US20230019445A1 - Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance - Google Patents

Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance Download PDF

Info

Publication number
US20230019445A1
US20230019445A1 US17/464,779 US202117464779A US2023019445A1 US 20230019445 A1 US20230019445 A1 US 20230019445A1 US 202117464779 A US202117464779 A US 202117464779A US 2023019445 A1 US2023019445 A1 US 2023019445A1
Authority
US
United States
Prior art keywords
plant
yield
globlastp
acid sequence
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/464,779
Inventor
David Panik
Basia Judith Vinocur
Hagai Karchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evogene Ltd
Original Assignee
Evogene Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2011/051843 external-priority patent/WO2011135527A2/en
Application filed by Evogene Ltd filed Critical Evogene Ltd
Priority to US17/464,779 priority Critical patent/US20230019445A1/en
Assigned to EVOGENE LTD. reassignment EVOGENE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARCHI, HAGAI, PANIK, DAVID, VINOCUR, BASIA JUDITH
Publication of US20230019445A1 publication Critical patent/US20230019445A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • PCT/IB2011/053697 is also a Continuation-In-Part (CIP) of PCT Patent Application No. PCT/IB2011/051843 having International Filing Date of Apr. 27, 2011. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
  • the present invention in some embodiments thereof, relates to novel polynucleotides and polypeptides which can increase nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed/grain yield, oil yield), growth rate, vigor, biomass, oil content, fiber yield, fiber quality and/or length, abiotic stress tolerance and/or water use efficiency of a plant.
  • yield e.g., seed/grain yield, oil yield
  • yield e.g., seed/grain yield, oil yield
  • growth rate vigor
  • biomass e.g., oil content, fiber yield, fiber quality and/or length
  • abiotic stress tolerance and/or water use efficiency of a plant e.g., abiotic stress tolerance and/or water use efficiency of a plant.
  • fertilizers are the fuel behind the “green revolution”, directly responsible for the exceptional increase in crop yields during the last 40 years, and are considered the number one overhead expense in agriculture.
  • main fertilizers N
  • nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Nitrogen usually needs to be replenished every year, particularly for cereals, which comprise more than half of the cultivated areas worldwide.
  • inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea, typically accounts for about 40% of the costs associated with crops such as corn and wheat.
  • Nitrogen is an essential macronutrient for the plant, responsible for biosynthesis of amino and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like.
  • nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogen.
  • nitrogen is translocated to the shoot, where it is stored in the leaves and stalk during the rapid step of plant development and up until flowering.
  • plants accumulate the bulk of their organic nitrogen during the period of grain germination, and until flowering. Once fertilization of the plant has occurred, grains begin to form and become the main sink of plant nitrogen. The stored nitrogen can be then redistributed from the leaves and stalk that served as storage compartments until grain formation.
  • fertilizer Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season.
  • the low nitrogen use efficiency (NUE) of the main crops e.g., in the range of only 30-70%) negatively affects the input expenses for the farmer, due to the excess fertilizer applied.
  • NUE nitrogen use efficiency
  • the over and inefficient use of fertilizers are major factors responsible for environmental problems such as eutrophication of groundwater, lakes, rivers and seas, nitrate pollution in drinking water which can cause methemoglobinemia, phosphate pollution, atmospheric pollution and the like.
  • FUE fertilizer use efficiency
  • U.S. Pat. No. 6,084,153 to Good et al. discloses the use of a stress responsive promoter to control the expression of Alanine Amine Transferase (AlaAT) and transgenic canola plants with improved drought and nitrogen deficiency tolerance when compared to control plants.
  • AlAT Alanine Amine Transferase
  • ABS abiotic stress
  • Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage, water supply shortage and increased susceptibility to various diseases.
  • Salinity high salt levels, affects one in five hectares of irrigated land. None of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit, which leads to osmotic stress (similar to drought stress), and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population.
  • Suboptimal temperatures affect plant growth and development through the whole plant life cycle. Thus, low temperatures reduce germination rate and high temperatures result in leaf necrosis.
  • Heat shock may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat.
  • Heat shock proteins e.g., chaperones
  • Excessive chilling conditions e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton.
  • Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes.
  • Excessive light conditions which occur under clear atmospheric conditions subsequent to cold late summer/autumn nights, can lead to photoinhibition of photosynthesis (disruption of photosynthesis). In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.
  • Nutrient deficiencies cause adaptations of the root architecture, particularly notably for example is the root proliferation within nutrient rich patches to increase nutrient uptake. Nutrient deficiencies cause also the activation of plant metabolic pathways which maximize the absorption, assimilation and distribution processes such as by activating architectural changes. Engineering the expression of the triggered genes may cause the plant to exhibit the architectural changes and enhanced metabolism also under other conditions.
  • Yield is affected by various factors, such as, the number and size of the plant organs, plant architecture (for example, the number of branches), grains set length, number of filled grains, vigor (e.g, seedling), growth rate, root development, utilization of water, nutrients (e.g., nitrogen) and fertilizers, and stress tolerance.
  • Crops such as, corn, rice, wheat, canola and soybean account for over half of total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds or forage. Seeds are also a source of sugars, proteins and oils and metabolites used in industrial processes.
  • WO publication No. 2009/013750 discloses genes, constructs and methods of increasing abiotic stress tolerance, biomass and/or yield in plants generated thereby.
  • WO publication No. 2008/122980 discloses genes constructs and methods for increasing oil content, growth rate and biomass of plants.
  • WO publication No. 2008/075364 discloses polynucleotides involved in plant fiber development and methods of using same.
  • WO publication No. 2007/049275 discloses isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same for increasing fertilizer use efficiency, plant abiotic stress tolerance and biomass.
  • WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
  • WO publication No. 2005/121364 discloses polynucleotides and polypeptides involved in plant fiber development and methods of using same for improving fiber quality, yield and/or biomass of a fiber producing plant.
  • WO publication No. 2007/020638 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
  • WO publication No. 2009/083958 discloses methods of increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plant and plants generated thereby.
  • WO publication No. 2010/020941 discloses methods of increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants and plants generated thereby.
  • WO publication No. 2009/141824 discloses isolated polynucleotides and methods using same for increasing plant utility.
  • WO publication No. 2010/076756 discloses isolated polynucleotides for increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.
  • WO publication No. 2004/081173 discloses novel plant derived regulatory sequences and constructs and methods of using such sequences for directing expression of exogenous polynucleotide sequences in plants.
  • WO publication No. 2010/049897 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.
  • WO publication No. 2004/111183 discloses nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, wherein the nucleic acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
  • a method of generating a transgenic plant comprising transforming within the plant the nucleic acid construct of some embodiments of the invention, thereby generating the transgenic plant.
  • a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, thereby generating the transgenic plant.
  • a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784, and 2398-3818, thereby generating the transgenic plant.
  • a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, thereby generating the transgenic plant.
  • a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397, thereby generating the transgenic plant.
  • an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.
  • a plant cell exogenously expressing the polypeptide of some embodiments of the invention.
  • transgenic plant comprising the nucleic acid construct of some embodiments of the invention.
  • transgenic plant exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.
  • the nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • the plant cell forms part of a plant.
  • the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
  • the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
  • the yield comprises seed yield or oil yield.
  • the method further comprising growing the plant expressing the exogenous polynucleotide under nitrogen-limiting conditions.
  • the promoter is heterologous to the isolated polynucleotide and/or to the host cell.
  • FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:3829) and the GUSintron (pQYN_6669) used for expressing the isolated polynucleotide sequences of some embodiments of the invention.
  • RB T-DNA right border
  • LB T-DNA left border
  • MCS Multiple cloning site
  • RE any restriction enzyme
  • NOS pro nopaline synthase promoter
  • NPT-II neomycin phosphotransferase gene
  • NOS ter nopaline synthase terminator
  • Poly-A signal polyadenylation signal
  • GUSintron the GUS reporter gene (coding sequence and intron).
  • the isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.
  • FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:3829) (pQFN or pQFNc) used for expressing the isolated polynucleotide sequences of some embodiments of the invention.
  • RB T-DNA right border
  • LB T-DNA left border
  • MCS Multiple cloning site
  • RE any restriction enzyme
  • NOS pro nopaline synthase promoter
  • NPT-II neomycin phosphotransferase gene
  • NOS ter nopaline synthase terminator
  • Poly-A signal polyadenylation signal
  • GUSintron the GUS reporter gene (coding sequence and intron).
  • the isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.
  • FIGS. 3 A- 3 F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal ( FIGS. 3 A- 3 B ), osmotic stress (15% PEG; FIGS. 3 C- 3 D ) or nitrogen-limiting ( FIGS. 3 E- 3 F ) conditions.
  • the different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting.
  • FIG. 3 A An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions.
  • FIG. 3 A An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions.
  • FIG. 3 B An image of root analysis of the plants shown in FIG. 3 A in which the lengths of the roots measured are represented by arrows.
  • FIG. 3 C An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions.
  • FIG. 3 D An image of root analysis of the plants shown in FIG. 3 C in which the lengths of the roots measured are represented by arrows.
  • FIG. 3 E An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions.
  • FIG. 3 F An image of root analysis of the plants shown in FIG. 3 E in which the lengths of the roots measured are represented by arrows.
  • FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa_RP; SEQ ID NO:3830) used for expressing the isolated polynucleotide sequences of some embodiments of the invention.
  • RB T-DNA right border
  • LB T-DNA left border
  • NOS pro nopaline synthase promoter
  • NPT-II neomycin phosphotransferase gene
  • NOS ter nopaline synthase terminator
  • Poly-A signal polyadenylation signal
  • the isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS of the vector.
  • FIG. 5 is a schematic illustration of the pQYN plasmid (5714 bp).
  • FIG. 6 is a schematic illustration of the pQFN plasmid (5967 bp).
  • FIG. 7 is a schematic illustration of the pQFYN plasmid (8004 bp).
  • FIG. 8 is a schematic illustration of pQXNc plasmid, which is a modified pGI binary plasmid used for expressing the isolated polynucleotide sequences of some embodiments of the invention.
  • RB T-DNA right border
  • LB T-DNA left border
  • NOS pro nopaline synthase promoter
  • NPT-II neomycin phosphotransferase gene
  • NOS ter nopaline synthase terminator
  • RE any restriction enzyme
  • Poly-A signal polyadenylation signal
  • 35S the 35S promoter (SEQ ID NO:3827).
  • the isolated polynucleotide sequences of some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.
  • the present invention in some embodiments thereof, relates to novel polynucleotides and polypeptides, nucleic acid constructs comprising same, host cells expressing same, transgenic plants exogenously expressing same and, more particularly, but not exclusively, to methods of using same for increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant.
  • the present inventors have identified novel polypeptides and polynucleotides which can be used to increase nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant.
  • the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance fertilizer use efficiency (e.g., nitrogen use efficiency), yield (e.g., seed yield, oil yield, oil content), growth rate, biomass, vigor and/or abiotic stress tolerance of a plant.
  • fertilizer use efficiency e.g., nitrogen use efficiency
  • yield e.g., seed yield, oil yield, oil content
  • growth rate e.g., vigor and/or abiotic stress tolerance of a plant.
  • Genes, which affect the trait-of-interest were identified based on expression profiles of genes of several arabidopsis, rice, barley, sorghum, maize and tomato ecotypes/accessions and tissues, homology with genes known to affect the trait-of-interest and using digital expression profile in specific tissues and conditions (Tables 1, 6, 12, 18, 26, 33, 38-39, 48, 54, 61, 66-67, Examples 1, and 3-12 of the Examples section which follows). Homologous polypeptides and polynucleotides having the same function were also identified (Table 2, Example 2 of the Examples section which follows).
  • Transgenic plants over-expressing the identified polynucleotides were found to exhibit increased plant performance under nitrogen-deficient or limiting conditions (Tables 69-74; Example 16 of the Examples section which follows) or under standard conditions (Tables 75-80; Example 16 of the Examples section which follows).
  • GH-SM greenhouse seed maturation
  • a method of increasing fertilizer e.g., nitrogen
  • fertilizer e.g., nitrogen
  • a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818
  • fertilizer use efficiency refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per fertilizer unit applied.
  • the metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.
  • fertilizer-limiting conditions refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
  • NUE nitrogen use efficiency
  • nitrogen-limiting conditions refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
  • a level e.g., concentration
  • nitrogen e.g., ammonium or nitrate
  • Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers.
  • improved NUE or FUE has a direct effect on plant yield in the field.
  • the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass.
  • the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield.
  • ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.
  • plant yield refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.
  • a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor, growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g, seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].
  • seed yield refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed.
  • seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content.
  • increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.
  • seed also referred to as “grain” or “kernel” as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.
  • oil content refers to the amount of lipids in a given plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).
  • oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.
  • increase in oil content of the plant can be achieved by increasing the size/mass of a plant's tissue(s) which comprise oil per growth period.
  • increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.
  • plant biomass refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area.
  • An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.
  • growth rate refers to the increase in plant organ/tissue size per time (can be measured in cm 2 per day).
  • plant vigor refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand.
  • a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.
  • stress e.g., abiotic stress, nitrogen-limiting conditions
  • non-stress normal
  • non-stress conditions refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again).
  • Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.
  • abiotic stress refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation.
  • suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation.
  • abiotic stress tolerance refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.
  • Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291).
  • the Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter.
  • McCDPK1 calcium-dependent protein kinase
  • the stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress.
  • Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).
  • Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270).
  • strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production.
  • increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.
  • water use efficiency refers to the level of organic matter produced per unit of water consumed by the plant. i.e., the dry weight of a plant in relation to the plant's water use, e.g., the biomass produced per unit transpiration.
  • fiber is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells.
  • the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).
  • Example of fiber producing plants include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra ), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).
  • agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra ), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).
  • fiber quality refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow).
  • fiber parameters include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow.
  • Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.
  • fiber yield refers to the amount or quantity of fibers produced from the fiber producing plant.
  • the term “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in nitrogen use efficiency, yield, seed yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant as compared to a native plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention. e.g., a non-transformed plant of the same species which is grown under the same (e.g., identical) growth conditions].
  • a native plant i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention. e.g., a non-transformed plant
  • phrases “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.
  • expressing refers to expression at the mRNA and optionally polypeptide level.
  • exogenous polynucleotide refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression in the plant is desired.
  • the exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule.
  • RNA ribonucleic acid
  • exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.
  • endogenous refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof.
  • the exogenous polynucleotide of the invention comprises a nucleic acid sequence encoding a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • Homology can be determined using any homology comparison software, including for example, the BlastPTTM (protein Basic Local Alignment Search Tool) or TBLASTNTM (translated nucleotide databases using a protein query) software of the National Center of Biotechnology Information (NCBI) such as by using default parameters, when starting from a polypeptide sequence; or the tBLASTXTM (translated nucleotide databases using a translated nucleotide query) algorithm (available via the NCBI) such as by using default parameters, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.
  • BlastPTTM protein Basic Local Alignment Search Tool
  • TBLASTNTM translated nucleotide databases using a protein query
  • NCBI National Center of Biotechnology Information
  • tBLASTXTM translated nucleotide databases using a translated nucleotide query
  • the term “homology” or “homologous” refers to identity of two or more nucleic acid sequences; or identity of two or more amino acid sequences.
  • Homologous sequences include both orthologous and paralogous sequences.
  • paralogous relates to gene-duplications within the genome of a species leading to paralogous genes.
  • orthologous relates to homologous genes in different organisms due to ancestral relationship.
  • One option to identify orthologues in monocot plant species is by performing a reciprocal BLASTTM search. This may be done by a first BLASTTM involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The BLASTTM results may be filtered.
  • the full-length sequences of either the filtered results or the non-filtered results are then blasted back (second BLASTTM) against the sequences of the organism from which the sequence-of-interest is derived.
  • the results of the first and second BLASTTMs are then compared.
  • An orthologue is identified when the sequence resulting in the highest score (best hit) in the first BLASTTM identifies in the second BLASTTM the query sequence (the original sequence-of-interest) as the best hit.
  • Using the same rational a paralogue homolog to a gene in the same organism is found.
  • the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor-joining tree (Hypertext Transfer Protocol://en (dot) wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.
  • the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818.
  • the method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate
  • the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO:470-784, 2398-3817 or 3818.
  • the method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 470-784, 2398-3817 or 3818.
  • the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397, thereby increasing the nitrogen use efficiency, yield
  • the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
  • the identity is a global identity, i.e., an identity over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
  • Identity e.g., percent homology
  • NCBI National Center of Biotechnology Information
  • the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • the exogenous polynucleotide is set forth by SEQ ID NO:1-469, 785-2396 or 2397.
  • polynucleotide refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).
  • isolated refers to at least partially separated from the natural environment e.g., from a plant cell.
  • complementary polynucleotide sequence refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
  • genomic polynucleotide sequence refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.
  • composite polynucleotide sequence refers to a sequence, which is at least partially complementary and at least partially genomic.
  • a composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween.
  • the intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.
  • Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.
  • an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant.
  • the nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681).
  • the standard deviation of codon usage may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation.
  • a Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).
  • Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.
  • a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored.
  • one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.
  • codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative.
  • a modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.
  • the exogenous polynucleotide is a non-coding RNA.
  • non-coding RNA refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide).
  • non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).
  • Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ ID NOs: 211-216, 264, 265, 466-469, 797, 927, 933, 939, 944 and 948.
  • the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.
  • the invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • the nucleic acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant.
  • the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • the isolated polynucleotide is set forth by SEQ ID NO:1-469, 785-2396 or 2397.
  • the invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • the amino acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant.
  • the invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818.
  • nucleic acid construct comprising the isolated polynucleotide of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
  • the invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos:470-784 and 2398-3818.
  • the polypeptide is set forth by SEQ ID NO: 470-784, 2398-3817 or 3818.
  • the invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.
  • plant encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs.
  • the plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores.
  • Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp., Areca catechu, Astelia fragrans.
  • the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
  • a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
  • the plant is a dicotyledonous plant.
  • the plant is a monocotyledonous plant.
  • a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.
  • expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.
  • the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.
  • nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of the invention.
  • the isolated polynucleotide is operably linked to the promoter sequence.
  • a coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.
  • a regulatory sequence e.g., promoter
  • promoter refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA.
  • the promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.
  • the promoter is heterologous to the isolated polynucleotide and/or to the host cell.
  • any suitable promoter sequence can be used by the nucleic acid construct of the present invention.
  • the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.
  • the promoter is a plant promoter, which is suitable for expression of the exogenous polynucleotide in a plant cell.
  • Suitable constitutive promoters include, for example, CaMV 35S promoter [SEQ ID NO:3827 (pQFNC); SEQ ID NO:3833 (PJJ 35S from Brachypodium ); SEQ ID NO:3834 (Odell et al., Nature 313:810-812, 1985)].
  • Arabidopsis At6669 promoter (SEQ ID NO:3826; see PCT Publication No. WO04081173A2 or the new At6669 promoter (SEQ ID NO:3829); maize Ubi 1 (Christensen et al., Plant Sol. Biol.
  • Ubi 1 promoter SEQ ID NO:3832
  • RBCS promoter SEQ ID NO:3831
  • Rice cyclophilin Bucholz et al, Plant Mol Biol. 25(5):837-43, 1994
  • Maize H3 histone Lepetit et al. Mol. Gen. Genet. 231: 276-285, 1992
  • Actin 2 An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995).
  • Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608.144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; and 5,608,142.
  • tissue-specific promoters include, but not limited to, leaf-specific promoters [such as described, for example, by Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci.
  • seed-preferred promoters e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et, al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO:3828), from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), Brazil Nut albumin (Pearson′ et al., Plant Mol. Biol.
  • legumin Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988
  • Glutelin rice
  • Zein Zein
  • Barley Itrl promoter barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet 250:750-60, 1996).
  • Barley DOF (Mena et al, The Plant Journal. 116(1): 53-62, 1998), Biz2 (EP99106056.7), Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice-globulin Gib-1 (Wu et al. Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol.
  • AtPRP4 chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen Genet. 217:240-245; 1989), apetala-3]
  • root promoters such as the ROOTP promoter [SEQ ID NO: 3830].
  • Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et, al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et, al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et, al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).
  • salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet
  • the nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication.
  • the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells.
  • the construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
  • the nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells.
  • stable transformation the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait.
  • transient transformation the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.
  • the Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al, in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.
  • DNA transfer into plant cells There are various methods of direct DNA transfer into plant cells.
  • electroporation the protoplasts are briefly exposed to a strong electric field.
  • microinjection the DNA is mechanically injected directly into the cells using very small micropipettes.
  • microparticle bombardment the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.
  • Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein.
  • the new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant.
  • Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant.
  • the advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.
  • Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages.
  • the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening.
  • stage one initial tissue culturing
  • stage two tissue culture multiplication
  • stage three differentiation and plant formation
  • stage four greenhouse culturing and hardening.
  • stage one initial tissue culturing
  • the tissue culture is established and certified contaminant-free.
  • stage two the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals.
  • stage three the tissue samples grown in stage two are divided and grown into individual plantlets.
  • the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.
  • the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.
  • Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.
  • Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.
  • the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting.
  • a suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus.
  • Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003). Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).
  • Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.
  • a buffer solution e.g., phosphate buffer solution
  • the virus When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.
  • a plant viral polynucleotide in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted.
  • the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced.
  • the recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters.
  • Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters.
  • Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included.
  • the non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.
  • a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.
  • a recombinant plant viral polynucleotide in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide.
  • the inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters.
  • Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.
  • a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.
  • the viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus.
  • the recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants.
  • the recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.
  • polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.
  • a technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts.
  • the exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast.
  • the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome.
  • the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference.
  • a polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.
  • the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell.
  • the transformed cell can then be regenerated into a mature plant using the methods described hereinabove.
  • expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides.
  • a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences.
  • the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence.
  • IRES internal ribosome entry site
  • a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides.
  • the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.
  • the plant cell transformed with the construct including a plurality of different exogenous polynucleotides can be regenerated into a mature plant, using the methods described hereinabove.
  • expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants.
  • the regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield and/or vigor traits, using conventional plant breeding techniques.
  • the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
  • Non-limiting examples of abiotic stress conditions include, salinity, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
  • the method further comprising growing the plant expressing the exogenous polynucleotide under fertilizer limiting conditions (e.g., nitrogen-limiting conditions).
  • fertilizer limiting conditions e.g., nitrogen-limiting conditions
  • Non-limiting examples include growing the plant on soils with low nitrogen content (40-50% Nitrogen of the content present under normal or optimal conditions), or even under sever nitrogen deficiency (0-10% Nitrogen of the content present under normal or optimal conditions).
  • the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs and/or polypeptide(s) of the invention.
  • the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.
  • activity assays Western blots using antibodies capable of specifically binding the polypeptide
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • RIA radio-immuno-assays
  • immunohistochemistry immunocytochemistry
  • immunofluorescence immunofluorescence and the like.
  • RNA-in situ hybridization Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example. Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.
  • RT-PCR reverse transcription polymerase chain reaction
  • sub-sequence data of those polynucleotides described above can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., biomass, growth rate, oil content, yield, abiotic stress tolerance, water use efficiency, nitrogen use efficiency and/or fertilizer use efficiency).
  • MAS marker assisted selection
  • Nucleic acid data of the present teachings may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.
  • RFLP restriction fragment length polymorphism
  • SNP single nucleotide polymorphism
  • DFP DNA fingerprinting
  • AFLP amplified fragment length polymorphism
  • expression level polymorphism polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.
  • marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).
  • a morphological trait e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice
  • selection for a biochemical trait e.g., a gene that encodes a protein that
  • polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.
  • Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.
  • transgene the exogenous polynucleotide encoding the polypeptide
  • abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.
  • Abiotic stress tolerance Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.
  • an abiotic stress condition such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.
  • Salinity tolerance assay Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt.
  • Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)].
  • a hyperosmotic growth medium e.g. 50% Murashige-Skoog medium (MS medium)
  • the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York. 2002, and reference therein).
  • a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.
  • sodium chloride for example 50 mM, 100 mM, 200 mM, 400 mM NaCl
  • Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.
  • Osmotic tolerance test Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.
  • Drought tolerance assay/Osmoticum assay Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.
  • soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.
  • Cold stress tolerance To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.
  • Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C., for a certain period. Plant tolerance is examined after transferring the plants back to 22° C., for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.
  • Water use efficiency can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:
  • Fertilizer use efficiency To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Examples 16-18, hereinbelow and in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant.
  • NUE nitrogen use efficiency
  • PUE phosphate use efficiency
  • KUE potassium use efficiency
  • Nitrogen use efficiency To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant.
  • Nitrogen Use efficiency assay using plantlets The assay is done according to Yanagisawa-S. et al, with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5 ⁇ MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH 4 NO 3 and KNO 3 ) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration).
  • Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually. 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.
  • GUS uidA reporter gene
  • N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO 3 ⁇ (Purcell and King 1996 Argon. J. 88:111-113, the modified Cd ⁇ mediated reduction of NO 3 ⁇ to NO 2 ⁇ (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO 2 . The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.
  • Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).
  • Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C., instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).
  • an osmolyte such as sorbitol
  • salt of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl
  • the effect of the transgene on plant's vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.
  • Plant vigor The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.
  • the growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.
  • Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm 2 per day of leaf area).
  • Relative growth area can be calculated using Formula II.
  • Relative growth rate area Regression coefficient of area along time course Formula II:
  • the relative growth area rate is in units of 1/day and length growth rate is in units of 1/day.
  • Seed yield Evaluation of the seed yield per plant can be done by measuring the amount (weight or size) or quantity (i.e., number) of dry seeds produced and harvested from 8-16 plants and divided by the number of plants.
  • the total seeds from 8-16 plants can be collected, weighted using e.g., an analytical balance and the total weight can be divided by the number of plants.
  • Seed yield per growing area can be calculated in the same manner while taking into account the growing area given to a single plant. Increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants capable of growing in a given area.
  • seed yield can be determined via the weight of 1000 seeds.
  • the weight of 1000 seeds can be determined as follows: seeds are scattered on a glass tray and a picture is taken. Each sample is weighted and then using the digital analysis, the number of seeds in each sample is calculated.
  • the 1000 seeds weight can be calculated using formula II:
  • Seed Weight number of seed in sample/sample weight ⁇ 1000 Formula III:
  • the Harvest Index can be calculated using Formula IV
  • Grain protein concentration Grain protein content (g grain protein m 2 ) is estimated as the product of the mass of grain N (g grain N m 2 ) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg ⁇ 1 grain).
  • Fiber length can be measured using fibrograph.
  • the fibrograph system was used to compute length in terms of “Upper Half Mean” length.
  • the upper half mean (UHM) is the average length of longer half of the fiber distribution.
  • increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.
  • increased yield of rice can be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others.
  • An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others.
  • An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others.
  • An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others.
  • An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Oil content The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F, and Earle F R., 1963.
  • NMR Nuclear Magnetic Resonance
  • the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).
  • crops e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass.
  • transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.
  • transgenic plants described hereinabove which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).
  • the plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients.
  • the specific ingredients included in a product are determined according to the intended use.
  • Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material.
  • Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.
  • the oil comprises a seed oil.
  • the oil comprises a vegetative portion oil.
  • the plant cell forms a part of a plant.
  • compositions, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
  • a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
  • a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • the phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
  • method refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
  • Correlation analysis was performed for selected genes according to some embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptome, which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated (using Pearson correlation) along with a p-value for the significance of the correlation.
  • NUE Nitrogen Use Efficiency
  • FUE Fertilizer Use Efficiency
  • WUE Water Use Efficiency
  • NUE nitrogen use efficiency
  • FUE fertilizer use efficiency
  • yield e.g., seed yield, oil yield, biomass, grain quantity and/or quality
  • ABSST abiotic stress tolerance
  • WUE water use efficiency
  • nucleotide sequence datasets used here were originated from publicly available databases or from performing sequencing using the Solexa technology (e.g. Barley and Sorghum ). Sequence data from 100 different plant species was introduced into a single, comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated. Major databases used include:
  • Microarray Datasets were Downloaded from:
  • Database Assembly was performed to build a wide, rich, reliable annotated and easy to analyze database comprised of publicly available genomic mRNA. ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway, QTLs data, and other relevant information.
  • Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project.
  • Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene.
  • the capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623). 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.
  • EST clustering and gene assembly For gene clustering and assembly of organisms with available genome sequence data ( arabidopsis , rice, castorbean, grape, brachypodium , poplar, soybean, sorghum ) the genomic LEADS version (GANG) was employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.
  • Predicted proteins from different species were compared using BLASTTM algorithm [Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.
  • Gene expression profiling Several data sources were exploited for gene expression profiling, namely microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes, which are co-regulated under different development stages and environmental conditions and associated with different phenotypes.
  • a digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster.
  • Digital expression also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster.
  • the tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc).
  • the digital expression Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries.
  • GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags (ESTs) that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs).
  • ESTs expressed sequence tags
  • Cucurbit Genomics Database [Hypertext Transfer Protocol://World Wide Web (dot) icugi (dot) org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR data.
  • Orthologs and paralogs constitute two major types of homologs: The first evolved from a common ancestor by specialization, and the latter is related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have diverged in function while true orthologs are more likely to retain identical function over evolutionary time.
  • Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed).
  • developmental stages e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage
  • plant organ e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed.
  • the search and identification of homologous genes involves the screening of sequence information available, for example, in public databases, which include but are not limited to the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database.
  • DDBJ DNA Database of Japan
  • Genbank Genbank
  • EMBL European Molecular Biology Laboratory Nucleic Acid Sequence Database
  • a number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLASTTM programs.
  • BLASTTM programs There are five implementations of BLASTTM, three designed for nucleotide sequence queries (BLASTNTM, BLASTXTM, and TBLASTXTM) and two designed for protein sequence queries (BLASTPTM and TBLASTTM) (Coulson.
  • the homologous genes may belong to the same gene family.
  • the analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W.
  • a neighbor-joining tree of the proteins homologous to the genes of some embodiments of the invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (orthologue) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here.
  • these family members may be useful in the methods of some embodiments of the invention.
  • Example of other plants include, but not limited to, barley ( Hordeum vulgare ).
  • Arabidopsis Arabidopsis thaliana
  • maize Zea mays
  • cotton Gossypium
  • Oilseed rape Brassica napus
  • Rice Oryza sativa
  • Sugar cane Saccharum officinarum
  • Sorghum Sorghum bicolor
  • Soybean Glycine max
  • Sunflower Helianthus annuus
  • Tomato Lycopersicon esculentum
  • Wheat Triticum aestivum ).
  • homologous sequences may be used to find similar sequences in other species and other organisms.
  • Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.
  • amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break ⁇ -helical structures or 3-sheet structures).
  • nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.
  • Polynucleotides and polypeptides with significant homology to the identified genes described in Table 1 were identified from the databases using BLASTTM software using the BLASTPTM and TBLASTNTM algorithms.
  • the query polypeptide sequences were SEQ ID NOs: 470-716 (which are encoded by the polynucleotides SEQ ID NOs:1-265, shown in Table 1 above) and SEQ ID NOs:717-784 (which are encoded by the cloned genes SEQ ID NOs:266-469, shown in Table 68 (Example 13, below) and the identified homologous sequences are provided in Table 2, below.
  • the query sequences were polypeptide sequences SEQ ID NOs: 470-716 and 717-784 and the subject sequences are polypeptide sequences or polynucleotide sequences which were dynamically translated in all six reading frames identified in the database based on greater than 80% identity to the query polypeptide sequences.
  • Polyp.” polypeptide; “Polyn.”—Polynucleotide.
  • Algor. Algorithm.
  • globlastp global homology using blastp; “glotblastn”—global homology using tblastn.
  • Hom.” homologous.
  • the output of the functional genomics approach described herein is a set of genes highly predicted to improve nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber length, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant by increasing their expression.
  • RNA polypeptide
  • RNA polypeptide
  • modifying the mode of expression of more than one gene or gene product is expected to provide an additive or synergistic effect on the desired trait (e.g., nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency of a plant).
  • the desired trait e.g., nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency of a plant.
  • Altering the expression of each gene described here alone or of a set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.
  • the array oligonucleotide represents about 44,000 Arabidopsis genes and transcripts.
  • RNA expression analysis a grouping of ecotypes encompassing the observed variance. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO 3 , supplemented with 2 mM CaCl 2 ), 1.25 mM KH 2 PO 4 , 1.50 mM MgSO 4 , 5 mM KCl, 0.01 mM H 3 BO 3 and microelements, while normal irrigation conditions was achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO 3 , supplemented with 2 mM CaCl 2 ), 1.25 mM KH 2 PO 4 , 1.50 mM MgSO 4 , 0.01 mM H3B03 and microelements.
  • An image acquisition system which consists of a digital reflex camera (Canon EOS 400D) attached with a 55 mm focal length lens (Canon EF-S series) placed in a custom made Aluminum mount, was used for capturing images of plants planted in containers within an environmental controlled greenhouse. The image capturing process is repeated every 2-3 days starting at day 9-12 till day 16-19 (respectively) from transplanting.
  • An image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Leaf analysis Using the digital analysis leaves data was calculated, including leaf number, leaf blade area. Rosette diameter and area.
  • Relative growth area rate The relative growth rate of the rosette and the leaves was calculated according to Formulas V and VI:
  • Relative growth rate rosette area Regression coefficient of rosette area along time course
  • Seed yield and 1000 seeds weight At the end of the experiment all seeds from all plots were collected and weighed in order to measure seed yield per plant in terms of total seed weight per plant (gr). For the calculation of 1000 seed weight, an average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
  • Harvest Index The harvest index was calculated using Formula IV as described above.
  • Percent of seed yield reduction measures the amount of seeds obtained in plants when grown under nitrogen-limiting conditions compared to seed yield produced at normal nitrogen levels expressed in percentages (%).
  • the array oligonucleotide represents about 44,000 rice genes and transcripts.
  • Rice plants grown under different nitrogen fertilization levels assessment Five rice accessions were grown in 3 repetitive plots, each containing 10 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Rice seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio.
  • Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 0.8 mM inorganic nitrogen in the form of KNO 3 , supplemented with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , 3.6 mM K 2 SO 4 and microelements, while normal nitrogen levels were achieved by applying a solution of 8 mM inorganic nitrogen also in the form of KNO 3 with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , and microelements.
  • Analyzed rice tissues All 5 selected rice varieties were pooled in 1 batch per each treatment. Two tissues [leaves and roots] growing at two different nitrogen fertilization levels, 0.8 mM Nitrogen (nitrogen limiting conditions) or 8 mM Nitrogen (normal nitrogen conditions) were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 7 below.
  • Gene up-regulation under reduced nitrogen fertilization levels indicates the involvement of the genes in NUE improvement.
  • the array oligonucleotide represents about 44,000 A. thaliana genes and transcripts designed based on data from the TIGR ATH1 v. 5 database and Arabidopsis MPSS (University of Delaware) databases.
  • RNA expression analysis To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 15 different Arabidopsis ecotypes were analyzed. Among them, nine ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Yield components and vigor related parameters assessment Eight out of the nine Arabidopsis ecotypes were used in each of 5 repetitive blocks (named A, B, C, D and E), each containing 20 plants per plot. The plants were grown in a greenhouse at controlled conditions in 22° C., and the N:P:K fertilizer (20:20:20; weight ratios) [nitrogen (N), phosphorus (P) and potassium (K)] was added. During this time data was collected, documented and analyzed. Additional data was collected through the seedling stage of plants grown in a tissue culture in vertical grown transparent agar plates. Most of chosen parameters were analyzed by digital imaging.
  • Digital imaging in Tissue culture A laboratory image acquisition system was used for capturing images of plantlets sawn in square agar plates.
  • the image acquisition system consists of a digital reflex camera (Canon EOS 300D) attached to a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4 ⁇ 150 Watts light bulb) and located in a darkroom.
  • An image analysis system was used, which consists of a personal desktop computer (Intel P43.0 GHz processor) and a public domain program—ImageJ 1.37.
  • Java based image processing program which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 6 Mega Pixels (3072 ⁇ 2048 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Leaf analysis Using the digital analysis leaves data was calculated, including leaf number, area, perimeter, length and width. On day 30, 3-4 representative plants were chosen from each plot of blocks A, B and C. The plants were dissected, each leaf was separated and was introduced between two glass trays, a photo of each plant was taken and the various parameters (such as leaf total area, laminar length etc.) were calculated from the images. The blade circularity was calculated as laminar width divided by laminar length.
  • Root analysis During 17 days, the different ecotypes were grown in transparent agar plates. The plates were photographed every 3 days starting at day 7 in the photography room and the roots development was documented (see examples in FIGS. 3 A- 3 F ). The growth rate of roots was calculated according to Formula VII.
  • Vegetative growth rate analysis was calculated according to Formula VIII. The analysis was ended with the appearance of overlapping plants.
  • Relative vegetative growth rate area Regression coefficient of vegetative area along time course.
  • siliques analysis On day 70, 15-17 siliques were collected from each plot in blocks D and E. The chosen siliques were light brown color but still intact. The siliques were opened in the photography room and the seeds were scatter on a glass tray, a high resolution digital picture was taken for each plot. Using the images the number of seeds per silique was determined.
  • Seeds average weight At the end of the experiment all seeds from plots of blocks A-C were collected. An average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
  • Oil percentage in seeds (At the end of the experiment all seeds from plots of blocks A-C were collected. Columbia seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C., and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die enablessanalytician Betician des Milchfettes, Polytechnisches J.
  • Silique length analysis On day 50 from sowing. 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.
  • Oil yield The oil yield was calculated using Formula IX.
  • Seed Oil yield Seed yield per plant (gr.)*Oil % in seed.
  • Harvest Index (seed)—The harvest index was calculated using Formula IV (described above).
  • Table 12 provides the correlation analyses.
  • the array oligonucleotide represents about 44,000 Barley genes and transcripts, in order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 25 different Barley accessions were analyzed. Among them, 13 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot)
  • Barley yield components and vigor related parameters assessment 25 Barley accessions in 4 repetitive blocks (named A, B, C, and D), each containing 4 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 14, below). Harvest was conducted while 50% of the spikes were dry to avoid spontaneous release of the seeds. Plants were separated to the vegetative part and spikes, of them, 5 spikes were threshed (grains were separated from the glumes) for additional grain analysis such as size measurement, grain count per spike and grain yield per spike. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis.
  • the image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Grains per spike At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total number of grains from 5 spikes that were manually threshed was counted. The average grain per spike is calculated by dividing the total grain number by the number of spikes.
  • Grain average size (cm)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.
  • Grain average weight (mgr)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were counted and weight. The average weight was calculated by dividing the total weight by the total grain number.
  • Grain yield per spike (gr)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were weight. The grain yield was calculated by dividing the total weight by the spike number.
  • Spike length analysis At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The five chosen spikes per plant were measured using measuring tape excluding the awns.
  • Plant height At the harvest stage (50% of spikes were dry) each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns.
  • Days to flowering Each of the plants was monitored for flowering date. Days of flowering was calculated from sowing date till flowering date.
  • Stem pigmentation At the growth stage 10 (booting), each of the plants was scored for its stem color. The scale that was used was 1 for green till 5 for full purple.
  • Dry weight total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Spike yield per plant total spike weight per plant (gr) after drying at 30° C. in oven for-48 hours.
  • Harvest Index (for barley)—The harvest index is calculated using Formula X.
  • the array oligonucleotide represents about 44,000 sorghum genes and transcripts.
  • various plant characteristics of 17 different sorghum hybrids were analyzed.
  • RNA expression analysis 10 hybrids encompassing the observed variance were selected for RNA expression analysis.
  • Drought stress sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around stage V8 (eight green leaves are fully expanded, booting not started yet). At this point, irrigation was stopped, and severe drought stress was developed.
  • Analyzed Sorghum tissues All 10 selected Sorghum hybrids were sample per each treatment. Plant tissues [Flag leaf. Flower meristem and Flower] growing under low nitrogen, severe drought stress and plants grown under normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 19 below.
  • Average Grain Area (cm 2 )—At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ⁇ 200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Head Average Area (cm 2 ) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
  • Head Average Length (cm) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.
  • the image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Total Seed Weight per Head (gr.)—At the end of the experiment (plant ‘Heads’) heads from plots within blocks A-C were collected. 5 heads were separately threshed and grains were weighted, all additional heads were threshed together and weighted as well. The average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot). In case of 5 heads, the total grains weight of 5 heads was divided by 5.
  • FW Head per Plant gram At the end of the experiment (when heads were harvested) total and 5 selected heads per plots within blocks A-C were collected separately. The heads (total and 5) were weighted (gr.) separately and the average fresh weight per plant was calculated for total (FW Head/Plant gr, based on plot) and for 5 (FW Head/Plant gr, based on 5 plants).
  • Plant height Plants were characterized for height during growing period at 5 time points. In each measure, plants were measured for their height using a measuring tape. Height was measured from ground level to top of the longest leaf.
  • Plant leaf number Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII.
  • Relative growth rate of plant height Regression coefficient of plant height along time course.
  • SPAD Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • Dry weight total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • FW Heads/(FW Heads+FW Plants) The total fresh weight of heads and their respective plant biomass was measured at the harvest day. The heads weight was divided by the sum of weights of heads and plants.
  • the trays were transferred to the high salinity solution (100 mM NaCl in addition to the Full Hoagland solution), low temperature (10 ⁇ 2° C., in the presence of Full Hoagland solution), low nitrogen solution (the amount of total nitrogen was reduced in 90% from the full Hoagland solution (i.e., to a final concentration of 10% from full Hoagland solution, final amount of 1.2 mM N) or at Normal growth solution (Full Hoagland containing 16 mM N solution, at 28 ⁇ 2° C.). Plants were grown at 28 ⁇ 2° C.
  • Full Hoagland solution consists of: KNO 3 —0.808 grams/liter, MgSO 4 —0.12 grams/liter.
  • KH 2 PO 4 0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].
  • Analyzed Sorghum tissues All 10 selected Sorghum hybrids were sampled per each treatment. Three tissues [leaves, meristems and roots] growing at 100 mM NaCl, low temperature (10 ⁇ 2° C.), low Nitrogen (1.2 mM N) or under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 27 below.
  • the array oligonucleotide represents about 44,000 maize genes and transcripts.
  • RNA expression analysis was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Analyzed Maize tissues All 10 selected maize hybrids were sample per each treatment. Five types of plant tissues [flag leaf indicated in Table 34 as leaf, flower meristem, grain. Ear, and internode] growing under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 34 below.
  • Maize transcriptom expression sets Expression Set Set ID Maize field/Normal/flower meristem A Maize field/Normal/Ear B Maize field/Normal/Grain Distal C Maize field/Normal/Grain Basal D Maize field/Normal/Internode E Maize field/Normal/Leaf F Table 34: Provided are the maize transcriptom expression sets.
  • Leaf the leaf below the main ear;
  • Grain Distal maize developing grains from the cob extreme area,
  • Grain Basal maize developing grains from the cob basal area;
  • Internodes internodes located above and below the main ear in the plant.
  • Grain Area (cm 2 )—At the end of the growing period the grains were separated from the ear. A sample of ⁇ 200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Grain Length and Grain width (cm)—At the end of the growing period the grains were separated from the ear. A sample of ⁇ 200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.
  • Ear Area (cm 2 )—At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
  • Ear Length and Ear Width (cm) At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.
  • the image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37.
  • Java based image processing software which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format.
  • JPEG Joint Photographic Experts Group standard
  • Normalized Grain Weight per plant (gr.)—At the end of the experiment all ears from plots within blocks A-C were collected. Six ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.
  • Ear FW (gr.)—At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).
  • Plant height and Ear height Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located
  • Leaf number per plant Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII (described above).
  • SPAD Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS)
  • Dry weight total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Cob diameter [cm] The diameter of the cob without grains was measured using a ruler.
  • Kernel Row Number per Ear The number of rows in each ear was counted.
  • the array oligonucleotide represents about 44.000 Tomato genes and transcripts.
  • ABST yield components or vigor related parameters
  • various plant characteristics of 18 different Tomato varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Tomato varieties were grown in 3 repetitive blocks, each containing 6 plants per plot were grown at net house. Briefly, the growing protocol was as follows:
  • Tomato varieties were grown under normal conditions (4-6 Liters/m 2 of water per day and fertilized with NPK as recommended in protocols for commercial tomato production).
  • Drought stress Tomato variety was grown under normal conditions (4-6 Liters/m 2 per day) until flowering. At this time, irrigation was reduced to 50% compared to normal conditions. Plants were phenotyped on a daily basis following the standard descriptor of tomato (Table 40). Harvest was conducted while 50% of the fruits were red (mature). Plants were separated to the vegetative part and fruits, of them, 2 nodes were analyzed for additional inflorescent parameters such as size, number of flowers, and inflorescent weight. Fresh weight of all vegetative material was measured. Fruits were separated to colors (red vs. green) and in accordance with the fruit size (small, medium and large). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Table 41, herein below.
  • Tomato transcriptom expression sets Expression Set Set ID Leaf grown under Normal Conditions A Leaf grown under 50% Irrigation B Flower grown under Normal Conditions C Flower grown under 50% Irrigation D Leaf grown under Low Nitrogen E Flower grown under Low Nitrogen F Table 40: Provided are the identification (ID) letters of each of the tomato expression sets.
  • Fruit Yield (grams)—At the end of the experiment [when 50% of the fruit were ripe (red)] all fruits from plots within blocks A-C were collected. The total fruits were counted and weighted. The average fruits weight was calculated by dividing the total fruit weight by the number of fruits.
  • Plant Fresh Weight (grams)—At the end of the experiment [when 50% of the fruit were ripe (red)] all plants from plots within blocks A-C were collected. Fresh weight was measured (grams).
  • Inflorescence Weight (grams)—At the end of the experiment [when 50% of the fruits were ripe (red)] two Inflorescence from plots within blocks A-C were collected. The Inflorescence weight (gr.) and number of flowers per inflorescence were counted.
  • SPAD Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • WUE Water use efficiency
  • Leaf relative water content was measured in control and transgenic plants. Fresh weight (FW) was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight.
  • Relative water content (RWC) was calculated according to the following Formula I [(FW ⁇ DW/TW ⁇ DW) ⁇ 100] as described above.
  • Plants that maintain high relative water content (RWC) compared to control lines were considered more tolerant to drought than those exhibiting reduced relative water content
  • Tomato hybrids were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Tomato seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio.
  • the trays were transferred to the high salinity solution (300 mM NaCl in addition to the Full Hoagland solution), low nitrogen solution (the amount of total nitrogen was reduced in a 90% from the full Hoagland solution, final amount of 0.8 mM N) or at Normal growth solution (Full Hoagland containing 8 mM N solution, at 28 ⁇ 2° C.). Plants were grown at 28 ⁇ 2° C.
  • Full Hoagland solution consists of: KNO 3 —0.808 grams/liter, MgSO 4 —0.12 grams/liter.
  • KH 2 PO 4 0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter, Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].
  • Tomato transcriptom expression sets Expression Set Set ID Leaves at 300 mM NaCl A Leaves at Normal conditions B Leaves at Low Nitrogen conditions C Roots at 100 mM NaCl D Roots at Normal conditions E Roots at Low Nitrogen conditions F Table 49. Provided are the tomato transcriptom experimental sets.
  • Tomato vigor related parameters Following 5 weeks of growing, plant were harvested and analyzed for Leaf number plant height, chlorophyll levels (SPAD units), different indices of nitrogen use efficiency (NUE) and plant biomass. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Table 50, herein below.
  • the array oligonucleotide represents about 60K Barley genes and transcripts.
  • various plant characteristics of 15 different Barley accessions were analyzed. Among them. 10 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Barley yield components and vigor related parameters assessment 15 Barley accessions in 5 repetitive blocks, each containing 5 plants per pot were grown at net house. Three different treatments were applied: plants were regularly fertilized and watered during plant growth until harvesting (as recommended for commercial growth) or under low Nitrogen (80% percent less Nitrogen) or drought stress. Plants were phenotyped on a daily basis following the parameters listed in Table 56 below. Harvest was conducted while all the spikes were dry. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis.
  • the image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Grains number The total number of grains from all spikes that were manually threshed was counted. No. of grains per plot were counted.
  • Grain weight (gr.)—At the end of the experiment all spikes of the pots were collected. The total grains from all spikes that were manually threshed were weight. The grain yield was calculated by per plot.
  • Spike length and width analysis At the end of the experiment the length and width of five chosen spikes per plant were measured using measuring tape excluding the awns.
  • Spike number analysis The spikes per plant were counted.
  • Plant height Each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns at two time points at the Vegetative growth (30 days after sowing) and at harvest.
  • Spike weight The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.
  • Dry weight total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours at two time points at the Vegetative growth (30 days after sowing) and at harvest.
  • Root dry weight total weight of the root portion underground after drying at 70° C., in oven for 48 hours at harvest.
  • Root/Shoot Ratio The Root/Shoot Ratio is calculated using Formula XV.
  • Root/Shoot Ratio total weight of the root at harvest/total weight of the vegetative portion above ground at harvest.
  • SPAD Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • Root FW (gr.), root length (cm) and No of lateral roots—3 plants per plot were selected for measurement of root weight, root length and for counting the number of lateral roots formed.
  • Relative water content Fresh weight (FW) of three leaves from three plants each from different seed ID was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight.
  • Relative water content RWC is calculated according to Formula I above.
  • Harvest Index (for barley)—The harvest index is calculated using Formula X above.
  • Relative growth rate the relative growth rate (RGR) of Plant Height (Formula XI above), Spad (Formula XVI) and number of tillers (Formula XVII) are calculated as follows:
  • the array oligonucleotide represents about 44.000 maize genes and transcripts.
  • RNA expression analysis was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Grain Area (cm 2 )—At the end of the growing period the grains were separated from the ear. A sample of ⁇ 200 grains were weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Grain Length and Grain width (cm)—At the end of the growing period the grains were separated from the ear. A sample of ⁇ 200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.
  • Ear Area (cm 2 )—At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
  • Ear Length and Ear Width (cm) At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.
  • the image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Normalized Grain Weight per plant (gr.)—At the end of the experiment all ears from plots within blocks A-C were collected. Six ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.
  • Ear FW (gr.)—At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).
  • Plant height and Ear height Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located.
  • Leaf number per plant Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII (described above).
  • SPAD Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at early stages of grain filling (R1-R2) and late stage of grain filling (R3-R4). SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS).
  • Dry weight total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Cob diameter [cm] The diameter of the cob without grains was measured using a ruler.
  • Kernel Row Number per Ear The number of rows in each ear was counted.
  • SPAD at R1-R2 and SPAD R3-R4 Chlorophyl level after early and late stages of grain filling
  • NUE nitrogen use efficiency
  • NUpE nitrogen uptake efficiency
  • LAI leaf area
  • Low N Low Nitrogen.
  • RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS” above. Production of cDNA and PCR amplification was performed using standard protocols described elsewhere (Sambrook J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.) which are well known to those skilled in the art. PCR products are purified using PCR purification kit (Qiagen). In case where the entire coding sequence was not found, RACE kit from Invitrogen (RACE Rapid Amplification of cDNA Ends) was used to access the full cDNA transcript of the gene from the RNA samples described above. RACE products were cloned into high copy vector followed by sequencing or directly sequenced.
  • genomic DNA was cloned, the genes were amplified by direct PCR on genomic DNA extracted from leaf tissue using the DNAeasy kit (Qiagen Cat. No. 69104).
  • 2 sets of primers were synthesized for the amplification of each gene from a cDNA or a genomic sequence; an external set of primers and an internal set (nested PCR primers).
  • an additional primer or two of the nested PCR primers were used.
  • the primer extension includes an endonuclease restriction site.
  • the restriction sites were selected using two parameters: (a). The site does not exist in the cDNA sequence; and (b). The restriction sites in the forward and reverse primers were designed such that the digested cDNA was inserted in the sense formation into the binary vector utilized for transformation.
  • Each digested PCR product was inserted into a high copy vector pUC19 (New England BioLabs Inc], or into plasmids originating from this vector. In some cases the undigested PCR product was inserted into pCR-Blunt II-TOPO (Invitrogen).
  • High copy plasmids containing the cloned genes were digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers and cloned into binary vectors as shown in Table 68, below.
  • the plasmid pPI is constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; bp 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, Acc. No.
  • pGI pBXYN
  • GUS-Intron gene the GUS-Intron gene followed by the NOS terminator (SEQ ID NO:3825)
  • SEQ ID NO:3825 the NOS terminator
  • pGI was used in the past to clone the polynucleotide sequences, initially under the control of 35S promoter [Odell, J T. et al. Nature 313, 810-812 (28 Feb. 1985); SEQ ID NO:3834].
  • the modified pGI vectors [pQXNc ( FIG. 8 ); or pQFN ( FIG. 2 ), pQFNc ( FIG. 2 ) or pQYN_6669 ( FIG. 1 )] are modified versions of the pGI vector in which the cassette is inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.
  • the Arabidopsis thaliana promoter sequence (SEQ ID NO:3829) was inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above.
  • Colonies were analyzed by PCR using the primers covering the insert which were designed to span the introduced promoter and gene. Positive plasmids were identified, isolated and sequenced.
  • B73 3877, 4039, 4189, 4304 327 733 LNU361 pUC19c MAIZE Zea mays L.
  • Spontaneum 3951, 4113, 4240, 4374 417 630 LNU468 pUC19c TOMATO Lycopersicum esculentum MD 3952, 4114, 4241, 4375 418 769 LNU469 pUC19c MAIZE Zea mays L. B73 3953, 4115, 3953, 4376 419 632 LNU470 Topo B BARLEY Hordeum vulgare L.
  • Spontaneum 3954, 4116, 4242, 4377 420 770 LNU471 Topo B MAIZE Zea mays L. B73 3955, 4117, 4243, 4378 421 771 LNU472 pUC19c BARLEY Hordeum vulgare L.
  • polyn. polynucleotide
  • polyp. polypeptide
  • the binary vectors were introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 10 9 cells/mL) by electroporation.
  • the electroporation was performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad).
  • the treated cells were cultured in LB liquid medium at 28° C., for 3 hours, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28° C., for 48 hours.
  • Agrobacterium colonies which were developed on the selective media, were further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid.
  • the resulting PCR products were isolated and sequenced as described in Example 13 above, to verify that the correct polynucleotide sequences of the invention are properly introduced to the Agrobacterium cells.
  • Arabidopsis thaliana Columbia plants (T 0 plants) were transformed using the Floral Dip procedure described by Clough and Bent, 1998 (Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J 16:735-43) and by Desfeux et al., 2000 (Female Reproductive Tissues Are the Primary Target of Agrobacterium -Mediated Transformation by the Arabidopsis Floral-Dip Method. Plant Physiol, July 2000, Vol. 123, pp. 895-904), with minor modifications. Briefly, To Plants were sown in 250 ml pots filled with wet peat-based growth mix.
  • the pots were covered with aluminum foil and a plastic dome, kept at 4° C., for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hour light/dark cycles.
  • the T 0 plants were ready for transformation six days before anthesis.
  • the pellets comprising the Agrobacterium cells were re-suspended in a transformation medium containing half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 ⁇ M benzylamino purine (Sigma); 112 ⁇ g/L B5 Gam strig vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.
  • Transformation of T 0 plants was performed by inverting each plant into an Agrobacterium suspension, such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T 0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours, to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T 0 plants were grown in the greenhouse for 3-5 weeks until siliques are brown and dry. Seeds were harvested from plants and kept at room temperature until sowing.
  • T 1 and T 2 transgenic plants harboring the genes seeds collected from transgenic T 0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashige-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C., for 48 hours, then transferred to a growth room at 25° C., for an additional week of incubation.
  • T 1 Arabidopsis plants were transferred to fresh culture plates for another week of incubation. Following incubation the T 1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T 1 plants were cultured and grown to maturity as T 2 plants under the same conditions as used for culturing and growing the T 1 plants.
  • each polynucleotide of the invention at least four-five independent transformation events were analyzed from each construct.
  • each plate contained 5 seedlings of 5 independent transgenic events and 3-4 different plates (replicates) were planted. In total, for T 1 lines. 20 independent events were evaluated. Plants expressing the polynucleotides of the invention were compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.
  • Digital imaging A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 ⁇ 150 Watts light bulb) and located in a darkroom, is used for capturing images of plantlets sawn in agar plates.
  • An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Seedling analysis Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.
  • the relative growth rate for the various seedling parameters was calculated according to the following Formulas VI (RGR of leaf area, above), XVIII (RGR root length, below) and Formula VII (RGR of root coverage, above).
  • plantlets were removed from the media and weighed for the determination of plant fresh weight. Plantlets were then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical analysis. Growth rate was determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results are used to resolve the effect of the gene introduced on plant vigor under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under optimal conditions, was determined by comparing the plants' fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events are examined in replicates.
  • Tables 69-72 showed a significant improvement in plant NUE since they produced larger plant biomass (plant fresh and dry weight; leaf area, root length and root coverage) in T2 generation (Tables 69-70) or T1 generation (Tables 71-72) when grown under limiting nitrogen growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.
  • the genes listed in Tables 73-74 have improved plant relative growth rate (relative growth rate of the leaf area, root coverage and root length) when grown under limiting nitrogen growth conditions, compared to control plants (T2 and T1 generations). Plants showing fast growth rate show a better plant establishment in soil under nitrogen deficient conditions. Faster growth was observed when growth rate of leaf area and root length and coverage was measured.
  • Tables 75-78 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced larger plant biomass (plant fresh and dry weight, leaf area, root coverage and roots length) when grown under standard nitrogen growth conditions, compared to control plants in T2 (Tables 75-76) and T1 (Tables 77-78) generations. Larger plant biomass under this growth conditions indicates the high ability of the plant to better metabolize the nitrogen present in the medium. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.
  • LNU490 66096.1 — — — — — — — — 5.7 0.10 12 LNU437_H2 66104.2 0.6 0.21 22 5.4 0.27 34 — — — LNU416 64134.11 — — — — — — — 5.5 0.29 9 LNU416 64134.2 — — — — — — — 5.8 0.10 15 LNU395 64142.5 0.6 0.07 18 4.8 0.11 19 5.4 0.28 7 LNU395 64143.6 — — — — — — — 5.7 0.14 13 LNU312 64000.1 — — — — 5.1 0.23 25 5.6 0.05 11 LNU312 64002.3 0.6 0.09 34 — — — — — — LNU312 64002.5 0.5 0.23 12 5.0 0.17 23 — — — LNU298 66086.4 — — — 5.0 0.11 24
  • the genes listed in Tables 79-80 improved plant relative growth rate (RGR of leaf area, root length and root coverage) when grown at standard nitrogen concentration levels. These produced plants that grew faster than control plants when grown under standard nitrogen growth conditions. Faster growth was observed when growth rate of leaf area and root length and coverage was measured.
  • Assay 1 Nitrogen Use efficiency: Seed yield plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows seed yield production, the biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions.
  • Transgenic Arabidopsis seeds were sown in agar media supplemented with 1 ⁇ 2 MS medium and a selection agent (Kanamycin). The T 2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio.
  • the trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO 3 , supplemented with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , 3.6 mM KCl, 2 mM CaCl 2 ) and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO 3 with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , 2 mM CaCl 2 ) and microelements. All plants were grown in the greenhouse until mature seeds. Seeds were harvested, extracted and weight. The remaining plant biomass (the above ground tissue) was also harvested, and weighted immediately or following drying in oven at 50° C., for 24 hours.
  • a solution containing nitrogen limiting conditions which were achieved by irrigating the plants with a solution containing 1.5 mM in
  • the plants were analyzed for their overall size, growth rate, flowering, seed yield, 1,000-seed weight, dry matter and harvest index (HI— seed yield/dry matter).
  • Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
  • GUS-Intron uidA reporter gene
  • the experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
  • Digital imaging A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 ⁇ 150 Watts light bulb) is used for capturing images of plant samples.
  • a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series)
  • Kaiser RS which includes 4 light units (4 ⁇ 150 Watts light bulb) is used for capturing images of plant samples.
  • the image capturing process is repeated every 2 days starting from day 1 after transplanting till day 15.
  • Same camera placed in a custom made iron mount, is used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse.
  • the tubs are square shape include 1.7 liter trays. During the capture process, the tubs are placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
  • An image analysis system which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images are captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data is saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Leaf analysis Using the digital analysis leaves data is calculated, including leaf number, rosette area, rosette diameter, leaf blade area.
  • Vegetative growth rate the relative growth rate (RGR) of leaf number [formula XII (described above)], rosette area (formula V, above), plot coverage (Formula XIX, below) and harvest index (Formula IV, above) is calculated with the indicated formulas.
  • the harvest index (HI) was calculated using Formula IV as described above.
  • Oil percentage in seeds is determined using the Low Resonance NMR (MARAN Ultra-Oxford Instrument) and its MultiQuant software package.
  • Silique length analysis On day 50 from sowing. 30 siliques from different plants in each plot are sampled in block A. The chosen siliques are green-yellow in color and are collected from the bottom parts of a grown plant's stem. A digital photograph is taken to determine silique's length.
  • results obtained from the transgenic plants are compared to those obtained from control plants.
  • results from the independent transformation events tested are analyzed separately. Data is analyzed using Student's t-test and results are considered significant if the p value was less than 0.1.
  • the JMP statistics software package is used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
  • Tables 81-90 summarize the observed phenotypes of transgenic plants exogenously expressing the gene constructs using the greenhouse seed maturation (GH-SM) assays under low nitrogen (Tables 81-85) or normal nitrogen (Tables 86-90) conditions. The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value ⁇ 0.1 was considered statistically significant.
  • LNU503 64203.3 620.0 0.23 9 — — — — — — LNU460 64360.1 623.1 0.13 10 — — — — — — LNU421 64303.3 — — — 16.5 0.25 ⁇ 1 — — — LNU421 64303.4 615.6 0.19 8 16.5 0.25 ⁇ 1 — — — LNU336 64449.4 — — — 15.9 L ⁇ 4 11.9 0.07 ⁇ 5 LNU290 64372.2 — — — 16.4 0.27 ⁇ 1 — — — CONT.
  • LNU519 64678.1 — — — 11.4 0.24 7 — — — LNU508 64457.2 — — — 11.2 0.03 6 — — — LNU503 64203.3 — — 11.0 0.14 4 — — — LNU503 64204.2 — — — — 11.1 0.22 5 — — — LNU460 64359.4 1.3 0.09 5 11.1 0.17 4 — — — LNU460 64362.1 1.4 0.14 12 11.6 L 10 90.0 0.02 20 LNU421 64302.7 — — — 11.1 0.22 5 — — — LNU421 64303.3 — — — 10.9 0.21 3 — — — LNU385 64245.5 — — — 11.3 0.20 7 — — — LNU360 64030.1 — — — 11.8 0.02 11 — — — LNU348 64472.2 1.3 0.15 5 11.4 0.04 8 81.2 0.
  • Assay 2 Nitrogen Use efficiency measured until bolting stage: plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows the plant biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions.
  • Transgenic Arabidopsis seeds were sown in agar media supplemented with 1 ⁇ 2 MS medium and a selection agent (Kanamycin). The T 2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio.
  • the trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO 3 , supplemented with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , 3.6 mM KCl, 2 mM CaCl 2 ) and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO 3 with 1 mM KH 2 PO 4 , 1 mM MgSO 4 , 2 mM CaCl 2 ) and microelements. All plants were grown in the greenhouse until bolting. Plant biomass (the above ground tissue) was weighted in directly after harvesting the rosette (plant fresh weight [FW]). Following plants were dried in an oven at 50° C., for 48 hours and weighted (plant dry weight [DW]).
  • the plants were analyzed for their overall size, growth rate, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
  • GUS-Intron uidA reporter gene
  • the experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
  • Digital imaging A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4 ⁇ 150 Watts light bulb) was used for capturing images of plant samples.
  • the image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse.
  • the tubs were square shape include 1.7 liter trays. During the capture process, the tubes were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
  • An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888 ⁇ 2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • SAS institute JMP statistical analysis software
  • Leaf analysis Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.
  • Vegetative growth rate the relative growth rate (RGR) of leaf number (Formula XII, described above), rosette area (Formula V described above) and plot coverage (Formula XIX, described above) are calculated using the indicated formulas.
  • Plant Fresh and Dry weight On about day 80 from sowing, the plants were harvested and directly weight for the determination of the plant fresh weight (FW) and left to dry at 50° C., in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).
  • genes listed in Tables 91-92 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area, biomass (fresh weight, dry weight, leaf number, rosette diameter, rosette area and plot coverage) when grown under limiting nitrogen conditions.
  • genes listed in Table 93 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced faster developing plants when grown under limiting nitrogen growth conditions, compared to control plants as measured by growth rate of leaf number, rosette diameter and plot coverage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are isolated polynucleotides and nucleic acid constructs which comprise a nucleic acid sequence at least 80% identical to a nucleic acid sequence selected form the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397; and isolated polypeptides which comprise an amino acid sequence at least 80% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818. Also provided are transgenic cells and plants expressing same and methods of using same for increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.

Description

    RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 16/551,803, filed on Aug. 27, 2019, which is a division of U.S. patent application Ser. No. 13/819,777 filed on Feb. 28, 2013, now U.S. Pat. No. 10,457,954, which is a National Phase of PCT Patent Application No. PCT/IB2011/053697 having International Filing Date of Aug. 23, 2011, which claims the benefit of priority under 35 USC § 119(e) of U.S. Provisional Patent Application Nos. 61/437,715 filed on Jan. 31, 2011, 61/405,260 filed on Oct. 21, 2010 and 61/378,003 filed on Aug. 30, 2010. This PCT Patent Application No. PCT/IB2011/053697 is also a Continuation-In-Part (CIP) of PCT Patent Application No. PCT/IB2011/051843 having International Filing Date of Apr. 27, 2011. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
  • SEQUENCE LISTING STATEMENT
  • The ASCII file, entitled 88588SequenceListing.txt, created on Sep. 2, 2021, comprising 9,648,108 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.
  • FIELD AND BACKGROUND OF THE INVENTION
  • The present invention, in some embodiments thereof, relates to novel polynucleotides and polypeptides which can increase nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed/grain yield, oil yield), growth rate, vigor, biomass, oil content, fiber yield, fiber quality and/or length, abiotic stress tolerance and/or water use efficiency of a plant.
  • A common approach to promote plant growth has been, and continues to be, the use of natural as well as synthetic nutrients (fertilizers). Thus, fertilizers are the fuel behind the “green revolution”, directly responsible for the exceptional increase in crop yields during the last 40 years, and are considered the number one overhead expense in agriculture. Of the three macronutrients provided as main fertilizers [Nitrogen (N), Phosphate (P) and Potassium (K)], nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Nitrogen usually needs to be replenished every year, particularly for cereals, which comprise more than half of the cultivated areas worldwide. For example, inorganic nitrogenous fertilizers such as ammonium nitrate, potassium nitrate, or urea, typically accounts for about 40% of the costs associated with crops such as corn and wheat.
  • Nitrogen is an essential macronutrient for the plant, responsible for biosynthesis of amino and nucleic acids, prosthetic groups, plant hormones, plant chemical defenses, and the like. In addition, nitrogen is often the rate-limiting element in plant growth and all field crops have a fundamental dependence on inorganic nitrogen. Thus, nitrogen is translocated to the shoot, where it is stored in the leaves and stalk during the rapid step of plant development and up until flowering. In corn for example, plants accumulate the bulk of their organic nitrogen during the period of grain germination, and until flowering. Once fertilization of the plant has occurred, grains begin to form and become the main sink of plant nitrogen. The stored nitrogen can be then redistributed from the leaves and stalk that served as storage compartments until grain formation.
  • Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. In addition, the low nitrogen use efficiency (NUE) of the main crops (e.g., in the range of only 30-70%) negatively affects the input expenses for the farmer, due to the excess fertilizer applied. Moreover, the over and inefficient use of fertilizers are major factors responsible for environmental problems such as eutrophication of groundwater, lakes, rivers and seas, nitrate pollution in drinking water which can cause methemoglobinemia, phosphate pollution, atmospheric pollution and the like. However, in spite of the negative impact of fertilizers on the environment, and the limits on fertilizer use, which have been legislated in several countries, the use of fertilizers is expected to increase in order to support food and fiber production for rapid population growth on limited land resources. For example, it has been estimated that by 2050, more than 150 million tons of nitrogenous fertilizer will be used worldwide annually.
  • Increased use efficiency of nitrogen by plants should enable crops to be cultivated with lower fertilizer input, or alternatively to be cultivated on soils of poorer quality and would therefore have significant economic impact in both developed and developing agricultural systems.
  • Genetic improvement of fertilizer use efficiency (FUE) in plants can be generated either via traditional breeding or via genetic engineering.
  • Attempts to generate plants with increased FUE have been described in U.S. Pat. Appl. No. 20020046419 to Choo, et al.; U.S. Pat. Appl. No. 2005010879 to Edgerton et al.; U.S. Pat. Appl. No. 20060179511 to Chomet et al.; Good, A, et al. 2007 (Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany 85: 252-262); and Good A G et al. 2004 (Trends Plant Sci. 9:597-605).
  • Yanagisawa et al. (Proc. Natl. Acad. Sci. U.S.A. 2004 101:7833-8) describe Dof1 transgenic plants which exhibit improved growth under low-nitrogen conditions.
  • U.S. Pat. No. 6,084,153 to Good et al. discloses the use of a stress responsive promoter to control the expression of Alanine Amine Transferase (AlaAT) and transgenic canola plants with improved drought and nitrogen deficiency tolerance when compared to control plants.
  • The ever-increasing world population and the decreasing availability in arable land for agriculture affect the yield of plants and plant-related products. The global shortage of water supply, desertification, abiotic stress (ABS) conditions (e.g., salinity, drought, flood, suboptimal temperature and toxic chemical pollution), and/or limited nitrogen and fertilizer sources cause substantial damage to agricultural plants such as major alterations in the plant metabolism, cell death, and decreases in plant growth and crop productivity.
  • Drought is a gradual phenomenon, which involves periods of abnormally dry weather that persists long enough to produce serious hydrologic imbalances such as crop damage, water supply shortage and increased susceptibility to various diseases.
  • Salinity, high salt levels, affects one in five hectares of irrigated land. None of the top five food crops, i.e., wheat, corn, rice, potatoes, and soybean, can tolerate excessive salt. Detrimental effects of salt on plants result from both water deficit, which leads to osmotic stress (similar to drought stress), and the effect of excess sodium ions on critical biochemical processes. As with freezing and drought, high salt causes water deficit; and the presence of high salt makes it difficult for plant roots to extract water from their environment. Thus, salination of soils that are used for agricultural production is a significant and increasing problem in regions that rely heavily on agriculture, and is worsen by over-utilization, over-fertilization and water shortage, typically caused by climatic change and the demands of increasing population.
  • Suboptimal temperatures affect plant growth and development through the whole plant life cycle. Thus, low temperatures reduce germination rate and high temperatures result in leaf necrosis. In addition, mature plants that are exposed to excess of heat may experience heat shock, which may arise in various organs, including leaves and particularly fruit, when transpiration is insufficient to overcome heat stress. Heat also damages cellular structures, including organelles and cytoskeleton, and impairs membrane function. Heat shock may produce a decrease in overall protein synthesis, accompanied by expression of heat shock proteins, e.g., chaperones, which are involved in refolding proteins denatured by heat. High-temperature damage to pollen almost always occurs in conjunction with drought stress, and rarely occurs under well-watered conditions. Combined stress can alter plant metabolism in novel ways. Excessive chilling conditions, e.g., low, but above freezing, temperatures affect crops of tropical origins, such as soybean, rice, maize, and cotton. Typical chilling damage includes wilting, necrosis, chlorosis or leakage of ions from cell membranes. Excessive light conditions, which occur under clear atmospheric conditions subsequent to cold late summer/autumn nights, can lead to photoinhibition of photosynthesis (disruption of photosynthesis). In addition, chilling may lead to yield losses and lower product quality through the delayed ripening of maize.
  • Nutrient deficiencies cause adaptations of the root architecture, particularly notably for example is the root proliferation within nutrient rich patches to increase nutrient uptake. Nutrient deficiencies cause also the activation of plant metabolic pathways which maximize the absorption, assimilation and distribution processes such as by activating architectural changes. Engineering the expression of the triggered genes may cause the plant to exhibit the architectural changes and enhanced metabolism also under other conditions.
  • In addition, it is widely known that the plants usually respond to water deficiency by creating a deeper root system that allows access to moisture located in deeper soil layers. Triggering this effect will allow the plants to access nutrients and water located in deeper soil horizons particularly those readily dissolved in water like nitrates.
  • Yield is affected by various factors, such as, the number and size of the plant organs, plant architecture (for example, the number of branches), grains set length, number of filled grains, vigor (e.g, seedling), growth rate, root development, utilization of water, nutrients (e.g., nitrogen) and fertilizers, and stress tolerance.
  • Crops such as, corn, rice, wheat, canola and soybean account for over half of total human caloric intake, whether through direct consumption of the seeds themselves or through consumption of meat products raised on processed seeds or forage. Seeds are also a source of sugars, proteins and oils and metabolites used in industrial processes. The ability to increase plant yield, whether through increase dry matter accumulation rate, modifying cellulose or lignin composition, increase stalk strength, enlarge meristem size, change of plant branching pattern, erectness of leaves, increase in fertilization efficiency, enhanced seed dry matter accumulation rate, modification of seed development, enhanced seed filling or by increasing the content of oil, starch or protein in the seeds would have many applications in agricultural and non-agricultural uses such as in the biotechnological production of pharmaceuticals, antibodies or vaccines.
  • Studies have shown that plant adaptations to adverse environmental conditions are complex genetic traits with polygenic nature. Conventional means for crop and horticultural improvements utilize selective breeding techniques to identify plants having desirable characteristics. However, selective breeding is tedious, time consuming and has an unpredictable outcome. Furthermore, limited germplasm resources for yield improvement and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Advances in genetic engineering have allowed mankind to modify the germplasm of plants by expression of genes-of-interest in plants. Such a technology has the capacity to generate crops or plants with improved economic, agronomic or horticultural traits.
  • WO publication No. 2009/013750 discloses genes, constructs and methods of increasing abiotic stress tolerance, biomass and/or yield in plants generated thereby.
  • WO publication No. 2008/122980 discloses genes constructs and methods for increasing oil content, growth rate and biomass of plants.
  • WO publication No. 2008/075364 discloses polynucleotides involved in plant fiber development and methods of using same.
  • WO publication No. 2007/049275 discloses isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same for increasing fertilizer use efficiency, plant abiotic stress tolerance and biomass.
  • WO publication No. 2004/104162 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
  • WO publication No. 2005/121364 discloses polynucleotides and polypeptides involved in plant fiber development and methods of using same for improving fiber quality, yield and/or biomass of a fiber producing plant.
  • WO publication No. 2007/020638 discloses methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby.
  • WO publication No. 2009/083958 discloses methods of increasing water use efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plant and plants generated thereby.
  • WO publication No. 2010/020941 discloses methods of increasing nitrogen use efficiency, abiotic stress tolerance, yield and biomass in plants and plants generated thereby.
  • WO publication No. 2009/141824 discloses isolated polynucleotides and methods using same for increasing plant utility.
  • WO publication No. 2010/076756 discloses isolated polynucleotides for increasing abiotic stress tolerance, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or nitrogen use efficiency of a plant.
  • WO publication No. 2004/081173 discloses novel plant derived regulatory sequences and constructs and methods of using such sequences for directing expression of exogenous polynucleotide sequences in plants.
  • WO publication No. 2010/049897 discloses isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency.
  • WO publication No. 2004/111183 discloses nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same.
  • SUMMARY OF THE INVENTION
  • According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% homologous to the amino acid sequence set forth in SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, wherein the nucleic acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • According to an aspect of some embodiments of the present invention there is provided a nucleic acid construct comprising the isolated polynucleotide of some embodiments of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
  • According to an aspect of some embodiments of the present invention there is provided a method of generating a transgenic plant comprising transforming within the plant the nucleic acid construct of some embodiments of the invention, thereby generating the transgenic plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, thereby generating the transgenic plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784, and 2398-3818, thereby generating the transgenic plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO: 277, 1-276, 278-469, 785-2396 or 2397, thereby generating the transgenic plant.
  • According to an aspect of some embodiments of the present invention there is provided a method of generating a transgenic plant comprising expressing within the plant an exogenous polynucleotide selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397, thereby generating the transgenic plant.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising an amino acid sequence at least 80% homologous to SEQ ID NO: 482, 470-481, 483-784, 2398-3817 or 3818, wherein the amino acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant.
  • According to an aspect of some embodiments of the present invention there is provided an isolated polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, or the nucleic acid construct of some embodiments of the invention.
  • According to an aspect of some embodiments of the present invention there is provided a plant cell exogenously expressing the polypeptide of some embodiments of the invention.
  • According to an aspect of some embodiments of the present invention there is provided a transgenic plant comprising the nucleic acid construct of some embodiments of the invention.
  • According to an aspect of some embodiments of the present invention there is provided a transgenic plant exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.
  • According to some embodiments of the invention, the nucleic acid sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • According to some embodiments of the invention, the nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • According to some embodiments of the invention, the polynucleotide consists of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 277, 1-276, 278-469 and 785-2397.
  • According to some embodiments of the invention, the nucleic acid sequence encodes the amino acid sequence selected from the group consisting of SEQ ID NOs: 482, 470-481, 483-784 and 2398-3818.
  • According to some embodiments of the invention, the plant cell forms part of a plant.
  • According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
  • According to some embodiments of the invention, the abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
  • According to some embodiments of the invention, the yield comprises seed yield or oil yield.
  • According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under nitrogen-limiting conditions.
  • According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.
  • Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
  • In the drawings:
  • FIG. 1 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:3829) and the GUSintron (pQYN_6669) used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter, NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the vector while replacing the GUSintron reporter gene.
  • FIG. 2 is a schematic illustration of the modified pGI binary plasmid containing the new At6669 promoter (SEQ ID NO:3829) (pQFN or pQFNc) used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border; LB—T-DNA left border; MCS—Multiple cloning site; RE—any restriction enzyme; NOS pro=nopaline synthase promoter, NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); GUSintron—the GUS reporter gene (coding sequence and intron). The isolated polynucleotide sequences of the invention were cloned into the MCS of the vector.
  • FIGS. 3A-3F are images depicting visualization of root development of transgenic plants exogenously expressing the polynucleotide of some embodiments of the invention when grown in transparent agar plates under normal (FIGS. 3A-3B), osmotic stress (15% PEG; FIGS. 3C-3D) or nitrogen-limiting (FIGS. 3E-3F) conditions. The different transgenes were grown in transparent agar plates for 17 days (7 days nursery and 10 days after transplanting). The plates were photographed every 3-4 days starting at day 1 after transplanting. FIG. 3A—An image of a photograph of plants taken following 10 after transplanting days on agar plates when grown under normal (standard) conditions. FIG. 3B—An image of root analysis of the plants shown in FIG. 3A in which the lengths of the roots measured are represented by arrows. FIG. 3C—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under high osmotic (PEG 15%) conditions. FIG. 3D—An image of root analysis of the plants shown in FIG. 3C in which the lengths of the roots measured are represented by arrows. FIG. 3E—An image of a photograph of plants taken following 10 days after transplanting on agar plates, grown under low nitrogen conditions. FIG. 3F—An image of root analysis of the plants shown in FIG. 3E in which the lengths of the roots measured are represented by arrows.
  • FIG. 4 is a schematic illustration of the modified pGI binary plasmid containing the Root Promoter (pQNa_RP; SEQ ID NO:3830) used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border, LB—T-DNA left border; NOS pro=nopaline synthase promoter; NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; Poly-A signal (polyadenylation signal); the isolated polynucleotide sequences according to some embodiments of the invention were cloned into the MCS of the vector.
  • FIG. 5 is a schematic illustration of the pQYN plasmid (5714 bp).
  • FIG. 6 is a schematic illustration of the pQFN plasmid (5967 bp).
  • FIG. 7 is a schematic illustration of the pQFYN plasmid (8004 bp).
  • FIG. 8 is a schematic illustration of pQXNc plasmid, which is a modified pGI binary plasmid used for expressing the isolated polynucleotide sequences of some embodiments of the invention. RB—T-DNA right border; LB—T-DNA left border; NOS pro=nopaline synthase promoter, NPT-II=neomycin phosphotransferase gene; NOS ter=nopaline synthase terminator; RE=any restriction enzyme; Poly-A signal (polyadenylation signal); 35S—the 35S promoter (SEQ ID NO:3827). The isolated polynucleotide sequences of some embodiments of the invention were cloned into the MCS (Multiple cloning site) of the vector.
  • DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION
  • The present invention, in some embodiments thereof, relates to novel polynucleotides and polypeptides, nucleic acid constructs comprising same, host cells expressing same, transgenic plants exogenously expressing same and, more particularly, but not exclusively, to methods of using same for increasing nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant.
  • Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
  • The present inventors have identified novel polypeptides and polynucleotides which can be used to increase nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant.
  • Thus, as shown in the Examples section which follows, the present inventors have utilized bioinformatics tools to identify polynucleotides which enhance fertilizer use efficiency (e.g., nitrogen use efficiency), yield (e.g., seed yield, oil yield, oil content), growth rate, biomass, vigor and/or abiotic stress tolerance of a plant. Genes, which affect the trait-of-interest, were identified based on expression profiles of genes of several arabidopsis, rice, barley, sorghum, maize and tomato ecotypes/accessions and tissues, homology with genes known to affect the trait-of-interest and using digital expression profile in specific tissues and conditions (Tables 1, 6, 12, 18, 26, 33, 38-39, 48, 54, 61, 66-67, Examples 1, and 3-12 of the Examples section which follows). Homologous polypeptides and polynucleotides having the same function were also identified (Table 2, Example 2 of the Examples section which follows). Transgenic plants over-expressing the identified polynucleotides (Table 68, Example 13 of the Examples section which follows) were found to exhibit increased plant performance under nitrogen-deficient or limiting conditions (Tables 69-74; Example 16 of the Examples section which follows) or under standard conditions (Tables 75-80; Example 16 of the Examples section which follows). In addition, greenhouse seed maturation (GH-SM) assays revealed that the identified genes increase nitrogen use efficiency (NUE), yield and growth rate of plants under low or normal nitrogen conditions as determined by the increase in biomass (e.g., dry weight, flowering inflorescence emergence, leaf blade area, leaf number, plot coverage, rosette area and diameter); harvest index; growth rate of leaf number, plot coverage and rosette diameter, and yield (e.g., seed yield, 1000 seed weight) (Tables 81-90; Example 17 of the Examples section which follows). Further greenhouse assays performed until bolting stage revealed that the identified genes increase nitrogen use efficiency at limited and optimal nitrogen concentration as determined by the increase in plant biomass (dry weight, fresh weight, leaf number, plot coverage, rosette area and diameter); and relative growth rate of leaf number, plot coverage and rosette diameter (Tables 91-96; Example 18 of the Examples section which follows). Altogether, these results suggest the use of the novel polynucleotides and polypeptides of the invention for increasing nitrogen use efficiency, yield (e.g., seed yield), growth rate, biomass, vigor and/or abiotic stress tolerance of a plant.
  • Thus, according to an aspect of some embodiments of the invention, there is provided method of increasing fertilizer (e.g., nitrogen) use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • As used herein the phrase “fertilizer use efficiency” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per fertilizer unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of one or more of the minerals and organic moieties absorbed by the plant, such as nitrogen, phosphates and/or potassium.
  • As used herein the phrase “fertilizer-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of a fertilizer applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
  • As used herein the phrase “nitrogen use efficiency (NUE)” refers to the metabolic process(es) which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The metabolic process can be the uptake, spread, absorbent, accumulation, relocation (within the plant) and use of nitrogen absorbed by the plant.
  • As used herein the phrase “nitrogen-limiting conditions” refers to growth conditions which include a level (e.g., concentration) of nitrogen (e.g., ammonium or nitrate) applied which is below the level needed for normal plant metabolism, growth, reproduction and/or viability.
  • Improved plant NUE and FUE is translated in the field into either harvesting similar quantities of yield, while implementing less fertilizers, or increased yields gained by implementing the same levels of fertilizers. Thus, improved NUE or FUE has a direct effect on plant yield in the field. Thus, the polynucleotides and polypeptides of some embodiments of the invention positively affect plant yield, seed yield, and plant biomass. In addition, the benefit of improved plant NUE will certainly improve crop quality and biochemical constituents of the seed such as protein yield and oil yield.
  • It should be noted that improved ABST will confer plants with improved vigor also under non-stress conditions, resulting in crops having improved biomass and/or yield e.g., elongated fibers for the cotton industry, higher oil content.
  • As used herein the phrase “plant yield” refers to the amount (e.g., as determined by weight or size) or quantity (numbers) of tissues or organs produced per plant or per growing season. Hence increased yield could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time.
  • It should be noted that a plant yield can be affected by various parameters including, but not limited to, plant biomass; plant vigor, growth rate; seed yield; seed or grain quantity; seed or grain quality; oil yield; content of oil, starch and/or protein in harvested organs (e.g., seeds or vegetative parts of the plant); number of flowers (florets) per panicle (expressed as a ratio of number of filled seeds over number of primary panicles); harvest index; number of plants grown per area; number and size of harvested organs per plant and per area; number of plants per growing area (density); number of harvested organs in field; total leaf area; carbon assimilation and carbon partitioning (the distribution/allocation of carbon within the plant); resistance to shade; number of harvestable organs (e.g, seeds), seeds per pod, weight per seed; and modified architecture [such as increase stalk diameter, thickness or improvement of physical properties (e.g. elasticity)].
  • As used herein the phrase “seed yield” refers to the number or weight of the seeds per plant, seeds per pod, or per growing area or to the weight of a single seed, or to the oil extracted per seed. Hence seed yield can be affected by seed dimensions (e.g., length, width, perimeter, area and/or volume), number of (filled) seeds and seed filling rate and by seed oil content. Hence increase seed yield per plant could affect the economic benefit one can obtain from the plant in a certain growing area and/or growing time; and increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants grown on the same given area.
  • The term “seed” (also referred to as “grain” or “kernel”) as used herein refers to a small embryonic plant enclosed in a covering called the seed coat (usually with some stored food), the product of the ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the mother plant.
  • The phrase “oil content” as used herein refers to the amount of lipids in a given plant organ, either the seeds (seed oil content) or the vegetative portion of the plant (vegetative oil content) and is typically expressed as percentage of dry weight (10% humidity of seeds) or wet weight (for vegetative portion).
  • It should be noted that oil content is affected by intrinsic oil production of a tissue (e.g., seed, vegetative portion), as well as the mass or size of the oil-producing tissue per plant or per growth period.
  • In one embodiment, increase in oil content of the plant can be achieved by increasing the size/mass of a plant's tissue(s) which comprise oil per growth period. Thus, increased oil content of a plant can be achieved by increasing the yield, growth rate, biomass and vigor of the plant.
  • As used herein the phrase “plant biomass” refers to the amount (e.g., measured in grams of air-dry tissue) of a tissue produced from the plant in a growing season, which could also determine or affect the plant yield or the yield per growing area. An increase in plant biomass can be in the whole plant or in parts thereof such as aboveground (harvestable) parts, vegetative biomass, roots and seeds.
  • As used herein the phrase “growth rate” refers to the increase in plant organ/tissue size per time (can be measured in cm2 per day).
  • As used herein the phrase “plant vigor” refers to the amount (measured by weight) of tissue produced by the plant in a given time. Hence increased vigor could determine or affect the plant yield or the yield per growing time or growing area. In addition, early vigor (seed and/or seedling) results in improved field stand.
  • Improving early vigor is an important objective of modern rice breeding programs in both temperate and tropical rice cultivars. Long roots are important for proper soil anchorage in water-seeded rice. Where rice is sown directly into flooded fields, and where plants must emerge rapidly through water, longer shoots are associated with vigor. Where drill-seeding is practiced, longer mesocotyls and coleoptiles are important for good seedling emergence. The ability to engineer early vigor into plants would be of great importance in agriculture. For example, poor early vigor has been a limitation to the introduction of maize (Zea mays L.) hybrids based on Corn Belt germplasm in the European Atlantic.
  • It should be noted that a plant yield can be determined under stress (e.g., abiotic stress, nitrogen-limiting conditions) and/or non-stress (normal) conditions.
  • As used herein, the phrase “non-stress conditions” refers to the growth conditions (e.g., water, temperature, light-dark cycles, humidity, salt concentration, fertilizer concentration in soil, nutrient supply such as nitrogen, phosphorous and/or potassium), that do not significantly go beyond the everyday climatic and other abiotic conditions that plants may encounter, and which allow optimal growth, metabolism, reproduction and/or viability of a plant at any stage in its life cycle (e.g., in a crop plant from seed to a mature plant and back to seed again). Persons skilled in the art are aware of normal soil conditions and climatic conditions for a given plant in a given geographic location. It should be noted that while the non-stress conditions may include some mild variations from the optimal conditions (which vary from one type/species of a plant to another), such variations do not cause the plant to cease growing without the capacity to resume growth.
  • The phrase “abiotic stress” as used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, freezing, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation. The implications of abiotic stress are discussed in the Background section.
  • The phrase “abiotic stress tolerance” as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.
  • Plants are subject to a range of environmental challenges. Several of these, including salt stress, general osmotic stress, drought stress and freezing stress, have the ability to impact whole plant and cellular water availability. Not surprisingly, then, plant responses to this collection of stresses are related. Zhu (2002) Ann. Rev. Plant Biol. 53: 247-273 et al. note that “most studies on water stress signaling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap”. Many examples of similar responses and pathways to this set of stresses have been documented. For example, the CBF transcription factors have been shown to condition resistance to salt, freezing and drought (Kasuga et al. (1999) Nature Biotech. 17: 287-291). The Arabidopsis rd29B gene is induced in response to both salt and dehydration stress, a process that is mediated largely through an ABA signal transduction process (Uno et al. (2000) Proc. Natl. Acad. Sci. USA 97: 11632-11637), resulting in altered activity of transcription factors that bind to an upstream element within the rd29B promoter. In Mesembryanthemum crystallinum (ice plant), Patharker and Cushman have shown that a calcium-dependent protein kinase (McCDPK1) is induced by exposure to both drought and salt stresses (Patharker and Cushman (2000) Plant J. 24: 679-691). The stress-induced kinase was also shown to phosphorylate a transcription factor, presumably altering its activity, although transcript levels of the target transcription factor are not altered in response to salt or drought stress. Similarly, Saijo et al. demonstrated that a rice salt/drought-induced calmodulin-dependent protein kinase (OsCDPK7) conferred increased salt and drought tolerance to rice when overexpressed (Saijo et al. (2000) Plant J. 23: 319-327).
  • Exposure to dehydration invokes similar survival strategies in plants as does freezing stress (see, for example, Yelenosky (1989) Plant Physiol 89: 444-451) and drought stress induces freezing tolerance (see, for example, Siminovitch et al. (1982) Plant Physiol 69: 250-255; and Guy et al. (1992) Planta 188: 265-270). In addition to the induction of cold-acclimation proteins, strategies that allow plants to survive in low water conditions may include, for example, reduced surface area, or surface oil or wax production. In another example increased solute content of the plant prevents evaporation and water loss due to heat, drought, salinity, osmoticum, and the like therefore providing a better plant tolerance to the above stresses.
  • It will be appreciated that some pathways involved in resistance to one stress (as described above), will also be involved in resistance to other stresses, regulated by the same or homologous genes. Of course, the overall resistance pathways are related, not identical, and therefore not all genes controlling resistance to one stress will control resistance to the other stresses. Nonetheless, if a gene conditions resistance to one of these stresses, it would be apparent to one skilled in the art to test for resistance to these related stresses. Methods of assessing stress resistance are further provided in the Examples section which follows.
  • As used herein the phrase “water use efficiency (WUE)” refers to the level of organic matter produced per unit of water consumed by the plant. i.e., the dry weight of a plant in relation to the plant's water use, e.g., the biomass produced per unit transpiration.
  • The term “fiber” is usually inclusive of thick-walled conducting cells such as vessels and tracheids and to fibrillar aggregates of many individual fiber cells. Hence, the term “fiber” refers to (a) thick-walled conducting and non-conducting cells of the xylem; (b) fibers of extraxylary origin, including those from phloem, bark, ground tissue, and epidermis; and (c) fibers from stems, leaves, roots, seeds, and flowers or inflorescences (such as those of Sorghum vulgare used in the manufacture of brushes and brooms).
  • Example of fiber producing plants, include, but are not limited to, agricultural crops such as cotton, silk cotton tree (Kapok, Ceiba pentandra), desert willow, creosote bush, winterfat, balsa, kenaf, roselle, jute, sisal abaca, flax, corn, sugar cane, hemp, ramie, kapok, coir, bamboo, spanish moss and Agave spp. (e.g. sisal).
  • As used herein the phrase “fiber quality” refers to at least one fiber parameter which is agriculturally desired, or required in the fiber industry (further described hereinbelow). Examples of such parameters, include but are not limited to, fiber length, fiber strength, fiber fitness, fiber weight per unit length, maturity ratio and uniformity (further described hereinbelow.
  • Cotton fiber (lint) quality is typically measured according to fiber length, strength and fineness. Accordingly, the lint quality is considered higher when the fiber is longer, stronger and finer.
  • As used herein the phrase “fiber yield” refers to the amount or quantity of fibers produced from the fiber producing plant.
  • As used herein the term “increasing” refers to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, increase in nitrogen use efficiency, yield, seed yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant as compared to a native plant [i.e., a plant not modified with the biomolecules (polynucleotide or polypeptides) of the invention. e.g., a non-transformed plant of the same species which is grown under the same (e.g., identical) growth conditions].
  • The phrase “expressing within the plant an exogenous polynucleotide” as used herein refers to upregulating the expression level of an exogenous polynucleotide within the plant by introducing the exogenous polynucleotide into a plant cell or plant and expressing by recombinant means, as further described herein below.
  • As used herein “expressing” refers to expression at the mRNA and optionally polypeptide level.
  • As used herein, the phrase “exogenous polynucleotide” refers to a heterologous nucleic acid sequence which may not be naturally expressed within the plant or which overexpression in the plant is desired. The exogenous polynucleotide may be introduced into the plant in a stable or transient manner, so as to produce a ribonucleic acid (RNA) molecule and/or a polypeptide molecule. It should be noted that the exogenous polynucleotide may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the plant.
  • The term “endogenous” as used herein refers to any polynucleotide or polypeptide which is present and/or naturally expressed within a plant or a cell thereof.
  • According to some embodiments of the invention, the exogenous polynucleotide of the invention comprises a nucleic acid sequence encoding a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • Homology (e.g., percent homology, identity+similarity) can be determined using any homology comparison software, including for example, the BlastPT™ (protein Basic Local Alignment Search Tool) or TBLASTN™ (translated nucleotide databases using a protein query) software of the National Center of Biotechnology Information (NCBI) such as by using default parameters, when starting from a polypeptide sequence; or the tBLASTX™ (translated nucleotide databases using a translated nucleotide query) algorithm (available via the NCBI) such as by using default parameters, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.
  • According to some embodiments of the invention, the term “homology” or “homologous” refers to identity of two or more nucleic acid sequences; or identity of two or more amino acid sequences.
  • Homologous sequences include both orthologous and paralogous sequences. The term “paralogous” relates to gene-duplications within the genome of a species leading to paralogous genes. The term “orthologous” relates to homologous genes in different organisms due to ancestral relationship.
  • One option to identify orthologues in monocot plant species is by performing a reciprocal BLAST™ search. This may be done by a first BLAST™ involving blasting the sequence-of-interest against any sequence database, such as the publicly available NCBI database which may be found at: Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov. If orthologues in rice were sought, the sequence-of-interest would be blasted against, for example, the 28,469 full-length cDNA clones from Oryza sativa Nipponbare available at NCBI. The BLAST™ results may be filtered. The full-length sequences of either the filtered results or the non-filtered results are then blasted back (second BLAST™) against the sequences of the organism from which the sequence-of-interest is derived. The results of the first and second BLAST™s are then compared. An orthologue is identified when the sequence resulting in the highest score (best hit) in the first BLAST™ identifies in the second BLAST™ the query sequence (the original sequence-of-interest) as the best hit. Using the same rational a paralogue (homolog to a gene in the same organism) is found. In case of large sequence families, the ClustalW program may be used [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/Tools/clustalw2/index (dot) html], followed by a neighbor-joining tree (Hypertext Transfer Protocol://en (dot) wikipedia (dot) org/wiki/Neighbor-joining) which helps visualizing the clustering.
  • According to some embodiments of the invention, the exogenous polynucleotide of the invention encodes a polypeptide having an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818.
  • According to some embodiments of the invention, the method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide at least at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO:470-784, 2398-3817 or 3818.
  • According to an aspect of some embodiments of the invention, the method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant is effected by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to an aspect of some embodiments of the invention, there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to some embodiments of the invention, the exogenous polynucleotide encodes a polypeptide consisting of the amino acid sequence set forth by SEQ ID NO: 470-784, 2398-3817 or 3818.
  • According to some embodiments of the invention the exogenous polynucleotide comprises a nucleic acid sequence which is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • According to an aspect of some embodiments of the invention, there is provided a method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • According to some embodiments of the invention, the homology is a global homology, i.e., an homology over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
  • According to some embodiments of the invention, the identity is a global identity, i.e., an identity over the entire amino acid or nucleic acid sequences of the invention and not over portions thereof.
  • Identity (e.g., percent homology) can be determined using any homology comparison software, including for example, the BlastN™ software of the National Center of Biotechnology Information (NCBI) such as by using default parameters.
  • According to some embodiments of the invention the exogenous polynucleotide is at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • According to some embodiments of the invention the exogenous polynucleotide is set forth by SEQ ID NO:1-469, 785-2396 or 2397.
  • As used herein the term “polynucleotide” refers to a single or double stranded nucleic acid sequence which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).
  • The term “isolated” refers to at least partially separated from the natural environment e.g., from a plant cell.
  • As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
  • As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.
  • As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.
  • Nucleic acid sequences encoding the polypeptides of the present invention may be optimized for expression. Examples of such sequence modifications include, but are not limited to, an altered G/C content to more closely approach that typically found in the plant species of interest, and the removal of codons atypically found in the plant species commonly referred to as codon optimization.
  • The phrase “codon optimization” refers to the selection of appropriate DNA nucleotides for use within a structural gene or fragment thereof that approaches codon usage within the plant of interest. Therefore, an optimized gene or nucleic acid sequence refers to a gene in which the nucleotide sequence of a native or naturally occurring gene has been modified in order to utilize statistically-preferred or statistically-favored codons within the plant. The nucleotide sequence typically is examined at the DNA level and the coding region optimized for expression in the plant species determined using any suitable procedure, for example as described in Sardana et al. (1996, Plant Cell Reports 15:677-681). In this method, the standard deviation of codon usage, a measure of codon usage bias, may be calculated by first finding the squared proportional deviation of usage of each codon of the native gene relative to that of highly expressed plant genes, followed by a calculation of the average squared deviation. The formula used is: 1 SDCU=n=1 N [(Xn−Yn)/Yn]2/N, where Xn refers to the frequency of usage of codon n in highly expressed plant genes, where Yn to the frequency of usage of codon n in the gene of interest and N refers to the total number of codons in the gene of interest. A Table of codon usage from highly expressed genes of dicotyledonous plants is compiled using the data of Murray et al. (1989, Nuc Acids Res. 17:477-498).
  • One method of optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type is based on the direct use, without performing any extra statistical calculations, of codon optimization Tables such as those provided on-line at the Codon Usage Database through the NIAS (National Institute of Agrobiological Sciences) DNA bank in Japan (Hypertext Transfer Protocol://World Wide Web (dot) kazusa (dot) or (dot) jp/codon/). The Codon Usage Database contains codon usage tables for a number of different species, with each codon usage Table having been statistically determined based on the data present in Genbank.
  • By using the above Tables to determine the most preferred or most favored codons for each amino acid in a particular species (for example, rice), a naturally-occurring nucleotide sequence encoding a protein of interest can be codon optimized for that particular plant species. This is effected by replacing codons that may have a low statistical incidence in the particular species genome with corresponding codons, in regard to an amino acid, that are statistically more favored. However, one or more less-favored codons may be selected to delete existing restriction sites, to create new ones at potentially useful junctions (5′ and 3′ ends to add signal peptide or termination cassettes, internal sites that might be used to cut and splice segments together to produce a correct full-length sequence), or to eliminate nucleotide sequences that may negatively effect mRNA stability or expression.
  • The naturally-occurring encoding nucleotide sequence may already, in advance of any modification, contain a number of codons that correspond to a statistically-favored codon in a particular plant species. Therefore, codon optimization of the native nucleotide sequence may comprise determining which codons, within the native nucleotide sequence, are not statistically-favored with regards to a particular plant, and modifying these codons in accordance with a codon usage table of the particular plant to produce a codon optimized derivative. A modified nucleotide sequence may be fully or partially optimized for plant codon usage provided that the protein encoded by the modified nucleotide sequence is produced at a level higher than the protein encoded by the corresponding naturally occurring or native gene. Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application 93/07278.
  • According to some embodiments of the invention, the exogenous polynucleotide is a non-coding RNA.
  • As used herein the phrase ‘non-coding RNA” refers to an RNA molecule which does not encode an amino acid sequence (a polypeptide). Examples of such non-coding RNA molecules include, but are not limited to, an antisense RNA, a pre-miRNA (precursor of a microRNA), or a precursor of a Piwi-interacting RNA (piRNA).
  • Non-limiting examples of non-coding RNA polynucleotides are provided in SEQ ID NOs: 211-216, 264, 265, 466-469, 797, 927, 933, 939, 944 and 948.
  • Thus, the invention encompasses nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.
  • The invention provides an isolated polynucleotide comprising a nucleic acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, e.g., 100% identical to the polynucleotide selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • According to some embodiments of the invention the nucleic acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant.
  • According to some embodiments of the invention the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-469 and 785-2397.
  • According to some embodiments of the invention the isolated polynucleotide is set forth by SEQ ID NO:1-469, 785-2396 or 2397.
  • The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • According to some embodiments of the invention the amino acid sequence is capable of increasing nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant.
  • The invention provides an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises the amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818.
  • According to an aspect of some embodiments of the invention, there is provided a nucleic acid construct comprising the isolated polynucleotide of the invention, and a promoter for directing transcription of the nucleic acid sequence in a host cell.
  • The invention provides an isolated polypeptide comprising an amino acid sequence at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more say 100% homologous to an amino acid sequence selected from the group consisting of SEQ ID NOs: 470-784 and 2398-3818.
  • According to some embodiments of the invention, the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs:470-784 and 2398-3818.
  • According to some embodiments of the invention, the polypeptide is set forth by SEQ ID NO: 470-784, 2398-3817 or 3818.
  • The invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.
  • The term “plant” as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, roots (including tubers), and plant cells, tissues and organs. The plant may be in any form including suspension cultures, embryos, meristematic regions, callus tissue, leaves, gametophytes, sporophytes, pollen, and microspores. Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp., Areca catechu, Astelia fragrans. Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp., Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chacoomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Dibeteropogon amplectens, Dioclea spp, Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehraffia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalypfus spp., Euclea schimperi, Eulalia vi/losa, Pagopyrum spp., Feijoa sellowlana, Fragaria spp., Flemingia spp. Freycinetia banksli, Geranium thunbergii, GinAgo biloba, Glycine javanica, Gliricidia spp, Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemaffhia altissima, Heteropogon contoffus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hypeffhelia dissolute, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesli, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativam, Podocarpus totara, Pogonarthria fleckii, Pogonaffhria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys vefficillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, straw, sugar beet, sugar cane, sunflower, tomato, squash tea, maize, wheat, barley, rye, oat, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, tobacco, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop. Alternatively algae and other non-Viridiplantae can be used for the methods of the present invention.
  • According to some embodiments of the invention, the plant used by the method of the invention is a crop plant such as rice, maize, wheat, barley, peanut, potato, sesame, olive tree, palm oil, banana, soybean, sunflower, canola, sugarcane, alfalfa, millet, leguminosae (bean, pea), flax, lupinus, rapeseed, tobacco, poplar and cotton.
  • According to some embodiments of the invention the plant is a dicotyledonous plant.
  • According to some embodiments of the invention the plant is a monocotyledonous plant.
  • According to some embodiments of the invention, there is provided a plant cell exogenously expressing the polynucleotide of some embodiments of the invention, the nucleic acid construct of some embodiments of the invention and/or the polypeptide of some embodiments of the invention.
  • According to some embodiments of the invention, expressing the exogenous polynucleotide of the invention within the plant is effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.
  • According to some embodiments of the invention, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of some embodiments of the invention and at least one promoter for directing transcription of the exogenous polynucleotide in a host cell (a plant cell). Further details of suitable transformation approaches are provided hereinbelow.
  • As mentioned, the nucleic acid construct according to some embodiments of the invention comprises a promoter sequence and the isolated polynucleotide of the invention.
  • According to some embodiments of the invention, the isolated polynucleotide is operably linked to the promoter sequence.
  • A coding nucleic acid sequence is “operably linked” to a regulatory sequence (e.g., promoter) if the regulatory sequence is capable of exerting a regulatory effect on the coding sequence linked thereto.
  • As used herein, the term “promoter” refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant) and/or when (e.g., at which stage or condition in the lifetime of an organism) the gene is expressed.
  • According to some embodiments of the invention, the promoter is heterologous to the isolated polynucleotide and/or to the host cell.
  • Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.
  • According to some embodiments of the invention, the promoter is a plant promoter, which is suitable for expression of the exogenous polynucleotide in a plant cell.
  • Suitable constitutive promoters include, for example, CaMV 35S promoter [SEQ ID NO:3827 (pQFNC); SEQ ID NO:3833 (PJJ 35S from Brachypodium); SEQ ID NO:3834 (Odell et al., Nature 313:810-812, 1985)]. Arabidopsis At6669 promoter (SEQ ID NO:3826; see PCT Publication No. WO04081173A2 or the new At6669 promoter (SEQ ID NO:3829); maize Ubi 1 (Christensen et al., Plant Sol. Biol. 18:675-689, 1992); rice actin (McElroy et al., Plant Cell 2:163-171, 1990); pEMU (Last et al., Theor. Appl. Genet. 81:581-588, 1991); CaMV 19S (Nilsson et al., Physiol. Plant 100:456-462, 1997); GOS2 (de Pater et al, Plant J November; 2(6):837-44, 1992); ubiquitin (Christensen et al. Plant Mol. Biol. 18: 675-689, 1992); Ubi 1 promoter (SEQ ID NO:3832); RBCS promoter (SEQ ID NO:3831); Rice cyclophilin (Bucholz et al, Plant Mol Biol. 25(5):837-43, 1994); Maize H3 histone (Lepetit et al. Mol. Gen. Genet. 231: 276-285, 1992); Actin 2 (An et al, Plant J. 10(1); 107-121, 1996) and Synthetic Super MAS (Ni et al., The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5,608.144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; and 5,608,142.
  • Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters [such as described, for example, by Yamamoto et al., Plant J. 12:255-265, 1997; Kwon et al., Plant Physiol. 105:357-67, 1994; Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994; Gotor et al., Plant J. 3:509-18, 1993; Orozco et al., Plant Mol. Biol. 23:1129-1138, 1993; and Matsuoka et al., Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993], seed-preferred promoters [e.g., Napin (originated from Brassica napus which is characterized by a seed specific promoter activity; Stuitje A. R. et, al. Plant Biotechnology Journal 1 (4): 301-309; SEQ ID NO:3828), from seed specific genes (Simon, et al., Plant Mol. Biol. 5. 191, 1985; Scofield, et al., J. Biol. Chem. 262: 12202, 1987; Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990), Brazil Nut albumin (Pearson′ et al., Plant Mol. Biol. 18: 235-245, 1992), legumin (Ellis, et al. Plant Mol. Biol. 10: 203-214, 1988), Glutelin (rice) (Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986; Takaiwa, et al., FEBS Letts. 221: 43-47, 1987), Zein (Matzke et al Plant Mol Biol, 143). 323-32 1990), napA (Stalberg, et al, Planta 199: 515-519, 1996), Wheat SPA (Albani et al, Plant Cell, 9: 171-184, 1997), sunflower oleosin (Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992)], endosperm specific promoters [e.g., wheat LMW and HMW, glutenin-1 (Mol Gen Genet 216:81-90, 1989; NAR 17:461-2), wheat a, b and g gliadins (EMBO3:1409-15, 1984). Barley Itrl promoter, barley B1, C, D hordein (Theor Appl Gen 98:1253-62, 1999; Plant J 4:343-55, 1993; Mol Gen Genet 250:750-60, 1996). Barley DOF (Mena et al, The Plant Journal. 116(1): 53-62, 1998), Biz2 (EP99106056.7), Synthetic promoter (Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998), rice prolamin NRP33, rice-globulin Gib-1 (Wu et al. Plant Cell Physiology 39(8) 885-889, 1998), rice alpha-globulin REB/OHP-1 (Nakase et al. Plant Mol. Biol. 33: 513-S22, 1997), rice ADP-glucose PP (Trans Res 6:157-68, 1997), maize ESR gene family (Plant J 12:235-46, 1997), sorghum gamma-kafirin (PMB 32:1029-35, 1996)], embryo specific promoters [e.g., rice OSH1 (Sato et al. Proc. Natl. Acad. Sci. USA, 93: 8117-8122), KNOX (Postma-Haarsma et al, Plant Mol. Biol. 39:257-71, 1999), rice oleosin (Wu et at, J. Biochem., 123:386, 1998)], and flower-specific promoters [e.g., AtPRP4, chalene synthase (chsA) (Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990), LAT52 (Twell et al Mol. Gen Genet. 217:240-245; 1989), apetala-3], and root promoters such as the ROOTP promoter [SEQ ID NO: 3830].
  • Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al., Mol. Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rab17 gene promoter (Pla et, al., Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et, al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et, al., Plant Mol. Biol. 39:373-380, 1999); heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).
  • The nucleic acid construct of some embodiments of the invention can further include an appropriate selectable marker and/or an origin of replication. According to some embodiments of the invention, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible with propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
  • The nucleic acid construct of some embodiments of the invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.
  • There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276).
  • The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches:
  • (i) Agrobacterium-mediated gene transfer: Klee et al. (1987) Annu. Rev. Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers. San Diego. Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S, and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112.
  • (ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants. Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford. Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue. U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al, in Experimental Manipulation of Ovule Tissue, eds. Chapman. G. P, and Mantell, S. H, and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.
  • The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. See, e.g., Horsch et al, in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.
  • There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues.
  • Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.
  • Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.
  • Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.
  • According to some embodiments of the invention, the transgenic plants are generated by transient transformation of leaf cells, meristematic cells or the whole plant.
  • Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.
  • Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, Tobacco mosaic virus (TMV), brome mosaic virus (BMV) and Bean Common Mosaic Virus (BV or BCMV). Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (bean golden mosaic virus; BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants are described in WO 87/06261.
  • According to some embodiments of the invention, the virus used for transient transformations is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by Kurihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003). Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).
  • Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”, Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.
  • Construction of plant RNA viruses for the introduction and expression of non-viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al., Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231:1294-1297; Takamatsu et al. FEBS Letters (1990) 269:73-76; and U.S. Pat. No. 5,316,931.
  • When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.
  • In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.
  • In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.
  • In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.
  • In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.
  • The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.
  • Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. “Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)”. Humana Press, 1998; Maramorosh and Koprowski, eds. “Methods in Virology” 7 vols, Academic Press, New York 1967-1984; Hill, S. A. “Methods in Plant Virology”, Blackwell, Oxford, 1984; Walkey, D. G. A. “Applied Plant Virology”, Wiley, New York. 1985; and Kado and Agrawa, eds. “Principles and Techniques in Plant Virology”, Van Nostrand-Reinhold, New York.
  • In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.
  • A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.
  • Since processes which increase nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant can involve multiple genes acting additively or in synergy (see, for example, in Quesda et al., Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior effect on nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant.
  • Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can then be regenerated into a mature plant using the methods described hereinabove.
  • Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic messenger RNA including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic messenger RNA, the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5′ end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.
  • The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.
  • Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance, water use efficiency, fertilizer use efficiency, growth, biomass, yield and/or vigor traits, using conventional plant breeding techniques.
  • According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under the abiotic stress.
  • Non-limiting examples of abiotic stress conditions include, salinity, drought, water deprivation, excess of water (e.g., flood, waterlogging), etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
  • According to some embodiments of the invention, the method further comprising growing the plant expressing the exogenous polynucleotide under fertilizer limiting conditions (e.g., nitrogen-limiting conditions). Non-limiting examples include growing the plant on soils with low nitrogen content (40-50% Nitrogen of the content present under normal or optimal conditions), or even under sever nitrogen deficiency (0-10% Nitrogen of the content present under normal or optimal conditions).
  • Thus, the invention encompasses plants exogenously expressing the polynucleotide(s), the nucleic acid constructs and/or polypeptide(s) of the invention.
  • Once expressed within the plant cell or the entire plant, the level of the polypeptide encoded by the exogenous polynucleotide can be determined by methods well known in the art such as, activity assays, Western blots using antibodies capable of specifically binding the polypeptide, Enzyme-Linked Immuno Sorbent Assay (ELISA), radio-immuno-assays (RIA), immunohistochemistry, immunocytochemistry, immunofluorescence and the like.
  • Methods of determining the level in the plant of the RNA transcribed from the exogenous polynucleotide are well known in the art and include, for example. Northern blot analysis, reverse transcription polymerase chain reaction (RT-PCR) analysis (including quantitative, semi-quantitative or real-time RT-PCR) and RNA-in situ hybridization.
  • The sequence information and annotations uncovered by the present teachings can be harnessed in favor of classical breeding. Thus, sub-sequence data of those polynucleotides described above, can be used as markers for marker assisted selection (MAS), in which a marker is used for indirect selection of a genetic determinant or determinants of a trait of interest (e.g., biomass, growth rate, oil content, yield, abiotic stress tolerance, water use efficiency, nitrogen use efficiency and/or fertilizer use efficiency). Nucleic acid data of the present teachings (DNA or RNA sequence) may contain or be linked to polymorphic sites or genetic markers on the genome such as restriction fragment length polymorphism (RFLP), microsatellites and single nucleotide polymorphism (SNP), DNA fingerprinting (DFP), amplified fragment length polymorphism (AFLP), expression level polymorphism, polymorphism of the encoded polypeptide and any other polymorphism at the DNA or RNA sequence.
  • Examples of marker assisted selections include, but are not limited to, selection for a morphological trait (e.g., a gene that affects form, coloration, male sterility or resistance such as the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice); selection for a biochemical trait (e.g., a gene that encodes a protein that can be extracted and observed; for example, isozymes and storage proteins); selection for a biological trait (e.g., pathogen races or insect biotypes based on host pathogen or host parasite interaction can be used as a marker since the genetic constitution of an organism can affect its susceptibility to pathogens or parasites).
  • The polynucleotides and polypeptides described hereinabove can be used in a wide range of economical plants, in a safe and cost effective manner.
  • Plant lines exogenously expressing the polynucleotide or the polypeptide of the invention are screened to identify those that show the greatest increase of the desired plant trait.
  • The effect of the transgene (the exogenous polynucleotide encoding the polypeptide) on abiotic stress tolerance can be determined using known methods such as detailed below and in the Examples section which follows.
  • Abiotic stress tolerance—Transformed (i.e., expressing the transgene) and non-transformed (wild type) plants are exposed to an abiotic stress condition, such as water deprivation, suboptimal temperature (low temperature, high temperature), nutrient deficiency, nutrient excess, a salt stress condition, osmotic stress, heavy metal toxicity, anaerobiosis, atmospheric pollution and UV irradiation.
  • Salinity tolerance assay—Transgenic plants with tolerance to high salt concentrations are expected to exhibit better germination, seedling vigor or growth in high salt. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium [e.g., 50% Murashige-Skoog medium (MS medium)]. Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium can be adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc., New York. 2002, and reference therein).
  • For example, a salinity tolerance test can be performed by irrigating plants at different developmental stages with increasing concentrations of sodium chloride (for example 50 mM, 100 mM, 200 mM, 400 mM NaCl) applied from the bottom and from above to ensure even dispersal of salt. Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Thus, the external phenotypic appearance, degree of wilting and overall success to reach maturity and yield progeny are compared between control and transgenic plants.
  • Quantitative parameters of tolerance measured include, but are not limited to, the average wet and dry weight, growth rate, leaf size, leaf coverage (overall leaf area), the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.
  • Osmotic tolerance test—Osmotic stress assays (including sodium chloride and mannitol assays) are conducted to determine if an osmotic stress phenotype was sodium chloride-specific or if it was a general osmotic stress related phenotype. Plants which are tolerant to osmotic stress may have more tolerance to drought and/or freezing. For salt and osmotic stress germination experiments, the medium is supplemented for example with 50 mM, 100 mM, 200 mM NaCl or 100 mM, 200 mM NaCl, 400 mM mannitol.
  • Drought tolerance assay/Osmoticum assay—Tolerance to drought is performed to identify the genes conferring better plant survival after acute water deprivation. To analyze whether the transgenic plants are more tolerant to drought, an osmotic stress produced by the non-ionic osmolyte sorbitol in the medium can be performed. Control and transgenic plants are germinated and grown in plant-agar plates for 4 days, after which they are transferred to plates containing 500 mM sorbitol. The treatment causes growth retardation, then both control and transgenic plants are compared, by measuring plant weight (wet and dry), yield, and by growth rates measured as time to flowering.
  • Conversely, soil-based drought screens are performed with plants overexpressing the polynucleotides detailed above. Seeds from control Arabidopsis plants, or other transgenic plants overexpressing the polypeptide of the invention are germinated and transferred to pots. Drought stress is obtained after irrigation is ceased accompanied by placing the pots on absorbent paper to enhance the soil-drying rate. Transgenic and control plants are compared to each other when the majority of the control plants develop severe wilting. Plants are re-watered after obtaining a significant fraction of the control plants displaying a severe wilting. Plants are ranked comparing to controls for each of two criteria: tolerance to the drought conditions and recovery (survival) following re-watering.
  • Cold stress tolerance—To analyze cold stress, mature (25 day old) plants are transferred to 4° C. chambers for 1 or 2 weeks, with constitutive light. Later on plants are moved back to greenhouse. Two weeks later damages from chilling period, resulting in growth retardation and other phenotypes, are compared between both control and transgenic plants, by measuring plant weight (wet and dry), and by comparing growth rates measured as time to flowering, plant size, yield, and the like.
  • Heat stress tolerance—Heat stress tolerance is achieved by exposing the plants to temperatures above 34° C., for a certain period. Plant tolerance is examined after transferring the plants back to 22° C., for recovery and evaluation after 5 days relative to internal controls (non-transgenic plants) or plants not exposed to neither cold or heat stress.
  • Water use efficiency—can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content can be measured in control and transgenic plants. Fresh weight (FW) is immediately recorded; then leaves are soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) is recorded. Total dry weight (DW) is recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to the following Formula I:

  • RWC=[(FW−DW)/(TW−DW)]×100  Formula I
  • Fertilizer use efficiency—To analyze whether the transgenic plants are more responsive to fertilizers, plants are grown in agar plates or pots with a limited amount of fertilizer, as described, for example, in Examples 16-18, hereinbelow and in Yanagisawa et al (Proc Natl Acad Sci USA. 2004; 101:7833-8). The plants are analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain. The parameters checked are the overall size of the mature plant, its wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf verdure is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots, oil content, etc. Similarly, instead of providing nitrogen at limiting amounts, phosphate or potassium can be added at increasing concentrations. Again, the same parameters measured are the same as listed above. In this way, nitrogen use efficiency (NUE), phosphate use efficiency (PUE) and potassium use efficiency (KUE) are assessed, checking the ability of the transgenic plants to thrive under nutrient restraining conditions.
  • Nitrogen use efficiency—To analyze whether the transgenic plants (e.g., Arabidopsis plants) are more responsive to nitrogen, plant are grown in 0.75-3 mM (nitrogen deficient conditions) or 6-10 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 25 days or until seed production. The plants are then analyzed for their overall size, time to flowering, yield, protein content of shoot and/or grain/seed production. The parameters checked can be the overall size of the plant, wet and dry weight, the weight of the seeds yielded, the average seed size and the number of seeds produced per plant. Other parameters that may be tested are: the chlorophyll content of leaves (as nitrogen plant status and the degree of leaf greenness is highly correlated), amino acid and the total protein content of the seeds or other plant parts such as leaves or shoots and oil content. Transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher measured parameters levels than wild-type plants, are identified as nitrogen use efficient plants.
  • Nitrogen Use efficiency assay using plantlets—The assay is done according to Yanagisawa-S. et al, with minor modifications (“Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions” Proc. Natl. Acad. Sci. USA 101, 7833-7838). Briefly, transgenic plants which are grown for 7-10 days in 0.5×MS [Murashige-Skoog] supplemented with a selection agent are transferred to two nitrogen-limiting conditions: MS media in which the combined nitrogen concentration (NH4NO3 and KNO3) was 0.75 mM (nitrogen deficient conditions) or 6-15 mM (optimal nitrogen concentration). Plants are allowed to grow for additional 30-40 days and then photographed, individually removed from the Agar (the shoot without the roots) and immediately weighed (fresh weight) for later statistical analysis. Constructs for which only T1 seeds are available are sown on selective media and at least 20 seedlings (each one representing an independent transformation event) are carefully transferred to the nitrogen-limiting media. For constructs for which T2 seeds are available, different transformation events are analyzed. Usually. 20 randomly selected plants from each event are transferred to the nitrogen-limiting media allowed to grow for 3-4 additional weeks and individually weighed at the end of that period. Transgenic plants are compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS) under the same promoter or transgenic plants carrying the same promoter but lacking a reporter gene are used as control.
  • Nitrogen determination—The procedure for N (nitrogen) concentration determination in the structural parts of the plants involves the potassium persulfate digestion method to convert organic N to NO3 (Purcell and King 1996 Argon. J. 88:111-113, the modified Cd mediated reduction of NO3 to NO2 (Vodovotz 1996 Biotechniques 20:390-394) and the measurement of nitrite by the Griess assay (Vodovotz 1996, supra). The absorbance values are measured at 550 nm against a standard curve of NaNO2. The procedure is described in details in Samonte et al. 2006 Agron. J. 98:168-176.
  • Germination tests—Germination tests compare the percentage of seeds from transgenic plants that could complete the germination process to the percentage of seeds from control plants that are treated in the same manner. Normal conditions are considered for example, incubations at 22° C. under 22-hour light 2-hour dark daily cycles. Evaluation of germination and seedling vigor is conducted between 4 and 14 days after planting. The basal media is 50% MS medium (Murashige and Skoog, 1962 Plant Physiology 15, 473-497).
  • Germination is checked also at unfavorable conditions such as cold (incubating at temperatures lower than 10° C., instead of 22° C.) or using seed inhibition solutions that contain high concentrations of an osmolyte such as sorbitol (at concentrations of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM, and up to 1000 mM) or applying increasing concentrations of salt (of 50 mM, 100 mM, 200 mM, 300 mM, 500 mM NaCl).
  • The effect of the transgene on plant's vigor, growth rate, biomass, yield and/or oil content can be determined using known methods.
  • Plant vigor—The plant vigor can be calculated by the increase in growth parameters such as leaf area, fiber length, rosette diameter, plant fresh weight and the like per time.
  • Growth rate—The growth rate can be measured using digital analysis of growing plants. For example, images of plants growing in greenhouse on plot basis can be captured every 3 days and the rosette area can be calculated by digital analysis. Rosette area growth is calculated using the difference of rosette area between days of sampling divided by the difference in days between samples.
  • Evaluation of growth rate can be done by measuring plant biomass produced, rosette area, leaf size or root length per time (can be measured in cm2 per day of leaf area).
  • Relative growth area can be calculated using Formula II.

