0.91 1.10E−02 1 73 LYM678 0.89 2.81E−03 17 81
LYM678 0.87 4.45E−03 17 75 LYM678 0.78 2.17E−02 17 92
LYM678 0.83 1.04E−02 17 91 LYM678 0.74 3.61E−02 17 76
LYM678 0.87 5.45E−03 17 83 LYM678 0.74 3.45E−02 17 77
LYM678 0.87 5.14E−03 17 89 LYM678 0.83 1.11E−02 17 86
LYM678 0.78 2.20E−02 17 84 LYM678 0.73 6.51E−02 18 93
LYM679 0.80 5.34E−02 1 74 LYM679 0.73 1.02E−01 14 81
LYM679 0.92 2.93E−03 14 88 LYM679 0.92 3.63E−03 14 87
LYM679 0.77 4.42E−02 14 82 LYM679 0.80 3.22E−02 14 75
LYM679 0.85 1.56E−02 14 92 LYM679 0.86 1.26E−02 14 79
LYM679 0.70 7.99E−02 14 90 LYM679 0.84 1.70E−02 14 91
LYM679 0.94 1.33E−03 14 76 LYM679 0.96 6.68E−04 14 77
LYM679 0.90 5.61E−03 14 89 LYM679 0.97 2.29E−04 14 86
LYM679 0.74 5.95E−02 14 93 LYM679 0.93 2.78E−03 14 84
LYM679 0.89 7.00E−03 14 85 LYM679 0.97 5.30E−05 17 75
LYM679 0.88 4.37E−03 17 92 LYM679 0.96 1.78E−04 17 91
LYM679 0.78 2.35E−02 17 83 LYM679 0.88 4.30E−03 17 89
LYM679 0.71 4.92E−02 17 86 LYM679 0.73 4.01E−02 17 84
LYM679 0.78 4.00E−02 18 82 LYM679 0.75 5.04E−02 18 86
LYM679 0.78 3.92E−02 18 84 LYM679 0.71 1.15E−01 22 78
LYM680 0.88 1.98E−02 1 74 LYM680 0.91 1.45E−03 3 88
LYM680 0.79 1.97E−02 3 87 LYM680 0.86 5.77E−03 3 79
LYM680 0.91 1.50E−03 3 80 LYM680 0.76 2.85E−02 3 84
LYM680 0.94 5.03E−04 3 85 LYM680 0.80 9.92E−03 6 74
LYM680 0.89 1.72E−02 8 74 LYM680 0.88 9.19E−03 15 88
LYM680 0.79 3.41E−02 15 87 LYM680 0.77 4.16E−02 15 75
LYM680 0.72 7.07E−02 15 92 LYM680 0.96 4.71E−04 15 79
LYM680 0.86 1.30E−02 15 80 LYM680 0.82 2.35E−02 15 86
LYM680 0.91 4.80E−03 15 84 LYM680 0.84 1.89E−02 15 85
LYM680 0.91 1.09E−02 16 74 LYM680 0.87 1.18E−02 18 88
LYM680 0.96 6.68E−04 18 87 LYM680 0.95 1.09E−03 18 78
LYM680 0.83 2.15E−02 18 75 LYM680 0.97 4.09E−04 18 92
LYM680 0.80 3.08E−02 18 79 LYM680 0.98 1.20E−04 18 90
LYM680 0.98 6.50E−05 18 91 LYM680 0.88 9.77E−03 18 76
LYM680 0.83 2.16E−02 18 77 LYM680 0.96 7.87E−04 18 89
LYM680 0.72 6.64E−02 18 86 LYM680 0.97 2.72E−04 18 93
LYM680 0.78 3.81E−02 18 84 LYM680 0.94 1.58E−03 18 85
LYM682 0.88 2.21E−02 1 74 LYM682 0.83 4.15E−02 8 74
LYM682 0.70 7.70E−02 14 75 LYM682 0.73 6.13E−02 15 75
LYM682 0.76 2.72E−02 17 81 LYM682 0.81 4.93E−02 22 90
LYM682 0.89 1.63E−02 22 80 LYM744 0.72 4.57E−02 3 78
LYM744 0.70 2.40E−02 7 78 LYM744 0.89 1.64E−02 14 81
LYM744 0.82 2.39E−02 14 75 LYM744 0.89 1.72E−02 18 81
LYM744 0.70 7.93E−02 18 78 LYM744 0.80 3.02E−02 18 75
LYM744 0.70 1.21E−01 22 78 LYM744 0.81 5.01E−02 22 79
LYM744 0.75 8.85E−02 22 80 LYM744 0.76 7.77E−02 22 85
LYM745 0.76 7.74E−02 12 73 LYM745 0.80 3.15E−02 14 83
LYM745 0.93 8.10E−03 16 73 LYM745 0.72 2.83E−02 20 78
LYM750 0.75 3.22E−02 3 90 LYM750 0.71 4.80E−02 17 82
LYM750 0.72 4.33E−02 17 83
LYM531_H6 0.84 0.04 22 82 LYM531_H6 0.76 0.08 22 77
LYM531_H6 0.78 0.04 24 78 LYM531_H6 0.85 0.03 22 76
LYM531_H6 0.77 0.02 24 73
Table 29. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression (Exp) sets, Table 25] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Corr.)), Corr. ID Table 26] under normal conditions across maize varieties. P = p value.
Example 8 Production of Barley Transcriptom and High Throughput Correlation Analysis Using 60K Barley Oligonucleotide Micro-Array
In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 60K Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 15 different Barley accessions were analyzed. Among them, 10 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Analyzed Barley Tissues—
Five tissues [leaf, spike, meristem, root tip and adventitious root] tissues at different developmental stages (vegetative stage, reproductive stage), and treatments (drought, low nitrogen (N) and normal conditions), representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 30 below.
TABLE 30
Barley transcriptom expression sets
Expression Set Set ID
leaf drought vegetative 1
booting spike drought reproductive 2
leaf drought reproductive 3
meristem drought vegetative 4
root tip drought vegetative 5
root tip recovery - drought vegetative 6
leaf low N vegetative 7
root tip low N vegetative 8
Adv. root T3 low N vegetative 9
Adv. root T3 normal vegetative 10
leaf T3 normal vegetative 11
root tip T3 normal vegetative 12
Table 30. “Adv. Root” = adventitious root.
“Root tip recovery” - drought vegetative = the root tip were exposed to drought conditions and then allowed to recover using normal supply of water;
Barley Yield Components and Vigor Related Parameters Assessment—
15 Barley accessions in 5 repetitive blocks, each containing 5 plants per pot were grown at net house. Three different treatments were applied: plants were regularly fertilized and watered during plant growth until harvesting (as recommended for commercial growth) or under low Nitrogen (80% percent less Nitrogen) or drought stress. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 31, below). Harvest was conducted while all the spikes were dry. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Grains Number—
The total number of grains from all spikes that were manually threshed was counted. No. of grains per plot were counted.
Grain Weight (gr.)—
At the end of the experiment all spikes of the pots were collected. The total grains from all spikes that were manually threshed were weight. The grain yield was calculated by per plot.
Spike Length and Width Analysis—
At the end of the experiment the length and width of five chosen spikes per plant were measured using measuring tape excluding the awns.
Spike Number Analysis—
The spikes per plant were counted.
Plant Height—
Each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns at two time points at the Vegetative growth (30 days after sowing) and at harvest.
Spike Weight—
The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.
Dry Weight=
total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours at two time points at the Vegetative growth (30 days after sowing) and at harvest.
Root Dry Weight=
total weight of the root portion underground after drying at 70° C. in oven for 48 hours at harvest.
Root/Shoot Ratio—
The Root/Shoot Ratio is calculated using Formula X.
Root/Shoot Ratio=total weight of the root at harvest/total weight of the vegetative portion above ground at harvest.  Formula X:
Total No of Tillers—
all tillers were counted per plot at two time points at the Vegetative growth (30 days after sowing) and at harvest.
SPAD—
Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
Root FW (gr.), Root Length (cm) and No. of Lateral Roots—
3 plants per plot were selected for measurement of root weight, root length and for counting the number of lateral roots formed.
Shoot FW—
weight of 3 plants per plot were recorded at different time-points.
Relative Water Content—
Fresh weight (FW) of three leaves from three plants each from different seed ID is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to Formula I above.
Harvest Index (for Barley)—
The harvest index is calculated using Formula XI.
Harvest Index=Average grain weight per plant/(Average vegetative dry weight per plant+Average grain weight per plant).  Formula XI:
Relative Growth Rate:
the relative growth rate (RGR) of Plant Height, Spad and number of tillers are calculated as follows:
The relative growth rate of plant height was calculated according to Formula XII.
Relative growth rate of Plant height=Regression coefficient of Plant height along time course.  Formula XII:
Relative growth rate of SPAD=Regression coefficient of SPAD measurements along time course.  Formula XIII:
Relative growth rate of Number of tillers=Regression coefficient of Number of tillers along time course.  Formula XIV:
TABLE 31
Barley correlated parameters (vectors)
Correlated parameter with Correlation ID
SPAD-Low N-TP2 1
Root FW (g)-Low N-TP2 2
shoot FW (gr)-Low N-TP2 3
No of tillers-Low N-TP2 4
Seed Yield (gr)-Low N 5
Spike Width (cm)-Low N 6
Root length (cm)-Low N-TP2 7
Plant Height (cm)-Low N 8
Spike Length (cm)-Low N 9
Plant Height (cm)-Low N-TP2 10
Leaf Number-TP4-Low N 11
No of lateral roots-Low N-TP2 12
Max Width (mm)-TP4-Low N 13
Max Length (mm)-TP4-Low N 14
Seed Number (per plot)-Low N 15
Total No of Spikes per plot-Low N 16
Total Leaf Area (mm2)-TP4-Low N 17
Total No of tillers per plot-Low N 18
Spike total weight (per plot)-Low N 19
Seed Yield (gr)-Normal 20
Harvest index Drought/recovery 21
Dry weight vegetative growth Drought/recovery 22
Relative water content Drought/recovery 23
Heading date Drought/recovery 24
Root DW per plant at harvest [gr.]/Shoot DW 25
per plant at harvest [gr.] Drought/recovery
Height Relative growth rate Drought/recovery 26
Spad Relative growth rate Drought/recovery 27
Number of tillers Relative growth rate Drought/recovery 28
Grain number Drought/recovery 29
Grain weight Drought/recovery 30
Plant height Drought/recovery 31
Spike number Drought/recovery 32
Spike length Drought/recovery 33
Spike width Drought/recovery 34
Spike weight per plant Drought/recovery 35
Tillers number Drought/recovery 36
Dry weight harvest Drought/recovery 37
Root dry weight Drought/recovery 38
Root length Drought/recovery 39
lateral root number Drought/recovery 40
Root fresh weight Drought/recovery 41
Chlorophyll levels Drought/recovery 42
Fresh weight Drought/recovery 43
Seed Yield Normal 44
Num Seeds Normal 45
Plant Height Normal 46
Num Spikes Normal 47
Spike Length Normal 48
Spike Width Normal 49
Spike weight Normal 50
Total Tillers Normal 51
Root Length Normal 52
Lateral Roots Normal 53
Root FW Normal 54
Num Tillers Normal 55
SPAD Normal 56
Shoot FW Normal 57
Num Leaves Normal 58
Leaf Area Normal 59
Table 31. Provided are the barley correlated parameters,
TP means time point,
DW—dry weight,
FW—fresh weight and
Low N—Low Nitrogen.
Experimental Results
15 different Barley accessions were grown and characterized for different parameters as described above. The average for each of the measured parameters was calculated using the JMP software and values are summarized in Tables 32-33 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters was conducted (Table 34). Follow, results were integrated to the database.
TABLE 32
Measured parameters of correlation IDs in Barley accessions
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 Line-8
1 24.03 23.30 26.47 23.90 26.63 23.20 25.43 24.23
2 0.38 0.23 0.12 0.40 0.88 0.50 0.43 0.32
3 0.43 0.43 0.33 0.58 0.78 0.53 0.45 0.43
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 9.76 7.31 3.30 5.06 6.02 9.74 7.35 5.80
6 7.95 8.13 9.43 4.94 9.60 7.16 7.06 8.51
7 24.67 21.67 22.00 21.67 22.17 23.00 30.50 22.83
8 41.00 82.00 61.40 59.40 65.80 47.80 53.80 56.40
9 15.19 19.61 16.30 19.32 90.22 16.44 20.44 18.84
10 16.33 18.83 17.33 26.00 22.50 18.17 19.67 19.83
11 8.00 8.00 7.50 8.50 10.00 11.50 8.60 6.33
12 5.00 6.00 4.33 6.00 6.33 6.00 6.67 4.67
13 5.25 5.17 5.12 5.30 5.20 5.33 5.32 5.10
14 102.90 107.78 111.57 142.42 152.38 149.33 124.08 95.00
15 230.20 164.60 88.25 133.60 106.00 222.60 219.20 143.45
16 12.20 9.00 11.60 25.00 7.80 14.50 15.00 7.00
17 39.40 46.27 51.51 57.07 67.78 64.15 52.42 46.15
18 16.20 14.60 16.00 20.75 12.50 18.80 21.20 11.00
19 13.74 13.44 9.15 11.64 11.34 15.06 12.18 10.95
20 46.37 19.81 10.84 22.58 30.30 54.13 36.98 42.04
21 0.53 0.66 0.29 0.81 0.69 0.69 0.60 0.87
22 0.21 0.13 0.17 0.25
23 55.87 53.40 58.32 69.78 45.49 87.41
24 65.00 71.00 90.00 90.00 90.00 90.00
25 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02
26 0.73 0.86 0.39 0.80 0.94 0.70 0.77 0.92
27 0.00 −0.12 0.00 0.04 −0.07 0.01 −0.06 0.05
28 0.06 0.10 0.18 0.06 0.06 0.10 0.10 0.06
29 111.00 267.50 71.50 358.00 252.50 288.40 348.50 521.39
30 3.55 9.80 2.05 14.03 7.75 9.92 8.50 17.52
31 35.00 52.80 47.40 49.86 48.00 37.67 40.80 43.00
32 7.60 4.36 3.05 9.67 3.43 6.90 8.55 5.42
33 13.27 16.85 14.23 18.31 15.64 15.66 16.00 17.42
34 7.82 9.07 7.84 6.73 7.62 6.98 6.06 9.55
35 18.20 24.24 11.73 33.03 15.00 23.40 21.96 34.80
36 10.92 9.04 8.45 11.00 8.78 13.00 13.92 6.78
37 3.20 5.05 5.12 3.31 3.55 4.52 5.67 2.65
38 27.13 60.19 116.95 22.13 70.72 37.34 66.18 41.12
39 22.00 20.33 17.00 19.67 18.33 21.00 21.67 16.67
40 7.33 8.67 6.33 8.67 6.67 7.67 6.00 7.67
41 1.12 1.48 0.58 1.38 1.68 1.62 1.45 0.82
36 10.92 9.04 8.45 11.00 8.78 13.00 13.92 6.78
42 36.57 33.57 42.37 31.77 39.73 38.33 42.13 33.47
31 35.00 52.80 47.40 49.86 48.00 37.67 40.80 43.00
43 1.17 1.52 0.90 1.73 1.22 1.75 1.88 1.00
44 46.40 19.80 10.80 22.60 30.30 54.10 37.00 42.00
45 1090.00 510.00 242.00 582.00 621.00 1070.00 903.00 950.00
46 64.70 84.00 67.40 82.00 72.00 56.60 65.80 62.80
47 41.50 32.00 36.00 71.40 34.20 45.60 49.80 28.00
48 16.50 19.20 18.30 20.40 17.20 19.10 20.30 21.70
49 9.54 9.05 8.25 6.55 10.50 8.83 7.38 10.40
50 69.40 39.40 34.90 50.30 60.80 79.10 62.70 60.00
51 46.70 41.60 40.00 48.80 34.60 48.60 49.20 29.00
52 21.30 15.00 21.80 20.30 27.20 16.00 24.00 13.50
53 7.00 8.67 8.33 9.67 10.70 9.67 9.67 8.67
54 0.27 0.27 0.25 0.35 0.62 0.27 0.35 0.32
55 2.00 2.00 1.00 2.33 2.33 3.33 2.33 1.33
56 39.10 41.40 35.20 33.70 34.20 42.80 37.00 36.90
57 2.17 1.90 1.25 3.00 15.60 3.02 2.58 1.75
46 64.70 84.00 67.40 82.00 72.00 56.60 65.80 62.80
58 24.20 18.20 22.70 25.50 23.20 28.30 22.20 19.00
59 294.00 199.00 273.00 276.00 313.00 309.00 259.00 291.00
Table 32.
TABLE 33
Measured parameters of correlation IDs in Barley accessions
Corr. Ecotype
ID Line-9 Line-10 Line-11 Line-14 Line-18 Line-23 Line-25
1 25.03 26.07
2 0.30 0.55
3 0.50 0.62
4 0.00 0.00
5 7.83 6.29
6 10.01 9.40
7 23.83 24.50
8 81.80 44.60
9 18.77 16.65
10 19.17 19.17
11 7.50 10.00
12 5.67 7.33
13 5.15 5.10
14 124.12 135.17
15 201.80 125.00
16 5.40 8.40
17 68.02 57.91
18 6.75 14.00
19 12.18 10.62
20 35.37 38.25
21 0.78 0.53 0.47 0.69 0.75 0.44 0.41
22 0.22 0.21 0.19
23 73.09 43.21 80.60 76.51 80.58
24 90.00 66.75 75.00 81.60
25 0.01 0.03 0.01 0.01 0.01 0.01 0.03
26 −0.13 0.40 0.27 0.88 0.71 0.88 0.20
27 0.03 0.04 0.09 0.01 0.00 −0.07 −0.06
28 0.02 0.16 0.07 0.07 0.05 0.15 0.44
29 376.67 153.60 170.00 205.33 274.50 160.13 105.00
30 11.00 5.28 5.55 7.20 10.25 5.38 2.56
31 52.60 45.20 46.00 38.00 41.20 64.80 32.00
32 3.72 4.92 4.20 8.44 5.80 4.07 3.21
33 16.54 14.19 16.70 13.55 17.49 14.81 12.72
34 8.35 8.74 8.64 7.32 8.05 7.81 5.47
35 21.00 19.50 17.72 18.00 28.16 18.78 9.88
36 5.12 10.32 11.68 10.16 7.44 9.15 16.13
37 3.11 4.76 6.15 3.28 3.38 6.86 3.74
38 37.46 117.42 77.52 18.62 25.56 84.10 98.86
39 27.00 20.67 21.67 24.00 20.33 15.17 15.00
40 7.00 6.67 8.33 7.67 6.67 7.00 6.67
41 1.07 1.67 2.07 1.87 0.85 0.63 0.70
36 5.12 10.32 11.68 10.16 7.44 9.15 16.13
42 36.77 45.07 41.33 40.50 36.17 42.27 40.63
31 52.60 45.20 46.00 38.00 41.20 64.80 32.00
43 1.43 1.90 1.90 1.95 1.58 0.90 0.83
44 35.40 38.30
45 984.00 768.00
46 91.60 66.20
47 19.30 38.00
48 16.50 16.10
49 10.20 10.30
50 55.90 59.70
51 27.50 38.80
52 21.50 15.20
53 10.00 9.67
54 0.23 0.27
55 1.33 1.67
56 35.00 36.80
57 2.18 1.82
46 91.60 66.20
58 17.30 22.00
59 299.00 296.00
Table 33.
TABLE 34
Correlation between the expression level of selected genes of some embodiments
of the invention in various tissues and the phenotypic performance under low
nitrogen, normal or drought stress conditions across Barley accessions
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM521 0.73 1.00E−01 2 39 LYM521 0.77 2.67E−02 1 32
LYM521 0.84 1.67E−02 3 34 LYM521 0.85 1.43E−02 3 25
LYM521 0.75 3.29E−02 12 48 LYM521 0.83 3.08E−03 8 9
LYM521 0.95 3.08E−05 8 2 LYM521 0.86 1.25E−03 8 3
LYM522 0.87 5.05E−03 1 34 LYM522 0.80 5.55E−02 5 24
LYM522 0.72 2.77E−02 4 36 LYM522 0.74 3.68E−02 11 49
LYM522 0.78 2.10E−02 11 59 LYM523 0.74 9.16E−02 2 39
LYM523 0.85 3.00E−02 2 42 LYM523 0.74 3.49E−02 1 34
LYM523 0.82 1.31E−02 1 37 LYM523 0.70 5.26E−02 1 38
LYM523 0.75 1.97E−02 6 21 LYM523 0.87 2.32E−03 6 29
LYM523 0.85 3.61E−03 6 30 LYM523 0.87 2.14E−03 6 35
LYM523 0.86 2.77E−02 5 23 LYM523 0.72 4.30E−02 5 25
LYM523 0.73 4.00E−02 5 42 LYM523 0.97 1.73E−03 5 24
LYM523 0.91 6.09E−04 4 38 LYM523 0.75 3.04E−02 12 53
LYM523 0.72 4.43E−02 12 54 LYM523 0.76 2.72E−02 11 47
LYM523 0.70 2.36E−02 8 13 LYM523 0.78 8.06E−03 8 16
LYM523 0.71 2.18E−02 8 14 LYM523 0.81 8.73E−03 7 7
LYM524 0.82 4.41E−02 2 40 LYM524 0.70 1.21E−01 2 30
LYM524 0.84 3.82E−02 2 31 LYM524 0.71 1.15E−01 2 35
LYM524 0.75 5.44E−02 3 40 LYM524 0.81 2.81E−02 3 31
LYM524 0.73 4.13E−02 5 28 LYM524 0.80 1.72E−02 5 31
LYM524 0.81 7.90E−03 9 2 LYM524 0.81 8.75E−03 9 17
LYM524 0.95 9.16E−05 9 3 LYM524 0.85 3.67E−03 9 14
LYM524 0.72 4.29E−02 11 53 LYM524 0.83 5.48E−03 10 57
LYM524 0.77 1.53E−02 10 54 LYM524 0.92 4.38E−04 7 9
LYM524 0.90 1.03E−03 7 2 LYM524 0.84 5.09E−03 7 3
LYM524 0.77 1.59E−02 7 14 LYM524 0.78 1.40E−02 7 10
LYM525 0.71 1.12E−01 2 40 LYM525 0.75 8.86E−02 2 33
LYM525 0.84 3.63E−02 2 31 LYM525 0.85 3.03E−02 2 35
LYM525 0.71 7.51E−02 3 39 LYM525 0.80 3.02E−02 3 34
LYM525 0.79 3.48E−02 3 29 LYM525 0.77 4.16E−02 3 30
LYM525 0.84 1.67E−02 3 25 LYM525 0.72 4.40E−02 5 29
LYM525 0.74 3.52E−02 5 25 LYM525 0.80 1.59E−02 5 38
LYM525 0.77 1.54E−02 4 36 LYM525 0.74 5.96E−02 4 24
LYM525 0.71 3.12E−02 9 12 LYM525 0.72 3.01E−02 9 7
LYM525 0.73 2.66E−02 10 56 LYM525 0.71 3.17E−02 10 44
LYM525 0.70 3.39E−02 7 20 LYM525 0.89 1.21E−03 7 9
LYM525 0.83 5.52E−03 7 7 LYM525 0.79 1.21E−02 7 15
LYM526 0.79 6.03E−02 2 34 LYM526 0.83 1.14E−02 1 28
LYM526 0.83 1.04E−02 1 37 LYM526 0.72 6.98E−02 6 23
LYM526 0.76 1.76E−02 6 42 LYM526 0.76 4.88E−02 6 24
LYM526 0.82 4.36E−02 5 24 LYM527 0.75 8.59E−02 2 36
LYM527 0.95 4.00E−03 2 25 LYM527 0.92 9.55E−03 2 37
LYM527 0.98 6.62E−04 2 38 LYM527 0.70 5.25E−02 1 28
LYM527 0.71 4.92E−02 1 31 LYM527 0.76 4.97E−02 3 34
LYM527 0.73 6.19E−02 3 29 LYM527 0.90 5.47E−03 3 25
LYM527 0.83 1.13E−02 5 28 LYM527 0.85 7.35E−03 5 31
LYM527 0.78 2.23E−02 5 37 LYM527 0.70 3.45E−02 4 28
LYM527 0.71 4.62E−02 11 48 LYM528 0.76 8.20E−02 2 21
LYM528 0.76 2.90E−02 1 21 LYM528 0.83 1.07E−02 1 25
LYM528 0.77 2.54E−02 11 48 LYM528 0.77 1.61E−02 10 45
LYM528 0.70 3.41E−02 10 50 LYM528 0.73 2.71E−02 10 44
LYM529 0.71 1.17E−01 2 32 LYM529 0.72 1.09E−01 2 29
LYM529 0.83 4.14E−02 2 31 LYM529 0.77 2.62E−02 1 40
LYM529 0.73 2.53E−02 4 32 LYM529 0.81 4.70E−03 8 14
LYM530 0.95 3.93E−03 2 25 LYM530 0.91 1.06E−02 2 37
LYM530 0.97 1.38E−03 2 38 LYM530 0.81 1.56E−02 1 28
LYM530 0.83 2.00E−02 3 31 LYM530 0.91 4.43E−03 3 38
LYM530 0.78 1.35E−02 4 43 LYM530 0.73 2.60E−02 9 11
LYM530 0.81 1.38E−02 11 56 LYM530 0.75 3.20E−02 11 55
LYM530 0.87 2.40E−03 7 16 LYM530 0.80 9.15E−03 7 10
LYM531 0.85 3.15E−02 2 33 LYM531 0.80 5.39E−02 2 30
LYM531 0.90 1.38E−02 2 31 LYM531 0.94 5.92E−03 2 35
LYM531 0.79 2.05E−02 1 35 LYM531 0.77 1.63E−02 6 36
LYM531 0.75 2.02E−02 6 39 LYM531 0.73 6.35E−02 3 30
LYM531 0.75 5.34E−02 3 31 LYM531 0.75 5.46E−02 3 35
LYM531 0.80 9.83E−03 9 13 LYM531 0.74 2.36E−02 10 45
LYM531 0.71 3.31E−02 10 44 LYM531 1.00 2.92E−09 7 9
LYM531 0.83 6.10E−03 7 2 LYM531 0.77 1.49E−02 7 3
LYM532 0.71 1.15E−01 2 39 LYM532 0.75 3.16E−02 1 34
LYM532 0.74 3.75E−02 1 31 LYM532 0.74 3.62E−02 1 37
LYM532 0.77 2.56E−02 1 38 LYM532 0.81 2.72E−02 6 23
LYM532 0.76 1.84E−02 6 29 LYM532 0.73 2.47E−02 6 30
LYM532 0.78 1.33E−02 6 35 LYM532 0.74 5.60E−02 3 32
LYM532 0.76 4.79E−02 3 39 LYM532 0.79 2.06E−02 5 26
LYM532 0.79 1.95E−02 12 58 LYM532 0.71 5.08E−02 12 50
LYM532 0.75 3.04E−02 12 55 LYM532 0.73 2.53E−02 9 17
LYM532 0.73 4.05E−02 11 52 LYM532 0.78 8.14E−03 8 2
LYM532 0.83 2.92E−03 8 12 LYM532 0.79 6.72E−03 8 3
LYM532 0.76 1.84E−02 7 2 LYM532 0.72 2.92E−02 7 6
LYM532 0.72 2.74E−02 7 1 LYM533 0.88 2.02E−02 2 31
LYM533 0.75 8.28E−02 2 35 LYM533 0.73 4.08E−02 5 27
LYM533 0.72 6.55E−02 4 23 LYM533 0.74 3.67E−02 11 49
LYM534 0.71 1.14E−01 2 28 LYM534 0.77 7.55E−02 2 36
LYM534 0.92 9.05E−03 2 25 LYM534 0.93 7.72E−03 2 37
LYM534 0.97 1.30E−03 2 38 LYM534 0.72 1.03E−01 2 42
LYM534 0.71 4.77E−02 1 39 LYM534 0.80 1.71E−02 1 37
LYM534 0.79 1.15E−02 6 34 LYM534 0.81 8.20E−03 6 31
LYM534 0.75 5.14E−02 3 37 LYM534 0.89 7.32E−03 3 38
LYM534 0.76 4.88E−02 4 23 LYM534 0.70 5.17E−02 11 45
LYM534 0.74 3.67E−02 11 50 LYM534 0.80 1.72E−02 11 44
LYM679 0.78 7.01E−02 2 28 LYM679 0.82 4.58E−02 2 36
LYM679 0.77 4.40E−02 3 34 LYM679 0.81 2.71E−02 3 29
LYM679 0.79 3.53E−02 3 30 LYM679 0.84 1.88E−02 3 25
LYM742 0.74 9.25E−02 2 31 LYM742 0.72 1.05E−01 2 35
LYM742 0.95 2.73E−04 1 32 LYM742 0.85 1.64E−02 3 40
LYM742 0.74 5.85E−02 3 27 LYM742 0.75 1.99E−02 4 32
LYM742 0.70 3.54E−02 10 46 LYM742 0.80 8.87E−03 7 8
Table 34. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Corr)) according to Table 31] under normal, low nitrogen and drought conditions across barley varieties. P = p value.
Example 9 Production of Brachypodium Transcriptom and High Throughput Correlation Analysis Using 60K Brachypodium Oligonucleotide Micro-Array
In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a brachypodium oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 60K brachypodium genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 24 different brachypodium accessions were analyzed. Among them, 22 accessions encompassing the observed variance were selected for RNA expression analysis and comparative genomic hybridization (CGH) analysis.
The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Additional correlation analysis was done by comparing plant phenotype and gene copy number. The correlation between the normalized copy number hybridization signal and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Analyzed Brachypodium Tissues—
two tissues [leaf and spike] were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 35 below.
TABLE 35
Brachypodium
transcriptom expression sets
Expression Set Set ID
Leaf/normal 1
spike/normal 2
Table 35.
Brachypodium Yield Components and Vigor Related Parameters Assessment—
24 brachypodium accessions were grown in 4-6 repetitive plots (8 plant per plot), in a green house. The growing protocol was as follows: brachypodium seeds were sown in plots and grown under normal condition. Plants were continuously phenotyped during the growth period and at harvest (Table 37-38, below). The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
At the end of the growing period the grains were separated from the spikes and the following parameters were measured using digital imaging system and collected:
No. Of Tillering—
all tillers were counted per plant at harvest (mean per plot).
Head Number—
At the end of the experiment, heads were harvested from each plot and were counted.
Total Grains Weight Per Plot (gr.)—
At the end of the experiment (plant ‘Heads’) heads from plots were collected, the heads were threshed and grains were weighted. In addition, the average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot).
Highest Number of Spikelets—
The highest spikelet number per head was calculated per plant (mean per plot).
Mean Number of Spikelets—
The mean spikelet number per head was calculated per plot.
Plant Height—
Each of the plants was measured for its height using measuring tape. Height was measured from ground level to spike base of the longest spike at harvest.
Spikelets Weight (gr.)—
The biomass and spikes weight of each plot was separated, measured per plot.
Average Head Weight—
calculated by dividing spikelets weight with head number (gr.).
Harvest Index—
The harvest index was calculated using Formula XIV (described above).
Spikelets Index—
The Spikelets index is calculated using Formula XVII.
Spikelets Index=Average Spikelets weight per plant/(Average vegetative dry weight per plant plus Average Spikelets weight per plant).  Formula XVII:
Percent Number of Heads with Spikelets—
The number of heads with more than one spikelet per plant were counted and the percent from all heads per plant was calculated.
Total Dry Mater Per Plot—
Calculated as Vegetative portion above ground plus all the spikelet dry weight per plot.
1000 Grain Weight—
At the end of the experiment all grains from all plots were collected and weighted and the weight of 1000 were calculated.
The following parameters were collected using digital imaging system:
At the end of the growing period the grains were separated from the spikes and the following parameters were measured and collected:
(i) Average Grain Area (cm2)—
A sample of ˜200 grains was weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
(ii) Average Grain Length, Perimeter and Width (cm)—
A sample of ˜200 grains was weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths and width (longest axis) was measured from those images and was divided by the number of grains.
The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
TABLE 36
Brachypodium correlated parameters (vectors)
Correlated parameter with Correlation ID
Percent Num of heads with spikelets 1
1000 grain weight (gr) 2
Average head weight (gr) 3
Grain area (cm2) 4
Grain length (cm) 5
Grain Perimeter (cm) 6
Grain width (cm) 7
Grains weight per plant (gr) 8
Grains weight per plot (gr) 9
Harvest index 10
Heads per plant 11
Heads per plot 12
Highest num of spikelets per plot 13
Mean num of spikelets per plot 14
Num of heads with spikelets per plant 15
Plant height (cm) 16
Plant Vegetative DW (gr) 17
Spikelets DW per plant (gr) 19
Spikelets weight (gr) 20
Spikes index 21
Num of tillers 22
Total dry mater per plant (gr) 23
Total dry mater per plot (gr) 24
Vegetative DW (gr) 25
Table 36. Provided are the foxtail millet correlated parameters.
“Num” = number.
Experimental Results
24 different Brachypodium accessions were grown and characterized for different parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 37-38 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters (Table 39) was conducted. Follow, results were integrated to the database.
TABLE 37
Measured parameters of correlation IDs in Brachypodium accessions under normal conditions
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7 Line-8 Line-9 Line-10 Line-11
1 27.61 35.33 21.67 14.00 5.42 15.42 6.40 4.51 55.41 16.51 15.52
2 3.75 3.78 3.35 4.88 5.54 4.98 4.83 5.54 3.84 4.76 4.73
3 0.06 0.04 0.05 0.07 0.04 0.06 0.05 0.04 0.08 0.06 0.05
4 0.10 0.10 0.09 0.09 0.11 0.11 0.10 0.11 0.10 0.11 0.10
5 0.73 0.72 0.72 0.74 0.83 0.82 0.78 0.90 0.75 0.79 0.75
6 1.67 1.62 1.62 1.69 1.82 1.83 1.74 1.93 1.68 1.82 1.69
7 0.18 0.17 0.17 0.16 0.16 0.17 0.17 0.16 0.17 0.18 0.17
8 0.14 0.06 0.08 0.26 0.14 0.14 0.14 0.11 0.08 0.07 0.39
9 1.05 0.44 0.61 1.96 1.11 1.07 1.09 0.84 0.50 0.39 3.07
10 0.13 0.14 0.15 0.20 0.20 0.16 0.14 0.26 0.07 0.11 0.22
11 16.29 7.08 6.59 11.63 10.48 9.09 14.13 5.88 11.89 8.02 23.75
12 121.75 56.60 52.75 83.40 82.40 70.13 110.33 47.00 81.50 48.60 185.50
13 3.00 2.60 3.00 2.20 2.00 2.25 1.83 2.00 3.50 2.00 2.50
14 2.10 2.10 1.72 1.69 1.38 1.65 1.43 1.25 2.41 1.56 1.76
15 5.27 2.50 2.06 2.08 0.71 1.94 1.08 0.35 7.59 1.87 4.98
16 31.65 23.44 22.75 31.95 34.36 28.65 28.88 24.74 31.40 29.15 37.30
17 0.42 0.12 0.13 0.38 0.32 0.32 0.39 0.13 0.44 0.31 0.87
18 7.50 8.00 8.00 7.20 7.80 7.75 7.83 8.00 6.50 6.40 7.75
19 0.96 0.31 0.33 0.88 0.44 0.56 0.67 0.26 0.92 0.45 1.14
20 7.18 2.50 2.68 6.42 3.45 4.29 5.29 2.04 6.25 2.66 8.89
21 0.71 0.72 0.73 0.71 0.58 0.66 0.64 0.66 0.69 0.60 0.59
22 16.84 7.20 7.00 11.97 10.67 9.38 14.58 6.35 12.38 8.60 25.50
23 1.38 0.43 0.47 1.25 0.76 0.88 1.06 0.38 1.36 0.76 2.01
24 10.26 3.45 3.74 9.12 6.00 6.78 8.34 3.04 9.21 4.47 15.79
25 3.08 0.95 1.06 2.69 2.55 2.48 3.05 1.00 2.96 1.81 6.89