  • Relative growth rate area=Regression coefficient of area along time course  Formula II:
  • Thus, the relative growth area rate is in units of 1/day and length growth rate is in units of 1/day.
  • Seed yield—Evaluation of the seed yield per plant can be done by measuring the amount (weight or size) or quantity (i.e., number) of dry seeds produced and harvested from 8-16 plants and divided by the number of plants.
  • For example, the total seeds from 8-16 plants can be collected, weighted using e.g., an analytical balance and the total weight can be divided by the number of plants. Seed yield per growing area can be calculated in the same manner while taking into account the growing area given to a single plant. Increase seed yield per growing area could be achieved by increasing seed yield per plant, and/or by increasing number of plants capable of growing in a given area.
  • In addition, seed yield can be determined via the weight of 1000 seeds. The weight of 1000 seeds can be determined as follows: seeds are scattered on a glass tray and a picture is taken. Each sample is weighted and then using the digital analysis, the number of seeds in each sample is calculated.
  • The 1000 seeds weight can be calculated using formula II:

  • 1000 Seed Weight=number of seed in sample/sample weight×1000  Formula III:
  • The Harvest Index can be calculated using Formula IV

  • Harvest Index=Average seed yield per plant/Average dry weight  Formula IV:
  • Grain protein concentration—Grain protein content (g grain protein m2) is estimated as the product of the mass of grain N (g grain N m2) multiplied by the N/protein conversion ratio of k-5.13 (Mosse 1990, supra). The grain protein concentration is estimated as the ratio of grain protein content per unit mass of the grain (g grain protein kg−1 grain).
  • Fiber length—Fiber length can be measured using fibrograph. The fibrograph system was used to compute length in terms of “Upper Half Mean” length. The upper half mean (UHM) is the average length of longer half of the fiber distribution. The fibrograph measures length in span lengths at a given percentage point (Hypertext Transfer Protocol://World Wide Web (dot) cottoninc (dot) com/ClassificationofCotton/?Pg=4#Length).
  • According to some embodiments of the invention, increased yield of corn may be manifested as one or more of the following: increase in the number of plants per growing area, increase in the number of ears per plant, increase in the number of rows per ear, number of kernels per ear row, kernel weight, thousand kernel weight (1000-weight), ear length/diameter, increase oil content per kernel and increase starch content per kernel.
  • As mentioned, the increase of plant yield can be determined by various parameters. For example, increased yield of rice may be manifested by an increase in one or more of the following: number of plants per growing area, number of panicles per plant, number of spikelets per panicle, number of flowers per panicle, increase in the seed filling rate, increase in thousand kernel weight (1000-weight), increase oil content per seed, increase starch content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Similarly, increased yield of soybean may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, increase protein content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Increased yield of canola may be manifested by an increase in one or more of the following: number of plants per growing area, number of pods per plant, number of seeds per pod, increase in the seed filling rate, increase in thousand seed weight (1000-weight), reduce pod shattering, increase oil content per seed, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Increased yield of cotton may be manifested by an increase in one or more of the following: number of plants per growing area, number of bolls per plant, number of seeds per boll, increase in the seed filling rate, increase in thousand seed weight (1000-weight), increase oil content per seed, improve fiber length, fiber strength, among others. An increase in yield may also result in modified architecture, or may occur because of modified architecture.
  • Oil content—The oil content of a plant can be determined by extraction of the oil from the seed or the vegetative portion of the plant. Briefly, lipids (oil) can be removed from the plant (e.g., seed) by grinding the plant tissue in the presence of specific solvents (e.g., hexane or petroleum ether) and extracting the oil in a continuous extractor. Indirect oil content analysis can be carried out using various known methods such as Nuclear Magnetic Resonance (NMR) Spectroscopy, which measures the resonance energy absorbed by hydrogen atoms in the liquid state of the sample [See for example, Conway T F, and Earle F R., 1963. Journal of the American Oil Chemists' Society; Springer Berlin/Heidelberg, ISSN: 0003-021X (Print) 1558-9331 (Online)]; the Near Infrared (NI) Spectroscopy, which utilizes the absorption of near infrared energy (1100-2500 nm) by the sample; and a method described in WO/2001/023884, which is based on extracting oil a solvent, evaporating the solvent in a gas stream which forms oil particles, and directing a light into the gas stream and oil particles which forms a detectable reflected light.
  • Thus, the present invention is of high agricultural value for promoting the yield of commercially desired crops (e.g., biomass of vegetative organ such as poplar wood, or reproductive organ such as number of seeds or seed biomass).
  • Any of the transgenic plants described hereinabove or parts thereof may be processed to produce a feed, meal, protein or oil preparation, such as for ruminant animals.
  • The transgenic plants described hereinabove, which exhibit an increased oil content can be used to produce plant oil (by extracting the oil from the plant).
  • The plant oil (including the seed oil and/or the vegetative portion oil) produced according to the method of the invention may be combined with a variety of other ingredients. The specific ingredients included in a product are determined according to the intended use. Exemplary products include animal feed, raw material for chemical modification, biodegradable plastic, blended food product, edible oil, biofuel, cooking oil, lubricant, biodiesel, snack food, cosmetics, and fermentation process raw material. Exemplary products to be incorporated to the plant oil include animal feeds, human food products such as extruded snack foods, breads, as a food binding agent, aquaculture feeds, fermentable mixtures, food supplements, sport drinks, nutritional food bars, multi-vitamin supplements, diet drinks, and cereal foods.
  • According to some embodiments of the invention, the oil comprises a seed oil.
  • According to some embodiments of the invention, the oil comprises a vegetative portion oil.
  • According to some embodiments of the invention, the plant cell forms a part of a plant.
  • As used herein the term “about” refers to ±10%.
  • The terms “comprises”, “comprising”, “includes”, “including”. “having” and their conjugates mean “including but not limited to”.
  • The term “consisting of” means “including and limited to”.
  • The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
  • As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
  • Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
  • As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
  • It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
  • Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.
  • EXAMPLES
  • Reference is now made to the following examples, which together with the above descriptions illustrate some embodiments of the invention in a non limiting fashion.
  • Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988); Watson et al., “Recombinant DNA”, Scientific American Books, New York; Birren et al. (eds) “Genome Analysis: A Laboratory Manual Series”, Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; “Oligonucleotide Synthesis” Gait. M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., Eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal. B., (1984) and “Methods in Enzymology” Vol. 1-317. Academic Press; “PCR Protocols: A Guide To Methods And Applications”. Academic Press, San Diego, Calif. (1990); Marshak et al., “Strategies for Protein Purification and Characterization—A Laboratory Course Manual” CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.
  • General Experimental and Bioinformatics Methods
  • RNA extraction—Tissues growing at various growth conditions (as described below) were sampled and RNA was extracted using TRIzol Reagent from Invitrogen [Hypertext Transfer Protocol://World Wide Web (dot) invitrogen (dot) com/content (dot)cfm?pageid=469]. Approximately 30-50 mg of tissue was taken from samples. The weighed tissues were ground using pestle and mortar in liquid nitrogen and resuspended in 500 μl of TRIzol Reagent. To the homogenized lysate, 100 μl of chloroform was added followed by precipitation using isopropanol and two washes with 75% ethanol. The RNA was eluted in 30 μl of RNase-free water. RNA samples were cleaned up using Qiagen's RNeasy minikit clean-up protocol as per the manufacturer's protocol (QIAGEN Inc, CA USA). For convenience, each micro-array expression information tissue type has received an expression Set ID.
  • Correlation analysis—was performed for selected genes according to some embodiments of the invention, in which the characterized parameters (measured parameters according to the correlation IDs) were used as “x axis” for correlation with the tissue transcriptome, which was used as the “Y axis”. For each gene and measured parameter a correlation coefficient “R” was calculated (using Pearson correlation) along with a p-value for the significance of the correlation. When the correlation coefficient (R) between the levels of a gene's expression in a certain tissue and a phenotypic performance across ecotypes/variety/hybrid is high in absolute value (between 0.5-1), there is an association between the gene (specifically the expression level of this gene) the phenotypic characteristic (e.g., improved nitrogen use efficiency, abiotic stress tolerance, yield, growth rate and the like).
  • Example 1 Identifying Genes which Increase Nitrogen Use Efficiency (NUE), Fertilizer Use Efficiency (FUE), Yield, Growth Rate, Vigor, Biomass, Oil Content, Abiotic Stress Tolerance (ABST) and/or Water Use Efficiency (WUE) in Plants
  • The present inventors have identified polynucleotides which upregulation of expression thereof in plants increases nitrogen use efficiency (NUE), fertilizer use efficiency (FUE), yield (e.g., seed yield, oil yield, biomass, grain quantity and/or quality), growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance (ABST) and/or water use efficiency (WUE) of a plant.
  • All nucleotide sequence datasets used here were originated from publicly available databases or from performing sequencing using the Solexa technology (e.g. Barley and Sorghum). Sequence data from 100 different plant species was introduced into a single, comprehensive database. Other information on gene expression, protein annotation, enzymes and pathways were also incorporated. Major databases used include:
  • Genomes
      • Arabidopsis genome [TAIR genome version 6 (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/)]
      • Rice genome [IRGSP build 4.0 (Hypertext Transfer Protocol://rgp (dot) dna (dot) affrc (dot) go (dot) jp/IRGSP/)].
      • Poplar [Populus trichocarpa release 1.1 from JGI (assembly release v1.0) (Hypertext Transfer Protocol://World Wide Web (dot) genome (dot) jgi-psf (dot) org/)]
      • Brachypodium [JGI 4× assembly, Hypertext Transfer Protocol://World Wide Web (dot) brachpodium (dot) org)]
      • Soybean [DOE-JGI SCP, version Glyma( ) (Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)]
      • Grape [French-Italian Public Consortium for Grapevine Genome Characterization grapevine genome (Hypertext Transfer Protocol://World Wide Web (dot) genoscope (dot) ens (dot) fr/)]
      • Castobean [TIGR/J Craig Venter Institute 4× assembly [(Hypertext Transfer Protocol://msc (dot) jcvi (dot) org/r_communis]
      • Sorghum [DOE-JGI SCP, version Sbi1 [Hypertext Transfer Protocol://World Wide Web (dot) phytozome (dot) net/)].
      • Maize [Hypertext Transfer Protocol://maizesequence (dot) org/]
      • Cucumber [Hypertext Transfer Protocol://cucumber (dot) genomics (dot) org (dot) cn/page/cucumber/index (dot) jsp]
      • Tomato [Hypertext Transfer Protocol://solgenomics (dot) net/tomato/]
      • Cassava [Hypertext Transfer Protocol://www (dot) phytozome (dot) net/cassava (dot) php]
  • Expressed EST and mRNA Sequences were Extracted from the Following Databases:
      • GenBank (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Genbank/).
      • RefSeq (Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/RefSeq/).
      • TAIR (Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/).
  • Protein and Pathway Databases
      • Uniprot [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/].
      • AraCyc [Hypertext Transfer Protocol://World Wide Web (dot) arabidopsis (dot) org/biocyc/index (dot) jsp].
      • ENZYME [Hypertext Transfer Protocol://expasy (dot) org/enzyme/].
  • Microarray Datasets were Downloaded from:
      • GEO (Hypertext Transfer Protocol://World Wide Web.ncbi.nlm.nih.gov/geo/)
      • TAIR (Hypertext Transfer Protocol://World Wide Web.arabidopsis.org/).
      • Proprietary micro-array data (See WO2008/122980 and Examples 3-10 below).
      • QTL and SNPs Information
      • Gramene [Hypertext Transfer Protocol://World Wide Web (dot) gramene (dot) org/qtl/].
      • Panzea [Hypertext Transfer Protocol://World Wide Web (dot) panzea (dot) org/index (dot) html].
      • Soybean QTL: [Hypertext Transfer Protocol://World Wide Web (dot) soybeanbreederstoolbox(dot) com/].
  • Database Assembly—was performed to build a wide, rich, reliable annotated and easy to analyze database comprised of publicly available genomic mRNA. ESTs DNA sequences, data from various crops as well as gene expression, protein annotation and pathway, QTLs data, and other relevant information.
  • Database assembly is comprised of a toolbox of gene refining, structuring, annotation and analysis tools enabling to construct a tailored database for each gene discovery project. Gene refining and structuring tools enable to reliably detect splice variants and antisense transcripts, generating understanding of various potential phenotypic outcomes of a single gene. The capabilities of the “LEADS” platform of Compugen LTD for analyzing human genome have been confirmed and accepted by the scientific community [see e.g., “Widespread Antisense Transcription”, Yelin, et al. (2003) Nature Biotechnology 21, 379-85; “Splicing of Alu Sequences”, Lev-Maor, et al. (2003) Science 300 (5623). 1288-91; “Computational analysis of alternative splicing using EST tissue information”, Xie H et al. Genomics 2002], and have been proven most efficient in plant genomics as well.
  • EST clustering and gene assembly—For gene clustering and assembly of organisms with available genome sequence data (arabidopsis, rice, castorbean, grape, brachypodium, poplar, soybean, sorghum) the genomic LEADS version (GANG) was employed. This tool allows most accurate clustering of ESTs and mRNA sequences on genome, and predicts gene structure as well as alternative splicing events and anti-sense transcription.
  • For organisms with no available full genome sequence data. “expressed LEADS” clustering software was applied.
  • Gene annotation—Predicted genes and proteins were annotated as follows:
  • Sequences BLAST™ search [Hypertext Transfer Protocol://blast (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] against all plant UniProt [Hypertext Transfer Protocol://World Wide Web (dot) uniprot (dot) org/] was performed. Open reading frames of each putative transcript were analyzed and longest ORF with higher number of homologues was selected as predicted protein of the transcript. The predicted proteins were analyzed by InterPro [Hypertext Transfer Protocol://World Wide Web (dot) ebi (dot) ac (dot) uk/interpro/].
  • BLAST™ against proteins from AraCyc and ENZYME databases was used to map the predicted transcripts to AraCyc pathways.
  • Predicted proteins from different species were compared using BLAST™ algorithm [Hypertext Transfer Protocol://World Wide Web (dot) ncbi (dot) nlm (dot) nih (dot) gov/Blast (dot) cgi] to validate the accuracy of the predicted protein sequence, and for efficient detection of orthologs.
  • Gene expression profiling—Several data sources were exploited for gene expression profiling, namely microarray data and digital expression profile (see below). According to gene expression profile, a correlation analysis was performed to identify genes, which are co-regulated under different development stages and environmental conditions and associated with different phenotypes.
  • Publicly available microarray datasets were downloaded from TAIR and NCBI GEO sites, renormalized, and integrated into the database. Expression profiling is one of the most important resource data for identifying genes important for yield.
  • A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster. Digital expression, also known as electronic Northern Blot, is a tool that displays virtual expression profile based on the EST sequences forming the gene cluster. The tool provides the expression profile of a cluster in terms of plant anatomy (e.g., the tissue/organ in which the gene is expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, the following is taken into consideration: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.
  • The accuracy of this system was demonstrated by Portnoy et al., 2009 (Analysis Of The Melon Fruit Transcriptome Based On 454 Pyrosequencing) in: Plant & Animal Genomes XVII Conference, San Diego, Calif. Transcriptomic analysis, based on relative EST abundance in data was performed by 454 pyrosequencing of cDNA representing mRNA of the melon fruit. Fourteen double strand cDNA samples obtained from two genotypes, two fruit tissues (flesh and rind) and four developmental stages were sequenced. GS FLX pyrosequencing (Roche/454 Life Sciences) of non-normalized and purified cDNA samples yielded 1,150,657 expressed sequence tags (ESTs) that assembled into 67,477 unigenes (32,357 singletons and 35,120 contigs). Analysis of the data obtained against the Cucurbit Genomics Database [Hypertext Transfer Protocol://World Wide Web (dot) icugi (dot) org/] confirmed the accuracy of the sequencing and assembly. Expression patterns of selected genes fitted well their qRT-PCR data.
  • Overall, 216 genes were identified to have a major impact on nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed yield, oil yield, grain quantity and/or quality), growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency when expression thereof is increased in plants. The identified genes, their curated polynucleotide and polypeptide sequences, as well as their updated sequences according to GenBank database are summarized in Table 1, hereinbelow.
  • TABLE 1
    Identified polynucleotides for increasing nitrogen use efficiency, fertilizer use efficiency,
    yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic
    stress tolerance and/or water use efficiency of a plant
    Gene Polyn. SEQ Polyp. SEQ ID
    Name Cluster Name Organism ID NO: NO:
    LNU290 wheat|gb164|BE586041 wheat 1 470
    LNU291 sorghum|09v1|BM323576 sorghum 2 471
    LNU292 sorghum|09v1|SB09G025040 sorghum 3 472
    LNU293 rice|gb170|OS02G57600 rice 4 473
    LNU294 soybean|gb168|BM526182 soybean 5 474
    LNU295 tomato|09v1|AA824887 tomato 6 475
    LNU296 rice|gb170|OS05G43380 rice 7 476
    LNU297 barley|10v1|AV835353 barley 8 477
    LNU298 wheat|gb164|BE446740 wheat 9 478
    LNU299 maize|gb170|AI622290 maize 10 479
    LNU300 maize|gb170|AI861194 maize 11 480
    LNU301 maize|gb170|BM073140 maize 12 481
    LNU302 tomato|09v1|BT013543 tomato 13 482
    LNU303 sorghum|09v1|SB01G004420 sorghum 14 483
    LNU304 rice|gb170|AU162343 rice 15 484
    LNU305 barley|10v1|AV833418 barley 16 485
    LNU306 arabidopsis|gb165|AT3G03860 arabidopsis 17 486
    LNU307 maize|gb170|AI941897 maize 18 487
    LNU308 arabidopsis|gb165|AT2G14110 arabidopsis 19 488
    LNU309 millet|09v1|EVO454PM042396 millet 20 489
    LNU310 tomato|09v1|BG133786 tomato 21 490
    LNU311 maize|gb170|CO519241 maize 22 491
    LNU312 rice|gb170|OS04G53730 rice 23 492
    LNU314 sorghum|09v1|SB10G001680 sorghum 24 493
    LNU315 wheat|gb164|BE497367 wheat 25 494
    LNU316 sorghum|09v1|SB10G021140 sorghum 26 495
    LNU317 maize|gb170|CF624079 maize 27 496
    LNU318 wheat|gb164|BE443997 wheat 28 497
    LNU319 sorghum|09v1|SB01G008770 sorghum 29 498
    LNU322 barley|10v1|BE421151XX1 barley 30 499
    LNU323 tomato|09v1|BG123422 tomato 31 500
    LNU324 sorghum|09v1|SB08G018570 sorghum 32 501
    LNU326 tomato|09v1|BG126891 tomato 33 502
    LNU327 wheat|gb164|CA692356 wheat 34 503
    LNU328 tomato|09v1|BG128098 tomato 35 504
    LNU329 tomato|09v1|BG791244 tomato 36 505
    LNU330 tomato|09v1|AW096846 tomato 37 506
    LNU331 tomato|09v1|AW031707 tomato 38 507
    LNU332 maize|gb170|AW052982 maize 39 508
    LNU333 wheat|gb164|BE489159 wheat 40 509
    LNU335 wheat|gb164|BE500673 wheat 41 510
    LNU336 tomato|09v1|AI773791 tomato 42 511
    LNU337 grape|gb160|CB968839 grape 43 512
    LNU339 maize|gb170|CB605279 maize 44 513
    LNU340 wheat|gb164|BG604469 wheat 45 514
    LNU341 wheat|gb164|BE490253 wheat 46 515
    LNU342 tomato|09v1|BG123334 tomato 47 516
    LNU343 wheat|gb164|AL825714 wheat 48 517
    LNU344 wheat|gb164|BJ256846 wheat 49 518
    LNU345 wheat|gb164|BF483929 wheat 50 519
    LNU346 sorghum|09v1|SB09G026910 sorghum 51 520
    LNU347 sorghum|09v1|SB09G000370 sorghum 52 521
    LNU348 maize|gb170|W21614 maize 53 522
    LNU349 soybean|gb168|CA910292 soybean 54 523
    LNU350 wheat|gb164|BF201187 wheat 55 524
    LNU351 wheat|gb164|BE423861 wheat 56 525
    LNU352 wheat|gb164|BF474109 wheat 57 526
    LNU353 wheat|gb164|BF201797 wheat 58 527
    LNU354 wheat|gb164|BE445429 wheat 59 528
    LNU355 wheat|gb164|BF484349 wheat 60 529
    LNU356 tomato|09v1|BG629014 tomato 61 530
    LNU357 tomato|09v1|AI775669 tomato 62 531
    LNU359 maize|gb170|AI901501 maize 63 532
    LNU360 maize|gb170|AI637191 maize 64 533
    LNU361 maize|gb170|AI612217 maize 65 534
    LNU362 rice|gb170|OS02G49850 rice 66 535
    LNU363 rice|gb170|OS01G59870 rice 67 536
    LNU364 rice|gb170|OS02G49470 rice 68 537
    LNU365 rice|gb170|OS04G37820 rice 69 538
    LNU366 rice|gb170|OS03G48030 rice 70 539
    LNU367 rice|gb170|OS02G38970 rice 71 540
    LNU368 wheat|gb164|BE490258 wheat 72 541
    LNU369 wheat|gb164|CA500696 wheat 73 542
    LNU370 tomato|09v1|AI772811 tomato 74 543
    LNU371 maize|gb170|CK985828 maize 75 544
    LNU372 wheat|gb164|AL825623 wheat 76 545
    LNU373 rice|gb170|OS12G25200 rice 77 546
    LNU374 rice|gb170|OS03G63700 rice 78 547
    LNU375 tomato|09v1|BG125016 tomato 79 548
    LNU376 maize|gb170|AW017929 maize 80 549
    LNU377 sorghum|09v1|SB01G000775 sorghum 81 550
    LNU378 wheat|gb164|AJ717146 wheat 82 551
    LNU379 sorghum|09v1|SB01G015660 sorghum 83 552
    LNU380 wheat|gb164|BQ483748 wheat 84 553
    LNU381 sorghum|09v1|SB04G034690 sorghum 85 554
    LNU382 arabidopsis|gb165|AT1G65070 arabidopsis 86 555
    LNU383 tomato|09v1|BG123484 tomato 87 556
    LNU384 tomato|09v1|AI482780 tomato 88 557
    LNU385 rice|gb170|OS01G25600 rice 89 558
    LNU386 rice|gb170|OS06G35200 rice 90 559
    LNU387 sorghum|09v1|SB02G032450 sorghum 91 560
    LNU388 rice|gb170|OS04G58410 rice 92 561
    LNU390 tomato|09v1|BG125049 tomato 93 562
    LNU391 barley|10v1|BE060369 barley 94 563
    LNU392 rice|gb170|OS03G11420 rice 95 564
    LNU393 sorghum|09v1|SB04G005560 sorghum 96 565
    LNU395 sorghum|09v1|SB06G025090 sorghum 97 566
    LNU396 sorghum|09v1|SB01G048410 sorghum 98 567
    LNU397 sorghum|09v1|SB03G031230 sorghum 99 568
    LNU399 wheat|gb164|CA655009 wheat 100 569
    LNU401 sorghum|09v1|SB04G002180 sorghum 101 570
    LNU402 wheat|gb164|CK212389 wheat 102 571
    LNU403 sorghum|09v1|SB03G041600 sorghum 103 572
    LNU405 tomato|09v1|BG125067 tomato 104 573
    LNU407 barley|10v1|AJ484347 barley 105 574
    LNU408 barley|10v1|BE421189 barley 106 575
    LNU409 barley|10v1|GH227248 barley 107 576
    LNU410 wheat|gb164|BE424655 wheat 108 577
    LNU411 tomato|09v1|BI207068 tomato 109 578
    LNU412 cotton|gb164|BE053302 cotton 110 579
    LNU413 tomato|09v1|BG126757 tomato 111 580
    LNU414 wheat|gb164|CA653735 wheat 112 581
    LNU415 sorghum|09v1|SB01G048990 sorghum 113 582
    LNU416 b_juncea|gb164|EVGN0046492 b_juncea 114 583
    4783313
    LNU417 wheat|gb164|BG607934 wheat 115 584
    LNU419 tomato|09v1|BG132251 tomato 116 585
    LNU420 sorghum|09v1|SB01G040070 sorghum 117 586
    LNU421 sorghum|09v1|SB06G031090 sorghum 118 587
    LNU422 sorghum|09v1|SB07G002970 sorghum 119 588
    LNU423 sorghum|09v1|SB01G001120 sorghum 120 589
    LNU424 arabidopsis|gb165|AT5G02240 arabidopsis 121 590
    LNU425 barley|10v1|AJ461142 barley 122 591
    LNU426 rice|gb170|OS06G48320 rice 123 592
    LNU427 rice|gb170|OS03G03140 rice 124 593
    LNU429 tomato|09v1|BG124215 tomato 125 594
    LNU430 tomato|09v1|BG130012 tomato 126 595
    LNU431 sorghum|09v1|SB10G024110 sorghum 127 596
    LNU432 sorghum|09v1|SB03G013220 sorghum 128 597
    LNU433 sorghum|09v1|SB04G026690 sorghum 129 598
    LNU434 sorghum|09v1|SB01G046460 sorghum 130 599
    LNU435 barley|10v1|BE060935 barley 131 600
    LNU436 barley|10v1|BE422114 barley 132 601
    LNU437 barley|10v1|BI950410 barley 133 602
    LNU438 barley|10v1|BE437298 barley 134 603
    LNU439 sorghum|09v1|SB09G005970 sorghum 135 604
    LNU441 sorghum|09v1|SB01G037770 sorghum 136 605
    LNU442 tomato|09v1|AW735755 tomato 137 606
    LNU443 brachypodium|09v1|GT769494 brachypodium 138 607
    LNU444 cotton|gb164|AI726042 cotton 139 608
    LNU445 soybean|gb168|FK341642 soybean 140 609
    LNU446 soybean|gb168|BE917590 soybean 141 610
    LNU447 barley|10v1|BF254963 barley 142 611
    LNU448 barley|10v1|BE422325 barley 143 612
    LNU449 cotton|gb164|AI725388 cotton 144 613
    LNU450 cotton|gb164|AI728722 cotton 145 614
    LNU451 tomato|09v1|BG124246 tomato 146 615
    LNU453 sorghum|09v1|SB10G027420 sorghum 147 616
    LNU454 tomato|09v1|BG127794 tomato 148 617
    LNU455 tomato|09v1|BG626661 tomato 149 618
    LNU456 barley|10v1|BF265366 barley 150 619
    LNU457 tomato|gb164|CK714827 tomato 151 620
    LNU458 cotton|10v1|DW508164 cotton 152 621
    LNU459 maize|gb170|BM350702 maize 153 622
    LNU460 maize|gb170|AW066359 maize 154 623
    LNU461 tomato|09v1|AI483350 tomato 155 624
    LNU462 tomato|09v1|AI896771 tomato 156 625
    LNU463 grape|gb160|CB346636 grape 157 626
    LNU464 grape|gb160|CB968657 grape 158 627
    LNU465 sorghum|09v1|SB03G033750 sorghum 159 628
    LNU466 barley|10v1|AV833763 barley 160 629
    LNU467 barley|10v1|BF254449 barley 161 630
    LNU468 tomato|09v1|AI637280 tomato 162 631
    LNU469 maize|gb170|BI542994 maize 163 632
    LNU470 barley|10v1|BQ760445 barley 164 633
    LNU471 maize|gb170|BQ035243 maize 165 634
    LNU472 barley|10v1|BI780920 barley 166 635
    LNU473 sorghum|09v1|SB03G013160 sorghum 167 636
    LNU474 soybean|gb168|CV536461 soybean 168 637
    LNU476 maize|gb170|AW400216 maize 169 638
    LNU477 sorghum|09v1|SB01G035950 sorghum 170 639
    LNU479 sorghum|09v1|SB01G011640 sorghum 171 640
    LNU480 sorghum|09v1|SB01G003380 sorghum 172 641
    LNU481 sorghum|09v1|SB01G045180 sorghum 173 642
    LNU482 cotton|10v1|BF273404 cotton 174 643
    LNU483 rice|gb170|OS02G49880 rice 175 644
    LNU485 rice|gb170|OS04G52230 rice 176 645
    LNU486 rice|gb170|OS08G04560 rice 177 646
    LNU489 tomato|09v1|1BG32312 tomato 178 647
    LNU490 poplar|10v1|CA822678 poplar 179 648
    LNU491 sorghum|09v1|SB01G031120 sorghum 180 649
    LNU492 rice|gb170|OS07G46790 rice 181 650
    LNU493 rice|gb170|OS06G34040 rice 182 651
    LNU494 maize|gb170|BE186249 maize 183 652
    LNU495 sorghum|09v1|SB03G028760 sorghum 184 653
    LNU496 wheat|gb164|CA640674 wheat 185 654
    LNU497 wheat|gb164|BE516527 wheat 186 655
    LNU498 sorghum|09v1|SB02G002830 sorghum 187 656
    LNU499 barley|10v1|AV923755 barley 188 657
    LNU500 tomato|09v1|BG643024 tomato 189 658
    LNU501 sorghum|09v1|SB10G026500 sorghum 190 659
    LNU502 barley|10v1|BI958006 barley 191 660
    LNU503 rice|gb170|OS04G52300 rice 192 661
    LNU504 arabidopsis|gb165|AT2G19110 arabidopsis 193 662
    LNU506 tomato|09v1|AI490778 tomato 194 663
    LNU507 barley|10v1|BF621023 barley 195 664
    LNU508 rice|gb170|AA753097 rice 196 665
    LNU509 rice|gb170|OS01G21990 rice 197 666
    LNU510 rice|gb170|OS06G29844 rice 198 667
    LNU511 rice|gb170|OS03G48260 rice 199 668
    LNU512 arabidopsis|gb165|AT1G54040 arabidopsis 200 669
    LNU513 soybean|gb168|BE822210 soybean 201 670
    LNU514 rice|gb170|BE040128 rice 202 671
    LNU517 soybean|gb168|AW201968 soybean 203 672
    LNU518 maize|gb170|CA404810 maize 204 673
    LNU519 maize|gb170|CF046227 maize 205 674
    LNU520 sorghum|09v1|SB10G027140 sorghum 206 675
    LNU309 maize|gb170|AW165565 maize 207 676
    H3
    LNU417 maize|10v1|CB381339 maize 208 677
    H4
    LNU431 maize|10v1|CO528919 maize 209 678
    H1
    LNU437 rice|gb170|OS11G37700 rice 210 679
    H2
    LNU313 sorghum|09v1|CF757586 sorghum 211
    LNU358 maize|gb170|AI615229 maize 212
    LNU394 maize|gb170|AI491593 maize 213
    LNU418 maize|gb170|AW165449 maize 214
    LNU487 barley|10v1|AJ475337 barley 215
    LNU488 barley|10v1|AJ469759 barley 216
    LNU410 wheat|gb164|BE424655 wheat 108 699
    LNU504 arabidopsis|gb165|AT2G19110 arabidopsis 193 712
    LNU487 barley|10v1|AJ475337 barley 215 708
    LNU290 wheat|gb164|BE586041 wheat 217 680
    LNU292 sorghum|09v1|SB09G025040 sorghum 218 472
    LNU294 soybean|gb168|BM526182 soybean 219 681
    LNU297 barley|10v1|AV835353 barley 220 682
    LNU300 maize|gb170|AI861194 maize 221 683
    LNU309 millet|09v1|EV0454PM042396 millet 222 684
    LNU312 rice|gb170|OS04G53730 rice 223 492
    LNU314 sorghum|09v1|SB10G001680 sorghum 224 685
    LNU332 maize|gb170|AW052982 maize 225 508
    LNU337 grape|gb160|CB968839 grape 226 686
    LNU341 wheat|gb164|BE490253 wheat 227 687
    LNU350 wheat|gb164|BF201187 wheat 228 688
    LNU353 wheat|gb164|BF201797 wheat 229 689
    LNU364 rice|gb170|OS02G49470 rice 230 537
    LNU368 wheat|gb164|BE490258 wheat 231 690
    LNU369 wheat|gb164|CA500696 wheat 232 691
    LNU372 wheat|gb164|AL825623 wheat 233 692
    LNU378 wheat|gb164|AJ717146 wheat 234 693
    LNU378 wheat|gb164|AJ717146 wheat 235 694
    LNU380 wheat|gb164|BQ483748 wheat 236 695
    LNU381 sorghum|09v1|SB04G034690 sorghum 237 554
    LNU382 arabidopsis|gb165|AT1G65070 arabidopsis 238 555
    LNU393 sorghum|09v1|SB04G005560 sorghum 239 565
    LNU401 sorghum|09v1|SB04G002180 sorghum 240 696
    LNU407 barley|10v1|AJ484347 barley 241 697
    LNU409 barley|10v1|GH227248 barley 242 698
    LNU414 wheat|gb164|CA653735 wheat 243 700
    LNU416 b_juncea|gb164|EVGN0046492 b_juncea 244 701
    4783313
    LNU417 wheat|gb164|BG607934 wheat 245 702
    LNU433 sorghum|09v1|SB04G026690 sorghum 246 598
    LNU443 brachypodium|09v1|GT769494 brachypodium 247 607
    LNU447 barley|10v1|BF254963 barley 248 611
    LNU453 sorghum|09v1|SB10G027420 sorghum 249 703
    LNU454 tomato|09v1|BG127794 tomato 250 617
    LNU457 tomato|gb164|CK714827 tomato 251 704
    LNU466 barley|10v1|AV833763 barley 252 705
    LNU470 barley|10v1|BQ760445 barley 253 706
    LNU474 soybean|gb168|CV536461 soybean 254 707
    LNU488 barley|10v1|AJ469759 barley 255 709
    LNU490 poplar|10v1|CA822678 poplar 256 648
    LNU495 sorghum|09v1|SB03G028760 sorghum 257 710
    LNU500 tomato|09v1|BG643024 tomato 258 711
    LNU506 tomato|09v1|AI490778 tomato 259 713
    LNU508 rice|gb170|AA753097 rice 260 714
    LNU509 rice|gb170|OS01G21990 rice 261 666
    LNU309 maize|gb170|AW165565 maize 262 715
    H3
    LNU431 maize|gb170|CO528919 maize 263 716
    H1
    LNU313 sorghum|09v1|CF757586 sorghum 264
    LNU358 maize|gb170|AI615229 maize 265
    Table 1. Provided are the identified genes along with their sequence identifiers.
    “Polyp.” = polypeptide;
    “Polyn.”—Polynucleotide.
  • Example 2 Identification of Homologous Sequences that Increase Nitrogen Use Efficiency, Fertilizer Use Efficiency, Yield, Growth Rate, Vigor, Biomass, Oil Content, Abiotic Stress Tolerance and/or Water Use Efficiency in Plants
  • The concepts of orthology and paralogy have recently been applied to functional characterizations and classifications on the scale of whole-genome comparisons. Orthologs and paralogs constitute two major types of homologs: The first evolved from a common ancestor by specialization, and the latter is related by duplication events. It is assumed that paralogs arising from ancient duplication events are likely to have diverged in function while true orthologs are more likely to retain identical function over evolutionary time.
  • To further investigate and identify putative orthologs of the genes affecting nitrogen use efficiency, fertilizer use efficiency, yield (e.g., seed yield, oil yield, biomass, grain quantity and/or quality), growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency, all sequences were aligned using the BLAST™ (/Basic Local Alignment Search Tool/). Sequences sufficiently similar were tentatively grouped. These putative orthologs were further organized under a Phylogram—a branching diagram (tree) assumed to be a representation of the evolutionary relationships among the biological taxa. Putative ortholog groups were analyzed as to their agreement with the phylogram and in cases of disagreements these ortholog groups were broken accordingly. Expression data was analyzed and the EST libraries were classified using a fixed vocabulary of custom terms such as developmental stages (e.g., genes showing similar expression profile through development with up regulation at specific stage, such as at the seed filling stage) and/or plant organ (e.g., genes showing similar expression profile across their organs with up regulation at specific organs such as seed). The annotations from all the ESTs clustered to a gene were analyzed statistically by comparing their frequency in the cluster versus their abundance in the database, allowing the construction of a numeric and graphic expression profile of that gene, which is termed “digital expression”. The rationale of using these two complementary methods with methods of phenotypic association studies of QTLs, SNPs and phenotype expression correlation is based on the assumption that true orthologs are likely to retain identical function over evolutionary time. These methods provide different sets of indications on function similarities between two homologous genes, similarities in the sequence level—identical amino acids in the protein domains and similarity in expression profiles.
  • The search and identification of homologous genes involves the screening of sequence information available, for example, in public databases, which include but are not limited to the DNA Database of Japan (DDBJ), Genbank, and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) or versions thereof or the MIPS database. A number of different search algorithms have been developed, including but not limited to the suite of programs referred to as BLAST™ programs. There are five implementations of BLAST™, three designed for nucleotide sequence queries (BLASTN™, BLASTX™, and TBLASTX™) and two designed for protein sequence queries (BLASTP™ and TBLAST™) (Coulson. Trends in Biotechnology: 76-80, 1994; Birren et al., Genome Analysis, I: 543, 1997). Such methods involve alignment and comparison of sequences. The BLAST™ algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST™ analysis is publicly available through the National Centre for Biotechnology Information. Other such software or algorithms are GAP, BESTFIT, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps.
  • The homologous genes may belong to the same gene family. The analysis of a gene family may be carried out using sequence similarity analysis. To perform this analysis one may use standard programs for multiple alignments e.g. Clustal W. A neighbor-joining tree of the proteins homologous to the genes of some embodiments of the invention may be used to provide an overview of structural and ancestral relationships. Sequence identity may be calculated using an alignment program as described above. It is expected that other plants will carry a similar functional gene (orthologue) or a family of similar genes and those genes will provide the same preferred phenotype as the genes presented here. Advantageously, these family members may be useful in the methods of some embodiments of the invention. Example of other plants include, but not limited to, barley (Hordeum vulgare). Arabidopsis (Arabidopsis thaliana), maize (Zea mays), cotton (Gossypium), Oilseed rape (Brassica napus), Rice (Oryza sativa), Sugar cane (Saccharum officinarum), Sorghum (Sorghum bicolor), Soybean (Glycine max), Sunflower (Helianthus annuus), Tomato (Lycopersicon esculentum) and Wheat (Triticum aestivum).
  • The above-mentioned analyses for sequence homology is preferably carried out on a full-length sequence, but may also be based on a comparison of certain regions such as conserved domains. The identification of such domains, would also be well within the realm of the person skilled in the art and would involve, for example, a computer readable format of the nucleic acids of some embodiments of the invention, the use of alignment software programs and the use of publicly available information on protein domains, conserved motifs and boxes. This information is available in the PRODOM (Hypertext Transfer Protocol://World Wide Web (dot) biochem (dot) ucl (dot) ac (dot) uk/bsm/dbbrowser/protocol/prodomqry (dot) html), PIR (Hypertext Transfer Protocol://pir (dot) Georgetown (dot) edu/) or Pfam (Hypertext Transfer Protocol://World Wide Web (dot) sanger (dot) ac (dot) uk/Software/Pfam/) database. Sequence analysis programs designed for motif searching may be used for identification of fragments, regions and conserved domains as mentioned above. Preferred computer programs include, but are not limited to, MEME, SIGNALSCAN, and GENESCAN.
  • A person skilled in the art may use the homologous sequences provided herein to find similar sequences in other species and other organisms. Homologues of a protein encompass, peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. To produce such homologues, amino acids of the protein may be replaced by other amino acids having similar properties (conservative changes, such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break α-helical structures or 3-sheet structures). Conservative substitution Tables are well known in the art [see for example Creighton (1984) Proteins, W.H. Freeman and Company]. Homologues of a nucleic acid encompass nucleic acids having nucleotide substitutions, deletions and/or insertions relative to the unmodified nucleic acid in question and having similar biological and functional activity as the unmodified nucleic acid from which they are derived.
  • Polynucleotides and polypeptides with significant homology to the identified genes described in Table 1 (Example 1 above) were identified from the databases using BLAST™ software using the BLASTP™ and TBLASTN™ algorithms. The query polypeptide sequences were SEQ ID NOs: 470-716 (which are encoded by the polynucleotides SEQ ID NOs:1-265, shown in Table 1 above) and SEQ ID NOs:717-784 (which are encoded by the cloned genes SEQ ID NOs:266-469, shown in Table 68 (Example 13, below) and the identified homologous sequences are provided in Table 2, below.
  • TABLE 2
    Homologues of the identified genes/polypeptides for increasing nitrogen use efficiency,
    fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield,
    fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant
    Hom.
    Polyn. Polyp. to
    SEQ Hom. to SEQ SEQ %
    ID Gene ID ID global
    NO: Name cluster name NO: NO: identity Algor.
    785 LNU290 leymus|gb166|EG374697_P1 2398 470 89.8 globlastp
    786 LNU290 wheat|10v2|BE499260_P1 2399 470 81 globlastp
    787 LNU290 barley|10v2|BF624085_P1 2400 470 80.8 globlastp
    788 LNU290 oat|10v2|GR316625_P1 2401 470 80.2 globlastp
    789 LNU291 maize|gb170|CF035629 471 471 100 globlastp
    790 LNU291 sugarcane|10v1|GFXAE009947X12 471 471 100 globlastp
    791 LNU291 maize|10v1|EG151714_P1 2402 471 98.5 globlastp
    792 LNU291 maize|gb170|CRPZM2N041615 2402 471 98.5 globlastp
    793 LNU291 maize|10v1|DW738796_P1 2403 471 98 globlastp
    794 LNU291 maize|gb170|DW809324 2403 471 98 globlastp
    795 LNU291 rice|gb170|OS04G16738 2404 471 97.01 glotblastn
    796 LNU291 rice|gb170|OSP1G00360 2405 471 97 globlastp
    797 LNU291 wheat|10v2|GFXWHTCPPSBGX1_T1 471 96.02 glotblastn
    798 LNU291 barley|10v1|BJ463973 2406 471 95.52 glotblastn
    799 LNU291 barley|10v2|BJ463973_P1 2407 471 95.5 globlastp
    800 LNU291 brachypodium|09v1|GFXEU325680X11_P1 2408 471 95.5 globlastp
    801 LNU291 brachypodium|09v1|CRPBD014715_T1 2409 471 94.53 glotblastn
    802 LNU291 lolium|10v1|GFXAM777385X11_T1 2410 471 94.03 glotblastn
    803 LNU291 maize|10v1|DW746358_P1 2411 471 90 globlastp
    804 LNU291 maize|gb170|CRPZM2N041741 2411 471 90 globlastp
    805 LNU291 maize|10v1|DW898492_P1 2412 471 85.1 globlastp
    806 LNU291 maize|gb170|CRPZM2N087668 2412 471 85.1 globlastp
    807 LNU291 banana|10v1|GFXEU017022X1_P1 2413 471 84.1 globlastp
    807 LNU302 banana|10v1|GFXEU017022X1_P1 2413 482 86.1 globlastp
    808 LNU291 poppy|gb166|FE967418_T1 2414 471 80.6 glotblastn
    808 LNU302 poppy|gb166|FE967418_T1 2414 482 91.04 glotblastn
    809 LNU291 arabidopsis_lyrata|09v1|JGIAL006450_P1 2415 471 80.1 globlastp
    809 LNU302 arabidopsis_lyrata|09v1|JGIAL006450_P1 2415 482 88.1 globlastp
    810 LNU292 maize|10v1|AI855230_T1 2416 472 93.33 glotblastn
    811 LNU292 maize|gb170|AI855230 2417 472 93.3 globlastp
    812 LNU292 maize|10v1|AI629623_P1 2418 472 89.8 globlastp
    813 LNU292 millet|10v1|EVO454PM068054_P1 2419 472 83.7 globlastp
    814 LNU295 solanum_phureja|09v1|SPHAA824887 2420 475 97.7 globlastp
    815 LNU295 eggplant|10v1|FS032066_P1 2421 475 95 globlastp
    816 LNU295 petunia|gb171|CV300743_P1 2422 475 94.6 globlastp
    817 LNU295 nicotiana_benthamiana|gb162| 2423 475 94.1 globlastp
    EH366260_P1
    818 LNU295 pepper|gb171|AF082717_P1 2424 475 94.1 globlastp
    819 LNU295 aquilegia|10v1|DR939800 2425 475 86.4 globlastp
    820 LNU295 aquilegia|10v2|DR939800_P1 2425 475 86.4 globlastp
    821 LNU295 coffea|10v1|CF588912_P1 2426 475 85.5 globlastp
    822 LNU295 onion|gb162|CF450542_P1 2427 475 84.6 globlastp
    823 LNU295 kiwi|gb166|FG406602_P1 2428 475 82.8 globlastp
    824 LNU295 papaya|gb165|EX249843_P1 2429 475 82.8 globlastp
    825 LNU295 citrus|gb166|CD575353_P1 2430 475 82.4 globlastp
    826 LNU295 apple|gb171|CN493682_P1 2431 475 81.9 globlastp
    827 LNU295 oak|10v1|FP026569_P1 2432 475 81 globlastp
    828 LNU295 cleome_spinosa|10v1|GR935187_P1 2433 475 81 globlastp
    829 LNU295 ipomoea_nil|10v1|BJ553751_P1 2434 475 80.6 globlastp
    830 LNU295 peanut|10v1|CD037840_P1 2435 475 80.5 globlastp
    830 LNU299 peanut|10v1|CD037840_P1 2435 479 80.1 globlastp
    831 LNU295 avocado|10v1|CK754477_P1 2436 475 80.5 globlastp
    832 LNU295 nasturtium|10v1|SRR032558S0015258_P1 2437 475 80.5 globlastp
    833 LNU295 peanut|gb171|CD037840 2435 475 80.5 globlastp
    833 LNU299 peanut|gb171|CD037840 2435 479 80.1 globlastp
    834 LNU295 prunus|10v1|CB823956_P1 2438 475 80.1 globlastp
    834 LNU299 prunus|10v1|CB823956_P1 2438 479 80.5 globlastp
    835 LNU295 b_rapa|gb162|CX272134_P1 2439 475 80.1 globlastp
    836 LNU295 cotton|10v1|AI726608 2440 475 80.1 globlastp
    837 LNU295 cotton|10v2|BE053131_P1 2441 475 80.1 globlastp
    838 LNU295 thellungiella|gb167|BY803571 2442 475 80.1 globlastp
    839 LNU295 prunus|gb167|CB823956 2438 475 80.1 globlastp
    839 LNU299 prunus|gb167|CB823956 2438 479 80.5 globlastp
    840 LNU295 grape|gb160|BM436999_T1 2443 475 80.09 glotblastn
    841 LNU298 wheat|gb164|BF483176 2444 478 91.8 globlastp
    842 LNU298 wheat|10v2|CA678180_P1 2445 478 89.2 globlastp
    843 LNU298 wheat|gb164|BE500660 2445 478 89.2 globlastp
    844 LNU298 barley|10v1|AV832797 2446 478 85.9 globlastp
    845 LNU298 barley|10v2|AV832797_P1 2446 478 85.9 globlastp
    846 LNU299 sorghum|09v1|SB03G006050 2447 479 97.3 globlastp
    847 LNU299 sugarcane|10v1|BQ535654 2448 479 95.9 globlastp
    848 LNU299 foxtail_millet|10v2|SICRP019205_P1 2449 479 90.5 globlastp
    849 LNU299 rice|gb170|OS04G20280 2450 479 88.2 globlastp
    850 LNU299 cenchrus|gb166|EB654614_P1 2451 479 87.4 globlastp
    851 LNU299 cynodon|10v1|ES292284_P1 2452 479 86.4 globlastp
    852 LNU299 rice|gb170|OS01G05694 2453 479 86 globlastp
    853 LNU299 millet|10v1|EVO454PM008366_P1 2454 479 85.1 globlastp
    854 LNU299 brachypodium|09v1|GT782155_P1 2455 479 83.8 globlastp
    855 LNU299 switchgrass|gb167|DN148482 2456 479 83.71 glotblastn
    856 LNU299 switchgrass|gb167|DN152162 2457 479 83.3 globlastp
    857 LNU299 wheat|gb164|BE404513 2458 479 82.4 globlastp
    858 LNU299 wheat|10v2|BE404513_P1 2458 479 82.4 globlastp
    859 LNU299 wheat|gb164|BF203016 2459 479 82.4 globlastp
    860 LNU299 pseudoroegneria|gb167|FF352036 2460 479 81.9 globlastp
    861 LNU299 wheat|gb164|BE414418 2461 479 81 globlastp
    862 LNU299 wheat|10v2|BE414418_P1 2461 479 81 globlastp
    863 LNU299 barley|10v2|AJ461592_P1 2462 479 80.5 globlastp
    864 LNU299 lovegrass|gb167|EH184276_P1 2463 479 80.5 globlastp
    865 LNU300 maize|10v1|T18817_P1 2464 480 98.5 globlastp
    866 LNU300 sorghum|09v1|SB09G004320_P1 2465 480 98.3 globlastp
    867 LNU300 sugarcane|10v1|CA065017_P1 2466 480 98.3 globlastp
    868 LNU300 foxtail_millet|10v2|OXEC612314T1_P1 2467 480 95.1 globlastp
    869 LNU300 millet|10v1|CD725150_P1 2468 480 93.8 globlastp
    870 LNU300 switchgrass|gb167|FE621296_P1 2469 480 90.4 globlastp
    871 LNU300 rice|gb170|OS05G06350_P1 2470 480 89.9 globlastp
    872 LNU300 brachypodium|09v1|DV470466_P1 2471 480 89.1 globlastp
    873 LNU300 barley|10v2|BE413102_P1 2472 480 88.8 globlastp
    874 LNU300 wheat|10v2|BE400103_P1 2473 480 88.6 globlastp
    875 LNU300 oat|10v2|CN815116_P1 2474 480 88 globlastp
    876 LNU300 cassava|09v1|JGICASSAVA12817VALIDM1_P1 2475 480 82.7 globlastp
    877 LNU300 cassava|09v1|DV441758_P1 2476 480 82 globlastp
    878 LNU300 cacao|10v1|CU476740_P1 2477 480 81.4 globlastp
    879 LNU300 centaurea|gb166|EH712147_P1 2478 480 81.4 globlastp
    880 LNU300 castorbean|09v1|XM002512439_P1 2479 480 81.1 globlastp
    881 LNU300 sequoia|10v1|SRR065044S0000578_P1 2480 480 81.1 globlastp
    882 LNU300 eucalyptus|11v1|CD668810_P1 2481 480 81 globlastp
    883 LNU300 podocarpus|10v1|SRR065014S0001157_P1 2482 480 80.9 globlastp
    884 LNU300 aristolochia|10v1|SRR039082S0002761_P1 2483 480 80.7 globlastp
    885 LNU300 cotton|10v2|CO071731_P1 2484 480 80.6 globlastp
    886 LNU300 melon|10v1|DV631718_P1 2485 480 80.6 globlastp
    887 LNU300 poplar|10v1|BI070314_P1 2486 480 80.6 globlastp
    888 LNU300 abies|11v1|SRR098676X100270_P1 2487 480 80.5 globlastp
    889 LNU300 pine|10v2|AA556627_P1 2488 480 80.5 globlastp
    890 LNU300 taxus|10v1|SRR032523S0008792_T1 2489 480 80.34 glotblastn
    891 LNU300 aquilegia|10v2|DR928227_P1 2490 480 80.2 globlastp
    892 LNU300 cucumber|09v1|DN909459_P1 2491 480 80.2 globlastp
    893 LNU300 poplar|10v1|AI165556_P1 2492 480 80.2 globlastp
    894 LNU300 lettuce|10v1|DW046351_T1 2493 480 80.19 glotblastn
    895 LNU300 eucalyptus|11v1|CD668073_P1 2494 480 80.1 globlastp
    896 LNU300 melon|10v1|AM728431_P1 2495 480 80.1 globlastp
    897 LNU300 spurge|gb161|BI961995_P1 2496 480 80.1 globlastp
    898 LNU300 pseudotsuga|10v1|SRR065119S0006823_P1 2497 480 80 globlastp
    899 LNU300 soybean|11v1|GLYMA10G29000_P1 2498 480 80 globlastp
    900 LNU300 soybean|11v1|GLYMA17G03430_P1 2499 480 80 globlastp
    901 LNU300 soybean|11v1|GLYMA20G38320_P1 2500 480 80 globlastp
    902 LNU300 spruce|gb162|CO216885_P1 2501 480 80 globlastp
    903 LNU301 maize|gb170|LLBE049863 2502 481 93.02 glotblastn
    904 LNU301 sugarcane|10v1|BQ533050 2503 481 92.3 globlastp
    905 LNU301 switchgrass|gb167|FL742623 2504 481 92.2 globlastp
    906 LNU301 sorghum|09v1|SB06G026660 2505 481 90.8 globlastp
    907 LNU301 switchgrass|gb167|FL879708 2506 481 90.6 globlastp
    908 LNU301 foxtail_millet|10v2|SICRP008244_P1 2507 481 88.4 globlastp
    909 LNU301 millet|10v1|EVO454PM138026_P1 2508 481 87.5 globlastp
    910 LNU301 cenchrus|gb166|EB660401_P1 2509 481 86.8 globlastp
    911 LNU302 solanum_phureja|09v1|SPHBG126319 2510 482 99.5 globlastp
    912 LNU302 solanum_phureja|09v1|SPHAW216568 2511 482 98.5 globlastp
    913 LNU302 guizotia|10v1|GE556119_T1 2512 482 95.02 glotblastn
    914 LNU302 coffea|10v1|GFXEF044213X12_P1 2513 482 95 globlastp
    915 LNU302 tragopogon|10v1|SRR020205S0004258 2514 482 94.5 globlastp
    916 LNU302 parthenium|10v1|GFXGU120098X5_P1 2515 482 94 globlastp
    917 LNU302 lettuce|10v1|GFXAP007232X13_P1 2516 482 94 globlastp
    918 LNU302 artemisia|10v1|SRR019254S0016920_T1 2517 482 93.53 glotblastn
    919 LNU302 sunflower|gb162|CD854704 2518 482 93.5 globlastp
    920 LNU302 sunflower|10v1|CD854108_P1 2518 482 93.5 globlastp
    921 LNU302 cassava|09v1|GFXEU117376X11_P1 2519 482 93 globlastp
    922 LNU302 dandelion|10v1|DR400271_T1 2520 482 92.54 glotblastn
    923 LNU302 castorbean|09v1|SRR020784S0000611_P1 2521 482 92 globlastp
    924 LNU302 ginseng|10v1|GFXAY582139X12_P1 2522 482 92 globlastp
    925 LNU302 prunus|gb167|AJ873078 2523 482 91.5 globlastp
    926 LNU302 potato|10v1|BQ116812_P1 2524 482 91 globlastp
    927 LNU302 oak|10v1|GFXGQ998723X1_T1 482 90.59 glotblastn
    928 LNU302 peanut|10v1|EG030533_T1 2525 482 90.55 glotblastn
    929 LNU302 oak|gb170|SRR006307S0026883 2526 482 90.1 globlastp
    930 LNU302 grape|gb160|BM437168_T1 2527 482 90.05 glotblastn
    931 LNU302 lotus|09v1|CRPLJ002102_T1 2528 482 90.05 glotblastn
    932 LNU302 walnuts|gb166|EL892734 2529 482 90.05 glotblastn
    933 LNU302 cotton|10v2|GFXAP009123X10_T1 482 90.05 glotblastn
    934 LNU302 cotton|10v1|GFXAP009123X11 2530 482 90 globlastp
    935 LNU302 grape|gb160|CD717918_P1 2531 482 90 globlastp
    936 LNU302 lotus|09v1|CRPKJ004552_P1 2532 482 90 globlastp
    937 LNU302 medicago|09v1|BI271493_P1 2533 482 90 globlastp
    938 LNU302 lotus|09v1|CRPLJ033270_P1 2534 482 89.6 globlastp
    939 LNU302 oak|10v1|GFXAF132888X1_T1 482 89.6 glotblastn
    940 LNU302 medicago|09v1|CRPMT030772_T1 2535 482 89.55 glotblastn
    941 LNU302 canola|10v1|H07661_T1 2536 482 89.05 glotblastn
    942 LNU302 citrus|gb166|BQ624493_T1 2537 482 89.05 glotblastn
    943 LNU302 radish|gb164|EV526475 2538 482 89.05 glotblastn
    944 LNU302 acacia|10v1|FS585044_T1 482 88.67 glotblastn
    945 LNU302 arabidopsis_lyrata|09v1|JGIAL006381_T1 2539 482 88.56 glotblastn
    946 LNU302 arabidopsis|10v1|ATCG00380_P1 2540 482 88.1 globlastp
    947 LNU302 strawberry|11v1|SRR034865S0051981_T1 2541 482 88.06 glotblastn
    948 LNU302 aristolochia|10v1|GFXAF528920X1_T1 482 88.06 glotblastn
    949 LNU302 pigeonpea|10v1|GW346536XX1_P1 2542 482 87.1 globlastp
    950 LNU302 avocado|10v1|CK766348_P1 2543 482 87.1 globlastp
    951 LNU302 castorbean|09v1|CRPRC006998_T1 2544 482 87.06 glotblastn
    952 LNU302 soybean|gb168|BE940860 2545 482 87.06 glotblastn
    953 LNU302 amborella|gb166|CD482397_P1 2546 482 86.1 globlastp
    954 LNU302 lotus|09v1|CRPLJ009646_P1 2547 482 85.2 globlastp
    955 LNU302 orobanche|10v1|GFXAJ007723X1_P1 2548 482 84.7 globlastp
    956 LNU302 bean|gb167|CA903466_P1 2549 482 84.1 globlastp
    957 LNU302 pigeonpea|10v1|SRR054580S0061346_T1 2550 482 84.08 glotblastn
    958 LNU302 soybean|11v1|CRPGM014792_T1 2551 482 83.58 glotblastn
    959 LNU302 soybean|gb168|GD329396 2551 482 83.58 glotblastn
    960 LNU302 sunflower|gb162|CD854693 2552 482 83.17 glotblastn
    961 LNU302 iceplant|gb164|CA834888_P1 2553 482 82.8 globlastp
    962 LNU302 zostera|10v1|AM768670_P1 2554 482 82.1 globlastp
    963 LNU302 lotus|09v1|CRPLJ011938_P1 2555 482 82.1 globlastp
    964 LNU302 nuphar|gb166|FD384632_P1 2556 482 81.6 globlastp
    965 LNU302 lotus|09v1|CRPLJ040445_T1 2557 482 81.09 glotblastn
    966 LNU302 solanum_phureja|09v1|SPHCRPSP004055 2558 482 80.6 glotblastn
    967 LNU302 b_oleracea|gb161|DY019834_T1 2559 482 80.1 glotblastn
    968 LNU303 sugarcane|10v1|CA076623 2560 483 96.3 globlastp
    969 LNU303 maize|gb170|LLAF055471 2561 483 92 globlastp
    970 LNU303 maize|10v1|CB280860_P1 2562 483 88 globlastp
    971 LNU303 millet|10v1|EVO454PM042955_P1 2563 483 85.8 globlastp
    972 LNU303 foxtail_millet|10v2|EC613241_P1 2564 483 82.9 globlastp
    973 LNU304 switchgrass|gb167|FE613746 2565 484 85.4 globlastp
    974 LNU304 foxtail_millet|10v2|SICRP021546_P1 2566 484 84.4 globlastp
    975 LNU304 millet|10v1|EVO454PM063553_P1 2567 484 83.3 globlastp
    976 LNU304 millet|09v1|EVO454PM063553 2567 484 83.3 globlastp
    977 LNU304 sorghum|09v1|SB10G020830 2568 484 83.2 globlastp
    978 LNU304 sugarcane|10v1|BQ533360 2569 484 83.2 globlastp
    979 LNU304 cenchrus|gb166|BM084119_P1 2570 484 82.3 globlastp
    980 LNU304 maize|gb170|LLBM335916 2571 484 82.3 globlastp
    981 LNU304 maize|gb170|LLAI855177 2572 484 82.1 globlastp
    982 LNU304 wheat|10v2|BG604828_P1 2573 484 81.1 globlastp
    983 LNU304 wheat|gb164|BG604828 2573 484 81.1 globlastp
    984 LNU304 cynodon|10v1|ES294050_P1 2574 484 80.6 globlastp
    985 LNU304 maize|10v1|BM501421_P1 2575 484 80 globlastp
    986 LNU304 maize|gb170|BM501421 2576 484 80 globlastp
    987 LNU304 wheat|10v2|BF478734_P1 2577 484 80 globlastp
    988 LNU304 wheat|gb164|BF478734 2577 484 80 globlastp
    989 LNU304 wheat|10v2|CA620694_P1 2577 484 80 globlastp
    990 LNU304 wheat|gb164|CA620694 2577 484 80 globlastp
    991 LNU305 wheat|10v2|BE429958_P1 2578 485 90.5 globlastp
    992 LNU305 wheat|gb164|BE429958 2579 485 89.8 globlastp
    993 LNU305 pseudoroegneria|gb167|FF355165 2580 485 87.5 globlastp
    994 LNU305 leymus|gb166|EG401835_P1 2581 485 80.4 globlastp
    995 LNU306 arabidopsis_lyrata|09v1|JGIAL008724_P1 2582 486 95 globlastp
    996 LNU306 radish|gb164|EV545889 2583 486 83.4 globlastp
    997 LNU306 canola|10v1|EV004258_P1 2584 486 82.5 globlastp
    998 LNU307 sorghum|09v1|SB04G000775 2585 487 81.46 glotblastn
    999 LNU308 arabidopsis_lyrata|09v1|JGIAL011758_P1 2586 488 97.9 globlastp
    1000 LNU308 thellungiella|gb167|BY803273 2587 488 91.6 globlastp
    1001 LNU308 radish|gb164|EX749633 2588 488 91.1 globlastp
    1002 LNU308 radish|gb164|EX750313 2589 488 91.1 globlastp
    1003 LNU308 canola|10v1|CD822987_P1 2590 488 88.9 globlastp
    1004 LNU308 b_oleracea|gb161|DY030174_P1 2591 488 88.4 globlastp
    1005 LNU308 canola|10v1|EE465545_P1 2591 488 88.4 globlastp
    1006 LNU308 cleome_spinosa|10v1|GR931012_P1 2592 488 84.7 globlastp
    1007 LNU309 sorghum|09v1|SB03G036080 2593 489 85.6 glotblastn
    1007 LNU930_H3 sorghum|09v1|SB03G036080 2593 676 92.3 globlastp
    1008 LNU309 foxtail_millet|10v2|SICRP027522_T1 2594 489 83.12 glotblastn
    1008 LNU309_H3 foxtail_millet|10v2|SICRP027522_T1 2594 715 85.71 glotblastn
    1009 LNU309 brachypodium|09v1|DV479613_T1 2595 489 80.03 glotblastn
    1009 LNU309_H3 brachypodium|09v1|DV479613_T1 2595 715 84.76 glotblastn
    1010 LNU311 sugarcane|10v1|CA183153 2596 491 80.95 glotblastn
    1011 LNU315 pseudoroegneria|gb167|FF344590 2597 494 98.1 globlastp
    1012 LNU315 wheat|gb164|BE604654 2598 494 97.5 globlastp
    1013 LNU315 foxtail_millet|10v2|FXTSLX00113403D1_P1 2599 494 96.2 globlastp
    1014 LNU315 wheat|10v2|CA598385_P1 2600 494 95.6 globlastp
    1015 LNU315 wheat|10v2|CJ898820_P1 2601 494 94.9 globlastp
    1016 LNU315 wheat|gb164|BE606227 2601 494 94.9 globlastp
    1017 LNU315 barley|10v1|BE420626 2602 494 91.9 globlastp
    1018 LNU315 barley|10v2|BE420626_P1 2602 494 91.9 globlastp
    1019 LNU315 wheat|10v2|DR735055_T1 2603 494 87.97 glotblastn
    1020 LNU315 wheat|gb164|DR735055 2603 494 87.97 glotblastn
    1021 LNU317 sorghum|09v1|SB09G020280 2604 496 85.8 globlastp
    1022 LNU318 wheat|10v2|BE406534_P1 2605 497 97.6 globlastp
    1023 LNU318 wheat|gb164|BE406534 2605 497 97.6 globlastp
    1024 LNU318 leymus|gb166|EG378119_P1 2606 497 95.9 globlastp
    1025 LNU318 wheat|10v2|CA602663_P1 2607 497 94.3 globlastp
    1026 LNU318 wheat|gb164|CA602663 2607 497 94.3 globlastp
    1027 LNU318 barley|10v1|BE412753 2608 497 92.7 globlastp
    1028 LNU318 barley|10v2|BE412753_P1 2608 497 92.7 globlastp
    1029 LNU318 oat|10v1|GO587598 2609 497 86.2 globlastp
    1030 LNU318 oat|10v2|GR319951_P1 2610 497 85.4 globlastp
    1031 LNU318 oat|10v2|GR332951_P1 2611 497 84.7 globlastp
    1032 LNU318 oat|10v1|GR319951 2611 497 84.7 globlastp
    1033 LNU318 brachypodium|09v1|GT768729_P1 2612 497 82.1 globlastp
    1034 LNU319 sugarcane|10v1|CA070744 2613 498 97.7 globlastp
    1035 LNU319 switchgrass|gb167|FL790597 2614 498 94.2 globlastp
    1036 LNU319 maize|10v1|AW052987_P1 2615 498 93.1 globlastp
    1037 LNU319 switchgrass|gb167|FE614987 2616 498 93.1 globlastp
    1038 LNU319 millet|10v1|EVO454PM019765_P1 2617 498 90.8 globlastp
    1039 LNU319 rice|gb170|OS03G52730 2618 498 87.9 globlastp
    1040 LNU319 foxtail_millet|10v2|FXTRMSLX00487607D1_P1 2619 498 87.1 globlastp
    1041 LNU319 oat|10v2|SRR020741S0030408_P1 2620 498 85 globlastp
    1042 LNU319 oat|10v1|CN815589 2621 498 85 globlastp
    1043 LNU319 wheat|gb164|CA659883 2622 498 84.7 globlastp
    1044 LNU319 brachypodium|09v1|DV486914_P1 2623 498 83.8 globlastp
    1045 LNU319 wheat|gb164|BG312713 2624 498 83.5 globlastp
    1046 LNU319 wheat|gb164|CA697520 2625 498 83.5 globlastp
    1047 LNU319 wheat|10v2|BG312713_P1 2626 498 83.5 globlastp
    1048 LNU319 barley|10v2|BF621514_P1 2627 498 81.6 globlastp
    1049 LNU322 wheat|10v2|BE426358_P1 2628 499 95.2 globlastp
    1050 LNU322 wheat|gb164|BE426358 2628 499 95.2 globlastp
    1051 LNU322 wheat|10v2|BF293712_T1 2629 499 88.27 glotblastn
    1052 LNU322 oat|10v2|CN817938_P1 2630 499 82.6 globlastp
    1053 LNU322 oat|10v1|GR329806 2630 499 82.6 globlastp
    1054 LNU322 brachypodium|09v1|GT790865_P1 2631 499 81.9 globlastp
    1054 LNU420 brachypodium|09v1|GT790865_P1 2631 586 80.5 globlastp
    1055 LNU324 maize|10v1|BE122952_P1 2632 501 95.5 globlastp
    1056 LNU324 maize|gb170|BE122952 2632 501 95.5 globlastp
    1057 LNU324 maize|gb170|AI600531 2633 501 93.5 globlastp
    1058 LNU324 maize|10v1|AI600531_P1 2633 501 93.5 globlastp
    1059 LNU324 switchgrass|gb167|FE601004 2634 501 91 globlastp
    1060 LNU324 maize|gb170|LLAY104119 2635 501 88.98 glotblastn
    1061 LNU324 millet|10v1|CD726160_P1 2636 501 88.4 globlastp
    1062 LNU324 brachypodium|09v1|GT764807_P1 2637 501 87.1 globlastp
    1063 LNU324 oat|10v2|GR352457_P1 2638 501 86.8 globlastp
    1064 LNU324 wheat|10v2|BE429701_P1 2639 501 85.7 globlastp
    1065 LNU324 wheat|gb164|BE429701 2640 501 85.7 globlastp
    1066 LNU324 rice|gb170|OS12G37960 2641 501 85.4 globlastp
    1067 LNU324 barley|10v2|BF625656_P1 2642 501 85.1 globlastp
    1068 LNU324 leymus|gb166|EG374667_T1 2643 501 84.79 glotblastn
    1069 LNU324 pseudoroegneria|gb167|FF341068 2644 501 83.1 globlastp
    1070 LNU327 wheat|10v2|CV770918_P1 2645 503 97.1 globlastp
    1071 LNU327 barley|10v1|BG415996 2646 503 95.2 globlastp
    1072 LNU327 barley|10v2|BG415996_P1 2646 503 95.2 globlastp
    1073 LNU328 solanum_phureja|09v1|SPHBG128098 2647 504 89.6 globlastp
    1074 LNU330 solanum_phureja|09v1|SPHAW096846 2648 506 97.4 globlastp
    1075 LNU330 potato|10v1|AW096846_P1 2649 506 96.6 globlastp
    1076 LNU330 pepper|gb171|GD057272_P1 2650 506 81.1 globlastp
    1077 LNU330 tobacco|gb162|AM786444 2651 506 80.79 glotblastn
    1078 LNU331 solanum_phureja|09v1|SPHAW031707 2652 507 96.5 globlastp
    1079 LNU331 potato|10v1|BQ519367_P1 2653 507 95.9 globlastp
    1080 LNU332 sorghum|09v1|SB03G028460 2654 508 92.6 globlastp
    1081 LNU332 maize|gb170|AW231427 2655 508 90.8 globlastp
    1082 LNU332 maize|10v1|AW231427_P1 2656 508 90.6 globlastp
    1083 LNU332 rice|gb170|OS01G43580 2657 508 84.8 globlastp
    1084 LNU332 brachypodium|09v1|GT760062_T1 2658 508 81.44 glotblastn
    1085 LNU333 wheat|10v2|BE418424_P1 2659 509 94.6 globlastp
    1086 LNU333 wheat|gb164|BE418424 2659 509 94.6 globlastp
    1087 LNU333 wheat|10v2|BI751337_P1 2660 509 91.2 globlastp
    1088 LNU333 wheat|gb164|BI751337 2660 509 91.2 globlastp
    1089 LNU333 pseudoroegneria|gb167|FF342941 2661 509 89.1 globlastp
    1090 LNU333 barley|10v1|BF621665 2662 509 88.1 globlastp
    1091 LNU333 barley|10v2|BF621665_P1 2662 509 88.1 globlastp
    1092 LNU333 oat|10v2|GR329274_P1 2663 509 80.3 globlastp
    1093 LNU333 oat|10v1|GR329274 2663 509 80.3 globlastp
    1094 LNU335 wheat|gb164|BF483351 2664 510 97 globlastp
    1095 LNU335 barley|10v1|BI951100 2665 510 91.2 globlastp
    1096 LNU335 barley|10v2|BI951100_P1 2665 510 91.2 globlastp
    1097 LNU335 brachypodium|09v1|GT787495_P1 2666 510 83.5 globlastp
    1098 LNU335 wheat|10v2|BF202225_T1 2667 510 82.22 glotblastn
    1099 LNU336 solanum_phureja|09v1|SPHAI773791 2668 511 98.6 globlastp
    1100 LNU336 tobacco|gb162|AB003038 2669 511 95.2 globlastp
    1101 LNU337 cassava|09v1|JGICASSAVA31518VALIDM1_P1 2670 512 84.9 globlastp
    1102 LNU337 cacao|10v1|CU502884_P1 2671 512 83.4 globlastp
    1103 LNU337 castorbean|09v1|EG671098_P1 2672 512 83.4 globlastp
    1104 LNU337 clementine|11v1|CV885061_P1 2673 512 82.3 globlastp
    1105 LNU337 orange|11v1|CV885061_P1 2674 512 82.3 globlastp
    1106 LNU337 strawberry|11v1|EX671413_P1 2675 512 82 globlastp
    1107 LNU337 oak|10v1|DN949924_P1 2676 512 81.2 globlastp
    1108 LNU337 prunus|10v1|CN494497_P1 2677 512 81.2 globlastp
    1109 LNU337 cotton|10v2|SRR032368S0318405_P1 2678 512 80.2 globlastp
    1110 LNU337 cotton|10v1|CO105456 2679 512 80.1 globlastp
    1111 LNU337 poplar|10v1|CX170984_P1 2680 512 80 globlastp
    1112 LNU340 barley|10v1|AJ476977 2681 514 99.6 globlastp
    1113 LNU340 barley|10v2|AJ476977_P1 2681 514 99.6 globlastp
    1114 LNU340 oat|10v2|CN820997_P1 2682 514 92.1 globlastp
    1115 LNU340 brachypodium|09v1|GT772953_P1 2683 514 87.4 globlastp
    1116 LNU340 rice|gb170|OS12G02380 2684 514 82.2 globlastp
    1117 LNU340 rice|gb170|OS11G02450 2685 514 81.7 globlastp
    1118 LNU341 leymus|gb166|EG382663_P1 2686 515 88.2 globlastp
    1119 LNU342 potato|10v1|BI176929_P1 2687 516 94.3 globlastp
    1120 LNU342 solanum_phureja|09v1|SPHBG123334 2688 516 94 globlastp
    1121 LNU342 eggplant|10v1|FS005150_P1 2689 516 88.6 globlastp
    1122 LNU342 tobacco|gb162|DW000438 2690 516 85.8 globlastp
    1123 LNU342 pepper|gb171|BM064975_P1 2691 516 85.5 globlastp
    1124 LNU343 barley|10v2|BF624427_P1 2692 517 99.2 globlastp
    1125 LNU343 pseudoroegneria|gb167|FF354777 2693 517 98.5 globlastp
    1126 LNU343 wheat|10v2|SRR043332S0002679_P1 2694 517 97 globlastp
    1127 LNU343 wheat|gb164|AL822523 2694 517 97 globlastp
    1128 LNU343 oat|10v2|SRR020741S0012373_P1 2695 517 88 globlastp
    1129 LNU344 barley|10v1|AV922746 2696 518 97.1 globlastp
    1129 LNU347 barley|10v1|AV922746 2696 521 81.4 globlastp
    1130 LNU344 barley|10v1|BE437694 2696 518 97.1 globlastp
    1130 LNU347 barley|10v1|BE437694 2696 521 81.4 globlastp
    1131 LNU344 brachypodium|09v1|GT770285_P1 2696 518 97.1 globlastp
    1131 LNU347 brachypodium|09v1|GT770285_P1 2696 521 81.4 globlastp
    1132 LNU344 oat|10v1|SRR020741S0153418 2696 518 97.1 globlastp
    1132 LNU347 oat|10v1|SRR020741S0153418 2696 521 81.4 globlastp
    1133 LNU344 wheat|10v2|BE404009_P1 2696 518 97.1 globlastp
    1133 LNU347 wheat|10v2|BE404009_P1 2696 521 81.4 globlastp
    1134 LNU344 wheat|gb164|BE404009 2696 518 97.1 globlastp
    1134 LNU347 wheat|gb164|BE404009 2696 521 81.4 globlastp
    1135 LNU344 wheat|10v2|BE605093_P1 2696 518 97.1 globlastp
    1135 LNU347 wheat|10v2|BE605093_P1 2696 521 81.4 globlastp
    1136 LNU344 wheat|gb164|BE605093 2696 518 97.1 globlastp
    1136 LNU347 wheat|gb164|BE605093 2696 521 81.4 globlastp
    1137 LNU344 wheat|gb164|CA627002 2696 518 97.1 globlastp
    1137 LNU347 wheat|gb164|CA627002 2696 521 81.4 globlastp
    1138 LNU344 barley|10v2|BE437694_P1 2696 518 97.1 globlastp
    1138 LNU347 barley|10v2|BE437694_P1 2696 521 81.4 globlastp
    1139 LNU344 oat|10v2|GR334207_P1 2697 518 95.7 globlastp
    1139 LNU347 oat|10v2|GR334207_P1 2697 521 80 globlastp
    1140 LNU344 oat|10v1|GR334207 2697 518 95.7 globlastp
    1140 LNU347 oat|10v1|GR334207 2697 521 80 globlastp
    1141 LNU344 fescue|gb161|DT700305_P1 2698 518 94.2 globlastp
    1141 LNU347 fescue|gb161|DT700305_P1 2698 521 81.4 globlastp
    1142 LNU344 rye|gb164|BE637285 2699 518 91.3 glotblastn
    1143 LNU344 rice|gb170|OS05G01290 2700 518 87 globlastp
    1143 LNU347 rice|gb170|OS05G01290 2700 521 88.6 globlastp
    1144 LNU344 foxtail_millet|10v2|FXTSLX00736715D2_T1 2701 518 85.51 glotblastn
    1145 LNU344 cynodon|10v1|ES296145_P1 2702 518 84.3 globlastp
    1145 LNU347 cynodon|10v1|ES296145_P1 2702 521 87.1 globlastp
    1146 LNU344 foxtail_millet|10v2|FXTRMSLX00208339D1_P1 2703 518 81.4 globlastp
    1146 LNU347 foxtail_millet|10v2|FXTRMSLX00208339D1_P1 2703 521 88.6 globlastp
    1147 LNU345 wheat|gb164|BG604995 2704 519 95.7 globlastp
    1148 LNU345 wheat|10v2|BG604995_P1 2705 519 94.9 globlastp
    1149 LNU345 barley|10v1|BI954292 2706 519 92.2 globlastp
    1150 LNU345 barley|10v2|BI954292_P1 2706 519 92.2 globlastp
    1151 LNU345 pseudoroegneria|gb167|FF342688 2707 519 88.8 globlastp
    1152 LNU345 wheat|gb164|CA719534 2708 519 87.1 globlastp
    1153 LNU345 leymus|gb166|EG386923_T1 2709 519 82.64 glotblastn
    1154 LNU346 sugarcane|10v1|CA067223 2710 520 96.3 globlastp
    1155 LNU346 maize|10v1|AI676894_P1 2711 520 94.9 globlastp
    1156 LNU346 maize|gb170|LLAI676894 2711 520 94.9 globlastp
    1157 LNU346 maize|10v1|AI677358_P1 2712 520 92.5 globlastp
    1158 LNU346 maize|gb170|AI677358 2713 520 92.5 globlastp
    1159 LNU346 foxtail_millet|10v2|SICRP019925_P1 2714 520 91.2 globlastp
    1160 LNU346 millet|10v1|EVO454PM028709_P1 2715 520 90.4 globlastp
    1161 LNU346 switchgrass|gb167|FE610979 2716 520 90.1 globlastp
    1162 LNU346 rice|gb170|OS05G46230 2717 520 85.9 globlastp
    1163 LNU346 brachypodium|09v1|GT773225_P1 2718 520 84.6 globlastp
    1164 LNU346 oat|10v2|GO586894_P1 2719 520 82.9 globlastp
    1165 LNU346 oat|10v1|GO586894 2719 520 82.9 globlastp
    1166 LNU346 wheat|10v2|BQ238470_P1 2720 520 82.8 globlastp
    1167 LNU346 wheat|gb164|BE400556 2720 520 82.8 globlastp
    1168 LNU346 leymus|gb166|EG381704_P1 2721 520 82.1 globlastp
    1169 LNU346 wheat|gb164|BQ238470 2722 520 80.64 glotblastn
    1170 LNU346 millet|09v1|CD726327 2723 520 80 glotblastn
    1171 LNU347 maize|gb170|LLFL008896 2724 521 92.9 globlastp
    1172 LNU347 maize|gb170|BG836075 2725 521 91.4 globlastp
    1173 LNU347 maize|10v1|BG836075_P1 2725 521 91.4 globlastp
    1174 LNU347 millet|09v1|EVO454PM007718 2726 521 84.3 globlastp
    1175 LNU347 millet|10v1|EVO454PM007718_P1 2726 521 84.3 globlastp
    1176 LNU347 switchgrass|gb167|FL737420 2727 521 82.86 glotblastn
    1177 LNU348 sugarcane|10v1|CA103796 2728 522 87.9 globlastp
    1178 LNU348 maize|10v1|EU942853_P1 2729 522 85.6 globlastp
    1179 LNU348 maize|gb170|EU942853 2729 522 85.6 globlastp
    1180 LNU348 sorghum|09v1|SB03G009900 2730 522 85.5 globlastp
    1181 LNU348 foxtail_millet|10v2|SICRP040741_P1 2731 522 82.4 globlastp
    1182 LNU348 millet|10v1|PMSLX0001425D2_P1 2732 522 81 globlastp
    1183 LNU349 bean|gb167|BQ481480_P1 2733 523 96 globlastp
    1184 LNU349 soybean|11v1|GLYMA15G06990_P1 2734 523 96 globlastp
    1185 LNU349 soybean|gb168|AW687261 2734 523 96 globlastp
    1186 LNU349 pigeonpea|10v1|SRR054580S0126664_P1 2735 523 93.8 globlastp
    1187 LNU349 cowpea|gb166|FF395146_P1 2736 523 93 globlastp
    1188 LNU349 liquorice|gb171|FS268558_P1 2737 523 83.4 globlastp
    1189 LNU349 peanut|10v1|GO260668_P1 2738 523 83.2 globlastp
    1190 LNU349 peanut|gb171|ES752840 2739 523 83.2 globlastp
    1191 LNU349 lotus|09v1|LLBW601593_P1 2740 523 81.2 globlastp
    1192 LNU351 barley|10v1|BI948837 2741 525 98 globlastp
    1193 LNU351 barley|10v2|BI948837_P1 2741 525 98 globlastp
    1194 LNU351 wheat|10v2|BE419429_P1 2742 525 97.2 globlastp
    1195 LNU351 wheat|gb164|BE419429 2742 525 97.2 globlastp
    1196 LNU351 oat|10v2|CN818075_P1 2743 525 95.7 globlastp
    1197 LNU351 oat|10v1|CN818075 2743 525 95.7 globlastp
    1198 LNU351 fescue|gb161|DT694710_P1 2744 525 94.6 globlastp
    1199 LNU351 brachypodium|09v1|DV473443_P1 2745 525 92.2 globlastp
    1200 LNU351 cynodon|10v1|ES299286_P1 2746 525 90.7 globlastp
    1201 LNU351 millet|10v1|EVO454PM006850_P1 2747 525 89.9 globlastp
    1201 LNU424 millet|10v1|EVO454PM006850_T1 2747 590 80.24 glotblastn
    1202 LNU351 foxtail_millet|10v2|OXFXTSLX00031185D1T1_P1 2748 525 89.5 globlastp
    1203 LNU351 sugarcane|10v1|CA119908 2749 525 89.5 globlastp
    1203 LNU424 sugarcane|10v1|CA119908 2749 590 81.03 glotblastn
    1204 LNU351 switchgrass|gb167|FL735769 2750 525 89.1 globlastp
    1205 LNU351 sorghum|09v1|SB01G003100 2751 525 88.7 globlastp
    1206 LNU351 cenchrus|gb166|EB657417_P1 2752 525 88.3 globlastp
    1207 LNU351 pseudoroegneria|gb167|FF361410 2753 525 88.2 globlastp
    1208 LNU351 rice|gb170|OS03G60740 2754 525 87.9 globlastp
    1209 LNU351 wheat|gb164|BE425410 2755 525 87.6 globlastp
    1210 LNU351 maize|10v1|AA979757_P1 2756 525 87.5 globlastp
    1211 LNU351 maize|gb170|AA979757 2756 525 87.5 globlastp
    1212 LNU351 millet|09v1|EVO0454PM006850 2757 525 86.6 globlastp
    1213 LNU351 switchgrass|gb167|DN145627 2758 525 85.6 globlastp
    1214 LNU351 melon|10v1|AM724047_P1 2759 525 85.5 globlastp
    1214 LNU424 melon|10v1|AM724047_P1 2759 590 81.6 globlastp
    1215 LNU351 pigeonpea|10v1|GW351947_P1 2760 525 85.1 globlastp
    1216 LNU351 cucumber|09v1|CV004115_P1 2761 525 84.8 globlastp
    1216 LNU424 cucumber|09v1|CV004115_P1 2761 590 81.2 globlastp
    1217 LNU351 cassava|09v1|DV444815_P1 2762 525 83.5 globlastp
    1218 LNU351 lotus|09v1|LLBI419507_P1 2763 525 83.1 globlastp
    1219 LNU351 medicago|09v1|LLAL374329_P1 2764 525 83.1 globlastp
    1220 LNU351 peanut|10v1|EE125913_P1 2765 525 82.7 globlastp
    1221 LNU351 peanut|10v1|ES703043_P1 2766 525 82.7 globlastp
    1222 LNU351 pepper|gb171|BM061311_P1 2767 525 82.7 globlastp
    1222 LNU424 pepper|gb171|BM061311_P1 2767 590 80.8 globlastp
    1223 LNU351 melon|gb165|AM724047 2768 525 82.68 glotblastn
    1224 LNU351 ginger|gb164|DY345448_P1 2769 525 82.4 globlastp
    1225 LNU351 peanut|gb171|EC365304 2770 525 82.4 globlastp
    1226 LNU351 chestnut|gb170|SRR006295S0003362_P1 2771 525 82.4 globlastp
    1226 LNU424 chestnut|gb170|SRR006295S0003362_P1 2771 590 80.8 globlastp
    1227 LNU351 potato|10v1|BE921048_P1 2772 525 82.4 globlastp
    1227 LNU424 potato|10v1|BE921048_P1 2772 590 80 globlastp
    1228 LNU351 solanum_phureja|09v1|SPHAI484349 2772 525 82.4 globlastp
    1228 LNU424 solanum_phureja|09v1|SPHAI484349 2772 590 80 globlastp
    1229 LNU351 cleome_gynandra|10v1|SRR015532S0006049_T1 2773 525 82.28 glotblastn
    1229 LNU424 cleome_gynandra|10v1|SRR015532S0006049_T1 2773 590 80.63 glotblastn
    1230 LNU351 cleome_spinosa|10v1|SRR015531S0002685_T1 2774 525 82.28 glotblastn
    1230 LNU424 cleome_spinosa|10v1|SRR015531S0002685_T1 2774 590 80.63 glotblastn
    1231 LNU351 eggplant|10v1|FS009160_P1 2775 525 82 globlastp
    1232 LNU351 sunflower|10v1|DY916239_P1 2776 525 82 globlastp
    1233 LNU351 sunflower|gb162|DY916239 2776 525 82 globlastp
    1234 LNU351 eucalyptus|11v1|CD669334_P1 2777 525 82 globlastp
    1235 LNU351 cassava|09v1|CK644785_P1 2778 525 82 globlastp
    1235 LNU424 cassava|09v1|CK644785_P1 2778 590 81.6 globlastp
    1236 LNU351 aristolochia|10v1|SRR039082S0026666_P1 2779 525 81.6 globlastp
    1237 LNU351 artemisia|10v1|EY044641_P1 2780 525 81.6 globlastp
    1238 LNU351 eucalyptus|gb166|CD669334 2781 525 81.6 globlastp
    1239 LNU351 oak|10v1|CU657816_P1 2782 525 81.6 globlastp
    1240 LNU351 oak|gb170|CU657816 2783 525 81.6 globlastp
    1240 LNU424 oak|gb170|CU657816 2783 590 80.4 globlastp
    1241 LNU351 canola|10v1|BQ704593_T1 2784 525 81.57 glotblastn
    1242 LNU351 petunia|gb171|CV296541_T1 2785 525 81.57 glotblastn
    1243 LNU351 radish|gb164|EV535078 2786 525 81.57 glotblastn
    1244 LNU351 cowpea|gb166|FF382538_P1 2787 525 81.2 globlastp
    1245 LNU351 tomato|09v1|BG130491 2788 525 81.2 globlastp
    1246 LNU351 nasturtium|10v1|GH170446_P1 2789 525 81.2 globlastp
    1246 LNU424 nasturtium|10v1|GH170446_P1 2789 590 81.6 globlastp
    1247 LNU351 b_rapa|gb162|CA991656_T1 2790 525 81.18 glotblastn
    1248 LNU351 clementine|11v1|BQ623383_T1 2791 525 81.1 glotblastn
    1248 LNU424 clementine|11v1|BQ623383_T1 2791 590 81.03 glotblastn
    1249 LNU351 cleome_spinosa|10v1|SRR015531S0011482_P1 2792 525 81.1 globlastp
    1249 LNU424 cleome_spinosa|10v1|SRR015531S0011482_P1 2792 590 87 globlastp
    1250 LNU351 cotton|10v1|AI727053 2793 525 81.1 globlastp
    1250 LNU424 cotton|10v1|AI727053 2793 590 80.2 globlastp
    1251 LNU351 cotton|10v2|BF276321_T1 2794 525 81.1 glotblastn
    1251 LNU424 cotton|10v2|BF276321_T1 2794 590 80.63 glotblastn
    1252 LNU351 tobacco|gb162|DV162696 2795 525 80.8 globlastp
    1253 LNU351 centaurea|gb166|EH725206_P1 2796 525 80.8 globlastp
    1253 LNU424 centaurea|gb166|EH725206_P1 2796 590 80 globlastp
    1254 LNU351 cichorium|gb171|DT212712_P1 2797 525 80.8 globlastp
    1254 LNU424 cichorium|gb171|DT212712_P1 2797 590 80.4 globlastp
    1255 LNU351 canola|10v1|CB686246_T1 2798 525 80.78 glotblastn
    1256 LNU351 aquilegia|10v1|DR918778 2799 525 80.71 glotblastn
    1257 LNU351 aquilegia|10v2|DR918778_T1 2800 525 80.71 glotblastn
    1258 LNU351 poplar|10v1|BU867914_T1 2801 525 80.71 glotblastn
    1259 LNU351 citrus|gb166|BQ623383_T1 2802 525 80.71 glotblastn
    1259 LNU424 citrus|gb166|BQ623383_T1 2802 590 80.63 glotblastn
    1260 LNU351 prunus|10v1|CB821110_P1 2803 525 80.4 globlastp
    1260 LNU424 Prunus|10v1|CB821110_P1 2803 590 80.4 globlastp
    1261 LNU351 castorbean|09v1|EE255183_P1 2804 525 80.4 globlastp
    1261 LNU424 castorbean|09v1|EE255183_P1 2804 590 80 globlastp
    1262 LNU351 tragopogon|10v1|SRR020205S0033542 2805 525 80.4 globlastp
    1262 LNU424 tragopogon|10v1|SRR020205S0033542 2805 590 80.24 glotblastn
    1263 LNU351 orange|11v1|BQ623383_T1 2806 525 80.31 glotblastn
    1263 LNU424 orange|11v1|BQ623383_T1 2806 590 80.24 glotblastn
    1264 LNU351 soybean|11v1|GLYMA07G15960_P1 2807 525 80.3 globlastp
    1265 LNU351 soybean|gb168|AW349893 2807 525 80.3 globlastp
    1266 LNU351 radish|gb164|EV548023 2808 525 80.3 globlastp
    1266 LNU424 radish|gb164|EV548023 2808 590 94.5 globlastp
    1267 LNU351 artemisia|10v1|SRR019254S0015151_P1 2809 525 80 globlastp
    1268 LNU351 avocado|10v1|CK756872_T1 2810 525 80 glotblastn
    1269 LNU351 b_juncea|gb164|EVGN00219108490673 2811 525 80 glotblastn
    1270 LNU351 cowpea|gb166|FC458138_P1 2812 525 80 globlastp
    1271 LNU351 tea|10v1|CV014405 2813 525 80 glotblastn
    1272 LNU351 apple|gb171|CN494974_P1 2814 525 80 globlastp
    1272 LNU424 apple|gb171|CN494974_P1 2814 590 80 globlastp
    1273 LNU351 coffea|10v1|DV673538_T1 2815 525 80 glotblastn
    1273 LNU424 coffea|10v1|DV673538_T1 2815 590 80.39 glotblastn
    1274 LNU351 nasturtium|10v1|SRR032558S0065877_P1 2816 525 80 globlastp
    1274 LNU424 nasturtium|10v1|SRR032558S0065877_P1 2816 590 80.8 globlastp
    1275 LNU351 prunus|gb167|CB821110 2817 525 80 globlastp
    1275 LNU424 prunus|gb167|CB821110 2817 590 80 globlastp
    1276 LNU352 wheat|gb164|BE352575 2818 526 99.5 globlastp
    1277 LNU352 wheat|gb164|CA647188 2819 526 99.3 globlastp
    1278 LNU352 barley|10v1|BI947860 2820 526 98.6 globlastp
    1279 LNU352 barley|10v2|BI947860_P1 2820 526 98.6 globlastp
    1280 LNU352 brachypodium|09v1|DV477609_P1 2821 526 93.1 globlastp
    1281 LNU352 rice|gb170|OS07G04690 2822 526 90.5 globlastp
    1282 LNU352 cenchrus|gb166|BM084107_P1 2823 526 89.6 globlastp
    1283 LNU352 switchgrass|gb167|DN143189 2824 526 89.6 globlastp
    1284 LNU352 millet|10v1|EVO454PM016009_P1 2825 526 89.1 globlastp
    1285 LNU352 sugarcane|10v1|CA096470 2826 526 86.5 globlastp
    1286 LNU352 sorghum|09v1|SB02G002660 2827 526 86 globlastp
    1287 LNU352 fescue|gb161|DT699878_T1 2828 526 80.33 glotblastn
    1288 LNU353 brachypodium|09v1|GT820624_T1 2829 527 82.27 glotblastn
    1289 LNU353 rice|gb170|OS09G26870_P1 2830 527 80.4 globlastp
    1290 LNU354 barley|10v1|BE060054 2831 528 91.3 globlastp
    1291 LNU354 barley|10v2|BE060054_P1 2831 528 91.3 globlastp
    1292 LNU354 wheat|10v2|CK212438_P1 2832 528 89.9 globlastp
    1293 LNU354 wheat|gb164|CK212438 2833 528 89.86 glotblastn
    1294 LNU354 wheat|gb164|BG314359 2834 528 84.9 globlastp
    1295 LNU354 wheat|10v2|BE518059_P1 2835 528 84.1 globlastp
    1296 LNU354 wheat|10v2|BE426361_P1 2836 528 83.6 globlastp
    1297 LNU354 wheat|gb164|BE426361 2836 528 83.6 globlastp
    1298 LNU354 wheat|gb164|BE518059 2837 528 82.6 globlastp
    1299 LNU354 barley|10v1|BJ449982 2838 528 80.3 globlastp
    1300 LNU354 barley|10v2|BJ449982_P1 2838 528 80.3 globlastp
    1301 LNU355 wheat|gb164|BE426518 2839 529 97.1 globlastp
    1302 LNU355 wheat|gb164|BF200864 2840 529 96.8 globlastp
    1303 LNU355 pseudoroegneria|gb167|FF340622 2841 529 96.1 globlastp
    1304 LNU355 leymus|gb166|EG375848_P1 2842 529 95.1 globlastp
    1305 LNU355 barley|10v1|BF628570 2843 529 92.9 globlastp
    1306 LNU355 barley|10v2|BF628570_P1 2843 529 92.9 globlastp
    1307 LNU355 rice|gb170|OS05G38230 2844 529 83 globlastp
    1308 LNU355 cynodon|10v1|ES295926_T1 2845 529 81.35 glotblastn
    1309 LNU355 sorghum|09v1|SB09G022370 2846 529 80.39 glotblastn
    1310 LNU356 solanum_phureja|09v1|SPHBG631091 2847 530 93.6 globlastp
    1311 LNU356 pepper|gb171|GD057444_P1 2848 530 86 globlastp
    1312 LNU357 solanum_phureja|09v1|SPHAI775669 2849 531 98.6 globlastp
    1313 LNU357 potato|10v1|BM112538_P1 2850 531 98.3 globlastp
    1314 LNU357 pepper|gb171|BM064560_P1 2851 531 91 globlastp
    1315 LNU357 eggplant|10v1|FS005730_P1 2852 531 90.7 globlastp
    1316 LNU357 tobacco|gb162|CV018003 2853 531 88.6 globlastp
    1317 LNU357 potato|10v1|BG350748_P1 2854 531 87.2 globlastp
    1318 LNU357 solanum_phureja|09v1|SPHAF225512 2854 531 87.2 globlastp
    1319 LNU357 tomato|09v1|AF225512 2855 531 87.2 globlastp
    1320 LNU357 petunia|gb171|CV294419_P1 2856 531 86.5 globlastp
    1321 LNU357 tobacco|gb162|EB445511 2857 531 83.4 globlastp
    1322 LNU357 triphysaria|10v1|BE574853 2858 531 83.4 globlastp
    1323 LNU357 triphysaria|10v1|EY165458 2859 531 83 globlastp
    1324 LNU357 ipomoea_nil|10v1|BJ555173_P1 2860 531 82.4 globlastp
    1325 LNU357 orobanche|10v1|SRR023189S0021630_P1 2861 531 82.4 globlastp
    1326 LNU357 monkeyflower|10v1|CV521906_P1 2862 531 80.6 globlastp
    1327 LNU359 sorghum|09v1|SB03G007230 2863 532 96.2 globlastp
    1328 LNU359 millet|10v1|EB410926_T1 2864 532 90.72 glotblastn
    1329 LNU359 rice|gb170|OS01G03950 2865 532 87.6 globlastp
    1330 LNU359 wheat|10v2|BI480386_P1 2866 532 82.6 globlastp
    1331 LNU359 brachypodium|09v1|DV474090_P1 2867 532 82.5 globlastp
    1332 LNU359 barley|10v1|BQ469878 2868 532 81.6 globlastp
    1333 LNU359 barley|10v2|BQ469878_T1 2869 532 81.45 glotblastn
    1334 LNU360 sugarcane|10v1|CA118302 2870 533 94.1 globlastp
    1335 LNU360 sorghum|09v1|SB10G006380 2871 533 90.9 globlastp
    1336 LNU360 foxtail_millet|10v2|SICRP000016_P1 2872 533 87.7 globlastp
    1337 LNU360 cynodon|10v1|ES302376_P1 2873 533 85.3 globlastp
    1338 LNU360 leymus|gb166|EG385922_P1 2874 533 84.2 globlastp
    1339 LNU360 oat|10v2|GR320403_P1 2875 533 83.8 globlastp
    1340 LNU360 oat|10v1|GR320403 2875 533 83.8 globlastp
    1341 LNU360 fescue|gb161|DT681344_P1 2876 533 82.9 globlastp
    1342 LNU360 brachypodium|09v1|GT772421_P1 2877 533 80.9 globlastp
    1343 LNU361 sorghum|09v1|SB04G025150 2878 534 92.2 globlastp
    1344 LNU368 wheat|gb164|BE400257 2879 541 92 globlastp
    1345 LNU369 brachypodium|09v1|GT787733_P1 2880 542 93.4 globlastp
    1346 LNU369 leymus|gb166|EG389109_P1 2881 542 90.1 globlastp
    1347 LNU369 rice|gb170|OS01G70100 2882 542 89.3 globlastp
    1348 LNU369 millet|10v1|EVO454PM068764_P1 2883 542 89.1 globlastp
    1349 LNU369 switchgrass|gb167|FE654078 2884 542 88.8 globlastp
    1350 LNU369 brachypodium|09v1|TMPLEG389109T1_P1 2885 542 88.7 globlastp
    1351 LNU369 maize|gb170|AI621555 2886 542 88.2 globlastp
    1352 LNU369 maize|10v1|AI621555_P1 2886 542 88.2 globlastp
    1353 LNU369 maize|10v1|AW308727_P1 2887 542 85.7 globlastp
    1354 LNU369 maize|gb170|AW308727 2887 542 85.7 globlastp
    1355 LNU370 potato|10v1|BG591992_P1 2888 543 99 globlastp
    1356 LNU370 solanum_phureja|09v1|SPHAI772811 2889 543 99 globlastp
    1357 LNU370 eggplant|10v1|FS023252_P1 2890 543 91.6 globlastp
    1358 LNU370 petunia|gb171|FN005093_T1 2891 543 81.65 glotblastn
    1359 LNU371 sorghum|09v1|SB03G041730 2892 544 88.12 glotblastn
    1360 LNU373 sorghum|09v1|SB10G026090 2893 546 85.9 globlastp
    1361 LNU373 maize|10v1|CD936590_P1 2894 546 85.5 globlastp
    1362 LNU373 maize|gb170|CD936590 2895 546 85.41 glotblastn
    1363 LNU373 brachypodium|09v1|DV483814_P1 2896 546 85.1 globlastp
    1364 LNU373 foxtail_millet|10v2|SICRP003144_T1 2897 546 84.65 glotblastn
    1365 LNU373 millet|10v1|EVO454PM064645_P1 2898 546 80.1 globlastp
    1366 LNU375 solanum_phureja|09v1|SPHBG125016 2899 548 95 globlastp
    1367 LNU375 potato|10v1|BF459523_P1 2900 548 94.4 globlastp
    1368 LNU375 pepper|gb171|AA840787_P1 2901 548 92.2 globlastp
    1369 LNU375 eggplant|10v1|FS016985_P1 2902 548 90 globlastp
    1370 LNU375 nicotiana_benthamiana|gb162| 2903 548 87 globlastp
    CK280835_P1
    1371 LNU376 sorghum|09v1|SB03G037440 2904 549 85.5 globlastp
    1372 LNU378 brachypodium|09v1|SRR031797S0001956_P1 2905 551 89 globlastp
    1373 LNU379 sugarcane|10v1|CA080471 2906 552 99 globlastp
    1374 LNU379 maize|10v1|CD440138_P1 2907 552 93.4 globlastp
    1375 LNU379 maize|gb170|CD440138 2907 552 93.4 globlastp
    1376 LNU379 millet|09v1|CD725143 2908 552 92.4 globlastp
    1377 LNU379 millet|10v1|CD725143_P1 2908 552 92.4 globlastp
    1378 LNU379 foxtail_millet|10v2|SICRP004364_P1 2909 552 92 globlastp
    1379 LNU379 cenchrus|gb166|EB659921_P1 2910 552 92 globlastp
    1380 LNU379 sugarcane|10v1|CA070722 2911 552 85.5 globlastp
    1381 LNU379 switchgrass|gb167|FE598481 2912 552 85.5 globlastp
    1382 LNU379 foxtail_millet|10v2|OXFXTSLX00041407D1T1_P1 2913 552 85.1 globlastp
    1383 LNU379 maize|10v1|AI712016_P1 2914 552 85.1 globlastp
    1384 LNU379 maize|gb170|AI712016 2914 552 85.1 globlastp
    1385 LNU379 millet|10v1|CD724799_P1 2915 552 84.8 globlastp
    1386 LNU379 millet|09v1|CD724799 2916 552 83.4 globlastp
    1387 LNU379 leymus|gb166|CD808758_P1 2917 552 83 globlastp
    1388 LNU379 wheat|10v2|BE404550_P1 2918 552 82.7 globlastp
    1389 LNU379 wheat|gb164|BE404550 2918 552 82.7 globlastp
    1390 LNU379 barley|10v1|BE413350 2919 552 82.4 globlastp
    1391 LNU379 barley|10v2|BE413350_P1 2919 552 82.4 globlastp
    1392 LNU379 brachypodium|09v1|DV474291_P1 2920 552 82 globlastp
    1393 LNU379 rice|gb170|OS08G18110 2921 552 82 globlastp
    1394 LNU379 oat|10v2|GO589632_P1 2922 552 80.6 globlastp
    1395 LNU379 oat|10v1|GO589632 2922 552 80.6 globlastp
    1396 LNU381 wheat|10v2|CA485868_P1 554 554 100 globlastp
    1396 LNU381 wheat|gb164|CA485868 2927 554 80.2 globlastp
    1397 LNU381 sugarcane|10v1|CA282730 2923 554 91.09 glotblastn
    1398 LNU381 maize|10v1|CO533611_P1 2924 554 87.1 globlastp
    1399 LNU381 maize|gb170|CO533611 2924 554 87.1 globlastp
    1400 LNU381 millet|10v1|PMSLX0058175D2_P1 2925 554 84.5 globlastp
    1401 LNU381 cenchrus|gb166|EB662230_P1 2926 554 84.2 globlastp
    1402 LNU382 arabidopsis_lyrata|09v1|JGIAL006288_P1 2928 555 90.5 globlastp
    1403 LNU383 solanum_phureja|09v1|SPHBG123484 2929 556 94.5 globlastp
    1404 LNU385 sorghum|09v1|SB03G014370 2930 558 88 globlastp
    1405 LNU385 brachypodium|09v1|DV471590_P1 2931 558 86.9 globlastp
    1406 LNU385 barley|10v2|AW983394_P1 2932 558 84.9 globlastp
    1407 LNU385 wheat|10v2|BE497298_P1 2933 558 84.6 globlastp
    1408 LNU385 wheat|gb164|BE497298 2934 558 82.8 globlastp
    1409 LNU385 barley|10v1|AW983394 2935 558 82.49 glotblastn
    1410 LNU387 maize|10v1|BG518113_P1 2936 560 93.7 globlastp
    1411 LNU387 maize|gb170|BG518113 2936 560 93.7 globlastp
    1412 LNU387 maize|10v1|AI600775_P1 2937 560 92.3 globlastp
    1413 LNU387 maize|gb170|AI600775 2937 560 92.3 globlastp
    1414 LNU387 rice|gb170|OS09G38420 2938 560 86.7 globlastp
    1415 LNU387 brachypodium|09v1|GT768177_P1 2939 560 82.6 globlastp
    1416 LNU388 brachypodium|09v1|GT785236_P1 2940 561 80.2 globlastp
    1417 LNU390 solanum_phureja|09v1|SPHBG125049 2941 562 88.7 globlastp
    1418 LNU390 solanum_phureja|09v1|SPHSRR015435S0020890 2942 562 80.2 globlastp
    1419 LNU391 wheat|10v2|BE499752_P1 2943 563 98.6 globlastp
    1420 LNU391 wheat|gb164|BE499752 2944 563 97.8 globlastp
    1421 LNU391 brachypodium|09v1|DV481377_P1 2945 563 93.5 globlastp
    1422 LNU391 fescue|gb161|DT686577_P1 2946 563 92.6 globlastp
    1423 LNU391 sorghum|09v1|SB01G032340 2947 563 84.1 globlastp
    1424 LNU391 rice|gb170|OS03G30790 2948 563 83.96 glotblastn
    1425 LNU391 maize|10v1|AW054498_P1 2949 563 83.3 globlastp
    1426 LNU391 maize|gb170|AW054498 2949 563 83.3 globlastp
    1427 LNU391 sugarcane|10v1|CA121549 2950 563 82.7 globlastp
    1428 LNU391 switchgrass|gb167|FL697122 2951 563 82.7 globlastp