Table 37. Correlation IDs: 1, 2, 3, 4, 5, . . . etc. refer to those described in Table 36 above [Brachypodium correlated parameters (vectors)].
TABLE 38
Measured parameters of correlation IDs in brachypodium accessions under normal conditions
Corr. Ecotype
ID Line-12 Line-13 Line-14 Line-15 Line-16 Line-17 Line-18 Line-19 Line-20 Line-21 Line-22
1 20.34 8.11 53.21 47.81 42.81 34.92 52.40 20.84 17.55 47.73 59.01
2 5.24 4.96 4.00 4.26 5.99 4.34 3.70 3.90 4.82 4.87 3.76
3 0.05 0.06 0.10 0.08 0.08 0.06 0.09 0.04 0.06 0.09 0.09
4 0.12 0.10 0.10 0.09 0.12 0.09 0.09 0.09 0.10 0.11 0.09
5 0.86 0.74 0.84 0.80 0.84 0.74 0.75 0.72 0.79 0.87 0.76
6 1.91 1.71 1.81 1.75 1.87 1.66 1.65 1.60 1.80 1.90 1.68
7 0.19 0.17 0.15 0.14 0.18 0.16 0.15 0.15 0.17 0.16 0.15
8 0.14 0.13 0.37 0.49 0.31 0.20 0.35 0.27 0.32 0.44 0.30
9 1.09 1.07 2.99 3.52 2.41 1.47 2.58 2.03 2.58 3.40 1.92
10 0.09 0.18 0.09 0.16 0.18 0.11 0.21 0.17 0.15 0.18 0.09
11 16.06 9.74 22.19 24.32 13.25 19.22 16.11 21.40 25.88 17.05 25.54
12 125.00 80.75 177.50 172.80 98.60 143.17 123.50 156.83 207.00 135.00 177.00
13 2.40 2.00 3.50 3.80 2.80 2.83 2.83 2.33 2.60 4.50 3.17
14 1.83 1.42 2.71 2.61 2.12 2.15 2.17 1.85 1.93 2.85 2.79
15 3.70 0.89 12.58 12.13 6.35 7.15 9.44 5.02 4.90 7.72 15.36
16 45.09 22.39 55.04 45.34 40.20 39.18 45.35 29.41 38.39 46.74 58.82
17 0.69 0.34 1.72 1.32 0.48 0.63 0.82 0.67 0.87 1.05 1.73
18 8.00 8.25 8.00 7.00 7.60 7.33 7.50 7.33 8.00 7.88 6.83
19 0.83 0.59 2.27 1.91 1.09 1.26 1.46 0.96 1.56 1.42 2.25
20 6.65 4.92 18.15 13.49 8.35 9.42 11.31 7.16 12.44 11.05 15.55
21 0.54 0.68 0.56 0.59 0.70 0.66 0.68 0.60 0.65 0.57 0.57
22 16.56 10.53 27.15 26.30 13.56 20.79 16.99 23.61 27.20 18.25 29.09
23 1.53 0.93 3.99 3.23 1.57 1.89 2.28 1.63 2.43 2.47 3.98
24 12.20 7.76 31.94 22.78 12.04 14.14 17.78 12.29 19.40 19.27 27.67
25 5.55 2.84 13.80 9.28 3.70 4.72 6.47 5.13 6.96 8.23 12.12
Table 38. Correlation IDs: 1, 2, 3, 4, 5, . . . etc. refer to those described in Table 36 above [Brachypodium correlated parameters (vectors)].
TABLE 39
Correlation between the expression level of selected genes of some
embodiments of the invention in various tissues and the phenotypic performance
under normal conditions across brachypodium varieties
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM743 0.82 3.91E−03 2 1 LYM743 0.86 1.47E−03 2 17
LYM743 0.81 2.38E−03 1 1 LYM743 0.71 1.44E−02 1 17
LYM537 0.81 2.78E−03 1 2 LYM537 0.74 9.12E−03 1 4
LYM538 0.77 5.36E−03 1 2 LYM538 0.84 1.38E−03 1 4
LYM539 0.74 8.64E−03 1 2 LYM743 0.75 1.17E−02 2 12
LYM535 0.82 4.04E−03 2 5 LYM535 0.78 7.68E−03 2 25
LYM535 0.78 7.88E−03 2 6 LYM535 0.76 1.07E−02 2 17
LYM538 0.87 5.34E−04 1 7 LYM539 0.72 1.98E−02 2 2
LYM536 0.77 5.30E−03 1 9 LYM537 0.70 2.42E−02 2 6
LYM743 0.80 5.89E−03 2 11 LYM743 0.75 1.28E−02 2 3
LYM535 0.70 2.42E−02 2 12 LYM535 0.73 1.55E−02 2 22
LYM743 0.73 1.68E−02 2 14 LYM743 0.79 7.02E−03 2 16
LYM535 0.73 1.75E−02 2 15 LYM535 0.78 7.44E−03 2 20
LYM743 0.88 7.23E−04 2 15 LYM743 0.80 4.96E−03 2 20
LYM743 0.84 1.30E−03 1 15 LYM743 0.77 5.17E−03 1 20
LYM535 0.71 2.01E−02 2 16 LYM535 0.71 2.02E−02 2 3
LYM743 0.74 9.59E−03 1 16 LYM743 0.78 4.57E−03 1 3
LYM743 0.85 2.05E−03 2 19 LYM743 0.82 3.67E−03 2 25
LYM538 0.70 2.35E−02 2 21 LYM538 0.81 4.66E−03 2 7
LYM743 0.82 3.65E−03 2 22 LYM743 0.81 4.08E−03 2 24
LYM535 0.76 1.06E−02 2 23 LYM536 0.72 1.30E−02 1 8
LYM743 0.85 1.64E−03 2 23 LYM743 0.70 1.63E−02 1 22
LYM743 0.76 6.20E−03 1 23
LYM535 0.78 7.16E−03 2 24 LYM535 0.76 1.14E−02 2 19
LYM743 0.74 9.17E−03 1 24 LYM743 0.80 3.25E−03 1 19
LYM596_H9 0.71 1.39E−02 1 17 LYM596_H9 0.70 1.60E−02 1 25
LYM596_H9 0.81 2.50E−03 1 16
Table 39. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Corr. ID) according to Table 36 above)] under normal conditions across brachypodium varieties. P = p value.
Example 10 Production of Foxtail Millet Transcriptom and High Throughput Correlation Analysis Using 60K Foxtaill Millet Oligonucleotide Micro-Array
In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a foxtail millet oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 60K foxtail millet genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 15 different foxtail millet accessions were analyzed. Among them, 11 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web(dot)davidmlane(dot)com/hyperstat/A34739 (dot)html].
Experimental Procedures
Analyzed Foxtail Millet Tissues—
three tissues [leaf, flower, and stem] at different developmental stages [time point 1 (TP1) and 2 (TP2)] under normal conditions, representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 40 below.
TABLE 40
Foxtail millet transcriptom
expression sets
Expression Set Set ID
flower:TP1:normal 1
flower:TP2:normal 2
leaf:TP1:normal 3
leaf:TP2:normal 4
stem:TP1:normal 5
stem:TP2:normal 6
Table 40.
Foxtail Millet Yield Components and Vigor Related Parameters Assessment—
14 Foxtail millet accessions in 5 repetitive plots, in the field. Foxtail millet seeds were sown in soil and grown under normal condition in the field. Plants were continuously phenotyped during the growth period and at harvest (Table 42-43, below). The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
The following parameters were collected using digital imaging system:
At the end of the growing period the grains were separated from the Plant ‘Head’ and the following parameters were measured and collected:
(i) Average Grain Area (cm2)—
A sample of ˜200 grains was weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
(ii) Average Grain Length and Width (cm)—
A sample of ˜200 grains was weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths and width (longest axis) was measured from those images and was divided by the number of grains.
At the end of the growing period 14 ‘Heads’ were photographed and images were processed using the below described image processing system.
(i) Head Average Area (cm2)
The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
(ii) Head Average Length (mm)
The ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.
The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.
Total Grain Weight (gr.)—
At the end of the experiment (plant ‘Heads’) heads from plots were collected, the heads were threshed and grains were weighted. In addition, the average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot).
Head Weight and Head Number—
At the end of the experiment, heads were harvested from each plot and were counted and weighted (kg).
Biomass at Harvest—
At the end of the experiment the vegetative material from plots was weighted.
Dry Weight=
total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours at harvest.
Total Dry Mater Per Plot—
Calculated as Vegetative portion above ground plus all the heads dry weight per plot.
Num Days to Anthesis—
Calculated as the number of days from sowing till 50% of the plot arrive anthesis.
TABLE 41
Foxtail millet correlated
parameters (vectors)
Correlated parameter with Correlation ID
Biomass at harvest (Kg) 1
Total heads weight (gr.) 2
Total dry matter (Kg) 3
Num days to Anthesis 4
Grain width (cm) 5
Total Grains weight (gr) 6
Grains weight per Head (gr) 7
Head Area (cm2) 8
Head length (cm) 9
Grain area (cm2) 10
Grain length (cm) 11
Heads num 12
Table 41. Provided are the foxtail millet correlated parameters.
Experimental Results
14 different foxtail millet accessions were grown and characterized for different parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 42-43 below. Subsequent correlation analysis between the various transcriptom sets and the average parameters was conducted (Table 44). Follow, results were integrated to the database.
TABLE 42
Measured parameters of correlation IDs in foxtail
millet accessions under normal conditions
Corr. Ecotype
ID Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-7
1 2.14 3.99 3.17 3.58 3.60 3.06 4.04
2 3.81 5.95 6.20 5.64 6.27 6.07 6.32
3 0.62 0.85 0.96 0.92 0.90 0.48 0.92
4 34.00 41.00 45.00 41.00 41.00 30.00 38.00
5 0.17 0.19 0.17 0.16 0.16 0.17 0.16
6 1449.63 1067.88 1302.82 1567.20 1794.80 1476.11 1582.57
7 3.40 7.29 1.49 1.30 1.57 0.69 2.10
8 37.83 57.87 19.59 17.10 19.76 9.42 22.92
9 23.13 24.25 17.56 14.79 15.38 8.56 16.08
10 0.03 0.04 0.03 0.03 0.03 0.03 0.03
11 0.24 0.24 0.25 0.25 0.26 0.25 0.23
12 427.60 149.20 867.00 1204.00 1146.40 2132.00 752.20
Table 42: Correlation IDs: 1, 2, 3, 4, 5, . . . etc. refer to those described in Table 41 above [Foxtail millet correlated parameters (vectors)].
TABLE 43
Measured parameters of correlation IDs in foxtail
millet accessions under normal conditions
Corr. Ecotype
ID Line-8 Line-9 Line-10 Line-11 Line-12 Line-13 Line-14
1 1.15 3.20 3.90 3.58 3.68 2.94 1.48
2 2.82 7.25 5.24 6.58 5.85 5.62 2.73
3 0.45 0.59 1.00 0.91 1.03 0.62 0.46
4 30.00 38.00 51.00 44.00 51.00 31.00 27.00
5 0.15 0.18 0.16 0.18 0.17 0.18 0.16
6 1317.88 2131.60 937.93 1880.21 1427.12 1216.24 1296.69
7 3.34 11.46 7.17 4.35 2.26 0.44 1.31
8 40.89 45.29 49.34 27.69 24.18 7.13 14.69
9 21.88 20.41 23.32 20.87 17.98 6.35 9.78
10 0.02 0.03 0.02 0.04 0.03 0.04 0.03
11 0.20 0.22 0.20 0.26 0.25 0.27 0.24
12 394.20 186.60 131.80 434.20 646.40 2797.80 994.60
Table 43: Correlation IDs: 1, 2, 3, 4, 5, . . . etc. refer to those described in Table 41 above [Foxtail millet correlated parameters (vectors)].
TABLE 44
Correlation between the expression level of selected genes of some
embodiments of the invention in various tissues and the phenotypic
performance under normal conditions across foxtail millet varieties
Gene Exp. Corr. Gene Exp. Corr.
Name R P value set ID Name R P value set ID
LYM540 0.89 3.06E−03 6 7 LYM540 0.76 2.91E−02 6 6
LYM540 0.78 2.31E−02 6 5 LYM540 0.81 1.41E−02 6 8
LYM540 0.94 6.81E−05 4 7 LYM540 0.73 1.66E−02 4 6
LYM540 0.78 8.14E−03 4 8 LYM540 0.75 8.07E−03 1 12
LYM540 0.82 4.46E−02 2 3 LYM540 0.71 1.16E−01 2 4
LYM540 0.71 1.14E−01 2 1 LYM540 0.79 5.91E−02 2 12
LYM541 0.92 1.32E−03 6 3 LYM541 0.80 1.78E−02 6 4
LYM541 0.74 3.77E−02 6 1 LYM541 0.72 1.90E−02 4 6
LYM541 0.84 2.11E−03 4 9 LYM541 0.88 9.15E−04 4 4
LYM541 0.72 1.88E−02 4 8 LYM541 0.81 4.21E−03 3 3
LYM541 0.76 1.14E−02 3 9 LYM541 0.97 6.12E−06 3 4
LYM541 0.73 1.71E−02 3 1 LYM543 0.98 2.70E−05 6 12
LYM543 0.81 5.13E−02 2 7 LYM544 0.74 1.43E−02 4 2
LYM544 0.85 1.87E−03 4 4 LYM544 0.78 7.74E−03 4 1
LYM544 0.75 8.03E−03 1 11 LYM544 0.70 2.29E−02 3 7
LYM544 0.91 1.14E−02 2 11 LYM544 0.91 1.16E−02 2 12
LYM545 0.72 4.23E−02 6 2 LYM545 0.76 2.76E−02 6 3
LYM545 0.74 3.43E−02 6 6 LYM545 0.72 4.33E−02 6 9
LYM545 0.79 2.08E−02 6 1 LYM545 0.76 1.08E−02 4 10
LYM545 0.80 2.82E−03 1 2 LYM545 0.72 1.17E−02 1 3
LYM545 0.75 7.35E−03 1 4 LYM545 0.80 3.35E−03 1 1
LYM545 0.72 1.91E−02 3 4 LYM545 0.91 1.30E−02 2 9
LYM545 0.75 8.38E−02 2 10 LYM545 0.87 2.61E−02 2 5
LYM545 0.91 1.16E−02 2 8 LYM546 0.76 7.01E−03 1 10
LYM546 0.80 3.18E−03 1 5 LYM546 0.91 1.12E−02 2 9
LYM546 0.74 9.19E−02 2 5 LYM546 0.82 4.73E−02 2 8
LYM547 0.72 1.87E−02 4 7 LYM547 0.73 1.73E−02 4 9
LYM547 0.73 1.55E−02 4 4 LYM547 0.79 6.72E−03 4 8
LYM547 0.85 1.85E−03 3 6 LYM547 0.76 1.13E−02 3 4
LYM547 0.88 2.22E−02 2 7 LYM547 0.76 8.00E−02 2 9
LYM547 0.78 6.64E−02 2 5 LYM547 0.79 5.96E−02 2 8
LYM548 0.87 5.40E−03 6 7 LYM548 0.90 2.59E−03 6 6
LYM548 0.81 1.38E−02 6 8 LYM548 0.74 1.45E−02 4 3
LYM548 0.89 5.83E−04 4 1 LYM548 0.83 2.95E−03 3 10
LYM548 0.73 1.01E−01 2 12 LYM549 0.86 5.96E−03 6 7
LYM549 0.73 1.75E−02 4 1 LYM549 0.71 1.46E−02 1 11
LYM549 0.84 1.23E−03 1 10 LYM549 0.80 5.52E−02 2 11
LYM549 0.72 1.04E−01 2 9 LYM549 0.91 1.29E−02 2 10
LYM549 0.82 4.33E−02 2 12 LYM549 0.81 5.31E−02 2 5
LYM549 0.79 6.32E−02 2 8 LYM550 0.74 1.51E−02 3 6
LYM550 0.82 4.56E−02 2 4 LYM555 0.75 1.16E−02 4 7
LYM555 0.74 1.54E−02 4 8 LYM555 0.72 1.19E−02 1 3
LYM555 0.78 7.57E−03 3 6 LYM555 0.70 2.29E−02 3 5
LYM555 0.80 5.75E−02 2 2 LYM555 0.84 3.56E−02 2 7
LYM555 0.72 1.03E−01 2 9 LYM555 0.86 2.66E−02 2 5
LYM555 0.86 2.76E−02 2 8 LYM564 0.95 1.92E−05 4 7
LYM564 0.78 8.27E−03 4 6 LYM564 0.74 1.40E−02 4 8
LYM564 0.71 1.16E−01 2 2
Table 44. Provided are the correlations (R) between the expression levels yield improving genes and their homologues in various tissues [Expression (Exp) sets] and the phenotypic performance [yield, biomass, growth rate and/or vigor components (Correlation vector (Corr) according to Table 41)] under normal, low nitrogen and drought conditions across foxtail millet varieties. P = p value.
Example 11 Production of Soybean (Glycine Max) Transcriptom and High Throughput Correlation Analysis with Yield Parameters Using 44K B. Soybean Oligonucleotide Micro-Arrays
In order to produce a high throughput correlation analysis, the present inventors utilized a Soybean oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web(dot)chem.(dot)agilent(dot)com/Scripts/PDS(dot)asp?1Page=50879]. The array oligonucleotide represents about 42,000 Soybean genes and transcripts. In order to define correlations between the levels of RNA expression with yield components or plant architecture related parameters or plant vigor related parameters, various plant characteristics of 29 different Glycine max varieties were analyzed and 12 varieties were further used for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test.
Correlation of Glycine max Genes' Expression Levels with Phenotypic Characteristics Across Ecotype
Experimental Procedures
29 Soybean varieties were grown in three repetitive plots, in field. Briefly, the growing protocol was as follows: Soybean seeds were sown in soil and grown under normal conditions until harvest. In order to define correlations between the levels of RNA expression with yield components or plant architecture related parameters or vigor related parameters, 12 different Soybean varieties (out of 29 varieties) were analyzed and used for gene expression analyses. Analysis was performed at two pre-determined time periods: at pod set (when the soybean pods are formed) and at harvest time (when the soybean pods are ready for harvest, with mature seeds).
RNA Extraction—
All 12 selected Soybean varieties were sampled per treatment. Plant tissues [leaf, root, stem, pod, apical meristem, flower buds] growing under normal conditions were sampled and RNA was extracted as described above.
The collected data parameters were as follows:
Main Branch Base Diameter [Mm] at Pod Set—
the diameter of the base of the main branch (based diameter) average of three plants per plot.
Fresh Weight [gr./Plant] at Pod Set—
total weight of the vegetative portion above ground (excluding roots) before drying at pod set, average of three plants per plot.
Dry Weight [gr./Plant] at Pod Set—
total weight of the vegetative portion above ground (excluding roots) after drying at 70° C. in oven for 48 hours at pod set, average of three plants per plot.
Total Number of Nodes with Pods on Lateral Branches [Value/Plant]—
counting of nodes which contain pods in lateral branches at pod set, average of three plants per plot.
Number of Lateral Branches at Pod Set [Value/Plant]—
counting number of lateral branches at pod set, average of three plants per plot.
Total Weight of Lateral Branches at Pod Set [gr./Plant]—
weight of all lateral branches at pod set, average of three plants per plot.
Total Weight of Pods on Main Stem at Pod Set [gr./Plant]—
weight of all pods on main stem at pod set, average of three plants per plot.
Total Number of Nodes on Main Stem [Value/Plant]—
count of number of nodes on main stem starting from first node above ground, average of three plants per plot.
Total Number of Pods with 1 Seed on Lateral Branches at Pod Set [Value/Plant]—
count of the number of pods containing 1 seed in all lateral branches at pod set, average of three plants per plot.
Total Number of Pods with 2 Seeds on Lateral Branches at Pod Set [Value/Plant]—
count of the number of pods containing 2 seeds in all lateral branches at pod set, average of three plants per plot.
Total Number of Pods with 3 Seeds on Lateral Branches at Pod Set [Value/Plant]—
count of the number of pods containing 3 seeds in all lateral branches at pod set, average of three plants per plot.
Total Number of Pods with 4 Seeds on Lateral Branches at Pod Set [Value/Plant]—
count of the number of pods containing 4 seeds in all lateral branches at pod set, average of three plants per plot.
Total Number of Pods with 1 Seed on Main Stem at Pod Set [Value/Plant]—
count of the number of pods containing 1 seed in main stem at pod set, average of three plants per plot.
Total Number of Pods with 2 Seeds on Main Stem at Pod Set [Value/Plant]—
count of the number of pods containing 2 seeds in main stem at pod set, average of three plants per plot.
Total Number of Pods with 3 Seeds on Main Stem at Pod Set [Value/Plant]—
count of the number of pods containing 3 seeds in main stem at pod set, average of three plants per plot.
Total Number of Pods with 4 Seeds on Main Stem at Pod Set [Value/Plant]—
count of the number of pods containing 4 seeds in main stem at pod set, average of three plants per plot.
Total Number of Seeds Per Plant at Pod Set [Value/Plant]—
count of number of seeds in lateral branches and main stem at pod set, average of three plants per plot.
Total Number of Seeds on Lateral Branches at Pod Set [Value/Plant]—
count of total number of seeds on lateral branches at pod set, average of three plants per plot.
Total Number of Seeds on Main Stem at Pod Set [Value/Plant]—
count of total number of seeds on main stem at pod set, average of three plants per plot.
Plant Height at Pod Set [Cm/Plant]—
total length from above ground till the tip of the main stem at pod set, average of three plants per plot.
Plant Height at Harvest [Cm/Plant]—
total length from above ground till the tip of the main stem at harvest, average of three plants per plot.
Total Weight of Pods on Lateral Branches at Pod Set [gr./Plant]—
weight of all pods on lateral branches at pod set, average of three plants per plot.
Ratio of the Number of Pods Per Node on Main Stem at Pod Set—
calculated in formula XVIII, average of three plants per plot.
Total number of pods on main stem/Total number of nodes on main stem, average of three plants per plot.  Formula XVIII:
Ratio of Total Number of Seeds in Main Stem to Number of Seeds on Lateral Branches—
calculated in formula XIX, average of three plants per plot.
Total number of seeds on main stem at pod set/Total number of seeds on lateral branches at pod set.  Formula XIX:
Total Weight of Pods Per Plant at Pod Set [Gr./Plant]—
weight of all pods on lateral branches and main stem at pod set, average of three plants per plot.
Days Till 50% Flowering [Days]—
number of days till 50% flowering for each plot.
Days Till 100% Flowering [Days]—
number of days till 100% flowering for each plot.
Maturity [Days]—
measure as 95% of the pods in a plot have ripened (turned 100% brown). Delayed leaf drop and green stems are not considered in assigning maturity. Tests are observed 3 days per week, every other day, for maturity. The maturity date is the date that 95% of the pods have reached final color. Maturity is expressed in days after August 31 [according to the accepted definition of maturity in USA, Descriptor list for SOYBEAN, Hypertext Transfer Protocol://World Wide Web(dot)ars-grin(dot)gov/cgi-bin/npgs/html/desclist(dot)pl?51].
Seed Quality [Ranked 1-5]—
measure at harvest; a visual estimate based on several hundred seeds. Parameter is rated according to the following scores considering the amount and degree of wrinkling, defective coat (cracks), greenishness, and moldy or other pigment. Rating is 1-very good, 2-good, 3-fair, 4-poor, 5-very poor.
Lodging [Ranked 1-5]—
is rated at maturity per plot according to the following scores: 1-most plants in a plot are erected; 2-all plants leaning slightly or a few plants down; 3-all plants leaning moderately, or 25%-50% down; 4-all plants leaning considerably, or 50%-80% down; 5-most plants down. Note: intermediate score such as 1.5 are acceptable.
Seed Size [gr.]—
weight of 1000 seeds per plot normalized to 13% moisture, measure at harvest.
Total Weight of Seeds Per Plant [gr./Plant]—
calculated at harvest (per 2 inner rows of a trimmed plot) as weight in grams of cleaned seeds adjusted to 13% moisture and divided by the total number of plants in two inner rows of a trimmed plot.
Yield at harvest [bushels/hectare]—calculated at harvest (per 2 inner rows of a trimmed plot) as weight in grams of cleaned seeds, adjusted to 13% moisture, and then expressed as bushels per acre.
Experimental Results
Twelve different Soybean varieties (i.e., V00-3636, V03-1754, V06-1365, V06-7487, V07-7840, V07-8022, V07-8309, V07-8393, V07-8515, V07-8782, V04-7750, V05-5973) were grown and characterized for 34 parameters as specified above. The average for each of the measured parameters was calculated using the JMP software and values are summarized in Tables 45-50 below.
TABLE 45
Measured parameters in Soybean varieties
Plant Total
GERMPLASM height weight
IDENTIFI- 50% 100% at Seed of seeds
CATION flowering Maturity flowering harvest quality per plant
V00-3636 61.00 24.00 67.33 96.67 2.33 15.09
V03-1754 65.33 43.67 71.67 76.67 3.50 10.50
V04-7750 60.67 30.33 67.67 67.50 3.00 17.23
V05-5973 61.00 30.33 67.33 75.83 2.17 16.51
V06-1365 54.67 38.33 60.00 74.17 2.83 12.06
V06-7487 68.33 40.00 74.00 76.67 2.00 10.25
V07-7840 66.50 41.00 73.00 101.67 3.50 7.30
V07-8022 65.67 38.33 72.33 98.33 2.50 11.38
V07-8309 62.33 31.00 68.67 75.83 2.17 15.68
V07-8393 67.67 39.00 73.67 116.67 2.33 10.83
V07-8515 61.67 27.33 68.00 76.67 2.17 12.98
V07-8782 64.33 32.67 70.67 71.67 2.17 15.16
Table 45. Provided are the measured parameters in Soybean varieties.
TABLE 46
Additional measured parameters in Soybean varieties
Base
GERMPLASM diameter
IDENTIFI- Seed Seed size yield at at pod DW at
CATION size corrected Lodging harvest set podset
V00-3636 89.00 89.00 1.67 47.57 8.33 53.67
V03-1754 219.33 1.83 43.77 9.54 50.33
V04-7750 93.00 93.00 1.17 50.37 9.68 38.00
V05-5973 86.00 86.00 1.67 56.30 8.11 46.17
V06-1365 191.33 2.67 44.00 8.82 60.83
V06-7487 71.33 71.33 2.83 40.33 10.12 55.67
V07-7840 88.00 88.00 2.67 34.23 8.46 48.00
V07-8022 75.00 75.00 2.50 44.27 8.09 52.00
V07-8309 80.67 80.67 1.83 53.67 8.26 44.17
V07-8393 75.67 75.67 3.50 42.47 7.73 52.67
V07-8515 76.33 76.33 3.33 43.60 8.16 56.00
V07-8782 77.33 77.33 1.50 52.20 7.89 47.50
Table 46. Provided are the measured parameters in Soybean varieties. “DW” = dry weight.
TABLE 47
Additional measured parameters in Soybean varieties
Total Total Total
number of weight of weight of
fresh nodes with Number lateral pods on Total
GERMPLASM weight pods on of branches main stem number of
IDENTIFI- at pod lateral lateral at pod at pod nodes on
CATION set branches branches set set main stem
V00-3636 170.89 23.00 9.00 67.78 22.11 16.56
V03-1754 198.22 16.00 8.67 63.78 14.33 16.78
V04-7750 152.56 23.11 9.11 64.89 16.00 16.11
V05-5973 163.89 33.00 9.89 74.89 15.00 18.11
V06-1365 224.67 15.22 7.67 54.00 33.78 16.78
V06-7487 265.00 45.25 17.56 167.22 9.00 17.11
V07-7840 160.67 8.25 11.67 45.44 9.03 18.78
V07-8022 196.33 25.44 12.11 83.22 16.00 18.89
V07-8309 155.33 21.88 8.00 64.33 15.89 16.78
V07-8393 178.11 16.33 9.11 52.00 14.56 21.11
V07-8515 204.44 22.56 6.78 76.89 30.44 19.33
V07-8782 164.22 24.22 10.00 67.00 18.00 20.78
Table 47. Provided are the measured parameters in Soybean varieties.
TABLE 48
Additional measured parameters in Soybean varieties
Total no. Number of Total no. Total no.
of pods pods with of pods of pods
with 1 1 seed on with 2 Number of with 3 Number of
GERMPLASM seed on main stem seed on pods with seed on pods with
IDENTIFI- lateral at pod lateral 2 seed on lateral 3 seed on
CATION branch set branch main stem branch main stem
V00-3636 1.56 1.11 17.00 16.89 38.44 29.56
V03-1754 3.00 4.38 18.75 16.25 2.00 1.75
V04-7750 1.78 1.44 26.44 13.22 26.44 19.78
V05-5973 1.78 1.44 32.33 16.89 31.33 22.33
V06-1365 5.67 4.56 21.56 27.00 8.89 11.67
V06-7487 5.63 1.67 33.50 8.11 82.00 22.78
V07-7840 2.88 4.00 8.50 21.33 9.00 11.11
V07-8022 3.00 4.33 22.78 17.67 42.11 28.22
V07-8309 1.25 2.11 21.75 20.33 32.75 24.11
V07-8393 2.67 1.89 10.67 16.11 25.67 36.44
V07-8515 1.78 3.44 23.78 28.11 45.00 39.67
V07-8782 3.00 1.22 25.67 16.56 44.33 32.33
Table 48. Provided are the measured parameters in Soybean varieties.
TABLE 49
Additional measured parameters in Soybean varieties
Total no. Total
of pods Total Number of
with 4 Number of Total Number of Seeds on Plant
GERMPLASM seed on pods with number of Seeds on main stem height
IDENTIFI- lateral 4 seed on seeds per lateral at pod at pod
CATION branch main stem plant branches set set
V00-3636 0.00 0.00 274.44 150.89 123.56 86.78
V03-1754 0.00 0.00 99.78 55.89 43.89 69.56
V04-7750 0.00 0.11 221.67 134.00 87.67 62.44
V05-5973 0.00 0.11 263.11 160.44 102.67 70.89
V06-1365 0.00 0.00 169.00 75.44 93.56 69.44
V06-7487 1.50 0.44 412.50 324.63 88.00 63.89
V07-7840 0.00 0.00 136.00 46.88 80.00 89.78
V07-8022 0.33 0.56 302.78 176.22 126.56 82.11
V07-8309 0.00 0.00 260.50 143.00 115.11 70.56
V07-8393 1.11 3.89 264.44 105.44 159.00 101.67
V07-8515 0.00 0.00 363.00 184.33 178.67 79.56
V07-8782 0.00 0.00 318.67 187.33 131.33 67.22
Table 49. Provided are the measured parameters in Soybean varieties.
TABLE 50
Additional measured parameters in Soybean varieties
Ratio number
of seeds per
GERM- Total weight Ratio number main stem to
PLASM of pods on of pods per seeds per Total weight
IDENTIFI- lateral node on main lateral of pods per
CATION branches stem branches plant
V00-3636 26.00 2.87 0.89 48.11
V03-1754 14.89 1.38 0.90 29.22
V04-7750 20.11 2.13 0.87 36.11
V05-5973 20.11 2.26 0.89 35.11
V06-1365 21.11 2.60 2.32 54.89
V06-7487 30.25 1.87 0.37 38.88
V07-7840 4.13 1.98 3.90 14.25
V07-8022 20.11 2.71 0.78 36.11
V07-8309 17.00 2.78 1.18 32.75
V07-8393 9.22 2.75 1.98 23.78
V07-8515 28.11 3.70 1.03 58.56
V07-8782 22.56 2.84 0.83 40.56
Table 50. Provided are the values of each of the parameters (as described above) measured in Soybean varieties under normal conditions.
Example 12 Gene Cloning and Generation of Binary Vectors for Plant Expression
To validate their role in improving plant yield, oil content, seed yield, biomass, growth rate, fiber yield, fiber quality, ABST, NUE and/or vigor, selected genes were over-expressed in plants, as follows.
Cloning Strategy
Selected genes from those listed in Examples 1-11 hereinabove are cloned into binary vectors for the generation of transgenic plants. For cloning, the full-length open reading frame (ORF) was first identified. In case of ORF-EST clusters and in some cases already published mRNA sequences were analyzed to identify the entire open reading frame by comparing the results of several translation algorithms to known proteins from other plant species. To clone the full-length cDNAs, reverse transcription (RT) followed by polymerase chain reaction (PCR; RT-PCR) was performed on total RNA extracted from leaves, flowers, siliques or other plant tissues, growing under normal and different treated conditions. Total RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS” above. Production of cDNA and PCR amplification was performed using standard protocols described elsewhere (Sambrook J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual., 2nd Ed. Cold Spring Harbor Laboratory Press, New York.), which are well known to those skilled in the art. PCR products were purified using PCR purification kit (Qiagen). In case where the entire coding sequence was not found, RACE kit from Invitrogen (RACE=Rapid Amplification of cDNA Ends) was used to access the full cDNA transcript of the gene from the RNA samples described above. RACE products were cloned into high copy vector followed by sequencing or directly sequenced.
The information from the RACE procedure was used for cloning of the full length ORF of the corresponding genes.
In case genomic DNA was cloned, the genes were amplified by direct PCR on genomic DNA extracted from leaf tissue using the DNAeasy kit (Qiagen Cat. No. 69104).
Usually, 2 sets of primers were synthesized for the amplification of each gene from a cDNA or a genomic sequence; an external set of primers and an internal set (nested PCR primers). When needed (e.g., when the first PCR reaction does not result in a satisfactory product for sequencing), an additional primer (or two) of the nested PCR primers was used.
To facilitate cloning of the cDNAs/genomic sequences, an 8-12 bp extension was added to the 5′ of each primer. The primer extension includes an endonuclease restriction site. The restriction sites were selected using two parameters: (a). The site does not exist in the cDNA sequence; and (b). The restriction sites in the forward and reverse primers are designed such that the digested cDNA is inserted in the sense formation into the binary vector utilized for transformation.
Each digested PCR product was inserted into a high copy vector pUC19 (New England BioLabs Inc], or into plasmids originating from this vector. In some cases the undigested PCR product is inserted into pCR-Blunt II-TOPO (Invitrogen).
Sequencing of the amplified PCR products was performed, using ABI 377 sequencer (Amersham Biosciences Inc). In some cases, after confirming the sequences of the cloned genes, the cloned cDNA was introduced into a modified pGI binary vector containing the At6669 promoter via digestion with appropriate restriction endonucleases. In any case the insert is followed by single copy of the NOS terminator (SEQ ID NO:8543). The digested products and the linearized plasmid vector were ligated using T4 DNA ligase enzyme (Roche, Switzerland).
High copy plasmids containing the cloned genes were digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers and cloned into binary vectors.
Several DNA sequences of the selected genes were synthesized by a commercial supplier GeneArt [Hypertext Transfer Protocol://World Wide Web(dot)geneart(dot)com/]. Synthetic DNA was designed in silico. Suitable restriction enzymes sites were added to the cloned sequences at the 5′ end and at the 3′ end to enable later cloning into the pQFNc binary vector downstream of the At6669 promoter (SEQ ID NO: 8529).
Binary Vectors Used for Cloning:
The plasmid pPI was constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; by 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, Acc. No. U12640). pGI (pBXYN) is similar to pPI, but the original gene in the backbone, the GUS gene, was replaced by the GUS-Intron gene followed by the NOS terminator (SEQ ID NO:8543) (Vancanneyt. G, et al MGG 220, 245-50, 1990). pGI was used in the past to clone the polynucleotide sequences, initially under the control of 35S promoter [Odell, J T, et al. Nature 313, 810-812 (28 Feb. 1985); SEQ ID NO:8527].
The modified pGI vectors [pQXNc (FIG. 8); or pQFN (FIG. 2), pQFNc (FIG. 2) or pQYN 6669 (FIG. 1)] are modified versions of the pGI vector in which the cassette was inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.
At6669, the Arabidopsis thaliana promoter sequence (SEQ ID NO:8529) was inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above.
Colonies were analyzed by PCR using the primers covering the insert which were designed to span the introduced promoter and gene. Positive plasmids were identified, isolated and sequenced.
Cloning of Genes with a Signal Peptide which Directs Expression of the Gene in Arabidopsis Plants:
Two genes (LYM670 and LYM721) were found by bioinformatics analysis to have a biological function in the chloroplast of Maize (LYM670) and Sorghum (LYM721). In order to express the genes in the chloroplasts of Arabidopsis plants, a signal peptide which directs expression of a polypeptide into Arabidopsis chloroplast was inserted into the sequence, by replacing the initiator Methionine coding sequence. The Arabidopsis signal peptide that was used is provided by SEQ ID NO: 9179 (MASSMLSSATMVASPAQATMVAPFNGLKSSAAFPATRKANNDITSITSNGGRV NC) and is encoded by SEQ ID NO: 9178 (5′-ATGGCTTCCTCTATGCTCTCTTCCGCTACTATGGTTGCCTCTCCGGCTCAGGC CACTATGGTCGCTCCTTTCAACGGACTTAAGTCCTCCGCTGCCTTCCCAGCC ACCCGCAAGGCTAACAACGACATTACTTCCATCACAAGCAACGGCGGAAGA GTTAACTGC). It should be noted that for expression of this genes in the chloroplast of other target plants, alternative signal peptides may be used, based on the target plants.
In addition, LYM745 gene, which is another chloroplast specific gene, was found to be conserved with a start codon of ACG (on the DNA level) yet with a Methionine as the first amino acid on the protein level. The gene was therefore cloned into a plant with the ACG as the initiation codon (the sequence was chemically synthesized by Gene_Art).
Selected genes cloned by the present inventors are provided in Table 51 below.
TABLE 51
Genes cloned in high copy number plasmids
Polyn. Polyp.
SEQ ID SEQ ID
Gene Name High copy plasmid Primers used SEQ ID NOs: NO: NO:
LYM521 pUCl9c_LYM521 8544, 8736, 8544, 8736 278 480
LYM522 pUCl9c_LYM522 8545, 8737, 8928, 9010 279 734
LYM523 pUCl9c_LYM523 8546, 8738, 8546, 8738 280 735
LYM524 pUCl9c_LYM524 8547, 8739, 8547, 8739 281 483
LYM525 pUCl9c_LYM525 8548, 8740 282 484
LYM526 pUCl9c_LYM526 8549, 874 283 485
LYM527 pUCl9c_LYM527 8550, 8742 284 486
LYM528 pUC19_LYM528 8551, 8743, 8551, 9011 285 736
LYM529 pMA_LYM529_GA GeneArt 286 488
LYM531_H6 pMA_LYM531_H6_GA GeneArt 477 693
LYM532 pUCl9c_LYM532 8552, 874 287 491
LYM533 pUCl9c_LYM533 8553, 8745, 8929, 9012 288 492
LYM535 pUCl9c_LYM535 8554, 8746, 8930, 9013 289 493
LYM536 pUCl9d_LYM536 8555, 8747, 8555, 8747 290 494
LYM537 pQFNc_LYM537 8556, 8748, 8556, 8748 291 495
LYM538 pUCl9c_LYM538 8557, 8749, 8557, 8749 292 496
LYM539 pUCl9c_LYM539 8558, 8750, 8558, 8750 293 497
LYM540 pUC19c_LYM540 8559, 8751, 8559, 8751 294 498
LYM541 pUCl9c_LYM541 8560, 8752 295 499
LYM543 pUCl9c_LYM543 8561, 8753, 8931, 9014 296 737
LYM544 pUCl9c_LYM544 8562, 8754 297 738
LYM545 pUCl9c_LYM545_9 8563, 8755, 8932, 9015 298 502
LYM546 pUCl9c_LYM546 8564, 8756, 8933, 8756 299 739
LYM548 pUCl9c_LYM548 8565, 8757, 8565, 8757 300 740
LYM549 pUCl9c_LYM549 8566, 8758, 8566, 8758 301 506
LYM550 pUC19c_LYM550 8567, 8759, 8934, 9016 302 507
LYM552 pQFNc_LYM552 8568, 8760, 8568, 8760 303 741
LYM553 pUC19_LYM553 8569, 8761, 8569, 8761 304 509
LYM554 pQFNc_LYM554 8570, 8762, 8935, 8762 305 510
LYM555 pUCl9c_LYM555 8571, 8763, 8936, 9017 306 511
LYM557 pUCl9c_LYM557 8572, 8764, 8937, 8764 307 513
LYM558 pUCl9c_LYM558 8573, 8765, 8938, 9018 308 514
LYM559 pUC19_LYM559 8574, 8766, 8574, 8766 309 515
LYM560 pUC19c_LYM560 8575, 8767, 8939, 9019 310 516
LYM561 pUCl9c_LYM561 8576, 8768, 8576, 8768 311 517
LYM562 pUC19_LYM562 8577, 8769, 8577, 8769 312 742
LYM563 pUC19_LYM563 8578, 8770, 8578, 8770 313 519
LYM565 pUCl9c_LYM565 8579, 8771, 8579, 8771 314 743
LYM566 pUCl9c_LYM566 8580, 8772, 8940, 9020 315 744
LYM567 pUCl9c_LYM567 8581, 8773, 8941, 9021 316 523
LYM568 pUCl9c_LYM568 8582, 8774, 8942, 9022 317 524
LYM569 pUCl9c_LYM569 8583, 8775 318 525
LYM570 pUC19_LYM570 8584, 8776, 8584, 9023 319 745
LYM571 pMA-RQ_LYM571_GA GeneArt 320 527
LYM572 pUCl9c_LYM572 8585, 8777, 8585, 8777 321 528
LYM573 pUCl9c_LYM573 8586, 8778, 8943, 9024 322 529
LYM574 pUCl9d_LYM574 8587, 8779, 8587, 8779 323 530
LYM575 pUCl9c_LYM575 8588, 8780, 8944, 9025 324 531
LYM576 pUCl9c_LYM576 8589, 8781, 8589, 8781 325 532
LYM577 pQFNc_LYM577 8590, 8782, 8590, 8782 326 746
LYM578 pUCl9c_LYM578 8591, 8783, 8591, 9026 327 534
LYM579 pUCl9c_LYM579 8592, 8784, 8592, 8784 328 535
LYM580 pUC19c_LYM580 8593, 8785, 8945, 9027 329 747
LYM581 pUCl9c_LYM581 8594, 8786, 8946, 9028 330 537
LYM582 pQFNc_LYM582 8595, 8787, 8947, 8787 331 748
LYM583 pUC19_LYM583 8596, 8788, 8948, 9029 332 749
LYM585 pUCl9d_LYM585 8597, 8789, 8597, 8789 333 540
LYM586 pUCl9c_LYM586 8598, 8790 334 541
LYM587 pMA-RQ_LYM587_GA GeneArt 335 542
LYM588 pUCl9c_LYM588 8599, 8791, 8949, 9030 336 543
LYM589 pUCl9c_LYM589 8600, 8792, 8600, 8792 337 750
LYM590 pUC19c_LYM590 8601, 8793, 8950, 9031 338 545
LYM591 pUCl9c_LYM591 8602, 8794, 8951, 9032 339 751
LYM592 pUCl9c_LYM592 8603, 8795, 8603, 8795 340 752
LYM593 pUCl9c_LYM593 8604, 8796, 8604, 8796 341 753
LYM594 pUCl9c_LYM594 8605, 8797, 8605, 8797 342 754
LYM595 pUCl9c_LYM595 8606, 8798, 8606, 8798 343 550
LYM596_H9 pMA-T_LYM596_H9_GA GeneArt 478 694
LYM598 pUCl9c_LYM598 8607, 8799, 8952, 9033 344 552
LYM599 pUCl9c_LYM599 8608, 8800, 8608, 8800 345 553
LYM600 pUCl9c_LYM600 8609, 8801, 8953, 9034 346 554
LYM601 pUC19c_LYM601 8610, 8802, 8954, 9035 347 555
LYM602 pUC19c_LYM602 8611, 8803, 8611, 9036 348 755
LYM603 pUC19c_LYM603 8612, 8804, 8955, 9037 349 557
LYM604 pUCl9c_LYM604 8613, 8805, 8956, 9038 350 756
LYM606 pUC19_LYM606 8614, 8806, 8614, 8806 351 757
LYM607 pUCl9c_LYM607 8615, 8807, 8615, 8807 352 560
LYM608 pUCl9c_LYM608 8616, 8808, 8616, 8808 353 758
LYM609 pUCl9c_LYM609 8617, 8809, 8617, 8809 354 562
LYM610 pUCl9c_LYM610 8618, 881 355 759
LYM611 pUCl9c_LYM611 8619, 8811, 8957, 9039 356 564
LYM612 pUCl9c_LYM612 8620, 8812, 8958, 9040 357 565
LYM613 pUCl9c_LYM613 8621, 8813, 8621, 9041 358 760
LYM614 pUCl9c_LYM614 8622, 8814, 8959, 9042 359 567
LYM615 pMA_LYM615_GA GeneArt 360 568
LYM616 pUCl9c_LYM616 8623, 8815, 8960, 9043 361 569
LYM617 pUCl9c_LYM617 8624, 8816, 8624, 8816 362 761
LYM618 pUCl9c_LYM618 8625, 8817, 8625, 8817 363 571
LYM619 pUCl9c_LYM619 8626, 8818, 8626, 8818 364 572
LYM620 pUC19c_LYM620 8627, 8819, 8627, 8819 365 573
LYM621 pUC19_LYM621 8628, 8820, 8628, 8820 366 574
LYM622 pMA-RQ_LYM622_GA GeneArt 367 575
LYM623 pUCl9c_LYM623 8629, 8821, 8961, 9044 368 762
LYM624 pUCl9c_LYM624 8630, 8822, 8962, 9045 369 577
LYM625 pUC19_LYM625 8631, 8823, 8631, 8823 370 763
LYM627 pUCl9c_LYM627 8632, 8824, 8963, 9046 371 764
LYM628 pUCl9c_LYM628 8633, 8825, 8633, 8825 372 765
LYM630 pUC19c_LYM630 8634, 8826 373 581
LYM631 pUCl9c_LYM631 8635, 8827, 8964, 9047 374 582
LYM632 pQFNc_LYM632 8636, 8828, 8636, 8828 375 583
LYM633 pQFNc_LYM633p 8637, 8829, 8637, 8829 479
LYM634 pUCl9c_LYM634 8638, 8830, 8638, 8830 376 766
LYM635 pUC19_LYM635 8639, 8831, 8639, 8831 377 767
LYM636 pUCl9c_LYM636 8640, 8832, 8640, 8832 378 768
LYM638 pUCl9c_LYM638 8641, 8833, 8641, 8833 379 769
LYM639 pUCl9c_LYM639 8642, 8834, 8965, 9048 380 588
LYM640 pUC19c_LYM640 8643, 8835, 8966, 9049 381 589
LYM642 pUCl9c_LYM642 8644, 8836 382 770
LYM643 pUCl9c_LYM643 8645, 8837, 8967, 9050 383 771
LYM644 pUC19_LYM644 8646, 8838, 8968, 9051 384 592
LYM645 pUCl9c_LYM645 8647, 8839, 8647, 8839 385 772
LYM646 pUCl9c_LYM646 8648, 8840, 8969, 9052 386 773
LYM647 pUCl9c_LYM647 8649, 8841, 8649, 8841 387 595
LYM648 pUCl9c_LYM648 8650, 8842, 8650, 8842 388 774
LYM649 pUCl9c_LYM649 8651, 8843, 8651, 8843 389 597
LYM650 pUC19_LYM650 8652, 8844, 8970, 9053 390 775
LYM652 pUCl9c_LYM652 8653, 8845, 8653, 9054 391 599
LYM653 pUCl9c_LYM653 8654, 8846, 8654, 8846 392 776
LYM654 pUCl9c_LYM654 8655, 8847, 8655, 8847 393 601
LYM655 pUCl9c_LYM655 8656, 8848, 8971, 9055 394 777
LYM656 pUC19_LYM656 8657, 8849, 8657, 8849 395 778
LYM657 pUCl9c_LYM657 8658, 8850 396 779
LYM658 pUC19_LYM658 8659, 8851, 8659, 8851 397 780
LYM659 pUCl9c_LYM659 8660, 8852, 8660, 8852 398 606
LYM660 pUCl9c_LYM660 8661, 8853, 8661, 8853 399 607
LYM661 pUCl9c_LYM661 8662, 8854, 8662, 8854 129 608
LYM662 pUCl9c_LYM662 8663, 8855 400 609
LYM665 pUCl9c_LYM665 8664, 8856, 8664, 8856 401 781
LYM666 pUCl9c_LYM666 8665, 8857, 8665, 8857 402 782
LYM667 pUCl9c_LYM667 8666, 8858, 8972, 9056 403 613
LYM668 pMA_LYM668_GA GeneArt 404 614
LYM669 pUC19_LYM669 8667, 8859, 8667, 8859 405 783
LYM670 pMA-RQ_LYM670_GA GeneArt 137 616
LYM671 pUCl9c_LYM671 8668, 8860, 8668, 8860 406 784
LYM672 pUC19_LYM672 8669, 8861, 8669, 8861 407 785
LYM673 pUCl9c_LYM673 8670, 8862, 8973, 9057 408 786
LYM674 pUCl9c_LYM674 8671, 8863, 8974, 8863 409 620
LYM675 pUCl9c_LYM675 8672, 8864, 8975, 9058 410 621
LYM677 pUC19_LYM677 8673, 8865, 8976, 9059 411 622
LYM678 pUCl9c_LYM678 8674, 8866, 8977, 9060 412 623
LYM679 pUCl9c_LYM679 8675, 8867, 8978, 9061 413 624
LYM680 pUC19_LYM680 8676, 8868, 8979, 9062 414 787
LYM682 pUCl9c_LYM682 8677, 8869, 8677, 8869 415 626
LYM683 pUCl9c_LYM683 8678, 8870, 8980, 9063 416 627
LYM684 pUC19_LYM684 8679, 8871 417 628
LYM686 pMA_LYM686_GA GeneArt 418 630
LYM687 pUCl9c_LYM687 8680, 8872, 8680, 8872 419 631
LYM688 pUCl9c_LYM688 8681, 8873, 8981, 9064 420 632
LYM689 pUCl9c_LYM689 8682, 8874 421 633
LYM690 pUC19c_LYM690 8683, 8875, 8683, 8875 422 634
LYM691 pUC19_LYM691 8684, 8876, 8982, 9065 423 635
LYM692 pUCl9c_LYM692 8685, 8877, 8983, 9066 424 788
LYM693 pUCl9c_LYM693 8686, 8878 425 723
LYM694 pUCl9c_LYM694 8687, 8879, 8984, 9067 426 789
LYM695 pUC19_LYM695 8688, 8880, 8688, 8880 427 639
LYM697 pUCl9c_LYM697 8689, 8881, 8985, 9068 428 640
LYM698 pUCl9c_LYM698 8690, 8882, 8986, 9069 429 641
LYM699 pUCl9c_LYM699 8691, 8883, 8691, 8883 430 642
LYM700 RQ_LYM700_GA GeneArt 431 643
LYM701_H1 pMA-RQ_LYM701H1_GA GeneArt 216 695
LYM702 pUC19_LYM702 8692, 8884, 8987, 8884 432 790
LYM703 pUC19_LYM703 8693, 8885 433 791
LYM704 pUC19c_LYM704 8694, 8886, 8988, 8886 434 792
LYM705 pUC19_LYM705 8695, 8887, 8989, 9070 435 793
LYM706 pUC19_LYM706 8696, 8888, 8990, 9071 436 794
LYM707 pUC19c_LYM707 8697, 8889, 8991, 9072 437 650
LYM708 pUCl9c_LYM708 8698, 8890, 8992, 9073 438 795
LYM709 pUCl9c_LYM709 8699, 8891, 8993, 9074 439 652
LYM710 pUC19_LYM710 8700, 8892, 8700, 8892 440 653
LYM712 pUCl9c_LYM712 8701, 8893, 8701, 8893 441 655
LYM713 pUCl9c_LYM713 8702, 8894, 8702, 8894 442 656
LYM714 pUCl9c_LYM714 8703, 8895, 8703, 9075 443 796
LYM715 pUCl9c_LYM715 8704, 8896, 8704, 9076 444 658
LYM716 pUCl9c_LYM716 8705, 8897, 8994, 9077 445 797
LYM717 pUCl9c_LYM717 8706, 8898, 8995, 9078 446 660
LYM718 pUCl9c_LYM718 8707, 8899, 8996, 9079 447 661
LYM719 pUC19_LYM719 8708, 8900, 8997, 9080 448 662
LYM720 pUC19c_LYM720 8709, 8901, 8709, 8901 449 798
LYM721 pMA-T_LYM721_GA GeneArt 185 664
LYM722 pQFNc_LYM722 8710, 8902, 8998, 9081 450 665
LYM723 pUCl9c_LYM723 8711, 8903, 8999, 9082 451 666
LYM724 pUCl9c_LYM724 8712, 8904, 9000, 9083 452 667
LYM725 pUCl9c_LYM725 8713, 8905, 8713, 8905 453 668
LYM726 pUCl9c_LYM726 8714, 8906, 8714, 9084 454 799
LYM727 pUCl9c_LYM727 8715, 8907, 9001, 9085 455 670
LYM728 pUC19_LYM728 8716, 8908, 9002, 9086 456 671
LYM729 pUC19_LYM729 8717, 8909 457 800
LYM730 pUC19c_LYM730 8718, 8910, 9003, 9087 458 673
LYM731 pUCl9c_LYM731 8719, 8911 459 801
LYM732 pUCl9c_LYM732 8720, 8912, 8720, 9088 460 802
LYM733 pUCl9c_LYM733 8721, 8913, 8721, 8913 461 803
LYM734 pUCl9c_LYM734 8722, 8914, 9004, 9089 462 677
LYM736 pUCl9c_LYM736 8723, 8915, 9005, 9090 463 804
LYM737 pUCl9c_LYM737 8724, 8916, 9006, 9091 464 805
LYM739 pUCl9c_LYM739 8725, 8917, 8725, 8917 465 806
LYM740 pUC19c_LYM740 8726, 8918 466 682
LYM741 pUCl9c_LYM741 8727, 8919, 9007, 9092 467 807
LYM742 pUCl9c_LYM742 8728, 8920, 8728, 8920 468 808
LYM743 pUCl9c_LYM743 8729, 8921, 9008, 9093 469 685
LYM744 pUCl9c_LYM744 8730, 8922, 8730, 8922 470 809
LYM745 pMA-RQ_LYM745_GA GeneArt 471 687
LYM746 pUCl9c_LYM746 8731, 8923 472 810
LYM747 pUCl9c_LYM747 8732, 8924, 9009, 9094 473 689
LYM748 pUCl9c_LYM748 8733, 8925, 8733, 9095 474 811
LYM749 pQFNc_LYM749p 8734, 8926 475 691
LYM750 pUC19c_LYM750 8735, 8927, 8735, 8927 476 812
Table 51. “Polyn.”—Polynucleotide;
“Polyp.”—polypeptide.
For cloning of each gene at least 2 primers were used: Forward (Fwd) or Reverse (Rev). In some cases, 4 primers were used: External forward (EF), External reverse (ER), nested forward (NF) or nested reverse (NR). The sequences of the primers used for cloning the genes are provided in the sequence listing. The genes were cloned from the same organism as identified in the list of genes provided in Table 1 above, except for the genes that were synthetically produced by GeneArt.
Example 13 Producing Transgenic Arabidopsis Plants Expressing Selected Genes According to Some Embodiments of the Invention
Experimental Methods
Production of Agrobacterium tumefaciens Cells Harboring the Binary Vectors According to Some Embodiments of the Invention—
Each of the binary vectors described in Example 12 above was used to transform Agrobacterium cells. Two additional binary constructs, having only the At6669 or the 35S promoter or no additional promoter were used as negative controls.
The binary vectors were introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 109 cells/mL) by electroporation. The electroporation was performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 28° C. for 3 hours, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28° C. for 48 hours. Agrobacterium colonies, which were developed on the selective media, were further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were isolated and sequenced to verify that the correct polynucleotide sequences of the invention were properly introduced to the Agrobacterium cells.
Preparation of Arabidopsis Plants for Transformation—
Arabidopsis thaliana var Columbia (T0 plants) were transformed according to the Floral Dip procedure [Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-43; and Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues are the primary targets of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3): 895-904] with minor modifications. Briefly, Arabidopsis thaliana Columbia (Col0) T0 plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hours light/dark cycles. The T0 plants were ready for transformation six days before anthesis.
Preparation of the agrobacterium Carrying the Binary Vectors to Transformation into Arabidopsis Plants—
Single colonies of Agrobacterium carrying the binary vectors harboring the genes of some embodiments of the invention were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking and centrifuged at 4000 rpm for 5 minutes. The pellets comprising Agrobacterium cells were resuspended in a transformation medium which contains half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 μM benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.
Transformation of Arabidopsis Plants with the agrobacterium—
Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue is submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques are brown and dry, then seeds were harvested from plants and kept at room temperature until sowing.
Generation of T1 and T2 Transgenic Plants—
For generating T1 and T2 transgenic plants harboring the genes, seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochlorite and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to a fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.
Example 14 Evaluation of Transgenic Arabidopsis for Seed Yield and Plant Growth Rate Under Normal Conditions in Greenhouse Assays (GH-SM Assays)
Assay 1: Seed Yield Plant Biomass and Plant Growth Rate Under Normal Greenhouse Conditions—
This assay follows seed yield production, the biomass formation and the rosette area growth of plants grown in the greenhouse at non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing 6 mM inorganic nitrogen in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2 and microelements. All plants were grown in the greenhouse until mature seeds. Seeds were harvested, extracted and weighted. The remaining plant biomass (the above ground tissue) was also harvested, and weighted immediately or following drying in oven at 50° C. for 24 hours.
Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the At6669 promoter (SEQ ID NO:8529) and the selectable marker were used as control.
The plants were analyzed for their overall size, growth rate, flowering (flowering time), seed yield, 1,000-seed weight, dry matter and harvest index (HI—seed yield/dry matter). Early flowering time (e.g., a decrease in flowering time as compared to control, e.g., having a negative value) is an important agronomical trait that has a potential to contribute to increase in yield under various environmental conditions. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
Digital Imaging—
A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) is used for capturing images of plant samples.
The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Leaf Analysis—
Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, and leaf blade area.
Vegetative Growth Rate:
the relative growth rate (RGR) of leaf number [Formula X (described above)], rosette area (Formula IX above), plot coverage (Formula XX below) and harvest index (Formula IV above) were calculated with the indicated formulas.
RGR plot coverage  Formula XX:
Relative growth rate of plot coverage=Regression coefficient of plot coverage along time course.
Seeds Average Weight—
At the end of the experiment all seeds were collected.
The seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
Dry Weight and Seed Yield—
On about day 80 from sowing, the plants were harvested and left to dry at 30° C. in a drying chamber. The biomass and seed weight of each plot were measured and divided by the number of plants in each plot.
Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C. in a drying chamber.
Seed yield per plant=total seed weight per plant (gr.).
1000 seed weight (the weight of 1000 seeds) (gr.).
Oil Percentage in Seeds—
At the end of the experiment all seeds from each plot were collected. Seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane is evaporated using the evaporator at 35° C. and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra—Oxford Instrument) and its MultiQuant software package.
Silique Length Analysis—
On day 50 from sowing, 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.
Statistical Analyses—
To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student's t-test and results were considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
Tables 52-56 summarize the observed phenotypes of transgenic plants exogenously expressing the gene constructs using the seed maturation (GH-SM) assays under normal conditions. The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.
TABLE 52
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Dry Weight [mg] Flowering Inflorescence Emergence
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM642 69195.1 17.3 0.05 −1
LYM642 69198.1 16.2 L −13 
CONT. 18.7
LYM724 69030.2 18.2 L −10 
LYM724 69031.3 19.3 0.13 −4
LYM724 69031.4 18.2 L −10 
LYM690 68768.2 19.1 0.09 −6
LYM690 68768.3 18.4 0.12 −9
LYM690 68773.7 17.8 0.12 −12 
LYM688 68192.3 17.8 L −12 
LYM688 68194.1 18.2 L −10 
LYM679 69320.1 19.4 0.21 −4
LYM669 70649.3 18.8 0.04 −7
LYM669 70651.2 19.0 0.18 −6
LYM644 69304.3 18.5 0.02 −8
LYM640 68948.1 18.7 0.04 −8
LYM640 68950.2 19.3 0.15 −5
LYM638 70077.2 18.3 0.21 −10 
LYM638 70081.3 19.1 0.12 −6
LYM625 70072.1 19.5 0.22 −4
LYM625 70073.1 17.4 L −14 
LYM622 70544.2 19.1 0.07 −6
LYM622 70545.5 18.9 0.06 −7
LYM606 70352.1 17.6 0.04 −13 
LYM591 68920.1 19.2 0.15 −5
LYM587 70346.2 19.4 0.15 −4
LYM583 70154.1 18.6 0.02 −8
LYM583 70154.2 18.3 0.05 −10 
LYM583 70159.3 17.5 0.02 −14 
LYM569 69123.3 18.5 0.01 −9
LYM569 69124.2 18.1 0.07 −11 
LYM569 69125.2 19.2 0.08 −5
LYM566 69081.2 18.9 0.10 −6
LYM566 69081.3 17.6 L −13 
LYM566 69082.1 18.9 0.06 −7
LYM536 68590.5 18.3 0.02 −9
CONT. 20.2
LYM734 69050.6 806.2 0.16 11
LYM723 68822.3 17.7 0.06 −3
LYM704 69454.2 760.6 0.21  5
LYM703 69019.1 910.0 0.18 25
LYM695 69442.2 791.9 0.25  9
LYM666 69771.2 856.4 0.28 18
LYM603 69298.1 790.5 0.12  9
LYM599 69291.3 17.9 0.28 −2
LYM599 69291.4 17.0 0.26 −7
LYM586 69145.2 17.6 0.06 −4
LYM528 69464.3 750.9 0.28  3
LYM528 69469.2 17.7 0.04 −4
CONT. 727.5 18.3
LYM733 69748.3 677.5 0.07  5
LYM726 69752.2 751.9 L 17 18.3 0.14 −3
LYM726 69753.5 723.8 0.18 13
LYM726 69754.4 729.7 0.27 14
LYM724 69027.1 713.8 0.23 11 17.7 0.07 −6
LYM717 69458.3 673.8 0.11  5
LYM717 69459.2 730.0 L 14
LYM717 69463.1 668.1 0.16  4
LYM706 69024.3 686.2 0.27  7 18.1 0.04 −4
LYM702 69449.4 691.9 0.02  8
LYM702 69451.4 709.1 L 10
LYM689 69160.3 748.1 0.09 16
LYM624 68939.2 18.2 0.09 −3
LYM617 69584.1 683.8 0.16  6
LYM617 69587.2 685.0 0.11  7
LYM576 69569.2 744.4 0.29 16
LYM576 69570.2 663.8 0.23  3
LYM576 69570.6 697.5 0.02  9
LYM570 69432.2 675.0 0.19  5
LYM557 68860.2 703.1 0.09  9
LYM545 69557.2 17.8 0.05 −6
CONT. 642.7 18.8
LYM732 68364.3 17.0 0.21 −0
LYM718 68210.2 22.5 0.04 −4 17.0 0.21 −0
LYM718 68214.9 23.0 0.27 −2 17.0 0.21 −0
LYM716 68205.1 1031.9  0.09  4 22.3 0.02 −5 17.0 0.21 −0
LYM716 68208.1 17.0 0.21 −0
LYM694 68531.1 1127.1  0.09 14
LYM692 68362.4 17.0 0.21 −0
LYM677 68524.3 17.0 0.21 −0
LYM677 68525.2 17.0 0.21 −0
LYM677 68526.1 17.0 0.21 −0
LYM677 68526.2 17.0 0.21 −0
LYM675 68240.2 1180.0  0.16 19 17.0 0.21 −0
LYM675 68241.5 22.8 0.08 −3 17.0 0.21 −0
LYM675 68244.1 17.0 0.21 −0
LYM661 68519.2 1129.4  L 14
LYM630 68174.1 1162.5  0.28 18
LYM630 68174.3 17.0 0.21 −0
LYM630 68175.4 17.0 0.21 −0
LYM630 68175.5 17.0 0.21 −0
LYM613 68284.2 17.0 0.21 −0
LYM613 68284.6 17.0 0.21 −0
LYM602 68440.2 1035.6  0.21  5
LYM602 68442.1 22.7 0.05 −3 17.0 0.21 −0
LYM602 68442.8 1030.6  0.27  4 17.0 0.21 −0
LYM590 68422.1 1093.8  0.05 11 17.0 0.21 −0
LYM590 68425.1 22.9 0.11 −2
LYM585 68411.4 1066.9  0.01  8 17.0 0.21 −0
LYM580 68402.2 22.8 0.08 −3
LYM580 68402.3 17.0 0.21 −0
LYM568 68386.2 1181.2  0.08 20
LYM568 68386.3 17.0 0.21 −0
LYM532 68380.1 1075.6  0.03  9 17.0 0.21 −0
LYM532 68381.3 1018.8  0.21  3
CONT. 987.7 23.5 17.1
LYM725 69177.3 927.5 0.09  5
LYM684 68996.1 959.6 0.16  9
LYM680 68972.1 909.4 0.06  3
LYM680 68972.2 925.0 0.19  5
LYM679 69321.1 908.1 0.13  3
LYM679 69323.2 903.1 0.20  3
LYM678 68368.1 917.5 0.22  4
LYM674 68188.3 914.4 0.04  4
LYM673 68765.2 904.4 0.30  3
LYM673 68766.2 902.5 0.12  3
LYM612 68457.4 1004.4  0.10 14
LYM609 68559.5 920.6 0.02  5
LYM609 68561.4 933.8 0.23  6
LYM609 68562.2 921.9 0.02  5 17.2 0.23 −8
LYM594 69286.1 928.8 0.19  6
LYM594 69287.3 17.6 0.08 −6 14.7 0.01 −7
LYM591 68922.1 1015.6  0.06 15
LYM590 68422.3 914.4 0.04  4
LYM589 68418.4 17.7 0.10 −6 15.1 0.13 −4
LYM588 68912.4 943.8 L  7
LYM580 68402.2 17.6 0.08 −6
LYM569 69127.1 17.4 0.06 −7
LYM566 69081.1 964.4 0.28 10
LYM566 69081.3 903.8 0.26  3
LYM566 69082.1 12.7 0.28 −19 
CONT. 880.2 18.8 15.7
LYM712 69174.1 951.2 0.15  5
LYM698 69329.2 947.5 0.20  4
LYM677 68524.3 16.7 L −8 13.1 0.18 −14 
LYM675 68240.4 17.6 0.16 −3
LYM643 69155.1 17.3 0.28 −4
LYM643 69157.4 1031.2  0.27 14
LYM640 68950.2 998.8 0.19 10
LYM613 68282.1 17.6 0.16 −3
LYM613 68285.3 989.4 0.02  9
LYM613 68285.4 950.6 0.12  5
LYM581 68405.6 14.1 0.25 −7
LYM567 68875.2 17.6 0.16 −3
LYM565 69079.2 13.5 0.24 −11 