    1429 LNU391 maize|10v1|AW288496_P1 2952 563 82.5 globlastp
    1430 LNU391 millet|10v1|EVO454PM001107_P1 2953 563 81.4 globlastp
    1431 LNU392 brachypodium|09v1|GT773267_P1 2954 564 85.1 globlastp
    1431 LNU417_H4 brachypodium|09v1|GT773267_P1 2954 677 80 globlastp
    1431 LNU417 brachypodium|09v1|GT773267_T1 2954 702 89.04 glotblastn
    1432 LNU392 maize|10v1|BM078460_P1 2955 564 83.8 globlastp
    1432 LNU417_H4 maize|10v1|BM078460_P1 2955 677 82.6 globlastp
    1432 LNU417 maize|10v1|BM078460_T1 2955 702 84.97 glotblastn
    1433 LNU392 sorghum|09v1|SB01G043030 2956 564 83 globlastp
    1433 LNU417_H4 sorghum|09v1|SB01G043030 2956 677 86.3 globlastp
    1433 LNU417 sorghum|09v1|SB01G043030 2956 702 87.12 glotblastn
    1434 LNU392 millet|10v1|EVO454PM040968_P1 2957 564 82.3 globlastp
    1434 LNU417_H4 millet|10v1|EVO454PM040968_P1 2957 677 82.8 globlastp
    1434 LNU417 millet|10v1|EVO454PM040968_T1 2957 702 84.43 glotblastn
    1435 LNU392 maize|gb170|BM078460 2958 564 80.3 globlastp
    1435 LNU417_H4 maize|gb170|BM078460 2958 677 80.97 glotblastn
    1435 LNU417 maize|gb170|BM078460 2958 702 84.97 glotblastn
    1436 LNU393 maize|10v1|EB166150_T1 2959 565 85.24 glotblastn
    1437 LNU393 maize|gb170|EB166150 2959 565 85.24 glotblastn
    1438 LNU395 maize|10v1|EU972999_P1 2960 566 85.6 globlastp
    1439 LNU395 maize|gb170|EU972999 2961 566 83.2 globlastp
    1440 LNU396 maize|10v1|AI670204_P1 2962 567 99.1 globlastp
    1441 LNU396 foxtail_millet|10v2|SICRP011369_P1 2963 567 97.2 globlastp
    1442 LNU396 sugarcane|10v1|CA075971 2964 567 96.3 globlastp
    1443 LNU396 switchgrass|gb167|DN151549 2965 567 96.3 globlastp
    1444 LNU396 millet|09v1|CD725448 2966 567 95.4 globlastp
    1445 LNU396 millet|10v1|CD725448_P1 2966 567 95.4 globlastp
    1446 LNU396 switchgrass|gb167|DN144669 2967 567 92.7 globlastp
    1447 LNU396 cenchrus|gb166|EB666773_P1 2968 567 92.6 globlastp
    1448 LNU396 fescue|gb161|DT674442_P1 2969 567 87.4 globlastp
    1449 LNU396 oat|10v2|CN815301_P1 2970 567 87.2 globlastp
    1450 LNU396 brachypodium|09v1|DV486678_P1 2971 567 86.5 globlastp
    1451 LNU396 rice|gb170|OS03G03770 2972 567 86.4 globlastp
    1452 LNU396 wheat|10v2|BG314370_P1 2973 567 84.7 globlastp
    1453 LNU396 barley|10v1|BE411304 2974 567 84.7 globlastp
    1454 LNU396 barley|10v2|BE411304_P1 2974 567 84.7 globlastp
    1455 LNU396 pseudoroegneria|gb167|FF358290 2975 567 84.7 globlastp
    1456 LNU396 wheat|gb164|BE404919 2973 567 84.7 globlastp
    1457 LNU396 wheat|gb164|BE405061 2973 567 84.7 globlastp
    1458 LNU396 wheat|gb164|BG909911 2976 567 83.8 globlastp
    1459 LNU397 switchgrass|gb167|DN142167 2977 568 87.6 globlastp
    1460 LNU397 foxtail_millet|10v2|SICRP040427_P1 2978 568 87.3 globlastp
    1461 LNU401 sugarcane|10v1|CA068996_P1 2979 570 93.7 globlastp
    1462 LNU401 maize|10v1|AI396373_T1 2980 570 84.44 glotblastn
    1463 LNU401 maize|10v1|DR792581_P1 2981 570 83.4 globlastp
    1464 LNU402 pseudoroegneria|gb167|FF345540 2982 571 98.7 globlastp
    1465 LNU402 brachypodium|09v1|SRR031798S0004329_P1 2983 571 83.5 globlastp
    1466 LNU403 maize|10v1|AI920392_T1 2984 572 87.96 glotblastn
    1467 LNU403 maize|10v1|BI417041_T1 2985 572 85.45 glotblastn
    1468 LNU403 maize|gb170|BI417041 2985 572 85.45 glotblastn
    1469 LNU403 switchgrass|gb167|DN145126 2986 572 82.41 glotblastn
    1470 LNU403 sugarcane|10v1|CA071352 2987 572 82.21 glotblastn
    1471 LNU403 maize|10v1|DR823873_T1 2988 572 82.04 glotblastn
    1472 LNU403 switchgrass|gb167|DN141486 2989 572 80.56 glotblastn
    1473 LNU405 potato|10v1|CK260581_T1 2990 573 86.18 glotblastn
    1474 LNU408 fescue|gb161|DT685544_T1 2991 575 91.07 glotblastn
    1475 LNU408 wheat|gb164|BE399717 2992 575 89.3 globlastp
    1476 LNU408 wheat|gb164|BQ170889 2992 575 89.3 globlastp
    1477 LNU408 wheat|10v2|BF485415_T1 2993 575 89.29 glotblastn
    1478 LNU408 wheat|10v2|BE399717_T1 2994 575 89.29 glotblastn
    1479 LNU408 wheat|10v2|BE414880_T1 2995 575 89.29 glotblastn
    1480 LNU408 wheat|gb164|BE414880 2996 575 89.29 glotblastn
    1481 LNU408 oat|10v2|SRR020741S0174434_P1 2997 575 87.5 globlastp
    1482 LNU408 oat|10v1|GO587069 2997 575 87.5 globlastp
    1483 LNU408 oat|10v2|GO587069_T1 2998 575 85.71 glotblastn
    1484 LNU408 brachypodium|09v1|DV470560_P1 2999 575 80.4 globlastp
    1485 LNU408 rye|gb164|BF145769 3000 575 80.36 glotblastn
    1486 LNU408 wheat|gb164|DR737280 3001 575 80.36 glotblastn
    1487 LNU410 brachypodium|09v1|DV473415_T1 3002 577 84.65 glotblastn
    1488 LNU410 oat|10v2|GR329792_T1 3003 577 82.61 glotblastn
    1489 LNU411 solanum_phureja|09v1|SPHBI207068 3004 578 96.1 globlastp
    1490 LNU412 cacao|10v1|CU619568_P1 3005 579 86.1 globlastp
    1491 LNU413 solanum_phureja|09v1|SPHBG126757 3006 580 97.7 globlastp
    1492 LNU413 pepper|gb171|BM063553_T1 3007 580 82.64 glotblastn
    1493 LNU414 brachypodium|09v1|SRR031795S0008555_P1 3008 581 88 globlastp
    1494 LNU414 barley|10v2|BE413415_P1 3009 581 87.8 globlastp
    1495 LNU414 rice|gb170|OS02G56310 3010 581 80.1 globlastp
    1496 LNU415 maize|10v1|AI391766_P1 3011 582 87.5 globlastp
    1497 LNU415 maize|gb170|AI391766 3011 582 87.5 globlastp
    1498 LNU415 foxtail_millet|10v2|SICRP012424_P1 3012 582 83.5 globlastp
    1499 LNU419 cacao|10v1|CA795077_P1 3013 585 83.5 globlastp
    1500 LNU419 chestnut|gb170|SRR006295S0002815_P1 3014 585 81.7 globlastp
    1501 LNU419 strawberry|11v1|DY666645_P1 3015 585 81.6 globlastp
    1502 LNU419 medicago|09v1|AI974351_P1 3016 585 81 globlastp
    1503 LNU419 pea|11v1|CD858805_P1 3017 585 80.4 globlastp
    1504 LNU420 wheat|10v2|CA484146_P1 586 586 100 globlastp
    1505 LNU420 wheat|gb164|CA484146 586 586 100 globlastp
    1506 LNU420 sugarcane|10v1|CA075634 3018 586 97.6 globlastp
    1507 LNU420 maize|10v1|AW562562_P1 3019 586 90.3 globlastp
    1508 LNU420 maize|gb170|AW562562 3019 586 90.3 globlastp
    1509 LNU420 switchgrass|gb167|FE618444 3020 586 86.6 globlastp
    1510 LNU420 millet|10v1|PMSLX0017470D1_P1 3021 586 86.1 globlastp
    1511 LNU420 foxtail_millet|10v2|SICRP015318_P1 3022 586 83.5 globlastp
    1512 LNU422 maize|10v1|AW067318_P1 3023 588 89.1 globlastp
    1513 LNU422 maize|gb170|AW067318 3023 588 89.1 globlastp
    1514 LNU422 millet|10v1|EVO454PM057489_P1 3024 588 87.4 globlastp
    1515 LNU422 switchgrass|gb167|FL823704 3025 588 87.4 globlastp
    1516 LNU422 barley|10v1|BF621668 3026 588 84.1 globlastp
    1517 LNU422 barley|10v2|BF621668_P1 3026 588 84.1 globlastp
    1518 LNU422 wheat|10v2|BE426240_P1 3027 588 84.1 globlastp
    1519 LNU422 wheat|gb164|BE426240 3027 588 84.1 globlastp
    1520 LNU422 leymus|gb166|EG392745_P1 3028 588 83.3 globlastp
    1521 LNU422 wheat|10v2|BE518320_P1 3029 588 83.2 globlastp
    1522 LNU422 wheat|gb164|BE518320 3030 588 82.8 globlastp
    1523 LNU422 brachypodium|09v1|DV473145_P1 3031 588 81.9 globlastp
    1524 LNU422 rice|gb170|OS08G04450 3032 588 80.8 globlastp
    1525 LNU423 maize|10v1|BE128849_P1 3033 589 87.6 globlastp
    1526 LNU423 maize|gb170|BE128849 3034 589 87.6 globlastp
    1527 LNU423 millet|10v1|EVO454PM020049_P1 3035 589 81.3 globlastp
    1528 LNU424 arabidopsis_lyrata|09v1|JGIAL019853_P1 3036 590 97.6 globlastp
    1529 LNU424 radish|gb164|EW734440 3037 590 95.3 globlastp
    1530 LNU424 radish|gb164|EW723032 3038 590 94.9 globlastp
    1531 LNU424 thellungiella|gb167|BY808370 3039 590 94.9 globlastp
    1532 LNU424 radish|gb164|EV524742 3040 590 94.5 globlastp
    1533 LNU424 b_juncea|10v2|E6ANDIZ01A8BJU_P1 3041 590 94.5 globlastp
    1534 LNU424 radish|gb164|EW733020 3042 590 94.1 globlastp
    1535 LNU424 b_oleracea|gb161|AM059842_P1 3043 590 93.7 globlastp
    1536 LNU424 b_rapa|gb162|CV545782_P1 3044 590 93.3 globlastp
    1537 LNU424 canola|10v1|CD817789_P1 3045 590 92.9 globlastp
    1538 LNU424 b_juncea|10v2|BJ1SLX00005485_P1 3046 590 89.7 globlastp
    1539 LNU424 cleome_gynandra|10v1|SRR015532S0005578_P1 3047 590 84.6 globlastp
    1540 LNU424 radish|gb164|EV539241 3048 590 82.6 globlastp
    1541 LNU424 b_juncea|gb164|EVGN00823111331395 3049 590 81 globlastp
    1542 LNU424 thellungiella|gb167|BY801711 3050 590 80.63 glotblastn
    1543 LNU424 senecio|gb170|DY660615 3051 590 80.24 glotblastn
    1544 LNU425 wheat|10v2|BE415800_P1 3052 591 97.9 globlastp
    1545 LNU425 wheat|gb164|CA701400 3052 591 97.9 globlastp
    1546 LNU425 brachypodium|09v1|SRR031797S0133764_P1 3053 591 89.7 globlastp
    1547 LNU425 wheat|gb164|BE415800 3054 591 85.7 globlastp
    1548 LNU426 cenchrus|gb166|EB657129_P1 3055 592 81.5 globlastp
    1549 LNU426 sugarcane|10v1|CA096527 3056 592 80.7 globlastp
    1550 LNU426 brachypodium|09v1|DV472433_P1 3057 592 80.5 globlastp
    1551 LNU426 switchgrass|gb167|DN147719 3058 592 80.3 globlastp
    1552 LNU426 foxtail_millet|10v2|SICRP009618_P1 3059 592 80.1 globlastp
    1553 LNU426 maize|10v1|CD996749_P1 3060 592 80 globlastp
    1554 LNU426 barley|10v1|BF065562 3061 592 80 glotblastn
    1555 LNU426 barley|10v2|BF065562_T1 3061 592 80 glotblastn
    1556 LNU429 solanum_phureja|09v1|SPHBG124215 3062 594 89.1 globlastp
    1557 LNU429 potato|10v1|BF460297_P1 3063 594 82.8 globlastp
    1558 LNU429 potato|10v1|BE922360_P1 3064 594 81.3 globlastp
    1559 LNU430 potato|10v1|BF154026_P1 3065 595 90.8 globlastp
    1560 LNU430 solanum_phureja|09v1|SPHBG134528 3066 595 89.7 globlastp
    1561 LNU431 maize|10v1|AW331095_T1 3067 596 82.95 glotblastn
    1561 LNU431_H1 maize|10v1|AW331095_T1 3067 716 87.11 glotblastn
    1562 LNU432 switchgrass|gb167|FL911295 3068 597 80.3 globlastp
    1563 LNU433 maize|10v1|EC858802_P1 3069 598 82.2 globlastp
    1564 LNU433 maize|gb170|EC858802 3069 598 82.2 globlastp
    1565 LNU434 maize|10v1|AI372108_P1 3070 599 83.7 globlastp
    1566 LNU435 wheat|gb164|BE400160 3071 600 96.6 globlastp
    1567 LNU435 wheat|10v2|BQ579132_P1 3072 600 96.6 globlastp
    1568 LNU435 wheat|gb164|BQ579132 3072 600 96.6 globlastp
    1569 LNU435 wheat|gb164|BI751574 3073 600 96.2 globlastp
    1570 LNU435 wheat|10v2|BE400160_P1 3073 600 96.2 globlastp
    1571 LNU435 brachypodium|09v1|DV473618_P1 3074 600 84.7 globlastp
    1572 LNU436 barley|10v1|BE413139 3075 601 96.3 globlastp
    1573 LNU436 barley|10v2|BE413139_P1 3075 601 96.3 globlastp
    1574 LNU436 wheat|10v2|BE418697_P1 3076 601 94.7 globlastp
    1575 LNU436 wheat|gb164|BE418697 3076 601 94.7 globlastp
    1576 LNU437 wheat|10v2|BM136523XX1_P1 3077 602 93.7 globlastp
    1577 LNU437 wheat|10v2|BM136523XX2_T1 3078 602 90.4 glotblastn
    1578 LNU437 brachypodium|09v1|DV485772_T1 3079 602 88.25 glotblastn
    1578 LNU437_H2 brachypodium|09v1|DV485772_P1 3079 679 82.2 globlastp
    1579 LNU437 maize|10v1|CD960306_T1 3080 602 86.26 glotblastn
    1579 LNU437_H2 maize|10v1|CD960306_P1 3080 679 82.4 globlastp
    1580 LNU437 wheat|gb164|BF293149 3081 602 86.2 globlastp
    1581 LNU437 maize|10v1|AI902127_T1 3082 602 85.43 glotblastn
    1581 LNU437_H2 maize|10v1|AI902127_P1 3082 679 81.9 globlastp
    1582 LNU437 wheat|10v2|BF293149_T1 3083 602 82.78 glotblastn
    1583 LNU437 sorghum|09v1|SB01G000220 3084 602 82.18 glotblastn
    1584 LNU437 maize|gb170|CD960306 3085 602 81.62 glotblastn
    1585 LNU437 maize|10v1|DW838041_T1 3086 602 81.52 glotblastn
    1586 LNU437 maize|gb170|AI902127 3087 602 80.79 glotblastn
    1587 LNU437 maize|gb170|DW838041 3088 602 80.79 glotblastn
    1588 LNU437 rice|gb170|OS07G33780 3089 602 80.17 glotblastn
    1589 LNU438 wheat|10v2|BE416560_P1 3090 603 98.3 globlastp
    1590 LNU438 wheat|gb164|BE416560 3090 603 98.3 globlastp
    1591 LNU438 brachypodium|09v1|GT783610_P1 3091 603 96.2 globlastp
    1592 LNU438 sorghum|09v1|SB10G022490 3092 603 93.6 globlastp
    1593 LNU438 rice|gb170|OS06G37160 3093 603 93.5 globlastp
    1594 LNU438 switchgrass|gb167|DN152570 3094 603 91.6 globlastp
    1595 LNU438 foxtail_millet|10v2|FXTRMSLX00002766D1_P1 3095 603 91.4 globlastp
    1596 LNU438 brachypodium|09v1|GFXEU730900X15_T1 3096 603 90.29 glotblastn
    1597 LNU438 millet|09v1|EVO454PM004612 3097 603 80.5 globlastp
    1598 LNU438 millet|10v1|EVO454PM004612_P1 3097 603 80.5 globlastp
    1599 LNU438 sugarcane|10v1|CA077281 3098 603 80.1 globlastp
    1600 LNU439 sugarcane|10v1|CA068568 3099 604 89.1 globlastp
    1601 LNU441 foxtail_millet|10v2|SICRP008836_T1 3100 605 88.85 glotblastn
    1602 LNU441 switchgrass|gb167|DN140960 3101 605 88.08 glotblastn
    1603 LNU441 wheat|gb164|CA502719 3102 605 87.5 globlastp
    1604 LNU441 maize|gb170|AA979820 3103 605 87.31 glotblastn
    1605 LNU441 maize|10v1|AA979820_T1 3104 605 86.59 glotblastn
    1606 LNU441 switchgrass|gb167|FE601692 3105 605 86.54 glotblastn
    1607 LNU441 millet|10v1|EVO454PM053619_T1 3106 605 83.85 glotblastn
    1608 LNU441 millet|09v1|EVO454PM009153 3107 605 83.85 glotblastn
    1609 LNU441 millet|10v1|EVO454PM009153_T1 3108 605 83.85 glotblastn
    1610 LNU442 potato|10v1|CV503625_T1 3109 606 89.2 glotblastn
    1611 LNU444 cotton|10v1|CO069493 3110 608 92.4 globlastp
    1612 LNU444 cotton|10v2|CO069742_P1 3111 608 92 globlastp
    1613 LNU444 castorbean|09v1|EE254681_P1 3112 608 84.6 globlastp
    1614 LNU444 chestnut|gb170|SRR006295S0008870_P1 3113 608 84.6 globlastp
    1615 LNU444 clementine|11v1|CB322234_P1 3114 608 83 globlastp
    1616 LNU444 orange|11v1|CB322234_P1 3114 608 83 globlastp
    1617 LNU444 citrus|gb166|CB322234_P1 3114 608 83 globlastp
    1618 LNU444 tamarix|gb166|CD151484 3115 608 82.5 globlastp
    1619 LNU444 spurge|gb161|DR066805 3116 608 82.2 globlastp
    1620 LNU444 cleome_gynandra|10v1|SRR015532S0000170_P1 3117 608 81.7 globlastp
    1621 LNU444 cleome_spinosa|10v1|GR931499_P1 3118 608 81.7 globlastp
    1622 LNU444 beech|gb170|AM062846_T1 3119 608 81.03 glotblastn
    1623 LNU444 cucumber|09v1|AA660032_P1 3120 608 80.9 globlastp
    1624 LNU444 cowpea|gb166|AF139468_P1 3121 608 80.6 globlastp
    1625 LNU444 b_juncea|gb164|EVGN00773211733256 3122 608 80.5 globlastp
    1626 LNU444 eucalyptus|11v1|ES591008_P1 3123 608 80.3 globlastp
    1627 LNU444 grape|gb160|BM436503_P1 3124 608 80.1 globlastp
    1628 LNU444 melon|10v1|AM716315_P1 3125 608 80.1 globlastp
    1629 LNU444 melon|gb165|AM716315 3125 608 80.1 globlastp
    1630 LNU445 soybean|11v1|GLYMA14G08480_P1 3126 609 93.2 globlastp
    1631 LNU445 soybean|gb168|FK293250 3127 609 89.4 globlastp
    1632 LNU446 soybean|11v1|GLYMA06G05570_T1 3128 610 96.52 glotblastn
    1633 LNU446 pigeonpea|10v1|SRR054580S0024764_P1 3129 610 93 globlastp
    1634 LNU446 lotus|09v1|LLGO005719_P1 3130 610 90.7 globlastp
    1635 LNU446 medicago|09v1|AW328864_P1 3131 610 88.2 globlastp
    1636 LNU446 peanut|10v1|GO326813_P1 3132 610 86.9 globlastp
    1637 LNU446 soybean|gb168|BI968704 3133 610 86.78 glotblastn
    1638 LNU446 soybean|11v1|GLYMA14G11090_P1 3134 610 84.8 globlastp
    1639 LNU446 soybean|11v1|GLYMA17G34500_P1 3135 610 84.6 globlastp
    1640 LNU446 peanut|10v1|CX127972_P1 3136 610 83.4 globlastp
    1641 LNU446 prunus|10v1|CN940235_P1 3137 610 80.2 globlastp
    1641 LNU464 prunus|10v1|CN940235_P1 3137 627 81.6 globlastp
    1642 LNU448 leymus|gb166|EG393138_P1 3138 612 95.3 globlastp
    1643 LNU448 wheat|gb164|BE404484 3139 612 93.9 globlastp
    1644 LNU448 pseudoroegneria|gb167|FF342552 3140 612 93.5 globlastp
    1645 LNU448 wheat|10v2|BE404484_P1 3141 612 93.5 globlastp
    1646 LNU448 wheat|10v2|BE490784_P1 3142 612 91.1 globlastp
    1647 LNU448 wheat|gb164|BE405353 3143 612 85.6 globlastp
    1648 LNU448 oat|10v2|GR366131_P1 3144 612 85.3 globlastp
    1649 LNU448 oat|10v1|GR366131 3145 612 84.8 globlastp
    1650 LNU448 wheat|gb164|BE490784 3146 612 83.1 globlastp
    1651 LNU448 fescue|gb161|CK801098_T1 3147 612 81.49 glotblastn
    1652 LNU449 cotton|10v1|AI727881 3148 613 89.5 globlastp
    1653 LNU449 cotton|10v2|BE053391_P1 3149 613 89.5 globlastp
    1654 LNU449 cotton|10v2|BE054720_P1 3150 613 89.1 globlastp
    1655 LNU449 cotton|10v2|ES838489_P1 3150 613 89.1 globlastp
    1656 LNU449 cotton|10v1|BQ410208 3150 613 89.1 globlastp
    1657 LNU449 cacao|10v1|CA794300_P1 3151 613 88 globlastp
    1658 LNU449 cacao|gb167|CA794300 3152 613 87.7 globlastp
    1659 LNU449 chestnut|gb170|SRR006295S0000582_P1 3153 613 87.7 globlastp
    1660 LNU449 oak|10v1|FP027403_P1 3154 613 87.3 globlastp
    1661 LNU449 clementine|11v1|CB292027_P1 3155 613 87 globlastp
    1662 LNU449 orange|11v1|CB292027_P1 3156 613 87 globlastp
    1663 LNU449 citrus|gb166|CB292027_P1 3155 613 87 globlastp
    1664 LNU449 momordica|10v1|SRR071315S0012320_P1 3157 613 86.6 globlastp
    1665 LNU449 cucumber|09v1|AM716760_P1 3158 613 86.2 globlastp
    1666 LNU449 papaya|gb165|AM904488_P1 3159 613 85.9 globlastp
    1667 LNU449 oak|10v1|SRR006309S0002232_T1 3160 613 85.51 glotblastn
    1668 LNU449 melon|10v1|AM716760_P1 3161 613 85.5 globlastp
    1669 LNU449 tea|10v1|GH159051 3162 613 84.8 globlastp
    1670 LNU449 melon|gb165|AM716760 3163 613 84.42 glotblastn
    1671 LNU449 eucalyptus|11v1|CD668460_P1 3164 613 84.4 globlastp
    1672 LNU449 prunus|10v1|AF139498_P1 3165 613 84.4 globlastp
    1673 LNU449 apple|gb171|CN495313_P1 3166 613 84.4 globlastp
    1674 LNU449 poplar|10v1|BI131224_P1 3167 613 84.4 globlastp
    1675 LNU449 eschscholzia|10v1|CD476462_P1 3168 613 84.1 globlastp
    1676 LNU449 prunus|gb167|AF139498 3169 613 84.1 globlastp
    1677 LNU449 castorbean|09v1|EE257410_P1 3170 613 83.7 globlastp
    1678 LNU449 coffea|10v1|DV665955_P1 3171 613 83.7 globlastp
    1679 LNU449 poplar|10v1|BU820883_P1 3172 613 83.7 globlastp
    1680 LNU449 tobacco|gb162|DW002390 3173 613 83.7 globlastp
    1681 LNU449 apple|gb171|CN865353_P1 3174 613 83.3 globlastp
    1682 LNU449 liriodendron|gb166|DT601421_P1 3175 613 83.3 globlastp
    1683 LNU449 tobacco|gb162|EB425519 3176 613 83 globlastp
    1684 LNU449 cassava|09v1|BM259855_P1 3177 613 82.6 globlastp
    1685 LNU449 grape|gb160|CB343473_P1 3178 613 82.6 globlastp
    1686 LNU449 spurge|gb161|BI962025 3179 613 82.6 globlastp
    1687 LNU449 petunia|gb171|FN001394_P1 3180 613 82.2 globlastp
    1688 LNU449 potato|10v1|BE920222_P1 3181 613 82.2 globlastp
    1689 LNU449 solanum_phureja|09v1|SPHBG127776 3181 613 82.2 globlastp
    1690 LNU449 sunflower|10v1|CD847752_P1 3182 613 82.2 globlastp
    1691 LNU449 sunflower|gb162|CD847752 3182 613 82.2 globlastp
    1692 LNU449 tragopogon|10v1|SRR020205S0015413 3183 613 82.2 globlastp
    1693 LNU449 liriodendron|gb166|CO996218_P1 3184 613 81.9 globlastp
    1694 LNU449 petunia|gb171|CV292815_P1 3185 613 81.9 globlastp
    1695 LNU449 tomato|09v1|BG127776 3186 613 81.9 globlastp
    1696 LNU449 lettuce|10v1|DW076391_T1 3187 613 81.88 glotblastn
    1697 LNU449 centaurea|gb166|EH724535_P1 3188 613 81.5 globlastp
    1698 LNU449 cichorium|gb171|DT213172_P1 3189 613 81.5 globlastp
    1699 LNU449 coffea|10v1|DV664677_P1 3190 613 81.5 globlastp
    1700 LNU449 eggplant|10v1|FS002597_P1 3191 613 81.5 globlastp
    1701 LNU449 lotus|09v1|LLAI967358_P1 3192 613 81.5 globlastp
    1702 LNU449 parthenium|10v1|GW781311_P1 3193 613 81.2 globlastp
    1703 LNU449 pigeonpea|10v1|SRR054580S0001717_P1 3194 613 81.2 globlastp
    1704 LNU449 pepper|gb171|BM068079_P1 3195 613 81.2 globlastp
    1705 LNU449 oak|10v1|FP028757_P1 3196 613 80.8 globlastp
    1706 LNU449 peanut|10v1|ES707534_P1 3197 613 80.8 globlastp
    1707 LNU449 avocado|10v1|CK751924_T1 3198 613 80.8 glotblastn
    1708 LNU449 ipomoea_nil|10v1|BJ559339_P1 3199 613 80.8 globlastp
    1709 LNU449 lettuce|10v1|DW054122_P1 3200 613 80.8 globlastp
    1710 LNU449 nasturtium|10v1|SRR032558S0042354_T1 3201 613 80.8 glotblastn
    1711 LNU449 strawberry|11v1|CO816865_P1 3202 613 80.8 globlastp
    1712 LNU449 strawberry|gb164|CO816865 3202 613 80.8 globlastp
    1713 LNU449 senecio|gb170|DY658995 3203 613 80.4 globlastp
    1714 LNU449 sunflower|10v1|DY945543_P1 3204 613 80.4 globlastp
    1715 LNU449 sunflower|gb162|DY945543 3204 613 80.4 globlastp
    1716 LNU451 solanum_phureja|09v1|SPHBG124246 3205 615 96.1 globlastp
    1717 LNU451 pepper|gb171|CA523377_P1 3206 615 91.4 globlastp
    1718 LNU451 tobacco|gb162|DV160269 3207 615 86.4 globlastp
    1719 LNU451 monkeyflower|10v1|DV209953_P1 3208 615 80 globlastp
    1720 LNU453 maize|10v1|AW400263_P1 3209 616 93.1 globlastp
    1721 LNU453 maize|10v1|DW740014_P1 3210 616 81.5 globlastp
    1722 LNU453 maize|gb170|DW740014 3210 616 81.5 globlastp
    1723 LNU453 switchgrass|gb167|FL712148 3211 616 81.36 glotblastn
    1724 LNU455 potato|10v1|BG888608_P1 3212 618 96.7 globlastp
    1725 LNU455 solanum_phureja|09v1|SPHBG626661 3212 618 96.7 globlastp
    1726 LNU455 tobacco|gb162|EB426860 3213 618 90 globlastp
    1727 LNU455 nicotiana_benthamiana|gb162|EX534033_P1 3214 618 88.6 globlastp
    1728 LNU455 petunia|gb171|CV296478_P1 3215 618 87.6 globlastp
    1729 LNU456 wheat|gb164|BE216917 3216 619 95.4 globlastp
    1730 LNU456 wheat|10v2|BE216917_P1 3217 619 95.4 globlastp
    1731 LNU456 pseudoroegneria|gb167|FF367249 3218 619 94.9 globlastp
    1732 LNU456 wheat|gb164|BF293470 3219 619 94.9 globlastp
    1733 LNU456 wheat|gb164|BF474913 3220 619 94.5 globlastp
    1734 LNU456 brachypodium|09v1|GT778786_P1 3221 619 85 globlastp
    1735 LNU457 tomato|09v1|BQ512773_T1 3222 620 89.69 glotblastn
    1736 LNU460 sugarcane|10v1|CA079961 3223 623 94.2 globlastp
    1737 LNU460 sorghum|09v1|SB01G001140 3224 623 93.7 globlastp
    1738 LNU460 switchgrass|gb167|FE610157 3225 623 89.3 globlastp
    1739 LNU460 wheat|10v2|BG606900_P1 3226 623 86.5 globlastp
    1740 LNU460 rice|gb170|OS03G63330 3227 623 85.1 globlastp
    1741 LNU460 brachypodium|09v1|DV485015_P1 3228 623 84.9 globlastp
    1742 LNU460 wheat|gb164|BE429280 3229 623 83 globlastp
    1743 LNU460 fescue|gb161|DT685320_P1 3230 623 82.4 globlastp
    1744 LNU460 oat|10v2|CN817353_T1 3231 623 82.39 glotblastn
    1745 LNU460 oat|10v1|CN817353 3232 623 82.39 glotblastn
    1746 LNU460 wheat|10v2|BE429280_T1 3233 623 80 glotblastn
    1747 LNU462 solanum_phureja|09v1|SPHAI896771 3234 625 93.1 globlastp
    1748 LNU462 tomato|09v1|BG630881 3235 625 80.7 globlastp
    1749 LNU462 solanum_phureja|09v1|SPHBG630881 3236 625 80.5 globlastp
    1750 LNU464 oak|10v1|FP067463_P1 3237 627 83.3 globlastp
    1751 LNU464 monkeyflower|10v1|GR019400_P1 3238 627 80.1 globlastp
    1752 LNU466 wheat|10v2|BE443236_P1 3239 629 97 globlastp
    1753 LNU466 wheat|gb164|BE443236 3240 629 91.6 globlastp
    1754 LNU466 brachypodium|09v1|GT778423_P1 3241 629 91.1 globlastp
    1755 LNU466 wheat|10v2|CA497187_P1 3242 629 82.9 globlastp
    1756 LNU466 rice|gb170|OS12G39160 3243 629 82.8 globlastp
    1757 LNU466 sorghum|09v1|SB01G014910 3244 629 81.7 globlastp
    1758 LNU466 rice|gb170|OS03G40930 3245 629 80.8 globlastp
    1759 LNU466 brachypodium|09v1|GT822143_P1 3246 629 80.6 globlastp
    1760 LNU467 wheat|10v2|BE418022XX1_P1 3247 630 96 globlastp
    1761 LNU467 wheat|gb164|BE418022 3248 630 95.8 globlastp
    1762 LNU467 brachypodium|09v1|GT768192_P1 3249 630 85.9 globlastp
    1763 LNU467 rice|gb170|OS01G33800 3250 630 80.3 globlastp
    1764 LNU468 potato|10v1|BI405533_P1 3251 631 97.1 globlastp
    1765 LNU468 solanum_phureja|09v1|SPHAI637280 3251 631 97.1 globlastp
    1766 LNU469 sorghum|09v1|SB06G024340 3252 632 90.5 globlastp
    1767 LNU472 switchgrass|gb167|FL834062 3253 635 85.2 globlastp
    1768 LNU472 sorghum|09v1|SB03G023773 3254 635 83.6 globlastp
    1769 LNU472 millet|10v1|PMSLX0282794D1_P1 3255 635 83 globlastp
    1770 LNU473 maize|10v1|CD956410_P1 3256 636 92.3 globlastp
    1771 LNU473 maize|gb170|LLCD956410 3256 636 92.3 globlastp
    1772 LNU473 foxtail_millet|10v2|SICRP007698_T1 3257 636 87.03 glotblastn
    1773 LNU477 sugarcane|10v1|BQ532957 3258 639 99.4 globlastp
    1774 LNU477 foxtail_millet|10v2|SICRP038587_P1 3259 639 98.4 globlastp
    1775 LNU477 switchgrass|gb167|FE613133 3260 639 98 globlastp
    1776 LNU477 maize|10v1|AI944016_P1 3261 639 97.4 globlastp
    1777 LNU477 maize|gb170|AI944016 3261 639 97.4 globlastp
    1778 LNU477 millet|10v1|EVO454PM006681_P1 3262 639 96 globlastp
    1779 LNU477 wheat|10v2|BE604866_P1 3263 639 95.4 globlastp
    1780 LNU477 wheat|gb164|BE403167 3263 639 95.4 globlastp
    1781 LNU477 barley|10v1|BE438172 3264 639 95 globlastp
    1782 LNU477 barley|10v2|BE438172_P1 3264 639 95 globlastp
    1783 LNU477 brachypodium|09v1|GT769985_P1 3265 639 95 globlastp
    1784 LNU477 rice|gb170|OS03G21950 3266 639 95 globlastp
    1785 LNU477 aristolochia|10v1|FD755001_P1 3267 639 87.2 globlastp
    1786 LNU477 aquilegia|10v2|DR929807_P1 3268 639 86.1 globlastp
    1787 LNU477 eucalyptus|11v1|CU396262_P1 3269 639 85.8 globlastp
    1788 LNU477 prunus|10v1|BU040396_P1 3270 639 85.8 globlastp
    1789 LNU477 cotton|10v1|AI725667 3271 639 85.8 globlastp
    1790 LNU477 aquilegia|10v2|JGIAC017994_P1 3272 639 85.7 globlastp
    1791 LNU477 clementine|11v1|CB292429_P1 3273 639 85.6 globlastp
    1791 LNU477 orange|11v1|CB292429_P1 3273 639 85.6 globlastp
    1792 LNU477 cotton|10v2|SRR032367S0638081_P1 3274 639 85.6 globlastp
    1793 LNU477 oak|10v1|FP028605_P1 3275 639 85.6 globlastp
    1794 LNU477 cotton|10v2|SRR032367S0193380_P1 3276 639 85.6 globlastp
    1795 LNU477 citrus|gb166|CB292429_P1 3273 639 85.6 globlastp
    1796 LNU477 cotton|10v2|SRR032367S0065913_T1 3277 639 85.03 glotblastn
    1797 LNU477 melon|10v1|DV631444_P1 3278 639 85 globlastp
    1798 LNU477 apple|gb171|CN489928_P1 3279 639 84.8 globlastp
    1799 LNU477 poplar|10v1|BI069889_P1 3280 639 84.8 globlastp
    1800 LNU477 cacao|10v1|CU584416_P1 3281 639 84.6 globlastp
    1801 LNU477 bean|gb167|CA900306_P1 3282 639 84.6 globlastp
    1802 LNU477 cowpea|gb166|FF390148_P1 3283 639 84.6 globlastp
    1803 LNU477 monkeyflower|10v1|GR015985_P1 3284 639 84.4 globlastp
    1804 LNU477 triphysarial|10v1|DR173958 3285 639 84.3 globlastp
    1805 LNU477 lotus|09v1|CB826761_P1 3286 639 84.2 globlastp
    1806 LNU477 sunflower|10v1|DY921185_P1 3287 639 84.2 globlastp
    1807 LNU477 strawberry|11v1|CO381683_P1 3288 639 84 globlastp
    1808 LNU477 orobanche|10v1|SRR023189S0000238_P1 3289 639 84 globlastp
    1809 LNU477 zostera|10v1|SRR057351S0001126_P1 3290 639 83.9 globlastp
    1810 LNU477 arabidopsis_lyrata|09v1|JGIAL016174_P1 3291 639 83.8 globlastp
    1811 LNU477 soybean|11v1|GLYMA10G02040_P1 3292 639 83.8 globlastp
    1812 LNU477 soybean|gb168|AL374333 3293 639 83.8 globlastp
    1813 LNU477 sunflower|gb162|DY921185 3294 639 83.8 globlastp
    1814 LNU477 soybean|11v1|GLYMA02G01920_P1 3295 639 83.8 globlastp
    1815 LNU477 dandelion|10v1|DY805862_T1 3296 639 83.73 glotblastn
    1816 LNU477 arabidopsis|10v1|AT2G47510_P1 3297 639 83.6 globlastp
    1817 LNU477 arabidopsis|gb165|AT2G47510 3297 639 83.6 globlastp
    1818 LNU477 radish|gb164|EV529214 3298 639 83.4 globlastp
    1819 LNU477 soybean|gb168|CA900306 3299 639 83.4 globlastp
    1820 LNU477 centaurea|gb166|EH721673_T1 3300 639 83.13 glotblastn
    1821 LNU477 lettuce|10v1|DW046954_T1 3301 639 83.13 glotblastn
    1822 LNU477 podocarpus|10v1|SRR065014S0003290_T1 3302 639 83.03 glotblastn
    1823 LNU477 sunflower|10v1|DY911213_P1 3303 639 83 globlastp
    1824 LNU477 pepper|gb171|BM064125_P1 3304 639 83 globlastp
    1825 LNU477 pigeonpea|10v1|SRR054580S0047814_P1 3305 639 82.8 globlastp
    1826 LNU477 potato|10v1|BG591774_P1 3306 639 82.6 globlastp
    1827 LNU477 solanum_phureja|09v1|SPHAI895415 3306 639 82.6 globlastp
    1828 LNU477 tomato|09v1|AW648564 3307 639 82.4 globlastp
    1829 LNU477 tomato|09v1|BG642408 3308 639 82.2 globlastp
    1830 LNU477 dandelion|gb161|DY805862 3309 639 82 globlastp
    1831 LNU477 prunus|gb167|BU040396 3310 639 81.93 glotblastn
    1832 LNU477 cassava|09v1|CK649367_P1 3311 639 81.9 globlastp
    1833 LNU477 medicago|09v1|AL374333_P1 3312 639 81.8 globlastp
    1834 LNU477 spruce|gb162|CO222288 3313 639 81.8 globlastp
    1835 LNU477 antirrhinum|gb166|AJ558600_T1 3314 639 81.73 glotblastn
    1836 LNU477 artemisia|10v1|EY076361_P1 3315 639 81.7 globlastp
    1837 LNU477 b_rapa|gb162|CV434106_P1 3316 639 81.7 globlastp
    1838 LNU477 pine|10v2|BF049732_P1 3317 639 81.6 globlastp
    1839 LNU477 arabidopsis|10v1|AT5G50950_P1 3318 639 81.6 globlastp
    1840 LNU477 arabidopsis|gb165|AT5G50950 3318 639 81.6 globlastp
    1841 LNU477 pine|10v1|BE996818 3317 639 81.6 globlastp
    1842 LNU477 pseudotsuga|10v1|SRR065119S0016339_P1 3319 639 81.5 globlastp
    1843 LNU477 castorbean|09v1|EV520386_P1 3320 639 81.4 globlastp
    1844 LNU477 arabidopsis_lyrata|09v1|JGIAL029515_P1 3321 639 81 globlastp
    1845 LNU477 canola|10v1|CD835523_P1 3322 639 80.8 globlastp
    1846 LNU477 cucumber|09v1|ES597099_P1 3323 639 80.2 globlastp
    1847 LNU479 sugarcane|10v1|CA099284 3324 640 91.9 globlastp
    1848 LNU479 maize|10v1|AI615138_P1 3325 640 89.5 globlastp
    1849 LNU479 maize|gb170|AI615138 3325 640 89.5 globlastp
    1850 LNU479 maize|10v1|AI740031_P1 3326 640 88.5 globlastp
    1851 LNU479 maize|gb170|AI740031 3326 640 88.5 globlastp
    1852 LNU479 foxtail_millet|10v2|SICRP003741_P1 3327 640 80.7 globlastp
    1853 LNU480 maize|10v1|AW018101_P1 3328 641 96.7 globlastp
    1854 LNU480 maize|gb170|AW018101 3328 641 96.7 globlastp
    1855 LNU480 rice|gb170|OS03G60460 3329 641 92.6 globlastp
    1856 LNU480 brachypodium|09v1|GT768427_P1 3330 641 90.2 globlastp
    1857 LNU480 millet|10v1|CD725477_P1 3331 641 80.4 globlastp
    1858 LNU481 maize|10v1|BM348553_P1 3332 642 86.5 globlastp
    1859 LNU481 maize|gb170|BM348553 3332 642 86.5 globlastp
    1860 LNU481 switchgrass|gb167|FE624299 3333 642 81.8 globlastp
    1861 LNU481 foxtail_millet|10v2|FXTRMSLX00502435D1_P1 3334 642 81.4 globlastp
    1862 LNU481 switchgrass|gb167|DN141959 3335 642 81.3 globlastp
    1863 LNU486 rice|gb170|OS08G04540 3336 646 87.4 globlastp
    1864 LNU486 millet|10v1|EVO454PM108169_P1 3337 646 85.9 globlastp
    1865 LNU486 maize|10v1|DR797096_P1 3338 646 84.5 globlastp
    1866 LNU486 maize|gb170|DR797096 3338 646 84.5 globlastp
    1867 LNU486 millet|10v1|PMSLX0008075D1_P1 3339 646 84.3 globlastp
    1868 LNU486 sorghum|09v1|SB07G003020 3340 646 84.3 globlastp
    1869 LNU486 brachypodium|09v1|SRR031795S0042968_P1 3341 646 84.2 globlastp
    1870 LNU486 sorghum|09v1|SB07G003040 3342 646 83.7 globlastp
    1871 LNU486 maize|10v1|DT650994_P1 3343 646 83.6 globlastp
    1872 LNU486 maize|gb170|SRR014549S0325734 3344 646 83 globlastp
    1873 LNU486 maize|10v1|SRR014549S0325735_P1 3345 646 82.7 globlastp
    1874 LNU486 brachypodium|09v1|GT763377_P1 3346 646 81.6 globlastp
    1875 LNU486 brachypodium|09v1|SRR031797S0000753_P1 3347 646 81.6 globlastp
    1876 LNU486 brachypodium|09v1|DV484841_P1 3348 646 81.1 globlastp
    1877 LNU486 maize|10v1|GRMZM2G441632T01_P1 3349 646 81.1 globlastp
    1878 LNU486 barley|10v1|BI947839 3350 646 80.9 globlastp
    1879 LNU486 brachypodium|09v1|DV473894_P1 3351 646 80.9 globlastp
    1880 LNU486 maize|gb170|CRPZM2N004754 3352 646 80.7 globlastp
    1881 LNU486 wheat|10v2|BM135610_P1 3353 646 80.5 globlastp
    1882 LNU486 barley|10v2|BI951142_P1 3354 646 80.5 globlastp
    1883 LNU486 brachypodium|09v1|BRADI2G02370_P1 3355 646 80 globlastp
    1884 LNU489 solanum_phureja|09v1|SPHBG132312 3356 647 97.5 globlastp
    1885 LNU490 poplar|10v1|BU808912_T1 3357 648 86.43 glotblastn
    1886 LNU490 castorbean|09v1|XM002517212_P1 3358 648 84.3 globlastp
    1887 LNU490 cassava|09v1|DB921878_P1 3359 648 80.7 globlastp
    1888 LNU492 switchgrass|gb167|DN145159 3360 650 89.76 glotblastn
    1889 LNU492 millet|10v1|EVO454PM001690_P1 3361 650 89.4 globlastp
    1890 LNU492 sorghum|09v1|SB02G042100 3362 650 89.12 glotblastn
    1891 LNU492 brachypodium|09v1|GT758722_P1 3363 650 87.1 globlastp
    1892 LNU492 maize|gb170|AW067292 3364 650 85.74 glotblastn
    1893 LNU492 barley|10v1|AV834942 3365 650 85.1 globlastp
    1894 LNU492 barley|10v2|AV834942_P1 3365 650 85.1 globlastp
    1895 LNU492 maize|10v1|AW067292_T1 3366 650 85.01 glotblastn
    1896 LNU493 switchgrass|gb167|DN144413 3367 651 86.4 globlastp
    1897 LNU493 oat|10v2|GR318288_P1 3368 651 86.1 globlastp
    1898 LNU493 oat|10v1|GR318288 3368 651 86.1 globlastp
    1899 LNU493 wheat|10v2|BQ166641_P1 3369 651 85.7 globlastp
    1900 LNU493 wheat|10v2|BF478823_P1 3370 651 85.4 globlastp
    1901 LNU493 brachypodium|09v1|DV469482_P1 3371 651 85.2 globlastp
    1902 LNU493 wheat|gb164|BF478823 3372 651 85.2 globlastp
    1903 LNU493 sugarcane|10v1|BU102536 3373 651 84.94 glotblastn
    1904 LNU493 millet|10v1|EB411086_T1 3374 651 84.63 glotblastn
    1905 LNU493 sorghum|09v1|SB10G020910 3375 651 84.48 glotblastn
    1906 LNU493 wheat|gb164|BI751896 3376 651 84.4 globlastp
    1907 LNU493 wheat|10v2|BI751896_T1 3377 651 84.08 glotblastn
    1908 LNU493 barley|10v1|AV833693 3378 651 83.4 globlastp
    1909 LNU493 barley|10v2|AV833693_P1 3378 651 83.4 globlastp
    1910 LNU493 maize|gb170|AI902081 3379 651 82.7 globlastp
    1911 LNU493 maize|10v1|AI902081_P1 3380 651 82.5 globlastp
    1912 LNU493 pseudoroegneria|gb167|FF349115 3381 651 81.8 glotblastn
    1913 LNU493 leymus|gb166|EG376779_P1 3382 651 81.1 globlastp
    1914 LNU494 sorghum|09v1|SB02G011210 3383 652 86.8 globlastp
    1915 LNU494 maize|gb170|BI478378 3384 652 80.32 glotblastn
    1916 LNU496 barley|10v1|CD054173 3385 654 87.3 globlastp
    1917 LNU496 barley|10v2|CD054173_P1 3385 654 87.3 globlastp
    1918 LNU496 brachypodium|09v1|DV473745_P1 3386 654 85.3 globlastp
    1919 LNU496 rice|gb170|OS06G46330 3387 654 80.6 globlastp
    1919 LNU520 rice|gb170|OS06G46330 3387 675 80.9 globlastp
    1920 LNU497 wheat|10v2|BE405826XX1_P1 3388 655 95.1 globlastp
    1921 LNU497 leymus|gb166|CD808855_P1 3389 655 93.7 globlastp
    1922 LNU497 barley|10v1|BE437367 3390 655 92.3 globlastp
    1923 LNU497 barley|10v2|BE437367_T1 3391 655 92.08 glotblastn
    1924 LNU497 barley|10v1|BI951306 3392 655 91.8 globlastp
    1925 LNU497 barley|10v2|BI951306_P1 3392 655 91.8 globlastp
    1926 LNU497 wheat|gb164|BE400632 3393 655 91.8 glotblastn
    1927 LNU497 wheat|10v2|BE400632_P1 3394 655 91.3 globlastp
    1928 LNU497 wheat|10v2|BE400438_P1 3395 655 90.2 globlastp
    1929 LNU497 wheat|gb164|BE399352 3396 655 88.7 globlastp
    1930 LNU497 wheat|gb164|BE405826 3397 655 87.9 globlastp
    1931 LNU497 wheat|gb164|BE400438 3398 655 85.9 globlastp
    1932 LNU497 oat|10v2|CN815673_P1 3399 655 84.3 globlastp
    1933 LNU497 brachypodium|09v1|DV469731_P1 3400 655 83.9 globlastp
    1934 LNU497 wheat|gb164|CA607613 3401 655 82.8 globlastp
    1935 LNU498 sugarcane|10v1|CA120232 3402 656 94.9 globlastp
    1936 LNU498 switchgrass|gb167|GD007288 3403 656 90.5 globlastp
    1937 LNU498 brachypodium|09v1|GT763740_P1 3404 656 82.7 globlastp
    1937 LNU499 brachypodium|09v1|GT763740_P1 3404 657 85.6 globlastp
    1938 LNU498 rice|gb170|OS07G05365 3405 656 82 globlastp
    1938 LNU499 rice|gb170|OS07G05365 3405 657 80.6 globlastp
    1939 LNU498 wheat|10v2|BE591194_P1 3406 656 80.6 globlastp
    1939 LNU499 wheat|10v2|BE591194_P1 3406 657 94.2 globlastp
    1940 LNU499 fescue|gb161|CK801688_P1 3407 657 88.5 globlastp
    1941 LNU500 potato|10v1|BF153480_P1 3408 658 97.9 globlastp
    1942 LNU500 solanum_phureja|09v1|SPHBG127476 3408 658 97.9 globlastp
    1943 LNU500 tobacco|gb162|EB677931 3409 658 92.9 globlastp
    1944 LNU500 melon|10v1|AM720613_P1 3410 658 83.6 globlastp
    1945 LNU500 triphysaria|10v1|DR171672 3411 658 82.8 globlastp
    1946 LNU500 cucumber|09v1|CK760287_P1 3412 658 82.7 globlastp
    1947 LNU500 melon|gb165|AM720613 3413 658 82.4 globlastp
    1948 LNU500 oak|10v1|FP033820_P1 3414 658 82.2 globlastp
    1949 LNU500 cotton|10v1|BQ407081 3415 658 82.1 globlastp
    1950 LNU500 monkeyflower|10v1|CV517084_P1 3416 658 82.1 globlastp
    1951 LNU500 citrus|gb166|CX073916_P1 3417 658 82 globlastp
    1952 LNU500 arabidopsis_lyrata|09v1|JGIAL009912_P1 3418 658 81.7 globlastp
    1953 LNU500 bean|gb167|CA900254_P1 3419 658 81.7 globlastp
    1954 LNU500 b_rapa|gb162|CX268091_P1 3420 658 81.4 globlastp
    1955 LNU500 medicago|09v1|AW689365_P1 3421 658 81.2 globlastp
    1956 LNU500 poplar|10v1|BI072351_P1 3422 658 81.2 globlastp
    1957 LNU500 canola|10v1|CD825188_P1 3423 658 81 globlastp
    1958 LNU500 soybean|11v1|GLYMA19G36580_P1 3424 658 81 globlastp
    1959 LNU500 soybean|gb168|BU545791 3424 658 81 globlastp
    1960 LNU500 cotton|10v1|BG440074 3425 658 80.9 globlastp
    1961 LNU500 cotton|10v2|BG440074_P1 3426 658 80.9 globlastp
    1962 LNU500 arabidopsis|10v1|AT3G14390_P1 3427 658 80.8 globlastp
    1963 LNU500 arabidopsis|gb165|AT3G14390 3427 658 80.8 globlastp
    1964 LNU500 nasturtium|10v1|SRR032558S0026061_P1 3428 658 80.7 globlastp
    1965 LNU500 soybean|11v1|GLYMA03G33830_P1 3429 658 80.6 globlastp
    1966 LNU500 soybean|gb168|AW689365 3429 658 80.6 globlastp
    1967 LNU500 castorbean|09v1|EE260114_P1 3430 658 80.4 globlastp
    1968 LNU500 eucalyptus|11v1|SRR001659X10631_P1 3431 658 80.2 globlastp
    1969 LNU500 prunus|10v1|BU041335_P1 3432 658 80.2 globlastp
    1970 LNU500 poplar|10v1|CF233615_P1 3433 658 80.2 globlastp
    1971 LNU500 cassava|09v1|CK645527_P1 3434 658 80.2 globlastp
    1972 LNU500 canola|10v1|CN830386_P1 3435 658 80.1 globlastp
    1973 LNU500 sunflower|gb162|CX947049 3436 658 80.1 globlastp
    1974 LNU501 sugarcane|10v1|BQ804027 3437 659 99.1 globlastp
    1975 LNU501 maize|10v1|BM382690_P1 3438 659 97.2 globlastp
    1976 LNU501 maize|gb170|BM382690 3438 659 97.2 globlastp
    1977 LNU501 foxtail_millet|10v2|FXTRMSLX00598869D2_P1 3439 659 96.6 globlastp
    1978 LNU501 maize|10v1|DR817878_P1 3440 659 96.6 globlastp
    1979 LNU501 maize|gb170|DR817878 3440 659 96.6 globlastp
    1980 LNU501 rice|gb170|OS06G45280 3441 659 92.3 globlastp
    1981 LNU501 brachypodium|09v1|GT799485_P1 3442 659 91.1 globlastp
    1982 LNU501 wheat|10v2|BE605194_P1 3443 659 90.1 globlastp
    1983 LNU501 wheat|gb164|BE605194 3444 659 89.7 globlastp
    1984 LNU501 barley|10v1|AJ436214 3445 659 87.6 globlastp
    1985 LNU501 barley|10v2|AJ436214_P1 3445 659 87.6 globlastp
    1986 LNU501 millet|10v1|EVO454PM011670_P1 3446 659 85.3 globlastp
    1987 LNU502 wheat|10v2|BE430987_T1 3447 660 93.45 glotblastn
    1988 LNU502 wheat|gb164|BE430987 3448 660 93 globlastp
    1989 LNU502 rice|gb170|OS02G32980 3449 660 85.2 globlastp
    1990 LNU502 foxtail_millet|10v2|SICRP016205_P1 3450 660 84.8 globlastp
    1991 LNU502 millet|10v1|CD724444_P1 3451 660 84.8 globlastp
    1992 LNU502 brachypodium|09v1|SRR031797S0004957_P1 3452 660 83.9 globlastp
    1993 LNU502 maize|10v1|AW165596_P1 3453 660 80.8 globlastp
    1994 LNU502 maize|gb170|AW165596 3453 660 80.8 globlastp
    1995 LNU503 lovegrass|gb167|EH188332_P1 3454 661 86 globlastp
    1996 LNU503 switchgrass|gb167|FL878118 3455 661 85 globlastp
    1997 LNU503 foxtail_millet|10v2|SICRP010281_P1 3456 661 84.1 globlastp
    1998 LNU503 sorghum|09v1|SB06G028260 3457 661 84.1 globlastp
    1999 LNU503 switchgrass|gb167|FL844303 3458 661 84.1 globlastp
    2000 LNU503 millet|10v1|EVO454PM635012_P1 3459 661 84.1 globlastp
    2001 LNU503 cynodon|10v1|ES306614_P1 3460 661 83.2 globlastp
    2002 LNU503 millet|09v1|EVO454PM652594 3461 661 83.18 glotblastn
    2003 LNU503 sugarcane|10v1|CA269511 3462 661 83.18 glotblastn
    2004 LNU503 cynodon|10v1|ES306841_P1 3463 661 82.2 globlastp
    2005 LNU503 brachypodium|09v1|DV473278_P1 3464 661 82.2 globlastp
    2006 LNU503 oat|10v2|GR350976_P1 3465 661 81.3 globlastp
    2007 LNU503 maize|10v1|AI637049_P1 3466 661 81.3 globlastp
    2008 LNU503 maize|gb170|AI637049 3466 661 81.3 globlastp
    2009 LNU503 maize|gb170|CF633199 3467 661 81.3 globlastp
    2010 LNU503 maize|gb170|LLDQ245256 3468 661 81.3 globlastp
    2011 LNU503 wheat|gb164|BQ483317 3468 661 81.3 globlastp
    2012 LNU503 wheat|gb164|CK213240 3468 661 81.3 globlastp
    2013 LNU503 wheat|10v2|BQ483317_P1 3468 661 81.3 globlastp
    2014 LNU503 maize|10v1|CF633199_P1 3469 661 80.4 globlastp
    2015 LNU503 barley|10v1|AV910573 3470 661 80.4 globlastp
    2016 LNU503 barley|10v2|AV910573_P1 3470 661 80.4 globlastp
    2017 LNU503 lolium|10v1|DT670198_P1 3471 661 80.4 globlastp
    2018 LNU507 barley|10v1|BQ660103 3472 664 89.4 globlastp
    2019 LNU507 wheat|gb164|BE425628 3473 664 81 globlastp
    2020 LNU507 leymus|gb166|EG379808_P1 3474 664 80.3 globlastp
    2021 LNU507 wheat|10v2|BE425628_T1 3475 664 80.29 glotblastn
    2022 LNU510 maize|10v1|CO519985_P1 3476 667 82.4 globlastp
    2023 LNU510 brachypodium|09v1|GT849245_P1 3477 667 80.2 globlastp
    2024 LNU510 sorghum|09v1|SB10G014190 3478 667 80.2 glotblastn
    2025 LNU510 rice|gb170|OS06G29994 3479 667 80 globlastp
    2026 LNU512 arabidopsis_lyrata|09v1|JGIAL012417_P1 3480 669 83 globlastp
    2027 LNU513 soybean|11v1|GLYMA03G34940_P1 3481 670 89.4 globlastp
    2028 LNU513 soybean|gb168|BU547595 3481 670 89.4 globlastp
    2029 LNU514 switchgrass|gb167|FE640485 3482 671 91 globlastp
    2030 LNU514 foxtail_millet|10v2|SICRP005477_P1 3483 671 90.2 globlastp
    2031 LNU514 sorghum|09v1|SB07G024530 3484 671 89.8 globlastp
    2032 LNU514 maize|10v1|AI902049_P1 3485 671 89.2 globlastp
    2033 LNU514 maize|10v1|AI987368_P1 3486 671 88.9 globlastp
    2034 LNU514 maize|gb170|AI987368 3486 671 88.9 globlastp
    2035 LNU514 maize|gb170|AI711932 3487 671 88.54 glotblastn
    2036 LNU514 oat|10v2|GO582307_P1 3488 671 87.5 globlastp
    2037 LNU514 oat|10v1|GO582307 3488 671 87.5 globlastp
    2038 LNU514 rice|gb170|OS09G38530 3489 671 86.8 globlastp
    2039 LNU514 wheat|gb164|BE414509 3490 671 86.8 globlastp
    2040 LNU514 wheat|10v2|BE414509_P1 3491 671 86.7 globlastp
    2041 LNU514 barley|10v1|AV833241 3492 671 86.4 globlastp
    2042 LNU514 barley|10v2|AV833241_P1 3492 671 86.4 globlastp
    2043 LNU514 brachypodium|09v1|DV481367_P1 3493 671 86.2 globlastp
    2044 LNU514 maize|10v1|AI677621_P1 3494 671 85.9 globlastp
    2045 LNU514 maize|gb170|AI677621 3494 671 85.9 globlastp
    2046 LNU514 sorghum|09v1|SB02G032530 3495 671 85.8 globlastp
    2047 LNU514 foxtail_millet|10v2|FXTRMSLX00130007D1_P1 3496 671 85 globlastp
    2048 LNU514 maize|10v1|BQ295771_P1 3497 671 84.8 globlastp
    2049 LNU514 millet|10v1|EVO454PM005967_P1 3498 671 84.5 globlastp
    2050 LNU514 sorghum|09v1|SB07G016310 3499 671 82.4 globlastp
    2051 LNU514 sugarcane|10v1|BU102774 3500 671 82.2 globlastp
    2052 LNU514 brachypodium|09v1|DV480469_P1 3501 671 81.9 globlastp
    2053 LNU514 maize|10v1|AI861629_P1 3502 671 81.9 globlastp
    2054 LNU514 millet|10v1|EVO454PM001017_P1 3503 671 81.8 globlastp
    2055 LNU514 barley|10v1|BE412814 3504 671 81.14 glotblastn
    2056 LNU514 switchgrass|gb167|FE600426 3505 671 81.1 globlastp
    2057 LNU514 barley|10v2|BE412814_P1 3506 671 80.8 globlastp
    2058 LNU514 wheat|10v2|BF292545_P1 3507 671 80.8 globlastp
    2059 LNU514 wheat|gb164|BQ238027 3507 671 80.8 globlastp
    2060 LNU514 millet|10v1|EVO454PM002776_P1 3508 671 80.7 globlastp
    2061 LNU514 cotton|10v2|SRR032367S0498385_P1 3509 671 80.1 globlastp
    2062 LNU517 bean|gb167|CA914436_P1 3510 672 90.6 globlastp
    2063 LNU517 cowpea|gb166|FF383642_P1 3511 672 89.7 globlastp
    2064 LNU517 lotus|09v1|BP070981_P1 3512 672 87.5 globlastp
    2065 LNU517 medicago|09v1|LLAW776024_P1 3513 672 83.3 globlastp
    2066 LNU517 peanut|10v1|ES723257_T1 3514 672 80.66 glotblastn
    2067 LNU518 sorghum|09v1|SB10G005570 3515 673 95.5 globlastp
    2068 LNU518 switchgrass|gb167|FE640709 3516 673 93.4 globlastp
    2069 LNU518 millet|10v1|EVO454PM012014_P1 3517 673 89.5 globlastp
    2070 LNU518 rice|gb170|OS06G08400 3518 673 86.8 globlastp
    2071 LNU518 wheat|10v2|BE493248_P1 3519 673 86.1 globlastp
    2072 LNU518 wheat|gb164|BE493248 3520 673 86.1 globlastp
    2073 LNU518 brachypodium|09v1|GT786826_P1 3521 673 85.5 globlastp
    2074 LNU518 brachypodium|09v1|GT759144_P1 3522 673 85 globlastp
    2075 LNU520 maize|10v1|BG320595_P1 3523 675 92.1 globlastp
    2076 LNU520 maize|gb170|BG549573 3523 675 92.1 globlastp
    2077 LNU520 switchgrass|gb167|FE612728 3524 675 90.03 glotblastn
    2078 LNU520 millet|10v1|EVO454PM312756_P1 3525 675 81.6 globlastp
    2079 LNU417_H4 millet|10v1|EVO454PM015064_P1 3526 677 83.1 globlastp
    2079 LNU417 millet|10v1|EVO454PM015064_T1 3526 702 84.38 glotblastn
    2080 LNU290 barley|10v2|AV836409_T1 3527 680 82.59 glotblastn
    2081 LNU290 wheat|10v2|DR737283_T1 3528 680 81.53 glotblastn
    2082 LNU294 soybean|11v1|GLYMA02G03460_T1 3529 681 83.56 glotblastn
    2083 LNU309 switchgrass|gb167|DN147382 3530 684 86.82 glotblastn
    2084 LNU337 citrus|gb166|CN183940_T1 3531 686 86.36 glotblastn
    2085 LNU337 aquilegia|10v1|DR938015 3532 686 85.54 glotblastn
    2086 LNU337 aquilegia|10v2|DR938015_T1 3533 686 85.54 glotblastn
    2087 LNU337 poplar|10v1|AI166531_T1 3534 686 84.68 glotblastn
    2088 LNU337 cassava|09v1|DB955139_T1 3535 686 84.66 glotblastn
    2089 LNU337 cotton|10v1|BQ408171 3536 686 84.57 glotblastn
    2090 LNU337 soybean|11v1|GLYMA08G20750_T1 3537 686 84.5 glotblastn
    2091 LNU337 soybean|gb168|CX532836 3537 686 84.5 glotblastn
    2092 LNU337 soybean|gb168|BM779948 3538 686 84.45 glotblastn
    2093 LNU337 lotus|09v1|GO036990_T1 3539 686 84.1 glotblastn
    2094 LNU337 cowpea|gb166|FF383005_P1 3540 686 83.9 globlastp
    2095 LNU337 aristolochia|10v1|FD748181_T1 3541 686 83.74 glotblastn
    2096 LNU337 cotton|10v2|BQ408171_T1 3542 686 83.64 glotblastn
    2097 LNU337 medicago|09v1|LLAW696817_T1 3543 686 83.38 glotblastn
    2098 LNU337 artemisia|10v1|EY088616_T1 3544 686 83.33 glotblastn
    2099 LNU337 solanum_phureja|09v1|SPHAI488887 3545 686 83.13 glotblastn
    2100 LNU337 cucumber|09v1|CK086034_T1 3546 686 82.87 glotblastn
    2101 LNU337 pigeonpea|10v1|SRR054580S0020598_T1 3547 686 82.52 glotblastn
    2102 LNU337 tomato|09v1|AI488887 3548 686 82.23 glotblastn
    2103 LNU337 eucalyptus|11v1|SRR001659X140003_T1 3549 686 82.21 glotblastn
    2104 LNU337 soybean|gb168|AW693235 3550 686 81.27 glotblastn
    2105 LNU337 amaranthus|10v1|SRR039411S0002870_T1 3551 686 81.17 glotblastn
    2106 LNU337 sunflower|10v1|DY921887_T1 3552 686 81.17 glotblastn
    2107 LNU337 sunflower|gb162|DY921887 3553 686 81.17 glotblastn
    2108 LNU337 solanum_phureja|09v1|SPHBI923775 3554 686 80.55 glotblastn
    2109 LNU337 tomato|09v1|BI923775 3555 686 80.43 glotblastn
    2110 LNU337 triphysaria|10v1|EY168040 3556 686 80.25 glotblastn
    2111 LNU337 bean|gb167|CV538438_T1 3557 686 80.24 glotblastn
    2112 LNU350 wheat|gb164|BE398679 3558 688 99.1 globlastp
    2113 LNU350 pseudoroegneria|gb167|FF340338 3559 688 94.3 globlastp
    2114 LNU350 leymus|gb166|CN466395_P1 3560 688 93.7 globlastp
    2115 LNU350 oat|10v2|GO591066_P1 3561 688 88.1 globlastp
    2116 LNU350 rice|gb170|OS10G35520 3562 688 82.4 globlastp
    2117 LNU369 pseudoroegneria|gb167|FF340190 3563 691 100 glotblastn
    2118 LNU369 barley|10v1|BQ664541 3564 691 96.4 globlastp
    2119 LNU369 barley|10v2|BQ664541_P1 3565 691 95.9 globlastp
    2120 LNU369 brachypodium|09v1|TMPLBQ664541T1_P1 3566 691 95.9 globlastp
    2121 LNU369 millet|09v1|EVO454PM068764 3567 691 91.67 glotblastn
    2122 LNU369 sugarcane|10v1|CA088432 3568 691 89.29 glotblastn
    2123 LNU369 sorghum|09v1|SB03G044420 3569 691 88.1 glotblastn
    2124 LNU369 fescue|gb161|DT686802_P1 3570 691 86.7 globlastp
    2125 LNU369 maize|gb170|EG299620 3571 691 85.12 glotblastn
    2126 LNU369 foxtail_millet|10v2|FXTRMSLX00024110D1_P1 3572 691 85 globlastp
    2127 LNU380 brachypodium|09v1|SRR031795S0001004_T1 3573 695 90.62 glotblastn
    2128 LNU380 oat|10v2|GR352653_P1 3574 695 84.9 globlastp
    2129 LNU380 rice|gb170|OS05G40770 3575 695 82.96 glotblastn
    2130 LNU380 maize|10v1|BQ280303_T1 3576 695 81.11 glotblastn
    2131 LNU380 maize|gb170|BQ280303 3577 695 81.11 glotblastn
    2132 LNU380 sorghum|09v1|SB09G023780 3578 695 80.93 glotblastn
    2133 LNU401 maize|gb170|AI396396 3579 696 92.7 globlastp
    2134 LNU407 wheat|gb164|CA709529 3580 697 96.31 glotblastn
    2135 LNU407 foxtail_millet|10v2|FXTRMSLX00545432D1_T1 3581 697 84.84 glotblastn
    2136 LNU407 millet|10v1|EVO454PM021192_T1 3582 697 82.79 glotblastn
    2137 LNU407 millet|09v1|EVO454PM021192 3583 697 82.79 glotblastn
    2138 LNU407 sorghum|09v1|SB09G023570 3584 697 80.33 glotblastn
    2139 LNU409 wheat|10v2|CA651811_T1 3585 698 96.45 glotblastn
    2140 LNU409 wheat|gb164|CA651811 3585 698 96.45 glotblastn
    2141 LNU409 brachypodium|09v1|SRR031797S0045274_T1 3586 698 89.36 glotblastn
    2142 LNU409 sorghum|09v1|SB09G017200 3587 698 87.94 glotblastn
    2143 LNU409 rice|gb170|OS05G28830 3588 698 80.99 glotblastn
    2144 LNU410 barley|10v1|BF624533 3589 699 96.7 globlastp
    2145 LNU410 barley|10v2|BF624533_P1 3589 699 96.7 globlastp
    2146 LNU414 barley|10v1|BE413415 3590 700 90.91 glotblastn
    2147 LNU414 foxtail_millet|10v2|SICRP039145_T1 3591 700 82.64 glotblastn
    2148 LNU414 switchgrass|gb167|FE635772 3592 700 82.64 glotblastn
    2149 LNU417 millet|09v1|EVO454PM015064 3593 702 84.11 glotblastn
    2150 LNU417 millet|09v1|EVO454PM040968 3594 702 83.3 globlastp
    2151 LNU453 sorghum|09v1|SB10G027370 3595 703 81.46 glotblastn
    2152 LNU457 solanum_phureja|09v1|SPHBQ512773 3596 704 96.34 glotblastn
    2153 LNU457 potato|10v1|GFXAY165021X1_T1 3597 704 84.82 glotblastn
    2154 LNU457 monkeyflower|10v1|MGJGI019441_T1 3598 704 80.63 glotblastn
    2155 LNU466 millet|10v1|EVO454PM011905_T1 3599 705 89.7 glotblastn
    2156 LNU466 millet|09v1|EVO454PM011905 3600 705 88.84 glotblastn
    2157 LNU466 sorghum|09v1|SB08G019390 3601 705 88.84 glotblastn
    2158 LNU466 sugarcane|10v1|CA066125 3602 705 88.41 glotblastn
    2159 LNU466 oat|10v2|GR353248_T1 3603 705 86.38 glotblastn
    2160 LNU466 foxtail_millet|10v2|SICRP027225_T1 3604 705 84.98 glotblastn
    2161 LNU466 maize|10v1|AW179506_T1 3605 705 83.05 glotblastn
    2162 LNU466 maize|gb170|AW179506 3605 705 83.05 glotblastn
    2163 LNU466 switchgrass|gb167|FE654167 3606 705 81.97 glotblastn
    2164 LNU466 pseudoroegneria|gb167|FF351252 3607 705 80.93 glotblastn
    2165 LNU466 fescue|gb161|DT679702_T1 3608 705 80 glotblastn
    2166 LNU474 bean|gb167|CV536461_T1 3609 707 98.36 glotblastn
    2167 LNU474 cowpea|gb166|FC462110_T1 3610 707 98.36 glotblastn
    2168 LNU474 liquorice|gb171|FS241287_T1 3611 707 90.16 glotblastn
    2169 LNU474 lotus|09v1|LLBW600621_T1 3612 707 90.16 glotblastn
    2170 LNU474 peanut|10v1|ES719423_T1 3613 707 88.52 glotblastn
    2171 LNU474 prunus|10v1|DY636612_T1 3614 707 86.89 glotblastn
    2172 LNU474 prunus|gb167|DY636612 3615 707 86.89 glotblastn
    2173 LNU474 apple|gb171|DT003448_T1 3616 707 83.61 glotblastn
    2174 LNU474 clover|gb162|BB909259_T1 3617 707 83.61 glotblastn
    2175 LNU474 nasturtium|10v1|SRR032559S0001264_T1 3618 707 83.61 glotblastn
    2176 LNU474 petunia|gb171|FN012889_T1 3619 707 83.61 glotblastn
    2177 LNU474 clementine|11v1|CF505635_T1 3620 707 81.97 glotblastn
    2178 LNU474 oak|10v1|FP043396_T1 3621 707 81.97 glotblastn
    2179 LNU474 orange|11v1|CF505635_T1 3622 707 81.97 glotblastn
    2180 LNU474 canola|10v1|DY002167_T1 3623 707 81.97 glotblastn
    2181 LNU474 castorbean|09v1|EG665732_T1 3624 707 81.97 glotblastn
    2182 LNU474 citrus|gb166|CF505635_T1 3625 707 81.97 glotblastn
    2183 LNU474 cucumber|09v1|CSCRP015980_T1 3626 707 81.97 glotblastn
    2184 LNU474 thellungiella|gb167|BY828100 3627 707 81.97 glotblastn
    2185 LNU474 arabidopsis_lyrata|09v1|JGIAL011182_T1 3628 707 80.33 glotblastn
    2186 LNU474 arabidopsis|10v1|AT3G24520_T1 3629 707 80.33 glotblastn
    2187 LNU474 chestnut|gb170|SRR006300S0039964_T1 3630 707 80.33 glotblastn
    2188 LNU474 grape|gb160|CB920522_T1 3631 707 80.33 glotblastn
    2189 LNU474 strawberry|11v1|CX309755_T1 3632 707 80.33 glotblastn
    2190 LNU474 strawberry|gb164|EX668883 3633 707 80.33 glotblastn
    2191 LNU487 barley|10v2|BE558461_T1 3634 708 97.73 glotblastn
    2192 LNU500 grape|gb160|CB915642_P1 3635 711 86.8 globlastp
    2193 LNU500 grape|gb160|CB972116_T1 3636 711 86.4 glotblastn
    2194 LNU500 radish|gb164|EV547025 3637 711 85.9 globlastp
    2195 LNU500 orobanche|10v1|SRR023189S0037471_P1 3638 711 85.1 globlastp
    2196 LNU500 clementine|11v1|CX073917_T1 3639 711 85.09 glotblastn
    2197 LNU500 ipomoea_nil|10v1|CJ757665_P1 3640 711 84.9 globlastp
    2198 LNU500 b_juncea|10v2|CK991428_T1 3641 711 84.65 glotblastn
    2199 LNU500 cacao|10v1|CU499397_T1 3642 711 84.65 glotblastn
    2200 LNU500 pigeonpea|10v1|SRR054580S0019557_T1 3643 711 84.65 glotblastn
    2201 LNU500 cotton|10v2|SRR032367S0333890_T1 3644 711 84.65 glotblastn
    2202 LNU500 spurge|gb161|DV119836 3645 711 84.4 globlastp
    2203 LNU500 arabidopsis|10v1|AT5G11880_T1 3646 711 84.21 glotblastn
    2204 LNU500 artemisia|10v1|EY080298_T1 3647 711 84.21 glotblastn
    2205 LNU500 artemisia|10v1|EY080299_T1 3648 711 84.21 glotblastn
    2206 LNU500 cleome_gynandra|10v1|SRR015532S0016904_T1 3649 711 84.21 glotblastn
    2207 LNU500 soybean|11v1|GLYMA13G20390_T1 3650 711 84.21 glotblastn
    2208 LNU500 soybean|gb168|AL372335 3650 711 84.21 glotblastn
    2209 LNU500 radish|gb164|EX769006 3651 711 83.93 glotblastn
    2210 LNU500 amaranthus|10v1|SRR039411S0005472_T1 3652 711 83.77 glotblastn
    2211 LNU500 arabidopsis_lyrata|09v1|JGIAL020888_T1 3653 711 83.77 glotblastn
    2212 LNU500 artemisia|10v1|EY072335_T1 3654 711 83.77 glotblastn
    2213 LNU500 canola|10v1|CD822749_T1 3655 711 83.77 glotblastn
    2214 LNU500 cleome_spinosa|10v1|SRR015531S0019032_T1 3656 711 83.33 glotblastn
    2215 LNU500 cowpea|gb166|FC461450_T1 3657 711 83.33 glotblastn
    2216 LNU500 momordica|10v1|SRR071315S0003699_T1 3658 711 83.04 glotblastn
    2217 LNU500 cynara|gb167|GE579895_T1 3659 711 82.89 glotblastn
    2218 LNU500 sunflower|10v1|CX947049_T1 3660 711 82.89 glotblastn
    2219 LNU500 clover|gb162|BB905074_P1 3661 711 82.3 globlastp
    2220 LNU500 aristolochia|10v1|SRR039082S0276748_T1 3662 711 82.02 glotblastn
    2221 LNU500 papaya|gb165|EX238932_T1 3663 711 82.02 glotblastn
    2222 LNU500 prunus|gb167|BU041335 3664 711 82.02 glotblastn
    2223 LNU500 lotus|09v1|LLCB826869_P1 3665 711 81.8 globlastp
    2224 LNU500 strawberry|11v1|GT150985_T1 3666 711 81.58 glotblastn
    2225 LNU500 apple|gb171|CN877675_T1 3667 711 81.58 glotblastn
    2226 LNU500 peanut|10v1|EG029135_T1 3668 711 81.14 glotblastn
    2227 LNU500 peanut|gb171|EG029135 3669 711 81.14 glotblastn
    2228 LNU500 radish|gb164|EW714733 3670 711 80.5 globlastp
    2229 LNU506 solanum_phureja|09v1|SPHAI490778 3671 713 92.7 globlastp
    2230 LNU310 solanum_phureja|09v1|SPHBG133786 3672 721 97 globlastp
    2231 LNU310 potato|10v1|BI177611_P1 3673 721 96.3 globlastp
    2232 LNU310 eggplant|10v1|FS048892_P1 3674 721 93.3 globlastp
    2233 LNU323 solanum_phureja|09v1|SPHBG626676 3675 722 86.72 glotblastn
    2234 LNU323 potato|10v1|CV502122_P1 3676 722 86.7 globlastp
    2235 LNU323 solanum_phureja|09v1|SPHBG631554 3677 722 85.16 glotblastn
    2236 LNU326 potato|10v1|BG589666_P1 3678 724 95.3 globlastp
    2237 LNU326 solanum_phureja|09v1|SPHBG126891 3679 724 94.7 globlastp
    2238 LNU326 eggplant|10v1|FS016668_P1 3680 724 86.3 globlastp
    2239 LNU326 pepper|gb171|AA840658_P1 3681 724 86.1 globlastp
    2240 LNU326 tobacco|gb162|AJ718732 3682 724 82.66 glotblastn
    2241 LNU326 nicotiana_benthamiana|gb162| 3683 724 80.79 glotblastn
    CN743291_T1
    2242 LNU329 potato|10v1|BG589552_P1 3684 726 94.6 globlastp
    2243 LNU329 solanum_phureja|09v1|SPHBG791244 3685 726 94.6 globlastp
    2244 LNU329 pepper|gb171|CA518152_P1 3686 726 86.3 globlastp
    2245 LNU329 petunia|gb171|DW177095_T1 3687 726 81.65 glotblastn
    2246 LNU331 nicotiana_benthamiana|gb162| 3688 727 89.6 globlastp
    CK290936_P1
    2247 LNU335 oat|10v2|CN814905_P1 3689 728 83 globlastp
    2248 LNU350 barley|10v1|BE216626 3690 732 94.7 globlastp
    2249 LNU350 barley|10v2|BE216626_P1 3690 732 94.7 globlastp
    2250 LNU350 brachypodium|09v1|GT819129_P1 3691 732 86.4 globlastp
    2251 LNU350 sorghum|09v1|SB05G003700 3692 732 86.1 globlastp
    2252 LNU350 sugarcane|10v1|CA073962 3693 732 85.2 globlastp
    2253 LNU360 wheat|10v2|BQ905138_P1 3694 733 84.2 globlastp
    2254 LNU360 wheat|gb164|BQ905138 3694 733 84.2 globlastp
    2255 LNU360 barley|10v1|BE421126 3695 733 83.3 globlastp
    2256 LNU360 barley|10v2|BE421126_P1 3695 733 83.3 globlastp
    2257 LNU360 wheat|10v2|BF478587_P1 3696 733 83.3 globlastp
    2258 LNU360 wheat|gb164|BF478587 3696 733 83.3 globlastp
    2259 LNU360 wheat|10v2|BE418197_P1 3697 733 83.3 globlastp
    2260 LNU360 wheat|gb164|BE418197 3697 733 83.3 globlastp
    2261 LNU360 pseudoroegneria|gb167|FF341642 3698 733 82.9 globlastp
    2262 LNU368 wheat|10v2|BE400013_P1 3699 735 96 globlastp
    2263 LNU368 leymus|gb166|EG394955_P1 3700 735 94.4 globlastp
    2264 LNU368 wheat|gb164|BE400013 3701 735 89.7 globlastp
    2265 LNU368 barley|10v1|BE421103 3702 735 89.1 globlastp
    2266 LNU368 barley|10v2|BE421103_P1 3702 735 89.1 globlastp
    2267 LNU368 pseudoroegneria|gb167|FF346438 3703 735 86.8 globlastp
    2268 LNU372 leymus|gb166|EG379844_P1 3704 737 88.6 globlastp
    2269 LNU384 solanum_phureja|09v1|SPHAI482780 3705 741 94.9 globlastp
    2270 LNU384 tobacco|gb162|EB444563 3706 741 80.1 globlastp
    2271 LNU397 sugarcane|10v1|CA114434 3707 745 91.6 globlastp
    2272 LNU397 maize|10v1|AI691183_P1 3708 745 91.1 globlastp
    2273 LNU397 maize|gb170|AI691183 3708 745 91.1 globlastp
    2274 LNU401 switchgrass|gb167|FE645149_P1 3709 746 80.7 globlastp
    2275 LNU407 wheat|10v2|BQ245199_P1 3710 749 97.3 globlastp
    2276 LNU407 brachypodium|09v1|DV473592_P1 3711 749 89.9 globlastp
    2277 LNU407 sorghum|09v1|SB03G038110 3712 749 86 globlastp
    2278 LNU407 rice|gb170|OS01G60330 3713 749 84.8 globlastp
    2279 LNU407 maize|10v1|DN559520_P1 3714 749 83.9 globlastp
    2280 LNU407 maize|gb170|DN559520 3714 749 83.9 globlastp
    2281 LNU407 maize|10v1|AI621549_P1 3715 749 83.2 globlastp
    2282 LNU416 b_rapa|gb162|BG543823_P1 754 754 100 globlastp
    2283 LNU416 canola|10v1|CD827516_P1 754 754 100 globlastp
    2284 LNU416 b_oleracea|gb161|AM396074_P1 3716 754 95.9 globlastp
    2285 LNU416 canola|10v1|EV117448_T1 3717 754 86.59 glotblastn
    2286 LNU416 canola|10v1|CD818961_P1 3718 754 85.7 globlastp
    2287 LNU416 b_oleracea|gb161|DQ059298_P1 3719 754 85.1 globlastp
    2288 LNU416 canola|10v1|CD834758_P1 3720 754 81 globlastp
    2289 LNU419 solanum_phureja|09v1|SPHBG132251 3721 755 99.5 globlastp
    2290 LNU419 potato|10v1|BE922576_P1 3722 755 99.2 globlastp
    2291 LNU419 solanum_phureja|09v1|SPHBE922576 3723 755 97.9 globlastp
    2292 LNU419 tobacco|gb162|AB004307 3724 755 95.2 globlastp
    2293 LNU419 nicotiana_benthamiana|gb162| 3725 755 94.7 globlastp
    CK295383_P1
    2294 LNU419 eggplant|10v1|FS003533_P1 3726 755 93.9 globlastp
    2295 LNU419 pepper|gb171|AF108885_P1 3727 755 89.3 globlastp
    2296 LNU419 cucumber|09v1|AM714300_P1 3728 755 83.6 globlastp
    2297 LNU419 bean|gb167|CA901472_P1 3729 755 83.6 globlastp
    2298 LNU419 cowpea|gb166|FF390066_P1 3730 755 83.6 globlastp
    2299 LNU419 melon|10v1|AM714300_P1 3731 755 83.4 globlastp
    2300 LNU419 eucalyptus|11v1|CT981021_P1 3732 755 83.3 globlastp
    2301 LNU419 momordica|10v1|SRR071315S0000520_P1 3733 755 83.3 globlastp
    2302 LNU419 melon|gb165|AM714300 3734 755 83.1 globlastp
    2303 LNU419 pigeonpea|10v1|SRR054580S0001030_P1 3735 755 82.8 globlastp
    2304 LNU419 peanut|10v1|CD038560_P1 3736 755 82.5 globlastp
    2305 LNU419 soybean|11v1|GLYMA15G13680_P1 3737 755 82.5 globlastp
    2306 LNU419 soybean|gb168|BE352683 3737 755 82.5 globlastp
    2307 LNU419 orange|11v1|CF504082_P1 3738 755 82.3 globlastp
    2308 LNU419 peanut|10v1|GO326838_P1 3739 755 82.2 globlastp
    2309 LNU419 prunus|10v1|CN488554_P1 3740 755 82 globlastp
    2310 LNU419 cassava|09v1|DV441828_P1 3741 755 82 globlastp
    2311 LNU419 castorbean|09v1|EE256160_P1 3742 755 82 globlastp
    2312 LNU419 oak|10v1|FN696815_P1 3743 755 81.7 globlastp
    2313 LNU419 cassava|09v1|CK650384_P1 3744 755 81.7 globlastp
    2314 LNU419 soybean|11v1|GLYMA09G02800_P1 3745 755 81.7 globlastp
    2315 LNU419 soybean|gb168|AW171758 3745 755 81.7 globlastp
    2316 LNU419 apple|gb171|CN488554_P1 3746 755 81.5 globlastp
    2317 LNU419 kiwi|gb166|FG409924_P1 3747 755 81.4 globlastp
    2318 LNU419 aristolochia|10v1|FD759327_P1 3748 755 81.2 globlastp
    2319 LNU419 nasturtium|10v1|GH170410_T1 3749 755 80.95 glotblastn
    2320 LNU419 cotton|10v1|BF269486 3750 755 80.6 globlastp
    2321 LNU419 tragopogon|10v1|SRR020205S0004523 3751 755 80.6 globlastp
    2322 LNU419 aquilegia|10v2|DR925602_P1 3752 755 80.4 globlastp
    2323 LNU419 poplar|10v1|BI072464_P1 3753 755 80.4 globlastp
    2324 LNU419 prunus|gb167|CV044964 3754 755 80.37 glotblastn
    2325 LNU419 artemisia|10v1|EY066317_T1 3755 755 80.16 glotblastn
    2326 LNU419 orobanche|10v1|SRR023189S0003219_P1 3756 755 80.1 globlastp
    2327 LNU419 cotton|10v2|BF275008_P1 3757 755 80.1 globlastp
    2328 LNU439 maize|gb170|AW574419 3758 757 87.8 globlastp
    2329 LNU442 solanum_phureja|09v1|SPHAW735755 3759 758 94.5 globlastp
    2330 LNU444 cacao|10v1|CA795284_P1 3760 759 87.8 globlastp
    2331 LNU444 cacao|gb167|CA795284 3760 759 87.8 globlastp
    2332 LNU444 poplar|10v1|AI162462_P1 3761 759 85.8 globlastp
    2333 LNU444 oak|10v1|FP024990_P1 3762 759 84.6 globlastp
    2334 LNU444 oak|10v1|FP025793_P1 3762 759 84.6 globlastp
    2335 LNU444 papaya|gb165|EX260629_P1 3763 759 84.5 globlastp
    2336 LNU444 cassava|09v1|CK641349_P1 3764 759 83.8 globlastp
    2337 LNU444 flax|09v1|EU829138_P1 3765 759 83.6 globlastp
    2338 LNU444 flax|09v1|CV478267_P1 3766 759 82.7 globlastp
    2339 LNU444 nasturtium|10v1|SRR032558S0005447_P1 3767 759 81.9 globlastp
    2340 LNU444 bruguiera|gb166|BP939110_P1 3768 759 80.5 globlastp
    2341 LNU444 prunus|10v1|CN491505_P1 3769 759 80.4 globlastp
    2342 LNU444 chickpea|09v2|EL585362_P1 3770 759 80.1 globlastp
    2343 LNU450 cacao|10v1|CU471751_P1 3771 763 93 globlastp
    2344 LNU450 cassava|09v1|JGICASSAVA878VALIDM1_P1 3772 763 86.1 globlastp
    2345 LNU450 castorbean|09v1|XM002510536_P1 3773 763 83.1 globlastp
    2346 LNU450 grape|gb160|CB007771_P1 3774 763 82.8 globlastp
    2347 LNU450 orange|11v1|CX546774_P1 3775 763 81.9 globlastp
    2348 LNU450 clementine|11v1|CX546774_P1 3776 763 81.4 globlastp
    2349 LNU450 tea|10v1|CV699613 3777 763 81.4 globlastp
    2350 LNU450 prunus|10v1|CB823756_P1 3778 763 80.3 globlastp
    2351 LNU450 eucalyptus|11v1|CD670135_P1 3779 763 80 globlastp
    2352 LNU461 solanum_phureja|09v1|SPHAI483350 3780 766 96.8 globlastp
    2353 LNU465 maize|gb170|LLEY954018 3781 768 81.1 globlastp
    2354 LNU468 eggplant|10v1|FS007833_P1 3782 769 94.2 globlastp
    2355 LNU470 wheat|10v2|CJ925970_P1 3783 770 94.4 globlastp
    2356 LNU470 oat|10v2|GR345351_P1 3784 770 84.9 globlastp
    2357 LNU470 oat|10v1|GR345351 3784 770 84.9 globlastp
    2358 LNU471 sugarcane|10v1|CA095155_P1 3785 771 80.1 globlastp
    2359 LNU472 brachypodium|09v1|SRR031796S0007593_P1 3786 772 88.6 globlastp
    2360 LNU472 rice|gb170|OS04G58380 3787 772 85 globlastp
    2361 LNU472 switchgrass|gb167|FL771162 3788 772 83.8 globlastp
    2362 LNU472 maize|10v1|AW927938_P1 3789 772 81.4 globlastp
    2363 LNU472 maize|gb170|AW927938 3789 772 81.4 globlastp
    2364 LNU472 sugarcane|10v1|CA231840 3790 772 80.7 globlastp
    2365 LNU474 soybean|11v1|GLYMA07G09520_P1 3791 773 99.7 globlastp
    2366 LNU474 soybean|gb168|BE347442 3792 773 88.8 globlastp
    2367 LNU474 soybean|11v1|GLYMA09G32300_P1 3793 773 88.5 globlastp
    2368 LNU476 maize|10v1|AW461103_P1 3794 774 92.5 globlastp
    2369 LNU476 maize|gb170|AW461103 3794 774 92.5 globlastp
    2370 LNU476 sugarcane|10v1|CA067184 3795 774 90.4 globlastp
    2371 LNU476 sorghum|09v1|SB02G036750 3796 774 89.8 globlastp
    2372 LNU476 foxtail_millet|10v2|OXFXTRMSLX00112582D1T1_P1 3797 774 85.5 globlastp
    2373 LNU476 millet|10v1|CD725707_T1 3798 774 84.29 glotblastn
    2374 LNU476 switchgrass|gb167|DN148685 3799 774 82.2 globlastp
    2375 LNU495 maize|10v1|AI622661_P1 3800 777 92.1 globlastp
    2376 LNU495 maize|10v1|BG321733_P1 3801 777 90.6 globlastp
    2377 LNU495 brachypodium|09v1|GT758308_P1 3802 777 84.3 globlastp
    2378 LNU495 barley|10v2|BJ451039_P1 3803 777 83 globlastp
    2379 LNU499 wheat|gb164|BE497147 3804 779 92.8 globlastp
    2380 LNU504 arabidopsis_lyrata|09v1|JGIAL012450_T1 3805 780 91.49 glotblastn
    2381 LNU507 barley|10v2|BF629582_P1 3806 781 97.8 globlastp
    2382 LNU507 wheat|10v2|BE401116_P1 3807 781 90 globlastp
    2383 LNU507 wheat|gb164|BE401116 3807 781 90 globlastp
    2384 LNU507 wheat|gb164|BE425320 3808 781 89.6 globlastp
    2385 LNU507 leymus|gb166|CN466143_P1 3809 781 89.6 globlastp
    2386 LNU507 wheat|10v2|BE425320_P1 3808 781 89.6 globlastp
    2387 LNU507 wheat|gb164|BE426025 3810 781 88.93 glotblastn
    2388 LNU507 wheat|gb164|BE414564 3811 781 83.9 globlastp
    2389 LNU507 wheat|10v2|BE414564_P1 3812 781 82.9 globlastp
    2390 LNU507 wheat|10v2|BE399826_P1 3813 781 82.5 globlastp
    2391 LNU507 wheat|gb164|BE399826 3813 781 82.5 globlastp
    2392 LNU517 soybean|11v1|GLYMA16G08470_P1 3814 783 92.7 globlastp
    2393 LNU517 soybean|gb168|BF643214 3814 783 92.7 globlastp
    2394 LNU519 sorghum|09v1|SB04G038440 3815 784 92.5 globlastp
    2395 LNU519 rice|gb170|OS02G58510 3816 784 84.9 globlastp
    2396 LNU519 switchgrass|gb167|FL698539 3817 784 82.2 globlastp
    2397 LNU519 brachypodium|09v1|GT761258_P1 3818 784 81.1 globlastp
    Table 2: Provided are the homologous polypeptides and polynucleotides of the genes identified in Table 1 and of their cloned genes, which can increase nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber quality, fiber length, abiotic stress tolerance and/or water use efficiency of a plant. Homology was calculated as % of identity over the aligned sequences. The query sequences were polypeptide sequences SEQ ID NOs: 470-716 and 717-784 and the subject sequences are polypeptide sequences or polynucleotide sequences which were dynamically translated in all six reading frames identified in the database based on greater than 80% identity to the query polypeptide sequences.
    “Polyp.” = polypeptide;
    “Polyn.”—Polynucleotide.
    Algor. = Algorithm.
    “globlastp”—global homology using blastp;
    “glotblastn”—global homology using tblastn.
    “Hom.”—homologous.
  • The output of the functional genomics approach described herein is a set of genes highly predicted to improve nitrogen use efficiency, fertilizer use efficiency, yield, seed yield, growth rate, vigor, biomass, oil content, fiber yield, fiber length, fiber quality, abiotic stress tolerance and/or water use efficiency of a plant by increasing their expression.
  • Although each gene is predicted to have its own impact, modifying the mode of expression of more than one gene or gene product (RNA, polypeptide) is expected to provide an additive or synergistic effect on the desired trait (e.g., nitrogen use efficiency, fertilizer use efficiency, yield, growth rate, vigor, biomass, oil content, abiotic stress tolerance and/or water use efficiency of a plant). Altering the expression of each gene described here alone or of a set of genes together increases the overall yield and/or other agronomic important traits, hence expects to increase agricultural productivity.
  • Example 3 Production of Arabidopsis Transcriptome and High Throughput Correlation Analysis Using 44K Arabidopsis Oligonucleotide Micro-Array
  • In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Arabidopsis oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 Arabidopsis genes and transcripts. To define correlations between the levels of RNA expression with NUE, yield components or vigor related parameters various plant characteristics of 14 different Arabidopsis ecotypes were analyzed. Among them, ten ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Experimental Procedures
  • Analyzed Arabidopsis tissues—Two tissues of plants [leaves and stems] growing at two different nitrogen fertilization levels (1.5 mM Nitrogen or 6 mM Nitrogen) were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized Table 3 below.
  • TABLE 3
    Arabidopsis transcriptom expression sets
    Expression Set Set ID
    Leaves at 1.5 mM Nitrogen fertilization A
    Leaves at 6 mM Nitrogen fertilization B
    Stems at 1.5 mM Nitrogen fertilization C
    Stem at 6 mM Nitrogen fertilization D
    Table 3.
  • Arabidopsis yield components and vigor related parameters under different nitrogen fertilization levels assessment—10 Arabidopsis accessions in 2 repetitive plots each containing 8 plants per plot were grown in a greenhouse. The growing protocol used was as follows: surface sterilized seeds were sown in Eppendorf tubes containing 0.5× Murashige-Skoog basal salt medium and grown at 23° C. under 12-hour light and 12-hour dark daily cycles for 10 days. Then, seedlings of similar size were carefully transferred to pots filled with a mix of perlite and peat in a 1:1 ratio. Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 2 mM CaCl2), 1.25 mM KH2PO4, 1.50 mM MgSO4, 5 mM KCl, 0.01 mM H3BO3 and microelements, while normal irrigation conditions was achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3, supplemented with 2 mM CaCl2), 1.25 mM KH2PO4, 1.50 mM MgSO4, 0.01 mM H3B03 and microelements. To follow plant growth, trays were photographed the day nitrogen limiting conditions were initiated and subsequently every 3 days for about 15 additional days. Rosette plant area was then determined from the digital pictures. ImageJ software was used for quantifying the plant size from the digital pictures [Hypertext Transfer Protocol://rsb (dot) info (dot) nih (dot) gov/ij/] utilizing proprietary scripts designed to analyze the size of rosette area from individual plants as a function of time. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbwNb (dot) nih (dot) gov]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Data parameters collected are summarized in Table 4, herein below.
  • TABLE 4
    Arabidopsis correlated parameters (vectors)
    Correlated parameter with Correlation Id
    N 1.5 mM; Rosette Area at day 8 [cm2] 1
    N 1.5 mM; Rosette Area at day 10 [cm2] 2
    N 1.5 mM; Plot Coverage at day 8 [%] 3
    N 1.5 mM; Plot Coverage at day 10 [%] 4
    N 1.5 mM; Leaf Number at day 10 5
    N 1.5 mM; Leaf Blade Area at day 10 [cm2] 6
    N 1.5 mM; RGR of Rosette Area at day 3 [cm2/day] 7
    N 1.5 mM; t50 Flowering [day] 8
    N 1.5 mM; Dry Weight [gr./plant] 9
    N 1.5 mM; Seed Yield [gr./plant] 10
    N 1.5 mM; Harvest Index 11
    N 1.5 mM; 1000 Seeds weight [gr.] 12
    N 1.5 mM; seed yield/rosette area at day 10 [gr./cm2] 13
    N 1.5 mM; seed yield/leaf blade [gr./cm2] 14
    N 1.5 mM; % Seed yield reduction compared to N 6 mM 15
    N 1.5 mM; % Biomass reduction compared to N 6 mM 16
    N 1.5 mM; N level/DW [SPAD unit/gr.] 17
    N 1.5 mM; DW/N level [gr./SPAD unit] 18
    N 1.5 mM; seed yield/N level [gr./SPAD unit] 19
    N 6 mM; Rosette Area at day 8 [cm2] 20
    N 6 mM; Rosette Area at day 10 [cm2] 21
    N 6 mM; Plot Coverage at day 8 [%] 22
    N 6 mM; Plot Coverage at day 10 [%] 23
    N 6 mM; Leaf Number at day 10 24
    N 6 mM; Leaf Blade Area at day 10 25
    N 6 mM; RGR of Rosette Area at day 3 [cm2/gr.] 26
    N 6 mM; t50 Flowering [day] 27
    N 6 mM; Dry Weight [gr./plant] 28
    N 6 mM; Seed Yield [gr./plant] 29
    N 6 mM; Harvest Index 30
    N 6 mM; 1000 Seeds weight [gr.] 31
    N 6 mM; seed yield/rosette area day at day 10 [gr./cm2] 32
    N 6 mM; seed yield/leaf blade [gr./cm2] 33
    N 6 mM; N level/FW 34
    N 6 mM; DW/N level [gr./SPAD unit] 35
    N 6 mM; N level/DW (SPAD unit/gr. plant) 36
    N 6 mM; Seed yield/N unit [gr./SPAD unit] 37
    Table 4. “N” = Nitrogen at the noted concentrations;
    “cm” = centimeter;
    “mM” = millimolar;
    “gr.” = grams;
    “SPAD” = chlorophyll levels;
    “t50” = time where 50% of plants flowered;
    “gr./SPAD unit” = plant biomass expressed in grams per unit of nitrogen in plant measured by SPAD.
    “DW” = plant dry weight;
    “N level/DW” = plant Nitrogen level measured in SPAD unit per plant biomass [gr.];
    “DW/N level” = plant biomass per plant [gr.]/SPAD unit;
    RGR = relative growth rate;
  • Assessment of NUE, yield components and vigor-related parameters—Ten Arabidopsis ecotypes were grown in trays, each containing 8 plants per plot, in a greenhouse with controlled temperature conditions for about 12 weeks. Plants were irrigated with different nitrogen concentration as described above depending on the treatment applied. During this time, data was collected documented and analyzed. Most of chosen parameters were analyzed by digital imaging.
  • Digital Imaging—Greenhouse Assay
  • An image acquisition system, which consists of a digital reflex camera (Canon EOS 400D) attached with a 55 mm focal length lens (Canon EF-S series) placed in a custom made Aluminum mount, was used for capturing images of plants planted in containers within an environmental controlled greenhouse. The image capturing process is repeated every 2-3 days starting at day 9-12 till day 16-19 (respectively) from transplanting.
  • An image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, leaf blade area. Rosette diameter and area.
  • Relative growth area rate: The relative growth rate of the rosette and the leaves was calculated according to Formulas V and VI:

  • Relative growth rate rosette area=Regression coefficient of rosette area along time course  Formula V

  • Relative growth rate of leaves area=Regression coefficient of leaves area along time course  Formula VI
  • Seed yield and 1000 seeds weight—At the end of the experiment all seeds from all plots were collected and weighed in order to measure seed yield per plant in terms of total seed weight per plant (gr). For the calculation of 1000 seed weight, an average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
  • Dry weight and seed yield—At the end of the experiment, plant were harvested and left to dry at 30° C., in a drying chamber. The biomass was separated from the seeds, weighed and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C., in a drying chamber.
  • Harvest Index—The harvest index was calculated using Formula IV as described above.
  • T50 days to flowering—Each of the repeats was monitored for flowering date. Days of flowering was calculated from sowing date till 50% of the plots flowered.
  • Plant nitrogen level—The chlorophyll content of leaves is a good indicator of the nitrogen plant status since the degree of leaf greenness is highly correlated to this parameter. Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaves. Three measurements per leaf were taken per plot. Based on this measurement, parameters such as the ratio between seed yield per nitrogen unit [seed yield/N level=seed yield per plant [gr]/SPAD unit], plant DW per nitrogen unit [DW/N level=plant biomass per plant [g]/SPAD unit], and nitrogen level per gram of biomass [N level/DW=SPAD unit/plant biomass per plant (gr)] were calculated.
  • Percent of seed yield reduction—measures the amount of seeds obtained in plants when grown under nitrogen-limiting conditions compared to seed yield produced at normal nitrogen levels expressed in percentages (%).
  • Experimental Results
  • 10 different Arabidopsis accessions (ecotypes) were grown and characterized for 37 parameters as described above. The average for each of the measured parameters was calculated using the JMP software and values are summarized in Table 5 below. Subsequent correlation analysis between the various transcriptome sets (Table 3) and the measured parameters was conducted (Table 6 below). Following are the results integrated to the database.
  • TABLE 5
    Measured parameters in Arabidopsis accessions
    Ecotype/
    Treatment Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line- 7 Line-8 Line-9 Line-10
    N 1.5 mM; 0.760 0.709 1.061 1.157 0.996 1.000 0.910 0.942 1.118 0.638
    Rosette Area
    at day 8
    N 1.5 mM; 1.430 1.325 1.766 1.971 1.754 1.832 1.818 1.636 1.996 1.150
    Rosette Area
    at day 10
    N 1.5 mM; 3.221 3.003 4.497 4.902 4.220 4.238 3.858 3.990 4.738 2.705
    Plot
    Coverage %
    at day 8
    N 1.5 mM; 6.058 5.614 7.484 8.351 7.432 7.764 7.702 6.933 8.458 4.871
    Plot
    Coverage %
    at day 10
    N 1.5 mM; 6.875 7.313 7.313 7.875 7.938 7.750 7.625 7.188 8.625 5.929
    Leaf
    Number at
    day 10
    N 1.5 mM; 0.335 0.266 0.374 0.387 0.373 0.370 0.386 0.350 0.379 0.307
    Leaf Blade
    Area at day
    10
    N 1.5 mM; 0.631 0.793 0.502 0.491 0.605 0.720 0.825 0.646 0.668 0.636
    RGR of
    Rosette Area
    at day 3
    N 1.5 mM; 15.967 20.968 14.836 24.708 23.566 23.698 18.059 19.488 23.568 21.888
    t50
    Flowering
    [day]
    N 1.5 mM; 0.164 0.124 0.082 0.113 0.184 0.124 0.134 0.106 0.148 0.171
    Dry Weight
    [gr/plant]
    N 1.5 mM; 0.032 0.025 0.023 0.010 0.006 0.009 0.032 0.019 0.012 0.014
    Seed Yield
    [gr/plant]
    N 1.5 mM; 0.192 0.203 0.295 0.085 0.031 0.071 0.241 0.179 0.081 0.079
    Harvest
    Index
    N 1.5 mM; 0.016 0.016 0.018 0.014 0.018 0.022 0.015 0.014 0.022 0.019
    1000 Seeds
    weight[gr]
    N 1.5 mM; 0.022 0.019 0.014 0.005 0.003 0.005 0.018 0.013 0.007 0.012
    seed yield/
    rosette area
    day at day
    10
    N 1.5 mM; 0.095 0.095 0.063 0.026 0.015 0.024 0.084 0.059 0.034 0.044
    seed
    yield/leaf
    blade
    N 1.5 mM; 72.559 84.701 78.784 87.996 91.820 92.622 76.710 81.938 91.301 85.757
    % Seed yield
    reduction
    compared to
    6 mM
    N 1.5 mM; 60.746 76.706 78.560 78.140 62.972 78.641 73.192 83.068 77.190 70.120
    % Biomass
    reduction
    compared to
    6 mM
    N 1.5 mM; 45.590 42.108 28.151 53.111 67.000
    Spad/FW
    N1.5 mM; 167.300 241.061 157.823 194.977 169.343
    SPAD/DW
    N 1.5 mM; 0.006 0.004 0.006 0.005 0.006
    DW/SPAD
    N 1.5 mM; 0.001 0.000 0.000 0.001 0.000
    seed
    yield/spad
    N 6 mM; 0.759 0.857 1.477 1.278 1.224 1.095 1.236 1.094 1.410 0.891
    Rosette Area
    at day 8
    N 6 mM; 1.406 1.570 2.673 2.418 2.207 2.142 2.474 1.965 2.721 1.642
    Rosette Area
    at day 10
    N 6 mM; 3.216 3.631 6.259 5.413 5.187 4.641 5.236 4.634 5.974 3.774
    Plot
    Coverage %
    at day 8
    N 6 mM; 5.957 6.654 11.324 10.244 9.352 9.076 10.485 8.327 11.528 6.958
    Plot
    Coverage %
    at day 10
    N 6 mM; 6.250 7.313 8.063 8.750 8.063 8.750 8.375 7.125 9.438 6.313
    Leaf
    Number at
    day 10
    N 6 mM; 0.342 0.315 0.523 0.449 0.430 0.430 0.497 0.428 0.509 0.405
    Leaf Blade
    Area at day
    10
    N 6 mM; 0.689 1.024 0.614 0.601 0.477 0.651 0.676 0.584 0.613 0.515
    RGR of
    Rosette Area
    at day 3
    N 6 mM; t50 16.371 20.500 14.635 24.000 23.378 23.595 15.033 19.750 22.887 18.804
    Flowering
    [day]
    N 6 mM; 0.419 0.531 0.382 0.518 0.496 0.579 0.501 0.628 0.649 0.573
    Dry Weight
    [gr/plant]
    N 6 mM; 0.116 0.165 0.108 0.082 0.068 0.119 0.139 0.107 0.138 0.095
    Seed Yield
    [gr/plant]
    N 6 mM; 0.280 0.309 0.284 0.158 0.136 0.206 0.276 0.171 0.212 0.166
    Harvest
    Index
    N 6 mM; 0.015 0.017 0.018 0.012 0.016 0.016 0.015 0.014 0.017 0.016
    1000 Seeds
    weight[gr]
    N 6 mM; 0.082 0.106 0.041 0.034 0.031 0.056 0.057 0.055 0.051 0.058
    seed yield/
    rosette area
    day at day
    10
    N 6 mM; 0.339 0.526 0.207 0.183 0.158 0.277 0.281 0.252 0.271 0.235
    seed
    yield/leaf
    blade
    N 6 mM; 22.489 28.268 17.641 33.323 39.003
    Spad / FW
    N 6 mM; 0.019 0.018 0.028 0.015 0.015
    DW/SPAD
    (biomass/N
    unit)
    N 6 mM; 53.705 54.625 35.548 66.479 68.054
    spad/DW
    (gN/g plant)
    N 6 mM; 0.004 0.003 0.002 0.005 0.003
    Seed yield/N
    unit
    Table 5. Provided are the measured parameters under various treatments in various ecotypes (Arabidopsis accessions).
  • TABLE 6
    Correlation between the expression level of selected LNU genes of some embodiments of the
    invention in various tissues and the phenotypic performance under normal or low nitrogen
    fertilization conditions across Arabidopsis accessions
    Gene P Exp. Corr. Gene P Exp. Corr.
    Name R value set Set ID Name R value set Set ID
    LNU512 0.79 0.0063 B 12 LNU306 0.74 0.0150 B 11
    LNU382 0.80 0.0053 B 12 LNU424 0.90 0.0004 A 27
    LNU382 0.71 0.0218 A 5 LNU424 0.88 0.0008 A 8
    LNU308 0.79 0.0065 A 31 LNU424 0.86 0.0012 A 15
    LNU308 0.83 0.0052 D 31 LNU424 0.78 0.0125 D 5
    LNU308 0.81 0.0046 C 31
    Table 6. “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 4 Production of Rice Transcriptome Using 44K Rice Oligonucleotide Micro-Array
  • In order to produce differential expression analysis of rice plants subjected to nitrogen limiting conditions compared to normal (non-limiting) nitrogen conditions, the present inventors have utilized a Rice oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 rice genes and transcripts.
  • Experimental Procedures
  • Rice plants grown under different nitrogen fertilization levels assessment—Five rice accessions were grown in 3 repetitive plots, each containing 10 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Rice seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Constant nitrogen limiting conditions were achieved by irrigating the plants with a solution containing 0.8 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM K2SO4 and microelements, while normal nitrogen levels were achieved by applying a solution of 8 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, and microelements.
  • Analyzed rice tissues—All 5 selected rice varieties were pooled in 1 batch per each treatment. Two tissues [leaves and roots] growing at two different nitrogen fertilization levels, 0.8 mM Nitrogen (nitrogen limiting conditions) or 8 mM Nitrogen (normal nitrogen conditions) were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 7 below.
  • TABLE 7
    Rice transcriptom expression sets
    Expression Set Set ID
    Leaves at 0.8 mM Nitrogen fertilization A
    Leaves at 8 mM Nitrogen fertilization B
    Roots at 0.8 mM Nitrogen fertilization C
    Roots at 8 mM Nitrogen fertilization D
    Table 7.
  • Experimental Results
  • Gene up-regulation under reduced nitrogen fertilization levels indicates the involvement of the genes in NUE improvement.
  • Example 5 Production of Arabidopsis Transcriptome and High Throughput Correlation Analysis of Yield, Biomass and/or Vigor Related Parameters Using 44K Arabidopsis Full Genome Oligonucleotide Micro-Array
  • To produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized an Arabidopsis thaliana oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 A. thaliana genes and transcripts designed based on data from the TIGR ATH1 v. 5 database and Arabidopsis MPSS (University of Delaware) databases. To define correlations between the levels of RNA expression and yield, biomass components or vigor related parameters, various plant characteristics of 15 different Arabidopsis ecotypes were analyzed. Among them, nine ecotypes encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Experimental Procedures
  • Analyzed Arabidopsis tissues—Five tissues at different developmental stages including root, leaf, flower at anthesis, seed at 5 days after flowering (DAF) and seed at 12 DAF, representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 8 below.
  • TABLE 8
    Tissues used for Arabidopsis transcriptom expression sets
    Expression Set Set ID
    Root A
    Leaf B
    Flower C
    Seed 5 DAF D
    Seed 12 DAF E
    Table 8: Provided are the identification (ID) letters of each of the Arabidopsis expression sets (A-E).
    DAF = days after flowering.
  • Yield components and vigor related parameters assessment—Eight out of the nine Arabidopsis ecotypes were used in each of 5 repetitive blocks (named A, B, C, D and E), each containing 20 plants per plot. The plants were grown in a greenhouse at controlled conditions in 22° C., and the N:P:K fertilizer (20:20:20; weight ratios) [nitrogen (N), phosphorus (P) and potassium (K)] was added. During this time data was collected, documented and analyzed. Additional data was collected through the seedling stage of plants grown in a tissue culture in vertical grown transparent agar plates. Most of chosen parameters were analyzed by digital imaging.
  • Digital imaging in Tissue culture—A laboratory image acquisition system was used for capturing images of plantlets sawn in square agar plates. The image acquisition system consists of a digital reflex camera (Canon EOS 300D) attached to a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which included 4 light units (4×150 Watts light bulb) and located in a darkroom.
  • Digital imaging in Greenhouse—The image capturing process was repeated every 3-4 days starting at day 7 till day 30. The same camera attached to a 24 mm focal length lens (Canon EF series), placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The white tubs were square shape with measurements of 36×26.2 cm and 7.5 cm deep. During the capture process, the tubs were placed beneath the iron mount, while avoiding direct sun light and casting of shadows. This process was repeated every 3-4 days for up to 30 days.
  • An image analysis system was used, which consists of a personal desktop computer (Intel P43.0 GHz processor) and a public domain program—ImageJ 1.37. Java based image processing program, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 6 Mega Pixels (3072×2048 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, area, perimeter, length and width. On day 30, 3-4 representative plants were chosen from each plot of blocks A, B and C. The plants were dissected, each leaf was separated and was introduced between two glass trays, a photo of each plant was taken and the various parameters (such as leaf total area, laminar length etc.) were calculated from the images. The blade circularity was calculated as laminar width divided by laminar length.
  • Root analysis—During 17 days, the different ecotypes were grown in transparent agar plates. The plates were photographed every 3 days starting at day 7 in the photography room and the roots development was documented (see examples in FIGS. 3A-3F). The growth rate of roots was calculated according to Formula VII.