CONT. 907.1 18.0 15.2
LYM660 68511.2 1215.5  0.17 17 17.1 0.13 −2
LYM647 68489.2 17.0 0.06 −2
LYM631 68351.2 17.1 0.13 −2
LYM618 68171.2 23.1 0.26 −3 17.1 0.13 −2
LYM618 68173.3 17.1 0.13 −2
LYM618 68173.5 17.1 0.13 −2
LYM618 68173.6 23.2 0.23 −3 17.0 0.06 −2
LYM609 68559.1 23.2 0.23 −3 17.0 0.06 −2
LYM609 68559.4 17.1 0.13 −2
LYM604 68444.3 17.1 0.13 −2
LYM604 68447.1 17.0 0.06 −2
LYM600 68433.2 17.1 0.13 −2
LYM600 68436.1 17.0 0.06 −2
LYM600 68436.3 17.0 0.06 −2
LYM598 68426.1 17.1 0.13 −2
LYM598 68426.4 23.2 0.23 −3 17.1 0.13 −2
LYM598 68429.2 17.1 0.13 −2
LYM589 68415.3 17.1 0.13 −2
LYM589 68415.4 17.1 0.13 −2
LYM589 68416.2 17.1 0.13 −2
LYM581 68406.3 17.0 0.06 −2
LYM575 68267.1 17.1 0.13 −2
LYM575 68268.3 17.1 0.13 −2
LYM573 68276.1 17.0 0.06 −2
LYM573 68276.2 1175.6  0.23 13
LYM573 68276.6 17.1 0.13 −2
LYM573 68279.3 17.0 0.06 −2
LYM573 68279.4 17.0 0.06 −2
LYM525 68578.4 1271.2  0.22 22 17.0 0.06 −2
LYM525 68579.2 17.1 0.13 −2
CONT. 1042.1  23.8 17.4
Table 52. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 53
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Leaf Blade Area [cm2] Leaf Number Plot Coverage [cm2]
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM749 70679.3 1.7 0.18 12 97.0 0.18 14
LYM712 69171.1 1.7 0.12 11 91.7 0.20  8
LYM698 69326.1 1.8 0.21 20
LYM698 69329.3 1.7 0.06 15 94.6 0.19 11
LYM697 69003.1 1.8 0.16 17 96.0 0.28 13
LYM691 69779.3 1.8 0.18 20 100.4  0.03 18
LYM680 68976.1 11.1 0.03 6
LYM671 70148.1 10.9 0.15 4
LYM643 69157.5 10.8 0.17 3 91.0 0.25  7
LYM642 69198.1 1.6 0.23  9 100.5  0.07 18
LYM615 70539.1 1.6 0.24  9 11.2 0.01 7 102.0  0.18 20
LYM565 69077.1 1.8 0.11 17 97.3 0.04 15
CONT. 1.5 10.5 85.0
LYM724 69030.2 1.1 0.04 49  9.6 0.09 7 59.0 0.01 53
LYM724 69031.4 1.0 0.22 41  9.3 0.26 4 52.2 0.30 36
LYM708 70361.1  9.2 0.25 3
LYM690 68768.3 49.3 0.13 28
LYM690 68773.7 0.9 0.02 34 54.0 0.11 40
LYM688 68192.3 0.9 0.12 22  9.8 L 10  51.0 0.04 32
LYM688 68194.1 45.8 0.28 19
LYM679 69320.1 0.8 0.18 17 45.0 0.30 17
LYM669 70649.3 1.2 L 74  9.6 0.09 7 65.6 L 70
LYM669 70651.2 0.9 0.02 32  9.2 0.30 3 52.7 0.04 37
LYM640 68948.1  9.2 0.30 3 47.1 0.19 22
LYM640 68950.2  9.2 0.30 3
LYM638 70077.2 0.9 0.29 26  9.2 0.30 3
LYM638 70080.4  9.4 0.29 5
LYM625 70072.1 0.8 0.18 20
LYM625 70072.2 0.8 0.19 20 45.5 0.23 18
LYM625 70073.1 1.0 L 41  9.6 0.09 7 57.9 L 50
LYM622 70544.2 0.8 0.14 18 44.7 0.24 16
LYM622 70545.5 1.0 0.20 41 55.6 0.04 44
LYM622 70548.2 0.8 0.25 19 46.2 0.20 20
LYM606 70352.1 1.0 0.14 37 55.6 0.08 44
LYM591 68922.1 0.8 0.27 16  9.8 0.01 9
LYM583 70154.1 1.1 0.07 50 56.8 0.05 47
LYM583 70159.3 1.2 L 63  9.6 0.09 7 66.9 L 74
LYM569 69123.3  9.2 0.25 3 46.6 0.26 21
LYM569 69124.2 0.9 0.19 26 49.4 0.23 28
LYM569 69125.1  9.2 0.30 3
LYM566 69081.2 0.8 0.25 16  9.9 L 11  49.9 0.14 30
LYM536 68590.5 1.1 L 48 61.1 L 59
CONT. 0.7  8.9 38.5
LYM734 69050.6 1.0 L 17 51.4 0.17 10
LYM734 69055.1 50.5 0.04  8
LYM705 69266.1 1.0 0.01 13 51.1 0.03  9
LYM704 69454.2 0.9 0.12 10 51.1 0.27  9
LYM703 69014.2  9.5 0.22 3
LYM703 69014.3 1.0 L 15 49.8 0.18  6
LYM703 69016.3  9.4 0.21 2
LYM703 69019.1 60.8 0.26 30
LYM695 69442.2 0.9 0.11 11 52.3 0.02 12
LYM666 69774.4 0.9 0.25 13 51.3 0.18  9
LYM595 68926.2  9.9 0.18 7
LYM595 68926.3 0.9 0.21  4
LYM586 69143.5  9.6 0.06 4
LYM586 69145.2 0.9 0.14  5
LYM548 69765.2  9.4 0.21 2
LYM548 69765.4 0.9 0.04  7
LYM548 69768.1  9.6 0.06 4
LYM548 69769.1 1.0 0.03 20
LYM535 69281.2 0.9 0.20 10 52.0 0.08 11
LYM528 69469.2 0.9 0.16 12  9.4 0.21 2
CONT. 0.8  9.2 46.9
LYM726 69752.3  9.7 L 7
LYM724 69027.1 0.7 0.10  6
LYM724 69030.2 0.7 0.08  9
LYM717 69458.3  9.3 0.14 3
LYM706 69022.3  9.3 0.14 3
LYM689 69158.3 0.8 0.24 14 40.8 0.22  9
LYM689 69160.3  9.7 L 7
LYM662 68818.2  9.4 0.04 4
LYM650 69359.2 0.8 L 14 41.0 0.02 10
LYM650 69361.1 0.7 0.03  9  9.2 0.22 2
LYM634 69593.1 0.7 0.13  5 39.0 0.30  4
LYM624 68939.1 0.7 0.11  9 40.5 0.04  8
LYM617 69584.1  9.4 0.18 3
LYM608 69272.6 0.8 0.01 12
LYM570 69428.3 0.8 L 18 43.7 0.15 17
LYM558 68868.2 0.8 0.23 14
LYM558 68868.5  9.4 0.24 4
LYM557 68859.1 42.2 L 13
LYM557 68859.2 0.8 0.02 13 39.9 0.13  7
LYM545 69555.2 0.8 0.19 13
LYM545 69557.2 0.9 0.01 31 48.9 0.05 30
CONT. 0.7  9.1 37.5
LYM732 68364.1 1.7 0.13 20 102.5  L 17
LYM718 68210.2 96.2 0.07  9
LYM718 68214.3 93.3 0.02  6
LYM718 68214.9 1.5 0.03  5 95.0 L  8
LYM675 68240.2 11.9 0.15 4 95.8 0.01  9
LYM590 68424.1 1.6 0.02  7 96.7 L 10
CONT. 1.4 11.4 87.9
LYM725 69177.4 1.4 0.16  9 80.6 0.29  8
LYM609 68559.1 1.4 0.19 10 11.9 0.01 10  91.0 0.04 22
LYM609 68562.2 1.5 0.17 18 91.9 0.29 24
LYM594 69287.3 11.6 0.07 7
LYM594 69288.3 11.6 0.07 7
LYM591 68918.1 85.9 0.08 15
LYM589 68416.2 11.3 0.20 4
LYM589 68418.4 11.2 0.18 4
LYM566 69082.1 1.5 0.12 16 11.8 0.02 8 91.9 0.02 24
CONT. 1.3 10.8 74.4
LYM698 69329.2 0.8 0.03 17
LYM698 69330.4 0.8 0.25 16
LYM677 68522.1  9.4 0.26 2
LYM677 68524.3 0.8 0.12 24  9.9 L 7 50.3 0.08 25
LYM643 69154.1 0.8 0.28 20
LYM643 69155.1 0.7 0.09 11
LYM643 69157.5 0.8 0.04 18 46.2 0.06 15
LYM621 69147.1 0.7 0.20 10
LYM621 69151.2 0.7 0.22  8
LYM616 68472.4 0.8 0.02 18 44.1 0.19 10
LYM613 68285.3 0.8 0.03 19 45.6 0.16 13
LYM601 69087.3  9.7 0.02 4
LYM601 69089.2 0.7 0.27  7
LYM600 68433.2 0.7 0.25  8  9.8 0.27 5 44.1 0.18 10
LYM581 68403.3 0.8 0.29 20 46.7 0.05 16
LYM581 68406.3 0.7 0.16  9
LYM567 68874.3 0.7 0.09 12 44.0 0.19  9
LYM565 69077.1 0.7 0.17 12
CONT. 0.7  9.3 40.2
LYM660 68513.1 1.5 0.01 11 89.2 0.23  9
LYM647 68489.2 1.5 0.04 11 11.4 0.03 6 91.4 0.27 12
LYM618 68171.2 1.5 0.11  6
LYM618 68173.5 1.5 0.21  7 11.4 0.17 6 89.7 0.11 10
LYM618 68173.6 1.4 0.10  5 11.7 0.13 9
LYM609 68559.5 11.2 0.22 4
LYM604 68444.3 11.5 0.25 7
LYM604 68447.1 11.1 0.21 3 89.2 0.04  9
LYM600 68433.2 1.6 0.17 14 12.2 L 14  99.8 0.21 22
LYM600 68434.1 11.5 0.03 7
LYM598 68426.4 11.4 0.22 6 87.4 0.26  7
LYM598 68430.1 11.8 0.17 9
LYM581 68403.3 1.5 0.25 10 92.5 L 13
LYM581 68405.6 11.1 0.25 3
LYM581 68406.3 11.8 0.17 9 87.9 0.10  7
LYM573 68276.1 11.8 0.02 10 
LYM573 68279.3 1.5 0.01  9 89.4 0.07  9
LYM525 68578.4 1.5 L 11 11.4 0.04 6 94.5 0.02 15
CONT. 1.4 10.8 81.9
Table 53. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 54
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
RGR Of Leaf RGR Of Plot RGR Of Rosette
Gene Event Number Coverage Diameter
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM691 69779.3 12.8  0.22 19
LYM680 68976.1 0.7 0.29 15
LYM673 68765.1 0.7 0.25 17
LYM673 68766.2 0.8 0.14 20
LYM670 70554.2 0.7 0.21 18
LYM642 69195.1 0.8 0.18 19
LYM642 69198.1 12.6  0.26 18
LYM615 70539.1 12.9  0.22 20
LYM592 69577.3 0.8 0.03 30
LYM588  68914.10 0.7 0.25 16
LYM574 70638.1 0.7 0.19 18
LYM574 70639.5 0.8 0.12 23
CONT. 0.6 10.7 
LYM724 69027.1 0.8 0.05 23
LYM724 69030.2 7.9 0.03 52 0.5 0.17 20
LYM724 69031.4 6.9 0.14 34
LYM690 68768.3 6.5 0.24 27
LYM690 68769.3 7.6 0.08 46
LYM690 68773.7 0.8 0.21 18 7.2 0.09 40 0.5 0.24 17
LYM688 68192.3 6.8 0.18 31 0.4 0.24 17
LYM669 70649.3 8.6 L 67 0.5 0.09 24
LYM669 70651.2 7.1 0.11 37 0.5 0.20 18
LYM644 69304.3 7.1 0.13 37
LYM638 70077.2 6.5 0.27 25
LYM625 70073.1 7.7 0.04 49 0.4 0.25 16
LYM622 70545.5 7.4 0.06 44 0.4 0.23 17
LYM606 70352.1 7.4 0.08 42 0.5 0.12 22
LYM591 68922.1 0.7 0.26 13
LYM583 70154.1 7.6 0.05 47 0.5 0.15 20
LYM583 70159.3 8.9 L 71 0.5 0.14 21
LYM569 69124.2 6.6 0.23 27
LYM566 69081.2 6.7 0.21 29
LYM536 68590.5 8.1 0.02 57 0.5 0.11 22
LYM536 68592.5 0.8 0.21 15
CONT. 0.7 5.2 0.4
LYM703 69019.1 8.0 0.06 29 0.5 0.24 10
CONT. 6.2 0.4
LYM689 69158.3 0.4 0.23  8
LYM689 69160.4 0.4 0.24  8
LYM650 69359.2 0.4 0.10 11
LYM570 69428.3 5.8 0.23 16
LYM545 69557.2 6.4 0.04 30 0.5 0.09 14
CONT. 5.0 0.4
LYM732 68364.1 11.8  0.09 17 0.6 L 16
LYM718 68214.3 0.5 0.07 10
LYM694 68530.4 0.8 0.25 12
LYM677 68526.1 0.5 0.28  8
LYM675 68240.2 0.8 0.19 13 11.1  0.28 10 0.5 0.30  5
LYM630 68175.4 0.5 0.19  8
LYM630 68175.5 11.4  0.23 12 0.5 0.29  7
LYM602 68442.8 0.5 0.26  7
LYM590 68424.1 11.4  0.19 13 0.5 0.11  8
LYM580 68402.3 0.8 0.19 13 11.5  0.19 14
LYM568 68384.3 0.5 0.28  7
CONT. 0.7 10.1  0.5
LYM679 69323.2 0.8 0.28 11
LYM674 68186.5 0.8 0.20 13
LYM609 68559.1 11.3  0.19 22
LYM609 68559.5 0.8 0.18 14
LYM609 68562.2 11.4  0.18 23
LYM594 69287.3 0.8 0.13 15
LYM589 68416.1 0.8 0.17 14
LYM580 68402.2 0.8 0.28 11
LYM569 69126.1 0.8 0.24 12
LYM566 69082.1 0.8 0.26 11 11.4  0.16 24 0.5 0.28 12
LYM550  68848.11 0.8 0.29 10
CONT. 0.7 9.2 0.4
LYM712 69174.1 0.8 0.25 14
LYM698 69329.2 0.4 0.27  9
LYM677 68524.3 6.6 0.10 24 0.4 0.06 15
LYM643 69157.4 0.4 0.28  8
LYM643 69157.5 6.2 0.29 15 0.4 0.13 12
LYM616 68469.2 6.3 0.27 17
LYM600 68433.2 0.4 0.29  8
LYM581 68403.3 6.2 0.29 15
LYM565 69079.3 0.8 0.29 11
CONT. 0.7 5.4 0.4
LYM647 68489.2 10.7  0.21 13
LYM618 68173.6 0.7 0.21 15
LYM609 68559.1 11.0  0.13 17 0.5 0.11 10
LYM604 68444.3 0.7 0.24 13
LYM600 68433.2 0.8 0.02 28 11.5  0.05 22 0.5 0.29  6
LYM600 68436.3 0.7 0.13 19
LYM598 68430.1 0.7 0.19 17
LYM589 68416.2 0.7 0.30 11
LYM581 68403.3 10.6  0.22 13
LYM573 68276.2 0.7 0.27 14
LYM525 68578.4 10.9  0.12 15 0.5 0.24  6
CONT. 0.6 9.4 0.5
Table 54. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 55
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Harvest Index Rosette Area [cm2] Rosette Diameter [cm]
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM749 70679.3 12.1  0.18 14 5.9 0.16 6
LYM712 69171.1 11.5  0.20  8 6.0 0.09 6
LYM698 69329.3 11.8  0.19 11 6.0 0.12 7
LYM697 69003.1 12.0  0.28 13
LYM691 69779.3 12.5  0.03 18 6.2 0.21 11 
LYM643 69157.5 11.4  0.25  7
LYM642 69198.1 12.6  0.07 18 6.0 0.10 7
LYM615 70539.1 12.7  0.18 20 6.2 0.12 10 
LYM565 69077.1 12.2  0.04 15 6.1 0.04 8
CONT. 10.6  5.6
LYM724 69030.2 7.4 0.01 53 4.8 0.02 28 
LYM724 69031.4 6.5 0.30 36 4.5 0.26 19 
LYM690 68768.3 6.2 0.13 28 4.2 0.24 13 
LYM690 68773.7 6.7 0.11 40 4.5 0.16 19 
LYM688 68192.3 6.4 0.04 32 4.4 0.02 19 
LYM688 68194.1 5.7 0.28 19 4.1 0.16 9
LYM679 69320.1 5.6 0.30 17 4.2 0.25 11 
LYM669 70649.3 8.2 L 70 5.0 L 34 
LYM669 70651.2 6.6 0.04 37 4.5 0.01 21 
LYM640 68948.1 5.9 0.19 22 4.2 0.18 11 
LYM640 68950.2 4.0 0.28 8
LYM625 70072.2 5.7 0.23 18
LYM625 70073.1 7.2 L 50 4.6 L 23 
LYM622 70544.2 5.6 0.24 16 4.0 0.27 8
LYM622 70545.5 7.0 0.04 44 4.6 0.03 22 
LYM622 70548.2 5.8 0.20 20 4.2 0.20 13 
LYM606 70352.1 6.9 0.08 44 4.7 0.04 26 
LYM591 68922.1 4.1 0.23 10 
LYM583 70154.1 7.1 0.05 47 4.6 0.01 24 
LYM583 70159.3 8.4 L 74 4.9 L 31 
LYM569 69123.3 5.8 0.26 21 4.1 0.27 11 
LYM569 69124.2 6.2 0.23 28 4.3 0.27 15 
LYM566 69081.2 6.2 0.14 30 4.2 0.08 13 
LYM536 68590.5 7.6 L 59 4.8 L 29 
CONT. 4.8 3.7
LYM734 69050.4 0.4 0.22 28
LYM734 69050.6 6.4 0.17 10 4.7 0.23 6
LYM734 69053.3 0.3 0.28  6
LYM734 69055.1 6.3 0.04  8
LYM723 68823.1 0.4 L 22
LYM714 69616.2 0.3 0.12 10
LYM714 69618.2 0.3 0.10 14
LYM714 69619.1 0.3 0.12 10
LYM705 69266.1 6.4 0.03  9
LYM705 69270.1 0.3 0.29 19
LYM705 69270.2 0.4 0.21 22
LYM704 69454.1 0.3 0.22  6
LYM704 69454.2 6.4 0.27  9 4.7 0.08 6
LYM704 69456.1 0.3 0.23  6
LYM703 69014.2 0.3 0.03 15
LYM703 69014.3 0.4 0.02 24 6.2 0.18  6 4.6 0.26 3
LYM703 69018.5 0.3 0.01 16
LYM703 69019.1 7.6 0.26 30 5.1 0.29 14 
LYM699 69008.1 0.4 L 24
LYM699 69010.2 0.3 0.06 10
LYM697 69002.2 0.4 0.05 27
LYM697 69004.2 0.4 0.24 26
LYM697 69006.1 0.4 L 32
LYM695 69440.1 0.3 0.07 13
LYM695 69442.2 6.5 0.02 12 4.7 0.08 5
LYM666 69774.4 0.3 0.25 15 6.4 0.18  9 4.8 0.10 7
LYM607 69363.2 0.3 0.19 11
LYM607 69363.4 0.3 0.03 13
LYM607 69366.1 0.4 L 28
LYM603 69299.2 0.3 L 19
LYM603 69301.1 0.3 0.28  6
LYM595 68925.1 0.3 0.02 14
LYM595 68926.3 0.3 0.12 15
LYM595 68928.2 0.4 0.08 21
LYM586 69143.5 0.3 0.01 16
LYM586 69144.4 0.4 L 22
LYM548 69765.2 0.3 0.24 13
LYM548 69765.4 4.6 0.23 4
LYM548 69768.1 0.3 0.25 14
LYM548 69769.1 4.8 0.20 8
LYM535 69281.2 6.5 0.08 11 4.8 0.03 7
LYM528 69464.2 0.3 0.23 13
LYM528 69464.4 0.3 0.05 12
LYM528 69469.2 0.3 0.29  5
CONT. 0.3 5.9 4.5
LYM724 69027.1 4.1 0.28 3
LYM717 69458.3 0.4 0.13 15
LYM706 69022.3 0.4 0.12 11
LYM689 69158.3 5.1 0.22  9
LYM689 69160.4 0.4 0.04 21
LYM650 69358.3 0.4 0.11 10
LYM650 69359.2 0.4 0.29 21 5.1 0.02 10 4.2 0.01 7
LYM650 69360.2 0.4 L 21
LYM650 69361.1 0.4 0.11 22
LYM650 69361.2 0.4 0.01 16
LYM634 69593.1 4.9 0.30  4 4.1 0.26 3
LYM624 68936.1 4.1 0.23 3
LYM624 68939.1 5.1 0.04  8 4.1 0.22 3
LYM608 69276.1 0.4 0.12 16
LYM576 69567.1 0.4 0.22 16
LYM576 69570.6 0.3 0.16  9
LYM570 69428.3 5.5 0.15 17 4.3 0.17 8
LYM558 68865.1 0.4 0.01 21
LYM558 68869.1 0.3 0.25  6
LYM557 68858.2 0.4 L 25
LYM557 68859.1 5.3 L 13
LYM557 68859.2 5.0 0.13  7
LYM545 69557.2 6.1 0.05 30 4.6 L 16 
CONT. 0.3 4.7 4.0
LYM732 68363.4 0.3 0.16 10
LYM732 68364.1 12.8  L 17 6.5 L 14 
LYM718 68210.2 12.0  0.07  9 5.8 0.07 3
LYM718 68214.3 11.7  0.02  6
LYM718 68214.4 0.4 0.17 16
LYM718 68214.9 11.9  L  8
LYM716 68206.4 0.3 0.20  8
LYM694 68528.1 0.3 0.18  9
LYM694 68530.4 0.4 0.16 19
LYM677 68524.3 0.3 0.19 11
LYM677 68526.2 0.4 0.20 20
LYM675 68240.2 12.0  0.01  9 5.9 0.26 4
LYM630 68175.4 0.4 0.09 18
LYM630 68175.5 0.3 0.16 10
LYM613 68285.4 0.4 0.13 17
LYM602 68442.1 0.3 0.20 10
LYM590 68423.1 0.4 0.02 18
LYM590 68423.2 0.3 0.29  7
LYM590 68424.1 0.3 0.18 14 12.1  L 10
LYM568 68386.1 0.3 0.30 15
LYM568 68386.3 0.3 0.18 12
LYM532 68380.1 0.4 0.07 17
LYM532 68380.2 0.3 0.21  9
CONT. 0.3 11.0  5.7
LYM725 69177.4 10.1  0.29  8 5.4 0.27 5
LYM680 68974.1 0.4 L 24
LYM679 69321.1 0.3 0.25  7
LYM679 69321.2 0.4 0.19 15
LYM678 68369.2 0.4 0.22 17
LYM678 68369.3 0.4 0.03 14
LYM678 68371.3 0.4 0.02 17
LYM674 68186.6 0.3 0.29  6
LYM612 68459.2 0.4 0.10 14
LYM609 68559.1 11.4  0.04 22 5.4 0.12 7
LYM609 68559.5 0.4 0.11 12
LYM609 68562.2 0.3 0.14  8 11.5  0.29 24 5.8 0.22 14 
LYM591 68918.1 0.4 0.27 11 10.7  0.08 15 5.6 0.03 11 
LYM591 68920.3 0.4 0.01 18
LYM590 68422.1 0.4 0.11 13
LYM590 68422.3 0.3 0.13  9
LYM589 68416.1 0.4 0.19 15
LYM588 68914.8 0.4 0.12 13
LYM569 69125.1 0.3 0.27  7
LYM569 69127.1 0.4 0.05 19
LYM566 69082.1 11.5  0.02 24 5.7 0.02 12 
LYM550 68846.1 0.3 0.11  9
LYM550 68848.8 0.4 0.05 23
CONT. 0.3 9.3 5.1
LYM698 69329.2 4.2 0.16 6
LYM677 68524.3 0.4 0.20 15 6.3 0.08 25 4.5 0.01 14 
LYM643 69157.5 5.8 0.06 15 4.3 0.04 10 
LYM616 68472.4 5.5 0.19 10 4.2 0.13 6
LYM613 68285.3 5.7 0.16 13 4.3 0.10 8
LYM601 69087.5 4.2 0.13 6
LYM600 68433.2 5.5 0.18 10 4.2 0.15 6
LYM581 68403.3 0.4 0.18 15 5.8 0.05 16 4.1 0.20 5
LYM567 68874.3 0.5 0.03 33 5.5 0.19  9
CONT. 0.4 5.0 3.9
LYM660 68513.1 11.2  0.23  9 5.8 0.28 4
LYM660 68513.4 0.3 0.17 14
LYM647 68488.1 0.3 0.20 12
LYM647 68489.2 11.4  0.27 12 5.9 0.23 6
LYM631 68348.6 0.3 0.29 12
LYM631 68352.1 0.3 0.26 11
LYM618 68173.3 0.3 0.07 22
LYM618 68173.5 11.2  0.11 10
LYM618 68173.6 0.3 0.10 18 5.8 0.15 4
LYM609 68559.5 0.3 0.10 18
LYM604 68444.3 5.8 0.30 4
LYM604 68446.4 0.3 0.09 18
LYM604 68447.1 0.3 0.05 22 11.1  0.04  9 5.8 0.11 3
LYM600 68433.2 12.5  0.21 22
LYM600 68434.1 0.3 0.17 14
LYM598 68426.4 10.9  0.26  7
LYM598 68429.2 0.3 0.11 16
LYM598 68430.1 0.3 0.20 14
LYM589 68415.3 0.3 0.07 22
LYM589 68416.1 0.3 0.14 15
LYM589 68416.2 0.3 0.16 20
LYM581 68403.3 11.6  L 13 5.9 0.02 6
LYM581 68406.3 11.0  0.10  7
LYM575 68268.3 0.3 0.05 21
LYM573 68276.1 0.3 0.03 26
LYM573 68279.3 11.2  0.07  9 5.7 0.19 3
LYM525 68578.1 0.3 0.14 15
LYM525 68578.4 11.8  0.02 15 6.1 0.20 10 
LYM525 68580.4 0.3 0.28 10
CONT. 0.3 10.2  5.6
Table 55. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 56
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Seed Yield [mg] 1000 Seed Weight [mg]
Gene Event P- % P- %
Name # Ave. Val. Incr. Ave. Val. Incr.
LYM734 69050.6 255.5 0.02 19
LYM723 68823.1 250.1 0.04 17
LYM723 68825.4 265.9 0.06 24
LYM704 69454.2 238.1 0.18 11
LYM703 69014.3 252.6 0.03 18
LYM703 69018.5 242.3 0.26 13
LYM703 69019.1 27.4 0.27 38
LYM699 69008.1 234.3 0.19 10
LYM697 69002.2 277.4 0.11 30
LYM697 69004.2 248.7 0.13 16
LYM697 69006.1 240.4 0.10 12
LYM695 69440.1 244.4 0.06 14
LYM695 69441.1 22.1 0.03 11
LYM695 69442.2 23.0 0.23 15
LYM666 69771.2 22.9 0.02 15
LYM666 69774.4 248.5 0.06 16
LYM607 69366.1 259.4 0.01 21
LYM603 69298.1 242.2 0.09 13 23.4 0.24 17
LYM603 69299.2 241.4 0.24 13
LYM595 68925.1 232.1 0.29  9
LYM595 68928.1 21.7 0.06  9
LYM595 68928.2 264.1 0.12 23
LYM586 69143.5 254.5 0.04 19
LYM586 69144.4 246.7 0.06 15
LYM548 69768.1 244.6 0.06 14
LYM528 69469.2 230.0 0.29  8
CONT. 213.8 19.9
LYM733 69746.2 19.6 0.30  4
LYM733 69750.3 20.9 L 11
LYM726 69752.2 25.2 0.14 34
LYM726 69753.5 23.1 0.04 23
LYM726 69754.4 24.2 0.05 29
LYM724 69027.1 21.8 0.06 16
LYM724 69031.4 20.9 0.02 11
LYM717 69458.3 249.2 0.04 21
LYM717 69459.2 228.0 0.09 11 22.7 0.02 21
LYM717 69459.3 24.4 L 30
LYM717 69463.1 20.9 0.24 11
LYM706 69024.3 19.9 0.15  6
LYM702 69446.2 22.5 0.06 20
LYM702 69451.4 228.3 0.07 11 19.8 0.18  6
LYM689 69160.4 238.8 0.23 16
LYM662 68817.1 19.2 0.22  2
LYM662 68818.2 19.8 0.02  5
LYM650 69358.3 242.4 0.11 18
LYM650 69359.2 19.5 0.06  4
LYM650 69360.2 257.4 0.02 25 19.4 0.19  3
LYM650 69361.1 247.7 0.03 20
LYM650 69361.2 20.0 0.16  6
LYM634 69590.1 20.4 0.28  9
LYM634 69593.1 21.7 0.17 16
LYM624 68937.1 231.6 0.22 12 20.3 L  8
LYM608 69276.1 240.8 0.01 17 19.6 0.08  4
LYM608 69276.2 20.1 0.24  7
LYM576 69567.1 234.6 0.16 14
LYM576 69569.2 26.7 0.25 42
LYM576 69570.6 243.6 0.06 18
LYM570 69428.2 20.1 0.30  7
LYM570 69432.2 21.5 0.25 14
LYM558 68865.1 262.1 0.19 27 20.0 0.03  7
LYM558 68868.2 233.2 0.09 13
LYM558 68868.5 19.2 0.30  2
LYM557 68858.2 245.8 0.02 19 20.3 0.15  8
LYM557 68859.1 19.6 0.04  4
LYM557 68860.2 20.6 L 10
LYM545 69555.2 31.6 0.11 68
LYM545 69556.1 22.8 0.19 21
LYM545 69557.2 21.5 L 14
CONT. 206.0 18.8
LYM718 68214.4 334.4 0.19 12
LYM718 68214.9 322.9 0.26  8
LYM710 68534.3 321.5 0.26  7
LYM694 68528.1 22.5 0.26  3
LYM694 68530.4 333.6 0.11 12
LYM694 68531.1 335.6 0.09 12
LYM677 68526.2 335.0 0.29 12
LYM661 68519.2 27.0 L 24
LYM630 68174.3 323.3 0.23  8
LYM630 68175.4 338.7 0.07 13
LYM630 68175.5 378.4 0.21 26
LYM613 68285.4 327.0 0.20  9
LYM602 68439.1 23.8 0.11 10
LYM602 68442.1 335.2 0.09 12
LYM590 68423.1 22.7 0.22  4
LYM590 68424.1 323.4 0.22  8
LYM585 68411.4 337.1 0.09 13
LYM585 68413.6 26.0 0.14 19
LYM580 68400.4 23.0 0.08  6
LYM580 68400.6 24.5 0.04 13
LYM580 68402.3 352.8 0.07 18
LYM568 68386.2 341.5 0.06 14 22.8 0.17  5
LYM568 68386.3 325.0 0.25  9
LYM532 68379.4 322.9 0.25  8
LYM532 68380.1 382.5 0.07 28
LYM532 68381.3 321.1 0.27  7
CONT. 299.2 21.7
LYM725 69179.4 21.9 0.10  9
LYM684 68996.1 337.0 0.17 20
LYM680 68972.1 307.3 0.25  9
LYM680 68974.1 337.1 L 20
LYM680 68974.3 24.1 0.28 21
LYM680 68976.1 363.4 0.26 29
LYM679 69321.1 312.8 0.18 11
LYM679 69321.2 322.3 0.05 14
LYM678 68369.3 301.5 0.18  7
LYM678 68370.1 25.3 0.08 26
LYM678 68371.3 319.2 0.13 13
LYM674 68188.3 23.6 L 18
LYM674 68188.4 23.6 L 18
LYM612 68457.4 25.6 0.14 28
LYM612 68459.2 317.4 0.26 13
LYM609 68559.5 330.4 0.09 17
LYM609 68561.4 326.6 0.03 16 20.9 0.07  5
LYM609 68562.2 319.2 L 13
LYM594 69286.1 305.4 0.05  8 23.2 0.12 16
LYM591 68920.3 328.0 0.02 16
LYM591 68922.1 313.9 0.14 11 23.9 0.15 19
LYM590 68422.1 304.2 0.10 8
LYM590 68422.3 319.2 0.04 13
LYM589 68416.1 318.2 0.17 13
LYM588 68914.8 328.7 0.28 17
LYM569 69125.2 300.8 0.16  7
LYM569 69127.1 333.4 0.10 18
LYM550 68846.1 22.9 0.05 15
LYM550  68848.11 23.3 0.26 16
LYM550 68848.8 21.9 0.27  9
CONT. 281.8 20.0
LYM690 68768.2 25.2 0.20 22
LYM690 68768.3 22.8 0.03 10
LYM677 68524.3 375.1 0.20 18
LYM675 68241.5 363.6 0.19 14
LYM644 69304.2 23.1 L 12
LYM643 69157.4 423.5 0.15 33
LYM640 68950.2 24.8 L 20
LYM640 68953.5 21.9 0.22  6
LYM613 68285.3 371.8 0.21 17
LYM600 68433.2 22.9 0.23 11
LYM600 68436.1 22.3 0.19  8
LYM600 68436.3 24.6 L 19
LYM581 68403.3 371.5 0.15 17
LYM567 68874.3 401.2 0.05 26
CONT. 317.9 20.6
LYM660 68511.2 321.6 0.23 17
LYM660 68513.1 27.3 0.16 13
LYM660 68513.5 311.0 0.26 13
LYM631 68351.4 312.2 0.25 13
LYM631 68352.1 312.2 0.25 13
LYM618 68171.4 25.6 0.17 6
LYM618 68173.6 330.9 0.20 20
LYM604 68447.1 319.9 0.19 16
LYM600 68436.1 25.4 0.30  5
LYM589 68415.3 323.9 0.14 18
LYM581 68403.3 25.3 0.17  5
LYM581 68405.2 28.3 0.08 17
LYM581 68406.3 30.4 0.19 26
LYM573 68276.2 27.5 0.17 14
LYM573 68279.3 27.5 0.08 14
LYM525 68578.4 27.1 L 12
LYM525 68579.2 33.5 0.20 38
LYM525 68580.4 313.2 0.23 14
CONT. 275.3 24.2
Table 56. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
Example 15 Evaluation of Transgenic Arabidopsis for Seed Yield and Plant Growth Rate Under Normal Conditions in Greenhouse Assays Until Bolting (GH-SB Assays)
Assay 2: Plant Performance Improvement Measured Until Bolting Stage: Plant Biomass and Plant Growth Rate Under Normal Greenhouse Conditions (GH-SB Assays)—
This assay follows the plant biomass formation and the rosette area growth of plants grown in the greenhouse under normal growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing of 6 mM inorganic nitrogen in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2 and microelements. All plants were grown in the greenhouse until bolting stage. Plant biomass (the above ground tissue) was weight in directly after harvesting the rosette (plant fresh weight [FW]). Following plants were dried in an oven at 50° C. for 48 hours and weighted (plant dry weight [DW]).
Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker were used as control.
The plants were analyzed for their overall size, growth rate, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
Digital Imaging—
A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) was used for capturing images of plant samples.
The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubes were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Images were captured in resolution of 10 Mega
Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Leaf Analysis—
Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, and leaf blade area.
Vegetative Growth Rate:
the relative growth rate (RGR) of leaf number (Formula IX, described above), rosette area (Formula VIII described above) and plot coverage (Formula XV, described below) were calculated using the indicated formulas.
RGR plot coverage  Formula XV:
Relative growth rate of plot coverage=Regression coefficient of plot coverage along time course.
Plant Fresh and Dry Weight—
On about day 80 from sowing, the plants were harvested and directly weight for the determination of the plant fresh weight (FW) and left to dry at 50° C. in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).
Statistical Analyses—
To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student's t-test and results were considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
Experimental Results:
Tables 57-59 summarize the observed phenotypes of transgenic plants expressing the genes constructs using the GH-SB Assays.
The genes listed in Tables 57-59 improved plant performance when grown at normal conditions. These genes produced larger plants with a larger photosynthetic area, biomass (fresh weight, dry weight, rosette diameter, rosette area and plot coverage), relative growth rate, blade relative area and petiole relative area. The genes were cloned under the regulation of a constitutive At6669 promoter (SEQ ID NO:8529). The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.
TABLE 57
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Dry Weight [mg] Fresh Weight [mg] Leaf Number
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM725 69177.3  981.2 0.23  8 11.8 0.18 8
LYM684 68996.1 11.2 0.25 3
LYM684 68997.3 110.6 0.26  8 1000.0 0.12 10
LYM679 69321.2 1093.8 0.10 20 11.9 L 9
LYM678 68371.3 11.8 L 9
LYM674 68186.6 1000.0 0.19 10
LYM612 68459.2 11.8 L 9
LYM612 68461.1 11.5 0.16 6
LYM612 68461.4 112.5 0.28  9 1087.5 0.25 19 11.6 0.03 6
LYM609 68558.3 11.8 0.22 9
LYM609 68559.1 1031.2 0.13 13 11.8 0.11 9
LYM609 68562.2 1262.5 0.04 39 12.2 L 12 
LYM592 69573.2 11.4 0.09 5
LYM590 68423.1 11.8 L 9
LYM590 68425.1 11.9 0.05 9
LYM589 68416.1 140.3 L 36 1420.5 0.22 56
LYM589 68416.2 11.2 0.25 3
LYM589 68418.7  987.5 0.24  8
LYM588 68912.4 11.5 0.29 6
LYM588  68914.10 137.5 0.05 34 1243.8 0.24 37 12.1 L 12 
LYM580 68399.2 11.3 0.13 4
LYM580 68399.5 1025.0 0.27 13 11.6 0.19 6
LYM580 68402.2 11.2 0.21 4
LYM580 68402.3 148.1 0.02 44 1406.2 0.01 54 11.6 0.19 6
LYM566 69081.1 119.4 0.23 16
LYM566 69081.2 11.6 0.07 6
LYM566 69082.1 130.6 0.06 27 1200.0 L 32 12.0 0.12 11 
LYM550  68848.10 12.6 0.23 16 
CONT. 102.9  910.7 10.9
LYM750 69212.1 1185.7 0.19 12
LYM750 69213.2 10.9 0.20 6
LYM750 69214.3 190.4 L 44 1331.2 0.06 26
LYM750 69215.1 10.9 0.09 7
LYM746 69206.3 173.1 0.03 31
LYM746 69207.4 197.5 L 50 1556.2 0.09 48 11.4 0.04 11 
LYM746 69208.1 1256.2 0.06 19
LYM706 69024.3 1235.7 0.15 17
LYM689 69158.3 214.4 L 63 11.2 0.12 9
LYM689 69159.2 168.1 0.08 27 1406.2 0.01 33 10.8 0.30 5
LYM689 69160.4 1300.0 0.03 23
LYM665 68582.1 10.8 0.20 5
LYM665 68582.3 1312.5 0.29 24
LYM658 69315.1 11.0 0.14 7
LYM658 69319.1 1206.2 0.23 14
LYM655 68994.3 10.9 0.22 7
LYM655 68994.5 1200.0 0.19 14 10.7 0.25 4
LYM650 69359.2 176.4 0.02 34 1221.4 0.23 16
LYM650 69360.2 10.9 0.22 7
LYM645 68954.1 10.8 0.30 5
LYM645 68957.1 213.1 0.12 62 1475.0 L 40
LYM645 68957.2 10.9 0.20 6
LYM627 68980.2 10.9 0.09 7
LYM595 68925.1 11.1 0.04 8
LYM595 68926.2 167.9 0.05 27 1300.0 0.04 23
LYM595 68926.3 11.5 L 12 
LYM567 68870.2 166.9 0.25 27 10.8 0.21 5
LYM567 68871.3 1393.8 0.13 32
CONT. 131.9 1054.3 10.3
LYM737 68552.2 11.3 0.18 4
LYM737 68552.3 11.1 0.29 2
LYM718 68212.3 2381.2 0.06 12
LYM718 68214.3 11.3 0.18 4
LYM718 68214.4 285.0 0.10 33 2625.0 L 24
LYM716 68205.2 2412.5 0.27 14
LYM716 68206.4 243.1 0.24 13 2343.8 0.29 11
LYM716 68208.1 2362.5 0.08 12
LYM715 68542.1 233.8 0.25  9
LYM715 68544.4 2300.0 0.20  9 11.2 0.14 3
LYM710 68537.3 11.4 0.02 5
LYM652 68493.1 231.2 0.27  8
LYM639 68182.5 236.2 0.22 10
LYM630 68174.1 2362.5 0.28 12
LYM630 68174.4 255.0 0.06 19
LYM630 68175.4 11.1 0.20 2
LYM630 68175.5 2262.5 0.24  7
LYM620 68474.1 250.6 0.24 17
LYM620 68478.1 233.8 0.20  9 2306.2 0.23  9
LYM620 68478.5 238.1 0.23 11 2362.5 0.12 12
LYM614 68464.5 257.5 0.02 20 2412.5 0.06 14
LYM614 68466.1 2327.7 0.19 10
LYM612 68457.4 2256.2 0.28  6
LYM602 68442.1 264.4 0.11 23 2437.5 0.08 15
LYM602 68442.8 2306.2 0.23  9
LYM575 68268.3 235.0 0.17  9
LYM575 68268.4 2312.5 0.14  9
LYM573 68276.2 11.2 0.08 3
LYM572 68389.1 2293.8 0.17  8
CONT. 215.0 2118.8 10.9
LYM750 69212.1 11.6 0.13 6
LYM690 68768.3 123.1 0.23 15 1075.0 0.19 10
LYM677 68522.1 126.2 0.07 18 1206.2 0.01 24
LYM677 68524.3 170.0 0.18 59
LYM675 68241.3 141.2 0.13 32 1175.0 0.10 20 11.9 0.02 9
LYM675 68244.1 11.5 0.22 5
LYM644 69304.1 133.1 0.28 25
LYM644 69304.5 123.8 0.04 16
LYM643 69155.1 139.4 0.25 30 1156.2 0.06 18
LYM621 69146.5 115.0 0.28  8
LYM621 69150.1 173.9 L 63 1102.4 0.27 13
LYM616 68469.2 11.4 0.15 5
LYM613 68285.3 123.8 0.06 16
LYM613 68285.4 11.6 0.24 6
LYM601 69088.1 117.5 0.25 10 1062.5 0.23  9
LYM600 68436.3 11.5 0.11 5
LYM581 68406.3 11.8 0.20 8
LYM565 69079.1 11.6 0.09 6
LYM565 69079.3 133.1 L 25 1143.8 0.04 17 11.4 0.21 5
CONT. 106.8  976.5 10.9
LYM714 69619.1 1268.8 0.20  9
LYM704 69455.3 101.9 0.10 12 1281.2 0.16 10 10.1 0.11 6
LYM704 69457.2 1333.9 0.02 14
LYM702 69449.4 100.0 0.19 10
LYM702 69451.4 111.2 L 22
LYM691 69779.2 1268.8 0.20  9
LYM691 69779.3 104.4 0.11 14
LYM691 69780.4 10.1 0.11 6
LYM671 70148.1 117.5 0.15 29 10.4 0.09 9
LYM671 70148.2 103.1 0.04 13 1243.8 0.18  7
LYM671 70149.2 101.9 0.10 12
LYM671 70153.1 108.8 0.08 19 1393.8 0.10 20
LYM653 68967.1 1256.2 0.18  8  9.8 0.23 3
LYM653 68969.2 10.0 0.07 5
LYM642 69198.1 10.3 L 9
LYM617 69587.2 107.5 0.10 18 1312.5 0.03 13 10.2 0.01 7
LYM587 70346.4  9.8 0.16 3
LYM587 70351.1 103.8 0.03 14
LYM576 69566.2 1325.0 0.27 14
LYM576 69569.2 10.0 0.07 5
LYM570 69433.3 107.5 L 18 1331.2 0.03 14
LYM548 69768.1 111.2 0.11 22 1318.8 0.08 13
LYM545 69556.1 10.0 0.07 5
LYM536 68590.6  9.9 0.15 4
LYM536 68592.9 1281.2 0.23 10  9.8 0.16 3
CONT.  91.2 1166.1  9.5
LYM732 68363.4 11.4 0.15 10 
LYM732 68364.3 197.5 0.24  7 1987.5 0.23 13 10.9 0.16 5
LYM719 68546.6 11.2 0.05 8
LYM719 68550.1 10.8 0.26 4
LYM682 68354.4 10.8 0.26 4
LYM682 68356.2 1912.5 0.16  9
LYM665 68582.3 228.1 0.07 23 1981.2 0.18 13
LYM665 68584.1 200.0 0.25  8 1943.8 0.09 11 11.2 0.26 8
LYM665 68585.1 210.6 0.05 14 2100.0 0.23 19
LYM661 68519.2 10.9 0.22 5
LYM647 68488.1 221.9 L 20 2156.2 0.02 23 11.5 0.05 11 
LYM631 68348.6 220.6 0.07 19 2275.0 0.09 29 11.4 0.15 10 
LYM623 68484.3 207.5 0.27 12 11.1 0.13 7
LYM618 68171.2 200.0 0.12  8
LYM618 68171.4 10.9 0.16 5
LYM604 68444.3 1937.5 0.23 10
LYM598 68426.4 203.1 0.25 10 2093.8 0.08 19
LYM598 68429.4 11.5 0.05 11 
LYM585 68412.1 213.8 0.01 16 2025.0 0.04 15
LYM568 68384.2 222.5 L 20 2043.8 0.02 16
LYM568 68386.3 1964.3 0.12 12
LYM532 68380.1 220.6 0.19 19 2181.2 0.27 24 11.2 0.26 8
LYM532 68381.3 10.9 0.22 5
LYM524 68258.2 1862.5 0.29  6
LYM524 68261.4 1937.5 0.10 10
LYM524 68262.2 2037.5 0.17 16
CONT. 185.0 1758.3 10.4
LYM745 71269.4 1087.5 0.23  7
LYM745 71273.4  86.9 0.26  5
LYM708 70359.2 11.4 L 6
LYM708 70361.1 1087.5 0.19  7
LYM688 68196.3 11.3 0.03 4
LYM671 70148.1  91.9 0.03 11 1125.0 0.14 10
LYM642 69195.1  94.4 0.02 14 1218.8 0.01 20
LYM642 69197.1  88.1 0.20  6
LYM642 69198.1  90.0 0.25  9 1131.2 0.16 11
LYM642 69198.3 11.1 0.22 3
LYM638 70077.1  92.5 0.03 12 1137.5 0.04 12
LYM638 70081.1 11.4 L 6
LYM638 70081.3  97.5 0.02 18 1168.8 0.04 15
LYM625 70075.2 11.8 0.24 9
LYM620 68477.1 11.3 0.16 4
LYM615 70539.1 106.2 L 28 1325.0 L 30
LYM615 70539.4 11.3 0.14 4
LYM615 70540.3 1081.2 0.25  6 11.2 0.04 4
LYM615 70540.4 1125.0 0.22 10 11.5 L 6
LYM587 70346.4  92.5 0.02 12 1168.8 0.02 15
LYM587 70347.1  96.9 0.11 17 1212.5 0.03 19
LYM583 70154.2  90.6 0.05  9
LYM583 70157.4 11.1 0.22 3
LYM582 71053.4  93.8 0.02 13
LYM574 70638.5 11.1 0.23 2
LYM554 71109.5 1218.8 0.28 20 11.4 0.26 6
LYM537 70671.1  93.7 0.22 13 1155.4 0.25 13 11.2 0.10 4
LYM536 68590.5 100.0 0.22 21
LYM536 68592.5 11.1 0.23 2
CONT.  82.9 1019.6 10.8
LYM746 69207.4 121.2 0.11 54 1287.5 0.05 28
LYM746 69208.1 100.6 0.01 27 1200.0 0.08 19 10.1 0.22 5
LYM746 69208.3  87.5 0.20 11
LYM746 69210.1 1231.2 0.14 22
LYM717 69463.2  91.2 0.18 16
LYM708 70363.1 104.4 0.07 32 1243.8 0.04 24
LYM708 70363.4 102.5 0.11 30 1218.8 0.08 21
LYM688 68192.3 1181.2 0.19 17 10.2 0.04 7
LYM688 68196.2  87.5 0.20 11 1200.0 0.14 19
LYM680 68972.2  96.9 0.20 23
LYM680 68976.1 1193.8 0.24 19
LYM667 70161.1  97.5 0.07 24 1137.5 0.21 13
LYM667 70162.2 103.8 L 31 1218.8 0.06 21
LYM667 70163.1 103.8 0.10 31 1262.5 0.12 26
LYM666 69774.4  95.6 0.12 21 1193.8 0.09 19
LYM666 69774.5 100.6 0.02 27 1168.8 0.16 16 10.6 L 11 
LYM648 68988.4  88.1 0.18 12
LYM645 68954.1  99.4 0.01 26 1181.2 0.27 17
LYM645 68957.2 106.9 0.21 35 1143.8 0.20 14
LYM645 68958.1  98.8 0.24 25
LYM638 70081.1 1250.0 0.07 24
LYM638 70081.3  98.1 0.05 24
LYM634 69590.1 1228.6 0.12 22
LYM634 69593.1 1156.2 0.21 15
LYM634 69594.2 103.1 L 31
LYM625 70072.2  95.2 0.04 21 1125.0 0.26 12
LYM625 70073.2 115.0 L 46 1293.8 0.04 29
LYM593 69580.2  96.2 0.19 22
LYM593 69581.1 1181.2 0.16 17
LYM583 70154.2 100.6 0.02 27 1168.8 0.30 16
LYM583 70157.2 128.1 0.01 62 1431.2 0.08 42
LYM583 70157.4 111.2 0.29 41 1237.5 0.19 23 10.2 0.04 7
LYM557 68859.1 106.9 0.06 35
LYM557 68860.3  94.4 0.04 20 1150.0 0.18 14
LYM535 69278.3  98.8 0.03 25
LYM535 69281.2  93.1 0.05 18 1112.5 0.30 11
LYM528 69464.4  90.0 0.17 14 10.0 0.12 4
CONT.  78.9 1005.4  9.6
LYM745 71269.2  82.5 0.16  8
LYM700 70904.4  86.9 0.04 14 1012.5 0.02 17
LYM700 70908.3  86.9 0.03 14
LYM682 68353.6  90.6 0.16 19  956.2 0.16 10
LYM682 68354.4  83.8 0.10 10
LYM678 68369.3  981.2 0.15 13 11.7 0.10 6
LYM678 68369.6  95.0 0.03 25
LYM678 68370.1 11.4 0.27 4
LYM674 68186.5  931.2 0.29  7
LYM674 68188.3  94.4 0.17 24 1125.0 L 30 11.6 0.14 6
LYM674 68188.4 1006.3 0.17 16
LYM670 70553.5  925.0 0.25  7
LYM667 70160.1  931.2 0.22  7
LYM667 70162.2  88.1 0.06 16  956.2 0.10 10
LYM660 68511.2  84.4 0.26 11  993.8 0.20 15
LYM652 68495.2  968.8 0.06 12
LYM632 70751.2  950.0 0.11 10
LYM632 70752.2  88.8 0.24 17
LYM622 70544.2  85.0 0.28 12 1068.8 0.23 23
LYM622 70545.1  943.8 0.21  9
LYM606 70357.1  937.5 0.29  8
LYM593 69580.2  94.4 L 24
LYM593 69582.2  968.8 0.06 12
LYM546 68841.1 1000.0 0.02 15
CONT.  76.2  867.3 11.0
Table 57. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 58
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Plot Coverage [cm2] Rosette Area [cm2] Rosette Diameter [cm]
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM725 69177.3 82.8 0.03 14 10.3 0.03 14 5.4 0.27 3
LYM684 68997.3 81.0 0.05 12 10.1 0.05 12 5.5 0.14 4
LYM679 69321.2 103.9  0.07 43 13.0 0.07 43 6.3 0.08 20 
LYM612 68457.4 82.2 0.27 13 10.3 0.27 13
LYM612 68459.2 80.3 0.07 11 10.0 0.07 11 5.5 0.09 5
LYM612 68461.4 78.0 0.24  8  9.8 0.24  8 5.5 0.10 5
LYM609 68559.1 88.1 L 21 11.0 L 21 5.7 L 9
LYM609 68562.2 103.9  L 43 13.0 L 43 6.3 0.04 21 
LYM594 69286.1 81.6 0.29 12 10.2 0.29 12
LYM589 68416.1 6.6 0.28 26 
LYM589 68418.7 78.7 0.13  8  9.8 0.13  8 5.6 0.06 6
LYM588  68914.10 106.1  0.27 46 13.3 0.27 46
LYM580 68399.5 78.2 0.25  8  9.8 0.25  8 5.4 0.21 4
LYM580 68402.3 116.5  0.08 60 14.6 0.08 60 6.5 L 24 
LYM566 69082.1 101.1  0.03 39 12.6 0.03 39 6.2 L 17 
LYM550  68848.10 100.5  L 38 12.6 L 38 5.9 L 12 
CONT. 72.6  9.1 5.2
LYM750 69212.1 10.8 0.04 16 5.8 0.25 7
LYM750 69213.2 87.5 0.04 17 10.9 0.04 17 6.1 0.09 11 
LYM750 69215.1 88.5 0.09 18 11.1 0.09 18 5.8 0.16 6
LYM746 69207.4 89.6 0.16 20 11.2 0.16 20 6.0 0.14 9
LYM746 69208.1 84.8 0.11 14 10.6 0.11 14 6.0 0.04 9
LYM734 69050.4 5.7 0.22 5
LYM725 69177.2 80.2 0.28  7 10.0 0.28  7
LYM725 69177.4 80.1 0.29  7 10.0 0.29  7 5.7 0.30 4
LYM706 69022.3 89.7 0.07 20 11.2 0.07 20 5.9 0.29 8
LYM689 69158.2 5.8 0.10 6
LYM689 69158.3 95.6 0.18 28 11.9 0.18 28 6.1 0.02 12 
LYM689 69159.2 90.2 0.01 21 11.3 0.01 21 6.0 0.02 10 
LYM689 69160.3 82.2 0.18 10 6.2 0.29 14 
LYM689 69160.4 92.6 0.12 24 11.6 0.12 24 6.3 0.02 15 
LYM665 68582.1 84.0 0.19 12 10.5 0.19 12 5.8 0.24 6
LYM665 68582.3 84.9 0.15 14 10.6 0.15 14
LYM658 69315.1 89.4 0.21 20 11.2 0.21 20
LYM658 69316.3 84.0 0.09 13 10.5 0.09 13 5.7 0.24 5
LYM655 68994.2 5.7 0.26 4
LYM650 69358.3 5.7 0.19 5
LYM650 69360.2 86.4 0.06 16 10.8 0.06 16 5.9 0.04 9
LYM645 68954.1 84.0 0.10 12 10.5 0.10 12
LYM645 68955.1 86.1 0.05 15 10.8 0.05 15 5.8 0.19 7
LYM645 68957.2 93.6 L 25 11.7 L 25 6.1 0.01 12 
LYM603 69299.2 81.2 0.22  9 10.1 0.22  9 5.7 0.26 5
LYM595 68925.1 97.4 0.11 30 12.2 0.11 30 6.3 L 15 
LYM595 68926.2 81.7 0.21  9 10.2 0.21  9 5.7 0.17 5
LYM595 68926.3 83.6 0.10 12 10.5 0.10 12 5.8 0.21 5
LYM567 68870.2 88.5 0.22 18 11.1 0.22 18 6.0 0.19 10 
LYM567 68871.3 6.0 0.15 10 
CONT. 74.7  9.3 5.5
LYM718 68214.4 107.7  0.02 18 13.5 0.02 18 6.5 0.04 8
LYM716 68208.1 105.0  0.05 15 13.1 0.05 15 6.5 0.04 8
LYM639 68182.6 6.2 0.24 4
LYM620 68478.1 6.2 0.29 4
LYM620 68478.5 6.2 0.27 4
LYM614 68466.1 13.3 0.03 16 6.4 0.10 7
LYM612 68457.4 12.3 0.23  7 6.3 0.09 6
LYM573 68276.1 98.2 0.23  7 12.3 0.23  7 6.4 0.16 8
LYM572 68389.1 101.5  0.16 11 12.7 0.16 11 6.2 0.20 5
LYM525 68580.4 6.3 0.15 5
CONT. 91.6 11.5 6.0
LYM750 69212.1 90.1 0.21 19 11.3 0.21 19 5.9 0.05 9
LYM690 68768.3 82.9 0.22  9 10.4 0.22  9
LYM677 68522.1 84.4 0.13 11 10.6 0.13 11
LYM677 68525.2 85.0 0.28 12 10.6 0.28 12
LYM643 69155.1 81.5 0.27  8 10.2 0.27  8
LYM600 68436.3 85.4 0.20 13 10.7 0.20 13
LYM565 69079.1 84.4 0.13 11 10.5 0.13 11 5.6 0.20 4
CONT. 75.8  9.5 5.4
LYM714 69619.1 56.8 0.12 10  7.1 0.12 10 4.7 0.07 8
LYM704 69455.3 58.9 0.02 14  7.4 0.02 14 4.6 0.07 7
LYM691 69779.3 61.6 0.02 19  7.7 0.02 19 4.8 0.04 11 
LYM671 70148.2 57.3 0.18 11  7.2 0.18 11 4.5 0.29 4
LYM671 70153.1  7.9 0.14 22 4.8 0.18 11 
LYM587 70346.4 54.6 0.28  6  6.8 0.28  6
LYM576 69566.2 56.5 0.15  9  7.1 0.15  9 4.5 0.15 5
LYM570 69433.3 57.6 0.04 12  7.2 0.04 12 4.6 0.04 7
LYM536 68592.9 55.8 0.11  8  7.0 0.11  8 4.5 0.14 5
CONT. 51.6  6.5 4.3
LYM732 68363.4 102.1  L 24 12.8 L 24 6.1 0.03 9
LYM732 68364.3 95.6 0.14 16 12.0 0.14 16 6.0 0.20 6
LYM719 68546.6 89.0 0.10  8 11.1 0.10  8 6.1 0.04 8
LYM719 68550.1 5.9 0.09 6
LYM682 68354.3 5.9 0.12 5
LYM665 68584.1 97.1 0.01 18 12.1 0.01 18 6.1 0.02 8
LYM665 68585.1 102.4  0.20 24 12.8 0.20 24 6.2 0.21 11 
LYM665 68586.1 88.4 0.19  7 11.0 0.19  7 6.0 0.05 6
LYM661 68517.5 5.9 0.15 5
LYM647 68488.1 100.2  0.02 21 12.5 0.02 21 6.3 0.04 13 
LYM631 68348.6 99.9 0.04 21 12.5 0.04 21 6.2 L 10 
LYM623 68484.3 89.8 0.25  9 11.2 0.25  9 6.0 0.08 7
LYM618 68171.4 89.0 0.11  8 11.1 0.11  8 5.8 0.21 3
LYM604 68444.3 5.8 0.29 4
LYM598 68426.4 96.1 L 16 12.0 L 16 6.2 0.10 9
LYM598 68429.4 97.2 0.29 18 12.1 0.29 18 6.1 0.26 9
LYM585 68412.1 94.3 0.08 14 11.8 0.08 14 6.1 0.01 8
LYM568 68386.3 92.7 0.10 12 11.6 0.10 12 6.0 0.13 7
LYM532 68379.4 5.8 0.29 3
LYM532 68380.6 11.0 0.18  7 6.1 0.02 8
LYM524 68258.2 88.1 0.16  7 11.0 0.16  7
LYM524 68262.2 96.3 0.29 17 12.0 0.29 17 6.4 L 13 
LYM707 68203.8 10.7 0.6   4
CONT. 82.6 10.3 5.6
LYM705 69266.1 98.1 0.30  5 12.3 0.30  5
LYM594 69286.1 99.3 0.15  7 12.4 0.15  7
LYM594 69287.2 98.5 0.23  6 12.3 0.23  6 6.3 0.27 3
LYM586 69144.3 98.1 0.24  5 12.3 0.24  5
LYM586 69144.4 6.5 0.18 6
CONT. 93.0 11.6 6.1
LYM745 71269.2 5.7 0.17 4
LYM708 70360.1 5.7 0.27 3
LYM708 70363.1 5.7 0.26 3
LYM671 70148.1 92.2 0.11 12 11.5 0.11 12 5.8 0.05 6
LYM642 69195.1 93.1 0.03 13 11.6 0.03 13
LYM642 69198.1 100.7  L 22 12.6 L 22 6.2 0.01 12 
LYM638 70077.1 93.0 0.02 13 11.6 0.02 13 5.9 0.03 8
LYM638 70081.3 87.1 0.24  6 10.9 0.24  6
LYM625 70075.2 91.8 0.05 12 11.5 0.05 12 5.9 0.05 6
LYM615 70539.1 111.0  L 35 13.9 L 35 6.3 L 14 
LYM587 70346.4 89.2 0.23  8 11.1 0.23  8
LYM587 70347.1 5.9 0.10 7
LYM554 71109.5 91.2 0.10 11 11.4 0.10 11 5.7 0.16 4
CONT. 82.2 10.3 5.5
LYM746 69207.4 59.5 0.09 11  7.4 0.09 11
LYM746 69208.1 60.9 0.06 14  7.6 0.06 14 4.6 0.20 5
LYM746 69210.1 63.3 0.15 18  7.9 0.15 18 4.7 0.10 8
LYM708 70363.1 62.6 0.03 17  7.8 0.03 17 4.7 0.04 8
LYM708 70363.4 60.4 0.08 13  7.5 0.08 13 4.7 0.06 7
LYM688 68192.3 63.1 0.02 18  7.9 0.02 18 4.8 0.12 10 
LYM688 68196.2 4.7 0.08 7
LYM680 68976.1 4.6 0.23 4
LYM667 70161.1 59.7 0.08 11  7.5 0.08 11 4.7 0.05 9
LYM667 70162.2 62.9 0.03 17  7.9 0.03 17 4.6 0.14 6
LYM667 70163.1 59.8 0.09 12  7.5 0.09 12 4.6 0.19 5
LYM666 69774.4 60.4 0.08 13  7.5 0.08 13 4.8 0.03 9
LYM666 69774.5 63.1 0.23 18  7.9 0.23 18 4.8 0.08 11 
LYM645 68954.1 61.0 0.21 14  7.6 0.21 14
LYM625 70072.1 57.7 0.25  8  7.2 0.25  8 4.6 0.21 5
LYM625 70073.2 63.5 0.15 19  7.9 0.15 19 4.7 0.27 8
LYM625 70075.2  7.7 0.23 14 4.7 0.21 9
LYM583 70154.2 60.2 0.06 12  7.5 0.06 12 4.8 0.02 10 
LYM583 70157.4 61.7 0.03 15  7.7 0.03 15 4.6 0.13 6
LYM557 68859.2 4.5 0.27 4
CONT. 53.5  6.7 4.4
LYM700 70904.4 85.7 0.01 21 10.7 0.01 21 5.5 0.03 10 
LYM700 70906.1 5.2 0.30 4
LYM682 68353.6 78.6 0.22 11  9.8 0.22 11 5.3 0.24 5
LYM682 68356.2 76.5 0.28  8  9.6 0.28  8
LYM678 68369.3 82.9 0.12 17 10.4 0.12 17
LYM678 68369.6 83.0 0.06 17 10.4 0.06 17 5.5 0.06 8
LYM674 68188.3 89.4 L 26 11.2 L 26 5.7 0.03 13 
LYM674 68188.4 87.9 0.10 24 11.0 0.10 24 5.7 0.02 13 
LYM670 70553.5 5.4 0.23 7
LYM667 70160.1 80.6 0.07 14 10.1 0.07 14 5.6 0.03 10 
LYM667 70161.1 5.3 0.27 5
LYM667 70162.2 78.9 0.28 12  9.9 0.28 12 5.4 0.29 8
LYM660 68511.2 87.3 0.02 23 10.9 0.02 23 5.5 0.11 10 
LYM652 68495.2 78.5 0.12 11  9.8 0.12 11 5.4 0.30 6
LYM622 70544.2 87.6 0.23 24 11.0 0.23 24 5.8 L 14 
LYM622 70545.1 78.6 0.28 11  9.8 0.28 11 5.5 0.21 9
LYM622 70545.4 76.9 0.29  9  9.6 0.29  9 5.3 0.17 6
LYM622 70548.2 76.3 0.23  8  9.5 0.23  8 5.3 0.20 5
LYM606 70354.1 5.3 0.25 5
LYM593 69582.2 78.4 0.13 11  9.8 0.13 11
LYM546 68841.1 79.0 0.10 12  9.9 0.10 12 5.3 0.15 6
CONT. 70.7  8.8 5.0
Table 58. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 59
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
RGR Of Leaf RGR Of Plot RGR Of Rosette
Gene Event Number Coverage Diameter
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM725 69177.3 0.8 0.24 18
LYM684 68996.1 0.8 0.24 16
LYM684 68997.3 0.7 0.29 15
LYM679 69321.2 13.0 L 44 0.6 0.04 20
LYM678 68371.3 0.8 0.27 16
LYM673 68765.1 0.8 0.22 17
LYM612 68459.2 0.8 0.17 19
LYM612 68461.1 0.8 0.20 18
LYM609 68558.3 0.8 0.08 26
LYM609 68559.1 10.9 0.18 20 0.5 0.25 10
LYM609 68562.2 12.7 0.01 40 0.5 0.05 18
LYM594 69286.1 0.7 0.30 14
LYM592 69573.2 0.8 0.13 20
LYM590 68425.1 0.8 0.09 25
LYM589 68416.1 13.8 L 52 0.6 0.06 23
LYM588 68912.4 0.7 0.29 15
LYM588  68914.10 13.2 L 46 0.5 0.11 18
LYM580 68402.3 14.5 L 59 0.5 0.04 19
LYM569 69123.1 0.8 0.23 18
LYM566 69082.1 0.7 0.26 16 12.6 0.01 39 0.5 0.12 14
LYM550  68848.10 0.8 0.06 28 12.4 0.01 37
CONT. 0.6  9.1 0.5
LYM750 69213.2 10.6 0.26 18 0.6 0.27 12
LYM750 69215.1 10.8 0.22 19
LYM746 69207.4 0.8 0.21 18 10.8 0.22 20
LYM706 69022.3 10.7 0.22 19
LYM697 69004.1 0.8 0.27 14
LYM689 69158.3 11.5 0.09 27
LYM689 69159.2 10.9 0.19 21
LYM689 69160.3 0.6 0.17 16
LYM689 69160.4 11.2 0.14 24 0.6 0.23 14
LYM658 69315.1 10.7 0.24 18
LYM645 68955.1 10.5 0.30 16
LYM645 68957.2 11.3 0.11 26
LYM627 68980.2 0.8 0.29 14
LYM627 68982.2 10.7 0.24 19
LYM595 68925.1 11.6 0.08 29
LYM595 68926.3 0.8 0.11 21
LYM567 68870.2 10.7 0.24 19
LYM567 68871.3 10.9 0.21 21
CONT. 0.7  9.0 0.5
LYM718 68214.1 0.8 0.20 11
LYM718 68214.4 14.3 0.23 17
LYM630 68175.4 0.8 0.26 11
CONT. 0.8 12.2
LYM750 69212.1 11.2 0.27 18
LYM675 68241.3 0.8 0.12 23
LYM616 68472.3 0.8 0.17 19
LYM616 68472.4 0.8 0.26 15
LYM613 68285.3 0.8 0.26 16
LYM613 68285.4 0.7 0.29 14
CONT. 0.7  9.5
LYM714 69619.1 0.5 0.18 11
LYM704 69455.3  7.9 0.27 15
LYM691 69779.3  8.3 0.15 19 0.5 0.16 12
LYM671 70148.1  8.2 0.21 18
LYM671 70153.1  7.9 0.29 14 0.5 0.18 11
LYM642 69198.1  8.1 0.22 17
LYM617 69584.1  8.0 0.26 16
LYM617 69587.2 0.5 0.27 10
LYM545 69556.1  8.3 0.14 21
CONT.  6.9 0.4
LYM732 68363.4 13.3 0.10 23
LYM732 68364.3 12.7 0.22 17 0.6 0.26 11
LYM719 68546.6 0.6 0.17 14
LYM665 68584.1 12.7 0.20 18
LYM665 68585.1 13.5 0.10 25 0.6 0.26 12
LYM665 68586.1 0.6 0.28 10
LYM647 68488.1 13.2 0.13 22 0.6 0.11 16
LYM631 68348.6 13.1 0.14 22 0.6 0.25 11
LYM598 68426.4 12.7 0.21 18 0.6 0.20 13
LYM598 68429.4 12.9 0.19 19 0.6 0.28 11
LYM585 68412.1 0.6 0.20 13
LYM568 68386.3 0.6 0.26 11
LYM532 68380.1 13.6 0.11 26 0.6 0.07 22
LYM532 68380.6 0.6 0.17 14
LYM524 68262.2 12.7 0.25 17 0.6 0.05 22
CONT. 10.8 0.5
LYM648 68988.4 0.8 0.26 12
CONT. 0.8
LYM745 71269.2 0.5 0.21 13
LYM708 70359.2 0.8 0.16 21
LYM642 69198.1 12.2 0.12 22 0.5 0.14 15
LYM638 70077.1 0.5 0.23 12
LYM638 70081.3 0.5 0.28 11
LYM625 70072.1 0.8 0.20 21
LYM615 70539.1 13.7 0.01 37 0.5 0.20 13
LYM536 68590.5 11.6 0.28 15 0.5 0.26 12
CONT. 0.6 10.0 0.5
LYM746 69210.1  8.4 0.19 18 0.5 0.26 10
LYM708 70363.1  8.3 0.22 17 0.5 0.18 11
LYM708 70363.4 0.5 0.18 11
LYM688 68192.3  8.4 0.17 19 0.5 0.11 14
LYM688 68196.2 0.5 0.19 11
LYM680 68976.1 0.5 0.19 11
LYM667 70161.1 0.5 0.14 12
LYM667 70162.2  8.3 0.20 18
LYM666 69774.4 0.5 0.24  9
LYM666 69774.5 0.8 0.24 17  8.4 0.19 18 0.5 0.17 12
LYM645 68954.1 0.5 0.12 13
LYM638 70081.1 0.5 0.22 11
LYM625 70073.2  8.5 0.15 20 0.5 0.13 13
LYM625 70075.2 0.5 0.15 12
LYM583 70154.2 0.5 0.22 10
LYM583 70157.4  8.2 0.26 15 0.4 0.28  8
CONT. 0.7  7.1 0.4
LYM700 70904.4 10.3 0.20 20
LYM678 68369.6 10.1 0.29 17
LYM674 68188.3 10.8 0.10 26
LYM674 68188.4 10.8 0.11 26 0.5 0.16 18
LYM670 70553.5 0.5 0.30 13
LYM667 70160.1 0.5 0.25 15
LYM660 68511.2 10.5 0.16 22
LYM622 70544.2 10.7 0.13 24 0.5 0.27 14
CONT.  8.6 0.4
Table 59. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
Example 16 Evaluating Transgenic Arabidopsis Under Normal Conditions Using In Vitro Assays [Tissue Culture T2 and T1 Plants, TC-T2 and TC-T1 Assays]
Surface sterilized seeds were sown in basal media [50% Murashige-Skoog medium (MS) supplemented with 0.8% plant agar as solidifying agent] in the presence of Kanamycin (used as a selecting agent). After sowing, plates were transferred for 2-3 days for stratification at 4° C. and then grown at 25° C. under 12-hour light 12-hour dark daily cycles for 7 to 10 days. At this time point, seedlings randomly chosen were carefully transferred to plates containing ½ MS media (15 mM N). For experiments performed in T2 lines, each plate contained 5 seedlings of the same transgenic event, and 3-4 different plates (replicates) for each event. For each polynucleotide of the invention at least four-five independent transformation events were analyzed from each construct. For experiments performed in T1 lines, each plate contained 5 seedlings of 5 independent transgenic events and 3-4 different plates (replicates) were planted. In total, for T1 lines, 20 independent events were evaluated. Plants expressing the polynucleotides of the invention were compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.
Digital Imaging—
A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) and located in a darkroom, was used for capturing images of plantlets sawn in agar plates.
The image capturing process was repeated every 3-4 days starting at day 1 till day 10 (see for example the images in FIGS. 3A-F). An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb(dot)nih(dot)gov/]. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
Seedling Analysis—
Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.
The relative growth rate for the various seedling parameters was calculated according to the following formulas XVI (RGR leaf area, below), V (RGR root coverage, described above) and XVII (RGR root length, below).
Relative growth rate of leaf area=Regression coefficient of leaf area along time course.  Formula XVI:
Relative growth rate of root length=Regression coefficient of root length along time course.  Formula XVII:
At the end of the experiment, plantlets were removed from the media and weighed for the determination of plant fresh weight. Plantlets were then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical analysis. The fresh and dry weights were provided for each Arabidopsis plant. Growth rate was determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results were used to resolve the effect of the gene introduced on plant vigor under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under optimal conditions, was determined by comparing the plants' fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events were examined in replicates.
Statistical Analyses—
To identify genes conferring significantly improved plant vigor or enlarged root architecture, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. To evaluate the effect of a gene event over a control the data was analyzed by Student's t-test and the p value was calculated. Results were considered significant if p<0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
Experimental Results:
Tables 60-62 summarize the observed phenotypes of transgenic plants expressing the gene constructs using the TC-T2 Assays.
The genes presented in Table 60 showed a significant improvement as they produced larger plant biomass (plant fresh and dry weight) in T2 generation when grown under normal growth conditions, compared to control plants. The genes were cloned under the regulation of a constitutive promoter (At6669, SEQ ID NO:8529).
The evaluation of each gene was carried out by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. The results obtained in these second experiments were significantly positive as well.
TABLE 60
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Dry Weight [mg] Fresh Weight [mg]
Gene Event % %
Name # Ave. P-Val. Incr. Ave. P-Val. Incr.
LYM720 68248.3 8.6 0.14 26 166.4 0.13 26
LYM709 69097.2 8.7 0.21 28 176.2 0.07 34
LYM649 69602.1 177.6 0.21 35
LYM628 68946.1 8.2 0.29 21 159.4 0.20 21
LYM544 69236.1 8.4 0.13 24 165.4 0.09 26
LYM544 69240.1 10.8  0.01 60 213.2 L 62
LYM526 69228.4 167.6 0.23 27
CONT. 6.8 131.7
LYM742 69204.2 125.1 0.16 21
LYM741 69062.1 7.4 0.01 41 140.0 0.03 35
LYM736 69060.3 6.6 0.13 25 126.0 0.12 21
LYM683 69436.2 143.7 0.02 38
LYM683 69437.1 7.8 L 49 154.0 L 48
LYM683 69438.2 6.1 0.19 17 130.9 0.10 26
LYM646 68960.5 131.1 0.24 26
LYM563 68906.3 8.8 0.08 67 166.8 0.13 61
LYM563 68906.5 118.1 0.23 14
LYM563 68908.4 7.2 0.10 37 135.3 0.12 30
LYM543 68834.1 6.3 0.25 20 125.5 0.09 21
LYM543 68836.5 6.9 0.06 32 129.1 0.08 24
LYM543 68837.2 140.2 0.10 35
CONT. 5.2 103.8
LYM749 70679.4 6.4 0.04 53 120.2 0.01 42
LYM749 70681.5  99.2 0.30 17
LYM749 70681.6 6.9 0.15 64 123.3 0.11 46
LYM749 70681.8 5.5 0.17 31 109.5 0.18 30
LYM708 70359.2 5.0 0.30 19 102.0 0.10 21
LYM708 70360.1 5.5 0.10 31 114.6 0.02 36
LYM708 70361.1 5.2 0.02 23
LYM708 70363.4 6.1 0.05 46 117.9 0.05 40
LYM688 68192.4 4.7 0.12 13  97.3 0.25 15
LYM688 68192.5 6.5 0.01 56 126.9 0.01 50
LYM688 68193.1 6.4 0.02 53 116.5 L 38
LYM688 68196.2 5.0 L 19
LYM688 68196.3 6.5 0.04 54 115.6 L 37
LYM670 70550.6 6.6 0.05 57 123.0 0.02 46
LYM670 70553.3 5.4 0.05 29 111.0 0.09 31
LYM670 70553.5 7.0 L 69 141.3 L 67
LYM670 70554.2 5.5 L 31 107.5 0.06 27
LYM670 70554.3 5.4 0.02 29 101.6 0.17 20
LYM667 70160.1 5.9 0.03 42 109.6 0.03 30
LYM667 70161.1 7.1 0.02 70 129.6 0.02 53
LYM667 70162.2 6.8 0.19 62 131.7 0.16 56
LYM667 70165.1 5.2 0.03 25  96.5 0.19 14
LYM642 69196.2 5.6 0.15 34 127.6 0.07 51
LYM642 69196.4 6.3 0.03 52 120.8 0.01 43
LYM642 69196.5 5.2 0.10 25 106.3 0.06 26
LYM642 69197.1 6.0 0.17 43 126.0 0.06 49
LYM642 69198.3 6.0 0.08 43 105.3 0.04 25
LYM638 70078.1 5.2 0.02 23
LYM638 70080.4 5.0 0.17 20 108.1 0.10 28
LYM638 70081.1 5.5 0.02 32 108.9 0.05 29
LYM638 70081.3 6.3 L 51 112.6 0.05 33
LYM615 70539.1 5.6 0.27 35 109.5 0.23 30
LYM615 70539.2 4.9 0.21 17 102.1 0.08 21
LYM615 70539.4 7.2 L 72 126.9 L 50
LYM615 70540.4 7.6 0.02 81 142.7 0.02 69
LYM593 69578.2 5.0 0.23 19
LYM593 69580.2 7.9 0.16 89 143.4 0.13 70
LYM593 69581.1 7.2 L 72 140.0 L 66
LYM593 69582.2 5.9 L 40 104.7 0.03 24
LYM587 70347.1 7.0 0.11 68 134.6 0.12 59
LYM587 70350.1 101.0 0.10 20
LYM587 70350.3 5.5 0.19 32 103.7 0.16 23
LYM587 70351.1 6.2 0.12 50
LYM587 70351.2 7.3 0.14 75 132.9 0.08 57
LYM583 70154.1 5.4 0.01 29 111.7 0.02 32
LYM583 70154.2 5.6 L 35 105.8 0.26 25
LYM583 70157.4 6.4 0.04 54 125.6 0.03 49
LYM583 70158.6 5.9 0.02 42 110.4 0.07 31
LYM583 70159.3 6.2 L 48 123.5 L 46
LYM574 70636.1 7.1 0.04 71 113.2 0.04 34
LYM574 70636.4 5.3 0.09 28 101.1 0.26 20
LYM574 70636.5 6.4 0.11 53 132.0 0.07 56
LYM574 70638.1 5.6 0.03 34 114.0 0.15 35
LYM536 68590.5 8.0 L 91 150.8 L 78
LYM536 68590.6 6.3 0.06 50 127.0 0.02 50
LYM536 68592.7 5.5 0.11 32 106.1 0.13 26
LYM536 68592.9 108.9 0.16 29
LYM522 69422.1 5.6 0.05 35 119.2 0.03 41
LYM522 69423.3 7.2 0.03 73 124.5 0.05 47
LYM522 69427.2 8.1 0.04 95 148.3 0.04 75
LYM522 69427.4 8.6 L 105  149.9 L 77
CONT. 4.2  84.5
LYM744 69787.4 8.5 0.07 53 140.8 0.20 24
LYM736 69058.2 10.5  0.04 87 187.8 0.04 65
LYM736 69058.3 8.4 L 51 156.3 L 37
LYM736 69060.7 7.7 0.02 38 140.2 0.17 23
LYM683 69436.2 6.4 0.29 15
LYM683 69438.2 7.3 0.02 30 133.2 0.09 17
LYM683 69439.1 129.7 0.22 14
LYM654 69608.5 8.0 L 44 141.9 0.06 25
LYM654 69609.3 6.7 0.28 20
LYM619 68933.2 6.5 0.27 16
LYM619 68933.3 8.2 0.14 46 163.5 0.09 44
LYM619 68933.5 8.0 0.11 44 148.4 0.19 30
LYM563 68906.2 7.0 0.10 25 137.0 0.11 20
LYM563 68906.3 8.8 0.20 58 169.8 0.20 49
LYM563 68908.4 10.3  0.10 85 172.9 0.12 52
LYM549 69560.3 9.2 0.08 64 174.3 0.06 53
LYM549 69561.1 7.3 0.02 31 131.6 0.12 16
LYM549 69565.1 131.2 0.27 15
LYM543 68834.1 8.1 0.03 45 142.4 0.06 25
LYM543 68834.2 9.5 0.19 70 162.3 0.21 43
LYM538 69758.1 7.8 0.06 40 137.3 0.25 21
LYM538 69759.2 7.3 0.11 31 135.5 0.21 19
LYM538 69762.3 6.8 0.21 22
LYM538 69763.1 8.5 0.01 52 142.2 0.17 25
CONT. 5.6 113.8
LYM730 68253.4 7.3 0.10 15
LYM728 68570.2 8.2 L 29 140.7 0.16 17
LYM728 68571.2 11.5  0.03 80 210.9 0.01 76
LYM727  68565.10 8.3 0.05 30
LYM719 68546.1 9.9 0.24 56 178.5 0.16 49
LYM719 68546.6 7.9 0.04 24 146.7 0.06 22
LYM719 68550.1 147.3 0.13 23
LYM715 68540.2 7.7 0.18 21 142.8 0.24 19
LYM715 68542.1 154.9 0.13 29
LYM715 68542.3 8.7 0.15 37 159.0 0.12 32
LYM715 68543.1 8.5 L 34 149.2 0.01 24
LYM715 68544.2 8.1 0.17 28 147.6 0.21 23
LYM659 68505.2 10.0  0.02 57 187.2 0.03 56
LYM659 68505.3 7.5 0.10 17
LYM578 68394.3 7.5 0.10 17 139.5 0.03 16
LYM527 68375.4 7.7 0.14 21 155.9 0.11 30
LYM527 68376.3 9.0 0.23 41 168.9 0.14 41
CONT. 6.4 120.0
LYM730 68253.4 6.4 0.22 44 128.9 0.27 24
LYM730 68256.1 5.4 0.08 21 115.2 0.25 11
LYM728 68572.1 6.2 L 40 146.0 0.02 41
LYM727  68565.10 5.2 0.28 18
LYM727 68565.6 5.7 0.02 29 115.2 0.16 11
LYM727 68568.2 6.9 L 56 125.4 0.09 21
LYM713 70366.1 5.4 0.06 22 116.3 0.19 12
LYM713 70367.1 8.2 0.09 84 182.3 0.08 76
LYM686 70652.1 5.7 0.16 28
LYM636 69596.3 7.5 0.12 67 155.0 0.13 49
LYM559 70069.1 5.5 0.09 23 113.0 0.27 9
LYM559 70069.3 6.0 0.05 35 132.6 0.04 28
LYM541 69230.2 10.5  L 137  217.1 L 109 
LYM541 69230.4 7.8 L 76 163.6 0.13 58
LYM541 69233.3 7.8 0.03 74 157.5 0.09 52
LYM541 69233.4 12.3  L 178  230.3 L 122 
LYM540 68831.2 5.6 0.05 27 122.4 0.30 18
LYM539 70532.1 6.6 0.21 47 143.1 0.13 38
LYM539 70533.1 5.5 0.24 25
CONT. 4.5 103.8
LYM722 71114.4 13.0  0.04 88 239.4 0.03 70
LYM700 70906.5 9.2 0.29 33 225.9 0.07 61
LYM671 70148.2 10.9  0.02 57 185.8 0.09 32
LYM632 70750.2 10.4  0.05 50 182.8 0.10 30
LYM632 70751.2 9.6 0.19 38 175.6 0.27 25
LYM622 70545.5 9.2 0.20 32 173.7 0.28 23
LYM615 70540.3 10.0  0.05 43 192.9 0.02 37
LYM582 71053.2 12.6  L 81 229.8 L 63
LYM554 71108.6 9.5 0.12 37 170.4 0.30 21
LYM537 70673.2 9.8 0.05 41 168.6 0.22 20
CONT. 6.9 140.7
LYM749 70677.4 6.8 0.06 29 148.9 0.15 24
LYM749 70679.4 6.5 0.11 24 144.2 0.09 20
LYM749 70681.5 6.4 0.07 22
LYM749 70681.6 6.5 0.19 23
LYM749 70681.8 8.2 0.03 55 178.6 L 49
LYM728 68571.3 7.5 0.15 42 159.3 0.20 33
LYM722 71113.2 8.2 0.09 55 167.6 0.12 40
LYM722 71113.4 7.5 0.03 41 169.6 L 41
LYM722 71114.2 9.7 0.05 83 208.6 L 74
LYM722 71114.4 6.9 0.15 31 151.2 0.24 26
LYM722 71115.2 9.2 0.02 74 176.6 0.02 47
LYM722 71115.4 6.4 0.16 21 138.6 0.19 16
LYM697 69003.2 6.4 0.10 21
LYM697 69004.1 6.0 0.29 14
LYM697 69004.2 8.1 L 53 146.5 0.19 22
LYM697 69004.3 7.9 0.28 50
LYM697 69006.3 6.5 0.07 23 147.8 0.10 23
LYM682 68353.3 8.3 0.07 57 180.6 0.05 51
LYM682 68354.3 7.5 0.03 43 150.6 0.07 25
LYM682 68356.2 8.3 0.01 58 173.1 L 44
LYM669 70649.3 8.1 0.06 53 163.7 L 36
LYM669 70651.1 6.5 0.12 23 132.4 0.25 10
LYM635 70168.1 7.9 L 49 172.5 0.05 44
LYM635 70169.1 6.7 0.20 27 137.8 0.18 15
LYM635 70169.2 6.7 0.03 27
LYM607 69362.2 8.6 0.05 62 173.5 0.06 45
LYM607 69363.2 8.4 0.06 59 178.9 0.03 49
LYM607 69365.3 6.9 0.07 30 140.9 0.25 17
LYM607 69366.1 7.8 0.04 48 144.0 0.07 20
LYM607 69366.2 8.2 0.09 55 171.6 0.07 43
LYM606 70352.2 8.3 0.11 57 175.3 0.09 46
LYM606 70354.1 8.2 0.11 56 169.4 0.11 41
LYM606 70357.1 8.6 0.04 63 183.4 0.05 53
LYM574 70636.1 7.2 0.03 36 146.2 0.11 22
LYM574 70636.4 7.0 0.13 32 139.9 0.24 17