  • Relative growth rate of root coverage=Regression coefficient of root coverage along time course.  Formula VII:
  • Vegetative growth rate analysis—was calculated according to Formula VIII. The analysis was ended with the appearance of overlapping plants.

  • Relative vegetative growth rate area=Regression coefficient of vegetative area along time course.  Formula VIII:
  • For comparison between ecotypes the calculated rate was normalized using plant developmental stage as represented by the number of true leaves. In cases where plants with 8 leaves had been sampled twice (for example at day 10 and day 13), only the largest sample was chosen and added to the Anova comparison.
  • Seeds in siliques analysis—On day 70, 15-17 siliques were collected from each plot in blocks D and E. The chosen siliques were light brown color but still intact. The siliques were opened in the photography room and the seeds were scatter on a glass tray, a high resolution digital picture was taken for each plot. Using the images the number of seeds per silique was determined.
  • Seeds average weight—At the end of the experiment all seeds from plots of blocks A-C were collected. An average weight of 0.02 grams was measured from each sample, the seeds were scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample was calculated.
  • Oil percentage in seeds—At the end of the experiment all seeds from plots of blocks A-C were collected. Columbia seeds from 3 plots were mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) were used as the solvent. The extraction was performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C., and vacuum conditions. The process was repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler's) 1879, 232, 461) was used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples was determined using the Low Resonance NMR (MARAN Ultra-Oxford Instrument) and its MultiQuant software package.
  • Silique length analysis—On day 50 from sowing. 30 siliques from different plants in each plot were sampled in block A. The chosen siliques were green-yellow in color and were collected from the bottom parts of a grown plant's stem. A digital photograph was taken to determine silique's length.
  • Dry weight and seed yield—On day 80 from sowing, the plants from blocks A-C were harvested and left to dry at 30° C., in a drying chamber. The biomass and seed weight of each plot was separated, measured and divided by the number of plants. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C., in a drying chamber; Seed yield per plant=total seed weight per plant (gr).
  • Oil yield—The oil yield was calculated using Formula IX.

  • Seed Oil yield=Seed yield per plant (gr.)*Oil % in seed.  Formula IX:
  • Harvest Index (seed)—The harvest index was calculated using Formula IV (described above).
  • Experimental Results
  • Nine different Arabidopsis ecotypes were grown and characterized for 18 parameters (named as vectors).
  • TABLE 9
    Arabidopsis correlated parameters (vectors)
    Correlated parameter with Correlation ID
    Root length day 13 (cm) 1
    Root length day 7 (cm) 2
    Relative root growth (cm/day) day 13 3
    Fresh weight per plant (gr.) at bolting stage 4
    Dry matter per plant (gr.) 5
    Vegetative growth rate (cm2/day) till 8 true leaves 6
    Blade circularity 7
    Lamina width (cm) 8
    Lamina length (cm) 9
    Total leaf area per plant (cm) 10
    1000 Seed weight (gr.) 11
    Oil % per seed 12
    Seeds per silique 13
    Silique length (cm) 14
    Seed yield per plant (gr.) 15
    Oil yield per plant (mg) 16
    Harvest Index 17
    Leaf width/length 18
    Table 9. Provided are the Arabidopsis correlated parameters (correlation ID Nos. 1-18).
    Abbreviations:
    cm = centimeter(s);
    gr. = gram(s);
    mg = milligram(s).
  • The characterized values are summarized in Tables 10 and 11 below.
  • TABLE 10
    Measured parameters in Arabidopsis ecotypes
    Ecotype/Parameter
    ID
    15 16 12 11 5 17 10 13 14
    An-1 0.34 118.63 34.42 0.0203 0.64 0.53 46.86 45.44 1.06
    Col-0 0.44 138.73 31.19 0.0230 1.27 0.35 109.89 53.47 1.26
    Ct-1 0.59 224.06 38.05 0.0252 1.05 0.56 58.36 58.47 1.31
    Cvi (N8580) 0.42 116.26 27.76 0.0344 1.28 0.33 56.80 35.27 1.47
    Gr-6 0.61 218.27 35.49 0.0202 1.69 0.37 114.66 48.56 1.24
    Kondara 0.43 142.11 32.91 0.0263 1.34 0.32 110.82 37.00 1.09
    Ler-1 0.36 114.15 31.56 0.0205 0.81 0.45 88.49 39.38 1.18
    Mt-0 0.62 190.06 30.79 0.0226 1.21 0.51 121.79 40.53 1.18
    Shakdara 0.55 187.62 34.02 0.0235 1.35 0.41 93.04 25.53 1.00
    Table 10. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: 15 = Seed yield per plant (gr.); 16 = oil yield per plant (mg); 12 = oil % per seed; 11 = 1000 seed weight (gr.); 5 = dry matter per plant (gr.); 17 = harvest index; 10 = total leaf area per plant (cm); 13 = seeds per silique; 14 = Silique length (cm).
  • TABLE 11
    Additional measured parameters in Arabidopsis ecotypes
    Eco-
    type 6 3 2 1 4 9 8 18 7
    An-1 0.313 0.631 0.937 4.419 1.510 2.767 1.385 0.353 0.509
    Col-0 0.378 0.664 1.759 8.530 3.607 3.544 1.697 0.288 0.481
    Ct-1 0.484 1.176 0.701 5.621 1.935 3.274 1.460 0.316 0.450
    Cvi 0.474 1.089 0.728 4.834 2.082 3.785 1.374 0.258 0.370
    (N8580)
    Gr-6 0.425 0.907 0.991 5.957 3.556 3.690 1.828 0.356 0.501
    Kon- 0.645 0.774 1.163 6.372 4.338 4.597 1.650 0.273 0.376
    dara
    Ler-1 0.430 0.606 1.284 5.649 3.467 3.877 1.510 0.305 0.394
    Mt-0 0.384 0.701 1.414 7.060 3.479 3.717 1.817 0.335 0.491
    Shak- 0.471 0.782 1.251 7.041 3.710 4.149 1.668 0.307 0.409
    dara
    Table 11. Provided are the values of each of the parameters measured in Arabidopsis ecotypes: 6 = Vegetative growth rate (cm2/day) until 8 true leaves; 3 = relative root growth (cm/day) (day 13); 2 = Root length day 7 (cm); 1 = Root length day 13 (cm); 4 = fresh weight per plant (gr.) at bolting stage; 9. = Lamima length (cm); 8 = Lamina width (cm); 18 = Leaf width/length; 7 = Blade circularity.
  • Table 12 provides the correlation analyses.
  • TABLE 12
    Correlation between the expression level of selected LNU genes of some embodiments of the
    invention in various tissues and the phenotypic performance under normal or low nitrogen
    fertilization conditions across Arabidopsis accessions
    Corr.
    Gene Exp. Set Gene Exp. Corr.
    Name R P value set ID Name R P value set Set ID
    LNU308 0.76 0.0271 B 17 LNU306 0.73 0.039 A 1
    LNU308 0.83 0.0116 A 17 LNU424 0.84 0.009 B 15
    LNU504 0.73 0.0397 C 12 LNU424 0.83 0.0114 B 16
    LNU504 0.72 0.0454 B 9 LNU424 0.86 0.0065 A 1
    LNU504 0.86 0.0066 E 15 LNU424 0.72 0.0443 A 2
    LNU504 0.77 0.0259 E 16 LNU424 0.80 0.0311 D 11
    LNU306 0.87 0.0045 C 13
    Table 12. “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 6 Production of Barley Transcriptome and High Throughput Correlation Analysis Using 44K Barley Oligonucleotide Micro-Array
  • In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level under normal conditions, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 Barley genes and transcripts, in order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 25 different Barley accessions were analyzed. Among them, 13 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Experimental Procedures
  • Analyzed Barley tissues—Five tissues at different developmental stages [meristem, flower, booting spike, stem and flag leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 13 below.
  • TABLE 13
    Barley transcriptom expression sets
    Expression Set Set ID
    Meristem A
    Flower B
    Booting spike C
    Stem D
    Flag leaf E
    Table 13.
  • Barley yield components and vigor related parameters assessment—25 Barley accessions in 4 repetitive blocks (named A, B, C, and D), each containing 4 plants per plot were grown at net house. Plants were phenotyped on a daily basis following the standard descriptor of barley (Table 14, below). Harvest was conducted while 50% of the spikes were dry to avoid spontaneous release of the seeds. Plants were separated to the vegetative part and spikes, of them, 5 spikes were threshed (grains were separated from the glumes) for additional grain analysis such as size measurement, grain count per spike and grain yield per spike. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • TABLE 14
    Barley standard descriptors
    Trait Parameter Range Description
    Growth habit Scoring 1-9 Prostrate (1) or Erect (9)
    Hairiness of Scoring P (Presence)/A (Absence) Absence (1) or Presence (2)
    basal leaves
    Stem Scoring 1-5 Green (1), Basal only or
    pigmentation Half or more (5)
    Days to Days Days from sowing to
    Flowering emergence of awns
    Plant height Centimeter (cm) Height from ground level
    to top of the longest spike
    excluding awns
    Spikes per plant Number Terminal Counting
    Spike length Centimeter (cm) Terminal Counting 5 spikes
    per plant
    Grains per spike Number Terminal Counting 5 spikes
    per plant
    Vegetative dry Gram Oven-dried for 48 hours at
    weight 70° C.
    Spikes dry Gram Oven-dried for 48 hours at
    weight 30° C.
    Table 14.
  • Grains per spike—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total number of grains from 5 spikes that were manually threshed was counted. The average grain per spike is calculated by dividing the total grain number by the number of spikes.
  • Grain average size (cm)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were scanned and images were analyzed using the digital imaging system. Grain scanning was done using Brother scanner (model DCP-135), at the 200 dpi resolution and analyzed with Image J software. The average grain size was calculated by dividing the total grain size by the total grain number.
  • Grain average weight (mgr)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were counted and weight. The average weight was calculated by dividing the total weight by the total grain number.
  • Grain yield per spike (gr)—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The total grains from 5 spikes that were manually threshed were weight. The grain yield was calculated by dividing the total weight by the spike number.
  • Spike length analysis—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The five chosen spikes per plant were measured using measuring tape excluding the awns.
  • Spike number analysis—At the end of the experiment (50% of the spikes were dry) all spikes from plots within blocks A-D were collected. The spikes per plant were counted.
  • Growth habit scoring—At the growth stage 10 (booting), each of the plants was scored for its growth habit nature. The scale that was used was 1 for prostate nature till 9 for erect.
  • Hairiness of basal leaves—At the growth stage 5 (leaf sheath strongly erect; end of tillering), each of the plants was scored for its hairiness nature of the leaf before the last. The scale that was used was 1 for prostate nature till 9 for erect.
  • Plant height—At the harvest stage (50% of spikes were dry) each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns.
  • Days to flowering—Each of the plants was monitored for flowering date. Days of flowering was calculated from sowing date till flowering date.
  • Stem pigmentation—At the growth stage 10 (booting), each of the plants was scored for its stem color. The scale that was used was 1 for green till 5 for full purple.
  • Vegetative dry weight and spike yield—At the end of the experiment (50% of the spikes were dry) all spikes and vegetative material from plots within blocks A-D were collected. The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.
  • Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Spike yield per plant=total spike weight per plant (gr) after drying at 30° C. in oven for-48 hours.
  • Harvest Index (for barley)—The harvest index is calculated using Formula X.

  • Harvest Index=Average spike dry weight per plant (Average vegetative dry weight per plant+Average spike dry weight per plant)  Formula X:
  • TABLE 15
    Barley correlated parameters (vectors)
    Correlation set Correlation ID
    Grains per spike (numbers) 1
    Grains size (mm2) 2
    Grain weight (miligrams) 3
    Grain Yield per spike (gr/spike) 4
    Spike length (cm) 5
    Spikes per plant (numbers) 6
    Growth habit (scores 1-9) 7
    Hairiness of basal leaves (scoring 1-2) 8
    Plant height (cm) 9
    Days to flowering (days) 10
    Stem pigmentation (scoring 1-5) 11
    Vegetative dry weight (gram) 12
    Harvest Index (ratio) 13
    Table 15.
  • Experimental Results
  • 13 different Barley accessions were grown and characterized for 13 parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 16 and 17 below. Subsequent correlation analysis between the various transcriptome sets (Table 13) and the measured parameters (Tables 16 and 17), was conducted (Table 18). Follow, results were integrated to the database.
  • TABLE 16
    Measured parameters of correlation IDs in Barley accessions
    Accession/
    Parameter 6 10 3 5 2 1 7
    Amatzya 48.85 62.40 35.05 12.04 0.27 20.23 2.60
    Ashqelon 48.27 64.08 28.06 10.93 0.23 17.98 2.00
    Canada park 37.42 65.15 28.76 11.83 0.24 17.27 1.92
    Havarim stream 61.92 58.92 17.87 9.90 0.17 17.73 3.17
    Jordan est 33.27 63.00 41.22 11.68 0.29 14.47 4.33
    Klil 41.69 70.54 29.73 11.53 0.28 16.78 2.69
    Maale Efraim ND 52.80 25.22 8.86 0.22 13.47 3.60
    Mt Arbel 40.63 60.88 34.99 11.22 0.28 14.07 3.50
    Mt Harif 62.00 58.10 20.58 11.11 0.19 21.54 3.00
    Neomi 49.33 53.00 27.50 8.58 0.22 12.10 3.67
    Neot Kdumim 50.60 60.40 37.13 10.18 0.27 14.36 2.47
    Oren canyon 43.09 64.58 29.56 10.51 0.27 15.28 3.50
    Yeruham 51.40 56.00 19.58 9.80 0.18 17.07 3.00
    Table 16. Provided are the values of each of the parameters measured in Barley accessions according to the following correlation identifications (Correlation Ids): 6 = Spikes per plant; 10 = Days to flowering; 3 = Grain weight; 5 = Spike length; 2 = Grains Size; 1 = Grains per spike; 7 = Growth habit.
  • TABLE 17
    Barley accessions, additional measured parameters
    Accession/
    Parameter 8 9 4 11 12 13
    Amatzya 1.53 134.27 3.56 1.13 78.87 0.45
    Ashqelon 1.33 130.50 2.54 2.50 66.14 0.42
    Canada park 1.69 138.77 2.58 1.69 68.49 0.40
    Havarim stream 1.08 114.58 1.57 1.75 53.39 0.44
    Jordan est 1.42 127.75 3.03 2.33 68.30 0.43
    Klil 1.69 129.38 2.52 2.31 74.17 0.40
    Maale Efraim 1.30 103.89 1.55 1.70 35.35 0.52
    Mt Arbel 1.19 121.63 2.62 2.19 58.33 0.48
    Mt Harif 1.00 126.80 2.30 2.30 62.23 0.44
    Neomi 1.17 99.83 1.68 1.83 38.32 0.49
    Neot Kdumim 1.60 121.40 2.68 3.07 68.31 0.45
    Oren canyon 1.08 118.42 2.35 1.58 56.15 ND
    Yeruham 1.17 117.17 1.67 2.17 42.68 ND
    Table 17. Provided are the values of each of the parameters measured in Barley accessions according to the following correlation identifications (Correlation Ids): 8 = Hairiness of basal leaves; 9 = Plant height; 4 = Grain yield per spike; 11 = Stem pigmentation; 12 = Vegetative dry weight; 13 = Harvest Index.
  • TABLE 18
    Correlation between the expression level of selected LNU genes of some embodiments
    of the invention in various tissues and the phenotypic performance under
    normal fertilization conditions across barley accessions
    Gene Exp. Corr. Gene Exp. Corr.
    Name R P value Set Set ID Name R P value Set Set ID
    LNU4 0.81 0.0087 C 2 LNU4 0.75 0.0308 B 10
    07 08
    LNU4 0.80 0.0032 C 2 LNU4 0.75 0.0311 B 1
    07 36
    LNU4 0.75 0.0078 C 3 LNU4 0.74 0.0144 B 1
    07 36
    LNU4 0.75 0.0211 C 3 LNU4 0.76 0.0289 B 1
    07 67
    LNU4 0.84 0.0049 C 2 LNU4 0.87 0.0054 B 8
    35 47
    LNU4 0.75 0.0191 C 3 LNU4 0.75 0.0119 B 8
    35 47
    LNU4 0.71 0.0138 C 2 LNU2 0.85 0.0072 A 6
    35 97
    LNU4 0.71 0.0470 C 6 LNU2 0.75 0.0075 A 6
    56 97
    LNU3 0.87 0.0051 B 10 LNU4 0.77 0.0148 A 1
    05 36
    LNU3 0.81 0.0138 B 9 LNU4 0.76 0.0071 A 1
    05 36
    LNU3 0.81 0.0048 B 9 LNU4 0.74 0.0348 A 6
    05 48
    LNU3 0.77 0.0242 B 5 LNU4 0.85 0.0071 A 6
    05 38
    LNU3 0.76 0.0111 B 5 LNU4 0.77 0.0054 A 6
    05 67
    LNU3 0.75 0.0125 B 10 LNU4 0.75 0.0332 A 6
    05 67
    LNU4 0.81 0.0159 B 7 LNU4 0.79 0.0106 A 8
    35 47
    LNU4 0.75 0.0119 B 7 LNU4 0.79 0.0036 A 4
    35 47
    LNU4 0.79 0.0186 B 12 LNU4 0.77 0.0160 A 4
    08 47
    LNU4 0.79 0.0188 B 4 LNU4 0.73 0.0107 A 8
    08 47
    Table 18. “Con. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 7 Production of Sorghum Transcriptome and High Throughput Correlation Analysis with Yield, NUE, and ABST Related Parameters Measured in Fields Using 44K Sorghum Oligonucleotide Micro-Arrays
  • In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a sorghum oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 sorghum genes and transcripts. In order to define correlations between the levels of RNA expression with ABST, yield and NUE components or vigor related parameters, various plant characteristics of 17 different sorghum hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Correlation of Sorghum Varieties Across Ecotypes Grown Under Low Nitrogen, Regular Growth and Severe Drought Conditions
  • Experimental Procedures
  • 17 Sorghum varieties were grown in 3 repetitive plots, in field. Briefly, the growing protocol was as follows:
  • 1. Regular growth conditions: sorghum plants were grown in the field using commercial fertilization and irrigation protocols.
  • 2. Low Nitrogen fertilization conditions: sorghum plants were fertilized with 50% less amount of nitrogen in the field than the amount of nitrogen applied in the regular growth treatment. All the fertilizer was applied before flowering.
  • 3. Drought stress: sorghum seeds were sown in soil and grown under normal condition until around 35 days from sowing, around stage V8 (eight green leaves are fully expanded, booting not started yet). At this point, irrigation was stopped, and severe drought stress was developed.
  • Analyzed Sorghum tissues—All 10 selected Sorghum hybrids were sample per each treatment. Plant tissues [Flag leaf. Flower meristem and Flower] growing under low nitrogen, severe drought stress and plants grown under normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 19 below.
  • TABLE 19
    Sorghum transcriptom expression sets in field experiments
    Expression Set Set ID
    sorghum field/flag leaf/Drought A
    sorghum field/flag leaf/Low N B
    sorghum field/flag leaf/Normal C
    sorghum field/flower meristem/Drought D
    sorghum field/flower meristem/Low N E
    sorghum field/flower meristem/Normal F
    sorghum field/flower/Drought G
    sorghum field/flower/Low N H
    sorghum field/flower/Normal J
    Table 19: Provided are the sorghum transcriptom expression sets.
    Flag leaf = the leaf below the flower;
    Flower meristem = Apical meristem following panicle initiation;
    Flower = the flower at the anthesis day.
  • The following parameters were collected using digital imaging system:
  • Average Grain Area (cm2)—At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Average Grain Length (cm)—At the end of the growing period the grains were separated from the Plant ‘Head’. A sample of ˜200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths (longest axis) was measured from those images and was divided by the number of grains.
  • Head Average Area (cm2) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ area was measured from those images and was divided by the number of ‘Heads’.
  • Head Average Length (cm) At the end of the growing period 5 ‘Heads’ were, photographed and images were processed using the below described image processing system. The ‘Head’ length (longest axis) was measured from those images and was divided by the number of ‘Heads’.
  • The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • Additional parameters were collected either by sampling 5 plants per plot or by measuring the parameter across all the plants within the plot.
  • Total Seed Weight per Head (gr.)—At the end of the experiment (plant ‘Heads’) heads from plots within blocks A-C were collected. 5 heads were separately threshed and grains were weighted, all additional heads were threshed together and weighted as well. The average grain weight per head was calculated by dividing the total grain weight by number of total heads per plot (based on plot). In case of 5 heads, the total grains weight of 5 heads was divided by 5.
  • FW Head per Plant gram—At the end of the experiment (when heads were harvested) total and 5 selected heads per plots within blocks A-C were collected separately. The heads (total and 5) were weighted (gr.) separately and the average fresh weight per plant was calculated for total (FW Head/Plant gr, based on plot) and for 5 (FW Head/Plant gr, based on 5 plants).
  • Plant height—Plants were characterized for height during growing period at 5 time points. In each measure, plants were measured for their height using a measuring tape. Height was measured from ground level to top of the longest leaf.
  • Plant leaf number—Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII.

  • Relative growth rate of plant height=Regression coefficient of plant height along time course.  Formula XI

  • Relative growth rate of plant leaf number=Regression coefficient of plant leaf number along time course.  Formula XII
  • SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • Vegetative dry weight and Heads—At the end of the experiment (when Inflorescence were dry) all Inflorescence and vegetative material from plots within blocks A-C were collected. The biomass and Heads weight of each plot was separated, measured and divided by the number of Heads.
  • Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Harvest Index (HI) (Sorghum)—The harvest index was calculated using Formula XIII.

  • Harvest Index=Average grain dry weight per Head/(Average vegetative dry weight per Head+Average Head dry weight)  Formula XIII:
  • FW Heads/(FW Heads+FW Plants)—The total fresh weight of heads and their respective plant biomass was measured at the harvest day. The heads weight was divided by the sum of weights of heads and plants.
  • Experimental Results
  • 17 different sorghum hybrids were grown and characterized for different parameters (Table 20). The average for each of the measured parameter was calculated using the JMP software (Tables 21-25) and a subsequent correlation analysis was performed (Table 26). Results were then integrated to the database.
  • TABLE 20
    Sorghum correlated parameters (vectors)
    Correlation set Correlation ID
    [Grain yield/SPAD 64 DPS], Low N 1
    [Grain yield/SPAD 64 DPS], Normal 2
    [Grain Yield + plant biomass/SPAD 64 DPS], Low N 3
    [Grain Yield + plant biomass/SPAD 64 DPS], Normal 4
    [Plant biomass (FW)/SPAD 64 DPS], Drought 5
    [Plant biomass (FW)/SPAD 64 DPS], Low N 6
    [Plant biomass (FW)/SPAD 64 DPS], Normal 7
    Average Grain Area (cm2), Drought 8
    Average Grain Area (cm2), Low N 9
    Average Grain Area (cm2), Normal 10
    Final Plant Height (cm), Drought 11
    Final Plant Height (cm), Low N 12
    Final Plant Height (cm), Normal 13
    FW—Head/Plant gr. (based on 5 plants), Low N 14
    FW—Head/Plant gr. (based on 5 plants), Normal 15
    FW—Head/Plant gr. (based on plot), Drought 16
    FW—Head/Plant gr. (based on plot), Low N 17
    FW—Head/Plant gr. (based on plot), Normal 18
    FW Heads/(FW Heads + FW Plants)(all plot), Drought 19
    FW Heads/(FW Heads + FW Plants)(all plot), Low N 20
    FW Heads/(FW Heads + FW Plants)(all plot), Normal 21
    FW/Plant gr. (based on plot), Drought 22
    FW/Plant gr. (based on plot), Low N 23
    FW/Plant gr. (based on plot), Normal 24
    Head Average Area (cm2), Drought 25
    Head Average Area (cm2), Low N 26
    Head Average Area (cm2), Normal 27
    Head Average Length (cm), Drought 28
    Head Average Length (cm), Low N 29
    Head Average Length (cm), Normal 30
    Head Average Perimeter (cm), Drought 31
    Head Average Perimeter (cm), Low N 32
    Head Average Perimeter (cm), Normal 33
    Head Average Width (cm), Drought 34
    Head Average Width (cm), Low N 35
    Head Average Width (cm), Normal 36
    Leaf SPAD 64 DPS (Days Post Sowing), Drought 37
    Leaf SPAD 64 DPS (Days Post Sowing), Low N 38
    Leaf SPAD 64 DPS (Days Post Sowing), Normal 39
    Lower Ratio Average Grain Area, Low N 40
    Lower Ratio Average Grain Area, Normal 41
    Lower Ratio Average Grain Length, Low N 42
    Lower Ratio Average Grain Length, Normal 43
    Lower Ratio Average Grain Perimeter, Low N 44
    Lower Ratio Average Grain Perimeter, Normal 45
    Lower Ratio Average Grain Width, Low N 46
    Lower Ratio Average Grain Width, Normal 47
    Total grain weight/Head (based on plot) gr., Low N 48
    Total grain weight/Head gr. (based on 5 heads), Low N 49
    Total grain weight/Head gr. (based on 5 heads), Normal 50
    Total grain weight/Head gr. (based on plot), Normal 51
    Total grain weight/Head gr.,(based on plot), Drought 52
    Upper Ratio Average Grain Area, Drought 53
    Upper Ratio Average Grain Area, Low N 54
    Upper Ratio Average Grain Area, Normal 55
    Table 20. Provided are the Sorghum correlated parameters (vectors).
    “gr.” = grams;
    “SPAD” = chlorophyll levels;
    “FW” = Plant Fresh weight;
    “DW” = Plant Dry weight;
    “normal” = standard growth conditions;
    “DPS” = days post sowing;
    “Low N” = Low Nitrogen.
  • TABLE 21
    Measured parameters in Sorghum accessions under normal conditions
    Seed ID/
    Correla-
    tion ID 2 4 7 10 13 15 18 21 24 27 30
    20 3.78 4.5 0.724 0.105 95.2 406 175 0.51 163 120 25.6
    21 7.74 8.17 0.433 0.112 79.2 518 223 0.51 213 168 26.8
    22 7.01 7.87 0.858 0.131 198 148 56.4 0.115 335 85.1 21
    24 10.1 10.7 0.583 0.129 234 423 112 0.263 313 157 26.8
    25 7.65 8.34 0.693 0.139 189  92 67.3 0.12 462 104 23.1
    26 3.34 4.4 1.05 0.141 195 101 66.9 0.177 318 102 21.8
    27 3.05 3.73 0.687 0.11 117 424 126 0.459 151 169 31.3
    28 3.9 4.83 0.929 0.113 92.8 386 108 0.432 138 109 23.2
    29 2.83 3.67 0.841 0.102 113 410 124 0.425 168 135 25.7
    30 2.18 2.89 0.716 0.118 97.5 329 103 0.442 129 169 28.8
    31 2.19 2.91 0.721 0.121 98 391 82.3 0.458 97.6 156 28.1
    32 2.41 3.12 0.705 0.111 100 436 77.6 0.447 99.3 112 23
    33 3.58 4.75 1.17 0.117 106 430 91.2 0.447 112 155 28.1
    34 2.9 3.69 0.792 0.108 151 441 150 0.513 157 172 30
    35 3 3.85 0.849 0.105 117 416 109 0.46 131 169 30.5
    36 4.85 5.83 0.984 0.11 124 430 108 0.442 136 163 27.2
    37 0.105 126 428 131 0.386 209 170 29.3
    Table 21: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under normal conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 22
    Additional measured parameters in Sorghum accessions under normal growth conditions
    Seed ID/
    Corr. ID 33 36 39 41 43 45 47 50 51 55
    20 61.2 5.97 43 0.825 0.914 0.914 0.908 47.4 31.1 1.22
    21 67.9 7.92 0 0.74 0.884 0.869 0.833 46.3 26.4 1.3
    22 56.3 4.87 43.3 0.778 0.921 0.913 0.85 28.4 18.7 1.13
    24 65.4 7.43 44.7 0.802 0.908 0.948 0.874 70.4 38.4 1.14
    25 67.5 5.58 45.8 0.697 0.89 0.902 0.788 32.1 26.7 1.16
    26 67.5 5.88 41.6 0.699 0.877 0.915 0.799 49.2 28.8 1.15
    27 74.4 6.78 45.2 0.827 0.913 0.913 0.904 63.5 47.7 1.19
    28 56.2 5.99 45.1 0.805 0.903 0.91 0.893 44.5 31 1.23
    29 61.6 6.62 43 0.841 0.92 0.918 0.915 56.6 40 1.25
    30 71.4 7.42 45.6 0.788 0.923 0.93 0.854 60 38.4 1.24
    31 68.6 6.98 44.8 0.765 0.893 0.911 0.863 45.5 32.1 1.32
    32 56.4 6.19 45.3 0.803 0.913 0.916 0.885 58.2 32.7 1.22
    33 67.8 7.02 46.5 0.806 0.907 0.904 0.898 70.6 32.8 1.18
    34 71.5 7.18 44 0.821 0.911 0.912 0.905 70.1 51.5 1.18
    35 78.9 7 45.1 0.814 0.904 0.905 0.91 54 35.7 1.22
    36 67 7.39 45.1 0.818 0.903 0.909 0.902 59.9 38.3 1.25
    37 74.1 7.35 43.1 0.817 0.913 0.905 0.899 52.6 42.4 1.22
    Table 22: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under normal conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 23
    Measured parameters in Sorghum accessions under Low nitrogen conditions
    Corr. ID
    Seed ID 1 3 6 9 12 14 17 20 23 26 29
    20 0.677 6.02 5.34 0.105 104 388 215 0.505 205 96.2 23.2
    21 0.784 5.91 5.12 0.111 80.9 429 205 0.506 200 215 25.6
    22 0.458 8.5 8.04 0.136 205 298 73.5 0.166 341 98.6 20.9
    24 0.871 6.75 5.88 0.121 125 280 123 0.391 241 183 28.4
    25 0.584 13.1 12.5 0.141 225 208 153 0.21 538 120 24.3
    26 0.557 9.57 9.02 0.134 208 304 93.2 0.192 359 110 22.6
    27 1.17 4.67 3.5 0.119 121 436 134 0.476 149 172 32.1
    28 0.634 3.61 2.98 0.117 100 376 77.4 0.375 129 84.8 20.4
    29 1.31 5.89 4.58 0.116 121 475 130 0.42 179 156 26.7
    30 0.862 3.77 2.91 0.129 94.5 438 99.8 0.441 124 137 26.3
    31 0.735 3.26 2.53 0.131 110 383 76.9 0.429 101 138 25.4
    32 0.607 3.61 3 0.12 115 375 84.2 0.387 132 96.5 23.1
    33 0.648 3.24 2.59 0.116 105 425 92.2 0.438 118 158 27.9
    34 1.14 5.1 3.96 0.115 174 434 139 0.439 177 164 28.9
    35 0.87 4.25 3.38 0.107 116 409 113 0.442 144 138 27.6
    36 0.91 3.81 2.9 0.121 139 378 95.5 0.43 127 135 25.5
    37 0.894 4.76 3.86 0.109 144 432 129 0.417 180 166 30.3
    Table 23: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 24
    Additional measured parameters in Sorghum accessions
    under low nitrogen growth conditions
    Corr. ID
    Seed ID 32 35 38 40 42 44 46 48 49 54
    20 56.3 5.26 38.3 0.815 0.91 0.901 0.901 25.9 50.3 1.18
    21 79.2 10.4 39 0.77 0.9 0.884 0.852 30.6 50.9 1.31
    22 53.2 5.93 42.3 0.81 0.921 0.915 0.893 19.4 36.1 1.11
    24 76.2 8.25 40.9 0.793 0.898 0.897 0.88 35.6 73.1 1.21
    25 67.3 6.19 43.1 0.78 0.908 0.919 0.863 25.2 37.9 1.19
    26 59.5 6.12 39.9 0.799 0.926 0.918 0.871 22.2 36.4 1.18
    27 79.3 6.8 42.7 0.834 0.918 0.916 0.91 50 71.7 1.16
    28 51.5 5.25 43.3 0.788 0.89 0.891 0.888 27.5 35 1.23
    29 69.9 7.52 39 0.806 0.901 0.898 0.899 51.1 76.7 1.17
    30 66.2 6.59 42.7 0.772 0.909 0.907 0.857 36.8 57.6 1.22
    31 67.4 6.85 40.1 0.741 0.886 0.895 0.842 29.4 42.9 1.24
    32 57.9 5.32 44 0.804 0.897 0.903 0.897 26.7 36.5 1.19
    33 70.6 7.25 45.4 0.788 0.894 0.896 0.887 29.4 68.6 1.23
    34 73.8 7.19 44.8 0.823 0.911 0.914 0.908 51.1 71.8 1.16
    35 66.9 6.27 42.6 0.801 0.888 0.894 0.899 37 49.3 1.34
    36 65.4 6.57 43.8 0.809 0.892 0.896 0.902 39.9 43.9 1.21
    37 76 6.82 46.7 0.807 0.901 0.897 0.897 41.8 52.1 1.21
    Table 24: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 25
    Measured parameters in Sorghum accessions under drought conditions
    Correlation ID
    Seed ID 5 8 11 16 19 22 25 28 31 34 37 52 53
    20 5.13 0.10 89 155 0.42 208 83 21.6 52.8 4.83 40.6 22.1 1.31
    21 3.38 0.12 76 122 0.47 138 108 21.9 64.5 6.31 40.9 16.8 1.19
    22 5.67 0.11 92 131 0.42 255 89 21.6 56.6 5.16 45 9.19 1.29
    24 9.51 0.09 94 241 0.37 402 136 22.0 64.4 7.78 42.3 104 1.46
    25 5.16 0.09 151 69 0.23 234 91 21.0 53.2 5.28 45.2 3.24 1.21
    26 9.66 0.11 111 186 0.31 392 124 28.6 71.7 5.49 40.6 22 1.21
    27 1.99 99 62 0.41 89 86 21.3 55.6 5.04 44.8 9.97
    28 1.12 84 39 0.44 51 85 20.8 53.0 5.07 45.1 18.6
    29 2.14 99 59 0.40 87 113 24.7 69.8 5.77 40.6 29.3
    30 2.65 92 76 0.44 120 101 24.3 65.1 5.37 45.4 10.5
    31 0.87 82 34 0.47 37 80 21.9 55.3 4.66 42.6 14.8
    32 1.09 99 42 0.47 48 127 25.0 69.1 6.35 44.2 12.9
    33 0.99 87 42 0.48 44 86 19.5 53.3 5.58 44.6 18.2
    34 5.46 100 132 0.35 232 92 20.4 56.3 5.76 42.4 11.6
    35 2.68 83 61 0.35 116 78 16.8 49.1 5.86 43.2 18.6
    36 3.05 84 44 0.23 123 77 18.9 51.9 5.1 40.3 16.4
    37 8.40 92 185 0.33 342 40.8
    Table 25: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under drought conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 26
    Correlation between the expression level of selected LNU genes of some embodiments
    of the invention in various tissues and the phenotypic performance under low nitrogen,
    normal or drought stress conditions across Sorghum accessions
    Gene P Corr. Exp. Gene P Corr. Exp
    Name R value ID set ID Name R value ID set ID
    LNU316 0.7795 0.0079 10 F LNU316 0.9108 0.0002 48 B
    LNU316 0.7755 0.0084 29 H LNU401 0.9089 0.0003 2 F
    LNU316 0.7699 0.0092 9 E LNU477 0.9069 0.0003 6 E
    LNU316 0.7675 0.0095 44 H LNU421 0.9065 0.0003 30 C
    LNU316 0.7963 0.0058 22 G LNU401 0.9035 0.0003 4 F
    LNU316 0.7351 0.0154 30 J LNU473 0.9005 0.0004 23 E
    LNU316 0.7309 0.0163 42 H LNU421 0.8970 0.0004 13 F
    LNU319 0.7256 0.0175 20 H LNU480 0.8965 0.0004 22 D
    LNU319 0.7173 0.0195 35 H LNU480 0.8961 0.0004 5 D
    LNU324 0.8312 0.0029 6 E LNU439 0.8943 0.0011 2 C
    LNU324 0.8294 0.0030 3 E LNU316 0.8906 0.0005 12 B
    LNU324 0.8068 0.0048 5 D LNU481 0.8898 0.0013 2 C
    LNU324 0.7641 0.0101 13 F LNU401 0.8894 0.0006 18 F
    LNU324 0.8216 0.0035 16 D LNU473 0.8853 0.0007 6 E
    LNU324 0.7512 0.0123 20 E LNU421 0.8825 0.0007 27 C
    LNU324 0.8178 0.0038 22 D LNU421 0.8823 0.0007 33 C
    LNU324 0.8534 0.0017 23 E LNU314 0.8822 0.0007 51 F
    LNU324 0.7055 0.0226 51 F LNU401 0.8811 0.0008 24 F
    LNU346 0.7275 0.0171 6 B LNU393 0.8811 0.0008 24 F
    LNU346 0.7022 0.0236 3 B LNU477 0.8785 0.0008 23 E
    LNU346 0.7742 0.0086 5 D LNU477 0.8784 0.0008 3 E
    LNU346 0.8008 0.0054 20 B LNU431 0.8763 0.0009 1 B
    LNU346 0.7521 0.0121 13 F LNU465 0.8756 0.0009 13 J
    LNU346 0.8440 0.0021 16 D LNU401 0.8713 0.0010 15 F
    LNU346 0.7834 0.0073 17 B LNU473 0.8666 0.0012 17 E
    LNU346 0.7058 0.0226 14 E LNU324 0.8647 0.0012 17 E
    LNU346 0.7361 0.0152 20 H LNU477 0.8608 0.0014 17 E
    LNU346 0.7797 0.0078 22 D LNU439 0.8595 0.0014 15 C
    LNU346 0.7049 0.0228 23 E LNU481 0.8579 0.0015 13 J
    LNU346 0.7254 0.0176 26 E LNU481 0.8566 0.0032 4 C
    LNU346 0.7488 0.0127 51 F LNU393 0.8557 0.0016 35 B
    LNU346 0.7046 0.0229 32 E LNU479 0.8544 0.0016 51 F
    LNU347 0.7303 0.0165 11 A LNU303 0.8543 0.0016 12 B
    LNU347 0.8358 0.0026 30 C LNU313 0.8538 0.0017 1 E
    LNU347 0.8189 0.0038 10 F LNU316 0.8484 0.0019 1 B
    LNU347 0.8401 0.0023 12 B LNU393 0.8335 0.0027 1 E
    LNU347 0.7613 0.0105 9 E LNU421 0.8292 0.0030 1 B
    LNU347 0.7598 0.0108 33 C LNU420 0.8292 0.0030 1 H
    LNU347 0.7113 0.0211 50 C LNU292 0.8235 0.0034 1 E
    LNU347 0.7336 0.0157 51 C LNU421 0.8106 0.0044 1 E
    LNU377 0.7291 0.0167 13 J LNU439 0.8095 0.0045 1 B
    LNU379 0.7141 0.0204 9 E LNU292 0.8478 0.0019 48 E
    LNU381 0.7525 0.0120 1 B LNU292 0.7539 0.0118 14 E
    LNU381 0.7736 0.0144 2 C LNU303 0.7108 0.0212 5 G
    LNU381 0.7785 0.0135 4 C LNU303 0.7450 0.0134 16 G
    LNU381 0.7712 0.0090 12 B LNU303 0.7079 0.0220 22 G
    LNU381 0.7720 0.0089 37 D LNU303 0.8385 0.0024 35 H
    LNU381 0.7700 0.0092 48 B LNU303 0.8195 0.0037 26 H
    LNU381 0.7079 0.0220 55 F LNU303 0.7418 0.0141 54 H
    LNU387 0.7569 0.0113 6 E LNU303 0.7122 0.0208 32 H
    LNU387 0.7037 0.0344 2 C LNU303 0.7290 0.0168 1 B
    LNU387 0.7709 0.0150 4 C LNU303 0.7531 0.0119 48 B
    LNU387 0.7072 0.0222 3 E LNU303 0.7299 0.0166 5 D
    LNU387 0.7881 0.0068 17 E LNU303 0.7970 0.0058 16 D
    LNU387 0.7259 0.0175 54 B LNU303 0.7340 0.0157 22 D
    LNU387 0.7611 0.0106 18 F LNU303 0.8268 0.0032 20 E
    LNU387 0.7209 0.0186 24 F LNU303 0.7030 0.0233 3 E
    LNU387 0.7100 0.0214 20 E LNU303 0.7765 0.0082 17 E
    LNU387 0.7037 0.0231 21 F LNU313 0.7466 0.0131 1 H
    LNU393 0.7575 0.0112 1 H LNU313 0.7972 0.0057 48 E
    LNU393 0.8155 0.0040 49 E LNU313 0.7315 0.0162 15 J
    LNU393 0.7837 0.0073 26 B LNU314 0.7785 0.0080 1 E
    LNU393 0.7392 0.0146 14 B LNU314 0.7696 0.0092 1 H
    LNU393 0.7501 0.0125 42 H LNU314 0.8318 0.0028 48 E
    LNU393 0.7266 0.0173 14 E LNU314 0.7249 0.0177 11 D
    LNU393 0.7456 0.0133 48 E LNU314 0.7899 0.0066 29 E
    LNU393 0.7301 0.0165 49 H LNU314 0.7849 0.0072 30 J
    LNU393 0.7909 0.0064 18 F LNU314 0.7197 0.0189 42 E
    LNU393 0.7242 0.0179 32 E LNU314 0.7117 0.0210 48 H
    LNU393 0.7182 0.0193 44 H LNU314 0.7235 0.0180 51 J
    LNU393 0.7180 0.0194 30 C LNU316 0.7780 0.0081 5 G
    LNU434 0.8400 0.0046 2 C LNU434 0.8500 0.0040 4 C
    Table 26:
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 8 Production of Sorghum Transcriptome and High Throughput Correlation Analysis with Yield, NUE, and ABST Related Parameters Measured in Semi-Hydroponics Conditions Using 44K Sorghum Oligonucleotide Micro-Arrays
  • Sorghum vigor related parameters under low nitrogen, 100 mM NaCl, low temperature (10±2° C.) and normal growth conditions—Ten Sorghum hybrids were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Sorghum seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (100 mM NaCl in addition to the Full Hoagland solution), low temperature (10±2° C., in the presence of Full Hoagland solution), low nitrogen solution (the amount of total nitrogen was reduced in 90% from the full Hoagland solution (i.e., to a final concentration of 10% from full Hoagland solution, final amount of 1.2 mM N) or at Normal growth solution (Full Hoagland containing 16 mM N solution, at 28±2° C.). Plants were grown at 28±2° C.
  • Full Hoagland solution consists of: KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter. KH2PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter; Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].
  • Analyzed Sorghum tissues—All 10 selected Sorghum hybrids were sampled per each treatment. Three tissues [leaves, meristems and roots] growing at 100 mM NaCl, low temperature (10±2° C.), low Nitrogen (1.2 mM N) or under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 27 below.
  • TABLE 27
    Sorghum transcriptom expression sets under semi hydroponics conditions
    Expression set Set Id
    Sorghum roots under Low Nitrogen A
    Sorghum leaves under Low Nitrogen B
    Sorghum meristems under Low Nitrogen C
    Sorghum roots under Normal Growth D
    Sorghum leaves under Normal Growth E
    Sorghum meristems under Normal Growth F
    Sorghum roots under 100 mM NaCl G
    Sorghum leaves under 100 mM NaCl H
    Sorghum meristems under 100 mM NaCl I
    Sorghum roots under cold J
    Sorghum leaves under cold K
    Sorghum meristems under cold L
    Table 27: Provided are the Sorghum transcriptom expression sets.
    Cold conditions = 10 ± 2° C.;
    NaCl = 100 mM NaCl;
    low nitrogen = 1.2 mM Nitrogen;
    Normal conditions = 16 mM Nitrogen.
  • Experimental Results
  • 10 different Sorghum hybrids were grown and characterized for various biomass and nitrogen use efficiency (NUE) parameters as described in Table 28, below. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Table 28-32 below. Subsequent correlation analysis was performed (Table 33). Results were then integrated to the database.
  • TABLE 28
    Sorghum correlated parameters (vectors)
    Correlation set Correlation ID
    DW Root/Plant—100 mM NaCl 1
    DW Root/Plant—Cold 2
    DW Root/Plant—Low Nitrogen 3
    DW Root/Plant—Normal 4
    DW Shoot/Plant—100 mM NaCl 5
    DW Shoot/Plant—Cold 6
    DW Shoot/Plant—Low Nitrogen 7
    DW Shoot/Plant—Normal 8
    Leaf Number TP1—100 mM NaCl 9
    Leaf Number TP1—Cold 10
    Leaf Number TP1—Low Nitrogen 11
    Leaf Number TP1—Normal 12
    Leaf Number TP2—100 mM NaCl 13
    Leaf Number TP2—Cold 14
    Leaf Number TP2—Low Nitrogen 15
    Leaf Number TP2—Normal 16
    Leaf Number TP3—100 mM NaCl 17
    Leaf Number TP3—Cold 18
    Leaf Number TP3—Low Nitrogen 19
    Leaf Number TP3—Normal 20
    Shoot/Root—Normal 21
    NUE per roots—Normal 22
    NUE per shoots—Normal 23
    NUE per total biomass—Normal 24
    NUE per roots biomass—Low N 25
    NUE per shoots biomass—Low N 26
    NUE per total biomass—Low N 27
    Percent of reduction of root biomass compared 28
    to normal—Low N
    Percent of reduction of shoot biomass compared 29
    to normal—Low N
    Percent of reduction of total biomass compared 30
    to normal—Low N
    Plant Height TP1—100 mM NaCl 31
    Plant Height TP1—Cold 32
    Plant Height TP1—Low N 33
    Plant Height TP1—Normal 34
    Plant Height TP2—100 mM NaCl 35
    Plant Height TP2—Cold 36
    Plant Height TP2—Low N 37
    Plant Height TP2—Normal 38
    Plant Height TP3—100 mM NaCl 39
    Plant Height TP3—Low N 40
    RGR Leaf Num Normal 41
    Root Biomass DW [gr.]/SPAD—100 mM NaCl 42
    Root Biomass DW [gr.]/SPAD—Cold 43
    Root Biomass DW [gr.]/SPAD—Low N 44
    Root Biomass DW [gr.]/SPAD—Normal 45
    Shoot Biomass DW [gr.]/SPAD—100 mM NaCl 46
    Shoot Biomass DW [gr.]/SPAD—Cold 47
    Shoot Biomass DW [gr.]/SPAD—Low N 48
    Shoot Biomass DW [gr]/SPAD—Normal 49
    Shoot/Root—Low N 50
    SPAD—100 mM NaCl 51
    SPAD—Cold 52
    SPAD—Low Nitrogen 53
    SPAD—Normal 54
    SPAD 100—mM NaCl 55
    Total Biomass DW [gr.]/SPAD—100 mM NaCl 56
    Total Biomass DW [gr.]/SPAD—Cold 57
    Total Biomass DW [gr.]/SPAD—Low N 58
    Total Biomass DW [gr.]/SPAD—Normal 59
    Table 28: Provided are the Sorghum correlated parameters.
    Cold conditions = 10 ± 2° C.;
    NaCl = 100 mM NaCl;
    Low nitrogen = 1.2 mM Nitrogen;
    Normal conditions = 16 mM Nitrogen
    *TP-1-2-3 refers to time points 1, 2 and 3.
  • TABLE 29
    Sorghum accessions, measured parameters under low nitrogen growth conditions
    Seed ID
    Corr. ID 20 22 26 27 28 29 30 31 34 37
    3 0.04 0.11 0.20 0.10 0.08 0.09 0.13 0.09 0.09 0.09
    7 0.08 0.19 0.33 0.16 0.16 0.16 0.26 0.20 0.13 0.18
    11 3.0 3.1 3.9 3.5 3.2 3.1 3.1 3.3 3.1 3.1
    15 4.0 4.6 5.0 4.7 4.6 4.7 5.0 4.9 4.7 4.6
    19 3.9 4.3 4.7 4.2 4.3 4.6 4.6 4.7 4.0 4.1
    27 27.5 64.1 115.0 58.0 52.2 35.1 84.6 63.7 47.0 60.0
    50 1.9 1.7 1.7 1.6 2.1 1.8 2.1 2.1 1.5 2.0
    25 9.7 23.5 43.9 22.6 16.9 12.4 28.2 20.5 18.8 20.1
    26 17.9 40.6 71.4 35.4 35.3 22.7 56.4 43.2 28.3 39.9
    28 84.5 81.0 117.0 101.0 72.5 71.8 93.5 76.1 86.8 80.5
    29 81.6 79.2 105.0 103.0 83.7 83.2 108.0 81.4 70.3 75.9
    30 82.6 79.8 109.0 102.0 79.7 78.8 102.0 79.6 76.1 77.4
    53 6.89 6.57 6.31 7.45 6.89 5.87 6.15 6.05 7.68 6.74
    33 6.73 9.77 12.70 8.67 9.77 9.23 10.30 10.10 7.93 8.23
    37 13.3 20.6 23.7 18.0 19.3 19.2 21.9 22.1 18.2 21.0
    40 22.2 31.1 34.7 30.0 30.8 29.9 30.9 32.4 29.4 30.7
    44 0.002 0.004 0.007 0.003 0.003 0.003 0.005 0.003 0.003 0.003
    48 0.003 0.007 0.011 0.005 0.005 0.006 0.009 0.007 0.004 0.007
    53 26.9 28.0 29.6 31.5 29.6 26.8 28.5 28.2 30.5 27.6
    58 0.005 0.011 0.018 0.008 0.008 0.009 0.014 0.010 0.007 0.010
    Table 29: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 30
    Sorghum accessions, measured parameters under 100 mM NaCl growth conditions
    Seed ID
    Corr. ID 20 22 26 27 28 29 30 31 34 37
    1 0.05 0.10 0.12 0.07 0.08 0.08 0.14 0.10 0.17 0.14
    5 0.09 0.19 0.20 0.14 0.13 0.13 0.15 0.19 0.10 0.12
    9 3.0 3.1 3.4 3.1 3.3 3.1 3.1 3.3 3.0 3.1
    13 4.0 4.4 4.9 4.6 4.5 4.5 4.5 4.8 4.3 4.2
    17 4.0 4.1 4.6 4.4 4.1 4.3 4.1 4.5 3.8 4.2
    51 8.2 8.5 6.1 7.0 8.5 6.9 7.8 7.1 8.6 8.2
    31 7.9 9.5 10.9 7.9 9.7 8.5 8.9 10.4 7.0 7.8
    35 14.2 16.3 20.4 13.3 15.9 16.5 15.5 18.9 13.7 15.8
    39 21.8 23.2 30.4 22.8 23.7 23.3 22.5 26.8 20.3 23.6
    42 0.002 0.003 0.004 0.002 0.002 0.003 0.004 0.003 0.005 0.004
    46 0.003 0.005 0.007 0.004 0.004 0.004 0.005 0.006 0.003 0.004
    55 32.7 35.1 28.0 30.9 34.5 30.0 32.1 31.9 32.5 34.3
    56 0.004 0.008 0.012 0.007 0.006 0.007 0.009 0.009 0.008 0.008
    Table 30: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under 100 mM NaCl growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 31
    Sorghum accessions, measured parameters under cold growth conditions
    Seed ID
    Corr. ID 20 22 26 27 28 29 30 31 34 37
    2 0.068 0.108 0.163 0.094 0.084 0.114 0.137 0.127 0.108 0.139
    6 0.078 0.154 0.189 0.112 0.130 0.165 0.152 0.150 0.112 0.141
    10 3.0 3.0 3.5 3.2 3.4 3.2 3.1 3.1 3.1 3.0
    14 3.9 4.1 4.6 4.2 4.3 4.2 4.2 4.3 4.2 4.0
    18 4.7 5.3 5.4 5.5 5.3 5.1 4.5 5.4 5.4 5.2
    52 6.1 5.7 5.0 5.9 5.3 5.9 7.2 5.3 5.9 5.7
    32 6.5 8.8 10.4 6.8 9.0 9.0 8.0 9.2 6.5 7.2
    36 11.2 15.9 18.4 12.2 16.0 14.6 14.6 17.3 13.4 13.9
    43 0.002 0.004 0.006 0.003 0.003 0.004 0.004 0.004 0.003 0.005
    47 0.003 0.005 0.007 0.003 0.005 0.006 0.005 0.005 0.004 0.005
    52 28.6 30.3 27.0 32.3 28.3 29.9 32.5 28.6 31.7 29.6
    57 0.005 0.009 0.013 0.006 0.008 0.009 0.009 0.010 0.007 0.009
    Table 31: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under cold growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 32
    Sorghum accessions, measured parameters under regular growth conditions
    Seed ID
    Corr. ID 20 22 26 27 28 29 30 31 34 37
    4 0.05 0.13 0.17 0.10 0.11 0.12 0.14 0.12 0.10 0.12
    8 0.10 0.24 0.31 0.16 0.19 0.19 0.24 0.24 0.19 0.24
    12 3.0 3.1 3.8 3.2 3.2 3.2 3.1 3.4 3.0 3.0
    16 4.2 4.5 4.8 4.6 4.5 5.0 4.6 4.9 4.5 4.6
    20 5.3 5.9 6.2 5.8 5.8 5.7 5.7 6.0 5.6 6.1
    54 5.0 5.0 4.8 5.0 4.3 4.3 5.4 4.3 5.9 5.5
    21 2.0 1.9 1.9 1.6 1.8 1.6 1.8 2.0 1.9 2.2
    22 0.9 2.2 2.8 1.7 1.8 2.0 2.3 2.0 1.1 1.9
    23 1.7 3.9 5.1 2.6 3.2 3.1 4.0 4.0 2.0 4.0
    24 2.5 6.1 8.0 4.3 4.9 5.0 6.2 6.0 3.1 5.9
    34 7.5 9.3 12.9 8.6 8.9 8.5 10.7 10.3 7.9 8.8
    38 15.0 18.2 22.1 17.6 18.1 18.5 22.8 22.0 20.0 21.8
    41 0.16 0.19 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.20
    45 0.002 0.005 0.006 0.004 0.004 0.005 0.005 0.005 0.003 0.003
    49 0.004 0.008 0.011 0.005 0.008 0.008 0.008 0.010 0.006 0.007
    54 26.7 29.3 29.9 29.1 25.0 24.6 30.8 25.5 32.9 33.5
    59 0.006 0.013 0.016 0.009 0.012 0.013 0.012 0.014 0.009 0.011
    Table 32: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 33
    Correlation between the expression level of selected LNU genes of some embodiments of
    the invention in various tissues and the phenotypic performance under low nitrogen,
    normal, cold or salinity stress conditions across Sorghum accessions
    Exp. Corr. Gene Exp. Corr.
    Gene name R P set ID name R P set ID
    LNU433 0.76 0.0459 A 30 LNU291 0.76 0.0183 I 1
    LNU313 0.70 0.0340 C 53 LNU479 0.76 0.0166 I 1
    LNU480 0.72 0.0299 I 51 LNU401 0.74 0.0239 I 1
    LNU396 0.71 0.0327 L 52 LNU393 0.72 0.0271 I 1
    LNU465 0.76 0.0105 J 52 LNU422 0.78 0.0123 I 1
    LNU316 0.75 0.0122 J 52 LNU346 0.81 0.0082 I 1
    LNU432 0.75 0.0191 F 54 LNU393 0.71 0.0312 L 2
    LNU477 0.78 0.0141 D 54 LNU422 0.71 0.0308 L 2
    LNU432 0.72 0.0284 D 54 LNU481 0.79 0.0070 J 2
    LNU480 0.78 0.0134 L 32 LNU291 0.75 0.0197 C 3
    LNU473 0.80 0.0091 L 32 LNU479 0.92 0.0004 C 3
    LNU393 0.75 0.0194 L 32 LNU491 0.86 0.0029 C 3
    LNU422 0.83 0.0057 L 32 LNU393 0.82 0.0066 C 3
    LNU501 0.72 0.0289 L 32 LNU422 0.91 0.0007 C 3
    LNU479 0.82 0.0065 C 33 LNU346 0.81 0.0081 C 3
    LNU491 0.86 0.0030 C 33 LNU431 0.84 0.0050 C 3
    LNU422 0.78 0.0131 C 33 LNU481 0.81 0.0265 A 3
    LNU431 0.86 0.0027 C 33 LNU291 0.74 0.0236 C 7
    LNU439 0.74 0.0232 F 34 LNU479 0.91 0.0006 C 7
    LNU479 0.73 0.0252 D 34 LNU491 0.76 0.0184 C 7
    LNU395 0.71 0.0334 D 34 LNU393 0.74 0.0222 C 7
    LNU422 0.74 0.0215 D 34 LNU422 0.82 0.0068 C 7
    LNU431 0.77 0.0162 D 34 LNU346 0.74 0.0219 C 7
    LNU480 0.79 0.0117 L 36 LNU431 0.92 0.0005 C 7
    LNU387 0.74 0.0223 L 36 LNU473 0.77 0.0434 A 7
    LNU473 0.72 0.0303 L 36 LNU291 0.73 0.0270 L 6
    LNU393 0.73 0.0261 L 36 LNU480 0.71 0.0326 L 6
    LNU422 0.83 0.0056 L 36 LNU393 0.79 0.0110 L 6
    LNU479 0.81 0.0087 C 37 LNU422 0.85 0.0034 L 6
    LNU422 0.71 0.0329 C 37 LNU473 0.73 0.0248 L 10
    LNU431 0.80 0.0094 C 37 LNU393 0.73 0.0259 L 10
    LNU473 0.78 0.0378 A 37 LNU433 0.79 0.0113 L 10
    LNU397 0.76 0.0184 F 38 LNU291 0.76 0.0168 C 11
    LNU346 0.72 0.0275 D 38 LNU479 0.82 0.0073 C 11
    LNU397 0.71 0.0308 I 39 LNU491 0.84 0.0050 C 11
    LNU291 0.75 0.0192 C 40 LNU477 0.77 0.0448 A 11
    LNU479 0.83 0.0053 C 40 LNU393 0.90 0.0059 A 11
    LNU491 0.80 0.0094 C 40 LNU291 0.73 0.0265 F 12
    LNU422 0.75 0.0211 C 40 LNU291 0.83 0.0054 D 12
    LNU431 0.73 0.0241 C 40 LNU395 0.75 0.0210 D 12
    LNU422 0.78 0.0366 A 40 LNU431 0.80 0.0089 D 12
    LNU291 0.73 0.0248 I 42 LNU291 0.85 0.0041 L 14
    LNU479 0.78 0.0130 I 42 LNU480 0.91 0.0007 L 14
    LNU401 0.72 0.0298 I 42 LNU473 0.87 0.0025 L 14
    LNU422 0.71 0.0331 I 42 LNU393 0.92 0.0005 L 14
    LNU346 0.81 0.0075 I 42 LNU422 0.89 0.0012 L 14
    LNU291 0.76 0.0170 L 43 LNU491 0.74 0.0150 J 14
    LNU393 0.78 0.0127 L 43 LNU291 0.73 0.0264 C 15
    LNU422 0.78 0.0128 L 43 LNU479 0.80 0.0091 C 15
    LNU491 0.75 0.0124 J 43 LNU431 0.75 0.0199 C 15
    LNU481 0.81 0.0043 J 43 LNU422 0.89 0.0080 A 15
    LNU291 0.72 0.0293 C 44 LNU480 0.72 0.0293 L 18
    LNU479 0.90 0.0009 C 44 LNU479 0.77 0.0143 C 19
    LNU491 0.84 0.0047 C 44 LNU431 0.80 0.0092 C 19
    LNU393 0.83 0.0061 C 44 LNU441 0.79 0.0326 A 19
    LNU422 0.90 0.0009 C 44 LNU291 0.75 0.0204 C 27
    LNU346 0.80 0.0103 C 44 LNU479 0.82 0.0067 C 27
    LNU431 0.85 0.0039 C 44 LNU491 0.81 0.0088 C 27
    LNU481 0.76 0.0485 A 44 LNU393 0.78 0.0129 C 27
    LNU291 0.79 0.0117 L 47 LNU422 0.86 0.0027 C 27
    LNU480 0.71 0.0310 L 47 LNU346 0.78 0.0137 C 27
    LNU393 0.83 0.0057 L 47 LNU431 0.90 0.0010 C 27
    LNU422 0.89 0.0013 L 47 LNU387 0.90 0.0060 A 27
    LNU479 0.87 0.0021 C 48 LNU473 0.81 0.0275 A 27
    LNU491 0.71 0.0317 C 48 LNU495 0.84 0.0181 A 50
    LNU393 0.72 0.0272 C 48 LNU501 0.79 0.0337 A 50
    LNU422 0.79 0.0114 C 48 LNU291 0.75 0.0197 C 25
    LNU346 0.71 0.0314 C 48 LNU479 0.92 0.0004 C 25
    LNU431 0.91 0.0007 C 48 LNU491 0.86 0.0029 C 25
    LNU473 0.78 0.0391 A 48 LNU393 0.82 0.0066 C 25
    LNU396 0.85 0.0039 L 52 LNU422 0.91 0.0007 C 25
    LNU316 0.87 0.0024 L 52 LNU346 0.81 0.0081 C 25
    LNU396 0.79 0.0063 J 52 LNU431 0.84 0.0050 C 25
    LNU316 0.89 0.0006 J 52 LNU313 0.80 0.0306 A 25
    LNU477 0.70 0.0354 C 53 LNU481 0.84 0.0170 A 25
    LNU479 0.81 0.0257 A 53 LNU387 0.84 0.0167 A 25
    LNU415 0.83 0.0223 A 53 LNU421 0.76 0.0465 A 25
    LNU393 0.86 0.0139 A 53 LNU314 0.76 0.0471 A 25
    LNU324 0.78 0.0373 A 53 LNU291 0.74 0.0236 C 26
    LNU346 0.78 0.0401 A 53 LNU479 0.91 0.0006 C 26
    LNU473 0.76 0.0173 I 51 LNU491 0.76 0.0184 C 26
    LNU479 0.82 0.0065 I 56 LNU393 0.74 0.0222 C 26
    LNU397 0.73 0.0262 I 56 LNU422 0.82 0.0068 C 26
    LNU291 0.80 0.0100 L 57 LNU346 0.74 0.0219 C 26
    LNU393 0.83 0.0057 L 57 LNU431 0.92 0.0005 C 26
    LNU422 0.86 0.0027 L 57 LNU387 0.90 0.0063 A 26
    LNU491 0.74 0.0150 J 57 LNU473 0.85 0.0165 A 26
    LNU481 0.73 0.0161 J 57 LNU479 0.79 0.0106 C 28
    LNU291 0.71 0.0312 C 58 LNU393 0.74 0.0224 C 28
    LNU479 0.90 0.0011 C 58 LNU346 0.74 0.0234 C 28
    LNU491 0.77 0.0156 C 58 LNU313 0.82 0.0238 A 28
    LNU393 0.77 0.0148 C 58 LNU291 0.73 0.0263 C 29
    LNU422 0.84 0.0045 C 58 LNU479 0.75 0.0192 C 29
    LNU346 0.75 0.0193 C 58 LNU291 0.76 0.0170 C 30
    LNU431 0.90 0.0010 C 58 LNU479 0.82 0.0068 C 30
    LNU473 0.76 0.0458 A 58 LNU346 0.72 0.0285 C 30
    Table 33.
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
    “Exp. Set” = Expression set.
  • Example 9 Production of Maize Transcriptome and High Throughput Correlation Analysis with Yield and NUE Related Parameters Using 44K Maize Oligonucleotide Micro-Arrays
  • In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44,000 maize genes and transcripts.
  • Correlation of Maize Hybrids Across Ecotypes Grown Under Regular Growth Conditions
  • Experimental Procedures
  • 12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols. In order to define correlations between the levels of RNA expression with NUE and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 10 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Analyzed Maize tissues—All 10 selected maize hybrids were sample per each treatment. Five types of plant tissues [flag leaf indicated in Table 34 as leaf, flower meristem, grain. Ear, and internode] growing under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 34 below.
  • TABLE 34
    Maize transcriptom expression sets
    Expression Set Set ID
    Maize field/Normal/flower meristem A
    Maize field/Normal/Ear B
    Maize field/Normal/Grain Distal C
    Maize field/Normal/Grain Basal D
    Maize field/Normal/Internode E
    Maize field/Normal/Leaf F
    Table 34: Provided are the maize transcriptom expression sets.
    Leaf = the leaf below the main ear;
    Flower meristem = Apical meristem following male flower initiation;
    Ear = the female flower at the anthesis day.
    Grain Distal = maize developing grains from the cob extreme area,
    Grain Basal = maize developing grains from the cob basal area;
    Internodes = internodes located above and below the main ear in the plant.
  • The following parameters were collected using digital imaging system:
  • Grain Area (cm2)—At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Grain Length and Grain width (cm)—At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weight, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.
  • Ear Area (cm2)—At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
  • Ear Length and Ear Width (cm) At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.
  • The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37. Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.
  • Normalized Grain Weight per plant (gr.)—At the end of the experiment all ears from plots within blocks A-C were collected. Six ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.
  • Ear FW (gr.)—At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).
  • Plant height and Ear height—Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located
  • Leaf number per plant—Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII (described above).
  • SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed 64 days post sowing. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS)
  • Dry weight per plant—At the end of the experiment (when Inflorescence were dry) all vegetative material from plots within blocks A-C were collected.
  • Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Harvest Index (HI) (Maize)—The harvest index was calculated using Formula XIV.

  • Harvest Index=Average grain dry weight per Ear/(Average vegetative dry weight per Ear+Average Ear dry weight)  Formula XIV:
  • Percent Filled Ear [%]—it was calculated as the percentage of the Ear area with grains out of the total ear.
  • Cob diameter [cm]—The diameter of the cob without grains was measured using a ruler.
  • Kernel Row Number per Ear—The number of rows in each ear was counted.
  • Experimental Results
  • 12 different maize hybrids were grown and characterized for different parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 35-37) and a subsequent correlation analysis was performed (Tables 38-39). Results were then integrated to the database.
  • TABLE 35
    Maize correlated parameters (vectors)
    Correlation set Correlation ID
    SPAD 54DPS [SPAD units] 1
    SPAD 46DPS [SPAD units] 2
    Growth Rate Leaf Num 3
    Plant Height per Plot [cm] 4
    Ear Height [cm] 5
    Leaf Number per Plant [number] 6
    Ear Length [cm] 7
    Percent Filled Ear [%] 8
    Cob Diameter [mm] 9
    Kernel Row Number per Ear [number] 10
    DW per Plant [gr] 11
    Ear FW per Plant [gr] 12
    Normalized Grain Weight per plant [gr] 13
    Ears FW per plot [gr] 14
    Normalized Grain Weight per plot [gr] 15
    Ear Area [cm2] 16
    Ear Width [cm] 17
    Grain Area [cm2] 18
    Grain Length [cm] 19
    Grain Width [cm] 20
    Table 35. SPAD 46DPS and SPAD 54DPS: Chlorophyl level after 46 and 54 days after sowing (DPS).
  • TABLE 36
    Measured parameters in Maize accessions under normal conditions
    Seed ID
    1 2 3 4 5 6 7 8 9 10 11
    Line 1 54.8 55.3 0.306 287 135 11.9 20.9 80.4 28.7 16.2 656
    Line 2 54.3 51.7 0.283 278 135 12 19.7 80.6 29 16.2 658
    Line 3 57.2 56.4 0.221 270 116 8.4 19.1 94.3 23.8 15 472
    Line 4 56 53.5 0.281 275 132 11.7 20.5 82.1 28.1 16.2 641
    Line 5 59.7 55.2 0.269 238 114 11.8 21.3 92.7 25.7 15.9 581
    Line 6 59.1 59.4 0.244 225 94.3 12.3 18.2 82.8 25.8 15.2 569
    Line 7 58 58.5 0.244 264 121 12.4 19 73.2 26.4 16 511
    Line 8 60.4 55.9 0.266 252 108 12.2 18.6 81.1 25.2 14.8 544
    Line 9 54.8 53
    Line 10 53.3 50
    Line 11 61.1 59.7 0.301 278 112 12.6 21.7 91.6 26.7 15.4 522
    Line 12 51.4 53.9 0.194 164 60.4 9.28 16.7 81.1 14.3 574 141
    Table 36. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 37
    Additional measured parameters in Maize accessions under
    regular growth conditions
    Seed ID
    12 13 14 15 16 17 18 19 20
    Line 1 272 157 280 140 91.6 5.73 0.806 1.23 0.824
    Line 2 246 141 278 154 85.1 5.58 0.753 1.17 0.81
    Line 3 190 129 190 121 77.9 5.1 0.674 1.07 0.794
    Line 4 262 154 288 152 90.5 5.67 0.755 1.18 0.803
    Line 5 264 177 248 159 96 5.53 0.766 1.2 0.803
    Line 6 178 120 176 117 72.4 5.23 0.713 1.12 0.803
    Line 7 189 120 192 123 74 5.22 0.714 1.14 0.791
    Line 8 197 134 205 131 76.5 5.33 0.753 1.13 0.837
    Line 9
    Line 10
    Line 11 261 173 264 171 95.4 5.58 0.762 1.18 0.812
    Line 12 54.3 143 40.8 55.2 4.12 0.796 0.921 0.675
    Table 37. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 38
    Correlation between the expression level of selected LNU genes of some
    embodiments of the invention in various tissues and the phenotypic
    performance under normal across maize accessions
    Gene Exp. Corr. Gene Exp. Corr.
    Name R P set ID Name R P set ID
    LNU348 0.7900 0.0196 C 3 LNU394 0.8881 0.0076 B 14
    LNU348 0.7286 0.0404 C 18 LNU394 0.8830 0.0084 B 19
    LNU348 0.7222 0.0430 C 17 LNU394 0.8753 0.0099 B 13
    LNU394 0.8524 0.0035 E 8 LNU394 0.8628 0.0124 B 16
    LNU394 0.7673 0.0158 E 6 LNU394 0.8616 0.0127 B 17
    LNU394 0.7621 0.0170 E 15 LNU394 0.8568 0.0138 B 15
    LNU299 0.8148 0.0075 E 6 LNU394 0.7824 0.0376 B 18
    LNU300 0.7810 0.0130 E 6 LNU361 0.8667 0.0116 B 10
    LNU307 0.9065 0.0008 E 8 LNU361 0.8514 0.0151 B 19
    LNU307 0.8849 0.0015 E 15 LNU361 0.8239 0.0227 B 17
    LNU307 0.8768 0.0019 E 13 LNU361 0.7833 0.0372 B 8
    LNU307 0.8745 0.0020 E 20 LNU361 0.7763 0.0401 B 18
    LNU307 0.8402 0.0046 E 16 LNU361 0.7697 0.0430 B 6
    LNU307 0.8205 0.0067 E 18 LNU299 0.8970 0.0062 B 3
    LNU307 0.8051 0.0088 E 17 LNU299 0.8346 0.0195 B 6
    LNU307 0.7843 0.0123 E 4 LNU299 0.8064 0.0285 B 17
    LNU307 0.7528 0.0192 E 19 LNU299 0.7773 0.0397 B 19
    LNU307 0.7262 0.0267 E 5 LNU299 0.7740 0.0411 B 8
    LNU301 0.7753 0.0141 E 6 LNU299 0.7657 0.0448 B 20
    LNU317 0.8504 0.0037 E 19 LNU360 0.8629 0.0124 B 20
    LNU317 0.8352 0.0051 E 3 LNU300 0.9181 0.0035 B 15
    LNU317 0.8118 0.0079 E 7 LNU300 0.8850 0.0081 B 13
    LNU317 0.8006 0.0095 E 6 LNU300 0.8730 0.0103 B 8
    LNU317 0.7927 0.0108 E 18 LNU300 0.8529 0.0147 B 4
    LNU317 0.7747 0.0142 E 17 LNU300 0.8041 0.0293 B 5
    LNU317 0.7506 0.0198 E 13 LNU300 0.8018 0.0301 B 16
    LNU317 0.7433 0.0217 E 4 LNU300 0.8007 0.0305 B 3
    LNU317 0.7043 0.0342 E 12 LNU300 0.7952 0.0325 B 6
    LNU394 0.8756 0.0098 E 10 LNU300 0.7952 0.0325 B 20
    LNU394 0.8714 0.0106 E 19 LNU359 0.9025 0.0054 B 19
    LNU394 0.8557 0.0140 E 3 LNU359 0.9020 0.0055 B 17
    LNU394 0.8451 0.0167 E 7 LNU359 0.9006 0.0057 B 20
    LNU394 0.8200 0.0239 E 17 LNU359 0.8219 0.0233 B 15
    LNU394 0.8099 0.0273 E 13 LNU359 0.7847 0.0367 B 13
    LNU394 0.8079 0.0279 E 12 LNU307 0.8759 0.0097 B 5
    LNU394 0.7847 0.0366 E 15 LNU307 0.8742 0.0101 B 17
    LNU394 0.7610 0.0469 E 16 LNU307 0.8602 0.0130 B 15
    LNU394 0.7560 0.0493 E 18 LNU307 0.8592 0.0132 B 4
    LNU394 0.7545 0.0500 E 6 LNU307 0.8460 0.0164 B 19
    LNU361 0.9074 0.0048 E 3 LNU307 0.8299 0.0209 B 6
    LNU360 0.8408 0.0178 E 4 LNU307 0.8151 0.0255 B 13
    LNU360 0.8050 0.0289 E 5 LNU460 0.9092 0.0045 B 6
    LNU300 0.7717 0.0421 E 8 LNU460 0.9050 0.0051 B 20
    LNU300 0.7696 0.0430 E 6 LNU460 0.8531 0.0147 B 8
    LNU300 0.7675 0.0440 E 18 LNU460 0.8499 0.0154 B 18
    LNU300 0.7663 0.0445 E 19 LNU460 0.7765 0.0401 B 19
    LNU476 0.8604 0.0130 E 10 LNU460 0.7754 0.0405 B 17
    LNU307 0.8902 0.0072 E 18 LNU460 0.7733 0.0414 B 15
    LNU307 0.8670 0.0115 E 8 LNU418 0.8317 0.0203 B 10
    LNU307 0.8499 0.0154 E 5 LNU469 0.8725 0.0104 B 14
    LNU307 0.8324 0.0202 E 4 LNU469 0.8678 0.0113 B 12
    LNU307 0.8128 0.0262 E 17 LNU469 0.8634 0.0123 B 16
    LNU307 0.8021 0.0300 E 15 LNU469 0.8140 0.0259 B 7
    LNU307 0.7789 0.0390 E 19 LNU469 0.7969 0.0319 B 5
    LNU307 0.7744 0.0409 E 6 LNU301 0.8989 0.0059 B 8
    LNU332 0.9109 0.0043 E 4 LNU471 0.8820 0.0086 B 20
    LNU332 0.8808 0.0088 E 5 LNU471 0.8585 0.0134 B 8
    LNU332 0.8349 0.0194 E 3 LNU471 0.8071 0.0282 B 18
    LNU332 0.8297 0.0209 E 14 LNU471 0.8037 0.0294 B 6
    LNU332 0.8057 0.0287 E 17 LNU317 0.8799 0.0090 B 14
    LNU332 0.7983 0.0314 E 15 LNU317 0.7948 0.0327 B 12
    LNU332 0.7822 0.0377 E 18 LNU317 0.7734 0.0414 B 7
    LNU459 0.7966 0.0320 E 20 LNU371 0.8211 0.0235 B 6
    LNU519 0.8564 0.0139 E 8 LNU371 0.8036 0.0295 B 3
    LNU519 0.7634 0.0458 E 20 LNU371 0.7612 0.0468 B 19
    LNU519 0.7596 0.0476 E 6 LNU311 0.8585 0.0134 B 10
    LNU317 0.8410 0.0177 E 3 LNU311 0.8191 0.0242 B 17
    LNU371 0.7717 0.0421 E 6 LNU311 0.7814 0.0380 B 19
    LNU394 0.7595 0.0288 E 7 LNU361 0.8460 0.0081 C 9
    LNU299 0.7110 0.0480 E 8 LNU361 0.8178 0.0131 C 11
    LNU476 0.7456 0.0337 E 6 LNU361 0.8114 0.0145 C 3
    LNU317 0.7611 0.0283 E 10 LNU361 0.7451 0.0339 C 17
    LNU317 0.7294 0.0400 E 19 LNU361 0.7393 0.0361 C 18
    LNU371 0.8610 0.0060 E 6 LNU299 0.8498 0.0076 C 9
    LNU394 0.7058 0.0226 F 7 LNU299 0.8299 0.0108 C 4
    LNU299 0.7097 0.0215 F 4 LNU299 0.7977 0.0177 C 5
    LNU300 0.7357 0.0153 F 6 LNU299 0.7974 0.0178 C 3
    LNU476 0.7907 0.0065 F 13 LNU299 0.7645 0.0271 C 11
    LNU476 0.7657 0.0098 F 15 LNU299 0.7239 0.0423 C 14
    LNU476 0.7627 0.0103 F 16 LNU299 0.7196 0.0442 C 17
    LNU307 0.9158 0.0002 F 20 LNU360 0.8298 0.0108 C 9
    LNU307 0.8603 0.0014 F 18 LNU360 0.7486 0.0326 C 11
    LNU307 0.8063 0.0048 F 5 LNU360 0.7461 0.0335 C 3
    LNU307 0.7910 0.0064 F 19 LNU359 0.8130 0.0141 C 9
    LNU307 0.7865 0.0070 F 4 LNU359 0.7391 0.0362 C 3
    LNU307 0.7827 0.0074 F 17 LNU359 0.7328 0.0387 C 11
    LNU307 0.7600 0.0107 F 15 LNU476 0.8702 0.0049 C 18
    LNU307 0.7562 0.0114 F 6 LNU476 0.8498 0.0075 C 3
    LNU307 0.7331 0.0159 F 13 LNU476 0.7860 0.0207 C 19
    LNU307 0.7158 0.0199 F 8 LNU476 0.7185 0.0447 C 17
    LNU459 0.7659 0.0098 F 6 LNU332 0.8630 0.0058 C 9
    LNU459 0.7382 0.0148 F 20 LNU332 0.8522 0.0072 C 11
    LNU459 0.7201 0.0188 F 5 LNU332 0.8394 0.0092 C 3
    LNU317 0.7722 0.0089 F 13 LNU332 0.7634 0.0275 C 17
    LNU317 0.7293 0.0167 F 7 LNU332 0.7277 0.0407 C 18
    LNU317 0.7109 0.0212 F 16 LNU332 0.7093 0.0488 C 14
    LNU394 0.8690 0.0111 F 3 LNU460 0.7756 0.0237 C 9
    LNU394 0.8665 0.0116 F 7 LNU460 0.7209 0.0436 C 3
    LNU394 0.8008 0.0305 F 12 LNU418 0.8127 0.0142 C 5
    LNU394 0.7609 0.0470 F 14 LNU418 0.7625 0.0278 C 4
    LNU360 0.7551 0.0497 F 16 LNU301 0.8153 0.0137 C 9
    LNU300 0.8481 0.0159 F 19 LNU301 0.7645 0.0272 C 4
    LNU300 0.8044 0.0291 F 18 LNU301 0.7126 0.0473 C 5
    LNU300 0.8044 0.0292 F 17 LNU471 0.9147 0.0015 C 17
    LNU300 0.7981 0.0314 F 13 LNU471 0.8947 0.0027 C 11
    LNU300 0.7790 0.0390 F 15 LNU471 0.8818 0.0038 C 18
    LNU300 0.7546 0.0499 F 8 LNU471 0.8772 0.0042 C 19
    LNU307 0.9128 0.0041 F 8 LNU471 0.8494 0.0076 C 9
    LNU307 0.8940 0.0066 F 18 LNU471 0.8027 0.0165 C 12
    LNU307 0.8476 0.0160 F 17 LNU471 0.7913 0.0193 C 14
    LNU307 0.8476 0.0160 F 6 LNU471 0.7083 0.0493 C 10
    LNU307 0.8300 0.0208 F 19 LNU339 0.8143 0.0139 C 9
    LNU307 0.7857 0.0362 F 5 LNU339 0.7695 0.0256 C 11
    LNU307 0.7766 0.0400 F 15 LNU339 0.7123 0.0474 C 3
    LNU307 0.7590 0.0479 F 1 LNU519 0.7864 0.0206 C 11
    LNU469 0.8415 0.0176 F 16 LNU519 0.7631 0.0276 C 9
    LNU469 0.8375 0.0187 F 12 LNU519 0.7345 0.0380 C 3
    LNU469 0.8017 0.0301 F 10 LNU371 0.8650 0.0055 C 4
    LNU469 0.7995 0.0309 F 7 LNU371 0.8176 0.0132 C 5
    LNU469 0.7727 0.0417 F 13 LNU311 0.8403 0.0090 C 9
    LNU469 0.7727 0.0417 F 19 LNU311 0.7667 0.0264 C 11
    LNU469 0.7557 0.0494 F 14 LNU348 0.8430 0.0086 C 9
    LNU371 0.7611 0.0469 F 6 LNU348 0.8036 0.0163 C 11
    LNU394 0.8917 0.0070 B 10
    Table 38.
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • TABLE 39
    Correlation between the expression level of selected LNU homologous genes of some
    embodiments of the invention in various tissues and the phenotypic performance under
    normal across maize accessions
    Gene Exp. Corr. Gene Exp. Corr.
    Name R P set ID Name R P set ID
    LNU309_H3 0.84 0.0050 E 6 LNU431_H1 0.89 0.0078 B 20
    LNU309_H3 0.76 0.0165 E 19 LNU431_H1 0.78 0.0371 B 18
    LNU309_H3 0.76 0.0182 E 3 LNU431_H1 0.76 0.0464 B 8
    LNU309_H3 0.74 0.0221 E 18 LNU417_H4 0.81 0.0159 C 9
    LNU494_H2 0.76 0.0459 E 19 LNU417_H4 0.74 0.0365 C 11
    LNU309_H3 0.74 0.0138 F 5 LNU417_H4 0.73 0.0391 C 3
    LNU309_H3 0.73 0.0173 F 14 LNU431_H1 0.71 0.0486 C 3
    Table 39.
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
    “Exp. set” = Expression set.
  • Example 10 Production of Tomato Transcriptome and High Throughput Correlation Analysis Using 44K Tomato Oligonucleotide Micro-Array
  • In order to produce a high throughput correlation analysis between NUE related phenotypes and gene expression, the present inventors utilized a Tomato oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44.000 Tomato genes and transcripts. In order to define correlations between the levels of RNA expression with NUE, ABST, yield components or vigor related parameters various plant characteristics of 18 different Tomato varieties were analyzed. Among them, 10 varieties encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Correlation of Tomato Varieties Across Ecotypes Grown Under Low Nitrogen, Drought and Regular Growth Conditions
  • Experimental Procedures:
  • 10 Tomato varieties were grown in 3 repetitive blocks, each containing 6 plants per plot were grown at net house. Briefly, the growing protocol was as follows:
  • 1. Regular growth conditions: Tomato varieties were grown under normal conditions (4-6 Liters/m2 of water per day and fertilized with NPK as recommended in protocols for commercial tomato production).
  • 2. Low Nitrogen fertilization conditions: Tomato varieties were grown under normal conditions (4-6 Liters/m2 per day and fertilized with NPK as recommended in protocols for commercial tomato production) until flowering. At this time. Nitrogen fertilization was stopped.
  • 3. Drought stress: Tomato variety was grown under normal conditions (4-6 Liters/m2 per day) until flowering. At this time, irrigation was reduced to 50% compared to normal conditions. Plants were phenotyped on a daily basis following the standard descriptor of tomato (Table 40). Harvest was conducted while 50% of the fruits were red (mature). Plants were separated to the vegetative part and fruits, of them, 2 nodes were analyzed for additional inflorescent parameters such as size, number of flowers, and inflorescent weight. Fresh weight of all vegetative material was measured. Fruits were separated to colors (red vs. green) and in accordance with the fruit size (small, medium and large). Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Table 41, herein below.
  • Analyzed tomato tissues—Two tissues at different developmental stages [flower and leaf], representing different plant characteristics, were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 40 below.
  • TABLE 40
    Tomato transcriptom expression sets
    Expression Set Set ID
    Leaf grown under Normal Conditions A
    Leaf grown under 50% Irrigation B
    Flower grown under Normal Conditions C
    Flower grown under 50% Irrigation D
    Leaf grown under Low Nitrogen E
    Flower grown under Low Nitrogen F
    Table 40: Provided are the identification (ID) letters of each of the tomato expression sets.
  • The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 42-47 below. Subsequent correlation analysis was conducted (Table 48) with the correlation coefficient (R) and the p-values. Results were integrated to the database.
  • TABLE 41
    Tomato correlated parameters (vectors)
    Correlation set Correlation ID
    average red fruit weight (Normal) [gr.] 1
    average red fruit weight (NUE) [gr.] 2
    average red fruit weight Drought [gr.] 3
    flower cluster weight Drought/NUE 4
    Fruit yield /Plant (Normal) [gr.] 5
    Fruit Yield/Plant (Drought) [gr.] 6
    Fruit Yield/Plant (NUE) [gr.] 7
    FW ratio (Drought/Normal) 8
    FW ratio (NUE/Normal) 9
    FW/Plant (Normal) [gr.] 10
    FW/Plant (NUE) [gr.] 11
    FW/Plant Drought [gr.] 12
    HI (Low N) 13
    HI (Normal) 14
    Leaflet Length [cm] (Low N) 15
    Leaflet Length [cm] (Normal) 16
    Leaflet Width (Low N) 17
    Leaflet Width (Normal) 18
    No flowers (Normal) [number] 19
    No flowers (NUE) [number] 20
    NUE [yield/SPAD] (Low N) 21
    NUE [yield/SPAD] (Normal) 22
    NUE2 biomass/SPAD] (Low N) 23
    NUE2 biomass/SPAD] (Normal) 24
    Num of flowers (Drought) [number] 25
    Num. Flowers NUE/Normal 26
    NUpE [biomass/SPAD] (Low N) 27
    NUpE [biomass/SPAD] (Normal) 28
    Ratio of Cluster Weight (NUE/Normal) 29
    Ratio of Flower Cluster Weight (Drought/Normal) 30
    Ratio of Fruit Yield (Drought/Normal) 31
    Ratio of Fruits (Drought/NUE) 32
    Ratio of Fruits (NUE/Normal) 33
    Ratio of Number of Flowers (Drought/Normal) 34
    Ratio of Number of Flowers (Drought/NUE) 35
    Ratio of RWC (NUE/Normal) 36
    Ratio of SPAD (NUE/Normal) 37
    Ratio of SPAD 100% RWC (NUE/Normal) 38
    red fruit weight Drought/Normal 39
    RWC (Normal) [%] 40
    RWC Drought [%] 41
    RWC Drought/Normal 42
    RWC NUE [%] 43
    SLA [leaf area/plant biomass] (Low N) 44
    SLA [leaf area/plant biomass] (Normal) 45
    SPAD (Normal) [SPAD unit] 46
    SPAD 100% RWC (Normal) [SPAD unit] 47
    SPAD 100% RWC (NUE) [SPAD unit] 48
    SPAD NUE [SPAD unit] 49
    Total Leaf Area [cm^2] (Low N) 50
    Total Leaf Area [cm^2] (Normal) 51
    Weight clusters (flowers) (NUE) [gr.] 52
    Weight flower clusters (Drought) [gr.] 53
    Weight Flower clusters (Normal) [gr.] 54
    Weight of 100 green fruits (Normal) 55
    Weight of 100 green fruits (NUE) 56
    Weight of 100 red fruits (Normal) 57
    Weight of 100 red fruits (NUE) 58
    Yield/SLA (Low N) 59
    Yield/SLA (Normal) 60
    Yield/total leaf area (Low N) 61
    Yield/total leaf area (Normal) 62
    Table 41. Provided are the tomato correlated parameters,
    RWC means relative water content,
    NUpE—nitrogen uptake efficiency,
    HI—harvest index (vegetative weight divided on yield),
    SLA—specific leaf area (leaf area divided on leaf dry weight).
  • Fruit Yield (grams)—At the end of the experiment [when 50% of the fruit were ripe (red)] all fruits from plots within blocks A-C were collected. The total fruits were counted and weighted. The average fruits weight was calculated by dividing the total fruit weight by the number of fruits.
  • Plant Fresh Weight (grams)—At the end of the experiment [when 50% of the fruit were ripe (red)] all plants from plots within blocks A-C were collected. Fresh weight was measured (grams).
  • Inflorescence Weight (grams)—At the end of the experiment [when 50% of the fruits were ripe (red)] two Inflorescence from plots within blocks A-C were collected. The Inflorescence weight (gr.) and number of flowers per inflorescence were counted.
  • SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • Water use efficiency (WUE)—can be determined as the biomass produced per unit transpiration. To analyze WUE, leaf relative water content was measured in control and transgenic plants. Fresh weight (FW) was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) was calculated according to the following Formula I [(FW−DW/TW−DW)×100] as described above.
  • Plants that maintain high relative water content (RWC) compared to control lines were considered more tolerant to drought than those exhibiting reduced relative water content
  • Experimental Results
  • TABLE 42
    Measured parameters in Tomato accessions under drought conditions
    Corr. ID
    Seed ID 41 42 25 53 34 35 30 4
    612 72.1 0.99 16.7 0.37 2.94 0.88 0.32 0.69
    613 74.5 0.97 6.5 0.41 0.34 1.22 1.19 1.11
    614 65.3 1.02 15.7 0.33 2.47 1.74 0.47 1.06
    616 72.2 1.08 20.3 0.29 2.65 1.56 0.01 0.82
    617 66.1 1.21 11.7 0.55 1.21 1.09 1.25 1.16
    618 68.3 0.88 25.3 0.31 3.04 1.52 0.03 1.25
    620 78.1 1.34 29.7 0.45 5.95 4.96 0.56 1.52
    621 18.5 0.28 17.3 0.56 2.08 1.08 0.96 1.19
    622 73.2 1.13 14.7 0.30 1.47 0.98 0.42 0.76
    623 62.5 0.83 29.7 0.32 4.24 4.94 0.38 1.04
    624 67.2 1.01 15.0 0.31 1.67 0.88 0.36 0.38
    625 75.8 1.20 10.3 0.31 1.29 0.80 0.62 0.78
    626 62.8 1.11 18.3 8.36 3.44 2.12 8.20 24.10
    627 70.7 1.97 12.0 0.29 1.50 1.29 0.41 0.67
    628 55.8 0.72 20.3 0.34 2.65 1.61 0.91 0.97
    629 75.2 0.75 12.7 0.44 1.41 1.90 0.67 0.99
    630 63.7 1.01 12.7 0.27 1.19 1.36 0.38 0.95
    631 62.3 0.83 11.3 0.43 1.26 1.42 1.31 0.91
    Table 42: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under drought conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 43
    Additional Measured parameters in Tomato
    accessions under drought conditions
    Corr. ID
    Seed ID 6 12 3 31 32 8 39
    612 0.47 2.62 0.009 0.57 1.15 1.72 0.19
    613 0.48 1.09 0.195 1.41 0.73 0.34 24.40
    614 0.63 1.85 0.209 1.27 1.32 0.61 25.40
    616 0.35 2.22 0.005 2.88 0.76 2.63 0.02
    617 2.04 2.63 0.102 4.20 1.51 1.18 20.30
    618 0.25 2.71 0.002 0.55 0.71 1.36 0.04
    620 0.05 3.41 0.035 0.09 5.06 4.02 0.15
    621 0.45 2.11 0.006 1.03 0.89 1.01 0.02
    622 0.29 1.95 0.005 1.39 0.67 0.61 0.86
    623 1.02 1.76 0.005 3.28 2.17 0.64 0.74
    624 0.60 1.72 0.005 0.91 0.38 0.95 0.09
    625 0.49 1.92 0.012 2.62 1.27 0.51 1.72
    626 0.27 2.21 0.005 0.32 0.84 1.17 0.17
    627 0.68 3.73 0.006 2.48 1.51 1.94 0.02
    628 0.14 0.75 0.303 0.41 0.98 0.35 10.50
    629 0.53 1.76 0.138 1.62 1.34 1.06 27.90
    630 0.55 0.63 0.041 1.76 0.38 0.21 11.80
    631 0.41 1.11 0.089 1.42 0.84 0.48 9.98
    Table 43.
  • TABLE 44
    Measured parameters in Tomato accessions under normal conditions
    Corr. ID
    Seed ID 5 10 1 46 40 47 19 54 22 28
    612 0.83 1.53 0.05 49.7 72.8 36.2 5.7 1.2 0.017 0.031
    613 0.34 3.17 0.01 37.2 76.5 28.4 19.3 0.3 0.009 0.085
    614 0.49 3.02 0.01 55.8 64.3 35.9 6.3 0.7 0.009 0.054
    616 0.12 0.84 0.29 46.4 67.1 31.1 7.7 0.003 0.018
    617 0.49 2.24 0.01 48.2 54.8 26.4 9.7 0.4 0.010 0.046
    618 0.45 1.98 0.05 43.4 77.6 33.7 8.3 0.011 0.046
    620 0.53 0.85 0.23 42.9 58.2 25.0 5.0 0.8 0.012 0.020
    621 0.44 2.09 0.29 53.3 66.5 35.5 8.3 0.6 0.008 0.039
    622 0.21 3.21 0.01 58.5 64.7 37.9 10.0 0.7 0.004 0.055
    623 0.31 2.75 0.01 51.1 75.2 38.4 7.0 0.8 0.006 0.054
    624 0.66 1.81 0.06 40.0 66.2 26.5 9.0 0.9 0.017 0.045
    625 0.19 3.77 0.01 47.6 63.2 30.1 8.0 0.5 0.004 0.079
    626 0.85 1.89 0.03 57.9 56.8 32.9 5.3 1.0 0.015 0.033
    627 0.27 1.93 0.26 48.3 36.0 17.4 8.0 0.7 0.006 0.040
    628 0.35 2.14 0.03 43.6 77.6 33.8 7.7 0.4 0.008 0.049
    629 0.33 1.65 0.00 54.5 100.0 54.5 9.0 0.7 0.006 0.030
    630 0.31 3.01 0.00 41.6 63.2 26.3 10.7 0.7 0.008 0.072
    631 0.29 2.29 0.01 59.1 75.1 44.4 9.0 0.3 0.005 0.039
    Table 44: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under normal growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 45
    Additional measured parameters in Tomato accessions under normal conditions
    Corr. ID
    Seed ID 14 24 51 16 18 55 57 45 62 60
    612 0.35 0.05
    613 0.10 0.09
    614 0.14 0.06 426 6.3 3.7 0.6 0.82 141 0.0012 0.0035
    616 0.13 0.02 582 8.0 4.8 3.1 2.46 690 0.0002 0.0002
    617 0.18 0.06 291 5.6 3.4 0.2 0.50 130 0.0017 0.0037
    618 0.19 0.06 594 7.7 4.6 2.6 2.76 299 0.0008 0.0015
    620 0.38 0.03 948 7.9 4.4 6.3 5.32 1120 0.0006 0.0005
    621 0.17 0.05 233 6.2 3.2 5.8 5.24 112 0.0019 0.0039
    622 0.06 0.06 341 6.2 3.4 0.4 0.61 106 0.0006 0.0020
    623 0.10 0.06 339 5.7 3.1 0.3 0.66 123 0.0009 0.0025
    624 0.27 0.06 190 4.4 2.4 2.0 2.70 105 0.0035 0.0063
    625 0.05 0.08 422 4.4 2.0 2.5 0.70 112 0.0004 0.0017
    626 0.31 0.05 581 6.8 3.8 1.4 2.64 308 0.0015 0.0028
    627 0.12 0.05 808 7.4 3.7 2.0 4.67 419 0.0003 0.0007
    628 0.14 0.06 784 6.7 3.0 1.4 2.17 366 0.0004 0.0009
    629 0.17 0.04 352 5.9 3.2 2.3 0.49 213 0.0009 0.0015
    630 0.09 0.08 256 4.2 2.1 0.5 0.34 85 0.0012 0.0037
    631 0.11 0.04 1080 10.3 5.9 0.4 0.75 470 0.0003 0.0006
    Table 45: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under normal growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 46
    Measured parameters in Tomato accessions under low nitrogen conditions
    Corr. ID
    Seed ID 7 11 2 33 9 49 43 48 37 38 36 20 52 26
    612 0.41 4.04 0.024 0.49 2.65 38.4 74.1 28.5 0.77 0.79 1.0 19.0 0.53 3.35
    613 0.66 1.21 0.191 1.93 0.38 39.4 99.1 39.0 1.06 1.37 1.3 5.3 0.37 0.28
    614 0.48 2.25 0.006 0.97 0.74 47.5 69.5 33.0 0.85 0.92 1.1 9.0 0.31 1.42
    616 0.46 2.54 0.005 3.80 3.01 37.0 63.2 23.4 0.80 0.75 0.9 13.0 0.35 1.70
    617 1.35 1.85 0.096 2.78 0.83 44.6 77.4 34.5 0.93 1.31 1.4 10.7 0.47 1.10
    618 0.35 3.06 0.004 0.78 1.54 41.7 77.9 32.5 0.96 0.97 1.0 16.7 0.25 2.00
    620 0.01 3.13 0.006 0.02 3.70 34.4 80.5 27.7 0.80 1.11 1.4 6.0 0.29 1.20
    621 0.51 2.54 0.007 1.16 1.22 50.0 67.4 33.7 0.94 0.95 1.0 16.0 0.47 1.92
    622 0.44 1.84 0.006 2.07 0.58 44.7 67.2 30.0 0.76 0.79 1.0 15.0 0.40 1.50
    623 0.47 1.52 0.013 1.51 0.55 53.7 66.1 35.5 1.05 0.92 0.9 6.0 0.30 0.86
    624 1.59 1.91 0.021 2.41 1.06 35.7 69.6 24.8 0.89 0.94 1.1 17.0 0.82 1.89
    625 0.39 1.86 0.005 2.06 0.49 58.8 69.3 40.8 1.24 1.36 1.1 13.0 0.40 1.62
    626 0.32 2.47 0.006 0.38 1.31 47.5 100.0 47.5 0.82 1.44 1.8 8.7 0.35 1.62
    627 0.45 2.62 0.048 1.64 1.36 45.2 57.7 26.1 0.94 1.50 1.6 9.3 0.43 1.17
    628 0.14 1.08 0.357 0.41 0.51 39.0 90.8 35.4 0.89 1.05 1.2 12.7 0.35 1.65
    629 0.40 1.17 0.037 1.21 0.71 45.0 68.0 30.6 0.83 0.56 0.7 6.7 0.45 0.74
    630 1.44 0.92 0.626 4.59 0.31 65.3 59.6 39.0 1.57 1.48 0.9 9.3 0.28 0.88
    631 0.50 1.09 1.70 0.47 51.9 72.2 37.5 0.88 0.84 1.0 8.0 0.47 0.89
    Table 46: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 47
    Additional measured parameters in Tomato accessions under low nitrogen conditions
    Corr. ID
    Seed ID 29 21 27 13 23 50 15 17 56 44 61 59 58
    612 0.46 0.014 0.14 0.09 0.16 566 6.4 3.5 0.87 140 0.0007 0.003 1.1
    613 1.07 0.017 0.03 0.35 0.05 385 5.9 2.0 3.66 317 0.0017 0.002 6.9
    614 0.44 0.014 0.07 0.18 0.08 295 3.7 1.8 0.57 131 0.0016 0.004 0.6
    616 0.01 0.020 0.11 0.15 0.13 378 5.4 2.6 0.37 149 0.0012 0.003 0.5
    617 1.08 0.039 0.05 0.42 0.09 476 7.0 3.5 3.40 258 0.0028 0.005 7.2
    618 0.02 0.011 0.09 0.10 0.11 197 3.7 1.7 0.68 64 0.0018 0.006 0.4
    620 0.37 0.000 0.11 0.00 0.11 453 4.4 1.9 0.45 145 0.0000 0.000
    621 0.81 0.015 0.08 0.17 0.09 626 6.7 3.5 0.47 246 0.0008 0.002 0.6
    622 0.55 0.015 0.06 0.19 0.08 748 6.7 3.3 0.54 406 0.0006 0.001 0.7
    623 0.36 0.013 0.04 0.24 0.06 454 4.4 2.5 0.39 299 0.0010 0.002 0.6
    624 0.95 0.064 0.08 0.45 0.14 165 3.9 2.6 0.97 86 0.0097 0.019 1.3
    625 0.80 0.010 0.05 0.17 0.06 338 5.3 2.6 0.91 182 0.0012 0.002 1.3
    626 0.34 0.007 0.05 0.12 0.06 396 6.3 3.6 0.36 160 0.0008 0.002 0.5
    627 0.61 0.017 0.10 0.15 0.12 236 5.1 2.6 0.35 90 0.0019 0.005 0.6
    628 0.94 0.004 0.03 0.12 0.03 175 4.7 2.5 0.57 161 0.0008 0.001 0.9
    629 0.68 0.013 0.04 0.25 0.05 442 6.8 3.4 4.38 379 0.0009 0.001 6.2
    630 0.40 0.037 0.02 0.61 0.06 489 7.1 3.3 2.02 531 0.0030 0.003 3.7
    631 1.44 0.013 0.03 0.31 0.04 708 8.2 3.7 8.13 651 0.0007 0.001 11.3
    Table 47: Provided are the values of each of the parameters (as described above) measured in Sorghum accessions (Seed ID) under low nitrogen growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 48
    Correlation between the expression level of selected LNU
    genes of some embodiments of the invention in various tissues
    and the phenotypic performance under low nitrogen, normal or
    drought stress conditions across Tomato accessions
    Gene Exp. set Exp. set Gene Exp. set
    Name R P ID Corr. ID ID Name R P ID
    LNU323 0.75 0.0116 F 21 F LNU330 0.75 0.0127 F
    LNU429 0.73 0.0156 F 21 F LNU390 0.90 0.0003 F
    LNU310 0.80 0.0051 F 21 F LNU405 0.91 0.0003 F
    LNU461 0.71 0.0313 C 22 C LNU411 0.92 0.0002 F
    LNU328 0.84 0.0046 A 22 A LNU356 0.75 0.0134 E
    LNU405 0.70 0.0235 F 23 F LNU390 0.72 0.0178 E
    LNU357 0.74 0.0238 C 24 C LNU405 0.77 0.0094 E
    LNU331 0.82 0.0073 C 24 C LNU413 0.73 0.0156 F
    LNU383 0.78 0.0131 C 24 C LNU356 0.83 0.0032 E
    LNU342 0.70 0.0339 A 24 A LNU405 0.84 0.0026 E
    LNU430 0.71 0.0215 B 34 B LNU413 0.83 0.0112 C
    LNU455 0.86 0.0013 D 35 D LNU500 0.72 0.0187 E
    LNU506 0.75 0.0129 B 35 B LNU329 0.75 0.0128 E
    LNU468 0.75 0.0134 B 35 B LNU295 0.81 0.0157 C
    LNU430 0.79 0.0066 B 35 B LNU413 0.90 0.0020 C
    LNU489 0.71 0.0204 B 35 B LNU413 0.80 0.0058 F
    LNU455 0.84 0.0026 B 35 B LNU411 0.85 0.0017 F
    LNU455 0.76 0.0112 D 25 D LNU384 0.78 0.0072 E
    LNU430 0.72 0.0189 B 25 B LNU302 0.77 0.0095 A
    LNU357 0.76 0.0181 C 28 C LNU468 0.72 0.0294 F
    LNU331 0.78 0.0141 C 28 C LNU370 0.77 0.0250 C
    LNU383 0.74 0.0231 C 28 C LNU468 0.82 0.0038 C
    LNU375 0.72 0.0297 C 28 C LNU375 0.82 0.0071 F
    LNU430 0.73 0.0252 C 28 C LNU430 0.72 0.0294 F
    LNU342 0.75 0.0209 A 28 A LNU390 0.81 0.0043 E
    LNU461 0.76 0.0106 D 41 D LNU411 0.72 0.0183 E
    LNU384 0.79 0.0061 F 43 F LNU413 0.80 0.0059 C
    LNU506 0.77 0.0097 F 43 F LNU413 0.79 0.0062 A
    LNU342 0.70 0.0234 F 43 F LNU384 0.79 0.0061 E
    LNU383 0.88 0.0008 E 43 E LNU295 0.74 0.0345 C
    LNU384 0.70 0.0234 F 36 F LNU500 0.76 0.0108 E
    LNU506 0.74 0.0136 F 36 F LNU390 0.79 0.0061 F
    LNU442 0.73 0.0161 F 44 F LNU405 0.75 0.0127 F
    LNU390 0.76 0.0111 F 44 F LNU383 0.70 0.0341 F
    LNU405 0.85 0.0018 F 44 F LNU429 0.87 0.0024 F
    LNU430 0.81 0.0047 F 44 F LNU442 0.77 0.0144 F
    LNU500 0.80 0.0051 F 44 F LNU323 0.87 0.0023 F
    LNU500 0.72 0.0425 C 45 C LNU310 0.92 0.0005 F
    LNU442 0.76 0.0107 C 46 C LNU500 0.76 0.0176 F
    LNU461 0.72 0.0184 A 46 A LNU331 0.78 0.0130 E
    LNU336 0.75 0.0133 A 46 A LNU430 0.75 0.0206 E
    LNU356 0.70 0.0233 A 46 A LNU375 0.76 0.0112 D
    LNU310 0.85 0.0017 C 47 C LNU413 0.71 0.0208 D
    LNU506 0.89 0.0006 F 48 F LNU413 0.71 0.0214 B
    LNU506 0.76 0.0101 E 48 E LNU328 0.72 0.0186 B
    LNU455 0.82 0.0034 E 48 E LNU413 0.80 0.0056 F
    LNU331 0.75 0.0117 E 38 E LNU411 0.78 0.0073 F
    LNU383 0.72 0.0196 E 38 E LNU384 0.75 0.0124 E
    LNU454 0.79 0.0061 E 38 E LNU330 0.76 0.0103 E
    LNU455 0.73 0.0158 E 38 E LNU356 0.73 0.0161 E
    LNU442 0.78 0.0082 F 49 F LNU500 0.76 0.0108 E
    LNU323 0.75 0.0128 F 49 F LNU329 0.91 0.0003 E
    LNU429 0.79 0.0067 F 49 F LNU411 0.72 0.0178 E
    LNU430 0.86 0.0014 F 49 F LNU384 0.70 0.0239 D
    LNU462 0.70 0.0239 E 49 E LNU390 0.70 0.0234 B
    LNU295 0.73 0.0166 F 37 F LNU323 0.84 0.0023 F
    LNU323 0.88 0.0007 F 37 F LNU429 0.86 0.0016 F
    LNU383 0.72 0.0190 F 37 F LNU375 0.73 0.0157 F
    LNU429 0.92 0.0002 F 37 F LNU310 0.84 0.0021 F
    LNU375 0.73 0.0159 F 37 F LNU500 0.72 0.0198 F
    LNU310 0.88 0.0008 F 37 F LNU390 0.73 0.0163 D
    LNU331 0.81 0.0043 E 37 E LNU390 0.75 0.0131 B
    LNU430 0.75 0.0119 E 37 E LNU405 0.79 0.0069 B
    LNU451 0.75 0.0127 F 52 F LNU411 0.80 0.0051 B
    LNU326 0.71 0.0208 C 54 C LNU323 0.79 0.0071 F
    LNU442 0.78 0.0074 A 54 A LNU429 0.77 0.0087 F
    LNU326 0.80 0.0050 A 54 A LNU310 0.84 0.0025 F
    LNU489 0.84 0.0025 A 54 A LNU390 0.91 0.0002 D
    LNU489 0.77 0.0092 F 59 F LNU405 0.86 0.0013 B
    LNU442 0.84 0.0022 E 59 E LNU411 0.87 0.0010 B
    LNU454 0.83 0.0029 E 59 E LNU451 0.73 0.0172 D
    LNU489 0.82 0.0041 E 59 E LNU413 0.71 0.0224 D
    LNU357 0.71 0.0483 C 60 C LNU405 0.71 0.0220 F
    LNU331 0.83 0.0109 C 60 C LNU451 0.73 0.0167 D
    LNU310 0.73 0.0412 C 60 C LNU413 0.79 0.0070 D
    LNU455 0.75 0.0323 C 60 C LNU323 0.81 0.0043 F
    LNU329 0.84 0.0096 C 60 C LNU429 0.82 0.0038 F
    LNU295 0.83 0.0033 F 61 F LNU375 0.84 0.0024 F
    LNU429 0.73 0.0171 F 61 F LNU310 0.78 0.0072 F
    LNU310 0.82 0.0039 F 61 F LNU500 0.80 0.0060 F
    LNU295 0.73 0.0169 E 61 E LNU461 0.71 0.0334 C
    LNU454 0.71 0.0207 E 61 E LNU328 0.78 0.0133 A
    LNU442 0.72 0.0431 C 62 C LNU370 0.78 0.0083 A
    LNU455 0.87 0.0049 C 62 C LNU413 0.75 0.0132 A
    LNU329 0.77 0.0270 C 62 C LNU413 0.73 0.0172 F
    Table 48.
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
    “Exp. Set” = Expression set.
  • Correlation of early vigor traits across collection of Tomato ecotypes under Low nitrogen, 300 mM NaCl, and normal growth conditions—Ten tomato hybrids were grown in 3 repetitive plots, each containing 17 plants, at a net house under semi-hydroponics conditions. Briefly, the growing protocol was as follows: Tomato seeds were sown in trays filled with a mix of vermiculite and peat in a 1:1 ratio. Following germination, the trays were transferred to the high salinity solution (300 mM NaCl in addition to the Full Hoagland solution), low nitrogen solution (the amount of total nitrogen was reduced in a 90% from the full Hoagland solution, final amount of 0.8 mM N) or at Normal growth solution (Full Hoagland containing 8 mM N solution, at 28±2° C.). Plants were grown at 28±2° C.
  • Full Hoagland solution consists of: KNO3—0.808 grams/liter, MgSO4—0.12 grams/liter. KH2PO4—0.172 grams/liter and 0.01% (volume/volume) of ‘Super coratin’ micro elements (Iron-EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)]—40.5 grams/liter, Mn—20.2 grams/liter; Zn 10.1 grams/liter; Co 1.5 grams/liter; and Mo 1.1 grams/liter), solution's pH should be 6.5-6.8].
  • Analyzed tomato tissues—All 10 selected Tomato varieties were sample per each treatment. Two types of tissues [leaves and roots] were sampled and RNA was extracted as described above. For convenience, each micro-array expression information tissue type has received a Set ID as summarized in Table 49 below.
  • TABLE 49
    Tomato transcriptom expression sets
    Expression Set Set ID
    Leaves at 300 mM NaCl A
    Leaves at Normal conditions B
    Leaves at Low Nitrogen conditions C
    Roots at 100 mM NaCl D
    Roots at Normal conditions E
    Roots at Low Nitrogen conditions F
    Table 49. Provided are the tomato transcriptom experimental sets.
  • Tomato vigor related parameters—following 5 weeks of growing, plant were harvested and analyzed for Leaf number plant height, chlorophyll levels (SPAD units), different indices of nitrogen use efficiency (NUE) and plant biomass. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute). Data parameters collected are summarized in Table 50, herein below.
  • TABLE 50
    Tomato correlated parameters (vectors)
    Correlation set Correlation ID
    Leaf No NaCl [number] 1
    Leaf No Normal [number] 2
    Leaf No NUE [number] 3
    Leaf No Ratio NaCl/Normal 4
    Leaf No Ratio NaCl/NUE 5
    Leaf number ratio NUE/Normal 6
    NUE roots (Root Biomass [Dw]/SPAD) Cold 7
    NUE roots (Root Biomass [Dw]/SPAD) Low N 8
    NUE roots (Root Biomass [Dw]/SPAD) NaCl 9
    NUE roots (Root Biomass [Dw]/SPAD) Normal 10
    NUE roots Low N 11
    NUE roots Normal 12
    NUE shoots (shoot Biomass [Dw]/SPAD) Cold 13
    NUE shoots (shoot Biomass [Dw]/SPAD) Low N 14
    NUE shoots (shoot Biomass [Dw]/SPAD) NaCl 15
    NUE shoots (shoot Biomass [Dw]/SPAD) Normal 16
    NUE shoots Low N 17
    NUE shoots Normal 18
    NUE total biomass (Total Biomass [Dw]/SPAD) Cold 19
    NUE total biomass (Total Biomass [Dw]/SPAD) Low N 20
    NUE total biomass (Total Biomass [Dw]/SPAD) NaCl 21
    NUE total biomass (Total Biomass [Dw]/SPAD) Normal 22
    NUE total biomass Low N 23
    NUE total biomass Normal 24
    Plant biomass NaCl [gr] 25
    Plant height NaCl [cm] 26
    Plant height Normal [cm] 27
    Plant height NUE [cm] 28
    Plant Height Ratio NaCl/Normal 29
    Plant Height Ratio NaCl/NUE 30
    Plant Height Ratio NUE/Normal 31
    Ratio Shoot Biomass/Root Biomass Normal 32
    Ratio Shoot Biomass/Root Biomass NUE 33
    Root Biomass reduction compared to normal [%] Low N 34
    Shoot Biomass reduction compared to normal [%] Low N 35
    SPAD Cold [SPAD unit] 36
    SPAD NaCl [SPAD unit] 37
    SPAD Normal [SPAD unit] 38
    SPAD NUE [SPAD unit] 39
    SPAD NUE/Normal 40
    Table 50. Provided are the tomato correlated parameters, NUE means nitrogen use efficiency
  • Experimental Results
  • 10 different Tomato varieties were grown and characterized for parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 51-53 below. Subsequent correlation analysis was conducted (Table 54). Follow, results were integrated to the database.
  • TABLE 51
    Measured parameters in Tomato accessions under low nitrogen conditions
    Line
    Corr. ID 1139 2078 2958 5077 5080 5084 5085 5088 5089 5092 5113
    28 36.8 39.9 34.4 47.0 46.4 45.4 47.7 39.3 41.8 41.0
    27 45.3 47.8 40.8 55.3 56.2 48.7 55.8 37.4 49.6 46.3
    39 34.6 24.9 28.6 31.6 29.7 31.8 30.3 30.3 31.3 28.8
    6 0.85 0.90 0.98 1.09 0.88 1.02 0.87 1.06 0.91 1.12
    31 0.81 0.83 0.84 0.85 0.83 0.93 0.85 1.05 0.84 0.88
    40 1.01 0.98 1.02 1.00 0.98 0.98 0.93 1.05 1.01 0.99
    3 5.6 6.2 7.2 6.8 5.6 6.6 5.1 5.9 5.6 6.3
    14 0.004 0.004 0.003 0.007 0.005 0.005 0.012 0.007 0.007 0.007 0.006
    8 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    20 0.005 0.005 0.003 0.008 0.005 0.006 0.013 0.008 0.008 0.008 0.007
    39 10.9 11.5 11.4 10.4 11.2 8.9 7.9 8.0 10.3 8.6 14.5
    33 5.0 6.4 11.4 9.5 11.6 8.2 10.4 10.5 8.2 8.0 3.9
    35 75.4 62.2 55.1 49.7 63.2 82.7 66.9 108.0 55.4 54.4 59.7
    34 62.6 144.0 54.2 70.5 59.7 96.1 107.0 112.0 81.6 32.2 87.5
    17 35.4 38.4 24.1 65.0 46.7 46.7 120.0 60.1 66.3 56.5 60.3
    11 7.0 7.7 2.5 7.0 5.0 8.0 15.1 9.0 8.8 7.3 15.9
    23 58.5 69.7 63.8 69.3 71.1 60.5 73.9 68.8 66.7 70.8 49.7
    Table 51.
  • TABLE 52
    Measured parameters in Tomato accessions under normal conditions
    Line
    Corr. ID 1139 2078 2958 5077 5080 5084 5085 5088 5089 5092 5113
    2 6.6 6.9 7.3 6.2 6.3 6.4 5.9 5.6 6.1 5.7
    27 45.3 47.8 40.8 55.3 56.2 48.7 55.8 37.4 49.6 46.3
    38 34.3 25.3 28.1 31.4 30.2 32.4 32.6 28.8 30.9 29.0
    16 0.005 0.006 0.005 0.014 0.008 0.005 0.017 0.007 0.011 0.012 0.009
    10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.002
    22 0.006 0.007 0.006 0.016 0.009 0.006 0.019 0.008 0.012 0.014 0.011
    38 9.3 10.2 8.9 8.4 9.8 8.6 6.6 7.0 8.7 7.4 9.4
    32 5.4 12.7 10.0 15.4 8.8 7.5 12.6 8.0 14.3 4.8 6.3
    18 4.7 6.2 4.4 13.1 7.4 5.7 17.9 5.6 12.0 10.4 10.1
    12 1.1 0.5 0.5 1.0 0.8 0.8 0.9 0.8 1.1 2.3 1.8
    24 7.5 9.1 8.6 8.9 7.2 7.9 9.1 7.9 8.6 8.7 6.2
    Table 52.
  • TABLE 53
    Measured parameters in Tomato accessions under salinity conditions
    Line
    Corr. ID 1139 2078 2958 5077 5080 5084 5085 5088 5089 5092 5113
    1 3.6 3.9 5.0 4.0 3.6 4.4 3.2 3.7 4.0 4.3
    26 5.6 6.5 8.5 8.6 8.9 7.6 8.6 5.6 5.8 9.4
    25 0.36 0.44 0.26 0.71 0.46 0.54 0.66 0.40 0.52 0.45
    4 0.54 0.57 0.68 0.64 0.56 0.68 0.54 0.67 0.65 0.75
    5 0.64 0.63 0.69 0.59 0.64 0.67 0.62 0.63 0.72 0.68
    29 0.12 0.14 0.21 0.15 0.16 0.16 0.15 0.15 0.12 0.20
    30 0.15 0.16 0.25 0.18 0.19 0.17 0.18 0.14 0.14 0.23
    15 0.00051 0.00072 0.00067 0.00117 0.00172 0.00098 0.00117 0.00075 0.00101 0.00102 0.00069
    37 11.4 10.4 11.6 10.8 10.8 7.0 9.2 8.5 10.4 8.8 12.4
    9 0.00006 0.00005 0.00011 0.00010 0.00007 0.00009 0.00010 0.00008 0.00009 0.00005
    21 0.00072 0.00063 0.00081 0.00142 0.00178 0.00107 0.00126 0.00083 0.00111 0.00069
    Table 53.
  • TABLE 54
    Correlation between the expression level of selected LNU genes
    of some embodiments of the invention in various tissues and the
    phenotypic performance under low nitrogen, normal or
    salinity stress conditions across Tomato accessions
    Gene Exp. Corr. Gene Exp. Corr.
    Name R P set ID ID Name R P set ID ID
    LNU329 0.7083 0.0493 E 28 LNU326 0.8788 0.0041 B 27
    LNU302 0.7327 0.0387 E 28 LNU330 0.8425 0.0087 E 27
    LNU357 0.7723 0.0247 B 31 LNU413 0.7917 0.0192 E 27
    LNU331 0.8767 0.0043 B 31 LNU302 0.7866 0.0206 E 27
    LNU383 0.8600 0.0062 B 31 LNU384 0.7754 0.0238 C 2
    LNU328 0.8777 0.0042 B 31 LNU342 0.9151 0.0014 C 2
    LNU357 0.7536 0.0308 E 31 LNU329 0.7521 0.0314 C 2
    LNU328 0.7973 0.0178 E 31 LNU336 0.8290 0.0109 F 2
    LNU310 0.7634 0.0275 E 31 LNU342 0.9078 0.0018 F 2
    LNU390 0.8277 0.0059 B 8 LNU328 0.7701 0.0254 F 2
    LNU411 0.7071 0.0331 F 12 LNU342 0.7150 0.0462 B 3
    LNU413 0.7337 0.0245 F 24 LNU384 0.8177 0.0131 E 3
    LNU413 0.7107 0.0482 D 9 LNU326 0.7485 0.0128 A 1
    LNU419 0.7467 0.0208 D 15 LNU411 0.7105 0.0213 A 1
    LNU419 0.7120 0.0476 D 21 LNU506 0.7282 0.0169 D 1
    LNU429 0.7081 0.0328 E 11 LNU342 0.7964 0.0102 C 38
    LNU429 0.7655 0.0162 E 17 LNU405 0.7466 0.0208 C 38
    LNU429 0.7725 0.0147 B 23 LNU342 0.8237 0.0064 F 38
    LNU429 0.7482 0.0204 E 14 LNU295 0.7157 0.0301 B 39
    LNU429 0.7468 0.0208 E 20 LNU342 0.7705 0.0151 B 39
    LNU442 0.7235 0.0276 C 10 LNU342 0.7524 0.0193 E 39
    LNU454 0.8033 0.0091 B 11 LNU328 0.7810 0.0130 E 39
    LNU454 0.7311 0.0252 C 16 LNU302 0.8253 0.0062 F 18
    LNU454 0.8641 0.0027 B 17 LNU302 0.7142 0.0306 E 17
    LNU454 0.7053 0.0338 B 8 LNU328 0.7733 0.0145 F 11
    LNU454 0.8078 0.0084 B 14 LNU330 0.8985 0.0010 F 16
    LNU454 0.8065 0.0086 B 20 LNU330 0.7329 0.0247 E 14
    LNU455 0.7856 0.0121 E 17 LNU357 0.7146 0.0305 B 8
    LNU455 0.7710 0.0150 E 14 LNU370 0.7600 0.0175 D 15
    LNU455 0.8144 0.0075 D 15 LNU370 0.8050 0.0159 A 21
    LNU455 0.7123 0.0313 F 22 LNU370 0.7489 0.0325 D 21
    LNU455 0.7665 0.0160 E 20 LNU375 0.7687 0.0155 F 24
    LNU430 0.7661 0.0161 C 32 LNU383 0.8420 0.0044 E 11
    LNU461 0.7475 0.0206 F 32 LNU383 0.8489 0.0038 E 17
    LNU375 0.7001 0.0357 F 32 LNU383 0.7579 0.0180 E 8
    LNU302 0.7956 0.0103 F 32 LNU383 0.8014 0.0094 E 14
    LNU370 0.7836 0.0125 E 33 LNU383 0.8080 0.0084 E 20
    LNU328 0.7480 0.0328 B 40 LNU506 0.7019 0.0351 B 34
    LNU310 0.7821 0.0218 E 40 LNU468 0.7567 0.0183 B 34
    LNU457 0.7104 0.0483 E 40 LNU357 0.7732 0.0145 B 34
    LNU455 0.7766 0.0234 D 21 LNU390 0.8615 0.0028 B 34
    LNU461 0.7563 0.0184 E 23 LNU430 0.7132 0.0310 E 34
    LNU461 0.7072 0.0498 A 9 LNU357 0.8028 0.0092 B 35
    LNU461 0.7008 0.0355 F 16 LNU331 0.8319 0.0054 B 35
    LNU468 0.7215 0.0282 B 11 LNU383 0.8901 0.0013 B 35
    LNU468 0.7176 0.0295 E 11 LNU328 0.8573 0.0031 B 35
    LNU468 0.7581 0.0179 B 8 LNU331 0.7450 0.0213 E 35
    LNU468 0.7499 0.0200 E 8 LNU413 0.7913 0.0064 D 25
    LNU489 0.8607 0.0029 C 10 LNU419 0.7032 0.0233 D 25
    LNU489 0.8498 0.0037 C 12 LNU383 0.8065 0.0048 A 26
    LNU489 0.8379 0.0048 F 12 LNU384 0.7849 0.0072 D 26
    LNU489 0.8969 0.0010 F 10 LNU329 0.7535 0.0118 D 26
    LNU489 0.7049 0.0340 B 8 LNU326 0.8788 0.0041 C 27
    LNU489 0.7166 0.0298 F 22 LNU330 0.8425 0.0087 F 27
    LNU489 0.8254 0.0116 A 21 LNU413 0.7917 0.0192 F 27
    LNU489 0.8603 0.0061 D 21 LNU302 0.7866 0.0206 F 27
    LNU506 0.7567 0.0183 E 14 LNU326 0.8727 0.0047 B 28
    LNU413 0.7216 0.0433 E 28
    Table 54.
    “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 11 Production of Barley Transcriptome and High Throughput Correlation Analysis Using 60K Barley Oligonucleotide Micro-Array
  • In order to produce a high throughput correlation analysis comparing between plant phenotype and gene expression level, the present inventors utilized a Barley oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 60K Barley genes and transcripts. In order to define correlations between the levels of RNA expression and yield or vigor related parameters, various plant characteristics of 15 different Barley accessions were analyzed. Among them. 10 accessions encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Experimental Procedures
  • Analyzed Barley tissues—Four tissues at different developmental stages [leaf, meristem, root tip and adventitious root], representing different plant characteristics, were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 55 below.
  • TABLE 55
    Barley transcriptom expression sets
    Expression Set Set ID
    Leaf/drought/reproductive A
    Leaf/drought/vegetative B
    Leaf/low N/TP3 C
    Leaf/normal/TP3 D
    Root tip/low N/TP3 E
    Root tip/normal/TP3 F
    Root tip/drought/vegetative G
    Root tip/recovery drought/vegetative H
    Adv root/low N/TP3 I
    Adv root/normal/TP3 J
    Meristem/drought/vegetative K
    Table 55.
  • Barley yield components and vigor related parameters assessment—15 Barley accessions in 5 repetitive blocks, each containing 5 plants per pot were grown at net house. Three different treatments were applied: plants were regularly fertilized and watered during plant growth until harvesting (as recommended for commercial growth) or under low Nitrogen (80% percent less Nitrogen) or drought stress. Plants were phenotyped on a daily basis following the parameters listed in Table 56 below. Harvest was conducted while all the spikes were dry. All material was oven dried and the seeds were threshed manually from the spikes prior to measurement of the seed characteristics (weight and size) using scanning and image analysis. The image analysis system included a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37 (Java based image processing program, which was developed at the U.S. National Institutes of Health and freely available on the internet [Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Grains number—The total number of grains from all spikes that were manually threshed was counted. No. of grains per plot were counted.
  • Grain weight (gr.)—At the end of the experiment all spikes of the pots were collected. The total grains from all spikes that were manually threshed were weight. The grain yield was calculated by per plot.
  • Spike length and width analysis—At the end of the experiment the length and width of five chosen spikes per plant were measured using measuring tape excluding the awns.
  • Spike number analysis—The spikes per plant were counted.
  • Plant height—Each of the plants was measured for its height using measuring tape. Height was measured from ground level to top of the longest spike excluding awns at two time points at the Vegetative growth (30 days after sowing) and at harvest.
  • Spike weight—The biomass and spikes weight of each plot was separated, measured and divided by the number of plants.
  • Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours at two time points at the Vegetative growth (30 days after sowing) and at harvest.
  • Root dry weight=total weight of the root portion underground after drying at 70° C., in oven for 48 hours at harvest.
  • Root/Shoot Ratio—The Root/Shoot Ratio is calculated using Formula XV.