LYM574 70636.5 7.1 0.11 35 152.4 0.14 27
LYM574 70638.1 7.5 0.06 42 158.4 0.04 32
LYM574 70639.5 136.4 0.16 14
LYM731 69036.3 8.5 0.28 60
CONT. 5.3 120.0
LYM700 70906.4 7.9 0.23 23 151.3 0.12 24
LYM660 68513.5 10.3  0.04 61 195.2 0.01 60
LYM660 68514.3 138.8 0.28 14
LYM632 70750.3 10.1  0.02 58 173.4 0.09 42
LYM582 71053.2 156.5 0.21 29
LYM582 71053.4 8.6 0.23 34 170.2 0.17 40
LYM582 71054.2 141.4 0.07 16
LYM562 70644.3 138.7 0.24 14
LYM562 70645.1 8.2 0.19 29 157.9 0.20 30
LYM554 71107.2 10.1  L 57 184.4 L 51
LYM554 71108.4 10.2  L 59 180.8 L 48
LYM552 70746.1 7.9 0.11 23
LYM552 70747.1 10.7  0.02 68 213.0 0.01 75
LYM537 70671.1 10.2  0.10 59 205.6 0.10 69
LYM537 70672.1 9.0 0.03 41 158.4 0.09 30
LYM529 70899.2 146.6 0.28 20
LYM529 70901.4 7.7 0.20 20 146.9 0.17 21
LYM522 69423.2 9.4 0.02 46 168.7 0.06 39
LYM522 69423.3 8.6 0.17 34 149.3 0.25 23
LYM522 69427.2 8.4 0.14 31 146.3 0.29 20
CONT. 6.4 121.8
LYM747 69348.3 8.6 0.02 25 191.8 L 52
LYM747 69349.2 11.1  L 63 230.1 L 82
LYM740 69188.3 8.0 0.25 17
LYM740 69190.7 146.2 0.07 16
LYM739 68811.2 10.7  0.23 57 206.6 0.15 63
LYM739 68812.4 9.5 0.10 39 177.0 0.10 40
LYM729 69183.1 9.4 0.11 38 168.8 0.18 34
LYM693 69165.4 9.7 0.12 41 176.0 0.13 39
LYM693 69168.1 8.9 0.16 30 159.1 0.12 26
LYM656 69311.1 162.7 0.18 29
LYM656 69313.1 8.4 0.28 22 159.6 0.25 26
LYM579 69137.5 10.1  0.03 48 181.4 0.05 44
LYM579 69139.3 9.1 0.25 33 212.1 L 68
LYM579 69139.4 9.6 0.01 40 170.6 L 35
LYM555 68852.8 8.9 0.13 30 179.0 0.08 42
LYM553 69243.1 8.3 L 22 159.3 L 26
LYM553 69244.4 164.1 0.14 30
LYM541 69230.1 12.3  L 81 238.9 0.01 89
LYM541 69230.2 14.9  L 118  286.5 L 127 
LYM541 69231.3 14.4  0.05 111  251.0 0.08 99
LYM541 69233.3 11.0  L 61 218.1 L 73
LYM540 68831.3 8.8 0.14 29 177.6 0.04 40
LYM523 69128.5 10.5  0.13 53 201.3 0.20 59
LYM523 69133.4 9.7 0.20 41 181.5 0.16 44
CONT. 6.8 126.4
LYM655 68995.3 11.7  0.04 40 210.8 0.03 41
LYM622 70548.4 10.7  0.28 29 198.3 0.12 33
LYM559 70069.3 12.8  0.02 54 227.0 0.01 52
LYM539 70536.2 11.9  0.03 43 229.2 0.01 54
CONT. 8.3 149.2
LYM747 69344.1 9.5 0.08 81 176.0 0.05 68
LYM747 69348.3 8.1 L 55 170.7 L 63
LYM747 69349.2 9.4 L 80 167.2 0.01 59
LYM693 69165.2 6.9 0.22 31
LYM656 69311.1 7.8 0.20 49 147.4 0.17 40
LYM579 69139.3 8.4 0.04 59 143.8 0.12 37
LYM553 69242.2 8.0 0.09 52 147.8 0.12 41
LYM553 69244.2 6.9 0.13 30
LYM541 69230.1 6.8 0.25 29
LYM541 69230.4 8.2 0.02 55 145.2 0.09 38
LYM541 69233.1 10.6  0.02 101  187.0 L 78
LYM541 69233.3 6.3 0.27 19
LYM541 69233.4 10.9  0.01 107  181.7 0.03 73
CONT. 5.3 105.0
Table 60. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
The genes presented in Tables 61-62 show a significant improvement in plant performance since they produced a larger leaf biomass (leaf area) and root biomass (root length and root coverage) (Table 61) and a higher relative growth rate of leaf area, root coverage and root length (Table 62) when grown under normal growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil. Plants producing larger leaf biomass have better ability to produce assimilates. The genes were cloned under the regulation of a constitutive promoter (At6669). The evaluation of each gene was performed by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. This second experiment confirmed the significant increment in leaf and root performance. Event with p-value <0.1 was considered statistically significant.
TABLE 61
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event Leaf Area [cm2] Roots Coverage [cm2] Roots Length [cm]
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM709 69097.2 6.9 0.24  8
LYM636 69596.3 7.0 0.27  9
LYM636 69601.6 7.0 0.21  8
LYM628 68946.1 9.5 0.21 15
LYM628 68946.2 6.9 0.27  7
LYM544 69236.1 0.7 0.19 12
LYM544 69240.1 0.8 L 34 11.2  0.03 37 6.9 0.28  7
CONT. 0.6 8.2 6.4
LYM741 69062.1 0.6 0.08 15 7.0 0.30 10
LYM741 69064.2 0.6 0.04 17 7.7 0.20 22 6.9 0.06 17
LYM736 69060.3 0.6 0.30  7 8.0 0.16 26 6.8 0.03 15
LYM736 69060.7 6.5 0.15 10
LYM683 69436.2 0.7 L 22 9.7 L 53 7.4 L 27
LYM683 69437.1 0.7 L 23 8.7 L 37 6.8 0.02 16
LYM683 69438.2 9.0 0.05 42 7.1 0.02 21
LYM683 69439.1 7.4 0.05 17 6.8 0.03 16
LYM659 68505.2 7.1 0.24 12 6.6 0.05 13
LYM659 68505.4 8.6 0.07 36 6.5 0.08 11
LYM659 68506.6 7.6 0.24 20
LYM654 69611.1 6.6 0.06 13
LYM646 68964.1 6.4 0.19  9
LYM619 68933.2 7.4 0.03 17 6.4 0.19  9
LYM619 68933.5 6.9 0.05 17
LYM578 68395.2 6.3 0.25  8
LYM578 68395.5 6.6 0.07 12
LYM563 68906.3 0.7 0.13 28
LYM549 69562.3 7.6 0.17 21 6.6 0.15 12
LYM549 69562.4 7.4 0.24 17 7.1 L 21
LYM543 68834.1 0.6 0.25 10
LYM543 68836.5 0.6 0.26  8 7.4 0.30 16
LYM543 68837.2 0.7 0.04 19 8.7 L 37 6.6 0.06 13
LYM543 68837.3 6.6 0.09 12
LYM527 68374.3 7.7 0.03 22 6.8 0.02 16
LYM527 68377.1 0.6 0.22 14 8.2 0.04 29 6.8 0.02 15
CONT. 0.6 6.3 5.9
LYM749 70677.4 0.5 0.05 20
LYM749 70679.4 0.6 0.03 33
LYM749 70681.5 0.6 0.10 30 6.7 0.14 21 6.8 0.07 13
LYM749 70681.6 0.6 0.05 46 7.6 0.23 37
LYM749 70681.8 0.5 0.17 27
LYM708 70359.2 0.5 0.07 16
LYM708 70360.1 0.6 0.01 38 7.3 0.21 31 6.5 0.26  9
LYM708 70361.1 0.5 0.15 17
LYM708 70363.1 0.5 0.12 14
LYM708 70363.2 0.5 0.15 28 6.7 0.15 21
LYM708 70363.4 0.6 0.04 46 8.2 L 47 6.6 0.09 11
LYM688 68192.4 0.5 0.22 11 6.7 0.27 20
LYM688 68192.5 0.6 L 38 7.9 L 42 6.6 0.16 10
LYM688 68193.1 0.6 L 40
LYM688 68196.2 0.5 0.08 13
LYM688 68196.3 0.6 L 37 6.9 0.08 24
LYM670 70550.6 0.6 L 33 7.2 0.18 31
LYM670 70553.3 0.6 0.01 42 6.9 0.12 25
LYM670 70553.5 0.7 L 54 7.4 0.14 34
LYM670 70554.2 0.5 0.02 28
LYM670 70554.3 0.5 0.02 28 7.6 0.03 38 7.0 0.01 17
LYM667 70160.1 0.6 L 36 7.2 0.02 30 6.6 0.09 11
LYM667 70161.1 0.7 L 59 8.3 0.01 49 6.9 0.03 15
LYM667 70162.2 0.6 0.09 43 8.0 L 44 6.6 0.13 10
LYM667 70163.1 6.4 0.19 16 6.8 0.11 14
LYM667 70165.1 0.5 0.12 21
LYM642 69196.2 0.6 0.06 37
LYM642 69196.4 0.6 L 40 7.1 0.07 28
LYM642 69196.5 0.5 0.03 24 7.0 0.11 27
LYM642 69197.1 0.6 0.11 40
LYM642 69198.3 0.5 0.02 27 7.6 0.03 37
LYM638 70077.1 0.5 0.19 17
LYM638 70080.4 0.5 0.15 19
LYM638 70081.1 0.6 L 33
LYM638 70081.3 0.6 L 31 7.6 0.13 38
LYM615 70539.1 0.6 0.02 42
LYM615 70539.2 0.5 L 26
LYM615 70539.4 0.6 L 31
LYM615 70540.3 0.5 0.13 16
LYM615 70540.4 0.7 L 70 8.3 0.01 49 6.4 0.30  7
LYM593 69578.3 0.5 0.12 14
LYM593 69580.2 0.7 0.09 55 7.2 0.28 31
LYM593 69581.1 0.7 L 56 8.4 L 52 6.7 0.05 12
LYM593 69582.2 0.5 L 28 7.4 0.01 33 6.4 0.20  8
LYM587 70347.1 0.6 0.05 51 8.2 0.06 48 7.0 0.03 16
LYM587 70350.1 0.5 0.04 16
LYM587 70350.3 0.5 0.15 25
LYM587 70351.1 0.6 0.03 37
LYM587 70351.2 0.7 0.07 54
LYM583 70154.1 0.6 L 31 8.0 L 44 6.9 0.02 15
LYM583 70154.2 0.6 0.13 31
LYM583 70157.4 0.6 0.03 35 7.9 0.02 42 6.6 0.08 11
LYM583 70158.6 0.6 0.03 32 6.7 0.19 21
LYM583 70159.3 0.6 0.02 42 6.7 0.22 21
LYM574 70636.1 0.6 0.03 46 7.3 0.19 32 6.8 0.05 14
LYM574 70636.4 0.5 0.03 29 7.7 0.02 39 7.0 0.02 17
LYM574 70636.5 0.6 0.03 50 6.9 0.07 24
LYM574 70638.1 0.6 0.03 30
LYM574 70639.5 6.5 0.15  9
LYM536 68590.5 0.7 L 66 8.5 0.01 54 6.5 0.26  9
LYM536 68590.6 0.6 0.04 46 7.1 0.26 27
LYM536 68592.5 0.5 0.22 13 6.7 0.11 21 7.2 L 21
LYM536 68592.7 0.5 0.08 19
LYM536 68592.9 0.6 0.10 32 7.2 0.06 29 6.7 0.06 12
LYM522 69422.1 0.5 0.21 13 7.0 0.06 26
LYM522 69423.3 0.6 L 53 7.5 0.10 35
LYM522 69427.2 0.6 0.03 50
LYM522 69427.4 0.6 L 32
CONT. 0.4 5.5 6.0
LYM736 69058.2 0.8 0.01 45 10.0  0.05 35 6.8 0.04  7
LYM736 69058.3 0.7 0.02 26
LYM736 69060.3 7.0 0.08  9
LYM736 69060.7 0.6 0.20 15
LYM683 69437.1 0.6 0.23  8
LYM683 69438.2 0.6 0.18  8
LYM654 69608.5 0.6 0.21 17
LYM654 69611.1 8.4 0.21 14
LYM654 69612.5 0.6 0.19 15 6.8 0.04  7
LYM619 68933.3 0.7 0.16 25
LYM619 68933.4 0.6 0.28 14
LYM619 68933.5 0.6 0.20 17
LYM563 68906.2 0.6 0.16 14
LYM563 68906.3 0.7 0.16 28
LYM563 68908.4 0.8 0.07 45 8.9 0.27 21
LYM549 69560.3 0.7 0.06 29 9.5 0.05 30 6.7 0.28  4
LYM549 69562.4 6.6 0.29  4
LYM543 68834.2 0.7 0.11 41
LYM543 68837.3 0.6 0.06 19 8.0 0.29  9 6.7 0.29  5
LYM538 69758.1 0.6 0.15 16
LYM538 69759.2 0.6 0.28  9
LYM538 69763.1 0.7 0.04 28 9.7 0.03 32 7.0 0.24 10
LYM538 69763.3 0.7 0.22 28
CONT. 0.5 7.4 6.4
LYM730 68253.4 0.5 0.28  9
LYM728 68570.2 0.7 L 40
LYM728 68571.2 0.8 L 73
LYM728 68571.4 0.6 0.08 24
LYM727  68565.10 0.6 L 31
LYM727 68568.1 0.6 0.20 17
LYM719 68546.1 0.6 0.20 32
LYM719 68546.6 0.5 0.07 15
LYM715 68540.2 0.5 0.04 15
LYM715 68542.1 0.6 0.09 26
LYM715 68542.3 0.6 0.06 30
LYM715 68543.1 0.6 L 24
LYM715 68544.2 0.5 0.08 16
LYM659 68505.2 0.7 0.01 45 6.0 0.10 24
LYM659 68505.3 0.5 0.30  9
LYM578 68394.3 0.6 L 36
LYM578 68395.2 0.5 0.05 14
LYM527 68375.4 0.6 0.05 30
LYM527 68376.3 0.6 0.06 34 5.9 0.18 22
LYM527 68377.1 0.5 0.28 12
CONT. 0.5 4.9
LYM730 68256.1 0.5 0.18 11
LYM728 68571.3 0.6 0.11 15
LYM728 68572.1 0.7 L 36
LYM727  68565.10 0.5 0.30 10
LYM727 68565.6 0.5 0.20 11
LYM727 68568.2 0.6 0.03 22 9.5 0.03 52 7.1 L 23
LYM713 70366.1 6.4 0.20 10
LYM713 70367.1 0.7 0.08 50 6.3 0.28  9
LYM713 70368.1 0.6 0.24 27
LYM686 70654.3 8.0 0.07 29 6.5 0.14 12
LYM636 69596.3 0.6 0.19 16
LYM559 70069.1 7.7 0.05 23 6.5 0.05 13
LYM559 70069.3 0.5 0.25 11 6.3 0.16  9
LYM541 69230.2 0.8 L 72 11.3  0.05 81 6.3 0.27  9
LYM541 69230.4 0.7 0.01 41
LYM541 69233.3 0.6 0.03 28
LYM541 69233.4 0.7 L 52 9.6 L 53
LYM540 68829.4 6.3 0.18  9
LYM540 68831.2 9.4 0.04 50 6.9 0.04 20
LYM539 70532.1 0.6 0.09 22
CONT. 0.5 6.3 5.8
LYM722 71114.4 0.9 L 47 8.5 0.11 50
LYM700 70906.5 0.7 0.17 27
LYM671 70148.2 0.7 0.06 26 6.8 0.16 21
LYM635 70169.2 7.9 0.06 41 6.4 0.02 14
LYM632 70750.2 0.7 0.13 22 7.1 0.15 26
LYM625 70073.2 0.7 0.18 20
LYM625 70073.4 0.7 0.19 24
LYM625 70075.2 6.3 0.09 12
LYM622 70545.5 9.0 0.09 61 6.5 0.01 17
LYM622 70548.2 8.5 0.12 51 6.3 0.11 13
LYM615 70540.3 0.7 0.11 21 7.9 0.03 40 6.2 0.03 12
LYM582 71053.2 0.8 0.04 36 8.5 0.01 52 5.9 0.19  6
LYM554 71108.6 0.7 0.30 16
LYM552 70743.1 8.2 0.05 47 6.7 L 20
LYM538 69762.3 0.7 0.14 19
LYM537 70673.2 0.7 0.18 17 7.7 0.10 38 6.0 0.23  8
CONT. 0.6 5.6 5.6
LYM749 70679.4 0.6 L 20
LYM749 70681.5 0.6 0.13 10 6.7 0.24  7
LYM749 70681.8 0.7 0.01 35
LYM728 68570.2 0.7 0.02 35
LYM728 68571.1 0.7 0.19 31
LYM728 68571.3 0.6 0.04 26
LYM728 68574.2 0.7 0.03 32
LYM722 71113.2 0.7 0.04 33
LYM722 71113.4 0.6 0.03 26
LYM722 71114.2 0.7 0.01 37
LYM722 71114.4 0.6 0.22 21
LYM722 71115.2 0.7 L 32 8.4 0.01 31
LYM697 69006.3 0.6 0.14 11
LYM682 68353.3 0.7 0.05 43 7.7 0.26 20
LYM682 68353.6 6.7 0.22  6
LYM682 68354.3 0.7 0.03 30 7.5 0.25 17
LYM682 68356.2 0.7 L 36
LYM669 70649.3 0.7 0.01 29
LYM669 70650.2 0.6 0.29  9
LYM669 70651.1 0.6 0.05 13 7.4 0.25 15
LYM635 70168.1 0.7 0.02 34
LYM635 70169.1 0.6 0.01 19
LYM635 70169.2 0.6 0.10 18
LYM607 69362.2 0.7 L 36
LYM607 69363.2 0.7 0.01 37
LYM607 69365.3 0.6 0.12 25
LYM607 69366.1 0.7 0.02 29 9.1 0.01 41
LYM607 69366.2 0.7 0.11 36
LYM606 70352.1 0.6 0.04 20
LYM606 70352.2 0.7 0.01 35
LYM606 70353.6 0.6 0.25 12
LYM606 70354.1 0.7 0.02 35
LYM606 70357.1 0.8 L 50 7.6 0.16 18
LYM574 70636.1 0.6 0.01 19
LYM574 70636.4 0.6 0.10 23
LYM574 70636.5 0.6 0.14 14
LYM574 70638.1 0.6 L 27
CONT. 0.5 6.4 6.3
LYM709 69092.2 0.8 0.26 17
LYM709 69096.1 6.5 0.25  5
LYM649 69604.1 6.6 0.24  7
LYM628 68945.1 0.8 0.20 18
LYM628 68945.3 6.7 0.24  7
LYM628 68946.1 7.0 0.06 12
LYM611 68453.2 10.2  0.22 33 7.1 0.03 14
LYM561 69352.2 6.8 0.07  9
LYM561 69355.1 6.7 0.12  7
LYM544 69238.4 6.7 0.28  7
CONT. 0.7 7.7 6.2
LYM700 70906.4 0.7 0.20 18
LYM660 68513.5 0.7 0.04 31 6.8 0.11 28
LYM632 70750.3 0.6 0.20 15 6.8 0.25 29
LYM582 71053.3 6.8 0.13 29
LYM582 71053.4 7.4 0.25 40
LYM562 70645.1 7.8 0.02 48 6.5 0.02 10
LYM554 71107.2 0.6 0.16 15 8.5 L 61
LYM554 71108.4 0.7 0.01 21 8.7 L 64
LYM552 70745.2 6.3 0.12 19 6.3 0.17  7
LYM552 70746.1 7.1 L 33
LYM552 70747.1 0.8 0.01 44 9.6 0.04 81 7.0 L 19
LYM537 70671.1 0.8 0.09 39 9.6 0.07 81 6.7 0.06 13
LYM537 70672.1 6.0 0.27 14
CONT. 0.6 5.3 5.9
LYM747 69349.2 0.7 0.12 15 11.8  L 36 7.5 0.07 11
LYM740 69190.7 0.6 0.12 10
LYM739 68811.2 0.8 0.15 35 12.2  0.18 40 7.3 0.16  8
LYM739 68812.3 7.2 0.14  8
LYM739 68812.4 0.8 0.04 29 12.6  0.02 45 7.4 0.05 10
LYM693 69165.4 0.7 0.11 19
LYM693 69167.1 7.3 0.19  9
LYM693 69168.1 0.7 0.21 14
LYM656 69311.1 0.7 0.21 23 7.4 0.22 10
LYM656 69313.1 0.7 0.27 19
LYM579 69137.5 0.8 0.04 38
LYM579 69139.3 0.7 0.21 24 7.2 0.19  7
LYM579 69139.4 0.7 0.02 20 11.5  0.03 32
LYM555 68852.8 0.8 0.02 30 11.2  0.03 28 7.3 0.20  9
LYM553 69243.1 0.7 0.05 12 7.2 0.20  7
LYM553 69244.4 0.6 0.29  9 7.2 0.18  7
LYM541 69230.1 0.8 L 44 15.5  L 78 7.6 0.02 13
LYM541 69230.2 1.0 L 66 16.5  L 89 7.6 0.03 13
LYM541 69231.3 0.9 0.07 52
LYM541 69233.3 0.8 0.01 40 11.0  0.04 26
LYM541 69234.1 0.7 0.11 11
LYM540 68831.2 10.6  0.18 22 7.2 0.21  8
LYM540 68831.3 10.3  0.22 18
LYM523 69128.5 0.7 0.17 26
LYM523 69133.4 0.7 0.17 25 11.9  L 37
CONT. 0.6 8.7 6.7
LYM669 70649.3 6.7 0.26  6
LYM655 68994.2 11.7  0.01 53 7.1 0.03 13
LYM655 68994.5 0.7 0.26 19
LYM655 68995.3 0.8 0.04 29 11.3  0.03 48 7.2 0.09 14
LYM622 70548.4 0.8 0.03 31 11.4  0.02 48 7.2 0.06 14
LYM559 70069.3 0.8 0.02 33 11.4  0.01 49 7.2 0.03 13
LYM539 70535.1 10.7  0.08 39 7.5 0.03 18
LYM539 70536.2 0.9 L 42 13.1  L 71 7.7 L 21
LYM533 70059.4 6.7 0.26  7
LYM524 68261.4 7.0 0.08 10
LYM560 69072.1 6.4 0.6    2.7
CONT. 0.6 7.7 6.3
LYM729 69186.2 6.7 0.23 33 6.7 0.29  9
LYM579 69139.3 6.0 0.19 20
LYM553 69242.2 0.6 0.29 15
LYM541 69230.4 0.7 0.11 25
LYM541 69233.1 0.7 0.02 36 7.1 0.01 42
LYM541 69233.4 0.7 0.02 31
CONT. 0.5 5.0 6.1
Table 61. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 62
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Event RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length
Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM741 69062.2 0.6 0.12 22
LYM709 69097.2 0.1 0.28 18
LYM636 69601.6 0.6 0.22 17
LYM628 68946.1 1.1 0.24 18
LYM544 69236.1 0.1 0.20 19
LYM544 69240.1 0.1 L 44 1.3 0.02 39
LYM526 69228.4 0.1 0.29 17
CONT. 0.1 1.0 0.5
LYM741 69062.1 0.1 0.01 28
LYM741 69064.2 0.1 0.07 20 0.9 0.12 21 0.6 0.12 22
LYM736 69058.3 0.1 0.12 18
LYM736 69060.3 0.1 0.19 13 0.9 0.08 25 0.5 0.29 14
LYM736 69060.7 0.6 0.08 23
LYM683 69436.2 0.1 L 36 1.2 L 58 0.7 L 46
LYM683 69437.1 0.1 0.01 28 1.0 L 38 0.6 0.06 26
LYM683 69438.2 0.1 0.04 30 1.1 L 44 0.6 0.04 30
LYM683 69439.1 0.9 0.12 17 0.5 0.18 18
LYM659 68505.2 0.8 0.25 14 0.5 0.23 16
LYM659 68505.4 1.0 L 38
LYM659 68506.6 0.1 0.27 12 0.9 0.12 21
LYM654 69611.1 0.5 0.26 15
LYM646 68964.1 0.5 0.16 19
LYM619 68933.2 0.9 0.12 18
LYM619 68933.5 1.0 0.09 30
LYM578 68395.5 0.6 0.06 24
LYM563 68906.3 0.1 L 43
LYM563 68906.5 0.1 0.06 22
LYM563 68908.4 0.1 0.28 14
LYM549 69562.3 0.9 0.11 21
LYM549 69562.4 0.9 0.15 18 0.6 0.03 31
LYM543 68834.1 0.1 0.08 19 0.9 0.15 19
LYM543 68836.5 0.1 0.16 15 0.9 0.20 17
LYM543 68837.2 0.1 0.03 27 1.0 L 40 0.6 0.08 23
LYM543 68837.3 0.6 0.11 21
LYM527 68374.3 0.9 0.08 22 0.5 0.19 17
LYM527 68377.1 0.1 0.12 19 0.9 0.02 29 0.5 0.22 15
CONT. 0.1 0.7 0.5
LYM749 70679.4 0.1 0.01 35
LYM749 70681.5 0.1 0.13 22 0.8 0.19 21 0.6 0.13 21
LYM749 70681.6 0.1 L 43 0.9 0.07 40
LYM749 70681.8 0.1 0.11 24
LYM708 70359.2 0.1 0.14 16
LYM708 70360.1 0.1 0.02 32 0.8 0.10 32 0.6 0.18 19
LYM708 70361.1 0.1 0.22 15
LYM708 70363.2 0.1 0.13 23 0.8 0.20 20
LYM708 70363.4 0.1 0.01 40 0.9 L 48
LYM688 68192.4 0.8 0.29 18
LYM688 68192.5 0.1 0.01 32 0.9 0.02 37
LYM688 68193.1 0.1 L 36
LYM688 68196.3 0.1 0.02 28 0.8 0.13 23
LYM670 70550.6 0.1 0.02 31 0.8 0.16 27
LYM670 70553.3 0.1 L 36 0.8 0.18 22
LYM670 70553.5 0.1 L 46 0.8 0.09 31
LYM670 70554.2 0.1 0.05 24
LYM670 70554.3 0.1 0.04 25 0.9 0.04 35
LYM667 70160.1 0.1 0.01 33 0.8 0.05 30 0.6 0.21 16
LYM667 70161.1 0.1 L 53 1.0 L 50 0.6 0.16 18
LYM667 70162.2 0.1 0.02 41 0.9 L 43
LYM667 70165.1 0.1 0.28 14
LYM642 69196.2 0.1 0.08 25
LYM642 69196.4 0.1 0.02 29 0.8 0.10 26
LYM642 69196.5 0.1 0.23 14 0.8 0.11 27
LYM642 69197.1 0.1 0.11 27
LYM642 69198.3 0.1 0.11 20 0.9 0.03 35
LYM638 70080.4 0.1 0.22 16
LYM638 70081.1 0.1 0.04 25
LYM638 70081.3 0.1 0.02 30 0.9 0.05 39
LYM615 70539.1 0.1 0.11 23
LYM615 70539.2 0.1 0.02 26
LYM615 70539.4 0.1 0.05 22
LYM615 70540.4 0.1 L 59 0.9 L 45
LYM593 69580.2 0.1 0.01 54 0.8 0.13 32 0.5 0.28 15
LYM593 69581.1 0.1 L 47 1.0 L 50
LYM593 69582.2 0.1 0.01 29 0.8 0.05 31
LYM587 70347.1 0.1 0.02 42 0.9 0.02 46 0.5 0.29 15
LYM587 70350.1 0.1 0.17 16
LYM587 70350.3 0.1 0.13 22
LYM587 70351.1 0.1 0.02 30
LYM587 70351.2 0.1 L 54
LYM583 70154.1 0.1 0.02 25 0.9 0.01 42 0.6 0.16 18
LYM583 70154.2 0.1 0.15 22
LYM583 70157.4 0.1 0.01 33 0.9 0.02 39
LYM583 70158.6 0.1 0.04 27 0.8 0.26 18
LYM583 70159.3 0.1 L 37 0.8 0.20 21
LYM574 70636.1 0.1 L 47 0.8 0.11 30 0.6 0.17 19
LYM574 70636.4 0.1 0.03 28 0.9 0.02 39 0.6 0.15 18
LYM574 70636.5 0.1 L 47 0.8 0.12 24
LYM574 70638.1 0.1 0.05 26 0.8 0.27 19
LYM536 68590.5 0.1 L 60 1.0 L 54
LYM536 68590.6 0.1 L 46 0.8 0.19 25
LYM536 68592.5 0.8 0.23 18 0.6 0.05 26
LYM536 68592.7 0.1 0.16 18
LYM536 68592.9 0.1 0.06 30 0.8 0.08 28
LYM522 69422.1 0.1 0.23 15 0.8 0.07 30 0.6 0.09 23
LYM522 69423.3 0.1 L 47 0.9 0.05 35
LYM522 69427.2 0.1 0.01 38
LYM522 69427.4 0.1 L 34
CONT. 0.0 0.6 0.5
LYM736 69058.2 0.1 L 49 1.2 L 36
LYM736 69058.3 0.1 0.01 25
LYM736 69060.3 1.0 0.21 17
LYM736 69060.7 0.1 0.06 20
LYM683 69438.2 0.1 0.26  9
LYM654 69608.5 0.1 0.02 27
LYM654 69611.1 0.1 0.11 19 1.0 0.17 16
LYM654 69612.5 0.1 0.02 24
LYM619 68933.3 0.1 0.02 30
LYM619 68933.4 0.1 0.15 16
LYM619 68933.5 0.1 0.09 18
LYM563 68906.2 0.1 0.07 18
LYM563 68906.3 0.1 0.04 31
LYM563 68908.4 0.1 L 52 1.0 0.12 22
LYM549 69560.3 0.1 L 39 1.1 0.01 33
LYM549 69561.1 0.1 0.28 10
LYM549 69562.4 1.0 0.25 16
LYM543 68834.2 0.1 0.02 41
LYM543 68837.3 0.1 0.09 17
LYM538 69758.1 0.1 0.11 17
LYM538 69759.2 0.1 0.17 13
LYM538 69763.1 0.1 L 34 1.2 L 34 0.6 0.20 14
LYM538 69763.3 0.1 0.05 34
CONT. 0.1 0.9 0.5
LYM730 68253.4 0.1 0.27 13
LYM728 68570.2 0.1 L 46
LYM728 68571.2 0.1 L 75
LYM728 68571.4 0.1 0.13 21
LYM727  68565.10 0.1 0.02 31
LYM727 68568.1 0.1 0.26 15
LYM719 68546.1 0.1 0.04 39
LYM719 68546.6 0.1 0.15 17
LYM719 68550.1 0.1 0.28 14
LYM719 68550.4 0.7 0.29 15
LYM715 68540.2 0.1 0.22 14
LYM715 68542.1 0.1 0.04 28 0.7 0.18 21
LYM715 68542.3 0.1 0.01 36
LYM715 68543.1 0.1 0.04 23
LYM715 68544.2 0.1 0.13 19
LYM659 68505.2 0.1 L 42 0.7 0.06 25
LYM578 68394.3 0.1 L 34
LYM527 68375.4 0.1 0.02 32
LYM527 68376.3 0.1 0.01 38 0.7 0.11 23
CONT. 0.0 0.6
LYM743 69342.2 0.5 0.18 14
LYM743 69343.2 0.6 0.12 15
LYM730 68253.4 0.1 0.05 33
LYM730 68256.1 0.1 0.28 14
LYM728 68570.2 0.1 0.18 21
LYM728 68571.3 0.1 0.15 20
LYM728 68572.1 0.1 L 40
LYM727 68565.6 0.1 0.22 16
LYM727 68568.2 0.1 L 38 1.1 L 55 0.6 L 30
LYM713 70366.1 0.1 0.30 13 0.6 0.11 18
LYM713 70367.1 0.1 L 68 1.0 0.17 34 0.6 0.16 15
LYM713 70368.1 0.1 0.10 32 0.5 0.22 13
LYM686 70654.3 0.1 0.16 21 0.9 0.04 28 0.6 0.08 19
LYM636 69596.3 0.1 0.04 32
LYM636 69597.1 0.1 0.25 16
LYM636 69601.5 0.6 0.11 17
LYM559 70069.1 0.1 0.21 17 0.9 0.06 24 0.6 0.06 19
LYM559 70069.3 0.1 0.12 21 0.9 0.25 16 0.6 0.09 19
LYM541 69230.2 0.1 L 93 1.4 L 86 0.6 0.10 19
LYM541 69230.4 0.1 L 60
LYM541 69233.3 0.1 L 43 0.9 0.22 18 0.5 0.30 12
LYM541 69233.4 0.1 L 79 1.2 L 55 0.6 0.13 16
LYM540 68829.1 0.6 0.12 17
LYM540 68829.4 0.5 0.19 14
LYM540 68831.2 1.1 L 49 0.6 0.10 21
LYM539 70532.1 0.1 0.01 36
LYM523 69128.1 0.1 0.29 17 0.9 0.27 17
LYM523 69128.5 0.5 0.14 14
LYM523 69133.3 0.5 0.29 11
LYM523 69133.4 0.6 0.24 16
CONT. 0.0 0.7 0.5
LYM722 71114.4 0.1 0.01 53 1.0 0.03 55 0.5 0.14 22
LYM700 70904.4 0.5 0.19 19
LYM700 70906.5 0.1 0.19 29
LYM671 70148.2 0.1 0.10 32 0.8 0.20 25
LYM671 70150.4 0.5 0.16 20
LYM635 70169.2 0.9 0.04 43
LYM632 70750.2 0.1 0.23 24 0.8 0.15 29
LYM625 70073.2 0.1 0.26 22
LYM625 70073.4 0.1 0.26 24
LYM625 70075.2 0.9 0.16 39
LYM622 70545.5 0.1 0.21 25 1.1 L 66 0.5 0.19 19
LYM622 70548.2 1.0 0.03 55 0.5 0.27 18
LYM615 70540.3 0.1 0.12 30 0.9 0.03 43
LYM615 70540.4 0.5 0.30 15
LYM582 71053.2 0.1 0.06 40 1.0 L 57 0.5 0.28 14
LYM582 71055.5 0.5 0.24 17
LYM554 71108.6 0.1 0.30 21
LYM552 70743.1 0.9 0.03 48
LYM538 69762.3 0.5 0.29 17
LYM537 70673.2 0.1 0.23 23 0.9 0.07 39
LYM529 70899.2 0.5 0.19 18
LYM529 70901.4 0.5 0.23 16
CONT. 0.1 0.6 0.4
LYM749 70677.4 0.1 0.20 17
LYM749 70679.4 0.1 0.05 23
LYM749 70681.5 0.7 0.18 13
LYM749 70681.8 0.1 L 38
LYM728 68570.2 0.1 0.01 33
LYM728 68571.1 0.1 0.08 30
LYM728 68571.3 0.1 0.04 27
LYM728 68574.2 0.1 0.03 29
LYM722 71113.2 0.1 L 36
LYM722 71113.4 0.1 0.02 30
LYM722 71114.2 0.1 L 42
LYM722 71114.4 0.1 0.07 27
LYM722 71115.2 0.1 L 36 1.0 0.03 33
LYM697 69006.3 0.1 0.20 16
LYM682 68353.3 0.1 L 43 0.9 0.20 20
LYM682 68354.3 0.1 0.02 31 0.9 0.27 17
LYM682 68356.2 0.1 L 32
LYM669 70649.3 0.1 0.01 32
LYM669 70650.2 0.1 0.25 13
LYM669 70651.1 0.1 0.25 13 0.9 0.29 16
LYM635 70168.1 0.1 L 36
LYM635 70169.1 0.1 0.19 15
LYM635 70169.2 0.1 0.21 15
LYM607 69362.2 0.1 L 36
LYM607 69363.2 0.1 L 41
LYM607 69365.3 0.1 0.06 26
LYM607 69366.1 0.1 0.03 27 1.1 L 41
LYM607 69366.2 0.1 0.04 33
LYM606 70352.1 0.1 0.12 18
LYM606 70352.2 0.1 L 34
LYM606 70353.6 0.1 0.26 13
LYM606 70354.1 0.1 L 38
LYM606 70357.1 0.1 L 50 0.9 0.21 19
LYM574 70636.1 0.1 0.07 21
LYM574 70636.4 0.1 0.15 19
LYM574 70636.5 0.1 0.16 17
LYM574 70638.1 0.1 0.04 26
CONT. 0.1 0.8 0.6
LYM649 69604.1 0.6 0.13 25
LYM628 68944.1 0.5 0.20 19
LYM628 68946.1 0.5 0.24 19
LYM611 68453.2 1.2 0.15 35
LYM561 69350.1 0.5 0.24 18
LYM544 69238.4 0.5 0.16 22
LYM526 69228.3 0.5 0.30 16
LYM526 69228.4 0.5 0.25 20
LYM521 69218.1 0.5 0.29 15
CONT. 0.9 0.4
LYM700 70906.4 0.1 0.06 27
LYM660 68513.5 0.1 L 40 0.8 0.03 26
LYM632 70750.3 0.1 0.06 24 0.8 0.09 27
LYM582 71053.2 0.7 0.23 18
LYM582 71053.3 0.8 0.02 31
LYM582 71053.4 0.1 0.23 18 0.9 0.03 42
LYM562 70645.1 0.1 0.15 18 0.9 L 48 0.6 0.17 13
LYM554 71107.2 0.1 0.03 27 1.0 L 64
LYM554 71108.4 0.1 L 32 1.1 L 70
LYM554 71108.5 0.6 0.18 13
LYM554 71109.5 0.1 0.18 17
LYM552 70745.2 0.1 0.18 16 0.7 0.04 20
LYM552 70746.1 0.8 L 30
LYM552 70747.1 0.1 L 54 1.1 L 79 0.6 0.27 13
LYM537 70671.1 0.1 L 49 1.1 L 79
LYM537 70672.1 0.1 0.18 17 0.7 0.14 15
LYM537 70674.3 0.1 0.16 22 0.8 0.27 22
LYM529 70899.2 0.1 0.23 16 0.7 0.26 13
LYM529 70901.4 0.1 0.23 15 0.7 0.25 13
LYM522 69423.2 0.1 0.15 21
LYM522 69423.3 0.1 0.29 15
CONT. 0.1 0.6 0.5
LYM747 69349.2 0.1 0.02 21 1.4 L 36
LYM740 69190.4 0.1 0.28 11
LYM740 69190.7 0.1 0.09 12
LYM739 68811.2 0.1 0.02 36 1.5 0.04 39
LYM739 68812.4 0.1 L 39 1.5 L 45
LYM729 69183.1 1.3 0.18 22
LYM693 69165.4 0.1 0.04 20
LYM693 69168.1 0.1 0.13 14
LYM656 69309.2 0.1 0.25 13
LYM656 69311.1 0.1 0.02 27
LYM656 69313.1 0.1 0.06 24 1.3 0.18 21
LYM579 69137.5 0.1 L 40
LYM579 69139.3 0.1 0.06 24 1.3 0.18 24
LYM579 69139.4 0.1 L 24 1.4 0.03 32
LYM555 68852.8 0.1 L 30 1.3 0.03 29
LYM555 68855.5 0.1 0.28 11
LYM553 69243.1 0.1 0.03 15
LYM553 69244.4 0.1 0.22 10
LYM541 69230.1 0.1 L 57 1.9 L 78
LYM541 69230.2 0.1 L 82 2.0 L 90
LYM541 69231.3 0.1 L 57 1.5 0.10 44
LYM541 69233.3 0.1 L 46 1.3 0.05 27
LYM541 69234.1 0.1 0.05 15 0.7 0.18 16
LYM540 68831.2 1.3 0.12 21
LYM540 68831.3 1.2 0.18 19
LYM523 69128.5 0.1 0.02 31
LYM523 69133.4 0.1 0.05 26 1.4 0.01 36
CONT. 0.1 1.0 0.6
LYM669 70650.4 0.6 0.09 28
LYM655 68994.2 1.4 0.01 57 0.6 0.26 18
LYM655 68994.5 1.1 0.30 26 0.6 0.26 19
LYM655 68995.3 0.1 0.12 30 1.4 0.03 51 0.6 0.23 20
LYM622 70548.4 0.1 0.07 36 1.4 0.02 53 0.7 0.04 33
LYM559 70069.3 0.1 0.06 35 1.4 0.02 53 0.6 0.09 25
LYM539 70532.1 0.6 0.18 21
LYM539 70535.1 1.3 0.06 43 0.7 0.04 34
LYM539 70535.2 0.6 0.27 18
LYM539 70536.2 0.1 0.02 48 1.6 L 77 0.7 0.04 33
LYM533 70059.4 0.6 0.23 18
LYM524 68261.4 0.6 0.13 23
CONT. 0.1 0.9 0.5
LYM739 68812.4 0.8 0.24 28
LYM729 69186.2 0.8 0.16 34
LYM553 69242.2 0.1 0.24 22
LYM541 69230.4 0.1 0.14 28 0.8 0.21 36
LYM541 69233.1 0.1 0.04 38 0.9 0.03 45
LYM541 69233.4 0.1 0.06 36
CONT. 0.1 0.6
Table 62. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
Results from T1 Plants
The genes presented in Tables 63-64 showed a significant improvement in plant biomass and root development since they produced a larger leaf and root biomass (leaf area, root length and root coverage) (Table 63), and a higher relative growth rate of leaf area, root coverage and root length (Table 64) when grown under normal growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil. Plants producing larger leaf biomass has better ability to produce assimilates). The genes were cloned under the regulation of a constitutive promoter (At6669; SEQ ID NO:8529). The evaluation of each gene was performed by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. This second experiment confirmed the significant increment in leaf and root performance. Event with p-value <0.1 was considered statistically significant.
Tables 63-64 summarize the observed phenotypes of transgenic plants expressing the gene constructs using the TC-T1 Assays.
TABLE 63
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene Leaf Area [cm2] Roots Coverage [cm2] Roots Length [cm]
Name Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM701_H1 2.9 0.28 10
CONT. 2.7
LYM668 4.1 0.20 54
CONT. 2.7
Table 63. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01.
TABLE 64
Genes showing improved plant performance at normal growth
conditions under regulation of At6669 promoter
Gene RGR Of Leaf Area RGR Of Roots Coverage RGR Of Root Length
Name Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
LYM701_H1 0.3 0.06 17
CONT. 0.3
LYM722 0.1 0.13 30 0.3 0.11 40
LYM554 0.1 0.28 13
CONT. 0.0 0.2
LYM668 0.4 0.07 68 0.4 L 71
CONT. 0.2 0.3
Table 64. “CONT.”—Control; “Ave.”—Average; “% Incr.” = % increment; “p-val.”—p-value, L—p < 0.01
These results demonstrate that the polynucleotides of the invention are capable of improving yield and additional valuable important agricultural traits such as increase of biomass, abiotic stress tolerance, nitrogen use efficiency, yield, vigor, fiber yield and/or quality. Thus, transformed plants showing improved fresh and dry weight demonstrate the gene capacity to improve biomass a key trait of crops for forage and plant productivity; transformed plants showing improvement of seed yield demonstrate the genes capacity to improve plant productivity; transformed plants showing improvement of plot coverage and rosette diameter demonstrate the genes capacity to improve plant drought resistance as they reduce the loss of soil water by simple evaporation and reduce the competition with weeds; hence reduce the need to use herbicides to control weeds. Transformed plants showing improvement of relative growth rate of various organs (leaf and root) demonstrate the gene capacity to promote plant growth and hence shortening the needed growth period and/or alternatively improving the utilization of available nutrients and water leading to increase of land productivity; Transformed plants showing improvement of organ number as demonstrated by the leaf number parameter exhibit a potential to improve biomass yield important for forage crops and improve the plant productivity; Transformed plants showing increased root length and coverage demonstrate the gene capacity to improve drought resistance and better utilization of fertilizers as the roots can reach larger soil volume; Transformed plants showing improvement of leaf petiole relative area and leaf blade area demonstrate the genes capacity to cope with limited light intensities results from increasing the plant population densities and hence improve land productivity.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims (22)

What is claimed is:
1. A method of increasing biomass of a plant as compared to a native plant of the same species which is grown under the same growth conditions, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide having at least 95% global sequence identity and conservative amino acid substitutions with respect to SEQ ID NO: 493, or encoding the polypeptide selected from the group consisting of SEQ ID NOs: 493, and 5288, thereby increasing the biomass of the plant as compared to the native plant of the same species which is grown under the same growth conditions.
2. The method of claim 1, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 493 and 5288.
3. The method of claim 1, wherein said exogenous polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 289, and or a codon optimized sequence thereof.
4. The method of claim 1, wherein said exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 289, and 962.
5. A nucleic acid construct comprising an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence of SEQ ID NO: 493, and a promoter for directing transcription of said nucleic acid sequence in a host cell, wherein said promoter is heterologous to said isolated polynucleotide.
6. The nucleic acid construct of claim 5, wherein said nucleic acid sequence is SEQ ID NO: 289 or a codon optimized sequence thereof.
7. The nucleic acid construct of claim 5, wherein said nucleic acid sequence is SEQ ID NO: 289.
8. A transgenic plant comprising the nucleic acid construct of claim 5.
9. The method of claim 1, wherein said nucleic acid sequence encodes SEQ ID NO: 493.
10. The method of claim 1, wherein said nucleic acid sequence is set forth by SEQ ID NO: 289.
11. The method of claim 1, further comprising selecting said plant expressing said exogenous polynucleotide for an increased biomass as compared to a control plant of the same species which is grown under the same growth conditions.
12. The method of claim 9, further comprising selecting said plant expressing said exogenous polynucleotide for an increased biomass as compared to a control plant of the same species which is grown under the same growth conditions.
13. The method of claim 11, further comprising: (a) isolating plants or regenerable portion of said plants selected according to the method of claim 11 having said increased biomass so as to obtain isolated plants or regenerable portion of said selected plants; and (b) planting or regenerating plants from said isolated plants or regenerable portion of said selected plants to thereby obtain plants having increased biomass.
14. The method of claim 12, further comprising: (a) isolating plants or regenerable portion of said plants selected according to the method of claim 12 having said increased biomass so as to obtain isolated plants or regenerable portion of said selected plants; and (b) planting or regenerating plants from said isolated plants or regenerable portion of said selected plants to thereby obtain plants having increased biomass.
15. The method of claim 11, further comprising generating a plant line by: (a) isolating a plant or a regenerable portion of said plant selected according to the method of claim 11 having said increased biomass so as to obtain an isolated plant or a regenerable portion of said selected plant; and (b) using marker assisted selection of said isolated plant or regenerable portion of said selected plant for selective breeding of plants having increased biomass.
16. The method of claim 12, further comprising generating a plant line by: (a) isolating a plant or a regenerable portion of said plant selected according to the method of claim 12 having said increased biomass so as to obtain an isolated plant or a regenerable portion of said selected plant; and (b) using marker assisted selection of said isolated plant or regenerable portion of said selected plant for selective breeding of plants having increased biomass.
17. A method of selecting a transformed plant, comprising:
(a) providing transgenic plants transformed with an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide having at least 95% global sequence identity and conservative amino acid substitutions with respect to SEQ ID NO: 493, or encoding the polypeptide selected from the group consisting of SEQ ID NOs: 493, and 5288, and
(b) selecting said plants for an increased biomass as compared to a control plant of the same species which is grown under the same growth conditions,
thereby selecting the plant having increased biomass as compared to the control plant of the same species which is grown under the same growth conditions.
18. The method of claim 17, further comprising: (c) isolating plants or regenerable portion of said plants selected according to the method of claim 17 step (b) having said increased biomass so as to obtain isolated plants or regenerable portion of said selected plants; and (d) planting or regenerating plants from said isolated plants or regenerable portion of said selected plants to thereby obtain plants having increased biomass.
19. The method of claim 17, further comprising generating a plant line by: (c) isolating a plant or a regenerable portion of said plant selected according to the method of claim 17 step (b) having said increased biomass so as to obtain an isolated plant or a regenerable portion of said selected plant; and (d) using marker assisted selection of said isolated plant or regenerable portion of said selected plant for selective breeding of plants having increased biomass.
20. A method of producing a crop comprising growing a crop plant transformed with an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide having at least 95% global sequence identity and conservative amino acid substitutions with respect to SEQ ID NO: 493, or encoding the polypeptide selected from the group consisting of SEQ ID NOs: 493, 5287, and 5288, wherein the crop plant is obtained from plants selected for increased biomass as compared to a control plant of the same species which is grown under the same growth conditions, and the crop plant having the increased biomass, thereby producing the crop.
21. The method of claim 17, wherein said nucleic acid sequence encodes SEQ ID NO: 493.
22. The method of claim 17, wherein said nucleic acid sequence is SEQ ID NO: 289 or a codon optimized sequence thereof.
US14/239,787 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics Active 2035-04-14 US9976157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/239,787 US9976157B2 (en) 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161526299P 2011-08-23 2011-08-23
US201261585688P 2012-01-12 2012-01-12
US14/239,787 US9976157B2 (en) 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
PCT/IL2012/050327 WO2013027223A2 (en) 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2012/050327 A-371-Of-International WO2013027223A2 (en) 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/979,507 Division US10501750B2 (en) 2011-08-23 2018-05-15 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Publications (2)

Publication Number Publication Date
US20140289900A1 US20140289900A1 (en) 2014-09-25
US9976157B2 true US9976157B2 (en) 2018-05-22

Family

ID=47746948

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/239,787 Active 2035-04-14 US9976157B2 (en) 2011-08-23 2012-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US15/979,507 Active US10501750B2 (en) 2011-08-23 2018-05-15 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US16/665,132 Active 2032-10-12 US11293032B2 (en) 2011-08-23 2019-10-28 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/589,983 Abandoned US20220154200A1 (en) 2011-08-23 2022-02-01 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/751,682 Abandoned US20220290172A1 (en) 2011-08-23 2022-05-24 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/751,688 Abandoned US20220290173A1 (en) 2011-08-23 2022-05-24 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/979,507 Active US10501750B2 (en) 2011-08-23 2018-05-15 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US16/665,132 Active 2032-10-12 US11293032B2 (en) 2011-08-23 2019-10-28 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/589,983 Abandoned US20220154200A1 (en) 2011-08-23 2022-02-01 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/751,682 Abandoned US20220290172A1 (en) 2011-08-23 2022-05-24 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US17/751,688 Abandoned US20220290173A1 (en) 2011-08-23 2022-05-24 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Country Status (7)

Country Link
US (6) US9976157B2 (en)
AR (1) AR087952A1 (en)
AU (4) AU2012298157B9 (en)
BR (1) BR112014004130A8 (en)
CA (4) CA3177736A1 (en)
MX (2) MX359121B (en)
WO (1) WO2013027223A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745447B2 (en) 2015-09-28 2020-08-18 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
US11905523B2 (en) 2019-10-17 2024-02-20 Ginkgo Bioworks, Inc. Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554007B2 (en) 2003-05-22 2009-06-30 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants
AU2005234725B2 (en) 2003-05-22 2012-02-23 Evogene Ltd. Methods of Increasing Abiotic Stress Tolerance and/or Biomass in Plants and Plants Generated Thereby
US8962915B2 (en) 2004-06-14 2015-02-24 Evogene Ltd. Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same
CN101948846A (en) 2004-06-14 2011-01-19 伊沃基因有限公司 Polynucleotides and polypeptides involved in plant fiber development and methods of using same
EP2383345B1 (en) 2006-12-20 2017-11-22 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
BRPI0809796B1 (en) 2007-04-09 2021-09-08 Evogene Ltd METHODS TO INCREASE THE OIL CONTENT, GROWTH RATE, BIOMASS, STRENGTH AND/OR YIELD OF A PLANT, AND TO PRODUCE OIL
CN102037127A (en) 2007-07-24 2011-04-27 伊沃基因有限公司 Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance and/or biomass and/or yield in plants expressing same
US20110119791A1 (en) 2007-12-27 2011-05-19 Evogene Ltd. Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
EP2279258B1 (en) 2008-05-22 2018-03-28 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant utility
BR122021014158B1 (en) 2008-08-18 2022-08-16 Evogene Ltd. METHOD TO INCREASE NITROGEN USE EFFICIENCY, AND/OR TOLERANCE TO NITROGEN DEFICIENCY OF A PLANT
WO2010049897A2 (en) 2008-10-30 2010-05-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
AR074925A1 (en) 2008-12-29 2011-02-23 Evogene Ltd POLINUCLEOTIDES, CODED POLYPEPTIDES, AND METHODS TO USE THEM TO MODULATE TOLERANCE TO ABIOTIC STRESS, BIOMASS AND / OR PERFORMANCE IN PLANTS THAT EXPRESS THEM
CA2753616C (en) 2009-03-02 2018-07-17 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CA3095630A1 (en) 2009-06-10 2010-12-16 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
BR122019015759B1 (en) 2009-08-04 2021-02-09 Evogene Ltd. method to increase tolerance to abiotic stress, yield, biomass, growth rate and / or vigor of a plant
CA3172119A1 (en) 2009-12-28 2011-07-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
BR122021002353B1 (en) 2010-04-28 2022-08-16 Evogene Ltd METHOD OF INCREASE PRODUCTION, BIOMASS, GROWTH RATE, VIGOR, ABIOTIC STRESS TOLERANCE AND/OR NITROGEN USE EFFICIENCY OF A PLANT, AND, ISOLATED NUCLEIC ACID CONSTRUCTION
MX2018009863A (en) 2010-08-30 2022-06-14 Evogene Ltd Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance.
AR084511A1 (en) 2010-12-22 2013-05-22 Evogene Ltd POLINUCLEOTIDES AND ISOLATED POLYPEPTIDES, AND METHODS TO USE THEM TO INCREASE TOLERANCE TO ABIOTIC STRESS, PERFORMANCE, GROWTH RATE, VIGOR, BIOMASS, OIL CONTENT AND / OR EFFECTIVENESS IN THE USE OF NITROGEN
AR086243A1 (en) 2011-05-03 2013-11-27 Evogene Ltd POLYPEPTIDES AND POLINUCLEOTIDES ISOLATED AND METHODS FOR USE, TO INCREASE PERFORMANCE, BIOMASS, GROWTH INDEX, VIGOR, OIL CONTENT, TOLERANCE TO THE ABIOTIC STRESS OF PLANTS AND EFFICIENCY IN THE USE OF THE NITER
AU2012298157B9 (en) 2011-08-23 2019-05-02 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CA2854363A1 (en) 2011-11-21 2013-05-30 Syngenta Participations Ag Compositions and methods for increasing nematode resistance in plants
BR122019023075B1 (en) 2011-11-28 2021-06-22 Evogene Ltd METHOD FOR INCREASING EFFICIENCY IN THE USE OF NITROGEN, PRODUCTION, BIOMASS, GROWTH RATE, STRENGTH, AND/OR ABIOT STRESS TOLERANCE OF AN ISOLATED NUCLEIC ACID PLANT AND CONSTRUCT
CA2859950A1 (en) 2011-12-28 2013-07-04 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing yield of plants
MX355387B (en) 2012-02-29 2018-04-17 Evogene Ltd Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.
CA2873846A1 (en) 2012-05-28 2013-12-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR122019028105B1 (en) 2012-08-27 2022-05-10 Evogene Ltd Methods to increase the yield, growth rate, biomass, vigor, seed yield, photosynthetic capacity, nitrogen use efficiency, and/or abiotic stress tolerance of a plant and to produce a crop
WO2014102773A1 (en) 2012-12-25 2014-07-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency of plants
BR122020005660B1 (en) 2012-12-26 2022-03-22 Evogene Ltd Method to increase nitrogen use efficiency, yield, growth rate, biomass, vigor, seed yield, photosynthetic capacity and/or tolerance to abiotic stress of a plant, and, nucleic acid construction
KR102495525B1 (en) 2013-03-14 2023-02-06 몬산토 테크놀로지 엘엘씨 Plant regulatory elements and uses thereof
US9920329B2 (en) 2013-05-22 2018-03-20 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
MX361557B (en) 2013-08-27 2018-12-10 Evogene Ltd Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics.
CN103461140B (en) * 2013-09-27 2015-05-06 上海旭东园艺有限公司 Stem tip separation fast cultivation method for feijoa sellowiana
CA2948591A1 (en) 2014-05-28 2015-12-03 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
CA3176207A1 (en) 2014-08-27 2016-03-03 Evogene Ltd. Constructs and methods for increasing plant yield or agricultural characteristics or both
CA3008808A1 (en) 2015-12-28 2017-07-06 Evogene Ltd. Plant traits conferred by isolated polynucleotides and polypeptides
CN110283828B (en) * 2019-07-29 2021-01-15 浙江省林业科学研究院 Cherokee rose chloroplast genome and application thereof
EP4287822A1 (en) * 2021-01-28 2023-12-13 Pioneer Hi-Bred International, Inc. Clubroot resistance in brassica
CN113308567A (en) * 2021-07-21 2021-08-27 北京中医药大学 Bar code prepared based on polymorphism region of rhubarb chloroplast genome and application thereof

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US20020046419A1 (en) 1998-08-25 2002-04-18 Yen Choo Regulated gene expression in plants
US20040123343A1 (en) 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2004081173A2 (en) 2003-03-12 2004-09-23 Evogene Ltd. Nucleotide sequences regulating gene expression and constructs and methods utilizing same
WO2004104162A2 (en) 2003-05-22 2004-12-02 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
WO2004111183A2 (en) 2003-06-19 2004-12-23 Evogene Ltd. Plant trichome-specific promoter and leucoplast signal sequence
US20050108791A1 (en) 2001-12-04 2005-05-19 Edgerton Michael D. Transgenic plants with improved phenotypes
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
WO2005121364A2 (en) 2004-06-14 2005-12-22 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US20060179511A1 (en) 2004-12-21 2006-08-10 Chomet Paul S Transgenic plants with enhanced agronomic traits
WO2007020638A2 (en) 2005-08-15 2007-02-22 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
WO2007049275A2 (en) 2005-10-24 2007-05-03 Evogene Ltd. Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same
US7214786B2 (en) 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2008034648A1 (en) 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
WO2008075364A2 (en) 2006-12-20 2008-06-26 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
WO2008122980A2 (en) 2007-04-09 2008-10-16 Evogene Ltd. Polynucleotides, polypeptides and methods for increasing oil content, growth rate and biomass of plants
WO2009013750A2 (en) 2007-07-24 2009-01-29 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance and/or biomass and/or yield in plants expressing same
US20090094717A1 (en) * 2007-10-03 2009-04-09 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
WO2009083958A2 (en) 2007-12-27 2009-07-09 Evogene Ltd. Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
WO2009141824A2 (en) 2008-05-22 2009-11-26 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
WO2010020941A2 (en) 2008-08-18 2010-02-25 Evogene Ltd. Isolated polypeptides and polynucleotides useful for increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants
WO2010049897A2 (en) 2008-10-30 2010-05-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
WO2010076756A2 (en) 2008-12-29 2010-07-08 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same
WO2010100595A2 (en) 2009-03-02 2010-09-10 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2010143138A2 (en) 2009-06-10 2010-12-16 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2011015985A2 (en) 2009-08-04 2011-02-10 Evogene Ltd. Polynucleotides and polypeptides for increasing desirable plant qualities
US20110080674A1 (en) 2009-10-02 2011-04-07 Joel Durand Magnetic azimuth adjustment for tonearm
WO2011080674A2 (en) 2009-12-28 2011-07-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US20110214206A1 (en) 1999-05-06 2011-09-01 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
WO2011135527A2 (en) 2010-04-28 2011-11-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2012028993A2 (en) 2010-08-30 2012-03-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2012085862A2 (en) 2010-12-22 2012-06-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing abiotic stress tolerance, yield, growth rate, vigor, biomass, oil content, and/or nitrogen use efficiency of plants
WO2012150598A2 (en) 2011-05-03 2012-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013027223A2 (en) 2011-08-23 2013-02-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2013078153A1 (en) 2011-11-21 2013-05-30 Syngenta Participations Ag Compositions and methods for increasing nematode resistance in plants
WO2013128448A1 (en) 2012-02-29 2013-09-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013179211A1 (en) 2012-05-28 2013-12-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2014188428A1 (en) 2013-05-22 2014-11-27 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2015029031A1 (en) 2013-08-27 2015-03-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2015181823A1 (en) 2014-05-28 2015-12-03 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
WO2016030885A1 (en) 2014-08-27 2016-03-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476212B1 (en) * 1998-05-26 2002-11-05 Incyte Genomics, Inc. Polynucleotides and polypeptides derived from corn ear
US20090087878A9 (en) 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants
US20060141495A1 (en) * 2004-09-01 2006-06-29 Kunsheng Wu Polymorphic markers and methods of genotyping corn
US20080148432A1 (en) * 2005-12-21 2008-06-19 Mark Scott Abad Transgenic plants with enhanced agronomic traits
US20090199308A1 (en) * 2005-08-30 2009-08-06 Kimberly Zobrist Duff Transgenic plants with enhanced agronomic traits
JP5250807B2 (en) * 2009-09-11 2013-07-31 トヨタ自動車株式会社 Method for increasing the biomass amount and / or seed amount of a plant, and method for producing a plant capable of increasing the biomass amount and / or seed amount
BR122019023075B1 (en) 2011-11-28 2021-06-22 Evogene Ltd METHOD FOR INCREASING EFFICIENCY IN THE USE OF NITROGEN, PRODUCTION, BIOMASS, GROWTH RATE, STRENGTH, AND/OR ABIOT STRESS TOLERANCE OF AN ISOLATED NUCLEIC ACID PLANT AND CONSTRUCT
CA2859950A1 (en) 2011-12-28 2013-07-04 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing yield of plants
BR122019028105B1 (en) 2012-08-27 2022-05-10 Evogene Ltd Methods to increase the yield, growth rate, biomass, vigor, seed yield, photosynthetic capacity, nitrogen use efficiency, and/or abiotic stress tolerance of a plant and to produce a crop
WO2014102773A1 (en) 2012-12-25 2014-07-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency of plants
BR122020005660B1 (en) 2012-12-26 2022-03-22 Evogene Ltd Method to increase nitrogen use efficiency, yield, growth rate, biomass, vigor, seed yield, photosynthetic capacity and/or tolerance to abiotic stress of a plant, and, nucleic acid construction
CA3008808A1 (en) 2015-12-28 2017-07-06 Evogene Ltd. Plant traits conferred by isolated polynucleotides and polypeptides

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US20020046419A1 (en) 1998-08-25 2002-04-18 Yen Choo Regulated gene expression in plants
US20110214206A1 (en) 1999-05-06 2011-09-01 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
US20040123343A1 (en) 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
US7214786B2 (en) 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
US20050108791A1 (en) 2001-12-04 2005-05-19 Edgerton Michael D. Transgenic plants with improved phenotypes
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
US20060123505A1 (en) 2002-05-30 2006-06-08 National Institute Of Agrobiological Sciences Full-length plant cDNA and uses thereof
WO2004081173A2 (en) 2003-03-12 2004-09-23 Evogene Ltd. Nucleotide sequences regulating gene expression and constructs and methods utilizing same
WO2004104162A2 (en) 2003-05-22 2004-12-02 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
WO2004111183A2 (en) 2003-06-19 2004-12-23 Evogene Ltd. Plant trichome-specific promoter and leucoplast signal sequence
WO2005121364A2 (en) 2004-06-14 2005-12-22 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
US20060179511A1 (en) 2004-12-21 2006-08-10 Chomet Paul S Transgenic plants with enhanced agronomic traits
WO2007020638A2 (en) 2005-08-15 2007-02-22 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
WO2007049275A2 (en) 2005-10-24 2007-05-03 Evogene Ltd. Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same
WO2008034648A1 (en) 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
WO2008075364A2 (en) 2006-12-20 2008-06-26 Evogene Ltd. Polynucleotides and polypeptides involved in plant fiber development and methods of using same
WO2008122980A2 (en) 2007-04-09 2008-10-16 Evogene Ltd. Polynucleotides, polypeptides and methods for increasing oil content, growth rate and biomass of plants
WO2009013750A2 (en) 2007-07-24 2009-01-29 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance and/or biomass and/or yield in plants expressing same
US20090094717A1 (en) * 2007-10-03 2009-04-09 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
US8362325B2 (en) * 2007-10-03 2013-01-29 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
WO2009083958A2 (en) 2007-12-27 2009-07-09 Evogene Ltd. Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
WO2009141824A2 (en) 2008-05-22 2009-11-26 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
WO2010020941A2 (en) 2008-08-18 2010-02-25 Evogene Ltd. Isolated polypeptides and polynucleotides useful for increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants
WO2010049897A2 (en) 2008-10-30 2010-05-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
WO2010076756A2 (en) 2008-12-29 2010-07-08 Evogene Ltd. Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same
WO2010100595A2 (en) 2009-03-02 2010-09-10 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2010143138A2 (en) 2009-06-10 2010-12-16 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2011015985A2 (en) 2009-08-04 2011-02-10 Evogene Ltd. Polynucleotides and polypeptides for increasing desirable plant qualities
US20110080674A1 (en) 2009-10-02 2011-04-07 Joel Durand Magnetic azimuth adjustment for tonearm
WO2011080674A2 (en) 2009-12-28 2011-07-07 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2011135527A2 (en) 2010-04-28 2011-11-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2012028993A2 (en) 2010-08-30 2012-03-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
WO2012085862A2 (en) 2010-12-22 2012-06-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing abiotic stress tolerance, yield, growth rate, vigor, biomass, oil content, and/or nitrogen use efficiency of plants
WO2012150598A2 (en) 2011-05-03 2012-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013027223A2 (en) 2011-08-23 2013-02-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2013078153A1 (en) 2011-11-21 2013-05-30 Syngenta Participations Ag Compositions and methods for increasing nematode resistance in plants
WO2013128448A1 (en) 2012-02-29 2013-09-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013179211A1 (en) 2012-05-28 2013-12-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2014188428A1 (en) 2013-05-22 2014-11-27 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2015029031A1 (en) 2013-08-27 2015-03-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
WO2015181823A1 (en) 2014-05-28 2015-12-03 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
WO2016030885A1 (en) 2014-08-27 2016-03-03 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Burk et al (A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation. The Plant Cell, vol. 13, 807-827, Apr. 2001). *
Examination Report dated Aug. 15, 2017 From the Australian Government, IP Australia Re. Application No. 2012298157. (9 Pages).
Examination Report dated Aug. 7, 2017 From the Instituto Mexicano de la Propiedad Industrial, IMPI, Direccion Divisional de Patentes, Subdireccion Divisional de Fondo de Patentes Areas Biotecnologia, Farmaceutica y Quimica Re. Application No. MX/a/2014/002049 and Its Translation Into English. (8 Pages).
Examination Report dated Jan. 12, 2017 From the Australian Government, IP Australia Re. Application No. 2012298157. (3 Pages).
Examination Report dated Jun. 12, 2016 From the Instituto Mexicano de la Propiedad Industrial, IMPI Re. Application No. MX/a/2014/002049 and Its Translation Into English.
Examination Report dated Nov. 22, 2016 From the Instituto Mexicano de la Propiedad Industrial, IMPI Re. Application No. MX/a/2014/002049 and Its Translation Into English. (13 Pages).
International Preliminary Report on Patentability dated Mar. 6, 2014 From the International Bureau of WIPO Re. Application No. PCT/IL2012/050327.
International Search Report and the Written Opinion dated Apr. 10, 2013 From the International Searching Authority Re. Application No. PCT/IL2012/050327.
Invitation to Pay Additional Fees dated Dec. 31, 2012 From the International Searching Authority Re. Application No. PCT/IL2012/050327.
Kawaura et al. "Triticum Aestivum cDNA Clone: SET2_C15, Cultivar: Chinese Spring", Database NCBI [Online], GenBank: AK333791.1, Database Accession No. AK333791, Jun. 25, 2009.
Sasaki et al. "Katanin [Oryza sativa Japonica Group]", Database NCBI [Online], GenBank: BAD87507.1, Database Accession No. BAD87507, Feb. 16, 2008.
Sasaki et al. "Vacuolar Protein Sorting Factor 4B-Like [Olyza saliva Japonica Group]", Database NCBI [Online], GenBank: BAD73365.1, Database Accession No. BAD73365, Feb. 16, 2008.
Sasaki et al. "Vacuolar Protein Sorting Factor 4B-Like [Olyza sativa Japonica Group]", Database NCBI [Online], GenBank: BAD73312.1, Database Accession No. BAD73312, Feb. 16, 2008.
Soderlund et al. "Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs", PLoS Genetics, 5(11): e1000740-1-e1000740-13, Nov. 2009.
Soderlund et al. "Unknown [Zea mays] ", Database NCBI [Online], GenBank: ACN28820.1, Database Accession No. ACN28820, Feb. 21, 2009.
Soderlund et al. "Unknown [Zea mays]", Database NCBI [Online], GenBank: ACF85066.1, Database Accession No. ACF85066, Jul. 30, 2008.
Stoppin-Mellet et al (Katanin's severing activity favors bundling of cortical microtubules in plants. The Plant Journal 46, 1009-1017, 2006). *
The International Brachypodium Initiative (Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 463: 763-768, Feb. 2010). *
Yanagisawa et al. "Metabolic Engineering With Dof1 Transcription Factor in Plants: Improved Nitrogen Assimilation and Growth Under Low-Nitrogen Conditions", Proc. Natl. Acad. Sci USA, PNAS, 101(20): 7833-7838, May 18, 2004.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745447B2 (en) 2015-09-28 2020-08-18 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
US11208438B2 (en) 2015-09-28 2021-12-28 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
US11840555B2 (en) 2015-09-28 2023-12-12 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
US11905523B2 (en) 2019-10-17 2024-02-20 Ginkgo Bioworks, Inc. Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C

Also Published As

Publication number Publication date
CA3177736A1 (en) 2013-02-28
BR112014004130A2 (en) 2017-06-13
AU2022203216A1 (en) 2022-06-02
US20220290173A1 (en) 2022-09-15
US20220290172A1 (en) 2022-09-15
AU2012298157B9 (en) 2019-05-02
BR112014004130A8 (en) 2022-05-17
CA2845682A1 (en) 2013-02-28
CA3177595A1 (en) 2013-02-28
AU2020202369A1 (en) 2020-04-30
US20180245094A1 (en) 2018-08-30
US20140289900A1 (en) 2014-09-25
AU2012298157A1 (en) 2014-03-06
US11293032B2 (en) 2022-04-05
US20200048652A1 (en) 2020-02-13
CA3177742A1 (en) 2013-02-28
CA2845682C (en) 2023-02-14
MX2018011144A (en) 2021-11-16
US10501750B2 (en) 2019-12-10
US20220154200A1 (en) 2022-05-19
AR087952A1 (en) 2014-04-30
WO2013027223A3 (en) 2013-07-11
WO2013027223A2 (en) 2013-02-28
AU2018201669A1 (en) 2018-04-05
AU2018201669B2 (en) 2020-01-16
AU2020202369B2 (en) 2022-02-17
AU2012298157B2 (en) 2017-12-21
MX2014002049A (en) 2014-03-21
MX359121B (en) 2018-09-14

Similar Documents

Publication Publication Date Title
US11293032B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US11525141B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US11286495B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US11111499B2 (en) Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US11130957B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US20220348945A1 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US11242538B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing yield of plants
US20210189413A1 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US10457952B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for improving plant properties

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVOGENE LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PORATY-GAVRA, LIMOR;EMMANUEL, EYAL;KARCHI, HAGAI;REEL/FRAME:032275/0315

Effective date: 20121017

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4