  • Root/Shoot Ratio=total weight of the root at harvest/total weight of the vegetative portion above ground at harvest.  Formula XV:
  • Total No. of tillers—all tillers were counted per plot at two time points at the Vegetative growth (30 days after sowing) and at harvest.
  • SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at time of flowering. SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot.
  • Root FW (gr.), root length (cm) and No of lateral roots—3 plants per plot were selected for measurement of root weight, root length and for counting the number of lateral roots formed.
  • Shoot FW— weight of 3 plants per plot were recorded at different time-points. Relative water content—Fresh weight (FW) of three leaves from three plants each from different seed ID was immediately recorded; then leaves were soaked for 8 hours in distilled water at room temperature in the dark, and the turgid weight (TW) was recorded. Total dry weight (DW) was recorded after drying the leaves at 60° C. to a constant weight. Relative water content (RWC) is calculated according to Formula I above.
  • Harvest Index (for barley)—The harvest index is calculated using Formula X above.
  • Relative growth rate: the relative growth rate (RGR) of Plant Height (Formula XI above), Spad (Formula XVI) and number of tillers (Formula XVII) are calculated as follows:

  • Relative growth rate of SPAD=Regression coefficient of SPAD measurements along time course.  Formula XVI:

  • Relative growth rate of Number of tillers=Regression coefficient of Number of tillers along time course.  Formula XVII:
  • TABLE 56
    Barley correlated parameters (vectors)
    Correlation set Correlation ID
    Chlorophyll level 30DAG [SPAD] Drought 1
    Chlorophyll level at TP3 [SPAD] Low N 2
    Chlorophyll level at TP3 [SPAD] Normal 3
    Grain yield per plant [gr.] Drought 4
    Grain yield per plot [gr.] Low N 5
    Grain yield per plot [gr.] Normal 6
    Grain yield per plot [gr.] Normal 7
    Grains per plant [number] Drought 8
    Grains per plot [number] Low N 9
    Grains per plot [number] Normal 10
    Harvest index [number] Drought 11
    Lateral roots per plant 30DAG [number] Drought 12
    Lateral roots per plant at TP3 [number] Low N 13
    Lateral roots per plant at TP3 [number] Normal 14
    Leaf Area at TP4 [number] Low N 15
    Leaf Area at TP4 [number] Normal 16
    Leaf maximal length at TP4 [mm] Low N 17
    Leaf maximal length at TP4 [mm] Normal 18
    Leaf maximal width at TP4 [mm] Low N 19
    Leaf maximal width at TP4 [mm] Normal 20
    Number of leaves per plant at TP4 [number] Low N 21
    Number of leaves per plant at TP4 [number] Normal 22
    Plant height per plant at TP3 [cm] Low N 23
    Plant height per plot at harvest [cm] Drought 24
    Plant height per plot at harvest [cm] Low N 25
    Plant height per plot at harvest [cm] Normal 26
    Relative water content 30DAG [percent] Drought 27
    Root DW per plant at harvest [gr.]/Shoot DW per 28
    plant at harvest [gr.] Drought
    Root DW per plant at harvest [gr.] Drought 29
    Root FW per plant 30DAG [gr.] Drought 30
    Root FW per plant at TP3 [gr.] Low N 31
    Root FW per plant at TP3 [gr.] Normal 32
    Root length per plant 30DAG [cm] Drought 33
    Root length per plant at TP3 [cm] Low N 34
    Root length per plant at TP3 [cm] Normal 35
    Shoot DW at harvest per plant [gr.] Drought 36
    Shoot FW per plant at 30DAG [gr.] Drought 37
    Shoot FW per plant at TP3 [gr.] Low N 38
    Shoot FW per plant at TP3 [gr.] Normal 39
    Spike length [cm] Drought 40
    Spike length [cm] Low N 41
    Spike length [cm] Normal 42
    Spike width [mm] Drought 43
    Spike width [mm] Low N 44
    Spike width [mm] Normal 45
    Spikes per plant [number] Drought 46
    Spikes per plot [number] Low N 47
    Spikes per plot [number] Normal 48
    Spikes weight per plant [gr.] Drought 49
    Spikes yield per plot [gr.] Low N 50
    Spikes yield per plot [gr.] Normal 51
    Tillers per plant at TP3 [number] Low N 52
    Tillers per plant at harvest [number] Drought 53
    Tillers per plot at harvest [number] Low N 54
    Tillers per plot at harvest [number] Normal 55
    Tillers per plant at TP3 [number] Normal 56
    Table 56. Provided are the barley correlated parameters,
    TP means time point,
    DW—dry weight,
    FW—fresh weight and
    Low N—Low Nitrogen.
  • Experimental Results
  • 15 different Barley accessions were grown and characterized for different parameters as described above. The average for each of the measured parameter was calculated using the JMP software and values are summarized in Tables 57-60 below. Subsequent correlation analysis between the various transcriptome sets and the average parameters (Table 61) was conducted. Follow, results were integrated to the database.
  • TABLE 57
    Measured parameters of correlation Ids in Barley
    accessions under low Nitrogen conditions
    Line
    Corr. ID 2 4 6 9 11 13 15 31 50 53
    21 10.0 8.6 7.5 7.5 8.0 8.0 10.0 11.5 8.5 6.3
    17 152 124 112 124 108 103 135 149 142 95
    19 5.2 5.3 5.1 5.2 5.2 5.3 5.1 5.3 5.3 5.1
    13 6.3 6.7 4.3 5.7 6.0 5.0 7.3 6.0 6.0 4.7
    25 65.8 53.8 61.4 81.8 82.0 41.0 44.6 47.8 59.4 56.4
    23 22.5 19.7 17.3 19.2 18.8 16.3 19.2 18.2 26.0 19.8
    31 0.88 0.43 0.12 0.30 0.23 0.38 0.55 0.50 0.40 0.32
    34 22.2 30.5 22.0 23.8 21.7 24.7 24.5 23.0 21.7 22.8
    9 106.0 219.0 88.2 202.0 165.0 230.0 125.0 223.0 134.0 143.0
    5 6.0 7.4 3.3 7.8 7.3 9.8 6.3 9.7 5.1 5.8
    6 30.3 37.0 10.8 35.4 19.8 46.4 38.3 54.1 22.6 42.0
    38 0.78 0.45 0.33 0.50 0.43 0.43 0.62 0.53 0.58 0.43
    2 26.6 25.4 26.5 25.0 23.3 24.0 26.1 23.2 23.9 24.2
    41 90.2 20.4 16.3 18.8 19.6 15.2 16.6 16.4 19.3 18.8
    50 11.3 12.2 9.2 12.2 13.4 13.7 10.6 15.1 11.6 10.9
    44 9.6 7.1 9.4 10.0 8.1 8.0 9.4 7.2 4.9 8.5
    15 67.8 52.4 51.5 68.0 46.3 39.4 57.9 64.2 57.1 46.2
    47 7.8 15.0 11.6 5.4 9.0 12.2 8.4 14.5 25.0 7.0
    54 12.5 21.2 16.0 6.8 14.6 16.2 14.0 18.8 20.8 11.0
    Table 57.
  • TABLE 58
    Measured parameters of correlation Ids in Barley
    accessions under normal conditions
    Line
    Corr. ID 2 4 6 9 11 13 15 31 50 53
    6 30.3 37.0 10.8 35.4 19.8 46.4 38.3 54.1 22.6 42.0
    10 621 903 242 984 510 1090 768 1070 582 950
    26 72.0 65.8 67.4 91.6 84.0 64.7 66.2 56.6 82.0 62.8
    48 34.2 49.8 36.0 19.3 32.0 41.5 38.0 45.6 71.4 28.0
    42 17.2 20.3 18.3 16.5 19.2 16.5 16.1 19.1 20.4 21.7
    45 10.5 7.4 8.3 10.2 9.1 9.5 10.3 8.8 6.6 10.4
    51 60.8 62.7 34.9 55.9 39.4 69.4 59.7 79.1 50.3 60.0
    55 34.6 49.2 40.0 27.5 41.6 46.7 38.8 48.6 48.8 29.0
    35 27.2 24.0 21.8 21.5 15.0 21.3 15.2 16.0 20.3 13.5
    14 10.7 9.7 8.3 10.0 8.7 7.0 9.7 9.7 9.7 8.7
    32 0.62 0.35 0.25 0.23 0.27 0.27 0.27 0.27 0.35 0.32
    56 2.3 2.3 1.0 1.3 2.0 2.0 1.7 3.3 2.3 1.3
    3 34.2 37.0 35.2 35.0 41.4 39.1 36.8 42.8 33.7 36.9
    39 15.6 2.6 1.3 2.2 1.9 2.2 1.8 3.0 3.0 1.8
    22 23.2 22.2 22.7 17.3 18.2 24.2 22.0 28.3 25.5 19.0
    16 313 259 273 299 199 294 296 309 276 291
    20 4.6 5.8 5.8 5.8 5.5 5.8 6.0 5.3 6.0 5.4
    18 535 479 499 384 348 502 470 551 594 399
    Table 58.
  • TABLE 59
    Measured parameters of correlation Ids in Barley
    accessions under drought conditions
    Line
    Corr. ID 2 4 6 8 9 10 11 13
    11 0.69 0.60 0.29 0.44 0.78 0.47 0.66 0.53
    27 69.8 87.4 58.3 80.6 73.1 80.6 53.4 55.9
    28 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01
    8 252 348 72 160 377 170 268 111
    4 7.75 8.50 2.05 5.38 11.00 5.55 9.80 3.55
    24 48.0 40.8 47.4 64.8 52.6 46.0 52.8 35.0
    46 3.43 8.55 3.05 4.07 3.72 4.20 4.36 7.60
    40 15.6 16.0 14.2 14.8 16.5 16.7 16.8 13.3
    43 7.62 6.06 7.84 7.81 8.35 8.64 9.07 7.82
    49 15.0 22.0 11.7 18.8 21.0 17.7 24.2 18.2
    36 3.55 5.67 5.12 6.86 3.11 6.15 5.05 3.20
    29 70.7 66.2 117.0 84.1 37.5 77.5 60.2 27.1
    33 18.3 21.7 17.0 15.2 27.0 21.7 20.3 22.0
    12 6.67 6.00 6.33 7.00 7.00 8.33 8.67 7.33
    30 1.68 1.45 0.58 0.63 1.07 2.07 1.48 1.12
    53 8.78 13.90 8.45 9.15 5.12 11.70 9.04 10.90
    1 39.7 42.1 42.4 42.3 36.8 41.3 33.6 36.6
    37 1.22 1.88 0.90 0.90 1.43 1.90 1.52 1.17
    Table 59.
  • TABLE 60
    Additional measured parameters of correlation IDs in
    Barley accessions under drought conditions
    Corr. Line
    ID
    15 31 38 50 53 93 13s
    11 0.53 0.69 0.75 0.81 0.87 0.41 0.69
    27 43.2 45.5 76.5
    28 0.03 0.01 0.01 0.01 0.02 0.03 0.01
    8 154 288 274 358 521 105 205
    4 5.28 9.92 10.20 14.00 17.50 2.56 7.20
    24 45.20 37.70 41.20 49.90 43.00 32.00 38.00
    46 4.92 6.90 5.80 9.67 5.42 3.21 8.44
    40 14.20 15.70 17.50 18.30 17.40 12.70 13.50
    43 8.74 6.98 8.05 6.72 9.55 5.47 7.32
    49 19.50 23.40 28.20 33.00 34.80 9.88 18.00
    36 4.76 4.52 3.38 3.31 2.65 3.74 3.28
    29 117 37 26 22 41 99 19
    33 20.7 21.0 20.3 19.7 16.7 15.0 24.0
    12 6.67 7.67 6.67 8.67 7.67 6.67 7.67
    30 1.67 1.62 0.85 1.38 0.82 0.70 1.87
    53 10.30 13.00 7.44 11.00 6.78 16.10 10.20
    1 45.10 38.30 36.20 31.80 33.50 40.60 40.50
    37 1.90 1.75 1.58 1.73 1.00 0.83 1.95
    Table 60.
  • TABLE 61
    Correlation between the expression level of selected LNU genes
    of some embodiments of the invention in various tissues and the
    phenotypic performance under low nitrogen, normal or
    drought stress conditions across Barley accessions
    Gene Exp. Corr. Gene Exp. Corr.
    Name R P Set ID ID Name R P set ID ID
    LNU488 0.72 0.0462 D 10 LNU322 0.89 0.0032 B 36
    LNU407 0.74 0.0371 D 10 LNU436 0.85 0.0037 K 36
    LNU507 0.74 0.0349 D 10 LNU425 0.76 0.0164 K 36
    LNU502 0.76 0.0174 I 9 LNU436 0.86 0.0056 G 36
    LNU409 0.72 0.0293 I 9 LNU435 0.81 0.0085 K 37
    LNU488 0.86 0.0014 E 9 LNU305 0.70 0.0342 H 37
    LNU436 0.90 0.0004 E 9 LNU407 0.82 0.0236 A 8
    LNU437 0.83 0.0030 E 9 LNU502 0.76 0.0491 A 8
    LNU507 0.83 0.0030 E 9 LNU466 0.73 0.0378 G 8
    LNU425 0.82 0.0067 C 13 LNU448 0.72 0.0428 G 8
    LNU448 0.83 0.0028 E 13 LNU448 0.78 0.0129 H 8
    LNU487 0.88 0.0008 E 13 LNU487 0.76 0.0488 A 4
    LNU425 0.77 0.0251 D 16 LNU502 0.84 0.0176 A 4
    LNU467 0.79 0.0207 D 16 LNU297 0.71 0.0312 K 4
    LNU472 0.82 0.0063 C 17 LNU466 0.71 0.0477 G 4
    LNU435 0.81 0.0155 D 18 LNU448 0.71 0.0306 H 4
    LNU407 0.87 0.0026 J 3 LNU437 0.73 0.0262 H 4
    LNU466 0.80 0.0099 J 3 LNU502 0.85 0.0165 A 11
    LNU425 0.82 0.0072 J 3 LNU466 0.72 0.0457 G 11
    LNU507 0.75 0.0328 D 3 LNU437 0.73 0.0269 H 11
    LNU407 0.72 0.0420 F 3 LNU391 0.76 0.0483 A 12
    LNU466 0.73 0.0408 F 3 LNU499 0.81 0.0286 A 24
    LNU488 0.83 0.0058 I 19 LNU322 0.77 0.0426 A 24
    LNU391 0.75 0.0206 I 19 LNU322 0.78 0.0235 B 24
    LNU408 0.83 0.0054 I 19 LNU436 0.85 0.0080 B 24
    LNU488 0.85 0.0040 C 19 LNU437 0.76 0.0274 B 24
    LNU407 0.78 0.0130 C 19 LNU507 0.79 0.0199 B 24
    LNU436 0.72 0.0284 C 19 LNU472 0.74 0.0217 K 24
    LNU425 0.78 0.0081 E 19 LNU409 0.72 0.0300 K 24
    LNU507 0.70 0.0340 I 21 LNU499 0.81 0.0154 G 24
    LNU425 0.76 0.0175 C 21 LNU436 0.77 0.0262 G 24
    LNU425 0.77 0.0089 E 21 LNU437 0.74 0.0352 G 24
    LNU435 0.76 0.0182 J 22 LNU409 0.74 0.0356 G 24
    LNU435 0.88 0.0036 D 22 LNU407 0.90 0.0061 A 28
    LNU456 0.80 0.0173 D 22 LNU425 0.86 0.0129 A 28
    LNU436 0.71 0.0468 F 22 LNU447 0.83 0.0199 A 28
    LNU322 0.77 0.0148 I 23 LNU409 0.85 0.0163 A 28
    LNU436 0.75 0.0187 C 23 LNU425 0.84 0.0083 B 28
    LNU472 0.73 0.0260 C 23 LNU456 0.80 0.0165 B 28
    LNU425 0.86 0.0014 E 23 LNU408 0.73 0.0412 G 28
    LNU437 0.74 0.0235 C 25 LNU425 0.84 0.0099 G 28
    LNU467 0.82 0.0131 D 26 LNU322 0.82 0.0069 H 28
    LNU322 0.72 0.0445 F 26 LNU407 0.80 0.0313 H 27
    LNU436 0.79 0.0206 F 26 LNU448 0.88 0.0093 A 29
    LNU436 0.79 0.0109 I 31 LNU305 0.76 0.0293 B 29
    LNU487 0.76 0.0176 I 31 LNU322 0.76 0.0284 B 29
    LNU438 0.80 0.0097 C 31 LNU456 0.79 0.0195 B 29
    LNU425 0.86 0.0030 C 31 LNU507 0.77 0.0244 B 29
    LNU472 0.74 0.0216 C 31 LNU409 0.87 0.0049 B 29
    LNU502 0.72 0.0303 C 31 LNU408 0.73 0.0389 G 29
    LNU437 0.78 0.0135 J 32 LNU438 0.85 0.0075 G 29
    LNU499 0.79 0.0186 D 32 LNU456 0.72 0.0456 G 29
    LNU425 0.72 0.0428 F 32 LNU409 0.76 0.0290 G 29
    LNU466 0.79 0.0067 E 34 LNU407 0.71 0.0334 H 29
    LNU436 0.79 0.0063 E 34 LNU438 0.74 0.0361 B 30
    LNU437 0.76 0.0170 J 35 LNU305 0.70 0.0347 H 30
    LNU437 0.74 0.0364 F 35 LNU438 0.73 0.0411 B 33
    LNU436 0.76 0.0184 I 38 LNU447 0.73 0.0245 H 33
    LNU425 0.71 0.0324 I 38 LNU305 0.74 0.0364 G 40
    LNU472 0.80 0.0096 I 38 LNU305 0.78 0.0376 A 46
    LNU438 0.79 0.0107 C 38 LNU499 0.82 0.0129 B 46
    LNU425 0.76 0.0185 C 38 LNU467 0.73 0.0415 B 46
    LNU472 0.76 0.0176 C 38 LNU502 0.80 0.0180 B 46
    LNU502 0.79 0.0121 C 38 LNU472 0.87 0.0022 H 46
    LNU437 0.82 0.0068 J 39 LNU502 0.88 0.0092 A 49
    LNU499 0.83 0.0105 D 39 LNU502 0.80 0.0167 B 49
    LNU425 0.72 0.0294 I 41 LNU297 0.82 0.0074 K 49
    LNU438 0.81 0.0082 C 41 LNU437 0.71 0.0311 H 49
    LNU425 0.78 0.0139 C 41 LNU466 0.88 0.0090 A 43
    LNU487 0.70 0.0351 C 41 LNU425 0.82 0.0228 A 43
    LNU502 0.86 0.0027 C 41 LNU447 0.80 0.0313 A 43
    LNU448 0.78 0.0213 D 42 LNU409 0.80 0.0296 A 43
    LNU487 0.72 0.0455 D 42 LNU305 0.77 0.0244 B 43
    LNU305 0.77 0.0143 I 44 LNU507 0.74 0.0356 B 43
    LNU487 0.76 0.0185 I 44 LNU391 0.72 0.0302 K 43
    LNU499 0.79 0.0203 D 45 LNU488 0.83 0.0110 B 53
    LNU425 0.72 0.0437 D 45 LNU435 0.85 0.0036 K 53
    LNU436 0.81 0.0080 C 47 LNU467 0.84 0.0050 K 53
    LNU322 0.87 0.0024 J 48 LNU467 0.79 0.0193 G 53
    LNU488 0.76 0.0284 D 48 LNU435 0.73 0.0271 H 53
    LNU407 0.77 0.0269 D 48 LNU456 0.83 0.0053 C 2
    LNU425 0.77 0.0256 D 48 LNU407 0.85 0.0038 I 5
    LNU437 0.86 0.0067 D 48 LNU435 0.80 0.0099 I 5
    LNU437 0.79 0.0198 F 48 LNU408 0.80 0.0100 I 5
    LNU436 0.72 0.0289 J 48 LNU467 0.86 0.0033 I 5
    LNU487 0.71 0.0498 D 48 LNU502 0.86 0.0027 I 5
    LNU435 0.70 0.0350 I 50 LNU409 0.78 0.0134 I 5
    LNU408 0.76 0.0177 I 50 LNU466 0.71 0.0315 C 5
    LNU438 0.72 0.0302 I 50 LNU391 0.73 0.0250 C 5
    LNU467 0.79 0.0106 I 50 LNU507 0.71 0.0308 C 5
    LNU507 0.73 0.0243 I 50 LNU322 0.77 0.0095 E 5
    LNU466 0.78 0.0123 C 50 LNU436 0.81 0.0046 E 5
    LNU391 0.81 0.0081 C 50 LNU437 0.76 0.0107 E 5
    LNU437 0.72 0.0191 E 50 LNU502 0.72 0.0186 E 5
    LNU408 0.75 0.0201 J 51 LNU408 0.71 0.0327 J 6
    LNU507 0.73 0.0409 D 51 LNU507 0.77 0.0251 D 6
    LNU488 0.73 0.0387 F 51 LNU407 0.84 0.0046 I 9
    LNU488 0.72 0.0284 I 52 LNU435 0.78 0.0134 I 9
    LNU467 0.73 0.0269 J 56 LNU408 0.88 0.0016 I 9
    LNU488 0.71 0.0484 D 56 LNU438 0.86 0.0030 I 9
    LNU407 0.72 0.0451 D 56 LNU467 0.79 0.0114 I 9
    LNU437 0.72 0.0452 D 56 LNU408 0.81 0.0082 J 10
    LNU436 0.74 0.0343 F 56 LNU438 0.72 0.0271 J 10
    Table 61.
  • Example 12 Production of Maize Transcriptome and High Throughput Correlation Analysis with Yield and NUE Related Parameters Using 44K Maize Oligonucleotide Micro-Arrays
  • In order to produce a high throughput correlation analysis between plant phenotype and gene expression level, the present inventors utilized a maize oligonucleotide micro-array, produced by Agilent Technologies [Hypertext Transfer Protocol://World Wide Web (dot) chem. (dot) agilent (dot) com/Scripts/PDS (dot) asp?lPage=50879]. The array oligonucleotide represents about 44.000 maize genes and transcripts.
  • Correlation of Maize Hybrids Across Ecotypes Grown Under Low Nitrogen Conditions
  • Experimental Procedures
  • 12 Maize hybrids were grown in 3 repetitive plots, in field. Maize seeds were planted and plants were grown in the field using commercial fertilization and irrigation protocols. In order to define correlations between the levels of RNA expression with NUE and yield components or vigor related parameters, the 12 different maize hybrids were analyzed. Among them, 11 hybrids encompassing the observed variance were selected for RNA expression analysis. The correlation between the RNA levels and the characterized parameters was analyzed using Pearson correlation test [Hypertext Transfer Protocol://World Wide Web (dot) davidmlane (dot) com/hyperstat/A34739 (dot) html].
  • Analyzed Maize tissues—All 10 selected maize hybrids were sample per each treatment. Plant tissues [flag leaf, flower meristem, grain, ear and internode] growing under Normal conditions were sampled and RNA was extracted as described above. Each micro-array expression information tissue type has received a Set ID as summarized in Table 62 below.
  • TABLE 62
    Maize transcriptom expression sets
    Expression Set Set ID
    Maize field/Low/N/Ear/TP5 A
    Maize field/Low/N/Ear/TP6 B
    Maize field/Low/N/Internodes/TP2 C
    Maize field/Low/N/Internodes/TP5 D
    Maize field/Low/N/Leaf/TP5 E
    Maize field/Low/N/Leaf/TP6 F
    Maize field/Normal/Ear/R1-R2 G
    Maize field/Normal/Grain/Distal/R4-R5 H
    Maize field/Normal/Internode/R3-R4 J
    Maize field/Normal/Internode/V6-V8 K
    Maize field/Normal/Leaf/R1-R2 L
    Maize field/Normal/Leaf/V6-V8 M
    Maize field/Low/N/Internodes/TP6 N
    Table 62: Provided are the maize transcriptom expression sets.
    Leaf = the leaf below the main ear;
    Flower meristem = Apical meristem following male flower initiation;
    Ear = the female flower at the anthesis day.
    Grain Distal = maize developing grains from the cob extreme area,
    Grain Basal = maize developing grains from the cob basal area;
    Internodes = internodes located above and below the main ear in the plant.
  • The following parameters were collected using digital imaging system:
  • Grain Area (cm2)—At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weighted, photographed and images were processed using the below described image processing system. The grain area was measured from those images and was divided by the number of grains.
  • Grain Length and Grain width (cm)—At the end of the growing period the grains were separated from the ear. A sample of ˜200 grains were weighted, photographed and images were processed using the below described image processing system. The sum of grain lengths/or width (longest axis) was measured from those images and was divided by the number of grains.
  • Ear Area (cm2)—At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear area was measured from those images and was divided by the number of Ears.
  • Ear Length and Ear Width (cm) At the end of the growing period 5 ears were, photographed and images were processed using the below described image processing system. The Ear length and width (longest axis) was measured from those images and was divided by the number of ears.
  • The image processing system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, image processing output data for seed area and seed length was saved to text files and analyzed using the JMP statistical analysis software (SAS institute).
  • Additional parameters were collected either by sampling 6 plants per plot or by measuring the parameter across all the plants within the plot.
  • Normalized Grain Weight per plant (gr.)—At the end of the experiment all ears from plots within blocks A-C were collected. Six ears were separately threshed and grains were weighted, all additional ears were threshed together and weighted as well. The average grain weight per ear was calculated by dividing the total grain weight by number of total ears per plot (based on plot). In case of 6 ears, the total grains weight of 6 ears was divided by 6.
  • Ear FW (gr.)—At the end of the experiment (when ears were harvested) total and 6 selected ears per plots within blocks A-C were collected separately. The plants with (total and 6) were weighted (gr.) separately and the average ear per plant was calculated for total (Ear FW per plot) and for 6 (Ear FW per plant).
  • Plant height and Ear height—Plants were characterized for height at harvesting. In each measure, 6 plants were measured for their height using a measuring tape. Height was measured from ground level to top of the plant below the tassel. Ear height was measured from the ground level to the place were the main ear is located.
  • Leaf number per plant—Plants were characterized for leaf number during growing period at 5 time points. In each measure, plants were measured for their leaf number by counting all the leaves of 3 selected plants per plot.
  • Relative Growth Rate was calculated using Formulas XI and XII (described above).
  • SPAD—Chlorophyll content was determined using a Minolta SPAD 502 chlorophyll meter and measurement was performed at early stages of grain filling (R1-R2) and late stage of grain filling (R3-R4). SPAD meter readings were done on young fully developed leaf. Three measurements per leaf were taken per plot. Data were taken after 46 and 54 days after sowing (DPS).
  • Dry weight per plant—At the end of the experiment (when Inflorescence were dry) all vegetative material from plots within blocks A-C were collected.
  • Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 70° C., in oven for 48 hours;
  • Harvest Index (HI) (Maize)—The harvest index was calculated using Formula XIV.
  • Percent Filled Ear [%]—it was calculated as the percentage of the Ear area with grains out of the total ear.
  • Cob diameter [cm]—The diameter of the cob without grains was measured using a ruler.
  • Kernel Row Number per Ear—The number of rows in each ear was counted.
  • Experimental Results
  • 11 different maize hybrids were grown and characterized for different parameters: The average for each of the measured parameter was calculated using the JMP software (Tables 63-65) and a subsequent correlation analysis was performed (Tables 66-67). Results were then integrated to the database.
  • TABLE 63
    Maize correlated parameters (vectors)
    Correlation set Correlation ID
    Ear Length [cm] Low N 1
    Ear Length [cm] Normal 2
    Ear Length of filled area [cm] Low N 3
    Ear Length of filled area [cm] Normal 4
    Ear width [mm] Low N 5
    Ear width [mm] Normal 6
    Ears weight per plot [kg] Low N 7
    Ears weight per plot [kg] Normal 8
    Final Leaf Area [number] Low N 9
    Final Leaf Area [number] Normal 10
    Final Leaf Number [number] Low N 11
    Final Leaf Number [number] Normal 12
    Final Main Ear Height [cm] Low N 13
    Final Main Ear Height [cm] Normal 14
    Final Plant DW [kg] Low N 15
    Final Plant DW [kg] Normal 16
    Final Plant Height [cm] Low N 17
    Final Plant Height [cm] Normal 18
    No of rows per ear [number] Low N 19
    No of rows per ear [number] Normal 20
    NUE at early grain filling [R1-R2] yield kg/N in plant 21
    per SPAD Low N
    NUE at early grain filling [R1-R2] yield kg/N in plant 22
    per SPAD Normal
    NUE at grain filling [R3-R4] yield kg/N in plant per 23
    SPAD Low N
    NUE at grain filling [R3-R4] yield kg/N in plant per 24
    SPAD Normal
    NUE yield kg/N applied in soil kg Low N 25
    NUE yield kg/N applied in soil kg Normal 26
    NUpE [biomass/N applied] Low N 27
    NUpE [biomass/N applied] Normal 28
    Seed yield per dunam [kg] Low N 29
    Seed yield per dunam [kg] Normal 30
    seed yield per plant [kg] Normal 31
    seed yield per plant [kg] Low N 32
    SPAD at R1-R2 [number] Low N 33
    SPAD at R1-R2 [number] Normal 34
    SPAD at R3-R4 [number] Low N 35
    SPAD at R3-R4 [number] Normal 36
    Stalk width at TP5 Normal 37
    Stalk width at TP5 Low N 38
    Yield/LAI Low N 39
    Yield/LAI Normal 40
    Yield/stalk width Normal 41
    Yield/stalk width Low N 42
    Table 63. SPAD at R1-R2 and SPAD R3-R4: Chlorophyl level after early and late stages of grain filling,
    NUE—nitrogen use efficiency,
    NUpE—nitrogen uptake efficiency,
    LAI—leaf area,
    Low N—Low Nitrogen.
  • TABLE 64
    Measured parameters in Maize accessions under normal conditions
    Corr.
    ID/
    Line 1 2 3 4 5 6 7 8 9 10 11
    16 1.27 1.30 1.33 1.50 1.30 1.58 1.42 1.37 1.70 11.40 0.42
    8 8.94 7.02 7.53 7.99 8.48 5.63 6.10 6.66 8.21 8.40 1.88
    31 0.17 0.14 0.15 0.16 0.15 0.12 0.12 0.13 0.15 0.17 0.04
    30 1340 1090 1200 1270 1200 937 986 1050 1230 1370 301
    18 273 260 288 238 287 225 264 252 279 278 164
    14 130.0 122.0 128.0 113.0 135.0 94.3 121.0 108.0 140.0 112.0 60.4
    12 11.8 11.1 13.3 11.8 11.9 12.3 12.4 12.2 11.7 12.6 9.3
    37 2.9 2.6 2.7 2.9 2.7 2.6 2.9 2.7 2.7 2.8 2.3
    2 19.9 20.2 18.1 19.9 19.5 17.7 17.7 17.3 17.5 20.5 19.9
    6 51.1 46.3 45.9 47.6 51.4 47.4 47.3 46.8 48.3 49.3 41.8
    4 16.2 17.5 17.7 18.4 15.7 14.7 12.9 14.0 12.3 18.8 16.1
    20 16.1 14.7 15.4 15.9 16.2 15.2 16.0 14.8 17.7 15.4 14.3
    34 56.9 57.2 59.3 61.6 58.6 61.2 60.2 61.1 57.5 62.2 52.0
    36 59.9 60.9 56.9 58.7 58.7 63.2 59.8 62.4 57.2 61.9 49.3
    26 4.5 3.6 4.0 4.2 4.0 3.1 3.3 3.5 4.1 4.6 1.0
    24 25.0 17.8 20.3 20.0 19.0 13.9 16.2 17.2 21.5 21.0 5.5
    22 23.4 19.1 20.3 20.7 20.5 15.4 16.4 17.2 21.0 22.0 5.7
    41 457 412 443 439 447 357 337 386 472 482 140
    28 0.008 0.009 0.009 0.010 0.009 0.011 0.009 0.009 0.004 0.076 0.003
    10 3.2 4.0 3.3 4.0 3.9 4.2 4.0 4.3 4.3 2.9
    40 426 313 307 362 314 225 266 262 482
    Table 64. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 65
    Additional measured parameters in Maize accessions under low Nitrogen conditions
    Corr.
    ID/
    Line 1 2 3 4 5 6 7 8 9 10 11
    15 1.59 1.43 1.53 1.95 1.48 1.60 1.58 1.28 1.51 1.52 0.43
    7 6.61 7.97 9.63 9.22 7.63 7.21 7.92 29.00 7.80 9.78 2.41
    32 0.14 0.16 0.19 0.19 0.14 0.15 0.15 0.16 0.14 0.20 0.05
    29 1080 1260 1550 1500 1140 1160 1210 1250 1150 1590 383
    17 306 271 291 252 260 227 272 249 279 270 171
    13 158 136 128 133 138 100 130 115 144 114 62
    11 15.0 11.6 13.5 11.6 11.8 11.9 12.6 11.7 12.4 13.2 9.3
    38 2.8 2.4 2.7 2.8 2.7 2.6 3.0 2.6 2.7 2.8 2.3
    1 20.6 21.0 20.2 20.1 20.1 18.5 19.1 18.2 20.1 21.2 17.8
    5 46.7 48.2 48.3 49.9 52.9 47.4 49.6 48.6 52.4 50.0 42.6
    3 18.4 18.4 19.8 18.8 16.2 16.0 15.3 15.7 16.8 19.6 14.1
    19 14.2 15.2 15.0 15.7 16.0 15.9 15.6 14.5 16.4 15.7 14.4
    33 60.2 57.9 58.8 59.5 58.5 64.0 56.4 60.0 58.3 61.7 53.1
    35 59.3 57.6 58.4 59.2 58.2 62.7 61.0 59.9 57.5 61.9 49.6
    25 7.2 8.4 10.3 10.0 7.6 7.7 8.1 8.3 7.6 10.6 2.6
    23 18.4 21.9 26.5 25.3 19.7 18.5 19.8 20.9 19.9 25.9 7.7
    21 18.0 21.8 26.3 25.1 19.5 18.0 21.4 20.8 19.7 25.7 7.2
    42 417 528 583 541 428 444 407 477 446 562 168
    27 0.011 0.010 0.010 0.013 0.010 0.011 0.011 0.009 0.010 0.010 0.003
    9 2.92 3.15 3.33 2.87 2.79 3.76 3.50 5.02 3.16
    39 342 408 465 522 440 313 346 288 501
    Table 65. Provided are the values of each of the parameters (as described above) measured in maize accessions (Seed ID) under regular growth conditions. Growth conditions are specified in the experimental procedure section.
  • TABLE 66
    Correlation between the expression level of selected LNU genes of some embodiments of the
    invention in various tissues and the phenotypic performance under normal conditions across
    maize accessions
    Gene Exp. set Corr. Gene Exp. Corr.
    Name R P ID ID Name R P set ID ID
    LNU469 0.86 0.0135 A 21 LNU476 0.90 0.0060 G 41
    LNU469 0.76 0.0289 E 21 LNU476 0.72 0.0191 M 41
    LNU476 0.90 0.0054 G 22 LNU519 0.78 0.0225 B 40
    LNU476 0.74 0.0152 M 22 LNU519 0.76 0.0291 H 41
    LNU519 0.79 0.0205 H 22 LNU519 0.83 0.0220 I 41
    LNU519 0.79 0.0337 I 22 LNU299 0.73 0.0248 N 1
    LNU519 0.82 0.0120 B 21 LNU299 0.83 0.0102 F 1
    LNU299 0.90 0.0065 A 23 LNU311 0.82 0.0244 A 1
    LNU299 0.80 0.0175 B 23 LNU317 0.82 0.0250 A 1
    LNU299 0.87 0.0011 C 23 LNU348 0.88 0.0019 K 2
    LNU299 0.91 0.0020 F 23 LNU394 0.79 0.0202 E 1
    LNU300 0.77 0.0433 A 23 LNU394 0.88 0.0039 B 1
    LNU300 0.80 0.0172 B 23 LNU418 0.74 0.0343 H 2
    LNU300 0.72 0.0428 F 23 LNU418 0.87 0.0103 A 1
    LNU301 0.78 0.0381 A 23 LNU460 0.89 0.0030 F 1
    LNU301 0.79 0.0202 B 23 LNU469 0.85 0.0143 A 1
    LNU307 0.80 0.0058 C 23 LNU469 0.79 0.0202 E 1
    LNU307 0.79 0.0116 N 23 LNU476 0.85 0.0073 E 1
    LNU307 0.83 0.0103 E 23 LNU519 0.72 0.0420 J 2
    LNU307 0.72 0.0437 F 23 LNU299 0.81 0.0149 F 3
    LNU339 0.89 0.0074 A 23 LNU317 0.88 0.0097 A 3
    LNU339 0.74 0.0351 E 23 LNU339 0.89 0.0070 A 3
    LNU348 0.91 0.0018 F 23 LNU348 0.76 0.0296 F 3
    LNU360 0.80 0.0166 E 23 LNU376 0.71 0.0486 F 3
    LNU361 0.78 0.0387 A 23 LNU394 0.75 0.0129 M 4
    LNU361 0.72 0.0438 E 23 LNU394 0.82 0.0130 E 3
    LNU371 0.80 0.0300 A 23 LNU394 0.84 0.0181 A 3
    LNU376 0.75 0.0316 F 23 LNU394 0.76 0.0300 F 3
    LNU394 0.74 0.0348 E 23 LNU394 0.86 0.0065 B 3
    LNU394 0.76 0.0459 A 23 LNU418 0.82 0.0251 A 3
    LNU394 0.84 0.0085 B 23 LNU460 0.78 0.0220 F 3
    LNU459 0.82 0.0124 F 23 LNU469 0.88 0.0086 G 4
    LNU469 0.84 0.0180 A 23 LNU469 0.71 0.0313 K 4
    LNU469 0.77 0.0265 E 23 LNU469 0.79 0.0337 L 4
    LNU476 0.71 0.0478 F 23 LNU469 0.79 0.0353 A 3
    LNU519 0.78 0.0215 B 23 LNU469 0.72 0.0436 F 3
    LNU300 0.90 0.0051 G 24 LNU519 0.70 0.0353 K 4
    LNU307 0.88 0.0089 G 24 LNU299 0.89 0.0072 A 5
    LNU307 0.83 0.0206 I 24 LNU299 0.88 0.0042 B 5
    LNU307 0.84 0.0044 K 24 LNU299 0.77 0.0089 C 5
    LNU307 0.78 0.0388 L 24 LNU299 0.82 0.0125 E 5
    LNU311 0.80 0.0321 G 24 LNU299 0.89 0.0032 F 5
    LNU311 0.76 0.0280 H 24 LNU300 0.91 0.0043 A 5
    LNU332 0.72 0.0419 H 24 LNU300 0.88 0.0044 B 5
    LNU332 0.84 0.0172 I 24 LNU300 0.75 0.0126 C 5
    LNU348 0.89 0.0071 I 24 LNU300 0.71 0.0463 E 5
    LNU359 0.82 0.0231 G 24 LNU301 0.88 0.0083 A 5
    LNU360 0.87 0.0101 L 24 LNU301 0.78 0.0228 B 5
    LNU361 0.79 0.0360 G 24 LNU307 0.77 0.0425 A 5
    LNU361 0.76 0.0300 H 24 LNU307 0.82 0.0121 B 5
    LNU371 0.74 0.0341 H 24 LNU307 0.73 0.0171 C 5
    LNU394 0.84 0.0172 G 24 LNU307 0.77 0.0144 N 5
    LNU460 0.76 0.0472 G 24 LNU307 0.83 0.0105 E 5
    LNU476 0.87 0.0103 G 24 LNU307 0.82 0.0119 F 5
    LNU476 0.72 0.0200 M 24 LNU332 0.84 0.0083 B 5
    LNU519 0.74 0.0370 H 24 LNU339 0.76 0.0487 A 5
    LNU299 0.91 0.0042 A 24 LNU339 0.76 0.0293 E 5
    LNU299 0.85 0.0080 B 24 LNU348 0.85 0.0072 F 5
    LNU299 0.89 0.0007 C 24 LNU359 0.91 0.0049 A 5
    LNU299 0.72 0.0273 N 24 LNU359 0.73 0.0379 B 5
    LNU299 0.76 0.0271 E 24 LNU360 0.77 0.0440 A 5
    LNU299 0.91 0.0016 F 24 LNU360 0.82 0.0128 E 5
    LNU300 0.82 0.0248 A 24 LNU361 0.79 0.0359 A 5
    LNU300 0.85 0.0080 B 24 LNU361 0.72 0.0419 E 5
    LNU300 0.71 0.0487 F 24 LNU371 0.78 0.0382 A 5
    LNU301 0.79 0.0354 A 24 LNU371 0.75 0.0117 C 5
    LNU301 0.81 0.0137 B 24 LNU371 0.76 0.0293 E 5
    LNU307 0.77 0.0408 A 24 LNU394 0.77 0.0242 B 5
    LNU307 0.73 0.0395 B 24 LNU459 0.87 0.0046 F 5
    LNU307 0.77 0.0088 C 24 LNU460 0.91 0.0044 A 5
    LNU307 0.76 0.0168 N 24 LNU460 0.72 0.0424 B 5
    LNU307 0.86 0.0060 E 24 LNU469 0.81 0.0285 A 5
    LNU307 0.74 0.0343 F 24 LNU469 0.82 0.0118 E 5
    LNU339 0.85 0.0164 A 24 LNU519 0.85 0.0081 B 5
    LNU339 0.74 0.0365 E 24 LNU299 0.90 0.0025 H 6
    LNU348 0.88 0.0044 F 24 LNU299 0.84 0.0047 K 6
    LNU360 0.83 0.0113 E 24 LNU301 0.76 0.0486 G 6
    LNU361 0.79 0.0344 A 24 LNU301 0.79 0.0202 H 6
    LNU361 0.76 0.0277 E 24 LNU307 0.85 0.0164 G 6
    LNU371 0.83 0.0217 A 24 LNU311 0.91 0.0016 H 6
    LNU371 0.72 0.0294 N 24 LNU332 0.92 0.0014 H 6
    LNU376 0.71 0.0463 B 24 LNU348 0.77 0.0419 I 6
    LNU376 0.73 0.0408 F 24 LNU359 0.89 0.0066 G 6
    LNU394 0.74 0.0367 E 24 LNU361 0.86 0.0065 J 6
    LNU394 0.85 0.0081 B 24 LNU361 0.79 0.0121 K 6
    LNU459 0.84 0.0088 F 24 LNU394 0.76 0.0460 I 6
    LNU460 0.76 0.0486 A 24 LNU418 0.81 0.0139 H 6
    LNU469 0.81 0.0281 A 24 LNU459 0.76 0.0276 J 6
    LNU469 0.80 0.0170 E 24 LNU460 0.88 0.0093 G 6
    LNU519 0.81 0.0141 B 24 LNU460 0.88 0.0038 H 6
    LNU299 0.76 0.0275 B 26 LNU471 0.79 0.0197 H 6
    LNU299 0.79 0.0109 N 26 LNU476 0.85 0.0152 G 6
    LNU299 0.89 0.0034 E 26 LNU476 0.82 0.0126 H 6
    LNU299 0.81 0.0156 F 26 LNU518 0.70 0.0351 K 6
    LNU300 0.77 0.0444 D 26 LNU519 0.90 0.0020 H 6
    LNU300 0.71 0.0488 E 26 LNU519 0.81 0.0267 I 6
    LNU300 0.81 0.0159 F 26 LNU299 0.72 0.0458 H 8
    LNU371 0.71 0.0207 C 26 LNU300 0.89 0.0067 G 8
    LNU371 0.74 0.0357 F 26 LNU300 0.76 0.0495 L 8
    LNU394 0.71 0.0463 E 26 LNU307 0.90 0.0061 G 8
    LNU418 0.76 0.0286 B 26 LNU307 0.79 0.0338 I 8
    LNU460 0.90 0.0052 D 26 LNU307 0.86 0.0032 K 8
    LNU469 0.76 0.0293 E 26 LNU307 0.78 0.0369 L 8
    LNU471 0.89 0.0068 A 26 LNU307 0.77 0.0099 M 8
    LNU299 0.81 0.0154 H 26 LNU311 0.79 0.0362 G 8
    LNU299 0.86 0.0030 K 26 LNU311 0.79 0.0184 H 8
    LNU300 0.83 0.0215 L 26 LNU317 0.73 0.0401 E 7
    LNU311 0.92 0.0037 G 26 LNU332 0.83 0.0113 B 7
    LNU317 0.71 0.0324 K 26 LNU332 0.82 0.0134 H 8
    LNU361 0.71 0.0304 K 26 LNU332 0.81 0.0281 I 8
    LNU371 0.78 0.0387 G 26 LNU339 0.78 0.0224 F 7
    LNU371 0.78 0.0400 L 26 LNU339 0.74 0.0363 H 8
    LNU394 0.89 0.0070 G 26 LNU348 0.89 0.0032 E 7
    LNU418 0.77 0.0431 G 26 LNU348 0.75 0.0318 H 8
    LNU460 0.71 0.0479 H 26 LNU348 0.91 0.0050 I 8
    LNU469 0.86 0.0128 L 26 LNU358 0.77 0.0252 B 7
    LNU471 0.80 0.0306 I 26 LNU359 0.83 0.0196 A 7
    LNU476 0.90 0.0056 I 26 LNU359 0.84 0.0169 G 8
    LNU299 0.71 0.0492 J 28 LNU359 0.76 0.0278 H 8
    LNU299 0.87 0.0108 L 28 LNU360 0.80 0.0315 A 7
    LNU299 0.89 0.0067 A 27 LNU360 0.89 0.0077 D 7
    LNU299 0.86 0.0064 B 27 LNU360 0.79 0.0210 H 8
    LNU299 0.75 0.0122 C 27 LNU360 0.88 0.0095 L 8
    LNU299 0.73 0.0241 N 27 LNU361 0.72 0.0419 F 7
    LNU299 0.88 0.0037 E 27 LNU361 0.80 0.0319 G 8
    LNU299 0.80 0.0172 F 27 LNU361 0.81 0.0146 H 8
    LNU300 0.91 0.0045 A 27 LNU371 0.77 0.0429 A 7
    LNU300 0.86 0.0057 B 27 LNU394 0.83 0.0204 G 8
    LNU300 0.82 0.0035 C 27 LNU361 0.88 0.0084 A 7
    LNU300 0.90 0.0008 N 27 LNU358 0.83 0.0213 A 7
    LNU300 0.91 0.0018 E 27 LNU418 0.77 0.0255 H 8
    LNU300 0.90 0.0024 F 27 LNU460 0.89 0.0075 A 7
    LNU301 0.74 0.0355 B 27 LNU460 0.80 0.0299 G 8
    LNU307 0.78 0.0214 H 28 LNU460 0.77 0.0262 H 8
    LNU307 0.74 0.0374 B 27 LNU469 0.91 0.0048 A 7
    LNU307 0.76 0.0115 C 27 LNU471 0.81 0.0159 H 8
    LNU307 0.85 0.0039 N 27 LNU476 0.90 0.0061 G 8
    LNU307 0.87 0.0048 F 27 LNU476 0.79 0.0189 H 8
    LNU311 0.86 0.0015 M 28 LNU476 0.71 0.0220 M 8
    LNU311 0.71 0.0489 B 27 LNU519 0.80 0.0176 E 7
    LNU317 0.76 0.0469 I 28 LNU519 0.88 0.0039 H 8
    LNU332 0.73 0.0383 B 27 LNU519 0.77 0.0418 I 8
    LNU339 0.74 0.0373 E 27 LNU332 0.83 0.0214 B 9
    LNU348 0.85 0.0068 F 27 LNU348 0.77 0.0427 E 9
    LNU359 0.79 0.0340 G 28 LNU358 0.87 0.0116 B 9
    LNU359 0.80 0.0304 A 27 LNU359 0.83 0.0212 E 9
    LNU359 0.83 0.0107 B 27 LNU361 0.82 0.0253 F 9
    LNU394 0.71 0.0211 C 27 LNU376 0.89 0.0013 C 9
    LNU361 0.78 0.0220 B 27 LNU471 0.82 0.0235 D 9
    LNU376 0.90 0.0021 B 27 LNU471 0.83 0.0200 E 9
    LNU376 0.84 0.0086 F 27 LNU519 0.76 0.0483 E 9
    LNU394 0.73 0.0418 E 27 LNU299 0.89 0.0067 G 12
    LNU394 0.82 0.0119 J 28 LNU299 0.72 0.0273 K 12
    LNU394 0.84 0.0191 L 28 LNU299 0.77 0.0417 A 11
    LNU394 0.74 0.0348 B 27 LNU299 0.70 0.0342 N 11
    LNU418 0.80 0.0300 A 27 LNU299 0.77 0.0244 E 11
    LNU459 0.78 0.0234 E 27 LNU300 0.90 0.0057 G 12
    LNU459 0.74 0.0372 F 27 LNU300 0.82 0.0130 H 12
    LNU460 0.83 0.0205 A 27 LNU300 0.72 0.0197 M 12
    LNU460 0.87 0.0046 B 27 LNU301 0.85 0.0149 G 12
    LNU469 0.92 0.0013 H 28 LNU301 0.75 0.0499 A 11
    LNU469 0.77 0.0449 A 27 LNU301 0.74 0.0215 N 11
    LNU469 0.85 0.0164 D 27 LNU307 0.77 0.0410 G 12
    LNU469 0.79 0.0207 E 27 LNU307 0.86 0.0141 L 12
    LNU471 0.83 0.0108 B 27 LNU307 0.88 0.0041 E 11
    LNU299 0.91 0.0042 A 32 LNU311 0.76 0.0451 G 12
    LNU299 0.85 0.0080 B 32 LNU311 0.78 0.0238 B 11
    LNU299 0.89 0.0007 C 32 LNU317 0.71 0.0475 J 12
    LNU299 0.72 0.0273 N 32 LNU317 0.81 0.0083 K 12
    LNU299 0.76 0.0271 E 32 LNU317 0.80 0.0057 C 11
    LNU299 0.91 0.0016 F 32 LNU317 0.72 0.0426 F 11
    LNU300 0.82 0.0248 A 32 LNU332 0.75 0.0306 B 11
    LNU300 0.85 0.0080 B 32 LNU339 0.79 0.0188 E 11
    LNU300 0.71 0.0487 F 32 LNU359 0.90 0.0052 G 12
    LNU301 0.79 0.0354 A 32 LNU359 0.82 0.0234 D 11
    LNU301 0.81 0.0137 B 32 LNU360 0.77 0.0407 G 12
    LNU307 0.77 0.0408 A 32 LNU360 0.71 0.0312 N 11
    LNU307 0.73 0.0395 B 32 LNU360 0.71 0.0479 E 11
    LNU307 0.77 0.0088 C 32 LNU360 0.72 0.0443 F 11
    LNU307 0.76 0.0168 N 32 LNU361 0.90 0.0053 G 12
    LNU307 0.86 0.0060 E 32 LNU371 0.56 0.0135 G 12
    LNU307 0.74 0.0343 F 32 LNU371 0.78 0.0402 I 12
    LNU339 0.85 0.0164 A 32 LNU371 0.70 0.0343 K 12
    LNU339 0.74 0.0365 E 32 LNU371 0.77 0.0439 L 12
    LNU348 0.88 0.0044 F 32 LNU376 0.80 0.0183 B 11
    LNU360 0.83 0.0113 E 32 LNU394 0.76 0.0467 G 12
    LNU361 0.79 0.0344 A 32 LNU394 0.78 0.0372 I 12
    LNU361 0.76 0.0277 E 32 LNU394 0.78 0.0139 K 12
    LNU371 0.83 0.0217 A 32 LNU418 0.76 0.0473 G 12
    LNU371 0.72 0.0294 N 32 LNU418 0.79 0.0121 N 11
    LNU376 0.71 0.0463 B 32 LNU459 0.87 0.0010 M 12
    LNU376 0.73 0.0408 F 32 LNU460 0.87 0.0050 J 12
    LNU394 0.74 0.0367 E 32 LNU476 0.84 0.0187 G 12
    LNU394 0.85 0.0081 B 32 LNU476 0.79 0.0363 I 12
    LNU459 0.84 0.0088 F 32 LNU476 0.76 0.0294 J 12
    LNU460 0.76 0.0486 A 32 LNU518 0.73 0.0254 N 11
    LNU469 0.81 0.0281 A 32 LNU519 0.76 0.0469 I 12
    LNU469 0.80 0.0170 E 32 LNU299 0.90 0.0055 A 13
    LNU519 0.81 0.0141 B 32 LNU300 0.89 0.0068 A 13
    LNU300 0.91 0.0046 G 32 LNU300 0.77 0.0149 N 13
    LNU300 0.76 0.0451 L 32 LNU300 0.76 0.0283 E 13
    LNU307 0.89 0.0072 G 32 LNU300 0.87 0.0048 F 13
    LNU307 0.76 0.0476 I 32 LNU301 0.86 0.0134 A 13
    LNU307 0.89 0.0012 K 32 LNU307 0.79 0.0061 C 13
    LNU307 0.79 0.0351 L 32 LNU307 0.72 0.0297 N 13
    LNU307 0.77 0.0095 M 32 LNU307 0.72 0.0433 E 13
    LNU311 0.79 0.0348 G 32 LNU307 0.77 0.0269 F 13
    LNU332 0.80 0.0324 I 32 LNU311 0.83 0.0104 B 13
    LNU348 0.88 0.0081 I 32 LNU317 0.76 0.0295 B 13
    LNU359 0.86 0.0123 G 32 LNU317 0.82 0.0131 F 13
    LNU360 0.86 0.0138 L 32 LNU332 0.86 0.0064 B 13
    LNU361 0.82 0.0245 G 32 LNU332 0.84 0.0084 E 13
    LNU361 0.72 0.0460 H 32 LNU339 0.88 0.0085 A 13
    LNU394 0.85 0.0153 G 32 LNU339 0.76 0.0463 D 13
    LNU394 0.78 0.0373 I 32 LNU339 0.91 0.0017 E 13
    LNU394 0.72 0.0288 K 32 LNU348 0.76 0.0472 D 13
    LNU460 0.82 0.0249 G 32 LNU348 0.84 0.0099 F 13
    LNU471 0.71 0.0500 H 32 LNU359 0.3 0.0385 B 13
    LNU476 0.90 0.0063 G 32 LNU360 0.81 0.0147 B 13
    LNU476 0.74 0.0138 M 32 LNU360 0.80 0.0181 F 13
    LNU519 0.78 0.0223 H 32 LNU361 0.86 0.0138 A 13
    LNU519 0.78 0.0391 I 32 LNU376 0.77 0.0256 B 13
    LNU299 0.78 0.0126 K 34 LNU394 0.85 0.0145 A 13
    LNU299 0.77 0.0451 A 34 LNU459 0.71 0.0316 N 13
    LNU299 0.79 0.0202 B 34 LNU460 0.91 0.0046 A 13
    LNU299 0.73 0.0168 C 34 LNU469 0.91 0.0039 A 13
    LNU299 0.85 0.0143 D 34 LNU469 0.82 0.0035 C 13
    LNU299 0.77 0.0161 N 34 LNU469 0.73 0.0419 E 13
    LNU299 0.80 0.0161 E 34 LNU299 0.75 0.0311 H 14
    LNU299 0.75 0.0339 F 34 LNU300 0.82 0.0232 G 14
    LNU300 0.80 0.0291 I 34 LNU301 0.71 0.0499 H 14
    LNU300 0.79 0.0109 K 34 LNU307 0.90 0.0059 G 14
    LNU300 0.81 0.0137 B 34 LNU307 0.77 0.0424 I 14
    LNU301 0.82 0.0234 G 34 LNU307 0.70 0.0353 K 14
    LNU301 0.71 0.0311 K 34 LNU307 0.83 0.0217 L 14
    LNU301 0.80 0.0163 B 34 LNU307 0.84 0.0024 M 14
    LNU301 0.71 0.0228 C 34 LNU332 0.86 0.0124 I 14
    LNU301 0.77 0.0245 E 34 LNU348 0.89 0.0074 I 14
    LNU307 0.80 0.0303 G 34 LNU359 0.77 0.0429 G 14
    LNU307 0.83 0.0109 H 34 LNU360 0.82 0.0235 I 14
    LNU307 0.79 0.0359 L 34 LNU360 0.91 0.0041 L 14
    LNU317 0.76 0.0180 K 34 LNU371 0.83 0.0102 H 14
    LNU317 0.71 0.0209 M 34 LNU418 0.84 0.0097 H 14
    LNU317 0.77 0.0090 C 34 LNU459 0.71 0.0217 M 14
    LNU360 0.77 0.0450 A 34 LNU460 0.71 0.0470 H 14
    LNU361 0.83 0.0209 G 34 LNU471 0.77 0.0448 G 14
    LNU361 0.86 0.0058 E 34 LNU476 0.80 0.0297 G 14
    LNU371 0.86 0.0141 G 34 LNU518 0.70 0.0342 K 14
    LNU371 0.83 0.0214 I 34 LNU519 0.79 0.0356 I 14
    LNU371 0.81 0.0087 K 34 LNU299 0.89 0.0067 A 15
    LNU371 0.77 0.0433 L 34 LNU299 0.86 0.0064 B 15
    LNU376 0.78 0.0212 B 34 LNU299 0.75 0.0122 C 15
    LNU394 0.82 0.0253 I 34 LNU299 0.73 0.0241 N 15
    LNU394 0.76 0.0166 K 34 LNU299 0.88 0.0037 E 15
    LNU459 0.71 0.0216 M 34 LNU299 0.80 0.0172 F 15
    LNU460 0.83 0.0219 G 34 LNU299 0.71 0.0492 J 16
    LNU460 0.75 0.0313 B 34 LNU299 0.87 0.0108 L 16
    LNU469 0.87 0.0048 H 34 LNU300 0.91 0.0045 A 15
    LNU471 0.88 0.0083 A 34 LNU300 0.86 0.0057 B 15
    LNU476 0.80 0.0291 G 34 LNU300 0.82 0.0035 C 15
    LNU476 0.84 0.0189 A 34 LNU300 0.90 0.0008 N 15
    LNU476 0.86 0.0067 B 34 LNU300 0.91 0.0018 E 15
    LNU518 0.76 0.0286 B 34 LNU300 0.90 0.0024 F 15
    LNU519 0.74 0.0235 N 34 LNU301 0.74 0.0355 B 15
    LNU299 0.86 0.0067 J 36 LNU307 0.74 0.0374 B 15
    LNU299 0.91 0.0041 A 36 LNU307 0.76 0.0115 C 15
    LNU299 0.79 0.0185 B 36 LNU307 0.85 0.0039 N 15
    LNU299 0.89 0.0006 C 36 LNU307 0.87 0.0048 F 15
    LNU299 0.78 0.0387 D 36 LNU307 0.78 0.0214 H 16
    LNU299 0.80 0.0101 N 36 LNU311 0.71 0.0489 B 15
    LNU299 0.90 0.0023 E 36 LNU311 0.86 0.0015 M 16
    LNU299 0.83 0.0110 F 36 LNU317 0.76 0.0469 I 16
    LNU300 0.92 0.0037 G 36 LNU332 0.73 0.0383 B 15
    LNU300 0.80 0.0315 I 36 LNU339 0.74 0.0373 E 15
    LNU300 0.74 0.0239 K 36 LNU348 0.85 0.0068 F 15
    LNU300 0.83 0.0202 A 36 LNU359 0.80 0.0304 A 15
    LNU300 0.89 0.0030 B 36 LNU359 0.83 0.0107 B 15
    LNU300 0.86 0.0014 C 36 LNU359 0.79 0.0340 G 16
    LNU301 0.80 0.0308 G 36 LNU361 0.78 0.0220 B 15
    LNU301 0.77 0.0426 I 36 LNU376 0.90 0.0021 B 15
    LNU301 0.77 0.0152 K 36 LNU376 0.84 0.0086 F 15
    LNU301 0.86 0.0068 B 36 LNU394 0.71 0.0211 C 15
    LNU301 0.89 0.0007 C 36 LNU394 0.74 0.0348 B 15
    LNU301 0.86 0.0135 D 36 LNU394 0.82 0.0119 J 16
    LNU307 0.89 0.0071 G 36 LNU394 0.84 0.0191 L 16
    LNU307 0.76 0.0282 H 36 LNU394 0.73 0.0418 E 15
    LNU307 0.83 0.0197 I 36 LNU418 0.80 0.0300 A 15
    LNU307 0.77 0.0143 K 36 LNU459 0.78 0.0234 E 15
    LNU307 0.80 0.0293 L 36 LNU459 0.74 0.0372 F 15
    LNU307 0.80 0.0053 M 36 LNU460 0.83 0.0205 A 15
    LNU307 0.84 0.0170 A 36 LNU460 0.87 0.0046 B 15
    LNU307 0.85 0.0082 E 36 LNU469 0.77 0.0449 A 15
    LNU307 0.84 0.0085 F 36 LNU469 0.85 0.0164 D 15
    LNU311 0.73 0.0396 B 36 LNU469 0.79 0.0207 E 15
    LNU332 0.78 0.0237 B 36 LNU469 0.92 0.0013 H 16
    LNU339 0.83 0.0220 D 36 LNU471 0.83 0.0108 B 15
    LNU348 0.78 0.0383 I 36 LNU299 0.88 0.0088 A 17
    LNU348 0.79 0.0197 B 36 LNU299 0.77 0.0098 C 17
    LNU359 0.88 0.0090 G 36 LNU299 0.76 0.0295 F 17
    LNU359 0.77 0.0448 A 36 LNU299 0.76 0.0494 G 18
    LNU359 0.72 0.0446 B 36 LNU299 0.71 0.0205 M 18
    LNU360 0.82 0.0225 A 36 LNU300 0.79 0.0209 F 17
    LNU360 0.77 0.0268 E 36 LNU300 0.83 0.0197 G 18
    LNU361 0.70 0.0236 C 36 LNU300 0.83 0.0111 H 18
    LNU361 0.80 0.0173 E 36 LNU301 0.86 0.0127 A 17
    LNU371 0.77 0.0438 A 36 LNU307 0.71 0.0468 B 17
    LNU371 0.86 0.0060 E 36 LNU307 0.79 0.0063 C 17
    LNU371 0.72 0.0450 F 36 LNU307 0.85 0.0079 E 17
    LNU376 0.88 0.0037 B 36 LNU307 0.76 0.0292 F 17
    LNU394 0.72 0.0302 K 36 LNU307 0.85 0.0144 G 18
    LNU459 0.77 0.0437 I 36 LNU307 0.81 0.0269 I 18
    LNU459 0.82 0.0124 F 36 LNU307 0.75 0.0198 K 18
    LNU460 0.89 0.0068 G 36 LNU307 0.76 0.0455 L 18
    LNU460 0.79 0.0364 A 36 LNU307 0.77 0.0091 M 18
    LNU460 0.78 0.0238 B 36 LNU311 0.82 0.0119 B 17
    LNU460 0.80 0.0292 D 36 LNU317 0.76 0.0481 D 17
    LNU469 0.71 0.0473 E 36 LNU317 0.77 0.0252 F 17
    LNU471 0.84 0.0178 G 36 LNU317 0.78 0.0138 K 18
    LNU471 0.85 0.0156 A 36 LNU332 0.83 0.0111 B 17
    LNU476 0.80 0.0322 G 36 LNU332 0.85 0.0142 D 17
    LNU518 0.73 0.0411 B 36 LNU332 0.74 0.0356 E 17
    LNU519 0.91 0.0043 I 36 LNU332 0.83 0.0211 I 18
    LNU519 0.81 0.0147 B 36 LNU339 0.86 0.0134 A 17
    LNU519 0.85 0.0035 N 36 LNU339 0.92 0.0014 E 17
    LNU299 0.87 0.0026 K 37 LNU348 0.91 0.0047 D 17
    LNU299 0.86 0.0058 B 36 LNU348 0.78 0.0222 F 17
    LNU299 0.81 0.0155 E 36 LNU348 0.84 0.0177 I 18
    LNU299 0.72 0.0446 F 36 LNU359 0.77 0.0415 G 18
    LNU300 0.88 0.0088 G 37 LNU360 0.88 0.0036 E 17
    LNU300 0.79 0.0344 L 37 LNU360 0.80 0.0177 F 17
    LNU300 0.77 0.0088 M 37 LNU360 0.88 0.0097 I 18
    LNU300 0.90 0.0055 A 36 LNU360 0.76 0.0462 L 18
    LNU300 0.85 0.0070 B 36 LNU361 0.84 0.0175 A 17
    LNU300 0.89 0.0005 C 36 LNU361 0.82 0.0129 E 17
    LNU301 0.77 0.0433 A 36 LNU371 0.79 0.0203 H 18
    LNU301 0.74 0.0154 C 36 LNU376 0.77 0.0266 B 17
    LNU301 0.72 0.0276 N 36 LNU460 0.81 0.0282 A 17
    LNU307 0.83 0.0196 G 37 LNU460 0.76 0.0487 G 18
    LNU307 0.73 0.0172 M 37 LNU469 0.79 0.0327 A 17
    LNU307 0.83 0.0117 B 36 LNU469 0.71 0.0203 C 17
    LNU307 0.72 0.0461 F 36 LNU469 0.71 0.0499 J 18
    LNU311 0.83 0.0209 G 37 LNU476 0.81 0.0275 G 18
    LNU311 0.89 0.0028 B 36 LNU519 0.80 0.0325 D 17
    LNU332 0.89 0.0031 B 36 LNU519 0.80 0.0317 I 18
    LNU339 0.75 0.0308 B 36 LNU307 0.73 0.0410 H 10
    LNU348 0.87 0.0109 I 37 LNU332 0.73 0.0404 K 10
    LNU394 0.84 0.0023 C 36 LNU332 0.84 0.0049 M 10
    LNU359 0.84 0.0183 G 37 LNU471 0.79 0.0209 K 10
    LNU360 0.81 0.0281 L 37 LNU300 0.91 0.0046 G 20
    LNU360 0.74 0.0354 E 36 LNU300 0.76 0.0451 L 20
    LNU361 0.85 0.0153 G 37 LNU307 0.89 0.0072 G 20
    LNU371 0.85 0.0071 E 36 LNU307 0.76 0.0476 I 20
    LNU376 0.73 0.0398 B 36 LNU307 0.89 0.0012 K 20
    LNU394 0.80 0.0302 D 36 LNU307 0.79 0.0351 L 20
    LNU394 0.85 0.0158 G 37 LNU307 0.77 0.0095 M 20
    LNU394 0.81 0.0264 I 37 LNU311 0.79 0.0348 G 20
    LNU418 0.73 0.0379 E 36 LNU332 0.80 0.0324 I 20
    LNU459 0.74 0.0368 F 36 LNU348 0.88 0.0081 I 20
    LNU469 0.72 0.0439 E 36 LNU359 0.86 0.0123 G 20
    LNU476 0.82 0.0232 G 37 LNU360 0.86 0.0138 L 20
    LNU519 0.78 0.0221 B 36 LNU361 0.82 0.0245 G 20
    LNU299 0.79 0.0328 F 39 LNU361 0.72 0.0460 H 20
    LNU307 0.77 0.0445 F 39 LNU394 0.85 0.0153 G 20
    LNU311 0.73 0.0398 H 40 LNU394 0.78 0.0373 I 20
    LNU339 0.79 0.0195 H 40 LNU394 0.72 0.0288 K 20
    LNU348 0.90 0.0022 K 40 LNU460 0.82 0.0249 G 20
    LNU361 0.74 0.0369 H 40 LNU471 0.71 0.0500 H 20
    LNU376 0.78 0.0370 F 39 LNU476 0.90 0.0063 G 20
    LNU394 0.83 0.0196 F 39 LNU476 0.74 0.0138 M 20
    LNU394 0.90 0.0059 B 39 LNU519 0.78 0.0223 H 20
    LNU460 0.74 0.0360 N 39 LNU519 0.78 0.0391 I 20
    LNU469 0.91 0.0048 B 39 LNU299 0.92 0.0037 A 21
    LNU469 0.89 0.0071 F 39 LNU299 0.83 0.0116 B 21
    LNU518 0.88 0.0099 E 39 LNU299 0.86 0.0014 C 21
    LNU518 0.81 0.0278 F 39 LNU299 0.91 0.0018 F 21
    LNU519 0.72 0.0431 H 40 LNU300 0.89 0.0071 G 22
    LNU299 0.88 0.0082 A 40 LNU300 0.76 0.0452 L 22
    LNU299 0.78 0.0219 B 40 LNU300 0.80 0.0301 A 21
    I.NU299 0.91 0.0002 C 40 LNU300 0.80 0.0171 B 21
    LNU299 0.88 0.0043 F 40 LNU300 0.72 0.0446 F 21
    LNU300 0.82 0.0135 B 40 LNU301 0.83 0.0198 A 21
    LNU300 0.77 0.0259 F 40 LNU301 0.77 0.0240 B 21
    LNU300 0.76 0.0483 L 41 LNU307 0.90 0.0052 G 22
    LNU301 0.85 0.0081 B 40 LNU307 0.80 0.0326 I 22
    LNU307 0.76 0.0451 A 40 LNU307 0.89 0.0012 K 22
    LNU307 0.80 0.0059 C 40 LNU307 0.80 0.0314 L 22
    LNU307 0.76 0.0164 N 40 LNU307 0.77 0.0097 M 22
    LNU307 0.85 0.0072 E 40 LNU307 0.72 0.0429 B 21
    LNU307 0.72 0.0446 F 40 LNU307 0.82 0.0034 C 21
    LNU307 0.92 0.0035 G 41 LNU307 0.80 0.0096 N 21
    LNU307 0.78 0.0404 I 41 LNU307 0.84 0.0087 E 21
    LNU307 0.92 0.0005 K 41 LNU307 0.77 0.0262 F 21
    LNU307 0.82 0.0236 L 41 LNU311 0.78 0.0373 G 22
    LNU307 0.78 0.0074 M 41 LNU311 0.75 0.0308 H 22
    LNU311 0.77 0.0426 G 41 LNU332 0.73 0.0405 H 22
    LNU332 0.81 0.0261 I 41 LNU332 0.80 0.0293 I 22
    LNU339 0.87 0.0100 A 40 LNU339 0.89 0.0077 A 21
    LNU339 0.75 0.0326 E 40 LNU339 0.73 0.0247 N 21
    LNU348 0.92 0.0013 F 40 LNU339 0.79 0.0208 E 21
    LNU348 0.92 0.0036 I 41 LNU348 0.91 0.0043 I 22
    LNU358 0.71 0.0339 N 40 LNU348 0.90 0.0022 F 21
    LNU359 0.88 0.0091 G 41 LNU359 0.85 0.0157 G 22
    LNU360 0.76 0.0272 E 40 LNU360 0.89 0.0072 L 22
    I.NU360 0.86 0.0137 L 41 LNU360 0.84 0.0097 E 21
    LNU361 0.85 0.0154 A 40 LNU361 0.80 0.0317 G 22
    LNU361 0.80 0.0313 G 41 LNU361 0.75 0.0328 H 22
    LNU371 0.83 0.0214 A 40 LNU361 0.79 0.0362 A 21
    LNU371 0.71 0.0481 B 40 LNU361 0.75 0.0326 E 21
    LNU376 0.71 0.0480 B 40 LNU371 0.80 0.0322 A 21
    LNU376 0.77 0.0266 F 40 LNU376 0.74 0.0359 F 21
    LNU394 0.77 0.0447 A 40 LNU394 0.74 0.0366 E 21
    LNU394 0.81 0.0141 B 40 LNU394 0.82 0.0232 G 22
    LNU394 0.82 0.0255 G 41 LNU394 0.76 0.0487 A 21
    LNU394 0.71 0.0311 K 41 LNU394 0.82 0.0119 B 21
    LNU459 0.88 0.0036 F 40 LNU418 0.72 0.0459 H 22
    LNU460 0.84 0.0177 G 41 LNU459 0.85 0.0082 F 21
    LNU469 0.78 0.0399 A 40 LNU460 0.81 0.0286 G 22
    LNU471 0.73 0.0392 H 41 LNU460 0.77 0.0410 A 21
    LNU476 0.71 0.0465 F 40
    Table 66. “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • TABLE 67
    Correlation between the expression level of selected LNU homologous genes of some
    embodiments of the invention in various tissues and the phenotypic performance under
    normal conditions across maize accessions
    Exp. Exp.
    Gene set Corr. Gene set Corr.
    Name R P ID ID Name R P ID ID
    LNU494_H2 0.76 0.0460 A 21 LNU309_H3 0.71 0.0336 K 6
    LNU494_H2 0.79 0.0358 A 23 LNU431_H1 0.76 0.0289 H 6
    LNU417_H4 0.73 0.0414 H 24 LNU417_H4 0.76 0.0492 A 7
    LNU417_H4 0.78 0.0237 B 26 LNU417_H4 0.90 0.0024 F 7
    LNU309_H3 0.79 0.0111 K 28 LNU417_H4 0.79 0.0198 H 8
    LNU494_H2 0.85 0.0078 B 27 LNU431_H1 0.77 0.0447 A 7
    LNU309_H3 0.71 0.0331 K 32 LNU417_H4 0.91 0.0048 F 9
    LNU309_H3 0.78 0.0129 K 34 LNU494_H2 0.90 0.0056 E 9
    LNU417_H4 0.75 0.0128 C 34 LNU309_H3 0.80 0.0299 A 11
    LNU417_H4 0.87 0.0111 G 36 LNU309_H3 0.73 0.0390 F 11
    LNU431_H1 0.78 0.0388 G 36 LNU431_H1 0.79 0.0348 G 12
    LNU309_H3 0.80 0.0172 N 39 LNU494_H2 0.71 0.0305 N 11
    LNU417_H4 0.71 0.0497 H 40 LNU309_H3 0.78 0.0227 F 13
    LNU309_H3 0.71 0.0331 K 41 LNU494_H2 0.77 0.0264 B 13
    LNU431_H1 0.76 0.0476 A 40 LNU309_H3 0.73 0.0169 M 14
    LNU309_H3 0.87 0.0010 C 1 LNU431_H1 0.79 0.0327 G 14
    LNU494_H2 0.80 0.0321 A 1 LNU309_H3 0.79 0.0111 K 16
    LNU309_H3 0.74 0.0148 C 3 LNU494_H2 0.85 0.0078 B 15
    LNU309_H3 0.71 0.0321 N 3 LNU309_H3 0.73 0.0417 F 17
    LNU494_H2 0.85 0.0162 A 3 LNU309_H3 0.71 0.0331 K 20
    LNU309_H3 0.77 0.0253 H 6 LNU417_H4 0.72 0.0428 H 22
    Table 67. “Corr. Set ID”—correlation set ID according to the correlated parameters Table above.
  • Example 13 Gene Cloning and Generation of Binary Vectors for Plant Expression
  • To validate their role in improving yield, selected genes were over-expressed in plants, as follows.
  • Cloning Strategy
  • Selected genes from those presented in Examples 1-12 hereinabove were cloned into binary vectors for the generation of transgenic plants. For cloning, the full-length open reading frame (ORF) was first identified. In case of ORF-EST clusters and in some cases already published mRNA sequences were analyzed to identify the entire open reading frame by comparing the results of several translation algorithms to known proteins from other plant species. To clone the full-length cDNAs, reverse transcription (RT) followed by polymerase chain reaction (PCR; RT-PCR) was performed on total RNA extracted from leaves, flowers, siliques or other plant tissues, growing under normal and different treated conditions. Total RNA was extracted as described in “GENERAL EXPERIMENTAL AND BIOINFORMATICS METHODS” above. Production of cDNA and PCR amplification was performed using standard protocols described elsewhere (Sambrook J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York.) which are well known to those skilled in the art. PCR products are purified using PCR purification kit (Qiagen). In case where the entire coding sequence was not found, RACE kit from Invitrogen (RACE=Rapid Amplification of cDNA Ends) was used to access the full cDNA transcript of the gene from the RNA samples described above. RACE products were cloned into high copy vector followed by sequencing or directly sequenced.
  • The information from the RACE procedure was used for cloning of the full length ORF of the corresponding genes.
  • In case genomic DNA was cloned, the genes were amplified by direct PCR on genomic DNA extracted from leaf tissue using the DNAeasy kit (Qiagen Cat. No. 69104).
  • Usually, 2 sets of primers were synthesized for the amplification of each gene from a cDNA or a genomic sequence; an external set of primers and an internal set (nested PCR primers). When needed (e.g., when the first PCR reaction does not result in a satisfactory product for sequencing), an additional primer (or two) of the nested PCR primers were used.
  • To facilitate cloning of the cDNAs/genomic sequences, a 8-12 bp extension was added to the 5′ of each primer. The primer extension includes an endonuclease restriction site. The restriction sites were selected using two parameters: (a). The site does not exist in the cDNA sequence; and (b). The restriction sites in the forward and reverse primers were designed such that the digested cDNA was inserted in the sense formation into the binary vector utilized for transformation.
  • Each digested PCR product was inserted into a high copy vector pUC19 (New England BioLabs Inc], or into plasmids originating from this vector. In some cases the undigested PCR product was inserted into pCR-Blunt II-TOPO (Invitrogen).
  • Sequencing of the amplified PCR products was performed, using ABI 377 sequencer (Amersham Biosciences Inc). In some cases, after confirming the sequences of the cloned genes, the cloned cDNA was introduced into a modified pGI binary vector containing the At6669 promoter via digestion with appropriate restriction endonucleases. In any case the insert was followed by single copy of the NOS terminator (SEQ ID NO:3825). The digested products and the linearized plasmid vector are ligated using T4 DNA ligase enzyme (Roche, Switzerland).
  • High copy plasmids containing the cloned genes were digested with the restriction endonucleases (New England BioLabs Inc) according to the sites designed in the primers and cloned into binary vectors as shown in Table 68, below.
  • Several DNA sequences of the selected genes were synthesized by a commercial supplier GeneArt [Hypertext Transfer Protocol://World Wide Web (dot) geneart (dot) com/]. Synthetic DNA was designed in silico. Suitable restriction enzymes sites were added to the cloned sequences at the 5′ end and at the 3′ end to enable later cloning into the pQFNc binary vector downstream of the At6669 promoter (SEQ ID NO: 3829).
  • Binary vectors used for cloning: The plasmid pPI is constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; bp 4658-4811) into the HindIII restriction site of the binary vector pBI101.3 (Clontech, Acc. No. U12640), pGI (pBXYN) is similar to pPI, but the original gene in the backbone, the GUS gene, is replaced by the GUS-Intron gene followed by the NOS terminator (SEQ ID NO:3825) (Vancanneyt, G, et al MGG 220, 245-50, 1990), pGI was used in the past to clone the polynucleotide sequences, initially under the control of 35S promoter [Odell, J T. et al. Nature 313, 810-812 (28 Feb. 1985); SEQ ID NO:3834].
  • The modified pGI vectors [pQXNc (FIG. 8 ); or pQFN (FIG. 2 ), pQFNc (FIG. 2 ) or pQYN_6669 (FIG. 1 )] are modified versions of the pGI vector in which the cassette is inverted between the left and right borders so the gene and its corresponding promoter are close to the right border and the NPTII gene is close to the left border.
  • At6669, the Arabidopsis thaliana promoter sequence (SEQ ID NO:3829) was inserted in the modified pGI binary vector, upstream to the cloned genes, followed by DNA ligation and binary plasmid extraction from positive E. coli colonies, as described above.
  • Colonies were analyzed by PCR using the primers covering the insert which were designed to span the introduced promoter and gene. Positive plasmids were identified, isolated and sequenced.
  • Genes which were cloned by the present inventors are provided in Table 68 below, along with the primers used for cloning.
  • TABLE 68
    Genes cloned in High copy number plasmids
    High copy Primers used SEQ ID Polyn. SEQ Polyp. SEQ
    Gene Name plasmid Organism NOs: ID NO: ID NO:
    LNU290 Topo B WHEAT Triticum aestivum L. ND 3819, 3991 266 717
    LNU291 pUC19c SORGHUM Sorghum bicolor ND 3820, 3992, 4153, 4264 267 471
    LNU292 pUC19c SORGHUM Sorghum bicolor ND 3821, 3993, 4154, 4265 268 472
    LNU293 pUC19c RICE Oryza sativa L. Japonica Nipponbare 4155, 4266 269 473
    LNU294 pUC19c SOYBEAN Glycine max 40-219 3822, 3994, 4156, 3994 270 718
    LNU295 pUC19c TOMATO Lycopersicum esculentum MD 3823, 3995, 4157, 4267 271 475
    LNU296 272 476
    LNU298 273 478
    LNU299 pUC19c MAIZE Zea mays L. B73 3824, 3996, 4158, 4268 274 479
    LNU300 pUC19c MAIZE Zea mays L. B73 3835, 3997, 4159, 4269 275 480
    LNU301 pUC19c MAIZE Zea mays L. B73 3836, 3998, 3836, 4270 276 481
    LNU302 pUC19c TOMATO Lycopersicum esculentum MD 3837, 3999, 4160, 4271 277 482
    LNU303 Topo B SORGHUM Sorghum bicolor ND 4161, 4272 278 483
    LNU304 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3838, 4000, 4162, 4273 279 484
    LNU305 pUC19c BARLEY Hordeum vulgare L. Manit 3839, 4001 280 719
    LNU306 pUC19d ARABIDOPSIS Arabidopsis thaliana Kondara 3840, 4002 281 486
    LNU307 Topo B MAIZE Zea mays L. B73 3841, 4003 282 720
    LNU308 pUC19c ARABIDOPSIS Arabidopsis thaliana Kondara 3842, 4004, 4163, 4274 283 488
    LNU309H3 462 676
    LNU310 pUC19c TOMATO Lycopersicum esculentum MD 3843, 4005, 4164, 4275 284 721
    LNU311 285 491
    LNU312 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3844, 4006, 4165, 4006 286 492
    LNU314 Topo B SORGHUM Sorghum bicolor ND 3845, 4007, 4166, 4276 287 493
    LNU315 Topo B WHEAT Triticum aestivum L. ND 3846, 4008 288 494
    LNU316 pUC19c SORGHUM Sorghum bicolor ND 3847, 4009, 3847, 4277 289 495
    LNU317 pUC19c MAIZE Zea mays L. B73 3848, 4010, 4167, 4278 290 496
    LNU318 291 497
    LNU319 pUC19c SORGHUM Sorghum bicolor ND 3849, 4011 292 498
    LNU322 pUC19c BARLEY Hordeum vulgare L. Manit 3850, 4012, 4168, 4279 293 499
    LNU323 pUC19c TOMATO Lycopersicum esculentum MD 3851, 4013, 3851, 4280 294 722
    LNU324 Topo B SORGHUM Sorghum bicolor ND 3852, 4014, 4169, 4281 295 723
    LNU326 pUC19c TOMATO Lycopersicum esculentum MD 3853, 4015, 4170, 4282 296 724
    LNU327 Topo B WHEAT Triticum aestivum L. EYAL 3854, 4016, 3854, 4283 297 503
    LNU328 pUC19c TOMATO Lycopersicum esculentum MD 3855, 4017, 4171, 4284 298 725
    LNU329 pUC19c TOMATO Lycopersicum esculentum MD 3856, 4018, 4172, 4285 299 726
    LNU330 pUC19c TOMATO Lycopersicum esculentum MD 3857, 4019, 4173, 4286 300 506
    LNU331 Topo B TOMATO Lycopersicum esculentum MD 3858, 4020, 4174, 4287 301 727
    LNU332 pUC19c MAIZE Zea mays L. B73 4175, 4288 302 508
    LNU333 303 509
    LNU335 Topo B WHEAT Triticum aestivum L. ND 3859, 4021, 3859, 4021 304 728
    LNU336 Topo B TOMATO Lycopersicum esculentum MD 3860, 4022, 4176, 4289 305 729
    LNU337 pUC19d GRAPE Vitis vinifera ND(red glob (red) x salt 3861, 4023, 4177, 4177 306 730
    krik)
    LNU339 Topo B MAIZE Zea mays L. ND 3862, 4024, 4178, 4290 307 513
    LNU340 pUC19c WHEAT Triticum aestivum L. EYAL 3863, 4025, 3863, 4291 308 514
    LNU341 309 515
    LNU342 Topo B TOMATO Lycopersicum esculentum MD 3864, 4026, 4179, 4292 310 516
    LNU343 Topo B WHEAT Triticum aestivum L. EYAL 4180, 4293 311 731
    LNU344 pUC19c WHEAT Triticum aestivum L. ND 3865, 4027 312 518
    LNU345 Topo B WHEAT Triticum aestivum L. EYAL 3866, 4028, 4181, 4294 313 519
    LNU346 pUC19c SORGHUM Sorghum bicolor ND 4182, 4295 314 520
    LNU347 pUC19c SORGHUM Sorghum bicolor ND 3867, 4029 315 521
    LNU348 pUC19c MAIZE Zea mays L. B73 3868, 4030 316 522
    LNU349 pUC19c SOYBEAN Glycine max 40-219 3869, 4031 317 523
    LNU350 pUC19c WHEAT Triticum aestivum L. ND 3870, 4032, 4183, 4296 318 732
    LNU351 pUC19c WHEAT Triticum aestivum L. EYAL 3871, 4033, 4184, 4297 319 525
    LNU352 pUC19c WHEAT Triticum aestivum L. EYAL 3872, 4034, 3872, 4298 320 526
    LNU353 Topo B WHEAT Triticum aestivum L. ND 3873, 4035, 4185, 4299 321 527
    LNU354 pUC19c WHEAT Triticum aestivum L. EYAL 3874, 4036, 4186, 4300 322 528
    LNU355 pUC19d WHEAT Triticum aestivum L. EYAL 4187, 4301 323 529
    LNU356 pUC19c TOMATO Lycopersicum esculentum MD 3875, 4037, 4188, 4302 324 530
    LNU357 pUC19c TOMATO Lycopersicum esculentum MD 3876, 4038, 3876, 4303 325 531
    LNU359 326 532
    LNU360 Topo B MAIZE Zea mays L. B73 3877, 4039, 4189, 4304 327 733
    LNU361 pUC19c MAIZE Zea mays L. B73 4190, 4305 328 734
    LNU362 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3878, 4040, 4191, 4306 329 535
    LNU363 Topo B RICE Oryza sativa L. Japonica Nipponbare 3879, 4041, 4192, 4307 330 536
    LNU364 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3880, 4042, 4193, 4308 331 537
    LNU365 pUC19c RICE Oryza sativa L. Japonica Nipponbare 4194, 4309 332 538
    LNU366 Topo B RICE Oryza sativa L. Japonica Nipponbare 4195, 4310 333 539
    LNU367 Topo B RICE Oryza sativa L. Japonica Nipponbare 4196, 4311 334 540
    LNU368 pUC19c WHEAT Triticum aestivum L. ND 3881, 4043, 3881, 4312 335 735
    LNU369 pUC19c WHEAT Triticum aestivum L. ND 3882, 4044 336 542
    LNU370 pUC19c TOMATO Lycopersicum esculentum MD 3883, 4045, 3883, 4313 337 543
    LNU371 pUC19c MAIZE Zea mays L. B73 4197, 4314 338 736
    LNU372 Topo B WHEAT Triticum aestivum L. ND 3884, 4046, 3884, 4315 339 737
    LNU373 pUC19c RICE Oryza sativa L. Indica Lebbonet 3885, 4047, 4198, 4316 340 546
    LNU374 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3886, 4048, 4199, 4317 341 547
    LNU375 pUC19c TOMATO Lycopersicum esculentum MD 3887, 4049, 4200, 4318 342 548
    LNU376 pUC19c MAIZE Zea mays L. B73 3888, 4050, 4201, 4319 343 549
    LNU377 pUC19c SORGHUM Sorghum bicolor ND 3889, 4051, 3889, 4320 344 550
    LNU378 pUC19c WHEAT Triticum aestivum L. EYAL 3890, 4052, 4202, 4052 235 738
    LNU379 pUC19c SORGHUM Sorghum bicolor ND 3891, 4053, 3891, 4321 345 552
    LNU380 Topo B WHEAT Triticum aestivum L. ND 3892, 4054 346 739
    LNU381 pUC19c SORGHUM Sorghum bicolor ND 3893, 4055, 3893, 4322 347 554
    LNU382 pUC19c ARABIDOPSIS Arabidopsis thaliana Kondara 3894, 4056, 4203, 4056 348 740
    LNU383 pUC19c TOMATO Lycopersicum esculentum MD 3895, 4057, 4204, 4323 349 556
    LNU384 Topo B TOMATO Lycopersicum esculentum MD 3896, 4058, 4205, 4324 350 741
    LNU385 Topo B RICE Oryza sativa L. Japonica Nipponbare 3897, 4059, 4206, 4325 351 558
    LNU386 pUC19c RICE Oryza sativa L. Indica Lebbonet 4207, 4326 352 559
    LNU387 pUC19c SORGHUM Sorghum bicolor ND 3898, 4060 353 742
    LNU388 354 561
    LNU390 pUC19d TOMATO Lycopersicum esculentum MD 3899, 4061, 3899, 4327 355 743
    LNU391 pUC19c BARLEY Hordeum vulgare L. Manit 3900, 4062, 4208, 4328 356 563
    LNU392 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3901, 4063, 4209, 4329 357 564
    LNU393 pUC19c SORGHUM Sorghum bicolor ND 3902, 4064, 3902, 4330 358 744
    LNU395 Topo B SORGHUM Sorghum bicolor ND 3903, 4065 359 566
    LNU396 pUC19c SORGHUM Sorghum bicolor ND 3904, 4066, 4210, 4331 360 567
    LNU397 Topo B SORGHUM Sorghum bicolor ND 4211, 4332 361 745
    LNU399 pUC19c WHEAT Triticum aestivum L. EYAL 3905, 4067, 4212, 4333 362 569
    LNU401 pUC19c SORGHUM Sorghum bicolor ND 3906, 4068, 4213, 4334 363 746
    LNU402 pUC19c WHEAT Triticum aestivum L. ND 3907, 4069, 3907, 4335 364 747
    LNU403 pUC19c SORGHUM Sorghum bicolor ND 3908, 4070 365 572
    LNU405 pUC19c TOMATO Lycopersicum esculentum MD 3909, 4071, 3909, 4336 366 748
    LNU407 Topo B BARLEY Hordeum vulgare L. Manit 3910, 4072, 4214, 4337 367 749
    LNU408 pUC19c BARLEY Hordeum vulgare L. Spontaneum 3911, 4073 368 575
    LNU409 Topo B BARLEY Hordeum vulgare L. Manit 3912, 4074, 3912, 4338 369 750
    LNU410 pUC19c WHEAT Triticum aestivum L. ND 4215, 4339 370 577
    LNU411 pUC19c TOMATO Lycopersicum esculentum MD 3913, 4075, 3913, 4340 371 578
    LNU412 pUC19c COTTON Gossypium barbadense Pima 3914, 4076, 4216, 4341 372 751
    LNU413 pUC19c TOMATO Lycopersicum esculentum MD 4217, 4342 373 752
    LNU414 pUC19c WHEAT Triticum aestivum L. ND 3915, 4077 374 753
    LNU415 pUC19c SORGHUM Sorghum bicolor ND 3916, 4078, 4218, 4343 375 582
    LNU416 pUC19c MUSTARD Brassica juncea ND 3917, 4079 376 754
    LNU419 pUC19c TOMATO Lycopersicum esculentum MD 3918, 4080, 4219, 4344 377 755
    LNU420 pUC19c SORGHUM Sorghum bicolor ND 3919, 4081, 4220, 4345 378 586
    LNU421 pUC19c SORGHUM Sorghum bicolor ND 3920, 4082, 3920, 4346 379 756
    LNU422 pUC19c SORGHUM Sorghum bicolor ND 4221, 4347 380 588
    LNU423 pUC19c SORGHUM Sorghum bicolor ND 4222, 4348 381 589
    LNU424 pUC19c ARABIDOPSIS Arabidopsis thaliana Kondara 3921, 4083, 4223, 4349 382 590
    LNU425 pUC19c BARLEY Hordeum vulgare L. Manit 3922, 4084, 4224, 4350 383 591
    LNU426 384 592
    LNU427 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3923, 4085, 4225, 4351 385 593
    LNU429 pUC19c TOMATO Lycopersicum esculentum MD 3924, 4086, 4226, 4086 386 594
    LNU430 pUC19c TOMATO Lycopersicum esculentum MD 4227, 4352 387 595
    LNU432 pUC19c SORGHUM Sorghum bicolor ND 3925, 4087, 4228, 4353 388 597
    LNU433 Topo B SORGHUM Sorghum bicolor ND 3926, 4088, 4229, 4354 389 598
    LNU434 390 599
    LNU435 Topo B BARLEY Hordeum vulgare L. Manit 3927, 4089, 4230, 4355 391 600
    LNU436 Topo B BARLEY Hordeum vulgare L. Manit 3928, 4090 392 601
    LNU437_H2 Topo B RICE Oryza sativa L. Japonica Nipponbare 3929, 4091, 4231, 4356 465 679
    LNU438 pUC19c BARLEY Hordeum vulgare L. Manit 3930, 4092, 3930, 4357 393 603
    LNU439 pUC19c SORGHUM Sorghum bicolor ND 3931, 4093, 4232, 4358 394 757
    LNU442 pUC19c TOMATO Lycopersicum esculentum MD 3932, 4094, 4233, 4359 395 758
    LNU443 Topo B BRACHYPODIUM Brachypodiums distachyon 3933, 4095, 3933, 4360 396 607
    ND
    LNU444 pUC19c COTTON Gossypium barbadense Pima 3934, 4096 397 759
    LNU446 pUC19c SOYBEAN Glycine max 40-219 3935, 4097, 3935, 4361 398 610
    LNU447 pUC19c BARLEY Hordeum vulgare L. Manit 3936, 4098, 3936, 4362 399 760
    LNU448 pUC19c BARLEY Hordeum vulgare L. Spontaneum 3937, 4099, 4234, 4363 400 761
    LNU449 pUC19c COTTON Gossypium barbadense Pima 3938, 4100 401 762
    LNU450 pUC19c COTTON Gossypium barbadense Pima 3939, 4101, 4235, 4364 402 763
    LNU451 pUC19c TOMATO Lycopersicum esculentum MD 3940, 4102, 4236, 4365 403 615
    LNU453 404 616
    LNU454 Topo B TOMATO Lycopersicum esculentum MD 3941, 4103 405 764
    LNU455 pUC19c TOMATO Lycopersicum esculentum MD 3942, 4104, 3942, 4366 406 618
    LNU456 pUC19c BARLEY Hordeum vulgare L. Manit 3943, 4105, 3943, 4367 407 619
    LNU458 pUC19c COTTON Gossypium barbadense Pima 3944, 4106, 3944, 4368 408 621
    LNU459 pUC19c MAIZE Zea mays L. B73 3945, 4107, 4237, 4369 409 622
    LNU460 pUC19c MAIZE Zea mays L. B73 3946, 4108, 3946, 4370 410 765
    LNU461 Topo B TOMATO Lycopersicum esculentum MD 3947, 4109, 4238, 4371 411 766
    LNU462 pUC19c TOMATO Lycopersicum esculentum MD 3948, 4110, 4239, 4372 412 625
    LNU463 pUC19c GRAPE Vitis vinifera ND(red glob (red) x 3949, 4111 413 767
    salt krik)
    LNU464 414 627
    LNU465 Topo B SORGHUM Sorghum bicolor ND 3950, 4112, 3950, 4373 415 768
    LNU466 416 629
    LNU467 pUC19c BARLEY Hordeum vulgare L. Spontaneum 3951, 4113, 4240, 4374 417 630
    LNU468 pUC19c TOMATO Lycopersicum esculentum MD 3952, 4114, 4241, 4375 418 769
    LNU469 pUC19c MAIZE Zea mays L. B73 3953, 4115, 3953, 4376 419 632
    LNU470 Topo B BARLEY Hordeum vulgare L. Spontaneum 3954, 4116, 4242, 4377 420 770
    LNU471 Topo B MAIZE Zea mays L. B73 3955, 4117, 4243, 4378 421 771
    LNU472 pUC19c BARLEY Hordeum vulgare L. Manit 3956, 4118, 4244, 4379 422 772
    LNU473 423 636
    LNU474 pUC19c SOYBEAN Glycine max 40-219 3957, 4119, 4245, 4119 424 773
    LNU476 pUC19c MAIZE Zea mays L. B73 3958, 4120, 3958, 4380 425 774
    LNU477 pUC19c SORGHUM Sorghum bicolor ND 3959, 4121, 4246, 4381 426 639
    LNU479 427 640
    LNU480 Topo B SORGHUM Sorghum bicolor ND 3960, 4122, 3960, 4382 428 641
    LNU481 Topo B SORGHUM Sorghum bicolor ND 3961, 4123, 4247, 4383 429 642
    LNU482 Topo B COTTON Gossypium barbadense Pima 3962, 4124, 4248, 4384 430 775
    LNU483 Topo B RICE Oryza sativa L. Japonica Nipponbare 4249, 4385 431 644
    LNU485 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3963, 4125, 4250, 4386 432 776
    LNU486 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3964, 4126 433 646
    LNU487 pUC19c BARLEY Hordeum vulgare L. Manit 4251, 4387 469
    LNU488 216
    LNU489 pUC19c TOMATO Lycopersicum esculentum MD 3965, 4127, 4252, 4388 434 647
    LNU490 435 648
    LNU491 pUC19c SORGHUM Sorghum bicolor ND 3966, 4128, 4253, 4389 436 649
    LNU492 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3967, 4129 437 650
    LNU493 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3968, 4130 438 651
    LNU494 439 652
    LNU495 pUC19c SORGHUM Sorghum bicolor ND 3969, 4131, 3969, 4390 440 777
    LNU496 pUC19c WHEAT Triticum aestivum L. ND 3970, 4132, 4254, 4391 441 778
    LNU497 pUC19c WHEAT Triticum aestivum L. ND 3971, 4133, 4255, 4392 442 655
    LNU498 pUC19c SORGHUM Sorghum bicolor ND 3972, 4134, 4256, 4393 443 656
    LNU499 Topo B BARLEY Hordeum vulgare L. Manit 3973, 4135, 3973, 4394 444 779
    LNU500 pUC19c TOMATO Lycopersicum esculentum MD 3974, 4136 445 658
    LNU501 pUC19c SORGHUM Sorghum bicolor ND 3975, 4137, 3975, 4395 446 659
    LNU502 pUC19c BARLEY Hordeum vulgare L. Spontaneum 3976, 4138, 3976, 4396 447 660
    LNU503 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3977, 4139 448 661
    LNU504 pUC19c ARABIDOPSIS Arabidopsis thaliana Kondara 3978, 4140 449 780
    LNU507 pUC19c BARLEY Hordeum vulgare L. Manit 3979, 4141 450 781
    LNU508 Topo B RICE Oryza sativa L. Japonica Nipponbare 3980, 4142, 4257, 4257 451 665
    LNU509 pUC19c RICE Oryza sativa L. Japonica Nipponbare 3981, 4143, 3981, 4397 452 666
    LNU510 Topo B RICE Oryza sativa L. Japonica Nipponbare 3982, 4144, 4258, 4398 453 667
    LNU511 pUC19c RICE Oryza sativa L. Japonica Nipponbare 4259, 4399 454 668
    LNU512 pUC19c ARABIDOPSIS Arabidopsis thaliana Kondara 3983, 4145, 4260, 4400 455 669
    LNU513 pUC19c SOYBEAN Glycine max 40-219 3984, 4146, 3984, 4401 456 782
    LNU514 Topo B RICE Oryza sativa L. Japonica Nipponbare 3985, 4147, 3985, 4402 457 671
    LNU517 pUC19c SOYBEAN Glycine max 40-219 3986, 4148, 4261, 4403 458 783
    LNU518 Topo B MAIZE Zea mays L. B73 3987,4149 459 673
    LNU519 Topo B MAIZE Zea mays L. B73 3988, 4150, 4262, 4404 460 784
    LNU520 Topo B SORGHUM Sorghum bicolor ND 3989, 4151 461 675
    LNU313 pUC19c SORGHUM Sorghum bicolor ND 4263, 4405 466
    LNU358 212
    LNU394 467
    LNU418 pUC19c MAIZE Zea mays L. B73 3990, 4152, 3990, 4406 468
    Table 38. Provided are the genes which were cloned in high copy plasmids, along with the primers used for cloning, the organisms from which the genes were cloned and the resulting polynucleotide (“polyn.”) and polypeptide (“polyp.”) sequences of the cloned gene.
  • Example 14 Transforming Agrobacterium tumefaciens Cells with Binary Vectors Harboring Putative Genes
  • Each of the binary vectors described in Example 13 above were used to transform Agrobacterium cells. Two additional binary constructs, having only the At6669, or the RootP promoter or no additional promoter were used as negative controls.
  • The binary vectors were introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 109 cells/mL) by electroporation. The electroporation was performed using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 28° C., for 3 hours, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28° C., for 48 hours. Agrobacterium colonies, which were developed on the selective media, were further analyzed by PCR using the primers designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were isolated and sequenced as described in Example 13 above, to verify that the correct polynucleotide sequences of the invention are properly introduced to the Agrobacterium cells.
  • Example 15 Transformation of Arabidopsis thaliana Plants with the Polynucleotides of the Invention
  • Arabidopsis thaliana Columbia plants (T0 plants) were transformed using the Floral Dip procedure described by Clough and Bent, 1998 (Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-43) and by Desfeux et al., 2000 (Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method. Plant Physiol, July 2000, Vol. 123, pp. 895-904), with minor modifications. Briefly, To Plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C., for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hour light/dark cycles. The T0 plants were ready for transformation six days before anthesis.
  • Single colonies of Agrobacterium carrying the binary constructs, were generated as described in Examples 13 and 14 above. Colonies were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C., for 48 hours under vigorous shaking and then centrifuged at 4000 rpm for 5 minutes. The pellets comprising the Agrobacterium cells were re-suspended in a transformation medium containing half-strength (2.15 g/L) Murashige-Skoog (Duchefa); 0.044 μM benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.
  • Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension, such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours, to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques are brown and dry. Seeds were harvested from plants and kept at room temperature until sowing.
  • For generating T1 and T2 transgenic plants harboring the genes, seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashige-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C., for 48 hours, then transferred to a growth room at 25° C., for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.
  • Example 16 Evaluating Transgenic Arabidopsis NUE Under Low or Normal Nitrogen Conditions Using In Vitro (Tissue Culture) Assays
  • Assay 1: Plant Growth Under Low and Favorable Nitrogen Concentration Levels
  • Surface sterilized seeds were sown in basal media [50% Murashige-Skoog medium (MS) supplemented with 0.8% plant agar as solidifying agent] in the presence of Kanamycin (used as a selecting agent). After sowing, plates were transferred for 2-3 days for stratification at 4° C., and then grown at 25° C. under 12-hour light 12-hour dark daily cycles for 7 to 10 days. At this time point, seedlings randomly chosen were carefully transferred to plates containing ½ MS media (15 mM N) for the normal nitrogen concentration treatment and 0.75 mM nitrogen for the low nitrogen concentration treatments. For experiments performed in T2 lines, each plate contained 5 seedlings of the same transgenic event, and 3-4 different plates (replicates) for each event. For each polynucleotide of the invention at least four-five independent transformation events were analyzed from each construct. For experiments performed in T1 lines, each plate contained 5 seedlings of 5 independent transgenic events and 3-4 different plates (replicates) were planted. In total, for T1 lines. 20 independent events were evaluated. Plants expressing the polynucleotides of the invention were compared to the average measurement of the control plants (empty vector or GUS reporter gene under the same promoter) used in the same experiment.
  • Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) and located in a darkroom, is used for capturing images of plantlets sawn in agar plates.
  • The image capturing process is repeated every 3-4 days starting at day 1 till day 10. An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Seedling analysis—Using the digital analysis seedling data was calculated, including leaf area, root coverage and root length.
  • The relative growth rate for the various seedling parameters was calculated according to the following Formulas VI (RGR of leaf area, above), XVIII (RGR root length, below) and Formula VII (RGR of root coverage, above).

  • Relative growth rate of root length=Regression coefficient of root length along time course.  Formula XVIII
  • At the end of the experiment, plantlets were removed from the media and weighed for the determination of plant fresh weight. Plantlets were then dried for 24 hours at 60° C., and weighed again to measure plant dry weight for later statistical analysis. Growth rate was determined by comparing the leaf area coverage, root coverage and root length, between each couple of sequential photographs, and results are used to resolve the effect of the gene introduced on plant vigor under optimal conditions. Similarly, the effect of the gene introduced on biomass accumulation, under optimal conditions, was determined by comparing the plants' fresh and dry weight to that of control plants (containing an empty vector or the GUS reporter gene under the same promoter). From every construct created, 3-5 independent transformation events are examined in replicates.
  • Statistical analyses—To identify genes conferring significantly improved plant vigor or enlarged root architecture, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. To evaluate the effect of a gene event over a control the data was analyzed by Student's t-test and the p value is calculated. Results were considered significant if p≤0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
  • Experimental Results:
  • The genes presented in the following Tables were cloned under the regulation of a constitutive promoter (At6669). The evaluation of each gene was carried out by testing the performance of different number of events. Some of the genes were evaluated in more than one tissue culture assay. The results obtained in these second experiments were significantly positive as well. The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.
  • The genes presented in Tables 69-72 showed a significant improvement in plant NUE since they produced larger plant biomass (plant fresh and dry weight; leaf area, root length and root coverage) in T2 generation (Tables 69-70) or T1 generation (Tables 71-72) when grown under limiting nitrogen growth conditions, compared to control plants. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.
  • TABLE 69
    Genes showing improved plant performance at nitrogen deficient conditions (T2 generation)
    Gene Event Dry Weight [mg] Fresh Weight [mg]
    Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr.
    LNU437_H2 66104.1 5.2 0.02 43 79.4 0.17 21
    LNU437_H2 66104.2 4.7 0.29 29
    LNU437_H2 66104.3 4.8 0.08 31 81.4 0.18 24
    LNU437_H2 66105.3 4.8 0.11 31 93.8 0.13 43
    LNU426 66147.3 6.6 L 80 120.6 L 84
    LNU420 64008.4 5.0 0.09 36
    LNU352 64199.1 6.3 L 71 106.9 L 63
    LNU292 64085.4 4.8 0.08 31 87.7 0.05 34
    CONT. 3.7 65.5
    LNU483 64803.2 7.5 0.07 33 153.0 L 42
    LNU483 64805.1 8.6 0.03 52 139.3 L 29
    LNU483 64805.2 6.5 0.09 16 137.8 L 28
    LNU483 64806.2 7.3 0.12 29 141.4 0.04 31
    LNU477 63886.1 6.4 0.07 13 128.0 0.07 19
    LNU477 63888.1 6.4 0.20 14 123.2 0.18 14
    LNU464 65076.4 6.4 0.27 13 138.2 0.09 28
    LNU447 65000.4 7.2 0.14 28 138.2 0.10 28
    LNU447 65002.2 6.4 0.18 13 138.8 0.07 29
    LNU447 65002.3 119.3 0.27 11
    LNU439 64616.2 7.6 0.04 35 148.7 0.11 38
    LNU439 64616.3 8.2 0.07 45 152.3 0.04 41
    LNU439 64618.3 7.1 0.11 26 134.1 0.11 24
    LNU425 63910.9 119.3 0.25 11
    LNU425 63911.9 8.7 0.04 55 172.5 0.03 60
    LNU414 64475.1 7.8 0.02 39 138.4 L 28
    LNU414 64479.1 8.1 0.02 44 150.5 L 40
    LNU414 64480.2 7.8 0.12 38 152.4 0.09 41
    LNU346 65008.2 7.1 0.14 26 136.5 0.01 27
    LNU336 64447.2 135.7 0.12 26
    LNU336 64448.2 8.4 0.10 50 163.0 0.03 51
    LNU336 64448.3 6.3 0.05 12 126.5 0.01 17
    LNU336 64449.3 7.4 0.03 31 135.3 0.25 26
    CONT. 5.6 107.8
    LNU473 65770.4 5.4 0.13 21 102.8 0.26 18
    LNU470 64229.1 6.0 0.13 33 123.1 0.13 41
    LNU460 64359.4 95.3 0.26 9
    LNU421 64303.3 6.0 0.19 35 136.2 0.06 56
    LNU421 64304.4 95.8 0.24 10
    LNU408 64248.10 5.2 0.28 16 108.7 0.29 25
    LNU408 64250.8 6.0 0.17 35 125.6 0.25 44
    LNU380 65765.3 109.1 0.04 25
    LNU340 64290.7 6.1 0.17 36 124.9 0.08 43
    LNU331 64212.1 111.9 0.25 29
    LNU331 64214.2 122.7 0.04 41
    LNU331 64215.1 8.0 L 78 156.9 L 80
    LNU306 64132.6 99.3 0.21 14
    CONT. 4.5 87.1
    LNU456 63991.8 85.1 0.26 23
    LNU456 63992.6 106.8 0.06 55
    LNU430 63934.3 6.4 0.04 67 129.1 0.04 87
    LNU430 63952.1 81.3 0.27 18
    LNU412 63940.1 93.1 0.08 35
    LNU412 63940.12 84.8 0.08 23
    LNU412 63940.8 5.3 0.29 39
    LNU407 64218.1 4.9 0.12 28 96.2 0.14 40
    LNU407 64218.2 93.1 0.11 35
    LNU407 64219.2 6.9 L 79 115.7 L 68
    LNU384 64161.1 78.9 0.27 14
    LNU384 64161.3 91.2 0.03 32
    LNU384 64161.7 82.2 0.13 19
    LNU360 64029.3 91.5 0.11 33
    LNU335 64168.18 82.2 0.22 19
    LNU335 64169.2 5.5 0.10 44 113.0 0.09 64
    LNU301 63927.3 167.8 0.01 143
    LNU301 63927.5 86.0 0.12 25
    LNU301 63950.3 7.2 0.02 88 136.0 L 97
    CONT. 3.8 68.9
    LNU450 63708.3 6.8 0.14 34 136.4 0.05 63
    LNU450 63710.2 6.3 0.01 24 122.7 L 46
    LNU450 63712.3 7.0 L 39 117.8 0.12 40
    LNU429 63937.4 102.1 0.03 22
    LNU416 64134.2 95.7 0.10 14
    LNU416 64136.4 7.3 0.05 45 132.1 0.01 58
    LNU412 63940.12 136.8 0.15 63
    LNU412 63940.8 114.6 0.20 37
    LNU359 66154.5 97.3 0.06 16
    LNU359 66154.6 106.3 0.16 27
    LNU349 63990.4 101.5 0.02 21
    LNU293 65048.1 109.3 L 30
    LNU293 65050.3 97.5 0.11 16
    LNU293 65051.3 120.5 0.14 44
    CONT. 5.1 83.8
    LNU498 64185.3 5.1 0.13 32 119.0 0.15 28
    LNU493 64190.3 108.9 0.26 17
    LNU493 64191.4 113.4 0.29 22
    LNU455 64187.5 109.8 0.30 18
    LNU343 64208.4 4.4 0.13 15
    LNU322 63918.1 4.6 0.09 21
    LNU305 64111.2 4.3 0.26 13
    CONT. 3.8 93.1
    LNU487 64706.2 4.8 0.02 22
    LNU465 64020.1 4.6 0.07 17 84.2 0.23 13
    LNU446 64546.2 4.6 0.26 18 91.9 0.13 23
    LNU446 64546.3 5.1 0.18 28
    LNU443 64023.2 5.0 0.18 26 82.5 0.29 11
    LNU443 64024.3 6.4 L 62
    LNU436 64240.1 4.9 0.03 24
    LNU436 64240.2 5.4 0.10 36 103.7 0.09 39
    LNU436 64242.2 5.6 L 43
    LNU379 64170.2 4.9 0.28 23 95.0 0.22 27
    LNU315 64224.1 4.8 0.09 20 82.9 0.28 11
    LNU315 64224.3 5.8 0.07 47 104.6 L 40
    LNU315 64225.1 4.8 0.02 22 88.2 0.16 18
    LNU315 64227.3 4.4 0.28 11
    CONT. 4.0 74.6
    LNU449 63890.1 8.1 0.25 24
    LNU449 64571.3 9.1 0.23 39 188.3 0.13 43
    LNU435 64464.3 10.4 0.04 57 220.1 L 67
    LNU432 64559.2 9.9 0.19 50 201.3 0.21 53
    LNU367 64398.2 8.9 0.23 35 195.4 0.13 48
    LNU362 64324.3 148.4 0.25 13
    CONT. 6.6 131.6
    LNU495 64697.2 99.4 0.03 63
    LNU495 64697.3 114.5 0.13 87
    LNU495 64698.2 4.7 0.26 14 95.0 L 55
    LNU495 64701.3 99.1 0.03 62
    LNU487 64702.1 89.5 0.26 46
    LNU487 64702.3 77.1 0.28 26
    LNU487 64704.2 106.3 0.19 74
    LNU487 64705.4 107.3 L 75
    LNU487 64706.2 93.0 0.07 52
    LNU474 64379.1 88.2 0.13 44
    LNU474 64381.1 84.8 0.11 39
    LNU474 64382.3 88.9 0.03 45
    LNU474 64383.2 92.4 0.03 51
    LNU465 64020.1 96.3 0.06 58
    LNU465 64020.4 80.2 0.11 31
    LNU465 64021.3 73.8 0.29 21
    LNU465 64021.7 93.1 0.04 52
    LNU446 64546.2 77.5 0.19 27
    LNU446 64546.3 123.7 0.12 102
    LNU446 64548.1 82.4 0.08 35
    LNU446 64548.2 101.7 0.29 66
    LNU446 64549.3 93.5 0.01 53
    LNU443 64023.2 91.8 0.01 50
    LNU443 64023.9 72.1 0.27 18
    LNU436 64240.1 96.7 0.02 58
    LNU436 64240.2 98.0 0.06 60
    LNU436 64241.3 5.6 0.22 36 124.6 0.02 104
    LNU436 64242.2 102.4 0.13 68
    LNU436 64243.1 5.0 0.26 23 134.4 0.06 120
    LNU379 64170.2 74.5 0.19 22
    LNU379 64170.3 76.5 0.15 25
    LNU379 64172.1 84.0 0.11 37
    LNU379 64172.2 77.3 0.14 26
    LNU315 64224.1 105.7 0.02 73
    LNU315 64225.2 5.3 0.09 29 139.4 0.04 128
    LNU315 64226.3 5.2 0.26 26 103.4 0.06 69
    LNU315 64227.3 5.2 L 27 110.2 L 80
    CONT. 4.1 61.1
    LNU520 64156.7 6.1 0.16 22 114.8 0.25 15
    LNU405 64158.9 6.9 0.14 39 138.8 L 39
    LNU403 64239.1 6.7 0.26 33 125.2 0.18 26
    CONT. 5.0 99.7
    LNU519 64678.1 4.0 0.30 16
    LNU519 64679.1 66.8 0.25 11
    LNU519 64681.8 76.5 0.13 27
    LNU500 64220.1 74.8 0.02 24
    LNU500 64223.1 4.0 0.29 16 82.8 0.09 37
    LNU459 64542.3 83.5 0.08 38
    LNU348 64472.2 4.1 0.17 19 86.7 0.04 44
    LNU348 64474.1 71.9 0.11 19
    LNU348 64474.2 83.8 0.14 39
    LNU329 63428.2 68.7 0.19 14
    LNU329 63429.1 70.4 0.16 17
    CONT. 3.4 60.4
    LNU499 64146.11 4.5 0.06 27
    LNU490 66095.2 4.1 0.05 17
    LNU437_H2 66104.1 5.5 L 54 98.0 L 40
    LNU437_H2 66104.2 4.3 0.06 23
    LNU433 64814.1 4.9 0.20 39
    LNU433 64816.1 4.9 0.08 39
    LNU433 64817.5 4.0 0.14 15
    LNU416 64134.1 4.3 0.01 22 79.6 0.21 14
    LNU416 64134.11 4.4 L 25 76.8 0.22 10
    LNU416 64134.2 4.5 0.16 27 90.6 0.02 30
    LNU395 64142.5 4.8 0.02 34 83.4 0.28 19
    LNU395 64143.6 5.5 0.12 56 94.2 0.19 35
    LNU312 64000.1 4.8 L 34
    LNU312 64000.2 4.2 0.05 20
    LNU312 64002.2 4.5 0.14 26
    LNU312 64002.3 4.3 0.13 22
    LNU312 64002.5 6.0 L 69 96.8 0.01 39
    LNU311 66099.1 4.5 0.18 27
    LNU311 66100.3 4.4 0.14 25 88.2 0.23 26
    CONT. 3.5 69.8
    LNU468 63491.1 143.7 0.04 24
    LNU467 63718.2 152.4 0.21 32
    LNU347 63510.2 7.4 0.05 16 145.8 0.10 26
    LNU347 63513.3 9.3 0.06 45 178.1 L 54
    CONT. 6.4 115.5
    LNU497 64207.2 6.2 0.05 47 119.8 0.07 31
    LNU491 64404.3 5.5 0.27 29 122.7 0.24 34
    LNU491 64404.6 5.5 0.03 29 108.6 0.17 19
    LNU449 63890.1 4.8 0.26 13
    LNU449 63892.1 5.6 0.07 32 125.4 0.04 37
    LNU432 64066.2 6.0 0.23 42 122.2 0.22 34
    CONT. 4.2 91.5
    LNU438 63994.5 7.7 0.14 24
    LNU354 63970.7 8.0 0.15 27
    LNU295 63899.5 7.6 0.13 22
    CONT. 6.2
    LNU483 64803.2 5.0 0.13 24
    LNU483 64803.3 5.9 0.07 45 125.1 0.13 31
    LNU483 64805.2 5.3 0.05 30
    LNU414 64475.1 4.7 0.18 16
    LNU378 64494.2 5.1 0.13 25
    LNU364 64441.3 4.9 0.09 21
    LNU346 65008.2 5.9 0.08 44
    CONT. 4.1 95.3
    LNU510 64152.1 80.1 0.12 15
    LNU510 64154.2 101.7 0.27 46
    LNU438 63994.12 83.5 0.27 20
    LNU354 63970.7 4.8 0.28 14 84.6 0.23 21
    LNU310 63904.1 77.8 0.27 12
    LNU295 63899.5 79.2 0.28 14
    LNU295 63899.8 6.1 0.01 45 109.6 0.03 57
    CONT. 4.2 69.8
    LNU490 66092.3 76.4 0.18 23
    LNU443 64024.4 4.3 0.18 43 97.2 0.08 57
    LNU443 64024.7 4.6 0.04 50 95.4 0.11 54
    LNU439 64616.2 4.2 0.12 36 80.7 0.13 30
    LNU439 64618.3 4.9 0.03 60 95.2 0.04 54
    LNU437_H2 66104.1 3.9 0.15 29 78.8 0.15 27
    LNU436 64240.2 4.3 0.05 41 85.2 0.04 38
    LNU436 64242.2 4.2 0.07 37 79.9 0.09 29
    LNU436 64243.1 3.9 0.21 28 83.4 0.17 35
    LNU433 64815.1 4.8 0.11 56 95.2 0.08 54
    LNU433 64815.2 4.6 0.15 52 88.2 0.09 43
    LNU433 64816.1 5.8 L 90 97.0 0.03 57
    LNU298 66089.1 73.5 0.25 19
    LNU293 65050.3 3.8 0.20 24
    LNU293 65051.3 5.0 0.08 63 91.2 0.05 47
    CONT. 3.0 61.9
    Table 69: “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 70
    Genes showing improved plant performance at nitrogen deficient conditions (T2 generation)
    Leaf Area Roots Coverage Roots Length
    [cm2] [cm2] [cm2]
    Gene Event P- % P- % P- %
    Name # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU437_H2 66104.1 0.4 0.05 28 9.0 0.10 26
    LNU437_H2 66104.2 0.5 0.16 34
    LNU437_H2 66104.3 0.5 0.02 42
    LNU437_H2 66105.3 0.5 0.02 43 10.1 0.05 40
    LNU426 66147.3 0.6 L 72 10.0 0.03 38
    LNU420 64006.3 7.4 0.16 8
    LNU420 64007.3 0.4 0.07 26 9.1 0.06 27 7.6 0.04 10
    LNU352 64199.1 0.6 L 88 12.9 L 79 8.1 L 17
    LNU352 64200.1 0.5 0.04 37
    LNU352 64200.10 7.3 0.21 6
    LNU352 64200.4 0.4 0.06 32 10.0 0.03 39 7.6 0.07 10
    LNU292 64084.1 7.3 0.22 5
    LNU292 64085.4 0.4 0.15 20 8.5 0.21 18 7.6 0.10 10
    CONT. 0.3 7.2 6.9
    LNU483 64803.2 17.0 0.01 38
    LNU483 64803.3 15.9 0.08 30
    LNU483 64805.1 21.9 L 79 7.8 L 9
    LNU483 64805.2 20.9 L 71
    LNU483 64806.2 17.4 0.08 42
    LNU477 63889.2 7.4 0.22 3
    LNU464 65073.1 7.7 0.02 7
    LNU464 65076.1 7.6 0.02 6
    LNU464 65076.4 0.7 0.29 10
    LNU447 65000.1 7.4 0.22 4
    LNU447 65002.3 13.1 0.18 7
    LNU439 64616.2 0.7 0.24 16
    LNU439 64616.3 0.8 0.05 17 14.2 0.13 16
    LNU439 64618.3 0.7 0.26 8
    LNU425 63911.9 0.8 L 19 7.5 0.22 4
    LNU414 64475.1 0.7 0.09 7
    LNU414 64479.1 0.8 L 21
    LNU414 64480.2 0.8 0.14 23 7.5 0.13 5
    LNU346 65007.3 7.4 0.18 4
    LNU346 65008.2 0.7 L 15 7.5 0.06 5
    LNU346 65009.2 7.5 0.13 4
    LNU336 64448.2 0.9 0.03 34 14.0 0.23 14
    LNU336 64448.3 0.7 0.26 6
    CONT. 0.6 12.2 7.2
    LNU473 65770.4 0.6 0.23 12 12.8 0.25 9 7.5 0.17 5
    LNU470 64228.3 13.7 0.06 16
    LNU470 64229.1 0.7 0.06 27 14.4 0.06 22 7.9 0.03 9
    LNU460 64359.3 14.8 0.20 25 8.0 0.04 12
    LNU460 64361.4 0.6 0.24 13
    LNU460 64362.1 13.4 0.14 13
    LNU421 64302.7 0.6 0.25 12 13.3 0.02 13 7.8 0.01 9
    LNU421 64303.3 0.7 0.12 26 7.6 0.28 5
    LNU421 64304.4 7.6 0.06 6
    LNU421 64305.11 7.9 0.01 10
    LNU408 64248.10 0.6 0.09 19 13.6 0.10 15 7.4 0.22 4
    LNU408 64248.12 7.6 0.07 5
    LNU408 64248.16 7.8 0.07 9
    LNU380 65764.2 7.4 0.10 3
    LNU380 65764.3 13.2 0.15 12 7.4 0.22 3
    LNU380 65765.4 7.4 0.23 3
    LNU340 64290.7 0.6 0.10 23 15.4 0.03 30 8.1 L 13
    LNU340 64291.10 7.8 L 8
    LNU340 64292.5 13.1 0.25 11 7.8 L 9
    LNU331 64212.1 7.6 0.07 6
    LNU331 64212.3 7.7 0.10 7
    LNU331 64214.2 0.7 0.03 29 14.1 0.02 19 7.8 0.04 9
    LNU331 64215.1 0.8 L 46 17.1 L 44 8.1 0.03 13
    LNU331 64215.3 7.4 0.16 3
    CONT. 0.5 11.8 7.2
    LNU456 63991.8 7.7 0.23 7
    LNU430 63934.3 0.5 0.07 20
    LNU430 63936.2 0.5 0.20 12 7.7 0.24 6
    LNU407 64218.1 10.2 0.26 12
    LNU407 64219.1 10.4 0.11 15 7.9 0.11 8
    LNU407 64219.2 0.6 0.05 35
    LNU402 63914.2 0.5 0.14 16 11.5 0.15 27 8.1 0.07 12
    LNU360 64029.3 10.6 0.23 17
    LNU335 64168.15 8.0 0.10 11
    LNU335 64169.2 0.5 0.04 21
    LNU301 63927.3 0.6 0.19 40
    LNU301 63950.3 0.6 L 57 13.0 0.03 44
    CONT. 0.4 9.0 7.3
    LNU450 63708.3 0.7 0.02 32 14.5 0.10 20 7.7 0.22 7
    LNU450 63710.2 0.7 0.03 22 7.7 0.21 7
    LNU450 63712.3 0.7 0.04 28 14.7 0.03 22 7.5 0.26 5
    LNU429 63937.4 8.1 0.01 12
    LNU429 63938.2 7.6 0.25 5
    LNU416 64134.2 0.6 0.22 6 7.5 0.29 4
    LNU416 64136.4 0.7 0.03 20 15.4 0.04 27 7.8 0.05 9
    LNU412 63940.12 0.7 0.27 25
    LNU412 63940.8 0.7 0.20 18 7.6 0.27 6
    LNU359 66154.6 0.7 L 20 7.5 0.29 4
    LNU349 63989.5 7.5 0.28 4
    LNU349 63990.2 7.5 0.24 5
    LNU293 65048.1 0.6 0.25 8
    LNU293 65051.3 0.7 0.21 20
    CONT. 0.6 12.1 7.2
    LNU498 64184.3 9.4 0.06 25 7.3 0.12 10
    LNU498 64186.1 8.3 0.07 11
    LNU498 64186.2 9.9 L 33 7.4 0.02 11
    LNU498 64186.3 8.5 0.02 14 7.3 0.04 9
    LNU493 64190.1 9.8 L 31 7.3 0.01 10
    LNU493 64190.3 9.4 0.02 26 7.0 0.24 4
    LNU493 64191.2 0.5 0.14 20 9.6 0.07 28 7.1 0.19 7
    LNU493 64191.3 7.4 L 11
    LNU493 64191.4 7.2 0.15 8
    LNU455 64187.5 0.5 0.06 16 10.1 L 34 7.5 0.05 12
    LNU455 64189.4 9.9 0.01 33 7.2 0.05 7
    LNU455 64189.7 7.0 0.19 5
    LNU343 64208.4 8.5 0.29 14 7.3 0.02 10
    LNU328 64150.1 9.4 0.06 26 7.4 0.07 11
    LNU328 64150.2 9.4 0.19 26 7.0 0.21 5
    LNU328 64150.4 8.6 0.02 15 7.3 0.01 10
    LNU328 64151.1 8.9 L 19 7.2 0.11 8
    LNU322 63917.2 9.5 0.01 28 7.3 0.02 10
    LNU322 63918.1 0.5 0.05 15 9.1 0.02 21
    LNU322 63918.4 7.1 0.11 7
    LNU317 64097.2 9.0 0.12 20 7.5 0.03 12
    LNU305 64114.1 7.2 0.05 8
    LNU305 64115.1 9.4 0.22 25 7.3 0.02 9
    CONT. 0.4 7.5 6.7
    LNU495 64697.3 7.6 0.06 6
    LNU495 64701.3 10.2 0.10 11
    LNU487 64702.3 7.6 L 7
    LNU487 64706.2 0.5 0.25 8
    LNU474 64381.1 7.5 0.25 5
    LNU474 64383.2 7.5 0.19 5
    LNU465 64020.1 0.5 0.12 17
    LNU465 64020.4 0.5 0.19 18 10.5 0.30 14
    LNU446 64546.2 0.5 0.16 15 13.6 0.02 48 7.5 0.05 6
    LNU446 64546.3 7.3 0.24 2
    LNU446 64548.2 7.6 0.20 6
    LNU446 64549.2 10.8 0.11 18 7.9 0.03 11
    LNU443 64023.2 11.6 0.09 26 7.8 L 9
    LNU443 64023.9 7.7 0.07 8
    LNU443 64024.7 10.3 0.16 13 7.6 0.14 7
    LNU436 64240.1 0.6 0.18 23 7.5 0.09 5
    LNU436 64240.2 11.2 0.28 23
    LNU436 64243.1 0.6 L 21 10.9 0.07 19 7.6 0.05 6
    LNU379 64170.2 12.0 0.20 31
    LNU379 64170.4 7.7 0.12 8
    LNU315 64224.3 0.5 0.06 16 13.1 L 43 7.6 0.07 7
    LNU315 64225.1 0.5 0.28 11
    CONT. 0.5 9.2 7.1
    LNU497 64206.2 7.1 0.27 7
    LNU497 64207.3 7.2 0.14 9
    LNU491 64404.3 6.9 0.18 4
    LNU491 64405.2 0.7 0.13 31 11.2 0.16 21 7.4 0.01 13
    LNU491 64406.4 0.7 0.08 31 12.8 0.05 38 7.9 0.01 20
    LNU449 64570.1 7.4 0.07 12
    LNU449 64571.3 0.7 0.03 35 13.7 0.13 48 7.5 0.01 14
    LNU435 64464.3 0.9 0.04 66 13.1 0.08 41 7.4 0.02 13
    LNU432 64065.2 0.6 0.24 8 7.2 L 10
    LNU432 64559.2 0.7 L 30 13.1 0.04 41 7.5 L 15
    LNU432 64560.3 0.6 0.26 13
    LNU432 64560.5 0.6 0.21 17 12.2 0.24 32 6.9 0.27 5
    LNU378 64493.3 7.0 0.28 6
    LNU378 64495.2 7.1 0.17 8
    LNU378 64495.4 7.4 0.07 12
    LNU367 64397.1 0.6 0.28 10
    LNU367 64398.2 0.7 0.19 28 12.2 0.20 32 7.4 0.04 13
    LNU367 64399.1 7.4 0.05 13
    LNU364 64441.2 12.0 0.26 29 7.3 0.19 11
    LNU362 64323.1 7.0 0.06 6
    LNU362 64324.3 0.6 0.20 20
    CONT. 0.5 9.3 6.6
    LNU495 64697.2 0.5 0.07 12
    LNU495 64697.3 0.6 0.11 28 10.9 0.13 22 7.6 0.06 10
    LNU495 64698.2 0.5 0.15 16
    LNU487 64702.1 7.5 0.17 8
    LNU487 64705.4 0.6 0.10 25
    LNU487 64706.2 12.9 0.07 44 7.4 0.12 6
    LNU474 64379.1 7.6 0.11 9
    LNU474 64382.2 7.4 0.21 7
    LNU474 64382.3 0.5 0.08 16 7.5 0.07 8
    LNU474 64383.2 0.5 0.04 20 7.3 0.27 5
    LNU465 64020.1 0.5 0.08 17
    LNU446 64546.2 7.2 0.20 4
    LNU446 64548.2 7.2 0.27 3
    LNU446 64549.3 0.5 0.04 15
    LNU443 64023.2 0.6 0.02 20 10.5 0.16 18 7.5 0.17 9
    LNU443 64024.4 7.3 0.19 5
    LNU443 64024.7 7.8 0.01 13
    LNU436 64240.2 0.6 0.14 20 11.1 0.11 24 7.5 0.07 8
    LNU436 64241.3 0.7 0.02 49 11.5 0.26 28 7.3 0.16 5
    LNU436 64243.1 0.6 0.04 23
    LNU379 64170.2 7.7 0.09 11
    LNU315 64224.1 0.6 0.24 22
    LNU315 64225.2 0.6 0.06 40
    LNU315 64226.3 0.6 0.09 36 11.5 0.25 29
    LNU315 64227.3 0.6 0.04 34
    CONT. 0.5 8.9 6.9
    LNU520 64156.13 10.9 0.19 11 7.9 0.16 7
    LNU520 64156.7 11.3 0.11 16
    LNU518 64015.4 7.9 0.10 7
    LNU518 64016.3 7.8 0.01 6
    LNU502 64038.2 7.6 0.23 4
    LNU502 64039.3 10.9 0.26 11 7.8 0.08 6
    LNU482 64164.8 12.3 0.08 26
    LNU405 64158.9 0.9 0.04 43 14.9 0.04 52 8.0 0.25 8
    LNU405 64159.8 7.9 0.20 8
    LNU403 64239.1 0.8 0.07 35 12.2 0.18 24
    LNU393 63977.6 12.3 0.12 25
    LNU385 64245.3 11.8 0.03 20 7.7 0.13 4
    LNU374 63997.2 7.9 0.10 7
    CONT. 0.6 9.8 7.4
    LNU519 64678.1 0.5 0.02 32 10.3 0.12 29
    LNU519 64679.1 0.5 0.11 18
    LNU519 64680.2 9.9 0.16 25 7.5 0.06 9
    LNU519 64681.3 10.5 0.14 32 7.4 0.20 7
    LNU519 64681.8 0.4 0.10 17 10.2 0.05 29 7.7 0.02 12
    LNU500 64220.1 0.5 0.09 18
    LNU500 64221.2 10.3 0.08 30 7.8 0.14 13
    LNU500 64221.6 0.4 0.23 11
    LNU500 64223.1 0.6 0.02 53 11.0 0.05 39 7.8 0.04 13
    LNU500 64223.2 0.4 0.18 15 9.9 0.07 25 7.9 L 15
    LNU459 64541.4 7.5 0.08 9
    LNU459 64542.1 7.5 0.07 9
    LNU459 64542.3 0.5 0.01 36 10.4 0.07 32
    LNU459 64542.4 9.6 0.28 21 7.3 0.24 6
    LNU459 64543.2 9.4 0.26 19 7.6 0.06 10
    LNU348 64472.2 0.5 0.01 29 10.3 0.05 29 7.5 0.08 8
    LNU348 64472.3 0.5 0.16 20
    LNU348 64474.1 0.5 L 29
    LNU348 64474.2 0.5 0.13 30 12.2 0.09 54 7.4 0.13 8
    LNU329 63427.3 0.4 0.23 12 10.0 0.05 26
    LNU329 63429.1 0.5 L 35 12.6 L 59 8.4 L 22
    LNU329 63430.3 0.4 0.27 11
    LNU316 64068.1 0.4 0.15 14
    LNU316 64564.5 7.7 0.02 12
    CONT. 0.4 7.9 6.9
    LNU437_H2 66104.1 0.6 L 36 10.8 0.02 43 6.9 0.07 12
    LNU312 64002.3 0.5 0.15 16
    LNU312 64002.5 0.5 0.18 18 9.8 0.07 30 6.7 0.12 9
    CONT. 0.4 7.6 6.1
    LNU347 63513.3 0.8 0.05 21 12.5 0.12 17
    CONT. 0.7 10.7
    LNU497 64206.2 7.9 0.10 7
    LNU497 64207.2 0.7 0.04 25
    LNU497 64207.3 15.4 L 37 7.8 0.13 5
    LNU491 64404.3 0.7 0.02 25 14.9 L 32 7.9 0.15 7
    LNU491 64404.6 0.7 0.04 28 14.5 0.03 29 8.1 0.04 10
    LNU491 64406.4 7.8 0.17 5
    LNU449 63892.1 0.7 0.05 22
    LNU432 64066.2 0.7 0.14 28
    CONT. 0.5 11.2 7.4
    LNU510 64152.1 7.7 0.03 8
    LNU489 64012.1 12.1 0.18 14 8.0 0.02 12
    LNU438 63994.3 7.5 0.14 5
    LNU438 63994.5 13.1 0.02 22 7.7 0.05 7
    LNU383 63982.1 7.9 0.03 11
    LNU383 63982.7 7.8 0.02 10
    LNU354 63970.6 7.7 0.05 8
    LNU354 63970.7 0.7 0.16 18
    LNU354 63972.8 7.9 0.06 11
    LNU310 63904.1 7.9 0.11 11
    LNU310 63904.3 13.0 0.30 22 8.1 0.02 13
    LNU299 64326.2 12.3 0.28 16 7.7 0.05 8
    LNU299 64328.2 0.7 0.26 11 7.5 0.16 5
    LNU295 63899.5 12.9 0.10 21 7.9 0.02 11
    LNU295 63899.8 8.0 0.03 12
    LNU295 63901.3 7.5 0.14 5
    LNU295 63902.3 7.9 L 11
    CONT. 0.6 10.7 7.1
    LNU483 64803.2 0.6 0.08 19 13.4 L 42
    LNU483 64803.3 0.6 0.02 39 14.8 0.06 58
    LNU483 64805.1 13.0 0.02 39
    LNU483 64805.2 15.0 0.29 60
    LNU483 64806.2 11.7 0.15 25
    LNU378 64494.2 10.9 0.25 17
    LNU378 64495.4 0.5 0.19 16
    LNU346 65008.2 0.6 0.23 19
    LNU346 65008.3 0.5 0.30 12
    LNU290 64369.6 0.5 0.27 11
    CONT. 0.5 9.4
    LNU510 64152.1 0.5 0.25 18 9.8 0.25 11
    LNU510 64154.2 0.5 0.27 20 11.0 0.07 25 7.7 0.09 8
    LNU489 64010.8 10.3 0.19 17
    LNU489 64012.1 10.1 0.27 15 8.3 L 18
    LNU489 64013.1 7.5 0.28 6
    LNU438 63994.1 7.5 0.29 6
    LNU438 63994.12 10.4 0.07 18 8.0 0.02 13
    LNU438 63994.3 7.5 0.16 7
    LNU427 64178.6 7.5 0.22 6
    LNU383 63982.7 7.7 0.12 9
    LNU383 63983.1 7.7 0.17 8
    LNU354 63971.5 7.5 0.28 6
    LNU354 63972.8 9.9 0.20 12 7.7 0.07 9
    LNU310 63905.1 0.5 0.17 16 12.4 0.05 41 7.9 0.03 12
    LNU295 63899.5 11.1 0.05 26 7.9 0.03 11
    LNU295 63899.8 0.6 L 35 12.3 0.04 40 8.0 0.05 13
    LNU295 63901.3 7.9 0.07 12
    LNU295 63902.3 7.6 0.17 8
    CONT. 0.4 8.8 7.1
    LNU490 66092.3 0.4 0.24 19
    LNU490 66093.1 7.0 0.22 18 6.6 0.25 4
    LNU490 66093.2 6.8 0.26 15 6.7 0.10 6
    LNU490 66096.1 8.2 0.03 38 7.2 L 14
    LNU443 64023.2 8.2 0.08 37
    LNU443 64024.4 0.5 0.07 35 8.4 0.08 41 6.8 0.11 9
    LNU443 64024.7 0.5 0.01 49 8.1 0.10 37 6.6 0.30 6
    LNU439 64615.4 6.6 0.24 6
    LNU439 64616.2 0.4 0.12 29 8.0 0.12 34 6.9 0.06 9
    LNU439 64618.3 0.6 L 61 9.5 0.01 60 6.9 0.03 9
    LNU437_H2 66104.1 0.5 0.09 30 8.7 L 46 6.8 0.13 9
    LNU437_H2 66104.2 7.5 0.16 27 6.7 0.13 6
    LNU437_H2 66104.3 0.4 0.27 17 7.6 0.03 27 6.7 0.15 6
    LNU436 64240.1 8.1 0.02 36 7.0 0.01 11
    LNU436 64240.2 0.4 0.09 29 8.4 0.03 41 6.9 0.05 9
    LNU436 64241.3 8.2 0.01 37 6.8 0.05 8
    LNU436 64242.2 0.5 0.09 30
    LNU436 64243.1 0.4 0.17 28
    LNU433 64815.1 0.5 0.04 50
    LNU433 64816.1 10.1 0.07 70
    LNU311 66099.1 8.4 0.15 42
    LNU311 66099.2 0.4 0.22 20 7.0 0.13 18 6.8 0.12 9
    LNU298 66086.4 0.4 0.24 19 8.8 L 48 7.0 0.01 12
    LNU298 66088.3 8.8 0.02 48 6.7 0.13 7
    LNU298 66089.1 0.4 0.14 26 8.0 0.01 34 6.7 0.12 6
    LNU298 66089.3 8.0 0.19 34 6.8 0.19 8
    LNU293 65048.1 7.2 0.20 22
    LNU293 65049.1 8.5 L 44
    LNU293 65050.3 0.5 0.07 34 8.8 0.06 48
    LNU293 65051.3 0.5 0.10 40 8.9 0.09 49 6.6 0.29 4
    CONT. 0.3 5.9 6.3
    Table 70: “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 71
    Genes showing improved plant performance at nitrogen
    deficient conditions (T1 generation)
    Dry Weight [mg] Fresh Weight [mg]
    Gene Name Ave. P-Val. % Incr. Ave. P-Val. % Incr.
    LNU488 54.5 0.06 51 115.3 0.06 39
    LNU466 50.5 0.13 40 107.7 0.14 30
    LNU453 57.0 0.02 58 113.2 0.10 36
    LNU359 52.2 0.22 45 110.4 0.08 33
    LNU358 108.4 0.08 30
    LNU341 107.6 0.11 29
    LNU309_H3 138.0 L 66
    CONT. 36.0 83.2
    Table 71:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment.
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 72
    Genes showing improved plant performance at nitrogen deficient conditions
    (T1 generation)
    Leaf Area Roots Coverage Roots Length
    [cm2] [cm2] [cm2]
    % % %
    Gene Name Ave. P-Val. Incr. Ave. P-Val. Incr. Ave. P-Val. Incr.
    LNU490 6.6 0.15 83 5.3 0.03 27
    LNU417_H4 4.8 0.08 14
    LNU394 4.9 0.12 36 4.8 0.03 16
    CONT. 3.6 4.2
    LNU488 0.6 0.02 42 8.7 0.03 81 6.5 L 28
    LNU466 6.7 0.06 38 6.2 0.03 22
    LNU453 0.7 0.04 43 6.5 0.20 35
    LNU359 0.6 0.25 29 7.2 0.10 50 6.3 0.10 25
    LNU358 0.6 0.06 22 7.8 L 62 6.3 L 24
    LNU341 0.6 0.01 26 5.4 0.28 11
    LNU309_H3 0.7 L 55 9.3 L 93 7.0 L 37
    CONT. 0.5 4.8 5.1
    Table 72:
    “CONT. ”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Tables 73-74 have improved plant relative growth rate (relative growth rate of the leaf area, root coverage and root length) when grown under limiting nitrogen growth conditions, compared to control plants (T2 and T1 generations). Plants showing fast growth rate show a better plant establishment in soil under nitrogen deficient conditions. Faster growth was observed when growth rate of leaf area and root length and coverage was measured.
  • TABLE 73
    Genes showing improved plant growth rate at nitrogen deficient conditions (T2 generation)
    RGR Of RGR Of RGR Of
    Leaf Area Root Coverage Roots Length
    % % %
    Gene Name Event # Ave. P-Val. Incr. Ave. P-Val. Incr. Ave. P-Val. Incr.
    LNU437_H2 66104.1 0.0 0.13 31
    LNU437_H2 66104.2 0.0 0.09 41
    LNU437_H2 66104.3 0.1 0.05 44
    LNU437_H2 66105.3 0.1 0.05 44
    LNU426 66147.3 0.1 L 73
    LNU420 64006.3 0.0 0.29 26
    LNU420 64007.3 0.0 0.16 29
    LNU352 64199.1 0.1 L 92 0.8 0.08 13
    LNU352 64200.1 0.0 0.07 41
    LNU352 64200.4 0.0 0.10 37 0.8 0.07 13
    LNU292 64085.4 0.0 0.29 22 0.7 0.18  9
    CONT. 0.0 0.7
    LNU483 64805.2 0.7 0.17 11
    LNU464 65076.1 0.7 0.24  9
    LNU439 64616.2 0.1 0.25 15
    LNU439 64616.3 0.1 0.18 15
    LNU439 64618.3 0.1 0.25 13
    LNU425 63911.9 0.1 0.05 21
    LNU414 64479.1 0.1 0.03 25
    LNU414 64480.2 0.1 0.06 26
    LNU346 65008.2 0.1 0.09 20
    LNU336 64448.2 0.1 L 40
    CONT. 0.1 0.6
    LNU473 65770.4 0.1 0.28 14 0.8 0.02 14
    LNU470 64228.3 0.7 0.16  9
    LNU470 64229.1 0.1 0.14 18 0.8 0.08 11
    LNU460 64359.3 0.8 0.02 15
    LNU421 64303.3 0.1 0.08 24
    LNU408 64248.10 0.1 0.17 16
    LNU380 65764.1 0.7 0.13  8
    LNU380 65764.2 0.7 0.24  5
    LNU380 65764.3 0.8 0.03 11
    LNU380 65765.4 0.8 0.05 10
    LNU340 64290.7 0.1 0.10 21 0.8 0.05 12
    LNU340 64292.5 0.7 0.16  6
    LNU331 64214.2 0.1 0.01 31 0.7 0.07 10
    LNU331 64215.1 0.1 L 44 0.8 0.02 14
    CONT. 0.1 0.7
    LNU430 63934.3 0.0 0.20 18
    LNU407 64219.2 0.1 0.18 22
    LNU402 63914.2 0.0 0.29 16
    LNU335 64168.15 0.7 0.30 10
    LNU335 64169.2 0.0 0.17 20
    LNU301 63927.3 0.1 0.16 29
    LNU301 63950.3 0.1 L 64
    CONT. 0.0 0.7
    LNU450 63708.3 0.1 0.02 29
    LNU450 63710.2 0.1 0.07 21
    LNU450 63712.3 0.1 0.04 28
    LNU416 64136.4 0.1 0.09 21 0.8 0.20 11
    LNU412 63940.12 0.1 0.20 22
    LNU412 63940.8 0.1 0.25 16
    LNU359 66154.6 0.1 0.13 16
    LNU293 65051.3 0.1 0.19 18
    CONT. 0.1 0.7
    LNU498 64186.2 0.7 0.23  8
    LNU498 64186.3 0.7 0.14  9
    LNU493 64191.2 0.0 0.14 17
    LNU455 64187.5 0.0 0.13 16
    LNU328 64150.4 0.7 0.07 11
    LNU328 64151.1 0.0 0.21 15
    LNU322 63917.2 0.7 0.30  7
    LNU322 63918.1 0.0 0.16 14
    LNU317 64097.2 0.7 0.11 11
    LNU305 64114.1 0.7 0.28  6
    CONT. 0.0 0.7
    LNU495 64697.3 0.7 0.04 14
    LNU495 64698.2 0.7 0.12 11
    LNU487 64702.3 0.7 0.07 17
    LNU487 64705.4 0.7 0.20  8
    LNU487 64706.2 0.1 0.11 16
    LNU474 64381.1 0.7 0.17 10
    LNU465 64020.1 0.1 0.14 17 0.7 0.11 14
    LNU465 64020.4 0.1 0.08 22 0.7 0.14 10
    LNU446 64546.2 0.1 0.03 24
    LNU446 64549.2 0.7 0.10 11
    LNU443 64023.2 0.1 0.06 24 0.7 0.16 11
    LNU443 64023.9 0.7 0.04 15
    LNU443 64024.7 0.7 0.07 13
    LNU436 64240.1 0.1 0.13 20
    LNU436 64240.2 0.7 0.26  9
    LNU436 64241.3 0.1 0.14 17
    LNU436 64243.1 0.1 0.01 24 0.7 0.07 13
    LNU379 64170.2 0.7 0.23 10
    LNU379 64170.3 0.7 0.20  8
    LNU379 64170.4 0.7 0.25  9
    LNU379 64172.2 0.7 0.18  9
    LNU315 64224.3 0.1 0.18 14 0.8 0.01 23
    LNU315 64225.1 0.1 0.21 13
    CONT. 0.0 0.6
    LNU497 64207.3 0.6 0.28  7
    LNU491 64405.2 0.1 0.04 38 0.7 0.06 12
    LNU491 64406.4 0.1 0.04 37 0.7 L 24
    LNU449 64571.3 0.1 0.06 32 0.7 0.01 19
    LNU435 64464.3 0.1 L 67 0.7 0.04 12
    LNU435 64465.1 0.7 0.29 10
    LNU432 64065.2 0.7 0.03 11
    LNU432 64559.2 0.1 0.05 31 0.7 L 19
    LNU432 64560.3 0.1 0.22 19
    LNU432 64560.5 0.1 0.13 24 0.7 L 17
    LNU367 64398.2 0.1 0.18 25 0.7 0.15 10
    LNU367 64399.1 0.7 0.26  8
    LNU364 64441.2 0.1 0.21 22 0.7 0.20 12
    LNU362 64324.3 0.1 0.27 19
    CONT. 0.1 0.6
    LNU495 64697.2 0.1 0.01 21
    LNU495 64697.3 0.1 L 42 0.7 0.01 25
    LNU495 64698.2 0.1 0.01 31
    LNU495 64701.3 0.1 0.10 23 0.7 0.06 15
    LNU487 64702.1 0.7 0.05 17
    LNU487 64702.3 0.6 0.26 10
    LNU487 64704.2 0.6 0.23 11
    LNU487 64705.4 0.1 L 38
    LNU487 64706.2 0.1 0.04 22
    LNU474 64379.1 0.7 0.18 13
    LNU474 64382.3 0.1 0.02 26
    LNU474 64383.2 0.1 L 29 0.7 0.18 13
    LNU465 64020.1 0.1 0.10 19
    LNU465 64021.7 0.0 0.30 11
    LNU446 64546.3 0.1 0.15 21
    LNU446 64549.3 0.1 0.04 21
    LNU443 64023.2 0.1 L 31 0.7 0.27 12
    LNU443 64024.7 0.7 L 23
    LNU436 64240.1 0.0 0.15 13
    LNU436 64240.2 0.1 0.04 29 0.7 0.13 15
    LNU436 64241.3 0.1 L 55
    LNU436 64242.2 0.1 0.14 17
    LNU436 64243.1 0.1 0.01 31
    LNU379 64170.2 0.7 0.07 19
    LNU379 64172.1 0.0 0.20 15 0.6 0.24 10
    LNU315 64224.1 0.1 0.13 25
    LNU315 64225.2 0.1 0.01 45
    LNU315 64226.3 0.1 0.01 45
    LNU315 64227.3 0.1 L 36
    CONT. 0.0 0.6
    LNU518 64015.4 0.7 0.21 10
    LNU502 64039.3 0.7 0.25  9
    LNU482 64164.1 0.7 0.12 12
    LNU405 64158.9 0.1 0.06 42 0.7 0.28 13
    LNU403 64237.6 0.7 0.21  9
    LNU403 64239.1 0.1 0.13 33
    LNU374 63997.2 0.7 0.18 12
    CONT. 0.1 0.6
    LNU519 64678.1 0.1 0.03 33
    LNU519 64679.1 0.0 0.29 15
    LNU519 64680.2 0.7 0.27 10
    LNU519 64681.3 0.7 0.29 10
    LNU519 64681.8 0.0 0.18 18 0.7 0.27 11
    LNU500 64220.1 0.0 0.22 17
    LNU500 64223.1 0.1 L 59 0.8 0.11 15
    LNU500 64223.2 0.0 0.24 17 0.8 0.04 18
    LNU459 64542.1 0.8 0.16 12
    LNU459 64542.3 0.1 0.01 38
    LNU459 64542.4 0.7 0.21 11
    LNU459 64543.2 0.8 0.14 13
    LNU348 64472.2 0.1 0.03 31
    LNU348 64472.3 0.0 0.13 23
    LNU348 64474.1 0.1 0.04 31
    LNU348 64474.2 0.1 0.06 33
    LNU329 63429.1 0.1 0.01 35 0.8 0.05 19
    LNU316 64068.1 0.0 0.24 16
    CONT. 0.0 0.7
    LNU499 64146.11 0.6 0.24 11
    LNU490 66093.2 0.6 0.07 18
    LNU490 66095.2 0.6 0.17 14
    LNU437_H2 66104.1 0.1 0.04 38 0.6 0.11 17
    LNU437_H2 66104.2 0.6 0.17 14
    LNU395 64143.6 0.6 0.07 17
    LNU312 64002.5 0.7 0.04 21
    CONT. 0.0 0.5
    LNU392 63696.1 0.7 0.23 11
    LNU347 63510.4 0.7 0.22 11
    LNU347 63513.3 0.1 0.01 25
    CONT. 0.1 0.6
    LNU497 64207.2 0.1 0.16 19
    LNU491 64404.3 0.1 0.08 21
    LNU491 64404.6 0.1 0.09 23
    LNU449 63892.1 0.1 0.24 15
    LNU432 64066.2 0.1 0.19 20
    CONT. 0.1
    LNU489 64012.1 0.8 0.29  9
    LNU354 63970.6 0.8 0.17 11
    LNU354 63972.8 0.8 0.25 10
    LNU299 64328.2 0.1 0.30 13
    LNU295 63901.3 0.1 0.15 19 0.8 0.26  9
    CONT. 0.1 0.7
    LNU483 64803.3 0.1 0.09 34
    CONT. 0.0
    LNU510 64154.2 0.1 0.12 30 0.7 0.24 10
    LNU489 64012.1 0.8 0.04 18
    LNU438 63994.1 0.7 0.26  9
    LNU438 63994.12 0.8 0.05 16
    LNU438 63994.3 0.7 0.18 11
    LNU438 63994.5 0.7 0.20 11
    LNU427 64178.6 0.7 0.24  9
    LNU427 64180.3 0.7 0.27 11
    LNU383 63982.7 0.7 0.24 10
    LNU383 63983.1 0.7 0.23 10
    LNU354 63972.8 0.7 0.29  8
    LNU310 63905.1 0.1 0.13 29 0.8 0.09 16
    LNU310 63906.2 0.7 0.18 12
    LNU295 63899.8 0.1 0.03 39 0.8 0.04 18
    LNU295 63901.3 0.8 0.04 17
    LNU295 63902.3 0.7 0.25 10
    CONT. 0.0 0.7
    LNU490 66092.3 0.0 0.29 25
    LNU490 66093.1 0.6 0.12 10
    LNU443 64023.2 0.6 0.23  9
    LNU443 64024.4 0.0 0.15 36 0.6 0.25  9
    LNU443 64024.7 0.0 0.13 42
    LNU439 64614.4 0.6 0.24  9
    LNU439 64616.2 0.0 0.12 38 0.6 0.16 10
    LNU439 64618.3 0.1 0.01 66
    LNU437_H2 66104.1 0.0 0.23 28
    LNU437_H2 66104.2 0.6 0.06 13
    LNU437_H2 66104.3 0.6 0.11 11
    LNU436 64240.1 0.6 0.06 14
    LNU436 64240.2 0.0 0.20 31
    LNU436 64241.3 0.6 0.24  9
    LNU436 64242.2 0.0 0.23 29
    LNU436 64243.1 0.0 0.24 29
    LNU433 64815.1 0.1 0.04 54
    LNU311 66099.1 0.6 0.28 12
    LNU298 66086.4 0.6 0.08 13
    LNU298 66088.3 0.6 0.03 16
    LNU298 66089.1 0.0 0.16 34 0.6 0.09 13
    LNU298 66089.3 0.6 0.17 11
    LNU293 65048.1 0.6 0.09 14
    LNU293 65049.1 0.6 0.14 12
    LNU293 65050.3 0.0 0.22 31
    LNU293 65051.3 0.0 0.10 44 0.6 0.05 14
    CONT. 0.0 0.5
    Table 73:
    “CONT.”—Control;
    “Ave.”—Average
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 74
    Genes showing improved plant growth rate at nitrogen deficient conditions
    (T1 generation)
    RGR Of RGR Of RGR Of
    Leaf Area Root Coverage Roots Length
    % % %
    Gene Name Ave. P-Val. Incr. Ave. P-Val. Incr. Ave. P-Val. Incr.
    LNU490 0.1 0.29 18 0.6 L 27
    LNU417_H4 0.5 0.14 14
    LNU394 0.6 0.05 17
    CONT. 0.1 0.5
    LNU488 0.1 L 55 0.7 L 34
    LNU466 0.1 0.16 17 0.7 L 28
    LNU453 0.1 L 49 0.6 0.20 10
    LNU359 0.1 0.05 34 0.7 L 29
    LNU358 0.1 0.02 28 0.7 L 28
    LNU341 0.1 0.03 27
    LNU309_H3 0.1 L 67 0.8 L 42
    CONT. 0.0 0.5
    Table 74:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Tables 75-78 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced larger plant biomass (plant fresh and dry weight, leaf area, root coverage and roots length) when grown under standard nitrogen growth conditions, compared to control plants in T2 (Tables 75-76) and T1 (Tables 77-78) generations. Larger plant biomass under this growth conditions indicates the high ability of the plant to better metabolize the nitrogen present in the medium. Plants producing larger root biomass have better possibilities to absorb larger amount of nitrogen from soil.
  • TABLE 75
    Genes showing improved plant performance at standard
    nitrogen growth conditions (T2 generation)
    Dry Weight Fresh Weight
    [mg] [mg]
    Gene P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr.
    LNU437_H2 66104.1 4.2 0.09 38
    LNU437_H2 66104.2 5.2 L 70 78.6 L 48
    LNU437_H2 66104.3 5.5 L 80 91.3 0.03 71
    LNU437_H2 66105.1 3.7 0.12 21
    LNU426 66146.1 4.4 0.11 46 71.1 0.06 34
    LNU426 66147.3 6.7 L 122  117.6 L 121 
    LNU420 64007.3 4.6 0.08 52 68.5 0.22 29
    LNU420 64008.4 5.2 L 72 77.3 L 45
    LNU420 64009.1 4.2 0.23 40
    LNU359 66154.6 3.7 0.19 21
    LNU359 66156.1 5.5 L 82 68.6 0.02 29
    LNU352 64199.1 7.7 L 154  124.9 L 135 
    LNU352 64200.1 3.9 0.21 30
    LNU352 64200.10 4.0 0.02 32 67.3 0.05 26
    LNU352 64200.4 4.0 0.23 32
    LNU352 64201.1 4.0 0.18 34
    LNU292 64085.4 4.6 L 52 72.6 L 36
    CONT. 3.0 53.2
    LNU483 64803.2 7.1 0.07 24 122.8 0.06 23
    LNU483 64803.3 120.7 0.17 21
    LNU483 64805.1 6.9 0.28 20 116.9 0.05 18
    LNU483 64805.2 7.9 0.06 37 132.6 0.02 33
    LNU477 63886.1 7.4 0.09 29 130.0 0.06 31
    LNU477 63888.1 124.5 0.15 25
    LNU477 63889.5 108.2 0.25  9
    LNU447 65000.1 7.5 0.27 31 141.4 0.09 42
    LNU447 65000.4 116.6 0.24 17
    LNU447 65002.3 7.4 0.19 29 140.6 0.05 41
    LNU447 65004.1 131.6 0.15 32
    LNU439 64616.2 7.9 0.18 37 132.8 0.01 34
    LNU439 64616.3 8.9 0.02 56 154.7 0.02 56
    LNU425 63910.9 116.5 0.19 17
    LNU425 63911.11 118.7 0.03 19
    LNU425 63911.12 116.9 0.12 18
    LNU425 63911.9 7.5 0.15 30 134.3 0.10 35
    LNU414 64475.1 8.3 0.14 44 143.4 0.16 44
    LNU414 64480.2 120.2 0.17 21
    LNU336 64447.2 9.0 0.13 56 172.0 0.02 73
    LNU336 64448.3 131.3 0.10 32
    LNU336 64449.3 6.7 0.29 17 113.6 0.09 14
    LNU336 64449.4 7.8 0.11 35 136.5 0.03 37
    CONT. 5.8 99.4
    LNU473 65770.4 110.9 0.20  8
    LNU470 64228.3 6.5 0.22 24 126.1 0.22 23
    LNU470 64229.1 5.9 0.19 13
    LNU460 64359.3 9.7 0.05 86 173.9 0.03 69
    LNU460 64362.1 6.0 0.25 15
    LNU408 64248.10 6.2 0.14 18 115.2 0.10 12
    LNU408 64250.8 6.7 0.02 29 135.8 0.01 32
    LNU380 65765.4 6.2 0.13 20 123.1 0.20 20
    LNU331 64215.1 6.9 0.25 32 116.8 0.16 14
    LNU306 64131.2 6.0 0.22 14 119.4 0.04 16
    CONT. 5.2 102.8
    LNU412 63940.8 118.0 0.24 41
    LNU407 64218.1 103.4 0.19 24
    LNU407 64219.2 106.8 0.10 28
    LNU402 63915.1 105.5 0.27 26
    LNU384 64161.7 121.1 0.22 45
    LNU360 64029.3 109.0 0.29 30
    LNU335 64168.18 101.5 0.26 21
    LNU301 63927.5 122.8 0.12 47
    CONT. 83.6
    LNU450 63708.3 109.0 0.14 22
    LNU450 63710.2 99.8 0.24 11
    LNU426 66148.1 7.0 0.22 24
    LNU416 64134.11 113.9 0.05 27
    LNU416 64134.2 108.3 0.28 21
    LNU416 64136.4 7.0 0.04 24 111.6 0.10 25
    LNU412 63940.8 7.6 0.27 35 125.8 0.07 40
    LNU349 63990.2 6.9 0.07 21
    LNU349 63990.4 8.0 0.01 42 129.0 L 44
    LNU293 65048.1 116.2 0.17 30
    LNU293 65051.3 6.4 0.15 13 120.6 0.01 35
    CONT. 5.6 89.6
    LNU498 64185.3 5.0 L 64 102.5 L 46
    LNU493 64190.1 4.1 0.04 35 83.0 0.24 18
    LNU493 64191.4 4.9 0.09 61
    LNU455 64187.5 4.6 0.09 52 111.3 L 59
    LNU455 64189.2 4.0 0.14 30
    LNU455 64189.4 5.2 0.04 69 112.1 0.10 60
    LNU343 64208.1 4.5 0.02 46 126.1 0.01 80
    LNU343 64209.1 4.0 0.18 29 107.1 0.16 53
    LNU328 64150.1 4.2 0.06 37
    LNU328 64150.2 4.0 0.27 32 89.2 0.13 27
    LNU328 64150.4 3.7 0.20 20 87.4 0.13 25
    LNU328 64151.1 88.2 0.21 26
    LNU328 64151.2 85.9 0.04 22
    LNU322 63917.2 4.4 0.20 44 106.5 0.25 52
    LNU322 63918.1 4.1 0.28 34 99.4 0.12 42
    LNU322 63918.3 4.3 0.03 42 93.2 0.04 33
    LNU317 64097.3 3.6 0.22 19 83.6 0.21 19
    LNU305 64111.1 77.8 0.30 11
    LNU305 64111.3 4.7 0.01 53 111.1 0.15 58
    LNU305 64115.1 3.8 0.20 25 89.7 0.27 28
    CONT. 3.1 70.1
    LNU495 64701.3 4.2 0.30  8
    LNU487 64702.1 78.4 0.12 25
    LNU487 64702.3 4.6 0.16 18 76.7 0.06 22
    LNU474 64381.1 6.0 0.10 53 102.8 0.07 64
    LNU474 64382.2 5.2 L 31 79.6 0.05 27
    LNU474 64383.2 74.2 0.22 18
    LNU465 64020.1 5.2 0.11 32 98.1 0.26 56
    LNU465 64022.2 4.6 0.05 18 81.0 0.05 29
    LNU446 64546.2 4.8 0.13 22 76.8 0.27 22
    LNU443 64024.3 7.1 0.02 82 144.5 L 130 
    LNU443 64024.7 4.8 0.25 22
    LNU436 64240.1 6.2 0.16 59 91.7 0.04 46
    LNU436 64240.2 4.8 0.16 21 85.4 0.03 36
    LNU436 64242.2 12.3  0.03 213  181.2 L 189 
    LNU436 64243.1 81.9 0.21 31
    LNU379 64170.4 81.2 0.21 29
    LNU315 64224.1 5.2 0.15 31 79.0 0.21 26
    LNU315 64224.3 5.2 0.17 33 91.2 L 45
    LNU315 64225.1 78.0 0.18 24
    LNU315 64226.3 5.5 L 40 105.2 0.04 68
    LNU315 64227.3 5.9 L 51 88.3 0.06 41
    CONT. 3.9 62.7
    LNU497 64207.2 7.0 0.27 18
    LNU491 64406.4 8.1 0.27 37 165.8 0.30 38
    LNU449 63890.1 6.9 0.10 17
    LNU449 64571.3 9.4 0.11 60
    LNU432 64065.2 9.9 0.09 67 179.4 0.13 50
    LNU432 64559.2 8.8 0.19 50 185.1 0.20 55
    LNU432 64560.3 144.1 0.22 20
    LNU367 64398.2 9.1 0.16 55 196.8 0.14 64
    LNU367 64399.1 7.8 0.03 32 174.7 L 46
    CONT. 5.9 119.8
    LNU436 64241.3 6.9 0.10 47
    LNU379 64170.3 5.4 0.19 13
    LNU379 64172.2 7.1 0.14 50 156.5 0.09 50
    LNU315 64225.2 7.1 L 49 138.9 0.02 33
    CONT. 4.7 104.3
    LNU519 64678.1 4.1 0.04 28 74.2 0.04 23
    LNU519 64679.1 5.0 0.06 56 78.1 L 29
    LNU519 64681.3 3.8 0.24 19
    LNU519 64681.8 3.9 0.04 21 74.0 L 23
    LNU459 64542.3 4.2 0.12 29 75.4 0.17 25
    LNU459 64543.2 3.9 0.16 22 73.0 0.29 21
    LNU348 64472.2 76.2 0.10 26
    LNU348 64472.3 65.7 0.16  9
    LNU348 64474.1 4.0 0.09 24 74.1 0.04 23
    LNU348 64474.2 4.8 0.05 48 81.8 0.05 35
    LNU329 63427.3 72.9 0.10 21
    LNU329 63428.2 4.0 0.02 24 82.2 0.10 36
    LNU329 63429.1 4.2 0.23 32
    LNU329 63430.3 3.7 0.12 14 68.1 0.08 13
    CONT. 3.2 60.4
    LNU499 64146.12 105.9 0.30 20
    LNU312 64002.5 6.0 0.07 18
    LNU311 66100.3 100.9 0.23 14
    CONT. 5.1 88.2
    LNU392 63697.4 152.5 0.13 24
    LNU392 63701.2 8.0 0.22 21 150.6 0.24 22
    CONT. 6.6 123.3
    LNU497 64207.2 6.0 0.03 49 103.5 0.02 40
    LNU497 64207.3 5.2 0.16 29
    LNU491 64404.3 6.3 0.02 57 108.3 0.02 46
    LNU491 64404.6 5.0 0.17 24 89.8 0.15 21
    LNU449 63890.1 92.1 0.09 24
    LNU449 64570.1 6.6 0.01 64 109.3 0.02 47
    LNU432 64065.2 5.3 0.06 32 94.4 0.16 27
    LNU432 64066.2 6.1 0.05 53 115.4 L 56
    LNU432 64559.2 5.0 0.22 24 90.2 0.18 22
    LNU367 64398.2 5.6 0.01 41 93.0 0.09 25
    LNU367 64398.3 88.0 0.26 19
    LNU362 64323.1 5.2 0.21 31
    CONT. 4.0 74.2
    LNU438 63994.12 8.8 0.18 36
    LNU438 63994.5 7.5 0.25 16
    LNU310 63904.3 10.4  0.10 62 178.4 0.29 33
    CONT. 6.5 134.4
    LNU483 64803.2 5.7 L 42 115.9 L 35
    LNU483 64803.3 5.2 0.05 30 105.3 0.05 22
    LNU483 64805.1 102.7 0.24 19
    LNU483 64805.2 5.1 0.23 27 109.1 0.04 27
    LNU483 64806.2 5.6 0.02 40 110.1 0.10 28
    LNU435 64463.3 7.6 0.05 89 150.3 0.03 75
    LNU378 64494.2 112.0 0.08 30
    LNU346 65008.2 4.9 0.19 20
    CONT. 4.0 86.1
    LNU489 64010.8 90.2 0.25 28
    LNU438 63994.5 6.4 0.13 68 106.3 0.07 51
    LNU310 63904.1 6.0 0.14 59 93.5 0.23 33
    LNU295 63899.8 6.0 0.11 59 110.0 0.12 56
    LNU295 63902.3 6.6 0.10 75 125.0 0.12 78
    CONT. 3.8 70.3
    LNU490 66093.2 4.2 0.28 18
    LNU443 64023.2 4.3 0.29 23
    LNU443 64024.4 4.3 0.25 22
    LNU443 64024.7 5.6 0.01 60 97.7 0.03 35
    LNU439 64614.4 5.6 0.15 61 109.5 0.21 51
    LNU439 64618.3 6.0 0.27 70 109.1 0.21 51
    LNU436 64240.2 4.5 0.26 27 90.6 0.10 25
    LNU436 64242.2 5.4 0.01 53 101.0 0.03 39
    LNU433 64815.2 7.8 L 123  132.9 L 83
    LNU433 64816.1 5.0 0.18 42
    LNU293 65051.3 4.2 0.28 20
    CONT. 3.5 72.5
    Table 75:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 76
    Genes showing improved plant performance at standard
    nitrogen growth conditions (T2 generation)
    Roots Coverage Roots Length
    Leaf Area [cm2] [cm2] [cm2]
    P- % P- % P- %
    Gene Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU437_H2 66104.1 5.1 0.21 27 6.8 0.02 17
    LNU437_H2 66104.2 0.4 0.01 35 5.1 0.04 28
    LNU437_H2 66104.3 0.5 L 53 6.7 0.04 67 6.8 0.04 18
    LNU437_H2 66105.1 0.4 0.20 14
    LNU437_H2 66105.3 0.4 0.17 15
    LNU426 66147.1 6.4 0.04 11
    LNU426 66147.3 0.6 L 74 5.8 L 46 6.3 0.17 10
    LNU420 64006.3 6.3 0.11  9
    LNU420 64007.3 4.9 0.19 22 6.3 0.04 10
    LNU420 64008.4 0.4 0.07 24 5.1 0.02 28 6.3 0.19  9
    LNU420 64009.1 6.1 0.21  7
    LNU359 66154.6 0.4 0.26 14
    LNU352 64199.1 0.6 L 83 7.1 L 78 7.0 L 22
    LNU352 64200.1 0.4 0.14 24
    LNU352 64200.10 0.4 0.14 20 6.0 0.08 49 6.6 0.06 14
    LNU352 64200.4 4.7 0.15 19 6.3 0.15  9
    LNU292 64084.1 6.1 0.25  5
    LNU292 64085.4 0.4 0.25 12 4.7 0.10 17 6.6 0.02 14
    CONT. 0.3 4.0 5.8
    LNU483 64803.2 0.7 0.05 15 10.7  0.01 54 7.3 0.02 11
    LNU483 64803.3 0.7 0.10 18 11.0  L 57
    LNU483 64805.1 13.7  L 97 7.5 L 15
    LNU483 64805.2 0.7 0.06 21 10.7  L 53
    LNU483 64806.2 8.6 0.29 23
    LNU477 63886.1 0.7 0.04 20
    LNU477 63888.1 0.7 0.14 17 7.1 0.02  9
    LNU477 63889.2 6.9 0.17  6
    LNU477 63889.5 6.8 0.12  5
    LNU464 65076.1 6.9 L  6
    LNU464 65076.4 0.7 0.15 17 6.7 0.30  2
    LNU447 65000.1 0.7 0.08 20 9.2 0.07 32 7.1 0.04 10
    LNU447 65000.4 0.6 0.26 12 7.0 0.08  8
    LNU447 65002.3 0.7 0.12 18 8.1 0.11 16 6.8 0.29  4
    LNU439 64614.4 6.9 0.29  6
    LNU439 64616.2 0.7 L 29 6.9 0.04  6
    LNU439 64616.3 0.8 L 40 9.2 0.04 31 7.5 0.02 14
    LNU439 64618.3 0.7 0.16 24 8.6 0.04 23 7.0 0.25  8
    LNU425 63910.9 8.2 0.18 17
    LNU425 63911.11 0.7 0.14 13 12.6  L 80 7.3 L 11
    LNU425 63911.12 0.6 0.24  8 6.8 0.17  4
    LNU425 63911.7 6.7 0.22  3
    LNU425 63911.9 0.7 0.11 19 8.5 0.24 21 7.0 0.13  7
    LNU414 64475.1 0.8 0.11 30 6.9 0.01  6
    LNU414 64480.2 0.7 0.25 18 8.8 0.25 26 7.0 L  8
    LNU346 65006.1 6.9 0.03  6
    LNU346 65007.3 6.8 0.04  4
    LNU346 65008.2 7.9 0.17 13 7.1 0.14  8
    LNU346 65008.3 6.8 0.05  5
    LNU346 65009.2 7.0 L  7
    LNU336 64447.2 0.8 0.05 31 9.1 0.12 30 7.0 0.06  8
    LNU336 64448.2 9.0 0.28 29 7.2 L 10
    LNU336 64448.3 0.7 0.12 19
    LNU336 64449.4 0.7 0.10 14 6.8 0.28  5
    CONT. 0.6 7.0 6.5
    LNU470 64228.3 0.7 0.10 15 10.6  L 39 7.5 0.03 12
    LNU470 64229.1 9.0 0.09 19 7.7 0.08 14
    LNU460 64359.3 0.8 0.04 39 11.6  0.01 53 7.7 L 14
    LNU460 64362.1 0.6 0.29  6 7.1 0.03  5
    LNU421 64302.7 9.2 0.23 21 7.6 0.02 13
    LNU408 64248.10 0.6 0.30  8 10.2  0.05 34 7.7 L 15
    LNU408 64248.12 7.3 0.21  9
    LNU408 64248.16 7.2 0.16  8
    LNU408 64250.8 0.7 0.08 13 10.8  0.08 42 7.7 0.05 15
    LNU380 65764.2 7.1 0.19  5
    LNU380 65765.4 9.1 0.11 20 7.3 0.30  9
    LNU340 64290.11 7.7 L 14
    LNU340 64290.7 9.8 0.10 29 7.9 L 17
    LNU340 64291.10 7.8 L 16
    LNU340 64292.5 6.9 0.17  3
    LNU331 64214.2 7.2 0.14  7
    LNU331 64215.1 7.4 0.08 10
    LNU331 64215.3 7.4 0.04 10
    LNU306 64131.2 9.8 0.12 29 7.4 0.13 10
    CONT. 0.6 7.6 6.7
    LNU456 63991.2 6.4 0.13 16 6.8 0.24  7
    LNU456 63991.8 6.3 0.17 14 6.8 0.12  7
    LNU412 63940.1 6.9 0.01  8
    LNU412 63941.2 7.0 0.03 10
    LNU407 64218.2 7.2 L 13
    LNU407 64219.1 6.4 0.22 16 7.2 L 13
    LNU407 64219.2 0.5 0.08 14
    LNU402 63914.2 6.7 0.19  5
    LNU384 64161.3 7.3 0.16 32 7.2 0.07 12
    LNU384 64161.7 6.9 0.12 24 7.0 0.16  9
    LNU360 64029.2 6.7 L 22 6.7 0.21  5
    LNU360 64029.3 6.8 0.07 22 7.0 0.12 10
    LNU360 64030.4 7.3 0.06 33 7.4 0.05 16
    LNU360 64030.6 6.3 0.29 14 7.0 0.01 10
    LNU335 64168.15 6.7 0.27  4
    LNU301 63950.3 6.7 0.24 21 7.3 L 14
    CONT. 0.5 5.5 6.4
    LNU450 63708.3 0.7 0.19 16 7.7 0.25 15
    LNU450 63710.2 0.7 0.12 17
    LNU450 63712.3 0.6 0.12 10 7.9 0.03 18
    LNU429 63938.2 8.1 L 22 7.4 L 12
    LNU426 66150.2 7.2 0.29  8 7.2 0.04  9
    LNU416 64134.11 0.7 0.05 17 8.4 0.08 27 7.1 0.08  7
    LNU416 64134.2 9.2 L 39 7.1 0.07  8
    LNU412 63940.12 7.6 0.28 14
    LNU412 63940.8 0.7 0.22 22 9.0 0.05 35 7.1 0.10  7
    LNU412 63941.2 7.8 0.09 17 7.1 0.08  8
    LNU349 63990.2 7.5 0.17 13 7.1 0.24  8
    LNU349 63990.4 0.6 0.24 11 8.6 L 29 7.4 0.01 11
    LNU293 65048.1 0.7 0.26 21 8.3 0.11 24 7.0 0.14  6
    LNU293 65051.3 0.7 L 24 9.2 L 39 7.4 L 12
    CONT. 0.6 6.7 6.6
    LNU498 64184.3 6.6 0.23 19 7.5 0.22  8
    LNU498 64185.3 0.5 0.02 30
    LNU498 64186.2 7.7 L 39 7.6 0.06 10
    LNU498 64186.3 7.5 0.20  9
    LNU493 64191.4 7.2 0.29 31 7.7 0.30 11
    LNU455 64187.4 6.3 0.15 15 7.7 L 11
    LNU455 64187.5 0.5 L 42 7.7 0.07 39 7.8 0.01 13
    LNU455 64189.4 0.5 0.14 21 8.7 0.02 57 7.6 0.01 10
    LNU455 64189.7 6.2 0.24 11 7.6 0.01 10
    LNU343 64208.1 0.4 0.19 15
    LNU343 64208.4 7.3 0.09  5
    LNU343 64209.1 0.4 0.19 15
    LNU328 64150.1 0.5 0.09 19 8.0 L 45 7.8 0.05 13
    LNU328 64150.4 7.2 0.13 30 7.8 L 13
    LNU328 64151.1 0.4 0.28 13 6.6 0.14 19 7.5 0.02  8
    LNU328 64151.2 7.1 0.30  3
    LNU322 63917.2 7.0 0.05 27 7.7 L 11
    LNU322 63918.1 0.5 0.06 23 6.4 0.14 16
    LNU322 63918.3 0.5 0.23 25
    LNU317 64097.2 7.2 0.08 30 7.6 0.17 10
    LNU305 64111.3 0.5 0.04 32 6.9 0.11 24 7.9 0.02 14
    LNU305 64115.1 6.3 0.17 14 7.6 L  9
    CONT. 0.4 5.5 6.9
    LNU495 64697.3 5.6 0.17 16
    LNU495 64701.3 5.4 0.25 11
    LNU495 64701.4 7.1 L 47 6.8 0.16  8
    LNU487 64702.1 0.5 L 26 7.3 L 51 7.1 0.03 13
    LNU487 64702.3 0.5 0.10 14 6.7 0.06 38
    LNU474 64381.1 6.7 0.21 38
    LNU474 64382.2 0.5 0.12 11 5.9 0.16 22
    LNU474 64382.3 7.0 0.03 11
    LNU465 64020.1 0.5 0.24 25
    LNU465 64022.2 6.2 0.23 27 6.6 0.24  5
    LNU446 64546.2 7.0 L 45 7.1 0.02 12
    LNU446 64546.3 7.0 0.12 12
    LNU446 64549.2 6.2 0.04 29 6.7 0.21  7
    LNU443 64023.2 6.4 L 33 6.9 0.14  9
    LNU443 64024.4 6.3 0.09 31
    LNU443 64024.7 0.5 0.20  6
    LNU436 64240.1 0.6 0.10 36 6.6 0.24  6
    LNU436 64240.2 0.5 0.02 20
    LNU436 64241.3 6.0 0.18 25
    LNU379 64170.3 6.1 0.02 25 6.9 0.20  9
    LNU379 64170.4 6.3 0.05 30 7.1 0.06 12
    LNU315 64224.1 6.2 0.16 29
    LNU315 64224.3 5.8 0.05 19
    LNU315 64225.1 7.6 L 58 7.4 0.02 17
    LNU315 64226.3 0.6 L 33 10.0  L 107  7.7 L 23
    LNU315 64227.3 0.5 0.10 10 5.6 0.14 17
    CONT. 0.4 4.8 6.3
    LNU497 64206.2 6.1 0.08 15 6.7 0.25  7
    LNU491 64406.4 6.4 0.27 21
    LNU449 64570.1 6.9 0.10 11
    LNU449 64571.3 0.7 0.16 28 7.8 0.10 46 6.8 0.12  9
    LNU432 64065.2 0.7 0.17 42 10.1  0.20 90 7.4 0.17 19
    LNU432 64066.2 0.6 0.26 15
    LNU432 64559.2 0.7 0.14 35 8.1 0.15 52 6.9 0.14 11
    LNU432 64560.5 6.5 0.20 23
    LNU378 64495.4 6.3 0.06 19 7.1 L 14
    LNU367 64398.2 0.7 0.13 34 7.4 0.18 40
    LNU367 64398.3 6.6 0.23  6
    LNU367 64399.1 0.6 0.22 14
    LNU367 64399.2 0.7 0.07 39
    LNU364 64441.3 6.6 0.21  6
    LNU362 64324.2 6.3 0.16 19
    CONT. 0.5 5.3 6.2
    LNU495 64697.3 6.5 0.06  5
    LNU487 64704.2 6.6 0.18 20 6.8 0.04 11
    LNU474 64379.1 6.6 0.11  7
    LNU474 64382.3 6.5 0.16  6
    LNU474 64383.2 6.8 0.16 23 6.7 0.12  8
    LNU446 64546.2 6.5 0.02  5
    LNU446 64546.3 0.6 0.21 13 7.2 0.06 30 7.1 0.02 14
    LNU446 64548.2 6.5 0.19  5
    LNU443 64023.2 0.6 0.11 22 6.8 0.05 11
    LNU436 64240.2 6.7 0.09  8
    LNU436 64241.3 0.7 0.02 32 7.6 0.23 37 6.8 0.26  9
    LNU379 64170.2 6.9 0.04 12
    LNU379 64170.3 0.6 0.05 20 7.3 0.03 33 6.8 0.06 10
    LNU379 64172.2 0.7 L 44 7.8 0.02 41 6.7 0.02  7
    LNU315 64225.2 0.7 L 39 7.4 0.02 34
    LNU315 64226.3 0.6 0.02 22
    LNU315 64227.3 0.6 0.09 20 6.9 L 12
    CONT. 0.5 5.5 6.2
    LNU520 64155.1 6.8 0.06  8
    LNU520 64156.13 6.7 0.12  7
    LNU520 64156.7 6.5 0.19  9
    LNU518 64014.3 6.7 0.24  6
    LNU518 64015.4 7.0 0.03 12
    LNU502 64040.4 6.8 0.29 13 6.9 0.05 10
    LNU405 64159.6 6.7 0.29  6
    LNU405 64159.8 6.9 0.14 11
    LNU405 64159.9 7.0 0.05 11
    LNU403 64236.3 6.5 0.21  9 6.6 0.24  5
    LNU403 64236.4 6.7 0.22  7
    LNU393 63977.5 6.9 0.05 10
    LNU393 63977.6 6.9 0.06 11
    LNU385 64245.3 7.1 0.06 13
    LNU385 64246.3 6.9 0.13  9
    LNU385 64247.1 6.9 0.03 11
    LNU385 64247.2 6.9 0.02 10
    LNU374 63997.1 6.9 0.03 10
    CONT. 6.0 6.3
    LNU519 64678.1 0.5 0.01 24
    LNU519 64679.1 0.5 0.06 11 6.7 0.02 22
    LNU519 64681.3 7.1 0.12 30
    LNU519 64681.8 0.5 0.17  7 6.8 0.05 25
    LNU500 64221.2 7.0 0.06 27 7.1 0.03  8
    LNU500 64223.1 6.9 0.12 26 7.0 0.04  7
    LNU500 64223.2 6.5 0.19 18 7.0 0.28  7
    LNU459 64542.3 0.5 L 19 7.3 L 34 7.0 0.02  7
    LNU459 64543.2 6.0 0.27 11
    LNU348 64472.3 6.0 0.25 10
    LNU348 64474.1 0.5 0.09 17
    LNU348 64474.2 0.5 0.06 18 8.0 L 46 6.9 0.11  5
    LNU329 63428.1 6.9 0.23  5
    LNU329 63428.2 0.5 0.29 14
    LNU329 63429.1 6.6 0.05 21
    LNU329 63430.3 0.5 0.29  5
    CONT. 0.4 5.5 6.6
    LNU490 66096.1 5.7 0.10 12
    LNU437_H2 66104.2 0.6 0.21 22 5.4 0.27 34
    LNU416 64134.11 5.5 0.29  9
    LNU416 64134.2 5.8 0.10 15
    LNU395 64142.5 0.6 0.07 18 4.8 0.11 19 5.4 0.28  7
    LNU395 64143.6 5.7 0.14 13
    LNU312 64000.1 5.1 0.23 25 5.6 0.05 11
    LNU312 64002.3 0.6 0.09 34
    LNU312 64002.5 0.5 0.23 12 5.0 0.17 23
    LNU298 66086.4 5.0 0.11 24 5.9 0.01 16
    CONT. 0.5 4.0 5.1
    LNU468 63491.1 6.7 0.20  9
    LNU468 63492.2 6.9 L 14
    LNU468 63493.4 6.9 0.03 13
    LNU467 63715.1 6.3 0.30  4
    LNU467 63716.1 7.6 0.07 17
    LNU462 63504.1 6.6 0.26  8
    LNU450 63708.3 10.9  0.02 68 7.1 L 16
    LNU450 63708.6 6.4 0.28  6
    LNU450 63710.2 6.8 0.01 12
    LNU450 63712.3 6.4 0.22  5
    LNU448 63705.2 7.1 0.04 16
    LNU448 63705.3 7.1 0.29  9 6.6 0.14  8
    LNU448 63707.2 6.9 0.06 13
    LNU392 63696.1 6.7 0.02 10
    LNU392 63701.2 0.7 0.13 12
    LNU390 63539.2 6.9 L 14
    LNU390 63539.3 6.6 0.09  9
    LNU390 63539.4 8.2 0.01 26 6.7 0.06 11
    LNU390 63540.9 7.3 0.16 12 6.8 0.03 12
    LNU347 63508.1 6.4 0.21  5
    LNU347 63510.2 7.6 0.20 17 6.7 0.04  9
    LNU347 63513.3 6.5 0.17  6
    LNU347 63513.4 6.7 0.12 10
    LNU323 63421.2 6.5 0.14  6
    LNU323 63424.4 6.9 L 13
    CONT. 0.6 6.5 6.1
    LNU497 64206.2 7.1 0.01 10
    LNU497 64207.2 0.6 0.02 29
    LNU497 64207.3 6.8 0.08 37 6.7 0.11  4
    LNU491 64404.3 0.7 L 52 7.8 0.04 56 7.5 0.02 16
    LNU491 64404.6 0.6 0.02 28 6.4 0.25 28 7.0 0.23  8
    LNU491 64406.4 6.0 0.11 20 7.2 0.02 12
    LNU449 63890.1 6.3 0.16 25 7.0 0.19  9
    LNU432 64065.2 0.6 0.15 23
    LNU432 64066.2 0.7 0.02 52 6.5 0.18 31
    LNU432 64559.2 5.8 0.20 17 6.9 0.04  7
    LNU432 64560.5 5.9 0.20 19
    LNU367 64398.2 0.6 0.12 18
    CONT. 0.5 5.0 6.4
    LNU510 64152.1 8.1 0.02 29 7.6 L 25
    LNU510 64153.5 7.0 0.11 15
    LNU489 64011.1 7.2 0.05 20
    LNU489 64012.1 7.5 0.06 19 7.7 L 27
    LNU489 64013.1 7.9 0.21 26 7.6 0.03 26
    LNU438 63994.12 0.7 0.23 16 8.4 0.25 33 7.2 0.15 19
    LNU438 63994.2 7.8 0.05 23 7.7 L 28
    LNU438 63994.3 7.4 0.29 18 7.4 0.02 22
    LNU438 63994.5 9.1 0.06 44 8.1 0.01 33
    LNU427 64178.6 7.1 0.13 16
    LNU427 64180.3 7.1 0.05 17
    LNU427 64180.4 6.6 0.24  9
    LNU383 63982.1 8.2 0.02 30 7.9 L 31
    LNU383 63982.7 8.1 0.13 29 7.9 L 30
    LNU354 63970.6 7.7 0.21 22 7.7 L 27
    LNU354 63972.5 6.6 0.26 10
    LNU354 63972.8 7.5 L 24
    LNU310 63904.1 7.1 0.04 17
    LNU310 63904.3 9.2 0.07 45 7.5 0.01 24
    LNU310 63905.3 6.7 0.28 10
    LNU299 64326.2 9.1 0.09 45 7.6 0.01 25
    LNU299 64327.2 6.8 0.13 12
    LNU299 64328.2 6.8 0.16 12
    LNU295 63899.5 9.3 0.06 47 7.5 L 24
    LNU295 63899.8 6.7 0.29 11
    LNU295 63901.3 7.6 0.11 20 7.2 0.03 19
    LNU295 63902.3 7.5 0.01 25
    CONT. 0.6 6.3 6.1
    LNU483 64803.2 0.6 0.05 30 9.0 0.01 48
    LNU483 64803.3 0.7 L 41 9.0 L 50
    LNU483 64805.1 0.6 0.15 22 8.7 0.10 44
    LNU483 64805.2 0.7 L 34 9.2 0.01 53
    LNU483 64806.2 8.6 L 42
    LNU464 65076.4 0.6 0.19 19
    LNU435 64463.3 0.7 0.06 37 8.4 0.08 38
    LNU346 65007.3 7.3 0.04  7
    LNU346 65008.2 0.5 0.22 12
    CONT. 0.5 6.0 6.8
    LNU510 64153.5 5.9 0.12 23 7.1 L 12
    LNU489 64010.8 0.5 0.26 14 6.3 0.09 33
    LNU489 64012.1 5.9 0.18 24 6.8 0.01  8
    LNU489 64013.1 6.8 0.07  7
    LNU438 63994.1 7.4 0.03 55 7.7 L 22
    LNU438 63994.12 6.6 0.06 38 7.3 0.01 15
    LNU438 63994.2 7.0 0.01 47 7.5 0.01 19
    LNU438 63994.5 0.5 0.17 28
    LNU427 64180.4 6.4 0.02 34 7.1 0.03 12
    LNU383 63982.1 0.5 0.16 18 5.6 0.22 17
    LNU354 63970.6 6.5 0.01 35 7.0 0.01 11
    LNU354 63971.5 6.4 0.09 33 7.3 0.12 15
    LNU354 63972.5 5.8 0.09 22 7.0 0.19 10
    LNU354 63972.8 0.5 0.19 17 8.1 L 69 7.7 0.01 22
    LNU310 63904.3 6.9 L 44 7.2 0.03 14
    LNU310 63905.1 6.3 0.25 31 7.0 0.19 11
    LNU310 63905.3 6.9 0.06  9
    LNU299 64327.2 6.7 L 40 7.2 L 14
    LNU299 64330.5 7.2 0.15 51
    LNU295 63899.5 0.5 0.09 23 7.0 L 46 7.3 L 15
    LNU295 63899.8 0.5 0.28 19 8.6 0.06 81 7.5 0.07 18
    LNU295 63901.3 5.7 0.27 19 7.1 0.13 12
    LNU295 63902.3 0.6 0.11 51 9.7 0.08 102  7.6 0.05 20
    CONT. 0.4 4.8 6.3
    LNU490 66093.2 0.5 0.16 19 5.0 0.01 56 6.1 0.08 12
    LNU490 66096.1 4.8 0.03 50 6.6 L 22
    LNU443 64023.2 4.7 L 47 5.7 0.16  6
    LNU443 64024.3 3.8 0.27 18
    LNU443 64024.4 0.5 0.21 15 5.6 0.01 75 6.2 0.03 15
    LNU443 64024.7 0.6 L 59 5.4 L 70 6.3 0.03 16
    LNU439 64614.4 0.5 0.12 36 5.1 0.06 61
    LNU439 64616.2 3.6 0.25 14
    LNU439 64618.3 0.6 0.20 48 5.9 0.08 86 6.4 L 19
    LNU437_H2 66104.1 4.6 0.04 45 6.0 0.06 12
    LNU437_H2 66104.2 5.3 0.01 66 5.8 0.12  7
    LNU436 64240.1 4.6 L 46 5.8 0.16  8
    LNU436 64240.2 0.5 0.08 33 4.4 0.07 40 6.1 0.12 13
    LNU436 64241.3 3.6 0.25 14
    LNU436 64242.2 0.5 0.06 28 4.7 0.15 48 6.0 0.22 10
    LNU436 64243.1 4.6 0.09 44 5.9 0.17  9
    LNU433 64815.2 0.5 0.03 28 6.0 0.04 89
    LNU311 66099.1 5.5 0.09 73 6.2 0.12 15
    LNU311 66099.2 4.2 0.05 31 6.4 L 18
    LNU311 66100.3 3.7 0.29 15 5.8 0.21  7
    LNU298 66086.4 4.7 L 48 6.0 0.05 12
    LNU298 66088.3 5.0 L 56
    LNU298 66089.1 3.9 0.15 23
    LNU298 66089.3 4.5 0.07 40 5.9 0.22  9
    LNU293 65048.1 5.1 0.01 60 6.4 0.01 18
    LNU293 65049.1 4.0 0.07 27
    LNU293 65050.3 3.9 0.19 21
    LNU293 65051.3 0.5 0.08 21 4.7 0.04 47 6.1 0.11 13
    CONT. 0.4 3.2 5.4
    Table 76:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 77
    Genes showing improved plant performance at standard
    nitrogen growth conditions (T1 generation)
    Gene Dry Weight [mg] Fresh Weight [mg]
    Name Ave. P-Val. % Incr. Ave. P-Val. % Incr.
    LNU488 45.8 0.11 26 100.7 0.06 32
    LNU359 60.2 0.04 66 109.6 L 44
    LNU358 98.4 0.11 29
    LNU341 90.3 0.04 18
    LNU309_H3 96.2 0.05 26
    CONT. 36.3 76.3
    Table 77:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 78
    Genes showing improved plant performance at standard
    nitrogen growth conditions (T1 generation)
    Leaf Area Roots Coverage Roots Length
    [cm2] [cm2] [cm2]
    P- P- P-
    Gene Name Ave. Val. % Incr. Ave. Val. % Incr. Ave. Val. % Incr.
    LNU490 2.3 0.12 35 3.7 0.03 29
    LNU417_H4 2.1 0.28 24 3.6 0.10 27
    LNU394 2.2 0.19 30 3.6 0.07 26
    CONT. 1.7 2.8
    LNU488 0.6 0.01 34 5.4 L 96 6.1 L 46
    LNU466 3.8 0.04 36 5.1 0.04 21
    LNU453 0.5 0.08 16 3.4 0.09 24 4.9 0.04 18
    LNU359 0.6 0.05 45 5.5 0.01 98 5.9 L 42
    LNU358 0.5 0.19 21 4.0 L 46 5.2 0.08 25
    LNU341 0.5 0.07 33
    LNU309_H3 0.6 0.11 33 4.9 0.17 75 5.9 0.02 40
    CONT. 0.4 2.8 4.2
    Table 78:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Tables 79-80 improved plant relative growth rate (RGR of leaf area, root length and root coverage) when grown at standard nitrogen concentration levels. These produced plants that grew faster than control plants when grown under standard nitrogen growth conditions. Faster growth was observed when growth rate of leaf area and root length and coverage was measured.
  • TABLE 79
    Genes showing improved growth rate at standard
    nitrogen growth conditions (T2 generation)
    RGR Of Leaf RGR Of Root RGR Of Roots
    Area Coverage Length
    P- % P- % P- %
    Gene Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU437_H2 66104.1 0.6 0.02 19
    LNU437_H2 66104.2 0.0 0.02 42 0.6 0.26  8
    LNU437_H2 66104.3 0.1 L 54 0.6 0.06 15
    LNU426 66147.3 0.1 L 77 0.6 0.09 14
    LNU420 64008.4 0.0 0.14 25
    LNU352 64199.1 0.1 L 85 0.6 0.02 19
    LNU352 64200.1 0.0 0.15 26
    LNU352 64200.10 0.0 0.14 26 0.6 0.04 16
    LNU352 64200.4 0.6 0.09 12
    LNU292 64085.4 0.6 0.06 13
    CONT. 0.0 0.5
    LNU483 64803.2 0.1 0.09 17 0.6 0.29 14
    LNU483 64803.3 0.1 0.15 17
    LNU483 64805.2 0.1 0.30 12
    LNU477 63886.1 0.1 0.05 21
    LNU447 65000.1 0.1 0.05 23
    LNU447 65002.3 0.1 0.11 20
    LNU447 65004.1 0.1 0.16 19
    LNU439 64614.4 0.7 0.16 17
    LNU439 64616.2 0.1 0.03 21
    LNU439 64616.3 0.1 L 41 0.7 0.10 22
    LNU439 64618.3 0.1 0.13 23
    LNU425 63911.11 0.1 0.25 13
    LNU425 63911.9 0.1 0.24 14
    LNU414 64475.1 0.1 0.04 34
    LNU336 64447.2 0.1 0.02 32
    LNU336 64448.2 0.1 0.22 29
    LNU336 64448.3 0.1 0.18 17
    LNU336 64449.4 0.1 0.12 17
    CONT. 0.1 0.6
    LNU473 65770.4 0.7 0.23  8
    LNU473 65771.3 0.7 0.22  9
    LNU470 64228.3 0.1 0.20 14 0.7 0.02 17
    LNU470 64229.1 0.7 0.03 19
    LNU460 64359.3 0.1 L 39 0.8 L 23
    LNU460 64362.1 0.7 0.22  8
    LNU421 64302.7 0.7 0.28  7
    LNU421 64303.3 0.7 0.12 12
    LNU408 64248.10 0.7 0.02 16
    LNU408 64248.12 0.7 0.16 12
    LNU408 64250.8 0.1 0.21 13 0.7 0.04 16
    LNU380 65764.2 0.7 0.05 13
    LNU380 65764.3 0.7 0.08 13
    LNU380 65765.4 0.7 0.06 17
    LNU340 64290.11 0.8 L 21
    LNU340 64290.7 0.8 L 25
    LNU340 64291.10 0.7 L 19
    LNU331 64214.2 0.7 0.26  8
    LNU331 64215.1 0.7 0.18 11
    LNU331 64215.3 0.7 0.04 14
    LNU306 64131.2 0.7 0.09 13
    CONT. 0.1 0.6
    LNU456 63991.2 0.7 0.02 19
    LNU456 63991.8 0.6 0.02 16
    LNU430 63934.3 0.6 0.27 10
    LNU430 63936.1 0.6 0.13 12
    LNU412 63940.1 0.6 0.16  9
    LNU412 63941.2 0.6 0.19  9
    LNU407 64218.2 0.6 0.05 13
    LNU407 64219.1 0.6 0.01 17
    LNU402 63913.1 0.6 0.14 10
    LNU384 64161.3 0.7 L 27
    LNU384 64161.7 0.7 0.01 22
    LNU360 64029.2 0.6 0.26  8
    LNU360 64029.3 0.6 0.27  9
    LNU360 64030.4 0.7 L 24
    LNU360 64030.6 0.6 0.11 11
    LNU335 64168.15 0.6 0.22  8
    LNU335 64169.2 0.6 0.23  8
    LNU301 63927.5 0.6 0.03 18
    LNU301 63950.3 0.7 L 19
    CONT. 0.6
    LNU450 63710.2 0.1 0.24 14
    LNU450 63712.3 0.1 0.26 12
    LNU429 63938.2 0.7 0.12 15
    LNU426 66150.2 0.6 0.25 11
    LNU416 64134.11 0.1 0.15 16 0.7 0.21 12
    LNU416 64134.2 0.1 0.25 15
    LNU416 64134.5 0.7 0.19 12
    LNU412 63940.8 0.1 0.10 24
    LNU359 66154.5 0.7 0.17 13
    LNU349 63990.4 0.1 0.15 17 0.7 0.28 12
    LNU293 65048.1 0.1 0.12 24
    LNU293 65051.3 0.1 0.03 25
    CONT. 0.1 0.6
    LNU498 64185.3 0.0 0.05 33
    LNU498 64186.2 0.7 0.13  8
    LNU493 64191.4 0.7 0.16 11
    LNU455 64187.4 0.7 0.06  9
    LNU455 64187.5 0.1 0.01 45 0.7 0.07 11
    LNU455 64189.4 0.0 0.09 30
    LNU455 64189.7 0.7 0.08  9
    LNU343 64208.1 0.0 0.29 18
    LNU343 64208.4 0.7 0.06  9
    LNU343 64209.1 0.0 0.27 18
    LNU328 64150.1 0.0 0.16 23
    LNU328 64150.4 0.7 0.10  9
    LNU328 64151.2 0.7 0.10  8
    LNU322 63917.2 0.0 0.23 20 0.8 L 18
    LNU322 63918.1 0.0 0.19 21
    LNU322 63918.3 0.0 0.16 30
    LNU317 64097.2 0.7 0.11 12
    LNU305 64111.3 0.0 0.08 31 0.7 0.02 13
    CONT. 0.0 0.7
    LNU495 64701.4 0.0 0.13 17 0.6 0.14 17
    LNU487 64702.1 0.1 L 35 0.6 0.25 13
    LNU487 64702.3 0.0 0.09 18
    LNU487 64706.2 0.6 0.16 15
    LNU474 64381.1 0.0 0.15 17
    LNU474 64382.2 0.0 0.02 22
    LNU474 64382.3 0.6 0.16 15
    LNU465 64020.1 0.1 0.07 30
    LNU446 64546.2 0.0 0.16 14
    LNU446 64546.3 0.6 0.26 12
    LNU443 64024.3 0.1 L 38
    LNU436 64240.1 0.1 0.02 37
    LNU436 64240.2 0.0 0.04 21
    LNU436 64242.2 0.1 0.02 56 0.7 0.13 29
    LNU436 64243.1 0.0 0.18 18
    LNU379 64170.3 0.6 0.10 18
    LNU315 64224.1 0.0 0.27 14
    LNU315 64224.3 0.0 0.24 13
    LNU315 64225.1 0.0 0.14 22 0.6 0.07 23
    LNU315 64226.3 0.1 L 37 0.7 0.04 28
    LNU315 64227.3 0.0 0.20 13
    CONT. 0.0 0.5
    LNU491 64406.4 0.1 0.18 29
    LNU449 64571.3 0.1 0.13 31 0.6 0.25 10
    LNU432 64065.2 0.1 0.11 44 0.6 0.21 17
    LNU432 64559.2 0.1 0.06 42 0.6 0.10 16
    LNU432 64560.5 0.6 0.11 14
    LNU367 64398.2 0.1 0.13 33
    LNU367 64399.1 0.1 0.26 19
    LNU367 64399.2 0.1 0.08 38
    LNU364 64441.3 0.6 0.25  9
    CONT. 0.0 0.6
    LNU495 64697.3 0.6 L 24
    LNU495 64701.3 0.5 0.25 10
    LNU487 64702.1 0.6 0.11 14
    LNU487 64702.3 0.5 0.30  9
    LNU487 64704.2 0.1 0.26 16 0.6 0.05 18
    LNU487 64705.4 0.5 0.16 11
    LNU487 64706.2 0.5 0.10 13
    LNU474 64379.1 0.6 0.01 24
    LNU474 64382.3 0.6 0.13 14
    LNU474 64383.2 0.6 0.05 18
    LNU465 64022.2 0.5 0.17 10
    LNU446 64546.2 0.5 0.18  9
    LNU446 64546.3 0.1 0.12 18 0.6 0.07 19
    LNU446 64548.1 0.5 0.26 12
    LNU443 64023.2 0.1 0.06 25 0.6 0.02 21
    LNU436 64240.2 0.6 0.06 16
    LNU436 64241.3 0.1 L 35 0.6 0.05 23
    LNU379 64170.2 0.6 0.04 21
    LNU379 64170.3 0.1 0.04 24 0.6 L 30
    LNU379 64172.2 0.1 L 51 0.6 L 25
    LNU315 64225.2 0.1 L 40 0.6 0.04 20
    LNU315 64226.3 0.1 0.02 25 0.6 0.04 18
    LNU315 64227.3 0.1 0.11 19 0.6 0.04 17
    CONT. 0.0 0.5
    LNU502 64040.4 0.6 0.25 11
    CONT. 0.5
    LNU519 64678.1 0.1 L 25
    LNU519 64679.1 0.0 0.12 10
    LNU519 64681.3 0.7 0.09 13
    LNU519 64681.8 0.0 0.11 10
    LNU500 64223.1 0.7 0.22  9
    LNU500 64223.2 0.7 0.15 12
    LNU459 64542.3 0.1 L 23 0.7 0.06 14
    LNU348 64474.1 0.1 0.05 16
    LNU348 64474.2 0.1 0.01 20 0.7 0.20 10
    LNU329 63428.1 0.7 0.10 11
    LNU329 63428.2 0.0 0.27 11
    LNU329 63429.1 0.1 0.20 13
    LNU316 64565.4 0.7 0.17 10
    CONT. 0.0 0.6
    LNU490 66093.2 0.5 0.10 15
    LNU490 66095.2 0.5 0.02 24
    LNU437_H2 66104.1 0.5 0.20 17
    LNU437_H2 66104.2 0.1 0.12 25 0.5 0.07 21
    LNU437_H2 66104.3 0.5 0.29 12
    LNU416 64134.11 0.5 0.11 18
    LNU416 64134.2 0.5 0.01 27
    LNU416 64136.4 0.5 0.10 16
    LNU395 64142.5 0.1 0.11 21
    LNU395 64143.6 0.1 0.29 13 0.5 L 32
    LNU312 64000.1 0.5 0.02 21
    LNU312 64002.2 0.5 0.23 15
    LNU312 64002.3 0.1 0.04 34
    LNU312 64002.5 0.5 0.09 17
    LNU311 66099.1 0.5 0.08 17
    LNU298 66086.4 0.5 L 27
    LNU298 66089.1 0.5 0.17 13
    CONT. 0.0 0.4
    LNU468 63491.1 0.6 0.10 16
    LNU468 63492.2 0.6 0.06 16
    LNU468 63493.4 0.6 0.13 14
    LNU467 63715.1 0.6 0.25  9
    LNU462 63505.1 0.6 0.14 12
    LNU450 63708.3 0.7 0.01 24
    LNU450 63710.2 0.6 0.10 14
    LNU448 63705.2 0.7 L 26
    LNU448 63705.3 0.6 0.27 10
    LNU448 63707.2 0.6 0.04 20
    LNU392 63696.1 0.6 0.08 15
    LNU392 63697.4 0.6 0.16 12
    LNU392 63698.2 0.6 0.07 18
    LNU390 63539.4 0.6 0.17 12
    LNU347 63508.1 0.6 0.29  9
    LNU347 63510.2 0.6 0.01 23
    LNU347 63510.4 0.6 0.18 14
    LNU347 63513.3 0.6 0.08 15
    LNU347 63513.4 0.6 0.03 21
    LNU323 63421.2 0.6 0.23 10
    LNU323 63424.4 0.6 0.04 18
    CONT. 0.5
    LNU497 64206.2 0.6 0.02 16
    LNU497 64207.2 0.1 0.18 22
    LNU491 64403.1 0.6 0.17 11
    LNU491 64404.3 0.1 L 47
    LNU491 64404.6 0.1 0.18 22
    LNU491 64406.4 0.6 0.15 11
    LNU449 63890.1 0.6 0.25 12
    LNU432 64066.2 0.1 0.01 48
    LNU432 64559.2 0.6 0.20  9
    LNU432 64560.5 0.6 0.05 14
    CONT. 0.0 0.6
    LNU510 64152.1 0.7 0.06 34
    LNU489 64011.1 0.6 0.23 22
    LNU489 64012.1 0.7 0.06 34
    LNU489 64013.1 0.7 0.13 28
    LNU438 63994.12 0.6 0.26 22
    LNU438 63994.2 0.7 0.04 37
    LNU438 63994.3 0.7 0.12 28
    LNU438 63994.5 0.7 0.04 40
    LNU427 64178.6 0.7 0.21 23
    LNU427 64180.3 0.7 0.18 24
    LNU383 63982.1 0.7 0.05 35
    LNU383 63982.7 0.7 0.06 35
    LNU354 63970.6 0.7 0.06 33
    LNU354 63972.8 0.7 0.22 23
    LNU310 63904.1 0.7 0.15 26
    LNU310 63904.3 0.1 0.18 17 0.7 0.15 28
    LNU299 64326.2 0.7 0.16 26
    LNU299 64328.2 0.6 0.28 20
    LNU295 63899.5 0.6 0.21 22
    LNU295 63901.3 0.7 0.11 29
    LNU295 63902.3 0.7 0.17 29
    CONT. 0.1 0.5
    LNU483 64803.2 0.1 0.11 27
    LNU483 64803.3 0.1 0.02 41
    LNU483 64805.2 0.1 0.06 31
    LNU435 64463.3 0.1 0.05 36
    LNU378 64494.2 0.7 0.21 14
    LNU346 65007.3 0.7 0.20  8
    CONT. 0.0 0.6
    LNU510 64153.5 0.7 0.02 12
    LNU489 64010.8 0.0 0.28 23 0.7 0.08 13
    LNU489 64012.1 0.6 0.05 10
    LNU438 63994.1 0.7 L 25
    LNU438 63994.12 0.7 L 17
    LNU438 63994.2 0.7 L 20
    LNU438 63994.5 0.1 0.13 39
    LNU427 64180.4 0.7 0.04 11
    LNU354 63970.6 0.7 L 15
    LNU354 63971.5 0.7 0.02 19
    LNU354 63972.5 0.7 0.11 11
    LNU354 63972.8 0.0 0.21 26 0.7 L 19
    LNU310 63904.1 0.0 0.28 26
    LNU310 63904.3 0.7 L 17
    LNU310 63905.1 0.7 0.02 18
    LNU310 63905.3 0.6 0.07 10
    LNU299 64327.2 0.7 0.01 13
    LNU295 63899.5 0.6 0.11  8
    LNU295 63899.8 0.0 0.25 27 0.7 L 21
    LNU295 63901.3 0.7 0.09 11
    LNU295 63902.3 0.1 0.03 60 0.7 0.01 21
    CONT. 0.0 0.6
    LNU490 66093.2 0.0 0.26 20 0.5 0.14 19
    LNU490 66096.1 0.5 0.11 18
    LNU443 64023.2 0.5 0.21 13
    LNU443 64024.4 0.5 0.02 26
    LNU443 64024.7 0.1 0.01 50 0.5 0.05 22
    LNU439 64614.4 0.1 0.08 38
    LNU439 64618.3 0.1 0.07 52 0.5 0.08 21
    LNU437_H2 66104.1 0.5 0.19 15
    LNU437_H2 66104.2 0.5 0.18 13
    LNU436 64240.2 0.1 0.14 29 0.5 0.08 22
    LNU436 64242.2 0.0 0.26 21
    LNU436 64243.1 0.5 0.02 27
    LNU433 64815.2 0.0 0.13 27 0.5 0.25 14
    LNU311 66099.1 0.5 0.02 31
    LNU311 66099.2 0.5 0.04 21
    LNU311 66100.3 0.5 0.24 12
    LNU298 66086.4 0.5 0.10 18
    LNU298 66088.3 0.5 0.10 17
    LNU298 66089.3 0.5 0.22 15
    LNU293 65048.1 0.5 L 28
    LNU293 65051.3 0.0 0.16 25 0.5 0.04 24
    CONT. 0.0 0.4
    Table 79:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 80
    Genes showing improved growth rate at standard nitrogen growth
    conditions (T1 generation)
    RGR Of RGR Of RGR Of
    Leaf Area Root Coverage Roots Length
    Gene % % %
    Name Ave. P-Val. Incr. Ave. P-Val. Incr. Ave. P-Val. Incr.
    LNU490 0.4 0.05 29
    LNU417_H4 0.4 0.12 27
    LNU394 0.4 0.09 27
    CONT. 0.3
    LNU488 0.1 L 49 0.7 L 55
    LNU466 0.5 L 26
    LNU453 0.0 0.11 20 0.5 0.01 25
    LNU359 0.1 L 66 0.7 L 52
    LNU358 0.1 0.04 34 0.6 0.01 33
    LNU341 0.1 0.02 36 0.5 0.13 27
    LNU309_H3 0.1 0.02 44 0.6 L 45
    CONT. 0.0 0.4
    Table 80.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • Example 17 Evaluation of Transgenic Arabidopsis NUE, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay
  • Assay 1: Nitrogen Use efficiency: Seed yield plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows seed yield production, the biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2) and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2) and microelements. All plants were grown in the greenhouse until mature seeds. Seeds were harvested, extracted and weight. The remaining plant biomass (the above ground tissue) was also harvested, and weighted immediately or following drying in oven at 50° C., for 24 hours.
  • Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the 35S promoter and the selectable marker was used as control.
  • The plants were analyzed for their overall size, growth rate, flowering, seed yield, 1,000-seed weight, dry matter and harvest index (HI— seed yield/dry matter). Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
  • The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
  • Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) is used for capturing images of plant samples.
  • The image capturing process is repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, is used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs are square shape include 1.7 liter trays. During the capture process, the tubs are placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
  • An image analysis system is used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images are captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data is saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Leaf analysis—Using the digital analysis leaves data is calculated, including leaf number, rosette area, rosette diameter, leaf blade area.
  • Vegetative growth rate: the relative growth rate (RGR) of leaf number [formula XII (described above)], rosette area (formula V, above), plot coverage (Formula XIX, below) and harvest index (Formula IV, above) is calculated with the indicated formulas.

  • Relative growth rate of plot coverage=Regression coefficient of plot coverage along time course.  Formula XIX
  • Seeds average weight—At the end of the experiment all seeds are collected. The seeds are scattered on a glass tray and a picture was taken. Using the digital analysis, the number of seeds in each sample is calculated.
  • Dry weight and seed yield—On about day 80 from sowing, the plants are harvested and left to dry at 30° C., in a drying chamber. The biomass and seed weight of each plot are measured and divided by the number of plants in each plot. Dry weight=total weight of the vegetative portion above ground (excluding roots) after drying at 30° C., in a drying chamber; Seed yield per plant=total seed weight per plant (gr). 1000 seed weight (the weight of 1000 seeds) (gr.).
  • The harvest index (HI) was calculated using Formula IV as described above.
  • Oil percentage in seeds—At the end of the experiment all seeds from each plot are collected. Seeds from 3 plots are mixed grounded and then mounted onto the extraction chamber. 210 ml of n-Hexane (Cat No. 080951 Biolab Ltd.) are used as the solvent. The extraction is performed for 30 hours at medium heat 50° C. Once the extraction has ended the n-Hexane was evaporated using the evaporator at 35° C., and vacuum conditions. The process is repeated twice. The information gained from the Soxhlet extractor (Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes, Polytechnisches J. (Dingler's) 1879, 232, 461) is used to create a calibration curve for the Low Resonance NMR. The content of oil of all seed samples is determined using the Low Resonance NMR (MARAN Ultra-Oxford Instrument) and its MultiQuant software package.
  • Silique length analysis—On day 50 from sowing. 30 siliques from different plants in each plot are sampled in block A. The chosen siliques are green-yellow in color and are collected from the bottom parts of a grown plant's stem. A digital photograph is taken to determine silique's length.
  • Statistical analyses—To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants are compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested are analyzed separately. Data is analyzed using Student's t-test and results are considered significant if the p value was less than 0.1. The JMP statistics software package is used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
  • Tables 81-90 summarize the observed phenotypes of transgenic plants exogenously expressing the gene constructs using the greenhouse seed maturation (GH-SM) assays under low nitrogen (Tables 81-85) or normal nitrogen (Tables 86-90) conditions. The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.
  • TABLE 81
    Genes showing improved plant performance at low Nitrogen growth
    conditions under regulation of At6669 promoter
    Dry Weight Inflorescence
    [mg] Flowering Emergence
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU519 64681.8 238.8 0.10  8
    LNU459 64542.4 239.2 0.29  8
    LNU409 64687.2 268.8 L 22
    LNU408 64250.8 231.9 0.30  5
    LNU385 64245.3 244.4 0.24 11
    LNU385 64245.5 251.9 L 14
    LNU360 64029.2 237.5 0.25  8
    LNU348 64472.2 265.6 L 20
    LNU340 64292.5 243.1 0.07 10
    LNU336 64449.4 14.6 0.08 −10  10.8 0.01 −14 
    LNU331 64212.1 249.4 0.05 13
    LNU331 64214.2 242.5 0.29 10
    LNU331 64215.3 240.6 0.05  9
    LNU327 64491.2 245.0 0.02 11
    LNU316 64565.3 245.6 0.02 11
    LNU290 64368.4 245.6 0.03 11
    CONT. 220.8 16.3 12.5
    LNU502 64038.5 229.4 0.04 19 15.8 0.17 −2 11.2 0.04 −6
    LNU502 64039.4 11.5 0.12 −4
    LNU500 64221.6 15.6 0.04 −3 11.3 0.22 −5
    LNU500 64222.1 212.5 0.12 10
    LNU498 64185.3 216.2 0.15 12
    LNU493 64190.3 15.9 0.28 −1
    LNU493 64191.3 226.9 0.15 18 15.7 0.24 −2 11.2 0.03 −6
    LNU485 63825.1 308.1 L 60 11.2 0.04 −6
    LNU456 63991.2 209.4 0.16  9 11.1 L −7
    LNU456 63991.8 218.1 0.09 13 15.9 0.28 −1 11.5 0.12 −4
    LNU455 64187.4 210.0 0.29  9 15.9 0.28 −1 11.4 0.18 −5
    LNU455 64187.5 15.8 0.17 −2
    LNU455 64189.2 15.8 0.17 −2
    LNU384 64161.2 11.5 0.12 −4
    LNU384 64161.6 226.9 0.07 18
    LNU384 64161.9 204.4 0.30  6
    LNU371 63974.6 11.2 0.04 −6
    LNU371 63975.1 221.9 0.03 15
    LNU360 64030.6 15.9 0.28 −1
    LNU343 64208.1 15.8 0.17 −2 11.6 0.19 −3
    LNU343 64208.4 15.9 0.28 −1 11.5 0.12 −4
    LNU328 64150.1 206.9 0.20  7 14.5 0.10 −10  11.0 L −8
    LNU328 64150.2 11.3 0.04 −5
    LNU328 64151.2 11.2 0.03 −6
    LNU322 63917.2 15.7 0.24 −2
    LNU317 64093.3 15.9 0.28 −1 11.5 0.12 −4
    LNU317 64097.2 15.5 0.13 −4 11.5 0.12 −4
    LNU317 64097.3 215.6 0.07 12 11.5 0.12 −4
    LNU306 64132.1 15.9 0.28 −1
    LNU306 64132.6 11.2 0.03 −6
    LNU305 64111.3 15.6 0.04 −3
    LNU305 64114.1 237.5 0.11 23
    LNU305 64115.1 11.5 0.12 −4
    CONT. 192.5 16.1 11.9
    LNU499 64146.8 323.1 0.03 13
    LNU499  64147.11 347.5 0.17 21
    LNU485 63825.1 401.2 0.01 40
    LNU485 63827.1 307.5 0.17  7
    LNU468 63492.2 315.6 0.12 10
    LNU468 63493.4 337.5 0.08 18
    LNU467 63715.1 327.9 0.12 14
    LNU462 63503.2 334.4 0.28 16
    LNU450 63708.3 449.4 0.13 56
    LNU450 63708.6 463.8 0.01 62
    LNU450 63709.4 456.2 0.06 59
    LNU450 63710.2 444.4 0.03 55
    LNU450 63712.3 478.8 0.06 67
    LNU448 63706.5 475.6 0.04 66
    LNU429 63937.3 423.8 L 48
    LNU429 63937.4 342.5 0.10 19
    LNU429 63938.5 315.7 0.27 10
    LNU416 64134.5 323.1 0.07 13
    LNU399 63944.4 324.4 0.02 13
    LNU399 63944.6 326.9 0.03 14
    LNU395 64143.6 328.1 0.29 14
    LNU395 64145.4 350.6 0.20 22
    LNU392 63698.2 325.0 0.09 13
    LNU390 63539.2 321.9 0.10 12
    LNU375 63452.2 316.4 0.18 10
    LNU375 63454.2 358.1 0.03 25
    LNU349 63989.1 309.3 0.20  8
    LNU347 63510.2 348.8 0.27 21
    LNU323 63420.1 308.1 0.29  7
    LNU323 63421.2 336.9 0.13 17
    LNU323 63424.4 324.6 0.26 13
    CONT. 287.1
    Table 81:
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 82
    Genes showing improved plant performance at Low N growth conditions
    under regulation of At6669 promoter
    Leaf Blade Plot Coverage
    Area [cm2] Leaf Number [cm2]
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU519 64678.1 62.3 0.25 16
    LNU519 64679.1 1.0 0.13  9
    LNU519 64681.8 1.0 0.02 12 10.8 0.10 3 62.3 0.02 16
    LNU503 64203.3 1.0 0.23  6 59.2 0.15 10
    LNU460 64359.4 1.0 0.02 13 11.1 0.02 6 62.3 0.08 16
    LNU460 64362.1 57.7 0.26  7
    LNU459 64542.1 0.9 0.25  5 57.1 0.26  6
    LNU421 64302.7 1.0 0.10 10
    LNU412  63940.11 1.0 0.09  9
    LNU409 64687.2 1.0 0.01 16 63.0 0.01 17
    LNU409 64688.2 1.0 0.03 17 62.1 0.02 15
    LNU408 64249.4 1.0 0.20  6
    LNU385 64245.3 1.0 0.20 11 10.7 0.25 2 61.3 0.10 14
    LNU360 64029.2 1.0 0.24  6
    LNU360 64030.1 1.1 0.02 22 69.1 L 28
    LNU336 64447.2 10.9 0.04 5
    LNU336 64447.4 57.0 0.26  6
    LNU331 64212.3 57.6 0.19  7
    LNU331 64215.3 1.0 0.06  9 62.2 0.05 15
    LNU327 64490.3 1.0 0.05 15 63.7 0.02 18
    LNU290 64369.3 1.0 0.20  6
    CONT. 0.9 10.5 53.8
    LNU502 64038.5 0.9 0.02 13 52.4 0.15  8
    LNU498 64184.3 10.8 0.14 5
    LNU493 64191.3 0.9 0.05 10 11.4 0.17 11  57.1 0.01 17
    LNU485 63825.1 10.8 0.02 5 54.0 0.06 11
    LNU456 63991.2 0.9 0.24  6
    LNU456 63991.8 0.9 0.20  9 11.4 0.27 11  55.3 0.08 14
    LNU455 64187.4 0.9 0.07 10 51.8 0.21  7
    LNU455 64187.5 0.9 0.18 10 10.6 0.16 3 55.2 0.17 14
    LNU371 63974.6 0.9 0.07 10 55.3 0.04 14
    LNU343 64208.4 11.1 0.23 8
    LNU328 64150.1 11.0 0.28 7 55.6 0.11 14
    LNU328 64151.2 1.0 0.02 14 54.4 0.05 12
    LNU322 63917.2 10.9 L 6
    LNU305 64115.1 0.9 0.27  7 52.5 0.14  8
    CONT. 0.8 10.3 48.6
    LNU468 63492.2 0.8 0.12  9
    LNU467 63714.4 0.8 0.29  5
    LNU450 63708.6 0.8 0.01 16 44.9 0.15  8
    LNU448 63705.4 0.8 0.13  8
    LNU448 63706.5 0.8 0.23 12
    LNU375 63454.2 0.9 0.06 18 48.0 0.02 15
    LNU323 63421.2 0.8 0.26  6
    CONT. 0.7 41.6
    Table 82.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 83
    Genes showing improved plant performance at low Nitrogen growth
    conditions under regulation of At6669 promoter
    RGR Of RGR Of RGR Of Rosette
    Leaf Number Plot Coverage Diameter
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU519 64678.1 7.9 0.12 18
    LNU519 64681.8 8.0 0.10 19 0.4 0.12 16
    LNU503 64203.3 7.6 0.27 13 0.4 0.23 13
    LNU460 64359.4 8.0 0.10 19 0.4 0.05 21
    LNU460 64360.3 0.4 0.22 12
    LNU409 64687.2 8.1 0.09 20 0.4 0.17 14
    LNU409 64688.2 7.9 0.12 18 0.4 0.07 19
    LNU385 64245.3 7.6 0.25 13 0.4 0.30 11
    LNU385 64246.6 0.4 0.25 12
    LNU360 64029.2 0.4 0.15 15
    LNU360 64030.1 8.9 L 32 0.4 0.03 23
    LNU360 64030.4 0.4 0.29 12
    LNU331 64212.3 0.4 0.26 11
    LNU331 64215.3 7.8 0.15 16 0.4 0.21 13
    LNU327 64490.3 8.3 0.06 23 0.4 0.05 21
    LNU290 64369.3 0.4 0.12 17
    CONT. 6.7 0.3
    LNU493 64191.3 0.8 0.10 19 6.9 0.07 15
    LNU493 64191.4 7.0 0.08 17
    LNU485 63825.1 6.6 0.27  9
    LNU456 63991.8 0.8 0.03 27 6.9 0.09 14
    LNU455 64187.5 6.9 0.09 14
    LNU371 63974.6 0.8 0.25 14 6.9 0.10 14 0.4 0.21 10
    LNU360 64030.4 0.4 0.27  9
    LNU343 64208.4 0.8 0.09 20
    LNU328 64150.1 0.8 0.26 15 6.8 0.11 13
    LNU328 64151.2 6.9 0.10 14 0.4 0.15 12
    LNU306 64132.6 0.8 0.18 16
    CONT. 0.7 6.0 0.3
    LNU468 63492.2 0.4 0.19 13
    LNU462 63503.2 0.4 0.26 11
    LNU375 63454.2 6.3 0.24 17 0.4 0.10 15
    LNU323 63421.2 0.4 0.28 10
    CONT. 5.4 0.4
    Table 83.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01 p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 84
    Genes showing improved plant performance at low Nitrogen growth conditions under
    regulation of At6669 promoter
    Rosette
    Harvest Index Rosette Area [cm2] Diameter [cm]
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU519 64678.1 7.8 0.25 16
    LNU519 64681.8 7.8 0.02 16 4.6 0.04 7
    LNU503 64203.3 7.4 0.15 10 4.5 0.17 4
    LNU460 64359.4 0.4 0.29 4 7.8 0.08 16 4.7 0.16 8
    LNU460 64362.1 7.2 0.26 7
    LNU459 64542.1 0.4 0.15 7 7.1 0.26 6 4.5 0.12 5
    LNU421 64303.4 4.5 0.17 4
    LNU409 64687.2 7.9 0.01 17 4.8 0.01 10 
    LNU409 64688.2 7.8 0.02 15 4.8 0.10 10 
    LNU385 64245.3 7.7 0.10 14 4.7 0.15 9
    LNU360 64030.1 8.6 L 28 4.9 L 14 
    LNU360 64030.4 0.4 0.10 9
    LNU336 64447.4 7.1 0.26 6
    LNU336 64449.4 0.4 0.21 7
    LNU331 64212.3 7.2 0.19 7 4.6 0.10 6
    LNU331 64214.2 4.5 0.28 3
    LNU331 64215.3 7.8 0.05 15 4.1 0.01 9
    LNU327 64490.3 8.0 0.02 18 4.8 0.02 10 
    LNU290 64369.3 4.5 0.22 4
    CONT. 0.4 6.7 4.3
    LNU502 64038.5 6.6 0.15 8 4.5 0.05 7
    LNU502 64039.4 0.4 L 8
    LNU500 64221.2 0.5 0.30 19
    LNU500 64223.1 0.4 0.09 5
    LNU493 64191.3 7.1 0.01 17 4.5 0.04 7
    LNU485 63825.1 6.7 0.06 11
    LNU480 64018.4 0.4 0.29 9
    LNU456 63991.8 6.9 0.08 14 4.4 0.21 7
    LNU456 63992.5 0.5 0.04 16
    LNU455 64187.4 6.5 0.21 7 4.4 0.13 5
    LNU455 64187.5 0.5 L 12 6.9 0.17 14 4.5 0.04 9
    LNU455 64189.7 0.4 0.15 4
    LNU371 63973.10 0.4 0.26 3
    LNU371 63974.6 6.9 0.04 14 4.5 0.04 7
    LNU360 64030.1 0.4 0.13 4
    LNU328 64150.1 7.0 0.11 14 4.5 0.11 7
    LNU328 64151.2 0.4 0.17 4 6.8 0.05 12 4.5 0.06 8
    LNU317 64097.2 0.4 0.14 9
    LNU306 64132.2 0.5 0.19 13
    LNU305 64115.1 0.5 0.16 13 6.6 0.14 8 4.4 0.11 5
    CONT. 0.4 6.1 4.2
    LNU499 64146.8 0.3 0.01 21
    LNU485 63828.3 0.3 0.03 22
    LNU468 63493.4 0.3 0.01 22
    LNU467 63718.1 0.3 0.05 14
    LNU467 63718.2 0.3 0.07 17
    LNU462 63502.2 0.3 0.09 19
    LNU462 63503.2 0.3 0.08 18
    LNU450 63708.3 0.3 L 27
    LNU450 63708.6 5.6 0.15 8
    LNU450 63710.2 0.3 0.06 27
    LNU450 63712.3 0.3 0.24 25
    LNU448 63705.2 0.3 0.23 9
    LNU448 63706.5 0.3 0.02 20
    LNU448 63707.2 0.3 L 32
    LNU429 63937.4 0.3 0.22 17
    LNU416 64134.11 0.3 0.19 18
    LNU416 64134.2 0.3 0.15 11
    LNU399 63944.2 0.3 0.12 19
    LNU395 64142.8 0.3 0.06 14
    LNU395 64143.5 0.3 0.06 14
    LNU392 63697.4 0.3 0.11 16
    LNU390 63539.4 0.3 0.12 11
    LNU375 63452.3 0.3 0.28 23
    LNU375 63454.2 0.3 L 31 6.0 0.02 15 4.4 0.01 11 
    LNU349 63989.6 0.3 L 24
    LNU349 63990.2 0.3 0.24 11
    LNU347 63508.1 0.3 0.22 13
    LNU347 63513.4 0.3 0.09 16
    LNU329 63427.3 0.3 0.22 22
    LNU329 63430.3 0.3 0.05 19
    LNU323 63421.2 0.3 0.29 19 4.1 0.16 5
    CONT. 0.3 5.2 3.9
    Table 84.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 85
    Genes showing improved plant performance at low Nitrogen growth
    conditions under regulation of At6669 promoter
    1000 Seed
    Weight [mg]
    Gene Seed Yield [mg] %
    Name Event # Ave. P-Val. % Incr. Ave. P-Val. Incr.
    LNU508 64460.1 94.2 0.17  6
    LNU421 64303.4 25.2 L 14
    LNU409 64687.2 23.5 0.02 7
    LNU408 64250.8 23.4 0.02 7
    LNU385 64245.3 97.2 0.05 10
    LNU348 64472.2 26.9 0.13 22
    LNU340 64292.5 94.1 0.19  6
    LNU336 64447.4 22.7 0.20 3
    LNU331 64212.1 24.3 L 10
    LNU327 64491.2 101.1 0.06 14
    LNU316 64567.1 26.1 L 19
    LNU290 64369.3 23.9 0.29 9
    CONT. 88.5 22.0
    LNU502 64038.2 22.8 0.14 10
    LNU502 64038.5 24.4 L 18
    LNU502 64039.3 22.0 0.17 6
    LNU500 64222.1 24.9 0.07 20
    LNU498 64185.3 88.3 0.18 11
    LNU498 64186.1 87.7 0.14 11
    LNU498 64186.2 86.9 0.12 10
    LNU493 64191.3 22.7 0.09 9
    LNU485 63825.1 30.8 0.01 48
    LNU485 63828.3 21.3 0.22 2
    LNU456 63991.2 86.6 0.13  9
    LNU456 63991.8 91.7 0.14 16
    LNU456 63992.6 21.3 0.16 3
    LNU455 64189.4 21.3 0.22 2
    LNU384 64161.2 22.1 0.08 6
    LNU371 63973.12 21.8 0.22 5
    LNU371 63974.4 22.4 0.03 8
    LNU371 63974.6 23.6 L 14
    LNU360 64029.8 90.6 0.04 14
    LNU360 64030.1 21.3 0.29 2
    LNU343 64208.1 23.6 0.26 14
    LNU343 64208.2 24.7 L 19
    LNU328 64151.1 23.4 0.12 13
    LNU322 63918.4 21.8 0.03 5
    LNU317 64097.1 21.3 0.22 3
    LNU306 64130.7 21.5 0.24 3
    LNU306 64132.6 24.4 0.07 17
    CONT. 79.2 20.8
    LNU499 64146.8 102.9 L 35
    LNU499 64147.11 98.8 0.19 30
    LNU485 63825.1 95.6 0.05 26 24.4 0.02 51
    LNU485 63825.2 87.4 0.27 15
    LNU485 63828.3 16.9 0.26 5
    LNU468 63493.2 96.7 0.03 27 16.8 0.30 4
    LNU468 63493.4 108.7 0.03 43
    LNU467 63714.4 17.2 0.24 6
    LNU467 63718.1 17.2 0.05 7
    LNU462 63503.2 103.3 0.01 36 17.4 0.04 8
    LNU462 63505.1 17.0 0.08 6
    LNU450 63708.3 150.5 0.05 98
    LNU450 63708.6 131.6 L 73 22.5 L 39
    LNU450 63709.4 123.4 0.18 62
    LNU450 63710.2 148.3 0.07 95
    LNU450 63712.3 157.1 L 107 
    LNU448 63705.3 16.8 0.17 4
    LNU448 63706.5 149.8 L 97
    LNU448 63707.2 91.0 0.15 20 18.3 L 13
    LNU429 63937.3 20.1 0.04 24
    LNU429 63937.4 105.1 L 38
    LNU429 63938.5 16.9 0.30 5
    LNU416 64134.2 16.8 0.20 4
    LNU399 63944.2 90.8 0.08 19
    LNU399 63945.3 87.2 0.20 15
    LNU395 64142.8 16.7 0.26 3
    LNU395 64143.5 100.6 0.10 32
    LNU395 64145.4 96.9 0.26 27
    LNU392 63701.2 21.1 L 31
    LNU390 63539.2 94.6 0.15 24
    LNU390 63539.3 17.5 0.02 8
    LNU390 63539.4 16.7 0.23 3
    LNU375 63452.3 102.5 0.01 35
    LNU375 63454.2 123.5 0.01 62
    LNU349 63989.6 93.9 0.05 23 16.7 0.30 4
    LNU349 63990.2 91.3 0.27 20
    LNU329 63428.2 18.6 0.01 16
    LNU323 63421.2 106.4 0.26 40
    LNU323 63424.4 84.4 0.29 11
    CONT. 76.1 16.1
    Table 85.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 86
    Genes showing improved plant performance at Normal growth conditions under regulation
    of At6669 promoter
    Inflorescence
    Dry Weight [mg] Flowering Emergence
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU503 64203.3 620.0 0.23  9
    LNU460 64360.1 623.1 0.13 10
    LNU421 64303.3 16.5 0.25 −1
    LNU421 64303.4 615.6 0.19  8 16.5 0.25 −1
    LNU336 64449.4 15.9 L −4 11.9 0.07 −5
    LNU290 64372.2 16.4 0.27 −1
    CONT. 568.8 16.6 12.6
    LNU502 64038.5 734.4 L  9 11.1 0.07 −6
    LNU502 64039.4 698.8 0.06  4
    LNU500 64221.2 693.8 0.10  3
    LNU500 64221.6 11.2 0.11 −5
    LNU500 64222.1 760.6 0.24 13
    LNU498 64184.2 705.0 0.05  5
    LNU498 64185.3 700.6 0.15  4
    LNU498 64186.1 747.5 L 11
    LNU493 64190.1 11.2 0.11 −5
    LNU493 64191.3 799.4 L 19
    LNU485 63825.1 878.8 0.18 31 11.4 0.27 −4
    LNU456 63991.2 11.0 0.04 −7
    LNU456 63991.8 16.1 0.28 −2 11.2 0.11 −5
    LNU456 63992.5 11.2 0.10 −6
    LNU455 64187.4 11.1 0.06 −7
    LNU455 64189.4 712.5 0.20  6
    LNU412 63940.10 764.4 L 14
    LNU384 64161.6 763.8 0.09 14
    LNU371 63974.6 11.4 0.27 −4
    LNU343 64208.1 706.2 0.20  5
    LNU343 64208.4 731.2 L  9
    LNU343 64209.2 748.8 0.15 11
    LNU328 64150.1 693.8 0.22  3 11.0 0.04 −7
    LNU328 64150.2 11.3 0.16 −4
    LNU328 64151.1 11.1 0.06 −7
    LNU328 64151.2 11.1 0.07 −6
    LNU322 63918.3 687.5 0.26  2 11.4 0.27 −4
    LNU317 64097.1 15.9 0.03 −3 11.0 0.04 −7
    LNU317 64097.2 11.3 0.28 −5
    LNU317 64097.3 11.4 0.27 −4
    LNU305 64111.1 11.1 0.07 −6
    LNU305 64115.1 768.8 0.05 14
    CONT. 672.5 16.4 11.9
    LNU499 64146.12 13.6 0.02 −14 
    LNU485 63825.2 16.7 0.26 −3
    LNU468 63493.2 14.1 0.05 −12 
    LNU467 63716.1 13.5 0.02 −15 
    LNU467 63718.2 13.8 0.02 −14 
    LNU462 63503.1 13.5 0.02 −15 
    LNU450 63708.3 996.2 0.28 22
    LNU450 63712.3 940.0 0.14 15
    LNU448 63706.5 1195.0  0.06 46
    LNU429 63937.4 13.8 0.02 −14 
    LNU416 64134.1 13.9 0.06 −12 
    LNU395 64145.1 14.1 0.05 −12 
    LNU375 63452.2 16.2 0.10 −6
    LNU349 63990.4 13.8 0.02 −14 
    LNU347 63510.2 13.5 0.02 −15 
    LNU329 63427.3 16.7 0.26 −3 13.5 0.02 −15 
    CONT. 816.2 17.3 15.9
    Table 86.
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 87
    Genes showing improved plant performance at Normal growth conditions under regulation
    of At6669 promoter
    Gene Event Leaf Blade Area [cm2] Leaf Number Plot Coverage [cm2]
    Name # Ave. P-Val. % Incr. Ave. P-Va. % Incr. Ave. P-Val. % Incr.
    LNU519 64678.1 11.4 0.24 7
    LNU508 64457.2 11.2 0.03 6
    LNU503 64203.3 11.0 0.14 4
    LNU503 64204.2 11.1 0.22 5
    LNU460 64359.4 1.3 0.09 5 11.1 0.17 4
    LNU460 64362.1 1.4 0.14 12 11.6 L 10 90.0 0.02 20
    LNU421 64302.7 11.1 0.22 5
    LNU421 64303.3 10.9 0.21 3
    LNU385 64245.5 11.3 0.20 7
    LNU360 64030.1 11.8 0.02 11
    LNU348 64472.2 1.3 0.15 5 11.4 0.04 8 81.2 0.03 8
    LNU348 64474.2 1.4 0.23 15 11.1 0.07 5 85.5 0.12 14
    LNU340 64290.11 11.2 0.11 6
    LNU336 64449.4 1.3 0.02 8
    LNU331 64212.1 11.4 0.02 7 82.5 0.15 10
    LNU331 64215.1 1.3 0.21 10
    LNU331 64215.3 11.9 L 13
    LNU290 64369.3 11.3 0.20 7
    LNU290 64372.1 1.4 0.08 11 82.5 0.12 10
    CONT. 1.2 10.6 74.9
    LNU502 64038.5 1.3 0.23 10 11.3 L 6 79.3 0.22 12
    LNU500 64221.6 11.4 0.10 7
    LNU498 64186.1 1.3 0.18 9 11.4 L 7 82.1 0.10 16
    LNU493 64190.1 10.9 0.08 2
    LNU493 64191.3 11.4 0.03 7 80.8 0.11 14
    LNU493 64191.4 1.3 0.18 9 11.2 0.17 5 80.0 0.16 13
    LNU485 63825.1 1.4 0.10 23 87.7 0.02 23
    LNU480 64018.1 1.3 0.21 10 11.4 0.18 7 80.4 0.11 13
    LNU455 64187.4 11.5 0.15 8
    LNU371 63974.6 10.9 0.08 2
    LNU360 64029.8 11.4 0.22 7
    LNU343 64208.4 11.8 0.27 10
    LNU343 64209.2 11.1 0.08 4
    LNU328 64150.1 10.8 0.25 1
    LNU328 64151.1 1.3 0.13 11
    LNU328 64151.2 11.1 0.29 4
    LNU322 63917.2 11.4 L 7
    LNU317 64097.3 1.3 0.26 8 81.3 0.09 14
    LNU305 64111.1 11.4 L 7 79.8 0.13 12
    LNU305 64111.3 11.1 0.02 4
    LNU305 64115.1 1.3 0.06 13 11.6 0.30 9 85.5 0.03 20
    CONT. 1.2 10.7 71.1
    LNU462 63505.1 0.9 0.28 12
    LNU429 63938.5 10.5 0.29 10
    LNU395 64143.5 0.9 0.16 9 10.2 0.15 7
    LNU375 63452.2 10.1 0.16 5
    LNU323 63424.4 0.9 0.19 9
    CONT. 0.8 9.6
    Table 87
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO:3829).
  • TABLE 88
    Genes showing improved plant performance at Normal growth conditions under regulation
    of At6669 promoter
    Gene Event RGR Of Leaf Number RGR Of Plot Coverage RGR Of Rosette Diameter
    Name # Ave. P-Val. % Incr. Ave. P-Val % Incr. Ave. P-Val % Incr.
    LNU503 64204.2 0.9 0.23 14
    LNU460 64360.1 0.8 0.29 12
    LNU460 64362.1 11.7 0.12 21 0.5 0.04 14
    LNU421 64302.7 0.8 0.28 11
    LNU412 63940.10 11.3 0.24 17
    LNU408 64248.10 0.5 0.23 8
    LNU360 64030.1 0.9 0.13 17
    LNU360 64030.6 0.9 0.24 14
    LNU348 64474.2 11.2 0.27 15 0.5 0.11 12
    LNU340 64290.11 0.9 0.18 17
    LNU340 64292.5 11.3 0.25 16
    LNU336 64449.4 0.5 0.05 16
    LNU331 64215.3 0.9 0.17 15
    LNU290 64369.4 0.5 0.17 9
    CONT. 0.8 9.7 0.5
    LNU500 64221.6 0.8 0.18 14
    LNU498 64186.1 0.9 0.05 21 10.7 0.28 16
    LNU485 63825.1 11.3 0.15 22
    LNU480 64018.1 0.9 0.16 19
    LNU456 63991.2 0.8 0.20 15
    LNU455 64187.4 0.9 0.04 22
    LNU360 64029.8 0.9 0.06 20
    LNU343 64208.4 0.9 0.05 24
    LNU328 64151.2 0.8 0.23 13
    LNU305 64111.1 0.8 0.28 12
    LNU305 64115.1 0.9 0.17 16 11.1 0.19 20
    CONT. 0.7 9.2
    LNU429 63938.5 0.5 0.12 15
    LNU395 64143.5 0.5 0.09 15
    CONT. 0.4
    Table 88
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 89
    Genes showing improved plant performance at Normal growth conditions under regulation
    of At6669 promoter
    Gene Event Harvest Index Rosette Area [cm2] Rosette Diameter [cm]
    Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr. Ave. P-Val. % Incr.
    LNU508 64459.2 0.4 0.27 4
    LNU503 64204.2 5.4 0.17 2
    LNU460 64360.3 0.4 0.24 6
    LNU460 64362.1 11.2 0.02 20 5.8 0.03 10
    LNU459 64543.2 5.4 0.28 2
    LNU408 64248.10 5.4 0.09 3
    LNU348 64472.2 10.2 0.03 8
    LNU348 64474.2 10.7 0.12 14 5.6 0.07 7
    LNU336 64449.4 5.7 0.28 8
    LNU331 64212.1 10.3 0.15 10
    LNU331 64215.1 5.6 L 6
    LNU290 64369.4 5.5 0.06 5
    LNU290 64372.1 10.3 0.12 10 5.6 0.27 6
    CONT. 0.3 9.4 5.3
    LNU502 64038.5 9.9 0.22 12 5.7 0.28 8
    LNU502 64039.4 0.5 0.04 9
    LNU498 64185.3 0.5 0.16 8
    LNU498 64186.1 10.3 0.10 16
    LNU493 64191.3 10.1 0.11 14
    LNU493 64191.4 10.0 0.16 13
    LNU485 63825.1 11.0 0.02 23 5.8 0.06 9
    LNU480 64018.1 10.1 0.11 13 5.7 0.14 8
    LNU455 64187.4 0.5 0.29 14
    LNU455 64189.4 0.5 0.26 4
    LNU412 63940.8 0.5 0.02 10
    LNU322 63918.4 0.5 0.03 9
    LNU317 64097.3 10.2 0.09 14 5.7 0.09 8
    LNU305 64111.1 10.0 0.13 12
    LNU305 64115.1 10.7 0.03 20 5.6 0.21 6
    CONT. 0.5 8.9 5.3
    LNU485 63826.1 0.3 0.02 14
    LNU485 63828.3 0.3 0.22 11
    LNU468 63492.2 0.3 0.11 25
    LNU462 63502.2 0.3 0.23 11
    LNU462 63503.2 0.3 0.09 24
    LNU450 63712.3 0.3 0.03 19
    LNU448 63705.2 0.3 0.15 7
    LNU448 63705.3 0.3 0.05 11
    LNU448 63707.2 0.3 0.11 9
    LNU429 63938.5 0.3 0.19 16 4.7 0.14 10
    LNU399 63944.2 0.3 0.24 15
    LNU395 64143.5 4.5 0.09 7
    LNU392 63698.2 0.3 0.09 8
    LNU390 63539.3 0.3 0.25 6
    LNU375 63452.3 0.3 0.07 19
    LNU375 63454.2 0.3 L 18
    LNU349 63989.6 0.3 0.19 10
    LNU347 63513.3 0.3 0.02 32
    LNU329 63427.3 0.3 L 31
    LNU329 63429.1 0.3 0.08 9
    LNU323 63421.2 0.3 0.03 13
    CONT. 0.3 4.2
    Table 89
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • TABLE 90
    Genes showing improved plant performance at Normal growth conditions under regulation
    of At6669 promoter
    Gene Event Seed Yield [mg] 1000 Seed Weight [mg]
    Name # Ave. P-Val. % Incr. Ave. P-Val. % Incr.
    LNU460 64360.1 215.8 0.21 12
    LNU421 64303.4 204.8 0.21 6
    LNU421 64304.3 207.3 0.09 8
    LNU408 64248.10 23.0 0.20 8
    LNU348 64472.2 26.4 0.07 24
    LNU340 64292.5 202.0 0.25 5
    LNU331 64212.1 23.4 0.15 10
    LNU331 64215.3 202.6 0.25 5
    CONT. 192.8 21.3
    LNU502 64038.2 22.0 0.03 7
    LNU502 64038.5 29.6 0.29 44
    LNU502 64039.4 350.0 0.04 14
    LNU500 64222.1 25.2 L 22
    LNU500 64223.1 21.4 0.24 4
    LNU498 64185.3 346.1 0.02 12 21.2 0.29 3
    LNU498 64186.1 366.9 0.11 19 22.3 0.06 8
    LNU493 64191.3 24.4 0.14 18
    LNU485 63825.1 27.4 0.06 33
    LNU485 63828.3 22.2 0.03 7
    LNU455 64189.4 340.6 0.03 11
    LNU412 63940.8 337.2 0.04 9
    LNU384 64161.6 22.6 0.22 10
    LNU371 63974.4 21.2 0.26 3
    LNU343 64208.1 21.4 0.25 4
    LNU328 64151.1 24.3 L 18
    LNU306 64130.7 22.3 0.19 8
    LNU306 64132.6 24.3 0.04 18
    LNU305 64115.1 373.2 0.15 21 22.2 0.28 8
    CONT. 308.1 20.6
    LNU499 64146.12 21.0 0.06 22
    LNU499 64146.8 219.5 0.26 8 19.2 0.11 11
    LNU485 63825.1 23.0 0.15 33
    LNU485 63826.1 226.6 0.13 12
    LNU467 63716.1 19.7 0.11 14
    LNU467 63718.2 219.7 0.26 8
    LNU462 63503.1 220.5 0.28 9
    LNU450 63708.3 246.0 0.03 21
    LNU450 63712.3 279.6 L 38
    LNU448 63705.3 259.6 0.22 28
    LNU448 63706.5 305.0 0.04 50 18.3 0.18 6
    LNU429 63938.5 220.5 0.23 9
    LNU416 64134.1 235.0 0.18 16
    LNU416 64134.2 224.4 0.16 11
    LNU399 63944.2 238.6 0.15 18
    LNU399 63944.6 228.5 0.28 13
    LNU395 64145.1 21.4 0.20 23
    LNU392 63701.2 20.7 0.12 20
    LNU347 63513.3 237.3 0.05 17
    LNU329 63427.3 239.9 0.04 18
    CONT. 202.7 17.3
    Table 90
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
    The transgenes were under the transcriptional regulation of the new At6669 promoter (SEQ ID NO: 3829).
  • Example 18 Evaluation of Transgenic Arabidopsis NUE, Yield and Plant Growth Rate Under Low or Normal Nitrogen Fertilization in Greenhouse Assay
  • Assay 2: Nitrogen Use efficiency measured until bolting stage: plant biomass and plant growth rate at limited and optimal nitrogen concentration under greenhouse conditions—This assay follows the plant biomass formation and the rosette area growth of plants grown in the greenhouse at limiting and non-limiting nitrogen growth conditions. Transgenic Arabidopsis seeds were sown in agar media supplemented with ½ MS medium and a selection agent (Kanamycin). The T2 transgenic seedlings were then transplanted to 1.7 trays filled with peat and perlite in a 1:1 ratio. The trays were irrigated with a solution containing nitrogen limiting conditions, which were achieved by irrigating the plants with a solution containing 1.5 mM inorganic nitrogen in the form of KNO3, supplemented with 1 mM KH2PO4, 1 mM MgSO4, 3.6 mM KCl, 2 mM CaCl2) and microelements, while normal nitrogen levels were achieved by applying a solution of 6 mM inorganic nitrogen also in the form of KNO3 with 1 mM KH2PO4, 1 mM MgSO4, 2 mM CaCl2) and microelements. All plants were grown in the greenhouse until bolting. Plant biomass (the above ground tissue) was weighted in directly after harvesting the rosette (plant fresh weight [FW]). Following plants were dried in an oven at 50° C., for 48 hours and weighted (plant dry weight [DW]).
  • Each construct was validated at its T2 generation. Transgenic plants transformed with a construct conformed by an empty vector carrying the AT6669 promoter and the selectable marker was used as control.
  • The plants were analyzed for their overall size, growth rate, fresh weight and dry matter. Transgenic plants performance was compared to control plants grown in parallel under the same conditions. Mock-transgenic plants expressing the uidA reporter gene (GUS-Intron) or with no gene at all, under the same promoter were used as control.
  • The experiment was planned in nested randomized plot distribution. For each gene of the invention three to five independent transformation events were analyzed from each construct.
  • Digital imaging—A laboratory image acquisition system, which consists of a digital reflex camera (Canon EOS 300D) attached with a 55 mm focal length lens (Canon EF-S series), mounted on a reproduction device (Kaiser RS), which includes 4 light units (4×150 Watts light bulb) was used for capturing images of plant samples.
  • The image capturing process was repeated every 2 days starting from day 1 after transplanting till day 15. Same camera, placed in a custom made iron mount, was used for capturing images of larger plants sawn in white tubs in an environmental controlled greenhouse. The tubs were square shape include 1.7 liter trays. During the capture process, the tubes were placed beneath the iron mount, while avoiding direct sun light and casting of shadows.
  • An image analysis system was used, which consists of a personal desktop computer (Intel P4 3.0 GHz processor) and a public domain program—ImageJ 1.39 [Java based image processing program which was developed at the U.S. National Institutes of Health and freely available on the internet at Hypertext Transfer Protocol://rsbweb (dot) nih (dot) gov/]. Images were captured in resolution of 10 Mega Pixels (3888×2592 pixels) and stored in a low compression JPEG (Joint Photographic Experts Group standard) format. Next, analyzed data was saved to text files and processed using the JMP statistical analysis software (SAS institute).
  • Leaf analysis—Using the digital analysis leaves data was calculated, including leaf number, rosette area, rosette diameter, leaf blade area.
  • Vegetative growth rate: the relative growth rate (RGR) of leaf number (Formula XII, described above), rosette area (Formula V described above) and plot coverage (Formula XIX, described above) are calculated using the indicated formulas.
  • Plant Fresh and Dry weight—On about day 80 from sowing, the plants were harvested and directly weight for the determination of the plant fresh weight (FW) and left to dry at 50° C., in a drying chamber for about 48 hours before weighting to determine plant dry weight (DW).
  • Statistical analyses—To identify genes conferring significantly improved tolerance to abiotic stresses, the results obtained from the transgenic plants were compared to those obtained from control plants. To identify outperforming genes and constructs, results from the independent transformation events tested were analyzed separately. Data was analyzed using Student's t-test and results are considered significant if the p value was less than 0.1. The JMP statistics software package was used (Version 5.2.1, SAS Institute Inc., Cary, N.C., USA).
  • Experimental Results:
  • The genes listed in the following Tables were cloned under the regulation of a constitutive (At6669). The evaluation of each gene was performed by testing the performance of different number of events. Event with p-value <0.1 was considered statistically significant.
  • The genes listed in Tables 91-92 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area, biomass (fresh weight, dry weight, leaf number, rosette diameter, rosette area and plot coverage) when grown under limiting nitrogen conditions.
  • TABLE 91
    Genes showing improved plant biomass production at limiting nitrogen growth conditions
    Gene Event Dry Weight [mg] Fresh Weight [mg] Leaf Number
    Name # Ave. P-Val. % Incr. Ave. P-Val % Incr. Ave. P-Val % Incr.
    LNU507 64087.1 9.6 0.17 4
    LNU507 64584.2 237.5 0.12 11
    LNU479 65497.2 30.6 0.06 35 268.8 L 25
    LNU479 65499.1 262.5 0.07 22 9.7 0.09 5
    LNU423 64102.1 25.0 0.19 10
    LNU418 65025.1 9.8 0.09 6
    LNU418 65027.2 9.8 0.22 6
    LNU418 65028.2 9.8 0.09 6
    LNU401 65493.2 231.2 0.27 8
    LNU377 64603.2 231.2 0.27 8
    LNU344 63520.4 28.1 0.02 24 9.5 0.27 3
    LNU337 64952.1 27.5 0.26 21 262.5 0.01 22
    LNU333 65295.1 9.8 0.04 6
    LNU333 65297.1 25.0 0.19 10
    LNU304 64573.1 25.4 0.14 12
    CONT. 22.7 214.6 9.2
    LNU494 65302.1 25.6 0.12 28 206.2 0.18 18
    LNU479 65499.1 25.0 0.08 25 206.2 0.18 18 12.2 0.15 5
    LNU423 64596.1 13.2 0.05 14
    LNU423 64598.3 24.4 0.19 22 12.0 0.29 3
    LNU418 65024.2 31.9 0.09 59 275.0 0.07 57
    LNU388 65487.1 26.2 0.16 31 206.2 0.18 18
    LNU388 65487.2 12.2 0.28 5
    LNU377 64604.3 12.9 0.01 11
    LNU339 65056.1 12.8 0.06 10
    LNU339 65058.2 12.2 0.19 6
    LNU337 64955.2 23.8 0.17 19
    LNU333 65295.1 24.4 0.19 22
    LNU333 65295.2 22.5 0.27 12
    LNU333 65297.1 13.1 0.13 13
    LNU324 64233.7 12.4 0.08 7
    LNU292 64085.2 23.8 0.17 19 225.0 0.08 29
    CONT. 20.0 175.0 11.6
    LNU519 64679.1 264.3 0.16 11
    LNU508 64457.2 256.2 0.30 8
    LNU469 64308.4 300.0 0.03 26
    LNU469 64311.5 9.8 0.09 4
    LNU460 64359.3 287.5 0.06 21
    LNU460 64360.1 45.6 0.04 26
    LNU460 64361.4 45.0 0.08 24 306.2 0.23 29
    LNU459 64541.4 48.1 0.24 33 300.0 L 26
    LNU459 64542.4 10.1 0.08 8
    LNU442 64056.1 300.0 0.18 26
    LNU442 64057.1 48.8 0.18 34
    LNU439 64615.2 267.0 0.11 12
    LNU439 64615.4 40.0 0.27 10
    LNU439 64616.2 262.5 0.27 11
    LNU439 64618.3 40.6 0.18 12 287.5 0.24 21
    LNU421 64303.3 275.0 0.12 16 9.8 0.09 4
    LNU421 04303.4 9.9 0.05 6
    LNU421 64304.4 293.8 0.12 24 10.2 L 10
    LNU420 64006.3 46.2 0.15 28 287.5 0.24 21
    LNU420 64009.1 295.5 0.29 24
    LNU409 64688.2 267.9 0.30 13
    LNU409 64689.3 46.4 0.13 28
    LNU408 64248.16 281.2 0.18 18
    LNU408 64249.4 9.6 0.19 3
    LNU368 64003.1 45.0 0.08 24
    LNU368 64004.2 262.5 0.16 11
    LNU368 64004.3 9.6 0.18 2
    LNU363 64410.1 293.8 0.01 24 10.3 0.15 10
    I.NU363 64411.2 306.2 L 29
    LNU363 64413.2 53.1 L 47 293.8 0.12 24 9.6 0.19 3
    LNU331 64214.2 275.0 0.12 16
    LNU331 64215.1 256.2 0.30 8
    LNU331 64215.3 45.0 0.03 24 312.5 L 32 10.0 0.17 7
    LNU316 64564.5 40.6 0.18 12
    LNU314 64434.2 41.9 0.10 16 9.9 0.11 6
    LNU290 64369.6 262.5 0.27 11
    CONT. 36.2 237.5 9.3
    LNU509 64692.3 9.5 0.20 3
    LNU509 64692.6 9.5 0.20 3
    LNU504 64453.2 9.7 0.15 5
    LNU501 64197.1 9.6 0.24 4
    LNU397 64376.4 9.5 0.20 3
    LNU396 64315.15 84.4 0.25 81
    LNU396 64317.4 9.6 0.24 4
    CONT. 46.7
    LNU513 63458.2 106.3 0.06 24 963.4 0.11 19
    LNU513 63459.2 99.4 0.02 16 868.8 0.30 7 9.6 0.07 4
    LNU512 63468.3 106.8 L 25
    LNU512 63468.4 9.4 0.19 3
    LNU512 63470.1 98.8 0.08 16
    LNU512 63471.3 100.6 0.01 18 893.8 0.21 10 9.6 0.23 4
    LNU512 63471.4 93.8 0.13 10 9.7 0.03 5
    LNU451 63496.2 9.4 0.29 2
    LNU451 63497.5 9.5 0.19 3
    LNU451 63499.1 98.1 0.12 15
    LNU451 63499.5 120.0 L 40 1018.8 L 25
    LNU451 63500.1 106.9 0.04 25
    LNU424 63474.3 97.5 0.25 14 868.8 0.30 7
    LNU424 63476.3 9.5 0.19 3
    LNU424 63477.2 9.7 0.15 5
    LNU415 63692.1 9.6 0.09 5
    LNU415 63692.3 94.3 0.13 10
    LNU411 63514.3 108.8 L 27 987.5 0.01 22
    LNU411 63515.3 103.8 L 21 881.2 0.22 8
    LNU411 63518.1 956.2 0.03 18
    LNU375 63451.3 111.9 0.06 31 1000.0 0.07 23
    LNU375 63452.2 114.6 L 34 971.4 0.03 20
    LNU375 63454.1 103.1 0.02 21 943.8 0.04 16 9.6 0.23 4
    LNU375 63454.2 113.8 L 33 1050.0 L 29
    LNU370 63544.3 105.0 L 23 937.5 0.16 15
    LNU370 63545.6 107.5 0.20 26 1006.3 L 24
    LNU370 63548.2 101.4 L 19 912.5 0.10 12
    LNU357 63533.1 97.5 0.03 14
    LNU357 63533.8 109.4 L 28 900.0 0.16 11 9.8 0.09 7
    LNU357 63534.1 105.6 0.19 24 943.8 0.18 16 9.5 0.19 3
    LNU356 63444.1 97.5 0.03 14
    LNU356 63444.2 96.9 0.03 13
    LNU356 63445.1 104.4 0.02 22
    LNU351 63462.3 107.5 0.24 26 943.8 0.04 16
    LNU351 63463.2 105.0 0.03 23 868.8 0.30 7
    LNU351 63464.1 9.8 0.04 6
    LNU351 63466.1 9.6 0.07 4
    LNU344 63520.2 93.1 0.28 9
    LNU344 63521.1 98.1 0.12 15
    LNU330 63438.1 104.4 0.10 22
    LNU330 63440.2 98.1 0.02 15
    LNU330 63441.1 9.6 0.07 4
    LNU326 63435.1 105.6 0.01 24 987.5 0.04 22 9.7 0.03 5
    LNU326 63436.1 99.4 0.17 16 893.8 0.15 10
    LNU319 63527.1 99.4 0.30 16 893.8 0.21 10
    LNU319 63527.2 9.5 0.10 3
    LNU319 63530.3 118.7 0.15 39 998.2 0.17 23
    LNU308 63414.1 100.6 0.08 18
    LNU308 63414.4 106.9 0.22 25 943.8 0.04 16
    LNU308 63417.5 115.6 0.15 35 9.7 0.03 5
    LNU308 63417.8 977.7 0.16 20
    LNU302 63378.3 108.1 0.07 27 968.8 0.13 19
    LNU302 63380.1 118.8 0.12 39 1045.5 L 29
    LNU302 63381.1 111.9 L 31 1000.0 0.03 23
    LNU302 63382.2 111.9 L 31 931.2 0.06 15 9.5 0.10 3
    LNU291 63385.2 101.9 0.03 19 975.0 0.05 20 9.7 0.03 5
    LNU291 63387.1 93.8 0.09 10 10.1 L 10
    LNU291 63387.3 943.8 0.18 16 9.8 0.04 6
    LNU291 63388.1 118.8 L 39 1062.5 L 31 9.6 0.23 4
    CONT. 85.4 812.5 9.2
    LNU482 64165.5 9.8 0.12 4
    LNU469 64313.9 41.9 0.17 12 350.0 0.23 9
    LNU444 64182.3 368.8 0.16 15 10.1 0.03 7
    LNU444 64183.1 350.0 0.23 9
    LNU442 64056.1 375.0 0.05 17
    LNU442 64553.1 10.2 0.06 8
    LNU442 64555.1 9.9 0.05 5
    LNU430 63935.1 43.8 0.03 17 375.0 0.21 17
    LNU430 63935.4 9.9 0.11 5
    LNU430 63936.2 10.0 0.03 6
    LNU391 63979.3 9.8 0.12 4
    LNU391 63980.3 43.1 0.27 16 356.2 0.10 11 10.2 0.10 9
    LNU376 63986.8 9.9 0.11 5
    LNU366 64028.3 381.2 0.02 19 10.4 0.12 11
    LNU314 64433.3 381.2 0.10 19
    LNU314 64437.2 368.8 0.04 15 9.9 0.05 5
    CONT. 37.3 320.8 9.4
    LNU511 65037.1 11.4 0.12 11
    LNU492 64176.4 187.5 0.15 8 11.4 0.12 11
    LNU463 64283.4 237.5 0.05 37 12.2 0.03 18
    LNU463 64283.5 200.0 0.22 15
    LNU454 64796.2 11.1 0.27 7
    LNU454 64796.3 193.8 0.11 11 11.2 0.20 9
    LNU454 64799.2 11.8 0.14 14
    LNU454 64800.5 11.1 0.27 7
    LNU413 65022.4 25.6 0.24 62 11.4 0.14 10
    LNU410 64971.2 187.5 0.15 8
    LNU387 64808.1 11.4 0.15 11
    LNU373 64826.4 21.2 0.21 34
    LNU373 64830.1 23.1 L 46
    LNU361 64835.2 193.8 0.11 11
    LNU355 65012.1 11.1 0.28 7
    LNU355 65015.2 218.8 L 26 12.1 0.03 17
    LNU332 64823.2 11.6 0.09 12
    LNU307 64958.2 187.5 0.15 8
    LNU307 64962.2 18.6 0.27 18 199.1 0.26 15
    LNU300 65030.2 11.1 0.24 8
    LNU300 65033.3 20.0 0.30 27
    CONT. 15.8 173.8 10.3
    LNU517 64296.3 40.0 0.23 19 300.0 0.25 19 10.1 L 10
    LNU517 64297.9 287.5 0.12 14
    LNU514 64364.2 312.5 0.04 24
    LNU514 64365.3 325.0 0.02 29 10.1 0.17 9
    LNU514 64366.1 331.2 0.05 31
    LNU509 64640.3 300.0 0.09 19 9.9 0.03 7
    LNU509 64690.6 9.6 0.08 4
    LNU509 64692.3 47.5 0.04 41
    LNU509 64692.6 300.0 0.09 19
    LNU501 64197.1 45.6 0.18 35 300.0 0.13 19 9.6 0.15 5
    LNU501 64197.3 325.0 0.02 29
    LNU501 64723.1 41.9 0.28 24
    LNU461 64666.1 43.1 0.10 28
    LNU397 64375.1 50.6 0.18 50 312.5 0.04 24
    LNU396 64315.13 9.4 0.22 2
    LNU396 64315.16 300.0 0.25 19
    LNU396 64317.3 331.2 0.29 31
    LNU396 64317.4 9.8 0.22 6
    LNU386 64394.3 9.6 0.26 4
    LNU381 64285.5 9.9 0.30 7
    LNU372 64483.3 306.2 0.04 21 9.7 0.16 5
    LNU369 64386.1 43.8 0.08 30 293.8 0.08 17
    LNU369 64387.1 42.5 0.21 26 306.2 0.12 21
    LNU369 64387.2 325.0 0.02 29 10.1 L 9
    LNU369 64389.2 300.0 0.09 19 9.8 0.05 6
    LNU365 64708.1 305.4 0.14 21
    LNU365 64711.3 10.1 0.30 10
    LNU350 64674.4 337.5 0.21 34
    LNU350 64676.2 281.2 0.20 12
    LNU350 64677.2 40.0 0.27 19 306.2 0.29 21
    LNU342 64035.3 306.2 0.12 21
    LNU342 64035.8 40.0 0.23 19 312.5 0.04 24
    LNU313 64661.8 331.2 0.05 31
    LNU313 64663.2 9.9 L 7
    LNU313 64664.1 46.2 0.05 37 325.0 0.02 29
    LNU313 64664.3 281.2 0.20 12
    LNU294 64658.7 40.6 0.27 20
    CONT. 33.8 252.1 9.2
    LNU472 63949.8 9.6 0.26 4
    LNU458 63893.1 33.8 0.13 46
    LNU425 63911.12 9.4 0.07 3
    LNU419 63896.2 250.0 0.27 7 9.5 0.17 3
    LNU403 64237.1 268.8 0.04 15
    LNU393 63978.6 262.5 0.06 12
    LNU374 63997.2 9.6 0.01 4
    LNU371 63974.4 9.7 0.18 5
    LNU335 64169.2 262.5 0.20 12
    CONT. 23.1 234.4 9.2 0.25 3
    LNU520 64157.4 9.2 0.25 3
    LNU518 64014.5 9.2 0.29 3
    LNU518 64016.4 9.5 0.20 6
    LNU500 64221.6 38.1 0.02 29 9.7 0.06 8
    LNU496 64195.1 9.9 0.12 11
    LNU493 64190.1 9.3 0.25 4
    LNU493 64191.3 9.6 0.03 8
    LNU481 64140.1 9.6 0.09 7
    LNU472 63919.5 9.2 0.29 3
    LNU472 63949.7 35.6 0.06 20
    LNU458 63894.3 9.8 0.04 10
    LNU458 63895.1 9.4 0.06 6
    LNU419 63896.2 46.2 0.07 56 9.4 0.28 5
    LNU419 63897.6 33.2 0.29 12
    LNU405 64159.8 38.8 0.07 31
    LNU343 64208.2 35.9 0.08 21
    LNU340 64290.7 237.5 0.18 10
    LNU328 64150.4 39.4 0.30 33 237.5 0.18 10
    LNU327 64491.2 45.0 L 52 268.8 0.01 24
    LNU322 63917.2 38.8 0.28 31
    LNU322 63918.1 43.1 L 46
    LNU322 63918.3 9.3 0.25 4
    LNU306 64132.1 9.3 0.13 4
    LNU305 64111.1 41.9 0.16 42 9.2 0.19 3
    LNU305 64111.3 237.5 0.18 10 9.6 0.27 8
    LNU305 64114.1 9.2 0.29 3
    CONT. 29.6 216.1 8.9
    LNU503 64203.3 83.1 0.23 9 606.2 0.23 7
    LNU503 64203.5 781.2 0.25 38
    LNU502 64038.5 10.9 0.21 5
    LNU502 64040.4 108.8 0.29 42 756.2 0.09 33
    LNU482 64164.8 637.5 0.13 12
    LNU480 64018.3 103.8 0.19 36
    LNU444 64181.1 11.0 0.26 7
    LNU444 64181.2 108.1 L 41 693.8 L 22 10.8 0.20 5
    LNU444 64182.3 86.9 0.09 14
    LNU430 63934.3 83.1 0.23 9 662.5 0.18 17
    LNU430 63935.1 90.6 L 19 656.2 0.25 16
    LNU430 63936.1 94.4 L 23
    LNU430 63952.1 115.6 0.25 51 806.2 L 42
    LNU403 64236.3 606.2 0.23 7
    LNU403 64237.1 681.2 0.09 20
    LNU403 64239.1 86.9 0.09 14 643.8 0.29 14
    LNU393 63976.2 90.0 0.29 18 637.5 0.13 12
    LNU393 63977.3 98.1 0.04 28 706.2 0.07 25
    LNU393 63977.6 96.2 0.27 26 693.8 0.08 22
    LNU391 63980.6 80.6 0.28 5
    LNU385 64246.3 797.3 0.06 41
    LNU376 63985.1 93.1 0.08 22 681.2 0.09 20
    LNU376 63987.2 101.9 1 33 712.5 0.10 26
    LNU374 63997.2 96.9 0.05 27 700.0 L 24
    LNU374 63997.4 86.2 0.04 13 687.5 L 21
    LNU366 64027.2 91.9 0.16 20
    LNU366 64027.7 643.8 0.18 14
    LNU366 64028.3 107.5 0.22 41 762.5 0.01 35
    LNU353 64033.2 91.2 L 19 656.2 0.04 16
    LNU353 64033.3 91.2 0.26 19 687.5 0.04 21
    LNU352 64199.1 700.0 0.03 24
    LNU352 64200.10 128.1 0.06 68 850.0 L 50 11.2 0.05 8
    LNU352 64201.1 91.2 L 19 681.2 L 20
    LNU335 64168.18 98.1 0.23 28 756.2 0.15 33 10.7 0.25 4
    LNU335 64168.19 150.0 L 96 950.0 L 68 10.9 0.12 5
    LNU317 64094.1 82.5 0.14 8
    LNU317 64097.2 593.8 0.26 5
    CONT. 76.5 566.7 10.3
    LNU499 64146.12 133.8 0.25 28 968.8 0.05 14
    LNU499 64146.8 925.0 0.19 9
    LNU468 63492.2 906.2 0.29 6 11.5 0.28 4
    LNU467 63718.2 116.2 0.28 11
    LNU462 63502.2 12.2 0.16 11
    LNU462 63505.1 11.3 0.15 2
    LNU455 64187.4 11.7 0.10 6
    LNU450 63708.6 126.9 0.12 21
    LNU450 63709.4 151.2 0.09 44 968.8 0.30 14
    LNU450 63710.2 11.6 0.04 5
    LNU448 63706.5 130.0 0.16 24 993.8 0.23 17
    LNU429 63937.4 129.4 0.07 24 962.5 0.28 13
    LNU402 63914.2 11.8 L 7
    LNU399 63944.6 141.9 0.11 35
    LNU395 64142.8 124.4 0.13 19 1018.8 0.03 20
    LNU392 63696.2 141.9 0.01 35 962.5 0.05 13
    LNU392 63698.2 135.6 0.10 29
    LNU392 63700.3 148.1 0.20 41 11.2 0.23 2
    LNU349 63989.1 125.0 0.09 19
    LNU349 63989.5 937.5 0.21 10
    LNU347 63508.1 11.6 0.02 5
    LNU347 63510.4 925.0 0.27 9 11.6 0.21 5
    LNU347 63513.3 122.5 0.15 17 987.5 0.03 16
    LNU329 63429.1 178.1 0.03 70 1112.5 0.01 30 11.9 0.17 8
    LNU323 63421.4 131.9 0.04 26 1043.8 L 22 11.4 0.23 4
    LNU323 63424.1 150.6 0.02 44
    CONT. 104.8 852.5 11.1
    LNU511 65038.1 30.6 0.08 28
    LNU492 64174.1 250.0 0.01 19
    LNU471 64838.1 231.2 0.14 10 9.8 0.09 8
    LNU413 65022.4 243.8 0.04 16
    LNU410 64971.1 28.1 0.13 17 237.5 0.05 13
    LNU410 64973.2 9.4 0.08 3
    LNU387 64810.4 225.0 0.22 7 9.3 0.25 2
    LNU382 64429.3 231.2 0.14 10 9.6 0.06 5
    LNU373 64828.1 9.6 0.02 5
    LNU373 64830.1 34.4 0.02 43 256.2 0.01 22
    LNU355 65013.2 9.5 0.04 4
    LNU307 64958.2 231.2 0.14 10 9.4 0.08 3
    LNU307 64959.2 243.8 0.28 16
    LNU303 65043.1 237.5 0.05 13 9.6 0.25 5
    LNU303 65046.3 9.9 0.29 9
    LNU300 65032.1 30.6 0.03 28
    CONT. 24.0 210.4 9.1
    LNU512 63468.3 87.5 0.20 21
    LNU451 63499.1 82.5 0.24 14 881.2 0.08 14
    LNU424 63476.3 92.5 0.08 28 981.2 0.01 27
    LNU424 63478.1 818.8 0.28 6
    LNU424 63478.3 84.4 0.23 16
    LNU415 63691.2 83.8 0.02 16 850.0 0.08 10
    LNU415 63692.2 77.5 0.29 7
    LNU411 63514.3 78.8 0.20 9
    LNU411 63517.1 86.9 0.30 20
    LNU375 63451.3 812.5 0.30 5
    LNU375 63452.2 88.1 0.15 22 943.8 0.07 22
    LNU375 63452.3 78.1 0.16 8
    LNU375 63454.2 856.2 0.15 11
    LNU370 63544.3 88.1 L 22 962.5 L 25
    LNU370 63545.2 86.2 0.02 19 968.8 0.10 26
    LNU357 63532.3 80.0 0.08 10 843.8 0.10 9
    LNU357 63533.1 80.0 0.07 10 818.8 0.28 6 12.1 0.05 12
    LNU357 63533.8 81.9 0.05 13 837.5 0.12 9
    LNU356 63444.1 77.5 0.19 7
    LNU356 63444.3 83.8 0.28 16
    LNU356 63445.1 82.5 0.03 14 856.2 0.15 11
    LNU351 63464.1 89.4 0.30 23
    LNU344 63520.4 80.0 0.14 10
    LNU330 63438.1 85.0 0.01 17
    LNU330 63441.2 89.4 0.30 23
    LNU319 63527.1 88.8 L 22 912.5 0.01 18
    LNU319 63527.2 83.8 0.05 16
    LNU319 63528.1 84.4 0.02 16 843.8 0.10 9 11.4 0.11 6
    LNU319 63530.3 81.9 0.05 13 918.8 0.04 19
    LNU308 63417.5 875.0 0.06 14
    LNU302 63380.1 80.0 0.14 10 887.5 0.04 15
    LNU302 63382.2 84.4 0.30 16
    LNU291 63387.1 79.4 0.21 9
    LNU291 63387.3 825.0 0.21 7
    LNU291 63388.1 78.1 0.16 8 856.2 0.08 11
    CONT. 72.5 770.8 10.7
    Table 91
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 92
    Genes showing improved plant biomass production at limiting nitrogen growth conditions
    Gene Event Plot Coverage [cm2] Rosette Area [cm2] Rosette Diameter [cm]
    Name # Ave. P-Val. % Incr. Ave. P-Val % Incr. Ave. P-Val % Incr.
    LNU507 64087.1 33.8 0.29 8 4.2 0.29 8 3.4 0.12 5
    LNU507 64584.2 3.3 0.29 3
    LNU479 65497.2 40.6 0.08 29 5.1 0.08 29 3.7 0.06 15
    LNU479 65497.5 34.2 0.24 9 4.3 0.24 9 3.3 0.15 5
    LNU479 65499.1 37.1 0.10 18 4.6 0.10 18 3.5 0.23 10
    LNU423 64102.1 3.4 0.07 7
    LNU418 65027.2 3.5 0.13 11
    LNU401 65493.2 34.1 0.28 8 4.3 0.28 8 3.4 0.09 6
    LNU377 64603.2 3.3 0.18 5
    LNU377 64604.3 3.5 0.06 10
    LNU368 64004.3 3.3 0.25 4
    LNU344 63520.4 3.7 L 17
    LNU344 63521.2 3.5 0.24 10
    LNU339 65056.1 3.5 0.17 9
    LNU337 64952.1 35.8 0.10 14 4.5 0.10 14 3.5 0.03 10
    LNU337 64954.1 3.3 0.24 4
    LNU333 65295.1 36.9 0.22 17 4.6 0.22 17 3.6 L 13
    LNU333 65297.1 35.3 0.24 12 4.4 0.24 12 3.5 0.04 11
    LNU333 65297.2 3.3 0.22 4
    LNU304 64573.1 3.4 0.10 7
    LNU304 64575.2 3.3 0.24 4
    LNU292 64084.1 36.1 0.06 15 4.5 0.06 15 3.6 L 13
    CONT. 31.5 3.9 3.2
    LNU507 64584.1 60.0 0.22 25 7.5 0.22 25 4.6 0.18 16
    LNU494 65302.1 58.3 0.12 21 7.3 0.12 21 4.4 0.14 11
    LNU479 65499.1 58.0 0.15 21 7.2 0.15 21 4.3 0.17 10
    LNU418 65024.2 75.2 0.08 57 9.4 0.08 57 5.1 L 31
    LNU388 65487.1 62.5 0.04 30 7.8 0.04 30 4.6 0.05 16
    LNU348 64469.1 4.3 0.23 9
    LNU336 64447.2 4.4 0.27 11
    LNU333 65295.2 4.3 0.27 8
    CONT. 48.0 6.0 3.9
    LNU508 64459.2 45.4 0.09 13 5.7 0.09 13 4.0 0.17 6
    LNU469 64308.4 49.5 0.23 23 6.2 0.23 23 4.2 0.14 11
    LNU469 64311.8 47.3 0.27 18 5.9 0.27 18
    LNU460 64359.3 47.7 0.05 19 6.0 0.05 19 4.1 0.10 8
    LNU460 64361.4 51.1 0.04 27 6.4 0.04 27 4.4 0.05 14
    LNU459 64044.1 4.1 0.23 6
    LNU459 64541.4 4.0 0.26 5
    LNU459 64542.1 4.1 0.24 7
    LNU459 64542.4 49.4 0.19 23 6.2 0.19 23 4.2 0.14 11
    LNU442 64057.1 47.3 0.04 18 5.9 0.04 18 4.2 0.04 10
    LNU442 64553.1 54.2 0.16 35 6.8 0.16 35 4.6 0.08 19
    LNU421 64303.4 43.3 0.27 8 5.4 0.27 8
    LNU421 64304.4 50.3 0.02 25 6.3 0.02 25 4.3 0.02 13
    LNU421 64305.11 4.1 0.27 7
    LNU420 64006.3 4.0 0.22 6
    LNU409 64688.2 5.5 0.18 10 4.3 0.02 12
    LNU408 64248.10 44.1 0.18 10 5.5 0.18 10
    LNU408 64249.4 46.1 0.06 15 5.8 0.06 15 4.1 0.08 8
    LNU368 64004.2 4.0 0.24 6
    LNU363 64409.2 44.1 0.19 10 5.5 0.19 10 4.2 0.04 10
    LNU363 64410.1 51.6 0.06 29 6.5 0.06 29 4.2 0.16 10
    LNU363 64413.2 44.1 0.19 10 5.5 0.19 10
    LNU331 64215.3 54.2 L 35 6.8 L 35 4.4 L 16
    LNU314 64434.2 54.7 0.03 36 6.8 0.03 36 4.4 0.03 16
    LNU290 64368.4 46.8 0.04 17 5.9 0.04 17 4.1 0.09 8
    LNU290 64369.3 43.7 0.22 9 5.5 0.22 9
    CONT. 40.1 5.0 3.8
    LNU517 64296.4 48.1 0.08 21 6.0 0.08 21 4.2 0.21 8
    LNU5I4 64365.2 44.1 0.26 11 5.5 0.26 11
    LNU509 64692.3 50.5 L 27 6.3 L 27 4.5 L 14
    LNU509 64692.6 48.4 0.02 22 6.0 0.02 22 4.3 0.03 10
    LNU504 64453.2 48.4 0.23 22 6.0 0.23 22
    LNU501 64197.1 45.4 0.07 14 5.7 0.07 14 4.2 0.09 8
    LNU397 64376.4 47.0 0.19 18 5.9 0.19 18
    LNU365 64708.2 44.9 0.18 13 5.6 0.18 13 4.2 0.22 8
    LNU365 64711.3 43.2 0.21 9 5.4 0.21 9 4.1 0.27 4
    CONT. 39.8 5.0 3.9
    LNU513 63456.2 32.8 0.05 12 4.1 0.05 12 3.4 0.16 3
    LNU513 63458.2 35.8 0.18 21 4.5 0.18 21 3.7 0.07 13
    LNU513 63459.2 38.5 L 31 4.8 L 31 3.8 L 16
    LNU513 63460.2 33.6 0.05 14 4.2 0.05 14 3.6 L 8
    LNU512 63468.3 37.1 L 26 4.6 L 26 3.7 0.02 12
    LNU512 63470.1 33.3 0.10 13 4.2 0.10 13 3.5 0.02 6
    LNU512 63471.3 32.7 0.03 11 4.1 0.03 11 3.6 0.08 7
    LNU512 63471.4 37.0 0.01 26 4.6 0.01 26 3.8 0.03 15
    LNU451 63499.1 32.3 0.05 10 4.0 0.05 10 3.5 0.04 5
    LNU451 63499.5 38.4 L 30 4.8 L 30 3.8 L 15
    LNU451 63500.1 36.0 0.04 22 4.5 0.04 22 3.7 0.22 12
    LNU424 63474.3 36.0 0.05 22 4.5 0.05 22 3.7 0.20 13
    LNU424 63476.3 36.4 L 24 4.6 L 24 3.7 0.08 11
    LNU424 63478.3 31.0 0.25 5 3.9 0.25 5
    LNU415 63692.1 32.2 0.17 9 4.0 0.17 9
    LNU411 63514.3 38.7 0.11 32 4.8 0.11 32 3.7 0.14 12
    LNU411 63518.1 34.3 L 16 4.3 L 16 3.6 L 9
    LNU375 63451.3 33.8 0.21 15 4.2 0.21 15
    LNU375 63452.2 33.8 0.04 15 4.2 0.04 15 3.6 0.07 9
    LNU375 63454.1 33.9 0.01 15 4.2 0.01 15 3.6 0.14 8
    LNU375 63454.2 36.7 0.16 25 4.6 0.16 25 3.8 0.07 14
    LNU370 63544.3 36.5 0.06 24 4.6 0.06 24 3.8 L 14
    LNU370 63545.6 35.7 0.17 21 4.5 0.17 21 3.7 0.05 11
    LNU370 63548.2 36.0 L 22 4.5 L 22 3.8 L 14
    LNU357 63533.1 41.0 0.07 39 5.1 0.07 39 3.9 L 19
    LNU357 63533.8 35.5 L 21 4.4 L 21 3.6 L 9
    LNU357 63534.1 39.5 0.03 34 4.9 0.03 34 3.9 L 18
    LNU356 63444.2 35.3 0.03 20 4.4 0.03 20 3.7 L 10
    LNU356 63445.1 35.2 0.07 20 4.4 0.07 20 3.7 0.03 12
    LNU351 63462.3 35.2 0.16 20 4.4 0.16 20 3.6 L 10
    LNU351 63463.2 38.4 L 30 4.8 L 30 3.8 L 15
    LNU351 63464.1 3.5 0.27 6
    LNU344 63520.2 33.4 0.02 13 4.2 0.02 13 3.5 0.02 6
    LNU344 63521.1 34.8 0.12 18 4.3 0.12 18 3.6 0.23 10
    LNU344 63521.2 33.5 0.08 14 4.2 0.08 14 3.5 0.19 5
    LNU330 63438.1 35.6 0.11 21 4.5 0.11 21 3.7 0.04 11
    LNU330 63439.1 32.5 0.08 10 4.1 0.08 10 3.5 L 7
    LNU326 63433.2 32.4 0.08 10 4.1 0.08 10 3.5 0.03 5
    LNU326 63433.4 35.3 L 20 4.4 L 20 3.6 L 9
    LNU326 63434.1 3.6 0.27 8
    LNU326 63435.1 40.1 0.03 36 5.0 0.03 36 4.0 L 20
    LNU319 63527.1 35.4 L 20 4.4 L 20 3.7 L 12
    LNU319 63527.2 35.7 0.28 21 4.5 0.28 21 3.7 0.21 10
    LNU319 63528.1 37.8 0.15 29 4.7 0.15 29 3.8 0.20 15
    LNU319 63530.3 34.9 0.08 19 4.4 0.08 19 3.6 0.24 9
    LNU308 63414.1 33.9 0.03 15 4.2 0.03 15 3.6 0.04 10
    LNU308 63414.4 37.3 0.02 27 4.7 0.02 27 3.9 L 18
    LNU308 63417.5 37.1 L 26 4.6 L 26 3.8 L 15
    LNU308 63417.8 37.3 L 27 4.7 L 27 3.7 L 12
    LNU302 63378.3 34.4 0.22 17 4.3 0.22 17 3.6 0.06 7
    LNU302 63581.1 40.5 L 38 5.1 L 38 3.9 L 18
    LNU302 63382.2 40.4 L 37 5.0 L 37 3.9 L 17
    LNU291 63385.2 37.6 0.19 28 4.7 0.19 28 3.7 0.25 12
    LNU291 63387.1 34.1 0.11 16 4.3 0.11 16 3.7 0.05 11
    LNU291 63387.3 36.3 0.22 23 4.5 0.22 23 3.8 0.18 14
    LNU291 63388.1 37.6 L 28 4.7 L 28 3.8 L 14
    CONT. 29.4 3.7 3.3
    LNU469 64308.5 4.2 0.27 3
    LNU469 64313.9 51.7 0.12 13 6.5 0.12 13 4.5 0.06 6
    LNU444 64182.3 52.0 0.04 13 6.5 0.04 13 4.3 0.08 7
    LNU442 64555.1 56.5 L 23 7.1 L 23 4.4 0.02 8
    LNU430 63935.1 51.9 0.08 13 6.5 0.08 13 4.4 0.12 10
    LNU391 63980.3 50.5 0.11 10 6.5 0.11 10 4.2 0.17 5
    LNU366 64027.7 52.6 0.03 15 6.6 0.03 15 4.3 0.03 8
    LNU366 64028.3 52.4 0.14 14 6.5 0.14 14
    LNU363 64409.3 4.2 0.23 5
    LNU314 64433.3 50.3 0.25 10 6.3 0.25 10 4.3 0.06 6
    LNU314 64437.2 4.2 0.18 4
    CONT. 45.8 5.7 4.0
    LNU492 64177.2 40.3 0.20 7 5.0 0.20 7
    LNU471 64838.1 42.1 0.12 12 5.3 0.12 12 3.6 0.09 5
    LNU463 64283.4 49.9 0.07 32 6.2 0.07 32 4.0 0.10 17
    LNU454 64796.3 44.5 0.01 18 5.6 0.01 18 3.7 0.02 8
    LNU454 64799.2 39.8 0.30 6 5.0 0.30 6
    LNU413 65019.1 41.8 0.07 11 5.2 0.07 11 3.7 0.03 7
    LNU413 65022.4 48.8 0.18 30 6.1 0.18 30 3.8 0.26 11
    LNU410 64974.3 44.9 L 19 5.6 L 19 3.7 0.01 9
    LNU387 64808.1 41.1 0.12 9 5.1 0.12 9 3.5 0.20 3
    LNU387 64810.4 45.4 0.12 20 5.7 0.12 20 3.7 0.23 7
    LNU382 64429.3 40.1 0.24 6 5.0 0.24 6 3.5 0.28 3
    LNU373 64826.4 44.6 0.07 18 5.6 0.07 18 3.7 0.04 9
    LNU373 64830.1 46.0 0.12 22 5.7 0.12 22 3.7 0.07 8
    LNU361 64832.1 43.7 0.19 16 5.5 0.19 16 3.6 0.08 6
    LNU355 65012.1 45.9 0.12 22 5.7 0.12 22 3.8 L 12
    LNU355 65014.2 41.4 0.11 10 5.2 0.11 10 3.7 0.03 7
    LNU355 65015.2 46.0 L 22 5.8 L 22 3.S L 10
    LNU332 64824.4 40.3 0.22 7 5.0 0.22 7
    LNU307 64958.2 41.8 0.07 11 5.2 0.07 11
    LNU307 64960.2 3.7 0.24 8
    LNU303 65046.3 40.3 0.29 7 5.0 0.29 7 3.6 0.13 4
    CONT. 37.7 4.7 3.4
    LNU517 64296.3 51.9 0.02 26 6.5 0.02 26 4.3 0.04 11
    LNU517 64297.9 49.5 0.03 20 6.2 0.03 20 4.1 0.06 8
    LNU514 64364.2 55.1 L 33 6.9 L 33 4.5 L 18
    LNU514 64365.3 52.3 0.09 27 6.5 0.09 27 4.4 L 14
    LNU514 64366.1 48.2 0.11 17 6.0 0.11 17 4.2 0.03 10
    LNU509 64692.3 47.3 0.06 15 5.9 0.06 15 4.2 0.02 10
    LNU501 64197.1 45.4 0.23 10 5.7 0.23 10
    LNU501 64197.3 45.5 0.15 10 5.7 0.15 10 4.0 0.22 5
    LNU501 64723.1 52.0 0.11 26 6.5 0.11 26 4.3 0.19 12
    LNU461 64668.5 44.4 0.26 8 5.6 0.26 8 4.2 0.05 9
    LNU397 64375.1 52.2 0.02 26 6.5 0.02 26 4.3 0.01 12
    LNU396 64315.13 45.9 0.12 11 5.7 0.12 11
    LNU396 64317.3 49.6 0.02 20 6.2 0.02 20 4.2 0.13 9
    LNU386 64394.3 4.0 0.30 5
    LNU372 64481.1 49.1 0.02 19 6.1 0.02 19 4.3 0.02 11
    LNU372 64483.3 53.5 L 29 6.7 L 2 4.3 0.08 12
    LNU369 64386.1 49.9 0.16 21 6.2 0.16 21 4.2 0.09 10
    LNU369 64387.1 52.1 0.12 26 6.5 0.12 26 4.3 0.08 13
    LNU369 64387.2 48.4 0.24 17 6.1 0.24 17
    LNU369 64389.2 52.7 L 28 6.6 L 28 4.4 L 14
    LNU350 64676.2 4.1 0.21 7
    LNU350 64677.2 4.0 0.29 4
    LNU345 64335.1 4.1 0.28 7
    LNU342 64035.1 45.9 0.14 11 5.7 0.14 11 4.0 0.27 5
    LNU342 64035.3 4.3 0.12 11
    LNU342 64035.8 4.0 0.23 5
    LNU313 64661.8 49.6 0.09 20 6.2 0.09 20 4.2 0.27 9
    LNU313 64664.1 50.0 0.02 21 6.3 0.02 21 4.2 0.03 10
    LNU313 64664.3 48.6 0.07 18 6.1 0.07 18 4.1 0.06 8
    CONT. 41.3 5.2 3.8
    LNU477 63888.1 3.8 0.23 3
    LNU472 63921.4 3.8 0.22 4
    LNU439 64616.2 38.5 0.24 9 4.8 0.24 9
    LNU419 63896.2 37.1 0.14 5 4.6 0.14 5
    LNU407 64219.1 37.2 0.08 6 4.6 0.08 6 3.9 L 8
    LNU403 64237.1 41.4 L 17 5.2 L 17 4.0 L 9
    LNU393 63978.2 37.7 0.03 7 4.7 0.03 7 3.8 0.06 4
    LNU374 63997.2 38.3 0.01 9 4.8 0.01 9 3.8 0.15 5
    LNU335 64169.2 41.2 0.12 17 5.2 0.12 17 3.9 0.09 9
    CONT. 35.2 4.4 3.6
    LNU500 64222.1 45.4 0.09 7 5.7 0.09 7
    LNU496 64195.6 46.1 0.05 9 5.8 0.05 9 4.3 0.08 8
    LNU472 63949.7 45.3 0.22 7 5.7 0.22 7 4.2 L 7
    LNU419 63897.6 46.3 0.21 9 5.8 0.21 9
    LNU343 64208.1 49.5 L 17 6.2 L 17 4.3 L 8
    LNU343 64209.1 4.1 0.29 3
    LNU328 64151.2 43.6 0.15 3 5.4 0.15 3 4.1 0.26 3
    LNU327 64491.2 48.1 0.03 13 6.0 0.03 13 4.2 0.18 6
    LNU305 64111.3 45.1 0.17 6 5.6 0.17 6
    CONT. 42.4 5.3 4.0
    LNU503 64203.3 57.1 0.26 12 7.1 0.26 12 4.6 0.16 7
    LNU430 63935.1 4.5 0.27 5
    LNU430 63952.1 60.0 0.13 18 7.5 0.13 18 4.6 0.09 8
    LNU403 64237.1 63.6 0.04 25 7.9 0.04 25 4.8 0.12 12
    LNU366 64028.3 4.6 0.19 7
    LNU353 64032.3 58.3 0.22 15 7.3 0.22 15
    LNU352 64199.1 58.1 0.19 14 7.3 0.19 14 4.7 0.06 10
    LNU352 64200.10 62.4 0.06 23 7.8 0.06 23 4.9 0.02 14
    LNU335 64168.19 67.9 0.05 34 8.5 0.05 34 5.0 0.02 17
    CONT. 50.8 6.4 4.3
    LNU499 64146.11 70.5 0.20 6 8.8 0.20 6
    LNU499 64146.7 5.0 0.26 3
    LNU499 64146.8 68.8 0.08 3 8.6 0.08 3 5.0 0.05 3
    LNU468 63492.2 83.4 0.05 25 10.4 0.05 25 5.6 0.07 14
    LNU468 63492.3 77.1 0.30 16 9.6 0.30 16 5.4 0.29 11
    LNU467 63714.4 70.9 0.11 61 8.9 0.11 6 5.1 0.08 4
    LNU467 63718.2 5.0 0.10 3
    LNU455 64187.5 5.0 0.10 2
    LNU455 64189.2 70.8 0.05 6 8.8 0.05 6 5.2 L 6
    LNU455 64189.7 88.9 0.14 33 11.1 0.14 33 5.7 0.21 17
    LNU450 63708.3 69.7 0.03 4 8.7 0.03 4 5.1 0.02 4
    LNU450 63708.6 75.3 0.10 13 9.4 0.10 13 5.3 0.06 8
    LNU448 63705.2 5.2 0.21 7
    LNU448 63706.5 70.6 0.13 6 8.8 0.13 6 5.0 0.30 3
    LNU429 63937.4 72.7 0.21 9 9.1 0.21 9
    LNU429 63938.8 71.0 L 6 8.9 L 6 5.1 0.02 4
    LNU425 63911.11 5.1 0.01 4
    LNU425 63911.7 72.9 L 9 9.1 L 9 5.1 L 5
    LNU402 63914.2 71.9 0.09 8 9.0 0.09 8
    LNU399 63944.6 2.4 L 8 9.0 1 8 5.1 0.06 5
    LNU395 64142.8 5.1 0.16 5
    LNU392 63696.2 73.3 L 10 9.2 L 10
    LNU392 63697.4 5.2 0.28 6
    LNU392 63698.2 5.2 0.26 6
    LNU392 63700.3 70.9 0.23 6 8.9 0.23 6 5.2 L 6
    LNU390 63538.1 72.3 0.05 8 9.0 0.05 8 5.1 0.01 5
    LNU390 63539.3 5.2 0.25 7
    LNU390 63539.4 78.0 0.09 17 9.8 0.09 17 5.4 0.11 10
    LNU349 63989.1 5.0 0.26 2
    LNU349 63989.5 75.1 L 12 9.4 L 12 5.2 0.23 7
    LNU347 63510.4 73.9 0.14 11 9.2 0.14 11 5.2 L 6
    LNU347 63513.3 72.6 0.04 9 9.1 0.04 9 5.1 0.04 4
    LNU347 63513.4 5.2 0.20 6
    LNU329 63427.3 5.4 0.22 11
    LNU329 63429.1 84.8 0.21 27 10.6 0.21 27 5.6 0.14 14
    LNU323 63421.4 72.8 0.20 9 9.1 0.20 9 5.1 0.02 4
    LNU323 63424.4 69.6 0.22 4 8.7 0.22 4 5.1 0.25 5
    CONT. 66.7 8.3 4.9
    LNU476 64041.2 3.3 0.24 3
    LNU4I0 64971.1 35.9 L 25 4.5 L 25 3.6 L 14
    LNU387 64810.4 31.3 0.19 9 3.9 0.19 9 3.3 0.19 3
    LNU382 64429.3 37.9 0.18 32 4.7 0.18 32 3.6 0.19 14
    LNU373 64828.1 32.0 0.17 11 4.0 0.17 11
    LNU373 64830.1 31.3 0.25 9 3.9 0.25 9 3.3 0.25 3
    LNU355 65013.2 36.6 L 28 4.6 L 28 3.6 L 13
    LNU355 65014.2 3.3 0.10 4
    LNU307 64959.2 34.2 0.08 19 4.3 0.08 19 3.4 0.02 9
    LNU303 65043.1 35.7 0.01 24 4.5 0.01 24 3.4 0.24 7
    LNU300 65032.1 32.5 0.21 13 4.1 0.21 13
    CONT. 28.7 3.6 3.2
    LNU513 63458.3 58.4 0.28 10 7.3 0.28 10
    LNU512 63468.3 67.2 0.02 27 8.4 0.02 27 4.9 0.01 12
    LNU512 63470.1 59.2 0.12 12 7.4 0.12 12 4.6 0.21 5
    LNU424 63476.3 68.2 0.03 29 8.5 0.03 29 5.0 L 13
    LNU424 63478.3 57.4 0.29 9 7.2 0.29 9
    LNU415 63691.2 59.5 0.11 13 7.4 0.11 13 4.6 0.13 6
    LNU411 63514.3 60.9 0.07 15 7.6 0.07 15 4.7 0.08 7
    LNU411 63517.1 57.1 0.27 8 7.1 0.27 8 4.7 0.09 7
    LNU375 63452.2 61.2 0.14 16 7.7 0.14 16 4.7 0.18 7
    LNU375 63452.3 4.6 0.17 6
    LNU375 63454.1 62.5 0.04 18 7.8 0.04 18 4.7 0.15 6
    LNU375 63454.2 4.7 0.29 6
    LNU370 63544.3 4.6 0.13 6
    LNU370 63545.2 59.9 0.11 13 7.5 0.11 13 4.7 0.09 7
    LNU357 63532.3 62.8 0.07 19 7.9 0.07 19 4.8 0.12 8
    LNU357 63533.1 75.8 L 43 9.5 L 43 5.1 L 17
    LNU357 63533.8 62.4 0.04 18 7.8 0.04 18 4.7 0.07 8
    LNU356 63444.1 61.0 0.08 15 7.6 0.08 15 4.8 0.05 9
    LNU356 63444.3 61.8 0.12 17 7.7 0.12 17 4.7 0.23 8
    LNU356 63445.1 67.8 L 28 8.5 L 28 5.0 L 15
    LNU351 63462.3 59.8 0.10 13 7.5 0.10 13 4.7 0.11 6
    LNU351 63464.1 62.4 0.04 18 7.8 0.04 18 4.8 0.05 8
    LNU344 63520.4 64.4 0.02 22 8.0 0.02 22 4.8 0.02 11
    LNU330 63438.1 60.3 0.13 14 7.5 0.13 14 4.6 0.20 6
    LNU330 63439.1 4.6 0.21 5
    LNU330 63441.2 62.1 0.07 17 7.8 0.07 17 4.8 0.23 10
    LNU319 63527.1 74.1 L 40 9.3 L 40 5.2 L 18
    LNU319 63528.1 67.9 L 28 8.5 L 28 4.9 0.01 12
    LNU319 63530.1 59.6 0.27 13 7.5 0.27 13
    LNU319 63530.3 58.1 0.28 10 7.3 0.28 10
    LNU302 63379.1 58.9 0.14 11 7.4 0.14 11 4.7 0.06 8
    CONT. 52.9 6.6 4.4
    Table 92
    “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Table 93 improved plant NUE when grown at limiting nitrogen concentration levels. These genes produced faster developing plants when grown under limiting nitrogen growth conditions, compared to control plants as measured by growth rate of leaf number, rosette diameter and plot coverage.
  • TABLE 93
    Genes showing improved rosette growth performance at limiting
    nitrogen growth conditions
    RGR Of Leaf RGR Of Plot RGR Of Rosette
    Number Coverage Diameter
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU479 65497.2 5.1 L 33 0.3 0.05 26
    LNU479 65499.1 4.5 0.09 20
    LNU418 65025.1 0.3 0.15 20
    LNU418 65027.2 0.3 0.22 17
    LNU401 65493.2 0.3 0.26 15
    LNU401 65494.1 4.4 0.17 17
    LNU377 64603.2 0.3 0.19 17
    LNU377 64604.3 0.3 0.21 17
    LNU344 63520.4 0.3 0.07 27
    LNU344 63521.2 4.5 0.15 18 0.3 0.21 18
    LNU339 65056.1 0.3 0.26 15
    LNU337 64952.1 4.4 0.16 16 0.3 0.13 21
    LNU333 65295.1 4.5 0.12 18 0.3 0.19 18
    LNU333 65297.1 4.4 0.17 16 0.3 0.03 29
    LNU324 64233.4 4.7 0.09 25 0.3 0.20 21
    LNU324 64234.5 4.3 0.26 15 0.3 0.12 24
    LNU318 65066.6 0.3 0.19 18
    LNU304 64573.1 0.3 0.23 15
    LNU292 64084.1 4.5 0.11 18 0.3 0.09 23
    CONT. 3.8 0.2
    LNU507 64584.1 6.4 0.16 39 0.3 0.15 44
    LNU494 65302.1 6.2 0.20 33 0.3 0.21 37
    LNU423 64596.1 0.8 0.16 43
    LNU418 65024.2 8.4 L 81 0.4 0.02 72
    LNU388 65487.1 6.3 0.19 35
    LNU377 64604.3 0.7 0.19 42
    LNU348 64469.1 0.7 0.24 36 0.3 0.26 34
    LNU339 65056.1 0.8 0.08 54
    LNU333 65297.1 0.8 0.16 45 6.7 0.20 44
    CONT. 0.5 4.6 0.2
    LNU508 64459.2 5.6 0.26 12
    LNU469 64308.4 5.9 0.11 20
    LNU469 64311.8 5.7 0.19 16
    LNU460 64359.3 5.8 0.12 18
    LNU460 64360.1 0.3 0.13 18
    LNU460 64361.4 6.4 0.02 28 0.4 0.09 20
    LNU459 64044.1 0.3 0.23 14
    LNU459 64542.1 0.3 0.12 18
    LNU459 64542.4 6.1 0.06 23 0.3 0.23 14
    LNU442 64057.1 0.7 0.29 19 6.0 0.08 21 0.4 0.09 20
    LNU442 64553.1 6.8 L 38 0.4 0.05 25
    LNU439 64618.3 0.3 0.26 15
    LNU421 64304.4 6.3 0.03 26
    LNU421 64305.11 5.7 0.22 15 0.3 0.25 13
    LNU416 64134.11 0.3 0.26 13
    LNU409 64684.2 0.3 0.15 17
    LNU409 64688.2 0.4 0.01 31
    LNU408 64249.4 5.8 0.14 17
    LNU368 64004.2 5.6 0.29 13
    LNU363 64409.2 0.4 0.05 23
    LNU363 64410.1 6.3 0.03 28
    LNU331 64215.3 6.7 L 35 0.3 0.12 18
    LNU314 64434.2 6.7 L 36 0.3 0.15 17
    LNU314 64437.6 0.3 0.26 13
    LNU290 64368.4 5.9 0.13 18 0.3 0.16 17
    CONT. 0.6 5.0 0.3
    LNU517 64296.4 5.9 0.17 21
    LNU509 64692.3 6.4 0.05 30 0.4 0.07 21
    LNU509 64692.6 5.9 0.15 21
    LNU509 64695.1 0.4 0.28 13
    LNU504 64453.2 5.9 0.19 20
    LNU501 64197.1 5.7 0.26 17 0.4 0.16 16
    LNU397 64376.4 5.9 0.18 20
    LNU386 64392.4 0.6 0.29 17
    LNU342 64036.2 0.6 0.29 17
    CONT. 0.5 4.9 0.3
    LNU513 63458.2 4.5 0.17 19 0.3 0.14 11
    LNU513 63459.2 4.8 0.05 28 0.3 0.14 10
    LNU513 63460.2 0.3 0.22  8
    LNU512 63468.3 4.7 0.10 24
    LNU512 63471.4 4.7 0.08 25 0.3 0.04 15
    LNU451 63499.1 0.3 0.22  9
    LNU451 63499.5 4.9 0.05 29 0.3 0.06 14
    LNU451 63500.1 4.6 0.12 22 0.3 0.06 14
    LNU424 63474.3 4.5 0.14 20
    LNU424 63476.3 4.6 0.12 22 0.3 0.18 10
    LNU424 63478.1 0.7 0.17 18
    LNU415 63691.2 0.7 0.24 16
    LNU411 63514.3 5.0 0.04 32 0.3 0.05 14
    LNU411 63518.1 4.4 0.25 16 0.3 0.13 11
    LNU375 63451.3 4.3 0.30 15 0.3 0.10 12
    LNU375 63452.2 4.4 0.24 17 0.3 0.05 15
    LNU375 63452.3 0.7 0.22 18
    LNU375 63454.1 0.7 0.11 19 4.3 0.26 15 0.3 0.24  8
    LNU375 63454.2 4.7 0.10 24 0.3 0.02 17
    LNU370 63544.3 4.7 0.10 24 0.3 0.07 13
    LNU370 63545.2 0.3 0.16 10
    LNU370 63545.6 4.6 0.12 23 0.3 0.06 14
    LNU370 63547.1 0.7 0.24 15
    LNU370 63548.2 4.6 0.13 21 0.3 0.10 11
    LNU357 63533.1 5.2 0.01 38 0.3 0.05 15
    LNU357 63533.8 0.7 0.10 21 4.5 0.15 20
    LNU357 63534.1 0.7 0.18 16 5.0 0.03 34 0.3 0.01 18
    LNU356 63444.1 0.3 0.26  8
    LNU356 63444.2 4.5 0.17 19 0.3 0.18  9
    LNU356 63445.1 4.5 0.19 19 0.3 0.09 12
    LNU351 63462.1 4.4 0.29 16 0.3 0.11 12
    LNU351 63462.3 4.5 0.16 20 0.3 0.11 11
    LNU351 63463.2 5.0 0.04 32 0.3 L 19
    LNU351 63464.1 0.7 0.24 17 0.3 0.20  9
    LNU351 63466.1 0.3 0.14 13
    LNU344 63521.1 4.5 0.20 18 0.3 0.12 11
    LNU330 63438.1 4.6 0.13 22 0.3 0.08 13
    LNU330 63439.1 0.3 0.24  8
    LNU330 63440.2 0.3 0.17 11
    LNU330 63441.1 0.7 0.20 19
    LNU326 63433.2 0.3 0.23  8
    LNU326 63433.4 4.5 0.15 21 0.3 0.11 11
    LNU326 63434.1 0.7 0.27 14 0.3 0.18 10
    LNU326 63435.1 5.1 0.02 36 0.3 0.01 18
    LNU319 63527.1 4.4 0.20 18 0.3 0.27  8
    LNU319 63527.2 0.7 0.23 15 4.6 0.14 22 0.3 0.15 10
    LNU319 63528.1 4.8 0.06 28 0.3 0.07 15
    LNU319 63530.3 4.4 0.22 18 0.3 0.19 10
    LNU308 63414.1 4.4 0.25 16 0.3 0.05 14
    LNU308 63414.4 4.7 0.08 26 0.3 0.02 17
    LNU308 63417.5 0.7 0.25 14 4.8 0.06 27 0.3 L 20
    LNU308 63417.8 4.8 0.07 27 0.3 0.08 12
    LNU302 63378.3 4.4 0.25 16 0.3 0.19  9
    LNU302 63379.1 4.4 0.25 17 0.3 0.27  8
    LNU302 63380.1 4.7 0.11 26 0.4 0.01 24
    LNU302 63381.1 5.2 0.01 38 0.3 L 20
    LNU302 63382.2 5.2 0.01 38 0.3 0.02 17
    LNU291 63385.1 4.3 0.29 15 0.3 0.14 12
    LNU291 63385.2 0.7 0.18 18 4.8 0.06 29 0.3 0.12 11
    LNU291 63387.1 0.7 0.17 18 4.3 0.28 15 0.3 0.18  9
    LNU291 63387.3 0.7 0.22 15 4.6 0.11 23 0.3 0.03 16
    LNU291 63388.1 4.8 0.05 28 0.3 0.07 12
    CONT. 0.6 3.8 0.3
    LNU444 64182.1 6.6 0.26 16
    LNU444 64182.3 0.7 0.28 19
    LNU442 64553.1 0.7 0.28 18
    LNU442 64555.1 7.0 0.09 23
    LNU430 63935.1 0.4 0.25 12
    CONT. 0.6 5.7 0.3
    LNU463 64283.4 0.7 0.26 39 4.4 0.24 44 0.2 0.21 38
    LNU413 65022.4 4.3 0.26 42
    LNU373 64828.1 4.1 0.29 37
    LNU373 64830.1 4.2 0.28 39
    LNU355 65012.1 4.2 0.29 38 0.2 0.30 30
    CONT. 0.5 3.0 0.2
    LNU517 64296.3 0.7 0.11 24 6.5 0.06 23
    LNU517 64297.9 6.3 0.12 18
    LNU514 64364.2 7.0 0.01 31 0.4 0.28 11
    LNU514 64365.3 0.6 0.25 20 6.7 0.04 25 0.4 0.26 11
    LNU514 64366.1 0.7 0.09 28 6.1 0.21 15
    LNU509 64690.3 0.7 0.10 28 6.2 0.17 17
    LNU509 64690.6 0.7 0.19 24
    LNU509 64692.3 0.4 0.30 10
    LNU501 64723.1 6.6 0.05 24
    LNU397 64375.1 6.8 0.03 27 0.4 0.19 13
    LNU396 64317.3 6.3 0.13 18
    LNU386 64394.3 0.6 0.29 18
    LNU381 64285.5 0.7 0.17 24
    LNU372 64481.1 6.3 0.12 18
    LNU372 64483.3 6.8 0.03 27
    LNU369 64386.1 6.3 0.13 19
    LNU369 64387.1 0.7 0.18 26 6.6 0.05 24
    LNU369 64387.2 0.6 0.25 18 6.1 0.21 15
    LNU369 64389.2 6.7 0.04 25
    LNU365 64708.1 0.7 0.16 23
    LNU365 64711.3 0.7 0.08 32
    LNU350 64674.4 6.2 0.21 17
    LNU342 64035.3 6.0 0.26 14
    LNU313 64661.8 6.4 0.11 20
    LNU313 64663.2 0.6 0.18 22
    LNU313 64664.1 6.4 0.10 20
    LNU313 64664.3 0.6 0.20 22 6.3 0.14 18
    LNU294 64658.7 6.2 0.25 16
    CONT. 0.5 5.3 0.3
    LNU403 64237.1 5.2 0.05 17
    LNU335 64169.2 5.2 0.05 18
    CONT. 4.4
    LNU518 64016.4 6.0 0.27 13
    LNU496 64195.1 0.7 0.07 31 0.4 0.09  8
    LNU496 64195.6 5.9 0.26 11 0.4 L 15
    LNU493 64190.1 0.6 0.25 22
    LNU493 64191.3 0.6 0.29 23
    LNU481 64140.1 0.4 0.15  8
    LNU472 63949.7 5.8 0.30 10 0.4 L 15
    LNU458 63895.1 0.7 0.19 28 6.0 0.19 13 0.4 0.02 13
    LNU343 64208.1 6.2 0.05 18 0.4 0.13  7
    LNU343 64209.2 0.6 0.29 21
    LNU340 64290.11 0.4 0.09  8
    LNU327 64490.2 0.4 0.04 11
    LNU327 64491.2 6.0 0.15 14
    LNU306 64132.2 0.7 0.16 25
    LNU305 64111.3 0.7 0.21 26
    CONT. 0.5 5.3 0.3
    LNU403 64237.1 8.3 0.19 24
    LNU353 64033.2 0.8 0.30 12
    LNU352 64200.10 8.2 0.23 22
    LNU335 64168.19 9.0 0.08 35 0.5 0.16 18
    LNU317 64094.1 0.8 0.21 14
    CONT. 0.7 6.7 0.4
    LNU468 63492.2 0.9 0.03 18 10.9  0.08 26 0.5 0.04 16
    LNU468 63492.3 10.0  0.25 16 0.5 0.10 13
    LNU462 63502.2 0.9 0.04 19
    LNU462 63505.1 0.8 0.28  9
    LNU455 64187.4 10.4  0.17 20 0.5 0.23 11
    LNU455 64189.2 0.5 0.28  8
    LNU455 64189.7 11.7  0.02 35 0.5 0.04 17
    LNU450 63708.6 0.5 0.24  9
    LNU450 63710.2 0.9 0.12 12
    LNU429 63938.8 0.8 0.22  9
    LNU425 63911.12 0.5 0.28 11
    LNU395 64145.4 0.8 0.25 10
    LNU390 63539.2 0.9 0.17 13
    LNU390 63539.4 10.1  0.22 17 0.5 0.27  8
    LNU347 63508.1 0.9 0.12 12
    LNU347 63510.4 0.9 0.08 14
    LNU347 63513.3 0.8 0.27 10
    LNU347 63513.4 0.5 0.27  8
    LNU329 63427.3 10.3 0.20 19 0.5 0.11 14
    LNU329 63429.1 0.8 0.25 10 11.1 0.07 28 0.5 0.05 16
    LNU323 63424.1 10.2 0.21 18 0.5 0.29  9
    CONT. 0.8  8.7 0.5
    LNU471 64838.1 0.7 0.18 25
    LNU410 64971.1  4.3 0.03 29 0.3 0.04 30
    LNU410 64972.4  4.1 0.16 21 0.3 0.19 20
    LNU382 64429.3  4.5 0.02 34 0.2 0.25 17
    LNU373 64828.1 0.7 0.19 25
    LNU361 64834.1 0.7 0.23 26
    LNU355 65013.2  4.4 0.02 31 0.3 0.05 26
    LNU307 64958.2  3.9 0.26 15
    LNU307 64959.2  4.2 0.05 25 0.3 0.12 19
    LNU303 65043.1 0.7 0.18 25  4.3 0.03 27
    LNU303 65046.3 0.7 0.14 26
    LNU300 65032.1  3.9 0.19 16 0.2 0.18 17
    CONT. 0.5  3.4 0.2
    LNU512 63468.3  8.6 0.12 27
    LNU424 63476.3  8.8 0.10 30 0.5 0.20 13
    LNU357 63532.3  8.1 0.26 19
    LNU357 63533.1 0.9 0.28 17  9.7 0.02 42
    LNU357 63533.8  8.0 0.29 18
    LNU356 63445.1  8.7 0.11 28
    LNU351 63464.1  8.0 0.28 18
    LNU344 63520.4  8.3 0.20 22
    LNU319 63527.1  9.5 0.03 40 0.5 0.19 13
    LNU319 63528.1  8.8 0.09 29
    LNU291 63385.1  8.4 0.20 23
    CONT. 0.7  6.8 0.4
    Table 93. “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Tables 94-95 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced larger plants with a larger photosynthetic area and increased biomass (fresh weight, dry weight, leaf number, rosette diameter, rosette area and plot coverage) when grown under standard nitrogen conditions.
  • TABLE 94
    Genes showing improved plant biomass production at standard nitrogen growth conditions
    Dry Weight [mg] Fresh Weight [mg] Leaf Number
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU507 64584.2 60.0 0.10 36 706.2 0.06 37
    LNU507 64585.2 53.1 0.16 21 712.5 0.05 38
    LNU494 65299.1 618.8 0.27 20
    LNU479 65497.5 61.9 0.01 41 762.5 0.03 48 10.9 0.20 9
    LNU479 65499.1 10.8 0.27 8
    LNU418 65027.2 62.5 0.03 42 787.5 0.02 53 11.0 0.05 10 
    LNU401 65493.2 51.9 0.17 18
    LNU401 65493.3 643.8 0.18 25
    LNU401 65494.1 768.8 0.22 49
    LNU388 65487.1 54.4 0.12 24
    LNU377 64604.3 10.5 0.26 5
    LNU377 64604.6 60.6 0.12 38 706.2 0.06 37
    LNU368 64004.3 56.2 0.05 28 718.8 0.05 40 10.7 0.16 7
    LNU368 64005.1 52.5 0.30 19
    LNU344 63521.1 61.2 0.04 39 806.2 0.02 57 11.2 0.03 12 
    LNU339 65055.1 55.6 0.15 27 656.2 0.14 28
    LNU337 64953.1 11.5 0.19 15 
    LNU337 64954.1 11.2 0.03 12 
    LNU337 64955.2 656.2 0.14 28
    LNU333 65298.4 50.6 0.22 15
    LNU324 64234.3 51.9 0.22 18 693.8 0.16 35 10.5 0.27 5
    LNU318 65067.2 53.1 0.23 21
    LNU318 65069.1 55.0 0.20 25
    LNU296 65060.2 650.0 0.17 26 10.8 0.18 8
    LNU296 65061.2 52.5 0.22 19
    CONT. 44.0 514.6 10.0
    LNU507 64584.1 41.9 0.15 25 481.2 0.03 45
    LNU507 64585.2 400.9 0.25 21 12.1 0.21 4
    LNU494 65299.1 36.9 0.27 10 400.0 0.24 21
    LNU494 65300.2 44.4 0.27 32 500.0 0.14 51
    LNU494 65302.1 44.4 0.02 32 425.0 0.13 28
    LNU494 65303.2 44.4 0.02 32 487.5 0.03 47
    LNU479 65497.3 43.8 0.01 30 512.5 0.02 55
    LNU479 65497.5 556.2 0.27 68
    LNU479 65499.1 531.2 0.02 60 12.4 0.05 7
    LNU423 64596.1 481.2 0.27 45
    LNU423 64598.3 36.9 0.27 10
    LNU401 65492.4 12.2 0.15 6
    LNU401 65493.2 43.8 0.01 30 481.2 0.09 45
    LNU401 65493.3 550.0 0.09 66 12.4 0.22 7
    LNU401 65494.1 43.8 0.24 30 500.0 0.20 51
    LNU401 65494.2 431.2 0.28 30
    LNU388 65487.2 38.1 0.15 14
    LNU388 65488.1 39.4 0.26 17 406.2 0.21 23
    LNU388 65489.4 12.8 0.07 11 
    LNU377 64604.6 40.0 0.06 19 406.2 0.27 23
    LNU377 64605.1 43.8 0.01 30 12.9 L 12 
    LNU348 64472.2 392.9 0.29 19
    LNU339 65058.2 406.2 0.21 23
    LNU337 64955.2 412.5 0.21 25
    LNU336 64448.3 38.8 0.11 16 418.8 0.15 26 12.2 0.13 5
    LNU336 64449.3 38.8 0.23 16 462.5 0.28 40 12.0 0.21 4
    LNU336 64449.4 40.6 0.19 21
    LNU333 65295.2 38.8 0.11 16 437.5 0.10 32
    LNU333 65297.1 12.9 L 12 
    LNU333 65297.2 43.1 0.03 29 456.2 0.06 38
    LNU324 64233.4 41.2 0.11 23 500.0 0.03 51
    LNU318 65067.1 38.1 0.22 14 12.0 0.21 4
    LNU318 65067.2 12.0 0.21 4
    LNU304 64572.2 38.1 0.15 14 443.8 0.12 34
    LNU304 64575.2 12.9 0.13 12 
    LNU296 65062.2 400.0 0.24 21
    LNU296 65064.1 450.0 0.12 36 12.4 0.22 7
    LNU292 64085.1 400.0 0.24 21
    CONT. 33.5 331.2 11.6
    LNU519 64681.3 743.8 0.18 10
    LNU469 64311.5 10.4 0.15 7
    LNU469 64311.8 77.5 0.11 25 10.1 0.19 4
    LNU459 64541.4 10.1 0.23 3
    LNU442 64060.2 10.3 0.12 6
    LNU420 64008.4 74.4 0.04 20
    LNU416 64137.1 69.4 0.17 12
    LNU409 64687.2 806.2 0.11 20
    LNU409 64689.3 755.4 0.19 12 10.5 0.11 8
    LNU408 64248.10 737.5 0.21 10
    LNU363 64410.2 750.0 0.15 11
    LNU314 64433.1 10.4 0.03 7
    CONT. 61.8 673.2  9.7
    LNU514 64364.2 73.8 0.15 16
    LNU509 64690.3 71.9 0.26 13
    LNU397 64376.4 71.2 0.16 12 800.0 0.18 13
    LNU369 64389.2 68.8 0.26  8
    LNU342 64036.2 77.5 0.21 22
    CONT. 63.6 705.7
    LNU513 63458.2 214.0  0.15 36 2432.1  0.19 40
    LNU512 63470.1 185.0  0.25 17  9.9 0.08 7
    LNU451 63496.2 190.6  0.06 21 2243.8  0.03 29
    LNU451 63499.1  9.6 0.27 3
    LNU451 63499.5 198.8  0.23 26 2306.2  0.25 33 10.0 0.03 8
    LNU451 63500.1 2018.7  0.14 16 10.1 0.02 9
    LNU424 63474.3 183.8  0.12 16 2181.2  0.17 25  9.9 0.03 7
    LNU415 63691.2  9.6 0.27 3
    LNU415 63692.2  9.7 0.13 4
    LNU415 63693.4  9.7 0.23 4
    LNU411 63514.3 191.2  0.06 21 2250.0  0.02 29  9.6 0.27 3
    LNU411 63515.3 173.8  0.28 10 1981.2  0.16 14
    LNU375 63452.2 199.6  0.03 26 2375.0  L 37 10.1 0.20 9
    LNU375 63454.1 184.8  0.13 17 2086.6  0.07 20
    LNU375 63454.2  9.7 0.13 4
    LNU370 63544.3 179.4  0.20 14 2143.8  0.04 23
    LNU370 63545.6 200.0  0.07 27 2306.2  0.08 33
    LNU370 63547.1 1943.8  0.27 12
    LNU370 63548.2 1956.2  0.20 12
    LNU357 63532.3  9.9 0.03 7
    LNU357 63533.1 210.6  0.01 33 2556.2  0.01 47 10.1 0.20 9
    LNU357 63533.8 184.4  0.10 17 2100.0  0.06 21
    LNU357 63534.1 175.0  0.27 11 1993.8  0.22 15
    LNU356 63445.1 1931.2  0.26 11
    LNU351 63466.1 2066.1  0.14 19 10.0 0.12 8
    LNU330 63439.1  9.8 0.09 5
    LNU326 63433.2  9.6 0.27 3
    LNU326 63433.4 186.2  0.09 18 2125.0  0.06 22
    LNU326 63435.1 177.5  0.27 12 2056.2  0.21 18
    LNU319 63527.1 175.6  0.24 11 2000.0  0.16 15
    LNU319 63528.1 183.1  0.26 16
    LNU319 63530.1 1919.6  0.28 10
    LNU319 63530.3 192.5  0.07 22 2212.5  0.07 27
    LNU308 63414.1 185.6  0.09 18 2093.8  0.06 20
    LNU308 63414.4 173.8  0.30 10 2056.2  0.09 18
    LNU308 63415.3 2037.5  0.17 17
    LNU308 63417.5 184.4  0.30 17
    LNU308 63417.8 200.0  0.03 27 2300.0  0.02 32  9.9 0.08 7
    LNU302 63378.3  9.6 0.27 3
    LNU302 63380.1 186.9  0.08 18 2181.2  0.03 25  9.6 0.27 3
    LNU302 63381.1 190.6  0.06 21 2162.5  0.04 24
    LNU302 63382.2 205.6  0.02 30 2462.5  L 42
    LNU291 63385.2 1937.5  0.24 11
    LNU291 63387.1 181.2  0.22 15 2112.5  0.12 21 10.1 0.20 9
    CONT. 157.9  1739.6   9.3
    LNU496 64194.2 10.2 0.22 4
    LNU496 64195.6 59.4 0.25  6
    LNU482 64164.2 762.5 0.22  8
    LNU477 63886.1 65.0 L 16 787.5 0.09 12 10.8 0.03 10 
    LNU477 63888.1 60.0 0.10  7
    LNU477 63889.5 768.8 0.19  9 10.2 0.22 4
    LNU469 64311.8 843.8 0.24 20 10.9 0.11 12 
    LNU444 64182.1 10.6 0.06 8
    LNU444 64182.3 60.6 0.16  9
    LNU442 64056.1 818.8 0.15 16 10.6 L 8
    LNU442 64060.2 60.6 0.03  9 806.2 0.06 14
    LNU430 63935.1 61.9 0.26 11 850.0 0.13 21 10.3 0.02 5
    LNU430 63936.1 60.0 0.10  7
    LNU391 63980.6 59.4 0.08  6
    LNU376 63987.3 70.6 0.26 26 918.8 0.04 30 11.0 L 12 
    LNU366 64027.9 10.2 0.06 4
    LNU366 64028.3 11.0 L 12 
    LNU363 64409.2 59.4 0.25  6
    LNU353 64032.3 818.8 0.08 16
    LNU314 64437.2 10.5 0.02 7
    CONT. 55.8 704.2  9.8
    LNU511 65036.2 72.5 0.23 23 900.0 0.20 23
    LNU511 65037.1 72.5 0.02 23 1012.5  0.15 38
    LNU511 65037.3 65.6 0.10 12 11.2 0.20 4
    LNU492 64174.1 72.5 0.08 23 11.4 L 6
    LNU492 64174.2 78.1 0.22 33 906.2 0.07 24
    LNU492 64175.1 66.2 0.23 13 856.2 0.12 17
    LNU492 64176.4 78.8 0.09 34 993.8 L 36
    LNU476 64041.2 68.1 0.03 16 931.2 0.02 27
    LNU476 64042.1 73.1 0.11 25 925.0 0.16 26
    LNU476 64043.3 66.9 0.15 14 11.6 0.23 8
    LNU471 64838.1 63.8 0.17  9
    LNU471 64838.3 80.6 0.05 37 950.0 0.08 30 11.9 0.07 10 
    LNU471 64839.2 79.4 0.11 35 918.8 0.03 26
    LNU471 64841.3 63.8 0.15  9 862.5 0.23 18 11.4 L 6
    LNU463 64280.4 862.5 0.09 18
    LNU463 64281.3 79.4 0.16 35 987.5 L 35
    LNU463 64282.12 66.4 0.21 13
    LNU463 64283.4 65.6 0.20 12 11.4 0.01 6
    LNU454 64796.2 11.5 0.27 7
    LNU454 64796.3 75.0 L 28 881.2 0.06 20
    LNU454 64797.2 11.6 L 7
    LNU454 64800.5 71.2 0.03 21 818.8 0.25 12
    LNU422 64965.2 78.8 0.14 34 993.8 0.26 36
    LNU422 64966.2 837.5 0.19 14
    LNU422 64969.1 66.9 0.06 14
    LNU413 65019.1 968.8 0.09 32 11.4 0.03 6
    LNU413 65019.2 64.4 0.12 10 831.2 0.17 14
    LNU413 65021.4 79.4 0.06 35 987.5 L 35
    LNU413 65021.5 69.4 0.02 18 862.5 0.12 18
    LNU413 65022.4 75.6 0.03 29 868.8 0.24 19
    LNU410 64971.1 806.2 0.28 10
    LNU410 64971.2 912.5 0.17 25
    LNU410 64974.3 11.3 0.30 5
    LNU387 64808.1 906.2 0.04 24 11.1 0.14 3
    LNU387 64811.2 11.2 0.05 4
    LNU387 64811.3 66.9 0.06 14 862.5 0.09 18 11.6 0.30 7
    LNU382 64428.2 881.2 0.06 20 11.6 0.30 7
    LNU382 64429.3 73.1 L 25 850.0 0.11 16 11.1 0.14 3
    LNU382 64430.1 66.9 0.04 14 893.8 0.05 22
    LNU373 64826.4 837.5 0.16 14 11.5 0.27 7
    LNU373 64827.2 73.1 0.11 25 893.8 0.04 22
    LNU373 64828.1 893.8 0.06 22 11.1 0.13 3
    LNU373 64830.1 837.5 0.19 14
    LNU361 64832.1 82.5 0.07 40 1068.8  0.07 46
    LNU361 64836.2 83.8 L 43 981.2 0.04 34
    LNU355 65012.1 68.1 0.03 16 818.8 0.25 12
    LNU355 65012.2 70.0 0.01 19 881.2 0.06 20
    LNU355 65014.2 900.0 0.06 23
    LNU355 65015.2 80.0 L 36 956.2 0.01 31 11.4 L 6
    LNU332 64821.1 73.1 0.25 25 856.2 0.16 17 11.4 0.03 6
    LNU332 64822.4 11.6 L 8
    LNU332 64824.3 11.6 0.19 7
    LNU332 64824.4 63.8 0.15  9 11.2 0.20 4
    LNU307 64958.2 11.3 0.02 5
    LNU307 64959.2 66.2 0.05 13 856.2 0.10 17
    LNU307 64960.2 831.2 0.17 14 11.1 0.14 3
    LNU303 65042.2 65.0 0.18 11 825.0 0.19 13 11.1 0.07 3
    LNU303 65043.1 63.1 0.21  8
    LNU303 65043.2 70.6 0.07 20 875.0 0.07 20 11.6 0.11 8
    LNU303 65046.1 68.1 0.04 16 912.5 0.03 25 11.4 0.23 6
    LNU303 65046.3 65.0 0.30 11 812.5 0.25 11
    LNU300 65030.2 71.2 L 21
    LNU300 65031.3 78.8 0.27 34 1012.5  L 38
    LNU300 65033.1 83.8 0.10 43 943.8 0.02 29
    LNU300 65033.3 875.0 0.07 20
    CONT. 58.7 731.8 10.8
    LNU517 64297.9 10.5 L 14 
    LNU514 64364.2  9.8 0.13 6
    LNU514 64365.3  9.8 0.13 6
    LNU514 64366.1  9.8 0.29 6
    LNU509 64690.3 10.2 0.05 10 
    LNU509 64690.6 79.4 0.19  7
    LNU509 64692.3 10.4 0.17 12 
    LNU509 64692.6  9.9 0.09 7
    LNU504 64453.2  9.8 0.06 5
    LNU501 64196.1 83.8 0.06 13  9.7 0.19 5
    LNU501 64197.1 82.8 0.20 11  9.9 L 7
    LNU501 64723.1 10.1 L 9
    LNU461 64666.1 10.0 0.02 8
    LNU461 64667.4 94.4 L 27 1106.2  0.01 25
    LNU461 64668.5 10.3 0.23 11 
    LNU461 64669.3 83.1 0.02 12  9.6 0.30 3
    LNU397 64375.1 10.1 0.01 9
    LNU396 64315.13 91.2 0.01 23 10.1 0.19 9
    LNU386 64393.1 80.0 0.21  8  9.4 0.25 2
    LNU386 64395.3  9.9 0.09 7
    LNU381 64286.4 87.5 0.17 18 956.2 0.24  8
    LNU372 64481.1 10.2 0.05 10 
    LNU372 64483.3 10.5 L 14 
    LNU372 64485.1 10.0 0.02 8
    LNU372 64485.3 83.8 0.27 13
    LNU369 64386.1 81.2 0.05  9
    LNU369 64387.1 10.1 0.12 9
    LNU369 64389.2 87.9 L 18
    LNU365 64711.2 92.5 0.22 24
    LNU365 64712.3 10.2 0.26 10 
    LNU350 64674.2 1025.0  0.14 15
    LNU350 64674.4 82.7 0.03 11
    LNU350 64677.2 89.9 L 21 10.0 L 8
    LNU345 64333.4 81.2 0.06  9
    LNU345 64337.1 1015.2  0.07 14  9.6 0.12 4
    LNU342 64035.4 10.1 0.01 9
    LNU342 64036.2 81.9 0.29 10 10.8 0.05 16 
    LNU313 64663.2 10.5 L 14 
    LNU313 64664.1  9.8 0.06 5
    LNU294 64657.2  9.5 0.25 3
    LNU294 64658.7  9.6 0.30 3
    CONT. 74.4 887.5  9.2
    LNU520 64156.14 681.2 0.10  8
    LNU481 64138.6 61.6 0.21 18
    LNU481 64141.1  9.9 0.07 5
    LNU477 63888.1  9.6 0.20 2
    LNU472 63920.6 756.2 0.21 20
    LNU472 63949.8 67.5 0.21 29
    LNU458 63893.1 10.2 0.12 9
    LNU456 63991.8 10.1 0.28 7
    LNU439 64615.4 789.3 0.18 25  9.8 0.03 4
    LNU419 63896.2 775.0 0.27 23  9.9 0.07 5
    LNU419 63897.5 768.8 0.04 22  9.8 0.22 4
    LNU407 64219.2 57.5 0.10 10 10.1 0.09 7
    LNU393 63977.3 60.0 0.02 15 693.8 0.05 10
    LNU393 63978.6 731.2 0.28 16  9.6 0.20 2
    LNU374 63997.5 10.4 0.10 10 
    LNU335 64169.2 875.0 0.26 39  9.8 0.22 4
    CONT. 52.4 629.2  9.4
    LNU520 64156.14 68.8 0.06 22 531.2 0.26 12  9.8 0.06 6
    LNU518 64014.3 80.6 L 43
    LNU518 64014.5 65.0 0.29 16 559.8 0.03 18  9.6 0.18 4
    LNU518 64015.4  9.9 0.06 6
    LNU518 64016.3 64.4 0.21 14  9.6 0.27 3
    LNU518 64016.4 62.5 0.29 11  9.9 0.06 6
    LNU500 64221.2 85.6 0.07 52 556.2 0.06 18
    LNU500 64223.1 67.5 0.13 20 575.0 0.02 22  9.8 0.14 6
    LNU500 64223.2  9.7 0.13 4
    LNU496 64193.3 68.8 0.05 22
    LNU496 64194.2 518.8 0.17 10
    LNU493 64190.1 62.5 0.29 11
    LNU493 64190.3 10.1 0.02 9
    LNU493 64191.3 543.8 0.19 15
    LNU493 64191.4 543.8 0.19 15
    LNU481 64138.6 556.2 0.15 18
    LNU481 64140.1 68.1 0.09 21 518.8 0.23 10  9.8 0.12 5
    LNU481 64141.1 10.2 L 10 
    LNU458 63893.3  9.8 0.12 5
    LNU419 63897.6 65.0 0.21 16 568.8 0.02 20
    LNU405 64158.9  9.8 0.06 6
    LNU405 64159.6  9.9 0.04 6
    LNU405 64159.8 73.8 0.29 31 556.2 0.03 18
    LNU343 64208.1 606.2 0.01 28 10.5 L 13 
    LNU343 64208.2  9.6 0.27 3
    LNU343 64208.4 63.1 0.28 12 612.5 0.23 30
    LNU340 64290.11 518.8 0.17 10
    LNU340 64290.7 525.0 0.24 11  9.9 0.09 7
    LNU340 64292.5  9.8 0.06 6
    LNU328 64150.1 68.1 0.14 21 581.2 0.01 23 10.1 0.02 9
    LNU328 64150.2 537.5 0.16 14
    LNU328 64150.4  9.8 0.08 5
    LNU327 64487.2 618.8 0.30 31
    LNU327 64491.2 568.8 0.02 20
    LNU322 63918.1 66.9 0.07 19
    LNU312 64002.2 75.0 0.18 33 10.2 0.25 10 
    LNU312 64002.3  9.7 0.13 4
    LNU306 64131.2 562.5 0.03 19
    LNU306 64132.1  9.8 0.06 6
    LNU305 64114.1  9.8 0.12 5
    CONT. 56.2 472.9  9.3
    LNU503 64203.1 1556.2  0.29 13
    LNU498 64185.3 1568.8  0.05 14
    LNU482 64165.4 1468.8  0.17  7
    LNU444 64182.3 153.8  0.07 23 1500.0  0.17  9
    LNU444 64183.1 156.9  L 25 1512.5  0.07 10
    LNU430 63934.3 1493.8  0.28  9
    LNU430 63936.2 1525.0  0.28 11
    LNU393 63977.5 136.2  0.21  9
    LNU393 63977.6 1450.0  0.25  6
    LNU385 64245.3 137.5  0.05 10
    LNU366 64027.9 135.0  0.06  8 11.1 0.27 5
    LNU366 64028.3 138.1  0.06 10 1668.8  0.03 22
    LNU335 64168.1 139.4  0.24 11
    LNU317 64093.3 11.2 0.27 6
    CONT. 125.5  1372.5  10.5
    LNU462 63503.1 11.7 0.08 6
    LNU462 63504.1 1950.0  0.20  6
    LNU455 64187.4 174.4  L 11
    LNU455 64187.5 1987.5  L  8 11.9 0.01 8
    LNU450 63712.3 165.0  0.11  5 11.4 0.07 3
    LNU448 63706.5 172.5  0.16 10
    LNU425 63911.12 171.3  0.02 10 11.4 0.14 3
    LNU425 63911.7 2056.2  L 12
    LNU425 63911.9 176.2  0.12 13 1950.0  0.02  6
    LNU402 63913.4 11.6 0.13 5
    LNU402 63914.2 176.2  0.06 13
    LNU399 63944.2 11.6 0.30 5
    LNU392 63696.2 11.8 L 7
    LNU390 63538.1 11.8 L 7
    LNU347 63510.4 11.4 0.20 4
    LNU329 63427.3 177.5  0.24 13
    LNU329 63428.1 165.6  0.15  6 11.4 0.05 4
    LNU329 63428.2 2031.2  L 11
    LNU329 63430.3 11.3 0.13 3
    LNU323 63420.1 171.2  0.03  9 11.4 0.20 4
    LNU323 63421.2 11.5 0.07 4
    LNU323 63424.1 1981.2  0.10  8
    LNU323 63424.4 176.9  0.01 13
    CONT. 156.5  1835.4  11.0
    LNU511 65037.1 65.0 0.10 15 668.8 0.14 11
    LNU511 65040.2 67.5 0.02 20 806.2 0.01 33
    LNU492 64174.1 72.0 L 27 703.6 0.21 16
    LNU492 64174.2 10.9 0.29 4
    LNU492 64175.1 687.5 0.08 14 10.9 0.15 4
    LNU492 64176.4 10.8 0.29 3
    LNU476 64041.2 687.5 0.12 14
    LNU471 64838.1 668.8 0.17 11
    LNU471 64838.3 66.9 0.04 18 668.8 0.14 11
    LNU471 64839.2 693.8 0.07 15
    LNU471 64841.3 61.2 0.24  8
    LNU471 64842.1 74.4 0.23 32 793.8 0.22 31
    LNU463 64281.3 62.5 0.15 11
    LNU463 64283.4 693.8 0.07 15
    LNU454 64796.2 668.8 0.14 11
    LNU454 64797.2 76.9 L 36 818.8 L 36
    LNU454 64799.2 65.0 0.06 15 10.9 0.17 5
    LNU454 64800.5 66.9 0.03 18 718.8 0.03 19
    LNU422 64966.1 10.8 0.28 4
    LNU422 64969.1 66.9 0.27 18
    LNU413 65021.4 75.0 0.29 33 781.2 0.12 29
    LNU413 65022.4 67.5 0.05 20 700.0 0.05 16 11.3 0.04 8
    LNU410 64973.2 66.2 0.04 17 706.2 0.05 17
    LNU387 64810.4 70.0 0.08 24 762.5 L 26
    LNU387 64811.2 63.1 0.23 12 693.8 0.06 15
    LNU382 64428.2 76.2 0.03 35 900.0 L 49
    LNU382 64432.1 62.5 0.22 11
    LNU373 64830.1 700.0 0.16 16
    LNU361 64834.1 706.2 0.27 17 11.1 0.05 6
    LNU361 64835.2 662.5 0.24 10
    LNU361 64836.2 66.9 0.04 18
    LNU355 65012.2 78.8 0.11 39 825.0 0.20 37
    LNU355 65013.2 73.8 L 31 793.8 0.05 31
    LNU355 65015.2 675.0 0.17 12
    LNU332 64821.1 69.4 0.27 23 712.5 0.21 18
    LNU332 64822.4 68.8 0.02 22 706.2 0.05 17 10.8 0.29 3
    LNU332 64823.1 69.4 0.01 23 11.2 0.06 7
    LNU332 64824.3 60.6 0.28  7
    LNU307 64960.1 762.5 0.18 26
    LNU307 64962.2 68.1 0.02 21 718.8 0.07 19
    LNU303 65043.1 712.5 0.03 18
    LNU300 65033.3 60.6 0.28  7
    CONT. 56.5 604.2 10.4
    LNU513 63458.2 1750.0  0.22  9
    LNU513 63458.3 141.2  0.26 10 1750.0  0.20  9 12.1 0.03 5
    LNU513 63460.2 155.6  0.05 21 1868.8  0.29 17
    LNU512 63470.1 156.2  0.04 22 1906.2  0.04 19 12.1 0.11 5
    LNU451 63497.5 158.8  0.03 24 2068.8  L 29
    LNU424 63476.3 1831.2  0.14 14
    LNU415 63691.2 148.1  0.11 15
    LNU375 63452.2 140.6  0.29  9
    LNU375 63454.1 146.2  0.29 14 1893.8  0.03 18
    LNU375 63454.2 148.8  0.10 16 1743.8  0.22  9
    LNU357 63532.3 151.9  0.17 18 1875.0  0.04 17
    LNU357 63533.8 162.5  0.02 26 2075.0  L 29
    LNU357 63534.4 158.8  0.14 24 2075.0  0.10 29
    LNU356 63444.1 146.2  0.25 14 1875.0  0.14 17
    LNU351 63466.1 154.4  0.11 20 1918.8  0.03 20
    LNU344 63520.4 151.2  0.09 18 1800.0  0.11 12
    LNU344 63521.1 150.0  0.10 17 1781.2  0.15 11
    LNU330 63438.1 157.5  0.05 23
    LNU330 63441.2 154.4  0.17 20 1918.8  0.24 20 12.2 0.02 7
    LNU326 63433.4 143.8  0.22 12 1775.0  0.15 11
    LNU326 63435.1 147.5  0.11 15
    LNU319 63527.1 156.9  0.04 22 1912.5  0.06 19 11.9 0.15 3
    LNU319 63530.1 153.8  0.26 20 1893.8  0.05 18 12.1 0.02 6
    LNU319 63530.3 165.0  0.01 28 2081.2  0.02 30
    LNU302 63378.3 160.0  0.02 25 1912.5  0.03 19
    LNU291 63385.1 158.8  0.05 24 2056.2  0.21 28
    LNU291 63385.2 153.8  0.26 20 1937.5  0.15 21
    LNU291 63387.3 1975.0  0.27 23
    CONT. 128.5  1602.4  11.5
    Table 94. “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • TABLE 95
    Genes showing improved plant biomass production at standard nitrogen growth conditions
    Plot Rosette Rosette Diameter
    Coverage [cm2] Area [cm2] [cm]
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU507 64584.2 68.4 0.16 18 8.6 0.16 18 5.1 0.07 12
    LNU507 64585.2 67.0 0.21 16 8.4 0.21 16 5.1 0.05 13
    LNU494 65299.1 4.8 0.26  6
    LNU479 65497.5 75.3 0.04 30 9.4 0.04 30 5.2 0.03 15
    LNU479 65499.1 76.5 0.23 32 9.6 0.23 32 5.3 0.09 17
    LNU418 65027.2 82.8 L 43 10.4 L 43 5.4 0.02 20
    LNU401 65493.3 5.0 0.29 11
    LNU401 65494.1 78.3 0.18 35 9.8 0.18 35 5.3 0.11 17
    LNU388 65487.1 70.1 0.15 21 8.8 0.15 21 5.2 0.03 15
    LNU377 64604.6 71.1 0.09 23 8.9 0.09 23 5.0 0.08 11
    LNU368 64004.3 72.8 0.06 26 9.1 0.06 26 5.1 0.07 13
    LNU344 63521.1 80.1 0.06 39 10.0 0.06 39 5.4 0.06 19
    LNU339 65055.1 66.0 0.25 14 8.2 0.25 14 4.9 0.17  8
    LNU337 64955.2 71.3 0.08 23 8.9 0.08 23 5.1 0.05 13
    LNU324 64234.3 72.8 0.17 26 9.1 0.17 26 5.2 0.17 14
    LNU318 65067.2 4.9 0.22  7
    LNU296 65060.2 71.1 0.09 23 8.9 0.09 23 5.1 0.05 13
    CONT. 57.8 7.2 4.5
    LNU507 64584.1 92.5 0.08 18 11.6 0.08 18 5.8 0.13 11
    LNU494 65300.2 98.9 0.14 26 12.4 0.14 26 6.2 0.16 18
    LNU494 65302.1 87.5 0.20 12 10.9 0.20 12 5.6 0.08  8
    LNU494 65303.2 98.3 0.15 25 12.3 0.15 25 5.9 0.11 12
    LNU479 65497.3 101.7  0.04 30 12.7 0.04 30 6.1 L 17
    LNU479 65499.1 109.9  L 40 13.7 L 40 6.3 L 20
    LNU401 65493.2 91.7 0.20 17 11.5 0.20 17 5.9 0.15 12
    LNU401 65493.3 95.6 0.21 22 11.9 0.21 22 5.8 0.15 11
    LNU401 65494.1 95.9 0.20 22 12.0 0.20 22 5.9 0.17 13
    LNU401 65494.2 5.5 0.28  5
    LNU388 65488.1 5.9 0.02 12
    LNU377 64605.1 100.3  0.07 28 12.5 0.07 28 6.1 0.02 17
    LNU348 64472.2 5.6 0.20  6
    LNU339 65058.2 86.5 0.30 10 10.8 0.30 10
    LNU336 64448.3 5.7 0.06  9
    LNU336 64449.4 6.1 0.13 17
    LNU333 65295.2 5.7 0.07  8
    LNU333 65297.2 88.3 0.17 13 11.0 0.17 13 5.8 0.03 12
    LNU324 64233.4 100.8  0.03 29 12.6 0.03 29 6.2 0.06 19
    LNU304 64572.2 89.7 0.12 14 11.2 0.12 14 5.8 0.04 10
    LNU304 64573.1 5.6 0.15  7
    LNU296 65062.2 5.7 0.06  9
    LNU292 64081.2 5.7 0.23  9
    LNU292 64084.1 5.6 0.25  6
    LNU292 64085.4 5.6 0.19  7
    CONT. 78.4 9.8 5.2
    LNU469 64308.5 59.7 0.22 12 7.5 0.22 12 4.8 0.09  6
    LNU469 64311.8 60.7 0.23 14 7.6 0.23 14
    LNU459 64541.4 58.8 0.17 10 7.3 0.17 10
    LNU442 64056.1 4.7 0.14  5
    LNU442 64553.1 4.7 0.17  5
    LNU409 64687.2 62.3 0.04 17 7.8 0.04 17 5.0 0.01 11
    LNU363 64410.2 66.6 0.13 25 8.3 0.13 25 5.1 0.13 13
    LNU314 64433.1 61.6 0.11 15 7.7 0.11 15 4.8 0.14  7
    LNU314 64433.3 4.7 0.17  5
    CONT. 53.4 6.7 4.5
    LNU517 64296.4 53.2 0.12 20 6.6 0.12 20 4.5 0.15  7
    LNU501 64197.10 51.6 0.09 16 6.5 0.09 16 4.4 0.19  5
    LNU397 64376.4 49.7 0.12 12 6.2 0.12 12 4.4 0.27  4
    LNU369 64387.2 48.1 0.25  8 6.0 0.25  8
    LNU369 64389.2 4.6 0.24 10
    LNU342 64036.2 52.9 0.03 19 6.6 0.03 19 4.7 0.02 11
    CONT. 44.4 5.5 4.2
    LNU513 63458.2 49.5 L 35 6.2 L 35 4.4 L 15
    LNU512 63468.3 40.3 0.10 10 5.0 0.10 10 4.0 0.19  4
    LNU512 63470.1 43.2 0.04 17 5.4 0.04 17 4.1 0.26  7
    LNU451 63496.2 39.8 0.14  8 5.0 0.14  8 4.0 0.12  5
    LNU451 63499.1 41.9 0.04 14 5.2 0.04 14
    LNU451 63499.5 46.0 0.08 25 5.8 0.08 25 4.2 0.10 10
    LNU451 63500.1 44.3 0.05 20 5.5 0.05 20
    LNU424 63474.3 41.7 0.21 13 5.2 0.21 13
    LNU424 63476.3 40.4 0.09 10 5.1 0.09 10
    LNU415 63692.3 39.5 0.22  7 4.9 0.22  7
    LNU415 63693.4 43.2 0.12 17 5.4 0.12 17 4.1 0.17  6
    LNU411 63514.3 44.8 L 22 5.6 L 22 4.1 0.04  7
    LNU411 63515.3 42.0 0.03 14 5.2 0.03 14 4.1 0.05  7
    LNU411 63518.1 39.5 0.17  7 4.9 0.17  7
    LNU375 63452.2 41.2 0.05 12 5.1 0.05 12 4.0 0.21  5
    LNU375 63454.1 45.6 0.02 24 5.7 0.02 24 4.2 0.02 11
    LNU375 63454.2 46.8 0.21 27 5.8 0.21 27 4.4 0.24 16
    LNU370 63545.6 45.0 0.16 22 5.6 0.16 22 4.3 0.08 11
    LNU370 63547.1 39.0 0.27  6 4.9 0.27  6
    LNU370 63548.2 40.8 0.07 11 5.1 0.07 11
    LNU357 63532.3 39.6 0.17  8 5.0 0.17  8
    LNU357 63533.1 52.9 0.07 44 6.6 0.07 44 4.5 0.05 18
    LNU357 63533.8 44.2 L 20 5.5 L 20 4.1 0.10  8
    LNU357 63534.1 42.8 0.23 16 5.3 0.23 16
    LNU356 63444.2 39.3 0.20  7 4.9 0.20  7
    LNU356 63445.1 39.6 0.16  8 4.9 0.16  8
    LNU351 63462.1 38.8 0.29  5 4.8 0.29  5
    LNU351 63464.1 41.1 0.09 12 5.1 0.09 12 4.1 0.04  7
    LNU330 63438.1 40.8 0.06 11 5.1 0.06 11 4.0 0.14  5
    LNU326 63433.4 44.0 L 20 5.5 L 20 4.2 0.05 10
    LNU326 63435.1 43.2 0.11 18 5.4 0.11 18 4.1 0.08  6
    LNU319 63527.1 39.7 0.14  8 5.0 0.14  8
    LNU319 63528.1 4.2 0.24  9
    LNU319 63530.3 45.9 L 25 5.7 L 25 4.3 L 12
    LNU308 63414.1 43.2 0.16 18 5.4 0.16 18 4.1 0.20  8
    LNU308 63414.4 40.4 0.21 10 5.1 0.21 10 4.0 0.24  4
    LNU308 63415.3 43.6 0.01 19 5.5 0.01 19 4.1 0.04  7
    LNU308 63417.5 4.1 0.17  9
    LNU308 63417.8 49.3 L 34 6.2 L 34 4.4 L 14
    LNU302 63378.3 39.6 0.16  8 5.0 0.16  8 3.9 0.30  3
    LNU302 63380.1 45.0 L 22 5.6 L 22 4.1 0.06  7
    LNU302 63381.1 42.4 0.02 15 5.3 0.02 15 4.0 0.11  5
    LNU302 63382.2 48.8 L 33 6.1 L 33 4.4 L 14
    LNU291 63385.2 39.3 0.20  7 4.9 0.20  7
    LNU291 63387.1 45.8 L 24 5.7 L 24 4.2 0.05 11
    CONT. 36.8 4.6 3.8
    LNU482 64164.8 5.1 0.20  4
    LNU477 63886.1 5.1 0.30  3
    LNU477 63888.1 5.4 0.30 10
    LNU477 63889.5 71.1 0.05 14 8.9 0.05 14 5.1 0.18  4
    LNU469 64311.8 75.0 0.28 20 9.4 0.28 20
    LNU444 64182.1 70.5 0.16 13 8.8 0.16 13 5.2 0.22  5
    LNU442 64056.1 68.3 0.13  9 8.5 0.13  9 5.1 0.18  4
    LNU442 64060.2 8.8 0.06 13 5.3 0.02  9
    LNU376 63987.3 81.3 L 30 10.2 L 30 5.6 0.02 13
    LNU363 64410.2 68.1 0.18  9 8.5 0.18  9 5.2 0.06  6
    CONT. 62.5 7.8 4.9
    LNU511 65036.2 114.4  L 36 14.3 L 36 6.4 0.04 14
    LNU511 65037.1 121.5  0.06 45 15.2 0.06 45 6.6 0.04 17
    LNU492 64174.2 102.7  0.18 22 12.8 0.18 22 6.0 0.13  7
    LNU492 64175.1 93.8 0.20 12 11.7 0.20 12
    LNU492 64176.4 112.0  0.03 34 14.0 0.03 34 6.4 L 13
    LNU476 64041.2 103.5  0.22 23 12.9 0.22 23 6.3 0.18 13
    LNU476 64042.1 104.4  L 24 13.0 L 24 6.3 0.01 12
    LNU476 64043.3 90.4 0.29  8 11.3 0.29  8
    LNU471 64838.3 111.2  0.04 33 13.9 0.04 33 6.4 0.20 13
    LNU471 64839.2 105.0  0.01 25 13.1 0.01 25 6.3 0.01 11
    LNU471 64841.3 99.8 0.05 19 12.5 0.05 19
    LNU471 64842.1 106.7  L 27 13.3 L 27 6.2 0.01 11
    LNU463 64280.4 99.3 0.06 18 12.4 0.06 18 5.9 0.13  5
    LNU463 64281.3 119.8  0.03 43 15.0 0.03 43 6.7 0.05 19
    LNU463 64283.4 93.7 0.14 12 11.7 0.14 12 5.9 0.23  4
    LNU454 64796.3 99.4 0.03 19 12.4 0.03 19 6.1 0.03  9
    LNU454 64797.2 93.3 0.24 11 11.7 0.24 11
    LNU422 64966.2 5.8 0.28  4
    LNU422 64969.1 94.1 0.30 12 11.8 0.30 12
    LNU413 65019.1 119.6  0.06 43 14.9 0.06 43 6.8 0.17 20
    LNU413 65019.2 101.4  0.02 21 12.7 0.02 21 6.1 0.03  8
    LNU413 65021.4 108.3  L 29 13.5 L 29 6.6 0.07 17
    LNU413 65021.5 101.7  0.02 21 12.7 0.02 21 6.2 0.01 11
    LNU413 65022.4 97.1 0.26 16 12.1 0.26 16
    LNU410 64974.3 101.6  0.22 21 12.7 0.22 21
    LNU387 64808.1 97.8 0.04 17 12.2 0.04 17 6.0 0.10  6
    LNU387 64810.4 5.8 0.25  4
    LNU387 64811.3 104.9  L 25 13.1 L 25 6.3 L 13
    LNU382 64428.2 97.9 0.09 17 12.2 0.09 17 6.1 0.22  8
    LNU382 64429.3 96.3 0.07 15 12.0 0.07 15 5.9 0.23  5
    LNU382 64430.1 104.8  L 25 13.1 L 25 6.4 L 13
    LNU373 64827.2 104.7  L 25 13.1 L 25 6.1 0.04  8
    LNU373 64828.1 103.3  0.01 23 12.9 0.01 23 6.3 L 12
    LNU373 64830.3 91.4 0.27  9 11.4 0.27  9
    LNU361 64832.1 139.6 L 66 17.5 L 66 7.3 L 29
    LNU361 64836.2 107.0  0.26 28 13.4 0.26 28 6.3 0.23 11
    LNU355 65012.1 100.2  0.03 19 12.5 0.03 19 6.2 0.02 10
    LNU355 65012.2 93.8 0.11 12 11.7 0.11 12 6.0 0.07  7
    LNU355 65014.2 97.4 0.25 16 12.2 0.25 16
    LNU355 65015.2 105.9  0.20 26 13.2 0.20 26 6.3 0.07 12
    LNU332 64821.1 102.3  0.02 22 12.8 0.02 22 6.1 0.04  9
    LNU307 64959.2 97.2 0.05 16 12.1 0.05 16 6.0 0.08  7
    LNU307 64960.2 97.0 0.09 16 12.1 0.09 16 6.0 0.12  6
    LNU303 65042.2 92.8 0.16 11 11.6 0.16 11 6.0 0.20  6
    LNU303 65043.2 100.2  0.09 19 12.5 0.09 19 6.1 0.05  9
    LNU303 65046.1 114.4  0.04 36 14.3 0.04 36 6.3 0.12 12
    LNU300 65030.2 102.4  0.02 22 12.8 0.02 22 6.3 0.18 11
    LNU300 65031.3 115.7  0.02 38 14.5 0.02 38 6.6 0.14 17
    LNU300 65033.1 111.8  L 33 14.0 L 33 6.4 0.07 14
    CONT. 83.9 10.5 5.6
    LNU517 64297.9 66.5 0.02 27 8.3 0.02 27 4.9 0.28  6
    LNU514 64364.2 61.0 0.12 16 7.6 0.12 16
    LNU514 64366.1 59.3 0.21 13 7.4 0.21 13
    LNU509 64690.3 73.2 L 39 9.2 L 39 5.3 0.03 14
    LNU509 64692.3 70.0 L 33 8.7 L 33 5.1 0.08 10
    LNU509 64692.6 68.2 0.02 30 8.5 0.02 30 5.2 0.04 12
    LNU501 64197.1 62.4 0.07 19 7.8 0.07 19
    LNU461 64666.1 64.1 0.12 22 8.0 0.12 22
    LNU461 64667.4 61.4 0.08 17 7.7 0.08 17 4.9 0.19  7
    LNU461 64668.5 67.3 0.23 28 8.4 0.23 28
    LNU397 64374.1 59.9 0.20 14 7.5 0.20 14
    LNU397 64375.1 66.5 0.10 27 8.3 0.10 27 5.0 0.23  9
    LNU397 64376.4 59.2 0.18 13 7.4 0.18 13
    LNU396 64315.13 74.9 L 42 9.4 L 42 5.5 L 18
    LNU372 64481.1 66.0 0.02 26 8.2 0.02 26 5.0 0.21  9
    LNU372 64483.3 70.4 0.07 34 8.8 0.07 34 5.1 0.10 10
    LNU372 64485.1 62.8 0.05 19 7.8 0.05 19
    LNU372 64485.3 61.9 0.07 18 7.7 0.07 18 5.1 0.08 11
    LNU369 64386.1 65.0 0.05 24 8.1 0.05 24 5.0 0.20  8
    LNU369 64387.1 63.7 0.06 21 8.0 0.06 21
    LNU369 64389.2 62.7 0.28 19 7.8 0.28 19
    LNU365 64711.2 58.4 0.21 11 7.3 0.21 11
    LNU365 64712.3 63.7 0.06 21 8.0 0.06 21
    LNU350 64674.2 68.9 L 31 8.6 L 31 5.3 0.03 14
    LNU345 64337.1 63.9 0.06 22 8.0 0.06 22 5.1 0.17 10
    LNU342 64035.4 59.9 0.14 14 7.5 0.14 14
    LNU342 64036.2 66.0 0.02 26 8.3 0.02 26 5.0 0.13  8
    LNU313 64661.8 66.7 0.04 27 8.3 0.04 27 5.1 0.16 10
    LNU313 64663.2 70.9 L 35 8.9 L 35 5.1 0.07 11
    LNU313 64664.1 61.5 0.20 17 7.7 0.20 17 4.9 0.26  6
    LNU294 64657.2 64.3 0.09 22 8.0 0.09 22 5.1 0.26 11
    CONT. 52.6 6.6 4.6
    LNU477 63889.4 5.0 0.08  4
    LNU439 64615.4 64.0 0.03 10 8.0 0.03 10
    LNU425 63911.11 63.4 0.26  9 7.9 0.26  9
    LNU419 63896.2 68.2 L 17 8.5 L 17 5.2 L  7
    LNU419 63897.5 5.0 0.06  4
    CONT. 58.3 7.3 4.8
    LNU520 64156.7 60.1 0.05 16 7.5 0.05 16 4.8 0.15  9
    LNU518 64014.5 56.5 0.23  9 7.1 0.23  9 4.6 0.18  5
    LNU518 64016.4 4.6 0.23  4
    LNU493 64190.3 57.2 0.24 10 7.1 0.24 10
    LNU493 64191.3 60.5 0.03 16 7.6 0.03 16 4.7 0.04  7
    LNU472 63920.6 57.7 0.11 11 7.2 0.11 11 4.7 0.16  7
    LNU419 63896.2 4.6 0.22  4
    LNU419 63897.5 4.8 0.03  8
    LNU419 63897.6 64.8 0.16 25 8.1 0.16 25 4.9 0.07 11
    LNU343 64208.1 69.9 L 34 8.7 L 34 5.0 L 14
    LNU343 64208.2 56.3 0.20  8 7.0 0.20  8 4.6 0.14  6
    LNU343 64209.2 4.5 0.28  3
    LNU340 64290.7 56.3 0.20  8 7.0 0.20  8 4.7 0.08  8
    LNU340 64291.10 55.4 0.29  7 6.9 0.29  7
    LNU328 64150.1 63.5 0.15 22 7.9 0.15 22 5.1 0.18 15
    LNU328 64150.2 4.6 0.14  5
    LNU327 64491.2 57.2 0.14 10 7.1 0.14 10 4.6 0.21  4
    LNU312 64002.2 59.3 0.17 14 7.4 0.17 14 4.7 0.16  6
    CONT. 52.0 6.5 4.4
    LNU503 64203.1 75.8 0.08 19 9.5 0.08 19 5.3 0.04  9
    LNU498 64185.3 69.7 0.26  9 8.7 0.26  9
    LNU430 63936.2 5.3 0.17  7
    LNU366 64028.3 76.3 0.28 20 9.5 0.28 20 5.2 0.27  6
    CONT. 63.7 8.0 4.9
    LNU462 63504.1 88.9 0.28  5 11.1 0.28  5
    LNU455 64187.5 97.8 0.02 16 12.2 0.02 16 6.1 0.29  8
    LNU425 63911.7 92.0 0.03  9 11.5 0.03  9 5.9 0.06  5
    LNU392 63698.2 5.8 0.02  3
    LNU390 63539.4 5.8 0.08  3
    LNU329 63428.2 94.4 0.05 12 11.8 0.05 12 5.8 0.06  3
    LNU323 63424.1 96.1 L 14 12.0 L 14 6.0 0.27  7
    CONT. 84.6 10.6 5.6
    LNU511 65037.1 5.1 0.30  4
    LNU511 65040.2 77.4 0.02 18 9.7 0.02 18 5.4 0.01 11
    LNU492 64175.1 71.8 0.15 10 9.0 0.15 10 5.2 0.15  6
    LNU471 64839.2 76.5 0.01 17 9.6 0.01 17 5.4 0.03 11
    LNU471 64842.1 84.3 L 29 10.5 L 29 5.6 L 16
    LNU463 64283.4 79.2 0.01 21 9.9 0.01 21 5.6 L 14
    LNU454 64797.2 78.1 0.02 19 9.8 0.02 19 5.3 0.02  9
    LNU454 64799.2 78.1 L 19 9.8 L 19 5.3 0.03  9
    LNU454 64800.5 5.1 0.25  4
    LNU413 65021.4 73.8 0.11 13 9.2 0.11 13 5.3 0.04  8
    LNU413 65022.4 91.2 0.05 39 11.4 0.05 39 5.7 L 17
    LNU410 64971.1 5.2 0.21  7
    LNU387 64810.4 70.7 0.15  8 8.8 0.15  8 5.2 0.06  7
    LNU387 64811.3 5.1 0.15  5
    LNU382 64428.2 82.4 L 26 10.3 L 26 5.6 L 14
    LNU373 64830.1 5.2 0.29  6
    LNU361 64834.1 77.5 0.01 18 9.7 0.01 18 5.3 0.03  9
    LNU355 65012.2 86.3 0.05 32 10.8 0.05 32 5.7 0.03 16
    LNU355 65013.2 5.4 0.29 10
    LNU355 65014.2 79.6 L 21 9.9 L 21 5.3 0.03  9
    LNU332 64822.4 70.9 0.15  8 8.9 0.15  8 5.1 0.18  4
    LNU307 64960.1 5.3 0.13  9
    CONT. 65.5 8.2 4.9
    LNU513 63458.3 72.5 0.22  9 9.1 0.22  9
    LNU512 63468.3 72.3 0.24  9 9.0 0.24  9 5.2 0.27  5
    LNU451 63497.5 81.4 0.04 23 10.2 0.04 23 5.5 0.13 10
    LNU424 63476.3 74.4 0.13 12 9.3 0.13 12
    LNU415 63691.2 73.2 0.25 10 9.2 0.25 10 5.2 0.27  5
    LNU357 63532.3 85.0 0.02 28 10.6 0.02 28 5.6 0.02 13
    LNU357 63533.8 85.9 L 30 10.7 L 30 5.7 0.01 15
    LNU357 63534.4 80.1 0.09 21 10.0 0.09 21 5.5 0.26 11
    LNU351 63466.1 77.5 0.26 17 9.7 0.26 17
    LNU344 63520.4 74.9 0.11 13 9.4 0.11 13 5.4 0.18  9
    LNU344 63521.1 76.1 0.08 15 9.5 0.08 15
    LNU330 63438.1 83.6 0.30 26 10.4 0.30 26 5.5 0.25 11
    LNU330 63441.2 76.0 0.08 15 9.5 0.08 15 5.3 0.18  7
    LNU326 63433.2 5.3 0.30  8
    LNU319 63527.1 73.7 0.16 11 9.2 0.16 11
    LNU319 63530.1 78.6 0.18 19 9.8 0.18 19
    LNU319 63530.3 79.2 0.06 19 9.9 0.06 19
    LNU302 63378.3 86.6 L 31 10.8 L 31 5.7 0.01 15
    LNU291 63385.1 81.5 0.03 23 10.2 0.03 23 5.6 0.11 13
    LNU291 63387.3 82.6 0.16 25 10.3 0.16 25 5.5 0.16 11
    CONT. 66.3 8.3 5.0
    Table 95. “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • The genes listed in Table 96 improved plant NUE when grown at standard nitrogen concentration levels. These genes produced faster developing plants when grown under limiting nitrogen growth conditions, compared to control plants as measured by growth rate of leaf number, rosette diameter and plot coverage.
  • TABLE 96
    RGR Of Leaf RGR Of Plot RGR Of Rosette
    Number Coverage Diameter
    Gene P- % P- % P- %
    Name Event # Ave. Val. Incr. Ave. Val. Incr. Ave. Val. Incr.
    LNU507 64087.1 0.5 0.30 14
    LNU507 64584.2 8.9 0.29 21 0.5 0.15 20
    LNU507 64585.2 0.5 0.08 24
    LNU479 65497.5 9.9 0.09 34 0.5 0.13 21
    LNU479 65499.1 9.9 0.10 34 0.5 0.16 19
    LNU418 65027.2 10.8 0.03 45 0.5 0.12 21
    LNU401 65493.3 8.9 0.30 21 0.5 0.11 23
    LNU401 65494.1 10.2 0.07 38 0.5 0.10 23
    LNU388 65487.1 9.1 0.24 23 0.5 0.10 23
    LNU377 64604.6 9.4 0.18 27 0.5 0.16 19
    LNU368 64004.3 9.5 0.14 29 0.5 0.18 18
    LNU344 63521.1 0.9 0.19 22 10.6 0.04 43 0.5 0.04 29
    LNU339 65055.1 0.5 0.18 18
    LNU337 64952.1 0.5 0.13 22
    LNU337 64953.1 0.9 0.23 21
    LNU337 64954.1 0.9 0.22 20
    LNU337 64955.2 9.4 0.18 26 0.5 0.10 23
    LNU324 64234.3 9.5 0.16 28 0.5 0.22 17
    LNU318 65067.1 0.5 0.27 15
    LNU318 65067.2 0.5 0.19 17
    LNU296 65060.2 9.2 0.21 24 0.5 0.22 16
    CONT. 0.7 7.4 0.4
    LNU507 64584.1 11.1 0.20 22 0.5 0.10 22
    LNU507 64585.2 0.5 0.24 16
    LNU494 65300.2 11.9 0.08 30 0.5 0.05 28
    LNU494 65303.2 11.4 0.14 25
    LNU479 65497.3 12.3 0.04 34 0.5 0.07 24
    LNU479 65497.5 12.6 0.06 38 0.5 0.08 28
    LNU479 65498.3 0.7 0.23 20
    LNU479 65499.1 13.3 0.01 45 0.5 0.05 27
    LNU423 64596.1 11.2 0.24 22
    LNU418 65027.2 0.7 0.20 20
    LNU401 65493.2 10.8 0.29 18 0.5 0.22 16
    LNU401 65493.3 11.4 0.15 25 0.5 0.21 17
    LNU401 65494.1 0.7 0.18 19 11.6 0.11 27 0.5 0.12 21
    LNU401 65494.2 0.8 0.07 28
    LNU388 65488.1 0.7 0.19 20 0.5 0.12 21
    LNU388 65489.4 0.8 0.01 37
    LNU377 64602.2 0.8 0.14 23
    LNU377 64604.3 0.7 0.21 19
    LNU377 64605.1 0.8 0.15 23 11.9 0.08 29 0.5 0.18 18
    LNU348 64472.2 0.5 0.28 14
    LNU339 65055.1 0.8 0.10 26
    LNU339 65058.2 0.5 0.21 17
    LNU337 64955.2 10.9 0.28 19
    LNU336 64448.3 0.7 0.22 19 0.5 0.23 16
    LNU336 64449.3 0.5 0.12 22
    LNU336 64449.4 0.5 0.21 17
    LNU333 65295.2 0.5 0.23 16
    LNU333 65297.1 0.8 0.03 36
    LNU333 65297.2 0.5 0.15 19
    LNU324 64233.4 12.2 0.05 33 0.5 0.05 28
    LNU324 64234.4 0.8 0.14 26
    LNU318 65066.6 0.5 0.26 15
    LNU304 64572.2 0.5 0.17 18
    LNU304 64573.1 0.5 0.19 17
    LNU304 64575.2 0.8 0.04 35
    LNU296 65062.2 0.5 0.16 18
    LNU292 64081.2 0.5 0.27 15
    LNU292 64084.1 0.5 0.24 16
    LNU292 64085.1 0.7 0.22 19 0.5 0.26 15
    LNU292 64085.4 0.7 0.20 20
    CONT. 0.6 9.2 0.4
    LNU508 64459.5 0.7 0.22 23
    LNU469 64308.4 8.4 0.19 23
    LNU469 64311.5 0.7 0.21 22
    LNU442 64060.2 0.7 0.22 22
    LNU409 64687.2 8.0 0.25 17 0.5 0.14 16
    LNU409 64689.3 0.7 0.26 20
    LNU363 64410.2 8.6 0.11 26 0.4 0.24 13
    LNU314 64433.1 7.9 0.29 16
    CONT. 0.6 6.8 0.4
    LNU517 64296.4 6.7 0.17 21
    LNU501  64197.10 6.4 0.29 16
    LNU397 64373.3 6.7 0.19 21 0.4 0.21 15
    LNU369 64387.1 0.6 0.29 18
    LNU369 64389.2 6.7 0.19 21
    LNU342 64036.2 6.7 0.17 21 0.4 0.21 15
    CONT. 0.5 5.5 0.4
    LNU513 63458.2 6.3 0.03 34 0.4 0.06 14
    LNU512 63470.1 5.5 0.24 17
    LNU451 63496.2 0.4 0.13 11
    LNU451 63499.5 5.9 0.10 25 0.4 0.17 10
    LNU451 63500.1 5.7 0.20 20
    LNU415 63693.4 5.6 0.25 17
    LNU411 63514.3 5.7 0.16 21
    LNU375 63452.2 0.7 0.22 17 0.4 0.30  8
    LNU375 63454.1 5.9 0.12 24 0.4 0.08 13
    LNU375 63454.2 6.0 0.09 27 0.4 0.10 14
    LNU370 63545.2 0.4 0.13 12
    LNU370 63545.6 5.8 0.13 23 0.4 0.08 13
    LNU357 63533.1 6.8 0.01 43 0.4 0.06 15
    LNU357 63533.8 5.7 0.17 21
    LNU357 63534.1 5.5 0.29 16 0.4 0.28  8
    LNU351 63464.1 0.4 0.29  8
    LNU326 63433.4 5.7 0.18 20 0.4 0.09 13
    LNU326 63435.1 5.6 0.24 18
    LNU319 63528.1 5.8 0.16 22
    LNU319 63530.3 5.9 0.11 24 0.4 0.11 12
    LNU308 63414.1 5.6 0.25 18 0.4 0.18 10
    LNU308 63415.3 5.6 0.21 19
    LNU308 63417.5 5.6 0.22 19 0.4 0.17 10
    LNU308 63417.8 6.4 0.03 35 0.4 0.02 16
    LNU302 63380.1 5.8 0.15 22 0.4 0.18 10
    LNU302 63381.1 5.5 0.27 16 0.4 0.22  9
    LNU302 63382.2 6.3 0.04 33 0.4 0.05 15
    LNU291 63385.1 0.7 0.29 16
    LNU291 63387.1 0.7 0.28 15 5.9 0.11 25 0.4 0.20  9
    CONT. 0.6 4.7 0.3
    LNU477 63888.1 9.7 0.19 21
    LNU469 64311.8 9.4 0.26 17
    LNU442 64056.1 0.7 0.26 15
    LNU376 63987.3 0.7 0.26 14 10.5 0.06 30 0.5 0.13 15
    LNU314 64433.1 0.8 0.21 19
    CONT. 0.6 8.0 0.4
    LNU511 65036.2 14.1 0.01 37 0.6 0.23 11
    LNU511 65037.1 14.8 L 44
    LNU511 65037.3 12.1 0.27 18
    LNU492 64174.2 12.8 0.11 24
    LNU492 64176.4 13.9 0.03 35 0.6 0.14 15
    LNU476 64041.2 12.8 0.12 24 0.6 0.12 16
    LNU476 64042.1 13.0 0.08 27 0.6 0.16 14
    LNU471 64838.3 13.8 0.03 34
    LNU471 64839.2 12.9 0.08 26
    LNU471 64841.3 12.5 0.16 21
    LNU471 64842.1 13.1 0.06 28
    LNU463 64280.4 12.2 0.21 19
    LNU463 64281.3 14.8 L 44 0.6 0.07 18
    LNU454 64796.3 12.0 0.24 17
    LNU454 64797.2 0.8 0.23 20
    LNU422 64965.2 13.8 0.05 34 0.6 0.13 17
    LNU413 65019.1 14.8 L 43 0.6 0.08 19
    LNU413 65019.2 12.1 0.23 18
    LNU413 65021.4 13.3 0.05 29 0.6 0.12 15
    LNU413 65021.5 12.5 0.14 21
    LNU410 64971.2 12.8 0.16 24 0.6 0.27 12
    LNU410 64974.3 12.5 0.16 22
    LNU387 64808.1 11.9 0.29 16
    LNU387 64811.3 12.8 0.10 25 0.6 0.22 12
    LNU382 64428.2 12.0 0.27 16
    LNU382 64430.1 12.8 0.11 24
    LNU373 64826.4 12.1 0.25 18
    LNU373 64827.2 12.8 0.10 25
    LNU373 64828.1 12.7 0.12 23 0.6 0.25 11
    LNU361 64832.1 17.5 L 70 0.7 L 30
    LNU361 64836.2 13.2 0.08 28
    LNU355 65012.1 12.2 0.21 19
    LNU355 65014.2 12.1 0.25 18 0.6 0.29 11
    LNU355 65015.2 13.3 0.06 29 0.6 0.17 13
    LNU332 64821.1 12.7 0.12 24 0.6 0.22 12
    LNU332 64822.4 12.7 0.17 23
    LNU332 64824.3 0.8 0.28 17
    LNU307 64959.2 12.2 0.22 18 0.6 0.28 11
    LNU307 64960.2 12.0 0.27 16
    LNU303 65043.2 12.4 0.17 21 0.6 0.28 10
    LNU303 65046.1 14.0 0.02 36
    LNU300 65030.2 12.7 0.12 23 0.6 0.23 12
    LNU300 65031.3 14.4 0.01 40 0.6 0.13 15
    LNU300 65033.1 13.8 0.03 34 0.6 0.24 12
    CONT. 0.7 10.3 0.5
    LNU517 64296.3 0.7 0.17 26 9.2 0.07 34
    LNU517 64297.9 8.6 0.14 25
    LNU509 64690.3 0.7 0.17 25 9.5 0.03 39
    LNU509 64692.3 0.7 0.25 22 9.0 0.06 31
    LNU509 64692.6 8.9 0.08 30
    LNU504 64455.6 0.7 0.10 28
    LNU501 64197.1 8.1 0.15 18
    LNU461 64666.1 8.3 0.23 20
    LNU461 64668.5 0.7 0.23 21 8.7 0.13 26
    LNU397 64375.1 8.7 0.13 26
    LNU396  64315.13 9.8 0.02 43 0.5 0.19 16
    LNU372 64481.1 8.4 0.16 23
    LNU372 64483.3 0.7 0.15 24 9.1 0.06 32
    LNU372 64485.1 8.0 0.29 17
    LNU372 64485.3 8.1 0.30 17
    LNU369 64386.1 8.4 0.18 22
    LNU369 64387.1 8.3 0.22 20
    LNU365 64712.3 0.7 0.29 18 8.2 0.24 19
    LNU350 64674.2 0.7 0.25 21 9.1 0.06 33 0.5 0.23 15
    LNU345 64333.4 8.4 0.21 23
    LNU345 64337.1 8.5 0.17 24
    LNU342 64036.2 0.7 0.29 20 8.7 0.13 26
    LNU313 64661.8 8.5 0.14 24
    LNU313 64663.2 9.1 0.05 33
    LNU294 64657.2 8.4 0.19 22
    CONT. 0.6 6.9 0.4
    LNU458 63893.1 0.7 0.20 20
    LNU419 63896.2 9.0 0.23 17
    LNU403 64236.3 0.5 0.26  9
    CONT. 0.6 7.7 0.5
    LNU520  64156.14 0.4 0.25 10
    LNU520 64156.7 7.8 0.25 17 0.4 0.13 14
    LNU493 64190.3 0.7 0.17 24
    LNU493 64191.3 7.7 0.27 16
    LNU481 64141.1 0.7 0.26 20
    LNU472 63920.6 0.4 0.29 10
    LNU419 63897.4 7.9 0.24 19
    LNU419 63897.5 0.5 0.04 19
    LNU419 63897.6 0.7 0.20 26 8.2 0.12 24
    LNU343 64208.1 0.7 0.17 25 9.0 0.03 34 0.4 0.18 12
    LNU340 64290.7 0.4 0.29 10
    LNU328 64150.1 8.2 0.12 23 0.5 0.03 21
    LNU328 64151.2 0.7 0.23 21
    LNU312 64002.2 0.7 0.20 21 7.7 0.28 16 0.4 0.22 12
    LNU305 64114.1 0.7 0.25 17
    CONT. 0.6 6.7 0.4
    LNU503 64203.1 10.0 0.26 20 0.5 0.28 12
    LNU444 64182.3 0.8 0.28 15
    LNU430 63936.2 0.5 0.26 13
    LNU366 64028.3 10.0 0.27 20
    LNU335 64169.2 0.9 0.12 21
    LNU317 64093.3 0.8 0.28 14
    CONT. 0.7 8.4 0.5
    LNU499  64146.11 0.8 0.18 15
    LNU499  64146.12 0.8 0.22 14
    LNU499 64146.7 0.8 0.28 11
    LNU468 63492.2 0.8 0.28 12
    LNU468 63492.3 0.8 0.04 24
    LNU468 63493.4 0.8 0.17 16
    LNU467 63716.1 0.8 0.26 12
    LNU467 63718.2 0.8 0.17 14
    LNU462 63503.1 0.8 0.10 19
    LNU462 63503.2 0.8 0.23 13
    LNU462 63505.1 0.8 0.24 12
    LNU455 64187.5 0.8 0.07 20 12.8 0.23 16
    LNU450 63708.6 0.8 0.20 14
    LNU450 63709.4 0.8 0.04 23
    LNU450 63710.2 0.8 0.13 16
    LNU425 63911.7 0.8 0.06 23 0.6 0.22  9
    LNU402 63913.1 0.8 0.21 14
    LNU402 63913.4 0.8 0.17 14
    LNU402 63915.1 0.9 0.03 25
    LNU399 63944.2 0.9 0.01 28
    LNU399 63944.6 0.8 0.15 16
    LNU399 63946.1 0.8 0.22 15
    LNU395 64142.5 0.8 0.23 13
    LNU395 64142.8 0.8 0.14 16
    LNU392 63696.2 0.8 0.18 15
    LNU392 63697.4 0.8 0.15 15
    LNU392 63698.2 0.8 0.13 16
    LNU392 63700.3 0.8 0.25 13
    LNU390 63538.1 0.8 0.05 22
    LNU390 63539.2 0.8 0.12 16
    LNU390 63540.9 0.8 0.14 16
    LNU349 63989.1 0.8 0.03 23
    LNU349 63989.5 0.8 0.24 13
    LNU349 63989.6 0.8 0.14 16
    LNU349 63990.2 0.9 0.01 29
    LNU347 63510.4 0.8 0.16 15
    LNU329 63428.2 0.8 0.28 14
    LNU329 63429.1 0.8 0.15 16
    LNU329 63430.3 0.8 0.20 13
    LNU323 63420.1 0.8 0.08 19
    LNU323 63421.2 0.8 0.08 19
    CONT. 0.7 11.0 0.5
    LNU511 65037.3 0.5 0.28  9
    LNU511 65040.2 10.0 0.16 19 0.5 0.08 15
    LNU492 64175.1 0.9 0.14 20 0.5 0.20 11
    LNU492 64176.4 9.8 0.29 16
    LNU471 64839.2 10.0 0.16 19 0.5 0.06 17
    LNU471 64842.1 11.0 0.03 30 0.5 0.02 21
    LNU463 64281.3 0.5 0.27 10
    LNU463 64283.4 10.1 0.13 20 0.5 0.05 18
    LNU463 64283.5 0.5 0.13 14
    LNU454 64797.2 10.1 0.16 20 0.5 0.22 11
    LNU454 64799.2 10.1 0.15 20 0.5 0.12 13
    LNU454 64800.5 0.5 0.14 13
    LNU413 65021.4 0.5 0.20 11
    LNU413 65022.4 11.7 0.01 39 0.5 0.02 20
    LNU410 64971.1 0.5 0.19 11
    LNU387 64808.1 0.5 0.08 16
    LNU387 64810.4 0.5 0.13 13
    LNU387 64811.2 0.5 0.30  9
    LNU382 64428.2 10.7 0.06 27 0.5 0.02 21
    LNU382 64429.3 0.5 0.29  9
    LNU373 64830.1 0.8 0.24 14 0.5 0.19 11
    LNU361 64834.1 0.8 0.20 16 10.1 0.15 20 0.5 0.06 16
    LNU355 65012.2 11.1 0.03 31 0.5 0.02 21
    LNU355 65013.2 10.2 0.15 22 0.5 0.06 18
    LNU355 65014.2 10.3 0.11 23 0.5 0.15 12
    LNU332 64823.1 0.9 0.18 18
    LNU307 64959.2 0.5 0.12 13
    LNU307 64960.1 0.5 0.12 14
    LNU303 65043.1 0.5 0.28 10
    LNU303 65043.2 9.7 0.29 15 0.5 0.16 13
    LNU300 65032.1 0.8 0.29 14
    CONT. 0.7 8.4 0.4
    LNU513 63458.3 0.9 0.15 14
    LNU512 63470.1 0.9 0.07 17
    LNU451 63497.5 10.5 0.14 23
    LNU357 63532.3 11.0 0.08 29
    LNU357 63533.8 0.9 0.15 15 11.1 0.06 30 0.5 0.10 16
    LNU357 63534.4 10.3 0.19 21
    LNU351 63466.1 10.0 0.28 17
    LNU344 63520.4 0.5 0.22 12
    LNU330 63438.1 10.9 0.12 27 0.5 0.18 14
    LNU330 63441.2 1.0 0.05 19
    LNU319 63527.1 0.9 0.25 11
    LNU319 63528.1 0.9 0.29 11 10.4 0.20 21
    LNU319 63530.1 0.9 0.15 15 10.1 0.23 19
    LNU319 63530.3 10.2 0.22 19
    LNU302 63378.3 11.3 0.05 33 0.6 0.07 18
    LNU291 63385.1 10.5 0.14 23 0.5 0.19 13
    LNU291 63387.3 10.7 0.12 25 0.5 0.18 13
    CONT. 0.8 8.5 0.5
    Table 96. “CONT.”—Control;
    “Ave.”—Average;
    “% Incr.” = % increment;
    “p-val.”—p-value;
    L means that p-value is less than 0.01, p < 0.1 was considered as significant.
  • Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
  • It is the intent of the Applicant(s) that all publications, patents and patent applications referred to in this specification are to be incorporated in their entirety by reference into the specification, as if each individual publication, patent or patent application was specifically and individually noted when referenced that it is to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting. In addition, any priority document(s) of this application is/arc hereby incorporated herein by reference in its/their entirety.

Claims (20)

What is claimed is:
1. A method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant or reducing time to flowering or to inflorescence emergence of a plant, comprising expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence at least 80% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, 3406-3817 and 3818, thereby increasing the nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of the plant or reducing the time to flowering or to inflorescence emergence of a plant.
2. The method of claim 1, wherein said polypeptide is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818.
3. The method of claim 1, wherein said polypeptide is selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818.
4. The method of claim 1, wherein said exogenous polynucleotide comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-105, 107-186, 188-367, 369-442, 444-469, 785-1473, 1475-1934, and 1939-2397.
5. The method of claim 1, further comprising growing the plant expressing said exogenous polynucleotide under the abiotic stress.
6. The method of claim 1, wherein said abiotic stress is selected from the group consisting of salinity, drought, water deprivation, flood, etiolation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
7. The method of claim 1, wherein the yield comprises seed yield or oil yield.
8. The method of claim 1, further comprising growing the plant expressing said exogenous polynucleotide under nitrogen-limiting conditions.
9. The method of claim 1, further comprising selecting a plant expressing said exogenous polynucleotide for an increased nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance as compared to a control plant under the same growth conditions.
10. The method of claim 1, further comprising selecting a plant expressing said exogenous polynucleotide for a reduced time to flowering or to inflorescence emergence as compared to a control plant under the same growth conditions.
11. A nucleic acid construct comprising an isolated polynucleotide comprising a nucleic acid sequence encoding a polypeptide which comprises an amino acid sequence at least 80% identical to the amino acid sequence set forth in SEQ ID NO: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, 3406-3817 or 3818, and a heterologous promoter operably linked to said isolated polynucleotide for directing transcription of said nucleic acid sequence in a host cell, wherein said amino acid sequence is capable of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance of a plant or reducing a time to flowering or to inflorescence emergence of a plant.
12. The nucleic acid construct of claim 11, wherein said amino acid sequence is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818.
13. The nucleic acid construct of claim 11, wherein said amino acid sequence is selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818.
14. The nucleic acid construct of claim 11, wherein said nucleic acid sequence is selected from the group consisting of SEQ ID NOs: 1-105, 107-186, 188-367, 369-442, 444-469, 785-1473, 1475-1934, and 1939-2397.
15. The nucleic acid construct of claim 11, wherein said promoter is heterologous to said isolated polynucleotide and/or to said host cell.
16. A plant cell transformed with the nucleic acid construct of claim 11.
17. A transgenic plant transformed with the nucleic acid construct of claim 11.
18. A method of growing a crop, the method comprising seeding seeds and/or planting plantlets of a plant transformed with the nucleic acid construct of claim 11, wherein the plant is derived from plants which have been transformed with said isolated polynucleotide and which have been selected for at least one trait selected from the group consisting of: increased nitrogen use efficiency, increased yield, increased biomass, increased growth rate, increased vigor, increased oil content, increased fiber yield, increased fiber quality, increased abiotic stress tolerance, reduced time to flowering and reduced time to inflorescence emergence as compared to a non-transformed plant, thereby growing the crop.
19. A method of selecting a transformed plant having increased nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance or reduced time to flowering or to inflorescence emergence as compared to a wild type plant of the same species which is grown under the same growth conditions, the method comprising:
(a) providing plants transformed with an exogenous polynucleotide encoding a polypeptide comprising an amino acid sequence at least 80% homologous to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818,
(b) selecting from said plants of step (a) a plant having increased nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance or reduced time to flowering or to inflorescence emergence as compared to a wild type plant of the same species which is grown under the same growth conditions,
thereby selecting the plant having the increased nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, and/or abiotic stress tolerance or reduced time to flowering or to inflorescence emergence as compared to the wild type plant of the same species which is grown under the same growth conditions.
20. The method of claim 19, wherein said polypeptide is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NOs: 470-574, 576-655, 657-784, 2398-2990, 2992-3401, and 3406-3818.
US17/464,779 2010-08-30 2021-09-02 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance Abandoned US20230019445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/464,779 US20230019445A1 (en) 2010-08-30 2021-09-02 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US37800310P 2010-08-30 2010-08-30
US40526010P 2010-10-21 2010-10-21
US201161437715P 2011-01-31 2011-01-31
PCT/IB2011/051843 WO2011135527A2 (en) 2010-04-28 2011-04-27 Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
PCT/IB2011/053697 WO2012028993A2 (en) 2010-08-30 2011-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US201313819777A 2013-02-28 2013-02-28
US16/551,803 US11130957B2 (en) 2010-08-30 2019-08-27 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US17/464,779 US20230019445A1 (en) 2010-08-30 2021-09-02 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/551,803 Division US11130957B2 (en) 2010-08-30 2019-08-27 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance

Publications (1)

Publication Number Publication Date
US20230019445A1 true US20230019445A1 (en) 2023-01-19

Family

ID=45773318

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/819,777 Expired - Fee Related US10457954B2 (en) 2010-08-30 2011-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US16/551,803 Active US11130957B2 (en) 2010-08-30 2019-08-27 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US17/464,779 Abandoned US20230019445A1 (en) 2010-08-30 2021-09-02 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/819,777 Expired - Fee Related US10457954B2 (en) 2010-08-30 2011-08-23 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US16/551,803 Active US11130957B2 (en) 2010-08-30 2019-08-27 Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance

Country Status (8)

Country Link
US (3) US10457954B2 (en)
AR (1) AR082530A1 (en)
AU (5) AU2011298034B2 (en)
BR (3) BR112013004851A2 (en)
CA (2) CA3158003A1 (en)
MX (2) MX2018009863A (en)
WO (1) WO2012028993A2 (en)
ZA (1) ZA201301622B (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554007B2 (en) 2003-05-22 2009-06-30 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants
AU2005234725B2 (en) 2003-05-22 2012-02-23 Evogene Ltd. Methods of Increasing Abiotic Stress Tolerance and/or Biomass in Plants and Plants Generated Thereby
CN101948846A (en) 2004-06-14 2011-01-19 伊沃基因有限公司 Polynucleotides and polypeptides involved in plant fiber development and methods of using same
MX350551B (en) 2005-10-24 2017-09-08 Evogene Ltd Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same.
MX349479B (en) 2006-12-20 2017-07-31 Evogene Ltd Polynucleotides and polypeptides involved in plant fiber development and methods of using same.
MX2009010858A (en) 2007-04-09 2009-11-02 Evogene Ltd Polynucleotides, polypeptides and methods for increasing oil content, growth rate and biomass of plants.
BR122020022203B1 (en) 2007-07-24 2021-04-20 Evogene Ltd method of increasing the growth rate of a plant
CN101977928B (en) 2007-12-27 2014-12-10 伊沃基因有限公司 Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
CA3148194A1 (en) 2008-05-22 2009-11-26 Evogene Ltd. Isolated polynucleotides and peptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
BRPI0912898B1 (en) * 2008-08-18 2022-04-12 Evogene Ltd Method for increasing nitrogen use efficiency and/or nitrogen deficiency tolerance of a plant
EP2347014B1 (en) 2008-10-30 2016-09-21 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
MX340023B (en) 2008-12-29 2016-06-22 Evogene Ltd Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same.
CA3123543A1 (en) 2009-03-02 2010-09-10 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
EP2440033B1 (en) 2009-06-10 2017-03-15 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US8937215B2 (en) 2009-08-04 2015-01-20 Evogene Ltd. Polynucleotides and polypeptides for increasing desirable plant qualities
EP2519097B1 (en) 2009-12-28 2016-03-02 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
AU2011246876B2 (en) 2010-04-28 2016-06-23 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR112013004851A2 (en) 2010-08-30 2016-06-07 Evogene Ltd method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield and / or abiotic stress tolerance of a plant, isolated polynucleotide, nucleic acid structure, isolated polypeptide, cell vegetable and transgenic plant
BR122021002248B1 (en) 2010-12-22 2022-02-15 Evogene Ltd METHOD TO INCREASE TOLERANCE TO ABIOTIC STRESS, PRODUCTION, BIOMASS, AND/OR GROWTH RATE OF A PLANT
US9683241B2 (en) * 2011-04-29 2017-06-20 Bangladesh Jute Research Institute Polynucleotides encoding enzymes from the jute lignin biosynthetic pathway
WO2012150598A2 (en) 2011-05-03 2012-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013027223A2 (en) 2011-08-23 2013-02-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CN104254242A (en) 2011-11-21 2014-12-31 先正达参股股份有限公司 Compositions and methods for increasing nematode resistance in plants
WO2013080203A1 (en) 2011-11-28 2013-06-06 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
BR122020022832B1 (en) 2011-12-28 2021-08-17 Evogene Ltd METHOD TO INCREASE THE PRODUCTION, GROWTH RATE, BIOMASS, ENERGY AND/OR SEED PRODUCTION OF A PLANT COMPARED TO A NATIVE PLANT, AND, ISOLATED NUCLEIC ACID CONSTRUCTION
WO2013128448A1 (en) 2012-02-29 2013-09-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013152317A2 (en) * 2012-04-06 2013-10-10 Syngenta Participations Ag Nitrite transporter and methods of using the same
CA2873846A1 (en) 2012-05-28 2013-12-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR122019028124B1 (en) 2012-08-27 2022-08-09 Evogene Ltd METHOD TO INCREASE YIELD, GROWTH RATE, BIOMASS, VIGOR, PHOTOSYNTHETIC CAPACITY, NITROGEN USE EFFICIENCY, AND/OR TOLERANCE TO ABIOTIC STRESS OF A PLANT, METHOD FOR PRODUCING A HARVEST, NUCLEIC ACID CONSTRUCTION, AND, METHOD OF GROWING A CULTURE
BR112015015415B1 (en) 2012-12-25 2022-08-16 Evogene Ltd. METHODS TO INCREASE NITROGEN USE EFFICIENCY, GROWTH RATE, BIOMASS, SEED YIELD, PHOTOSYNTHETIC CAPACITY AND/OR TOLERANCE TO ABIOTIC STRESS OF A PLANT, TO PRODUCE A CULTURE, TO GROW A CROP, AND, TO SELECT A PLANT
BR122020018366B1 (en) 2012-12-26 2022-03-29 Evogene Ltd Method for increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, photosynthetic capacity and/or abiotic stress tolerance of a plant, and isolated nucleic acid construct
CA2910097A1 (en) 2013-05-22 2014-11-27 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CA2916060A1 (en) 2013-08-27 2015-03-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US20170029839A1 (en) * 2013-09-03 2017-02-02 Alan Donald NEALE Method for improving crop productivity
AU2015265412B2 (en) 2014-05-28 2021-03-25 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
US10858403B2 (en) 2014-08-27 2020-12-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US10766935B2 (en) 2015-12-28 2020-09-08 Evogene Ltd. Plant traits conferred by isolated polynucleotides and polypeptides
US11041168B2 (en) 2016-08-11 2021-06-22 Peking University Application of OsAO gene for improving resistance of rice against rice stripe virus, rice black-streaked dwarf virus, or virus of same family
CN111909250B (en) * 2019-05-10 2022-08-09 中国农业大学 Protein INVAN6, coding gene thereof and application thereof in breeding male sterile line of corn
JP2021182873A (en) * 2020-05-21 2021-12-02 学校法人帝京大学 Thermostable glucocerebrosidase
CN113621636B (en) * 2021-06-25 2024-10-18 新泰市佳禾生物科技有限公司 Tryptophan decarboxylase gene prokaryotic expression vector and application thereof
CN116675751B (en) * 2023-06-08 2024-01-26 山东农业大学 Application of SWEET1g protein and encoding gene thereof in resisting potato viruses

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL154600B (en) 1971-02-10 1977-09-15 Organon Nv METHOD FOR THE DETERMINATION AND DETERMINATION OF SPECIFIC BINDING PROTEINS AND THEIR CORRESPONDING BINDABLE SUBSTANCES.
NL154598B (en) 1970-11-10 1977-09-15 Organon Nv PROCEDURE FOR DETERMINING AND DETERMINING LOW MOLECULAR COMPOUNDS AND PROTEINS THAT CAN SPECIFICALLY BIND THESE COMPOUNDS AND TEST PACKAGING.
NL154599B (en) 1970-12-28 1977-09-15 Organon Nv PROCEDURE FOR DETERMINING AND DETERMINING SPECIFIC BINDING PROTEINS AND THEIR CORRESPONDING BINDABLE SUBSTANCES, AND TEST PACKAGING.
US3901654A (en) 1971-06-21 1975-08-26 Biological Developments Receptor assays of biologically active compounds employing biologically specific receptors
US3853987A (en) 1971-09-01 1974-12-10 W Dreyer Immunological reagent and radioimmuno assay
US3867517A (en) 1971-12-21 1975-02-18 Abbott Lab Direct radioimmunoassay for antigens and their antibodies
NL171930C (en) 1972-05-11 1983-06-01 Akzo Nv METHOD FOR DETERMINING AND DETERMINING BITES AND TEST PACKAGING.
US3850578A (en) 1973-03-12 1974-11-26 H Mcconnell Process for assaying for biologically active molecules
US3935074A (en) 1973-12-17 1976-01-27 Syva Company Antibody steric hindrance immunoassay with two antibodies
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4034074A (en) 1974-09-19 1977-07-05 The Board Of Trustees Of Leland Stanford Junior University Universal reagent 2-site immunoradiometric assay using labelled anti (IgG)
US3984533A (en) 1975-11-13 1976-10-05 General Electric Company Electrophoretic method of detecting antigen-antibody reaction
US4098876A (en) 1976-10-26 1978-07-04 Corning Glass Works Reverse sandwich immunoassay
US4879219A (en) 1980-09-19 1989-11-07 General Hospital Corporation Immunoassay utilizing monoclonal high affinity IgM antibodies
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5011771A (en) 1984-04-12 1991-04-30 The General Hospital Corporation Multiepitopic immunometric assay
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5420034A (en) 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
US4943674A (en) 1987-05-26 1990-07-24 Calgene, Inc. Fruit specific transcriptional factors
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
US5693507A (en) 1988-09-26 1997-12-02 Auburn University Genetic engineering of plant chloroplasts
US5495070A (en) 1988-10-04 1996-02-27 Agracetus, Inc. Genetically engineering cotton plants for altered fiber
US5597718A (en) 1988-10-04 1997-01-28 Agracetus Genetically engineering cotton plants for altered fiber
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
ATE89169T1 (en) 1989-07-15 1993-05-15 Boehringer Ingelheim Int AGENT CONTAINING ANTICOAGULANT.
US6329570B1 (en) 1989-07-19 2001-12-11 Calgene, Llc Cotton modification using ovary-tissue transcriptional factors
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
US5859330A (en) 1989-12-12 1999-01-12 Epitope, Inc. Regulated expression of heterologous genes in plants and transgenic fruit with a modified ripening phenotype
ES2187497T3 (en) 1990-04-12 2003-06-16 Syngenta Participations Ag PROMOTERS PREFERREDLY IN FABRICS.
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
DE69230290T2 (en) 1991-08-27 2000-07-20 Novartis Ag, Basel PROTEINS WITH INSECTICIDAL PROPERTIES AGAINST HOMOPTERAN INSECTS AND THEIR USE IN PLANT PROTECTION
UA48104C2 (en) 1991-10-04 2002-08-15 Новартіс Аг Dna fragment including sequence that codes an insecticide protein with optimization for corn, dna fragment providing directed preferable for the stem core expression of the structural gene of the plant related to it, dna fragment providing specific for the pollen expression of related to it structural gene in the plant, recombinant dna molecule, method for obtaining a coding sequence of the insecticide protein optimized for corn, method of corn plants protection at least against one pest insect
EP0612208B1 (en) 1991-10-04 2004-09-15 North Carolina State University Pathogen-resistant transgenic plants
US5356816A (en) 1991-11-19 1994-10-18 Board Of Trustees Operating Michigan State University Method and compositions using polypeptides of arabidopsis thaliana
US5281521A (en) 1992-07-20 1994-01-25 The Trustees Of The University Of Pennsylvania Modified avidin-biotin technique
US5296462A (en) 1992-11-19 1994-03-22 Board Of Trustees Operating Michigan State University Method and compositions using polypeptides of arabidopsis thaliana
US5521708A (en) 1992-11-25 1996-05-28 Canon Information & Systems, Inc. Correlated color temperature detector
ZA939767B (en) 1993-01-21 1994-09-14 Univ North Carolina State Nematode-resistant transgenic plants
EP0670670A4 (en) 1993-09-30 1996-04-24 Agracetus Transgenic cotton plants producing heterologous peroxidase.
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof
US7262055B2 (en) 1998-08-25 2007-08-28 Gendaq Limited Regulated gene expression in plants
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
CA2221747A1 (en) 1995-06-07 1996-12-19 Kevin Mcbride Cotton fiber transcriptional factors
JPH0967270A (en) 1995-08-31 1997-03-11 Res Dev Corp Of Japan Prevention and therapy for opacity of crystalline lens and medicine therefor
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
JPH1094392A (en) 1996-09-20 1998-04-14 Nisshinbo Ind Inc Cotton gene
EP0905242A4 (en) 1996-10-24 2001-11-07 Japan Tobacco Inc Method for controlling water content of plant
CA2278796A1 (en) 1997-01-21 1998-07-23 Monsanto Company Strawberry promoters and genes
TR200000547T2 (en) 1997-08-27 2001-05-21 Pioneer Hi-Bred International, Inc. Genes encoding enzymes for lignin biosynthesis and their use.
US20090093620A1 (en) 2000-09-05 2009-04-09 David Kovalic Annotated Plant Genes
ATE528401T1 (en) 1998-08-04 2011-10-15 Cropdesign Nv GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS
US6313375B1 (en) 1998-08-13 2001-11-06 Pioneer Hi-Bred International, Inc. Maize aquaporins and uses thereof
US6313376B1 (en) 1998-08-14 2001-11-06 Pioneer Hi-Bred International, Inc. Maize aquaporins and uses thereof
US7511190B2 (en) 1999-11-17 2009-03-31 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US6717034B2 (en) 2001-03-30 2004-04-06 Mendel Biotechnology, Inc. Method for modifying plant biomass
JP3178672B2 (en) 1998-10-14 2001-06-25 農林水産省国際農林水産業研究センター所長 Environmental stress tolerant plant
EP1033405A3 (en) 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
WO2000066610A1 (en) 1999-04-30 2000-11-09 Agritope, Inc. Apple promoters for expression of transgenes in plants
US20110214206A1 (en) 1999-05-06 2011-09-01 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
US20100293669A2 (en) 1999-05-06 2010-11-18 Jingdong Liu Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement
US20040031072A1 (en) 1999-05-06 2004-02-12 La Rosa Thomas J. Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement
US20030233670A1 (en) 2001-12-04 2003-12-18 Edgerton Michael D. Gene sequences and uses thereof in plants
US7868149B2 (en) 1999-07-20 2011-01-11 Monsanto Technology Llc Plant genome sequence and uses thereof
US8877916B2 (en) 2000-04-26 2014-11-04 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
US6559363B1 (en) 1999-07-05 2003-05-06 Toyo Boseki Kabushiki Kaisha Cotton plants with improved cotton fiber characteristics and method for producing cotton fibers from these cotton plants
WO2001006006A1 (en) 1999-07-19 2001-01-25 Japan Science And Technology Corporation Environmental stress resistance gene
US6472588B1 (en) 1999-09-10 2002-10-29 Texas Tech University Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
US6359196B1 (en) 1999-09-23 2002-03-19 Finn Lok Germination-specific plant promoters
US6403862B1 (en) 1999-09-24 2002-06-11 Pioneer Hi-Bred International, Inc. Seed-preferred promoter from maize
US6407315B1 (en) 1999-11-02 2002-06-18 Pioneer Hi-Bred International, Inc. Seed-preferred promoter from barley
US6828476B1 (en) 1999-12-02 2004-12-07 The Regents Of The University Of California Cotton transcription factors and their uses
US6936467B2 (en) * 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
DE60141547D1 (en) 2000-04-07 2010-04-22 Basf Plant Science Gmbh Stress-linked protein phosphatase and its use in plants
US20110131679A2 (en) 2000-04-19 2011-06-02 Thomas La Rosa Rice Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement
US7834146B2 (en) 2000-05-08 2010-11-16 Monsanto Technology Llc Recombinant polypeptides associated with plants
US20040181830A1 (en) 2001-05-07 2004-09-16 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
AU8681101A (en) 2000-08-24 2002-03-04 Scripps Research Inst Stress-regulated genes of plants, transgenic plants containing same, and methodsof use
US20020170088A1 (en) 2000-11-03 2002-11-14 The Regents Of The University Of California Novel auxin binding proteins and uses thereof
CA2430642A1 (en) 2000-12-01 2003-02-20 John B. Ohlrogge Plant seed specific promoters
CN1326996C (en) 2000-12-08 2007-07-18 联邦科学及工业研究组织 Modification of sucrose synthase gene expression in plant tissue and uses therefor
US7214786B2 (en) 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
ATE540575T1 (en) 2001-03-16 2012-01-15 Basf Plant Science Gmbh REGULATORS OF SUGAR AND LIPID METABOLISM IN PLANTS
AU2002302595B2 (en) 2001-05-03 2006-07-13 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Freeze-tolerant eukaryotic cells
WO2003020025A2 (en) 2001-08-31 2003-03-13 The Dow Chemical Company Nucleic acid compositions conferring insect control in plants
US7038111B2 (en) 2001-09-06 2006-05-02 The Arizona Board Of Regents Method for increasing stress tolerance in plants
US20050108791A1 (en) 2001-12-04 2005-05-19 Edgerton Michael D. Transgenic plants with improved phenotypes
AU2003233489B2 (en) 2002-04-08 2008-10-02 Pioneer Hi-Bred International, Inc. Enhanced silk exsertion under stress
CN1653174A (en) 2002-05-08 2005-08-10 巴斯福植物科学有限公司 Methods for increasing oil content in plants
US20030221218A1 (en) 2002-05-17 2003-11-27 The Regents Of The University Of California Bioengineering cotton fiber properties
JP2005185101A (en) 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF
ATE495259T1 (en) 2002-07-10 2011-01-15 Basf Plant Science Gmbh USING A GENE TO INCREASE OIL CONTENT IN PLANTS
WO2004053055A2 (en) 2002-12-04 2004-06-24 Monsanto Technology Llc Transgenic maize with enhanced phenotype
WO2004058963A2 (en) 2002-12-31 2004-07-15 University Of Delhi A novel gene osisap1 of rice confers tolerance to stresses and a method thereof
BRPI0408735A (en) 2003-03-12 2006-03-07 Evogene Ltd isolated polynucleotide, nucleic acid construction, transgenic cell, transgenic organism, transgenic plant, method for producing a transgenic plant, method for expressing a polynucleotide of interest in a cell, and method for co-expressing two polynucleotides of interest in a cell
AU2004230490C1 (en) 2003-04-15 2012-08-16 Basf Plant Science Gmbh Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress
WO2004092367A1 (en) 2003-04-16 2004-10-28 Basf Plant Science Gmbh Use of genes for increasing the oil content in plants
BR122016024209B1 (en) 2003-05-22 2019-08-20 Evogene Ltd. METHOD FOR INCREASING THE BIOMASS AND / OR TOLERANCE OF A PLANT TO SALINE STRESS AND NUCLEIC ACID CONSTRUCTION
US7554007B2 (en) 2003-05-22 2009-06-30 Evogene Ltd. Methods of increasing abiotic stress tolerance and/or biomass in plants
AU2005234725B2 (en) 2003-05-22 2012-02-23 Evogene Ltd. Methods of Increasing Abiotic Stress Tolerance and/or Biomass in Plants and Plants Generated Thereby
EP1636333A4 (en) 2003-06-19 2007-10-24 Evogene Ltd Nucleotide sequences for regulating gene expression in plant trichomes and constructs and methods utilizing same
JP4452876B2 (en) 2003-08-06 2010-04-21 国立大学法人 香川大学 Control of seed yield and dry weight of plants by gene transfer using LKP2 partial cDNA
US7884261B2 (en) 2004-06-30 2011-02-08 CERES,Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant growth rate and biomass in plants
US7803983B2 (en) 2004-06-30 2010-09-28 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant growth rate and biomass in plants
US20060048240A1 (en) 2004-04-01 2006-03-02 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
US20060107345A1 (en) 2003-09-30 2006-05-18 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
US7989676B2 (en) 2006-08-31 2011-08-02 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
US20060143729A1 (en) 2004-06-30 2006-06-29 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying plant characteristics
US20060150283A1 (en) 2004-02-13 2006-07-06 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
EP2302062A1 (en) 2003-10-20 2011-03-30 CropDesign N.V. Identification of E2F target genes and uses thereof
WO2005084331A2 (en) 2004-03-01 2005-09-15 Syngenta Participations Ag Sorghum gene expression profiling
US8049069B2 (en) 2004-03-31 2011-11-01 Commonwealth Scientific And Industrial Research Organisation Genes involved in plant fibre development
AU2005229157B2 (en) 2004-03-31 2011-07-21 Commonwealth Scientific And Industrial Research Organisation Genes involved in plant fibre development
DE602005027191D1 (en) 2004-04-23 2011-05-12 Ceres Inc NUCLEOTIDE SEQUENCES AND POLYPEPTIDES ENCODED TO MODIFY THE PERFORMANCE CHARACTERISTICS OF NITROGEN USE IN PLANTS
CA2564202A1 (en) 2004-05-05 2005-11-17 The Royal Veterinary And Agricultural University Ammonium/ammonia transporter
CN101948846A (en) 2004-06-14 2011-01-19 伊沃基因有限公司 Polynucleotides and polypeptides involved in plant fiber development and methods of using same
MX2007004884A (en) 2004-10-22 2007-06-22 Agrinomics Llc Generation of plants with altered oil content.
WO2006076099A2 (en) 2004-12-08 2006-07-20 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant size and biomass in plants
WO2008069878A2 (en) 2006-10-27 2008-06-12 Ceres, Inc. Modulating lignin in plants
PT1827078E (en) 2004-12-21 2014-05-26 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits
US20080148432A1 (en) 2005-12-21 2008-06-19 Mark Scott Abad Transgenic plants with enhanced agronomic traits
EP1681128A1 (en) 2005-01-14 2006-07-19 Siemens Aktiengesellschaft Method and device for producing a hole
EP1882392A4 (en) 2005-05-10 2009-07-01 Monsanto Technology Llc Genes and uses for plant improvement
US20060288451A1 (en) 2005-05-26 2006-12-21 Monsanto Technology, L.L.C. Elevation of oil in monocot plants
WO2006138012A1 (en) 2005-06-17 2006-12-28 Ceres Inc. P450 substrates and methods related thereto
US20080301839A1 (en) 2005-08-30 2008-12-04 Ravanello Monica P Transgenic plants with enhanced agronomic traits
MX350551B (en) 2005-10-24 2017-09-08 Evogene Ltd Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same.
CA2644675A1 (en) 2006-01-13 2007-07-26 Greg Nadzan Nucleotide sequences and corresponding polypeptides conferring improved nitrogen use efficiency characteristics in plants
EP2010661A2 (en) 2006-03-24 2009-01-07 BASF Plant Science GmbH Proteins associated with abiotic stress response and homologs
WO2007113237A2 (en) 2006-03-31 2007-10-11 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
MX349479B (en) 2006-12-20 2017-07-31 Evogene Ltd Polynucleotides and polypeptides involved in plant fiber development and methods of using same.
MX2009010858A (en) 2007-04-09 2009-11-02 Evogene Ltd Polynucleotides, polypeptides and methods for increasing oil content, growth rate and biomass of plants.
EP2573178A3 (en) 2007-07-10 2013-07-24 Monsanto Technology LLC Transgenic plants with enhanced agronomic traits
BR122020022203B1 (en) 2007-07-24 2021-04-20 Evogene Ltd method of increasing the growth rate of a plant
US8362325B2 (en) * 2007-10-03 2013-01-29 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
CN101977928B (en) 2007-12-27 2014-12-10 伊沃基因有限公司 Isolated polypeptides, polynucleotides useful for modifying water user efficiency, fertilizer use efficiency, biotic/abiotic stress tolerance, yield and biomass in plants
CA3148194A1 (en) 2008-05-22 2009-11-26 Evogene Ltd. Isolated polynucleotides and peptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
EP2297336A1 (en) 2008-05-29 2011-03-23 Vib Vzw Minichromosome maintenance complex interacting protein involved in cancer
BRPI0912898B1 (en) * 2008-08-18 2022-04-12 Evogene Ltd Method for increasing nitrogen use efficiency and/or nitrogen deficiency tolerance of a plant
EP2347014B1 (en) 2008-10-30 2016-09-21 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficieny
MX340023B (en) 2008-12-29 2016-06-22 Evogene Ltd Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance, biomass and/or yield in plants expressing same.
CA3123543A1 (en) 2009-03-02 2010-09-10 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
EP2440033B1 (en) 2009-06-10 2017-03-15 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US8937215B2 (en) 2009-08-04 2015-01-20 Evogene Ltd. Polynucleotides and polypeptides for increasing desirable plant qualities
US20110080674A1 (en) 2009-10-02 2011-04-07 Joel Durand Magnetic azimuth adjustment for tonearm
EP2519097B1 (en) 2009-12-28 2016-03-02 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
AU2011246876B2 (en) 2010-04-28 2016-06-23 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR112013004851A2 (en) 2010-08-30 2016-06-07 Evogene Ltd method of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield and / or abiotic stress tolerance of a plant, isolated polynucleotide, nucleic acid structure, isolated polypeptide, cell vegetable and transgenic plant
BR122021002248B1 (en) 2010-12-22 2022-02-15 Evogene Ltd METHOD TO INCREASE TOLERANCE TO ABIOTIC STRESS, PRODUCTION, BIOMASS, AND/OR GROWTH RATE OF A PLANT
WO2012150598A2 (en) 2011-05-03 2012-11-08 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
WO2013027223A2 (en) 2011-08-23 2013-02-28 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CN104254242A (en) 2011-11-21 2014-12-31 先正达参股股份有限公司 Compositions and methods for increasing nematode resistance in plants
WO2013080203A1 (en) 2011-11-28 2013-06-06 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
BR122020022832B1 (en) 2011-12-28 2021-08-17 Evogene Ltd METHOD TO INCREASE THE PRODUCTION, GROWTH RATE, BIOMASS, ENERGY AND/OR SEED PRODUCTION OF A PLANT COMPARED TO A NATIVE PLANT, AND, ISOLATED NUCLEIC ACID CONSTRUCTION
WO2013128448A1 (en) 2012-02-29 2013-09-06 Evogene Ltd. Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
CA2873846A1 (en) 2012-05-28 2013-12-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
BR122019028124B1 (en) 2012-08-27 2022-08-09 Evogene Ltd METHOD TO INCREASE YIELD, GROWTH RATE, BIOMASS, VIGOR, PHOTOSYNTHETIC CAPACITY, NITROGEN USE EFFICIENCY, AND/OR TOLERANCE TO ABIOTIC STRESS OF A PLANT, METHOD FOR PRODUCING A HARVEST, NUCLEIC ACID CONSTRUCTION, AND, METHOD OF GROWING A CULTURE
BR112015015415B1 (en) 2012-12-25 2022-08-16 Evogene Ltd. METHODS TO INCREASE NITROGEN USE EFFICIENCY, GROWTH RATE, BIOMASS, SEED YIELD, PHOTOSYNTHETIC CAPACITY AND/OR TOLERANCE TO ABIOTIC STRESS OF A PLANT, TO PRODUCE A CULTURE, TO GROW A CROP, AND, TO SELECT A PLANT
BR122020018366B1 (en) 2012-12-26 2022-03-29 Evogene Ltd Method for increasing nitrogen use efficiency, yield, growth rate, biomass, vigor, photosynthetic capacity and/or abiotic stress tolerance of a plant, and isolated nucleic acid construct
CA2910097A1 (en) 2013-05-22 2014-11-27 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
CA2916060A1 (en) 2013-08-27 2015-03-05 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
AU2015265412B2 (en) 2014-05-28 2021-03-25 Evogene Ltd. Isolated polynucleotides, polypeptides and methods of using same for increasing abiotic stress tolerance, biomass and yield of plants
US10858403B2 (en) 2014-08-27 2020-12-08 Evogene Ltd. Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
US10766935B2 (en) 2015-12-28 2020-09-08 Evogene Ltd. Plant traits conferred by isolated polynucleotides and polypeptides

Also Published As

Publication number Publication date
AU2018202006A1 (en) 2018-04-12
WO2012028993A2 (en) 2012-03-08
CA3158003A1 (en) 2012-03-08
US11130957B2 (en) 2021-09-28
MX2018009863A (en) 2022-06-14
BR122019017037B1 (en) 2022-05-31
AU2011298034A1 (en) 2013-03-21
AU2021282499A1 (en) 2022-01-06
AU2016219624A1 (en) 2016-09-22
ZA201301622B (en) 2022-08-31
WO2012028993A3 (en) 2012-11-01
AU2011298034B2 (en) 2016-05-26
CA2809384C (en) 2022-07-19
AU2020202204B2 (en) 2021-09-16
BR112013004851A2 (en) 2016-06-07
MX2013002441A (en) 2013-04-08
US20200002714A1 (en) 2020-01-02
BR122019017041B1 (en) 2021-11-23
MX365161B (en) 2019-05-24
US10457954B2 (en) 2019-10-29
AU2020202204A1 (en) 2020-04-16
AR082530A1 (en) 2012-12-12
US20130167265A1 (en) 2013-06-27
AU2018202006B2 (en) 2020-01-02
CA2809384A1 (en) 2012-03-08
AU2016219624B2 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US11130957B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US11542522B2 (en) Isolated polynucleotides and polypeptides for increasing plant yield and/or agricultural characteristics
US11530418B2 (en) Polynucleotides and polypeptides for increasing desirable plant qualities
US11286495B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US20220348945A1 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing nitrogen use efficiency, yield, growth rate, vigor, biomass, oil content, and/or abiotic stress tolerance
US11111499B2 (en) Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
US10501750B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
AU2017239568B2 (en) Isolated Polynucleotides And Polypeptides, And Methods Of Using Same For Improving Plant Properties

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: EVOGENE LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANIK, DAVID;VINOCUR, BASIA JUDITH;KARCHI, HAGAI;SIGNING DATES FROM 20130218 TO 20130220;REEL/FRAME:058895/0667

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION