US9883825B2 - Living body optical measurement apparatus, living body optical measurement method, and engagement member for mobile position sensor - Google Patents
Living body optical measurement apparatus, living body optical measurement method, and engagement member for mobile position sensor Download PDFInfo
- Publication number
- US9883825B2 US9883825B2 US14/382,514 US201314382514A US9883825B2 US 9883825 B2 US9883825 B2 US 9883825B2 US 201314382514 A US201314382514 A US 201314382514A US 9883825 B2 US9883825 B2 US 9883825B2
- Authority
- US
- United States
- Prior art keywords
- optical fiber
- living body
- plural
- tip
- engaging member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 135
- 230000003287 optical effect Effects 0.000 title claims abstract description 95
- 238000000691 measurement method Methods 0.000 title claims description 25
- 239000013307 optical fiber Substances 0.000 claims abstract description 398
- 238000000034 method Methods 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 39
- 230000001678 irradiating effect Effects 0.000 abstract description 7
- 230000000877 morphologic effect Effects 0.000 description 62
- 238000010586 diagram Methods 0.000 description 40
- 210000003128 head Anatomy 0.000 description 17
- 210000004761 scalp Anatomy 0.000 description 17
- 239000000523 sample Substances 0.000 description 11
- 102000001554 Hemoglobins Human genes 0.000 description 10
- 108010054147 Hemoglobins Proteins 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 0 CCCCCC1[C@@](C)CC*1 Chemical compound CCCCCC1[C@@](C)CC*1 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/02028—Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14553—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0418—Pen-shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0233—Special features of optical sensors or probes classified in A61B5/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/22—Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
- A61B2562/221—Arrangements of sensors with cables or leads, e.g. cable harnesses
- A61B2562/223—Optical cables therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/22—Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
- A61B2562/225—Connectors or couplings
- A61B2562/228—Sensors with optical connectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14546—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6844—Monitoring or controlling distance between sensor and tissue
Definitions
- the present invention relates to a living body optical measurement apparatus that measures blood circulation, hemodynamics, and hemoglobin quantity change inside a living body by irradiating near-infrared light to a living body and measuring light that passed through the inside of a living body or that reflected inside a living body.
- the living body optical measurement apparatus is an apparatus that irradiates light in a range from a visible wavelength to a near-infrared wavelength from a optical fiber to a living body through a scalp to measure the light that passed through the inside of a living body or that reflected inside a living body from the scalp.
- a multi-channel device For example, PTL 1).
- a living body optical measurement apparatus which measures a light irradiation position and a light detection position for a measurement target using a mobile position sensor (pen-shaped magnetic sensor) and displays a living body passing light intensity image with it superimposed on a head surface image and a brain surface image of the measurement target, is disclosed.
- the purpose of the present invention is to measure a tip position of an optical fiber accurately with the tip of the optical fiber of the living body optical measurement apparatus in contact with an object.
- the present invention includes a light irradiation and measurement unit for irradiating light on an object and measuring the light passed through the object; a signal processing unit for processing data measured by the light irradiation and measurement unit to create living body optical measurement images; and a position measurement unit for measuring positions where the light irradiation and measurement unit irradiates light to the object and where the passing light from the object is extracted, the light irradiation and measurement unit is comprised of plural optical fibers; plural optical fiber plugs attached to the plural optical fibers respectively; and a holder that is detachably fixed at a measurement site of an object and holds the plural optical fiber plugs, and the position measurement unit is comprised of a mobile position sensor; and an engaging member having a shape which is detachably engaged with the plural optical fiber plugs that are attached to the mobile position sensor and held in the holder.
- a position of the tip of an optical fiber can be measured without detaching the optical fiber and the optical fiber plug of a living body optical measurement apparatus from a holder in a state where the tip of the optical fiber comes in contact with an object.
- FIG. 1 is a block diagram showing an overall configuration of a living body optical measurement apparatus of the present invention.
- FIG. 2 is a side surface diagram of the object 107 to which the holder 108 is attached.
- FIGS. 3( a ), 3( b ), and 3( c ) are a perspective diagram, a cross-sectional diagram, and a cross-sectional perspective diagram of the optical fiber plug 204 respectively.
- FIGS. 4( a ) and 4( b ) are explanatory diagrams showing a pressure difference between the optical fibers 106 according to the protruding length of the bar-shaped member of the optical fiber plug 204 .
- FIG. 5 is an explanatory diagram showing a state where the optical fiber plug 204 is fixed in the holder 108 from the cross-sectional direction of the holder 108 .
- FIG. 6( a ) is a perspective diagram of the mobile position sensor 118 and the parts of the engaging member 502
- FIGS. 6( b ), 6( c ), and 6( d ) are a side surface diagram, a cross-sectional diagram, and a cross-sectional perspective diagram of a state where the engaging member 502 is fixed to the mobile position sensor.
- FIG. 7( a ) is a cross-sectional diagram of the engaging member 502 before the optical fiber plug 204 is inserted
- FIG. 7( b ) is a cross-sectional diagram of the engaging member 502 after the optical fiber plug 204 is inserted.
- FIG. 8 is an explanatory diagram showing a tip coordinate and an axial-direction vector of the mobile position sensor 118 and a tip coordinate of an optical fiber in a state where the optical fiber plug 204 is inserted in the engaging member 502 .
- FIG. 9 is an explanatory diagram showing a state where a pseudo plug is attached to the engaging member 502 .
- FIG. 10 is a flow chart showing a process of a living body optical measurement method of the first embodiment.
- FIGS. 11( a ) and 11( b ) are explanatory diagrams showing screen examples that the signal processing unit 113 displays on the display device 114 in a living body optical measurement method.
- FIGS. 12( a ) and 12( b ) are explanatory diagrams showing screen examples that the signal processing unit 113 displays on the display device 114 in a living body optical measurement method.
- FIG. 13 is an explanatory diagram showing a screen example that the signal processing unit 113 displays on the display device 114 in a living body optical measurement method.
- FIG. 14 is an explanatory diagram showing that the engaging member 502 approaches along the axial direction of the tip of the optical fibers 106 in a state where the optical fiber plug 204 has been fixed in the holder 108 .
- FIG. 15 is an explanatory diagram showing a state the optical fiber plug 204 is inserted (engaged) in the opening 2511 of the engaging member 502 .
- FIG. 16 is an explanatory diagram showing a superimposed image of the morphological image 1402 of an object is and the living body optical measurement image 1403 .
- FIG. 17 is a graph showing comparison of time required to measure tip positions of optical fibers between the measurement method of the present invention and that of a comparison example.
- FIGS. 18( a ) and 18( b ) are explanatory diagrams showing a method to measure tip positions of optical fibers of a comparison example.
- FIG. 19 is an explanatory diagram showing a state where the optical fiber plug 906 comprised of only parts fixed by the optical fibers 106 is inserted in the engaging member 502 .
- FIG. 20 is an explanatory diagram showing the other configuration example of the engaging example 502 .
- FIG. 21 is a flow chart showing a process of a living body optical measurement method of the second embodiment.
- FIG. 22 is an explanatory diagram showing a superimposed image of the pseudo-morphological image (wire frame image) 1601 of an object and the living body optical measurement image 1403 .
- FIG. 23 is a flow chart showing a process of a living body optical measurement method of the third embodiment.
- FIG. 24 is an explanatory diagram showing an image where the morphological image 1402 of an object and the tip position 1803 of the attached optical fiber are superimposed in real time.
- FIG. 25 is a flow chart showing a process of a living body optical measurement method of the fourth embodiment.
- FIG. 26 is an explanatory diagram showing an image where the morphological image 1402 of an object, the tip position 1803 of the attached optical fiber, and the previous tip position 2004 of the optical fiber are superimposed in real time.
- FIGS. 27( a ), 27( b ), and 27( c ) are explanatory diagrams showing an image example to display error bars showing a shift amount and a moving direction so that positions of optical fibers in three locations correspond to the previous positions of the optical fibers one by one in order.
- FIG. 28 is an explanatory diagram showing an image example to display error bars showing a shift amount and a moving direction so that positions of optical fibers in three locations correspond to the previous positions of the optical fibers at a time.
- FIG. 29 is a flow chart showing a process of a living body optical measurement method of the fifth embodiment.
- FIG. 30 is an explanatory diagram showing an image where the pseudo morphological image (wire frame image) 2401 of an object, the tip position 1803 of the attached optical fiber, and the previous tip position 2004 of the optical fiber are superimposed in real time.
- a living body optical measurement apparatus of the present invention has a configuration including a light irradiation and measurement unit that irradiates light to an object and measures the light passed through the object, a signal processing unit that processes data measured by the light measurement unit to generate living body optical measurement images, a position measurement unit that measures positions where the light irradiation and measurement unit irradiates light to the object and where the passing light from the object is measured.
- a light irradiation and measurement unit is comprised of plural optical fibers, an optical fiber plug attached to the optical fibers, and a holder that is detachably fixed at a measurement site of an object and holds the plural optical fiber plugs.
- a position measurement unit includes a mobile position sensor, an engaging member attached to the mobile position sensor, and a calculating unit.
- An engaging member has a shape in a positional relationship (hereinafter, such positional relationship is referred to as a predetermined positional relationship) where an optical fiber plug held in a holder, a detection position of a mobile position sensor, a surface of a measurement site are engaged with each other detachably.
- a calculating unit calculates a position detected by a mobile position sensor in a state where an optical fiber plug is engaged with an engaging member and a tip position of an optical fiber of the optical fiber plug from a predetermined positional relationship. Hence, a position of the tip section of an optical fiber can be measured without detaching the optical fiber and the optical fiber plug from a holder in a state where the tip of the optical fiber is in contact with an object.
- an engaging member may have a structure where the tip of a mobile position sensor comes into contact with an end of the fixing unit when engaged with an optical fiber plug.
- a fixing unit is configured so that a tubular portion fixed to an optical fiber and a bar-shaped portion fixed at an end of the tubular portion, and a mobile position sensor is configured so that it comes into contact with the bar-shaped portion to detect the position.
- an engaging member is configured so that it has an opening with a shape that is engaged with the periphery of an optical fiber plug.
- the opening of the engaging member is created so that the depth direction is the same as the axial direction of a mobile position sensor to hold an optical fiber of an optical fiber plug inserted in the opening on the same axis as the axial direction of the mobile position sensor.
- a calculating unit can find a tip position of the optical fiber by calculating a position remote from the tip of the mobile position sensor by the predetermined distance in the axial direction.
- An optical fiber plug may be configured so that a holding portion holding a fixing unit movably in the axial direction of the tip section of an optical fiber is included.
- a plurality of holes are provided on a holder to hold an optical fiber plug, the periphery of the holding portion of the optical fiber plug is engaged with the periphery of the holder holes, which can attach the optical fiber plug to the holder.
- an optical fiber may be configured so that the periphery of the tip section is fixed at the fixing unit of the optical fiber plug, is bent inside the optical fiber plug, and then is pulled to the outside from a side surface of the optical fiber plug. In this case, it is desirable to provide a notch in which an optical fiber pulled out from the side surface of the optical fiber plug is inserted, on the opening edge of the engaging member.
- a signal processing unit displays a predetermined display prompting an operator to measure the reference site of the object on a display device after attaching a pseudo plug to an engaging member, and the signal processing unit can be configured so that position data of the reference site of the object measured by a position measurement unit is loaded from the position measurement unit.
- a signal processing unit when measuring the tip position of an optical fiber, is configured so that it allows a display device to display a predetermined display to prompt an operator to measure the tip position of the optical fiber after removing a pseudo plug from an engaging member and loads the tip position data of the optical fiber, measured by a position measurement unit, from the position measurement unit. Then, the signal processing unit adds information of the loaded reference position and the tip position of the optical fiber to a living body optical measurement image. Hence, the signal processing unit can create an image where a living body optical measurement image and a morphological image of an object are superimposed using the position information.
- a living body optical measurement method which measures light passed through an object after irradiating light to the object.
- the tips of plural optical fibers respectively attached to an optical fiber plug are disposed so that the tips come into contact with an object using a holder holding plural optical fiber plugs.
- a mobile position sensor to which an engaging member that can be engaged with an optical fiber plug in a predetermined positional relationship is attached, is engaged with plural optical fiber plugs in series using an engaging member, the tip positions of the plural optical fibers are calculated by a position of the mobile position sensor detected at that time and a predetermined positional relationship.
- a pseudo plug is attached to an engaging member in a predetermined positional relationship, the tip of the pseudo plug comes into contact with a reference site of an object on which an optical fiber plug is not disposed, and calculating a reference position (reference position detection process) is also possible by a position of the mobile position sensor detected at that time and a predetermined positional relationship.
- a display prompting an operator to attach a pseudo plug to an engaging member can also be displayed on a display device.
- An image where a living body optical measurement image and a morphological image of an object are super imposed can also be created using information of a tip position of an optical fiber by irradiating light from the optical fiber to the object and creating a living body optical measurement image with measured data after taking in light passed through the object from the optical fiber.
- an engaging member to be attached to a mobile position sensor of a living body optical measurement apparatus includes an optical fiber plug attached to an optical fiber of the living body optical measurement apparatus and has a shape engaging detachably in a predetermined positional relationship.
- FIG. 1 is a block diagram showing the overall configuration of a living body optical measurement apparatus.
- FIG. 2 is a perspective diagram showing a state where the optical fibers 106 and 109 are attached to the object 107 .
- a living body optical measurement apparatus is an apparatus that irradiates near-infrared light to the inside of the object 107 , detects light reflected from the surface vicinity of a living body or passed through a living body (hereinafter, simply referred to as passing light), and generates electric signals corresponding to a light intensity. As shown in FIG.
- the living body optical measurement apparatus is comprised of the light irradiation unit 101 irradiating near-infrared light, the light measuring unit 102 measuring passing light to convert into an electric signal, the control unit 103 controlling drives of the light irradiation unit 101 and the light measuring unit 102 , the signal processing unit 113 , the display device 114 , the input/output unit 116 , and the storage unit 115 .
- the light irradiation unit 101 is comprised of the semiconductor laser 104 outputting light of a predetermined wavelength, the optical module 105 , and the optical fiber 106 .
- the optical module 105 includes a modulator to modulate light generated by the semiconductor laser 104 in plural frequencies different for each irradiation position.
- the optical fiber 106 propagates output light from the respective optical modules 105 , conducts it to a predetermined measurement region of the object 107 such as plural areas of the head, and irradiates the light to the object 107 from the tip.
- One or plural wavelengths of the semiconductor laser 104 are selected before use from among the light of the wavelength range of 600 nm to 1,400 nm when the oxygen saturation degree and blood volume are measured from the saturation degrees of oxygenated hemoglobin and deoxygenated hemoglobin in blood depending on the spectral characteristics of a target substance in a living body.
- light of two kinds of wavelengths such as 780 nm and 830 nm is irradiated corresponding to two kinds of measurement targets of oxygenated hemoglobin and deoxygenated hemoglobin.
- Light of these two wavelengths are synthesized and irradiated to the object 107 from the tip (irradiation position) of the one optical fiber 106 .
- the sheet-like holder 108 to hold an optical fiber, is fixed at the measurement site of the object 107 using the belt (jaw band) 202 etc.
- a plurality of holes are provided to the holder 108 , and rings are fixed on the hole edges.
- the optical fiber plug 204 is attached to the tip of the optical fiber 106 , and the outer periphery of the optical fiber plug 204 is detachably fixed to the holder 108 by being engaged with the ring of the hole edge.
- the tip of the optical fiber 106 comes into contact with the surface of a measurement site (for example, the scalp) of the object 107 .
- the structure of the optical fiber plug 204 will be described in detail later.
- the light measuring unit 102 includes the optical fiber 109 , the photoelectric conversion element 110 , the lock-in amplifier module 111 , and the A/D converter 112 .
- the optical fiber 109 is disposed so that the tip comes into contact with a predetermined position of a measurement site, absorbs light passed through a predetermined measurement region and output from the surface of an object from among lights irradiated from the light irradiation unit 101 from an end surface of the tip, and propagates the light to the photoelectric conversion element 110 .
- a photoelectric conversion element is a photodiode etc. that convert light propagated by the optical fiber 109 into an electrical quantity corresponding to the respective light amounts.
- the lock-in amplifier module 111 selectively detects a modulated signal corresponding to a predetermined light irradiation position from among electric signals from the photoelectric conversion element 110 .
- the A/D converter 112 converts an output signal of the lock-in amplifier module 111 into a digital signal.
- hemoglobin amount variation signals of a twofold (two-wavelength) number of channels can be obtained compared to the number of points (measurement points) between a light irradiation position (tip position of the optical fiber 106 ) and a detection position (tip position of the optical fiber 109 ).
- the signal processing unit 113 processes a hemoglobin amount variation signal and generates a graph showing an oxygenated hemoglobin concentration change, deoxygenated hemoglobin concentration change, all the hemoglobin concentration changes, etc. for each channel and an image where the graph is plotted on a two-dimensional image of an object (living body optical measurement image).
- the display device 114 displays a graph, an image, etc. generated by the signal processing unit 113 .
- the storage unit 115 stores data required for processes by the signal processing unit 113 , process results, and generated images.
- the input/output unit 116 accepts input of various commands required for apparatus operations from an operator.
- the control unit 103 controls overall operations of the apparatus and performs living body optical measurement.
- a living body optical measurement apparatus includes the three-dimensional position measuring unit 117 in order to measure three-dimensional coordinates of a light irradiation position (the tip of the optical fiber 106 ) and a detected position (the tip of the optical fiber 109 ).
- the three-dimensional position measuring unit 117 if a three-dimensional position of a mobile position sensor can be detected, units with a variety of measurement methods can be used.
- the three-dimensional position measuring unit 117 includes the mobile position sensor 118 and the magnetic field generating module 119 and measures a three-dimensional position of the mobile position sensor 118 in the magnetic field generating region 120 generated by the magnetic field generating module 119 .
- FIGS. 3( a ), 3( b ), and 3( c ) are a perspective diagram, a cross-sectional diagram, and a cross-sectional perspective diagram of the optical fiber plug 204 respectively. Because the structure of the optical fiber plug 204 of the optical fiber 106 is the same as that of the optical fiber plug 204 of the optical fiber 109 , hereinafter, the optical fiber plug 204 of the optical fiber 106 will be described as an example.
- the optical fiber plug 204 is comprised of the tubular portion 2603 fixed on the outer periphery in the vicinity of the tip of the optical fiber 106 , the bar-shaped portion 2607 with a predetermined length fixed on the upper end surface of the tubular portion 2603 , the holding portion 2602 disposed on the outer periphery of the tubular portion 2603 and holding the tubular portion 2603 movably in the axial direction, and the spring 2605 .
- the tubular portion 2603 and the bar-shaped portion 2607 comprise a fixing unit fixed to the optical fiber 106 .
- the holding portion 2602 has a shape where a space is created inside the cylinder, the tip of the optical fiber 106 protrudes from the opening provided on the lower end surface, and the bar-shaped portion 2607 protrudes from the opening provided on the upper end surface.
- the optical fiber 106 is bent inside the optical fiber plug 204 , is pulled out of the opening provided on the side surface of the tubular portion 2603 , and is further pulled out to the outside through the opening provided on the side surface of the tubular holding portion 2602 .
- the optical fiber 106 is pulled out in a direction bent almost 90 degrees to the axial direction of the tip of the optical fiber 106 .
- the tubular portion 2603 and the bar-shaped portion 2607 can move in the axial direction with the optical fiber 106 inside the holding portion 2602 . Therefore, an amount of protrusion from the holding portion 2602 of the optical fiber 106 is variable.
- the spring 2605 is disposed on the outside of the bar-shaped portion 2607 and is biased in a direction where the tubular portion 2603 is pressed down to the upper end surface of the holding portion 2602 . Because the spring 2605 is biased, the tip surface of the optical fiber 106 can come into contact with the surface (scalp) of an object at an appropriate pressing force.
- the male screw-shaped protrusions 2604 are provided at a predetermined pitch on the outer periphery.
- the protrusions 2604 are engaged with a ring fixed around the hole of the holder 108 and detachably fix the optical fiber plug 204 on the holder 108 .
- the bar-shaped portion 2607 is a member fixed to the optical fiber 106 and having a certain length, the distance 2608 from the upper end of the bar-shaped portion 2607 to the tip of the optical fiber 106 is constant. Therefore, the tip of the mobile position sensor 118 comes into contact with the upper end of the bar-shaped portion 2607 in order to detect the three-dimensional position, which can calculate a position distant by the distance 2608 in the axial direction, and the calculated result can be used to calculate a tip position of the optical fiber 106 .
- the holding portion 2602 is movable to the optical fiber 106 , the distance 2606 from the upper end surface of the holding portion 2602 to the tip of the optical fiber 106 fluctuates depending on a position fixed to the holder 108 of the holding portion 2602 .
- an operator can check how much the spring 2605 is compressed by visually checking the length of the bar-shaped portion 2607 protruding from the upper end from the holding portion 2602 .
- the spring 2605 is greatly compressed, and the pressing force of the optical fiber 106 by the spring 2605 is large. Therefore, the optical fiber 106 is pressed on the surface of the object 107 at a relatively strong pressing force, and the object 107 may feel the pain.
- FIG. 4( a ) when the length of the bar-shaped portion 2607 protruding upward is long, the spring 2605 is greatly compressed, and the pressing force of the optical fiber 106 by the spring 2605 is large. Therefore, the optical fiber 106 is pressed on the surface of the object 107 at a relatively strong pressing force, and the object 107 may feel the pain.
- FIG. 4( a ) when the length of the bar-shaped portion 2607 protruding upward is long, the spring 2605 is greatly compressed, and the pressing force of the optical fiber 106 by the spring 2605 is large. Therefore, the
- the optical fiber plugs 204 with such a structure are inserted in holes arranged and provided on the holder 108 as shown in FIG. 2 in order to engage the male screw-shaped protrusions 2604 with the rings around the holes, which can press the tip surface of the optical fiber 106 onto the surface of the object 107 at a predetermined pressing force. At this time, head hair is combed with a slim stick etc. so that the head hair is not caught between the tip of the optical fiber 106 and the surface of the object 107 .
- FIG. 5 is a view showing a state where the optical fiber plug 204 is fixed to the holder 108 so that the tips 306 of the optical 106 and 109 are pressed onto the surface of the object 107 when viewed from the cross-sectional direction of the holder 108 .
- the optical fiber plugs 204 of all the optical fibers 106 of the light irradiation unit 101 and the optical fiber plugs 204 of all the optical fibers 109 of the light measuring unit 102 are fixed to the holder 108 in a predetermined arrangement. Normally, the total number of the optical fibers 106 and 109 is 30 to 80.
- the screw 2609 to connect a tubular side surface member of the holding portion 2602 and a member of the upper end surface is provided. Because the screw 2609 protrudes from a side surface of the holding portion 2602 , the engaging member 502 to be described later has a concave portion in a position corresponding to the screw 2609 .
- FIG. 6( a ) is a perspective diagram of the mobile position sensor 118 and the parts of the engaging member 502 to be fixed to the sensor.
- FIGS. 6( b ), 6( c ), and 6( d ) are a side surface diagram, a cross-sectional diagram, and a cross-sectional perspective diagram of a state where the engaging member 502 is fixed to the mobile position sensor.
- the mobile position sensor 118 is pen-shaped as shown in FIG. 6( a ) and has the button 2505 on a side surface.
- the three-dimensional position measuring unit 117 measures a three-dimensional position of the tip of the mobile position sensor 118 .
- the engaging member 502 is attached to a mobile position sensor and has a shape (opening) engaged with the optical fiber plug 204 held by the holder 108 detachably in a predetermined positional relationship.
- the engaging member 502 is comprised of the four parts of the left-side body portion 2502 , the right-side body portion 2503 , the opening portion 2504 engaged with the optical fiber plug 204 , and the nut 2505 . Because the mobile position sensor 118 is a magnetic sensor, the respective parts are comprised of non-magnetic materials (for example, plastic) that do not generate magnetic noise.
- the left-side body portion 2502 , the right-side body portion 2503 , and the nut 2505 are members to fix the opening portion 2504 engaged with the optical fiber plug 204 to the mobile position sensor 118 .
- the left-side body portion 2502 and the right-side body portion 2503 have a space to accommodate the mobile position sensor 118 in the inside and have a shape holding the mobile position sensor 118 between them. Threads are provided on the tips and tails of the left-side body portion 2502 and the right-side body portion 2503 , the engaging member 502 is integrally fixed to the mobile position sensor by threadably mounting the opening portion 2504 on the tip and the nut 2505 on the tail.
- the button hole 2506 is provided so that an operator can press down the measurement button 2505 .
- the opening portion 2504 has the opening 2511 with a shape engaged with an outer periphery of the holding portion 2602 of the optical fiber plug 204 on the edge. That is, the diameter of the opening 2511 has a length where a predetermined clearance is added to the outer shape of the holding portion 2602 .
- the opening 2511 has the notch 2510 with a size in which the optical fibers 106 and 109 pulled out of a side surface of the holding portion 2602 can be inserted, and inserting the optical fibers 106 and 109 in the notch 2508 does not interfere the engagement. Also, on the internal surface of the opening 2511 , a concave portion with a shape corresponding to the screw 2609 that protrudes from a side surface of the holding portion 2602 is formed.
- the axial direction of the opening portion 2504 is configured so that it corresponds to the axial direction of the mobile position sensor 118 .
- engaging (inserting) the optical fiber plug 204 with (in) the opening 2511 of the opening portion 2504 can correspond the axial direction of the tip of the optical fiber 106 to that of the mobile position sensor 118 .
- the window 2507 is opened on the side surface of the opening portion 2504 of the engaging member 502 so that an operator can check the tip of the mobile position sensor 118 .
- FIGS. 7( a ) and 7( b ) by visually checking the tip 2705 of the mobile position sensor 118 from the window 2507 while the optical fiber plug 204 is being engaged with (inserted in) the opening 2511 of the opening portion 2504 , the engaging member 502 and the mobile position sensor 118 can be moved toward the optical fiber plug 204 up to the position where the tip of the bar-shaped member 2607 of the optical fiber plug 204 comes into contact with the tip 2705 of the mobile position sensor 118 .
- the three-dimensional position measuring unit 117 measures a position coordinate (x1, y1, z1) of the tip of the mobile position sensor 118 and an axial direction vector (dx, dy, dz) of the tip of the mobile position sensor 118 .
- the unit of (x1, y1, z1) is mm
- the signal processing unit 113 reads and executes a built-in program and calculates a coordinate (x2, y2, z2) of a position remote by a predetermined distance (L) 2608 in the axial direction of the mobile position sensor 118 from a position measured by the three-dimensional position measuring unit 117 using the following formula (1).
- ( x 2, y 2, z 2) ( x 1, y 1, z 1)+ L ⁇ ( dx,dy,dz ) (1)
- the tip position (x2 y2 z2) of the optical fiber 106 can be calculated.
- the several small slots 2508 are provided along the axial direction. Hence, even if sizes of the outer diameter 2601 of the holding portion 2602 of the optical fiber plug 204 vary, the plug can be inserted in (engaged with) the opening 2511 smoothly.
- the living body optical measurement needs to measure positions of the reference points (for example, a nasion (nasal root), a right ear upper-end portion, a left ear upper-end portion, etc.) on the object 107 to which the optical fibers 106 and 109 are not attached. Because the optical fibers 106 and 109 are not attached to the reference points, the optical fiber plug 204 does not exist. Therefore, although it is considered to detach the engaging member 502 from the mobile position sensor 118 in order to measure the positions of the reference points on the object 107 , operations to detach and re-attach the engaging member 502 are very complicated.
- the reference points for example, a nasion (nasal root), a right ear upper-end portion, a left ear upper-end portion, etc.
- the pseudo plug 1303 with the same shape and size as the optical fiber plug 204 is inserted in the opening 2511 of the engaging member 502 as shown in FIG. 9 .
- the distance L from the tip of the pseudo plug 1303 to the tail is designed so as to be the same as the distance 2608 from the tip of the optical fiber 106 in FIG. 3( b ) to the upper end of the bar-shaped member.
- FIG. 10 a method to create an image where a morphological image of an object such as an MRI image measured separately is superimposed on a living body optical measurement image. Since the details of the process to create a superimposed image of a morphological image such as an MRI image and a living body optical measurement result are described in PTL 1 etc. and a publicly known technique, the overview will be described here, and the optical fiber and the method to measure positions of the reference points of the present invention in the process will be described in detail.
- an operator fixes the optical fiber plugs 204 of all the optical fibers 106 and 109 to the holes of the holder 108 in order and disposes them so that the tips of the optical fibers 106 and 109 come into contact with the surface of the object 107 at a predetermined pressure.
- a living body optical measurement image may be created, and a living body optical measurement may also be performed after Step 1205 .
- the control unit 103 Under the control by the control unit 103 , light is irradiated to the object 107 from the optical fiber 106 of the light irradiation unit 101 , the optical fiber 109 absorbs the light passed through the object 107 to detect the light, and then the signal processing unit 113 creates a living body optical measurement image.
- the signal processing unit 113 displays a message prompting to attach the pseudo plug (referred to also as “dummy plug”) 1303 to the engaging member (referred to also as “magnetic sensor cover”) 502 before the mobile position sensor 118 measures positions of the reference points on the object 107 on the message window 2802 (Step 1208 in FIG. 10 ).
- an operator attaches the pseudo plug 1303 to the engaging member 502 and presses the “OK” button, which displays the screen shown in FIG. 11( b ) .
- the display region 2803 displaying a living body optical measurement result of the reference points (for example, a nasion (nasal root), a right ear upper-end portion, a left ear upper-end portion, etc.) on the object 107 measured by the mobile position sensor 118 is displayed.
- the three-dimensional position measuring unit 117 searches for a position of the mobile position sensor 118 at that time, and then signal processing unit 113 calculates positions of the reference points on an object using the formula (1) described previously (Step 1201 ).
- the calculated positions of the reference points are displayed in the display region 2803 as shown in FIG. 12( a ) as well as are stored in a predetermined region inside the storage unit 115 . This is repeated until all the reference points are measured.
- the signal processing unit 113 displays a message prompting to detach the pseudo plug 1303 from the engaging member 502 of the mobile position sensor 118 on the message window 2804 .
- Pressing the “Cancel” button on the message window 2804 displays the screen shown in FIG. 11( b ) , which can measure positions of the reference points on the object 107 again.
- the screen shown in FIG. 13 appears, the position measurement of the reference points on the object 107 (Step 1201 ) is completed, which can measure the optical fibers 106 and 109 by the mobile position sensor 118 (Step 1205 ).
- the engaging member 502 approaches along the axial direction of the tip of the optical fiber 106 without shifting a position of the optical fiber plug 204 while it is being fixed on the holder 108 .
- the optical fiber plug 204 is inserted in (engaged with) the opening 2511 of the engaging member 502 , and then the tip of the mobile position sensor 118 comes into contact with the upper end of the bar-shaped member 2607 .
- the contact state can be checked visually from the window 2507 of the opening portion 2504 by an operator.
- the three-dimensional position measuring unit 117 searches for a position of the mobile position sensor 118 at that time, and then the signal processing unit 113 calculates a position of the tip 306 of the optical fiber 106 using the formula (1) described previously (Step 1205 ).
- the calculated position of the tip 306 of the optical fiber 106 is displayed in the display region 2805 of FIG. 13 and is stored in a predetermined region inside the storage unit 115 . This is repeated until all the optical fibers 106 and 109 are measured.
- the signal processing unit 113 reads a morphological image of an object measured separately (a head surface image and a brain surface image of an MRI image, CT image, etc. of an object) (Step 1202 ).
- the signal processing unit 113 searches for positions of the reference points (for example, a nasion (nasal root), a right ear upper-end portion, a left ear upper-end portion, etc.) by performing image processing etc. for the loaded morphological image (Step 1203 ).
- the signal processing unit 113 calculates a transformation parameter to project a position coordinate of the reference points calculated in Step 1201 onto the reference points, calculated in Step 1203 , of the morphological image of an object (Step 1204 ).
- the signal processing unit 113 projects the tip positions of the optical fibers 106 and 109 searched in Step 1205 onto a morphological image using a calculated transformation parameter in order to calculate the position coordinate (Step 1206 ).
- a living body optical measurement image is projected onto the morphological image, and an image where the living body optical measurement image is superimposed on the morphological image is created (Step 1207 ).
- the image 1401 where the living body optical measurement image 1403 is superimposed on the morphological image 1402 can be created as shown in FIG. 16 .
- the signal processing unit 113 displays the created superimposed image 1401 on the display device 114 and stores it in the storage unit 115 .
- Operation time required to measure positions of 32 pieces of the optical fibers 106 and 109 using the position measurement method of the present embodiment described above was measured. The results are shown in FIG. 17 .
- the vertical axis of FIG. 17 represents the operation time required for the operation, and the horizontal axis represents five operators.
- the measurement method of the present invention does not need to detach the optical fiber plug 204 from the holder 108 and can measure a tip position of the optical fiber in a highly accurate way by directly measuring the tip position of the optical fiber.
- the present embodiment has a structure where the optical fiber plug 204 is separated into the portions 2603 and 2607 fixed by the optical fiber 106 and the holding portion 2602 holding them, and the spring 2605 is disposed between them, the present invention is not limited to this structure. Measuring a position of the plug fixed by the optical fibers 106 and 109 using the mobile position sensor 118 can obtain the similar effect.
- a position of the upper surface 907 of the optical fiber plug 906 can be measured with the mobile position sensor 118 .
- L and L2 can be set to approximately 2 to 5 cm and approximately 1 to 3 cm respectively as an example.
- the length L3 of the holding portions (the body portions 2502 and 2503 ) of the engaging member 502 by an operator is longer.
- the length of L3 is easy to handle.
- the length L3 of the engaging member 502 can be designed that it is approximately 8 to 15 cm.
- the following configuration can be adopted for the engaging member 502 .
- applying a lubricant on the inside of the opening 2511 of the engaging member 502 in advance enables the engaging member 502 to be connected to and detached from the optical fiber plug 204 smoothly.
- the spring 1010 made of non-magnetic materials such as plastic is disposed inside the opening 2511 of the engaging member 502 in order to create the repulsion force of the spring 1010 between the engaging member 502 and the upper surface of the optical fiber plug 204 so that the engaging member 502 is detached from the optical fiber plug 204 smoothly.
- a living body optical measurement image is superimposed on a morphological image of an object in the first embodiment
- the present invention is not limited to this.
- a superimposed image of a pseudo-morphological image of an object and a living body optical measurement result is created.
- the image creation process for superimposing a pseudo-morphological image of the head surface image of an object and a living body optical measurement result is shown in FIG. 21 . Since the image creation process for superimposing a pseudo-morphological image of the head surface image of an object and a living body optical measurement result is the publicly known method described in PTL 1, U.S. Pat. No. 4,266,453, etc. in detail, the overview will be described here, and points to which the present invention is applied in the process will be described hereinafter.
- a morphological image of an object such as an MRI image.
- a pseudo morphological image of a head surface image of the object 107 a living body optical measurement result can be displayed on the pseudo morphological image of the object in a simple way.
- positions of the reference points on an object are measured by the mobile position sensor 118 .
- a pseudo morphological image of a head surface image prepared in advance is read (Step 1502 ).
- a wire frame image is used as a pseudo morphological image.
- predetermined reference points a nasion (nasal root), a right ear upper-end portion, a left ear upper-end portion, etc. are searched for by image processing etc. (Step 1503 ).
- Step 1504 using positions of the reference points of the object 107 measured in Step 1201 and those in the pseudo morphological image that is described above and prepared in advance, dimension correction etc. are performed for the pseudo morphological image to create a pseudo morphological image of reference points corresponding to the positions of the reference points of the object 107 (Step 1504 ).
- the creation method for a pseudo morphological image is a publicly known technique described in U.S. Pat. No. 4,266,453 (FIG. 4 etc.).
- Step 1505 a transformation parameter is calculated where positions of the reference points measured on the object 107 are projected as the reference points on a pseudo morphological image of an object.
- the signal processing unit 113 projects the tip positions of the optical fibers 106 and 109 calculated in Step 1205 using the calculated transmission parameter on a pseudo morphological image to calculate the position coordinate (Step 1507 ).
- a living body optical measurement image is projected on the pseudo morphological image to create an image where the living body optical measurement image is superimposed on the pseudo morphological image (Step 1508 ).
- an image can be created in which the living body optical measurement image 1403 is superimposed on the pseudo morphological image (wire frame image) 1601 .
- the tip positions of the optical fibers 106 and 109 on a morphological image of an object such as an MRI image are displayed in real time while the optical fibers 106 and 109 are being applied to the object 107 after the optical fiber plug 204 is attached to the holder 108 .
- This helps to determine attachment points of the optical fibers 106 and 109 . Since the method where attachment points of the optical fibers on a morphological image of an object such as an MRI image are displayed in real time while the optical fibers 106 and 109 are being applied to the object 107 is a publicly known technique described in PTL 1, the overview will be described here, and points to which the measurement method of the present invention is applied in the process will be described hereinafter.
- FIG. 23 is a flow chart that shows a flow for displaying attachment points of optical fibers on a morphological image in real time.
- the mobile position sensor 118 is used to measure positions of the reference points on the object 107 .
- Steps 1208 and 1201 are performed after all the optical fiber plugs 204 are first attached to the holder 108 in the first embodiment, Steps 1208 and 1201 are performed to measure the reference points before the optical fiber plugs 204 are attached in the third embodiment.
- a morphological image (a head surface image and brain surface image of an object imaged by an MRI apparatus, a CT apparatus, etc.) imaged in advance is read to search for positions of the reference points, and a transmission parameter to project the reference points measured in Step 1201 onto the reference points of a morphological image of an object is calculated.
- the optical fiber plug 204 is attached to the holder 108 , similarly to Steps 1209 and 1205 of the first embodiment, the engaging member 502 is engaged with the attached optical fiber plug 204 , and then the tip positions of the optical fibers 106 and 109 re measured by the mobile position sensor 118 (Step 1705 ). This measurement may be performed each time one of the optical fiber plugs 204 is attached or at once after some of the optical fiber plugs 204 are attached.
- the measured tip positions of the optical fibers 106 and 109 are projected on a morphological image using a transmission parameter calculated in Step 1204 to calculate the position coordinate (Step 1706 ).
- the tip positions of the optical fibers 106 and 109 on the morphological image are displayed on the morphological image (Step 1707 ).
- the image 1801 is created and displayed in which the tip position 1803 of the optical fibers 106 and 109 is superimposed on the morphological image 1402 .
- Steps 1705 to 1707 positions of all the optical fibers 106 and 109 can be displayed on the morphological image 1402 .
- the image 1801 helps to determine a position of the optical fiber to be attached on the object 107 .
- positions of the attached optical fibers 106 and 109 can be displayed accurately. Also, because there is no need to detach the optical fiber plug 204 for position measurement, accuracy to display positions to which the optical fibers are attached in real time can be more enhanced.
- the tip positions are displayed on a morphological image of the object 107 in real time.
- the tip positions of the optical fibers 106 and 109 for which a living body optical measurement was performed previously are also displayed so that an operator can grasp the positional relationship on the image.
- FIG. 25 is a flow chart showing a process of the present embodiment. Because Steps 1201 to 1204 , 1208 , 1705 , and 1706 are similar to the third embodiment, the descriptions are omitted. Using these steps, position coordinates of the tip positions of the attached optical fibers 106 and 109 are searched on a morphological image of an object.
- Step 1907 positions of the reference points on the object 107 when they were measured previously are read from the storage unit 115 , and then a transmission parameter for which the reference points are projected on a morphological image read in Step 1202 is calculated (Step 1908 ). This process is performed similarly to Step 1204 .
- the signal processing unit 103 loads the tip positions of the optical fibers 106 and 109 when they were measured previously from the storage unit 115 , projects the tip positions on a morphological image using the calculated transmission parameter, and then calculates the position coordinate (Steps 1909 and 1909 ). This process can be performed similarly to Step 1706 .
- the previous tip positions of the optical fibers 106 and 109 to be loaded from the storage unit 115 in Step 1909 may be those corresponding only to the optical fibers 106 and 109 measured in Step 1705 or may be loaded for all the optical fibers 106 and 109 .
- Step 1910 The tip positions searched in Step 1706 of the optical fibers 106 and 109 that are being attached currently and the previous positions of the optical fibers 106 and 109 are superimposed and displayed on a morphological image (Step 1910 ).
- the image 1801 can be created and displayed for which the tip position 1803 of the optical fibers 106 and 109 that are being attached currently and the tip position 2004 that was measured previously of the optical fibers 106 and 109 are superimposed on the morphological image 1402 . Therefore, an operator can grasp a positional relationship for whether attachment points of the optical fibers 106 and 109 for when a living body optical measurement was previously performed on the morphological image 1402 of an object correspond to positions of the optical fibers 106 and 109 that are being attached currently. If the positions are shifted each other, an operator can perform a correction such as re-attaching the optical fiber plug 204 by shifting the position of the holder 108 . Therefore, a living body optical measurement can be performed by applying the optical fibers to positions corresponding to those of the optical fibers measured previously.
- FIGS. 27 and 28 how to adjust the tip positions of the optical fibers that are being attached currently to those of the optical fibers measured previously will be further described using FIGS. 27 and 28 .
- the optical fibers 106 and 109 are plural and held by the holder 108 , the optical fibers 106 and 109 cannot be moved completely independent from each other.
- three attachment points of the optical fibers are adjusted to those for when a living body optical measurement was performed previously.
- FIG. 27 In addition to the head surface image 2101 and the brain surface image 2102 of an object, the position A ( 2104 ), the position B ( 2105 ), and the position C ( 2106 ) of the tips of the optical fibers for when a living body optical measurement was performed previously are displayed.
- the position of the holder 108 is not necessarily important and may not be displayed, the position of the holder 108 is shown here in the diagram for convenience of description.
- the tip position a ( 2107 ) of the optical fiber attached first is displayed in real time.
- the position of the holder 108 is corrected so that the tip position a ( 2107 ) is adjusted to the position A ( 2104 ).
- the signal processing unit 113 can display the error bars 2112 and 2113 with lengths proportional to
- is a gap between the position a ( 2107 ) and the position A ( 2104 ) in order to help attach the optical fiber.
- the gap is large, the long error bar 2112 is displayed, and when the gap is small, the short error bar 2113 is displayed. Shifting the holder 108 by an operator so that the error bar is short can easily attach the first optical fiber to the position A ( 2104 ).
- the signal processing unit 113 displays the arrow 2114 showing a direction of the vector A-a equivalent to an operating direction to correct an orientation of the gap on the display screen.
- a beep sound may be generated at a volume proportional to a gap size
- FIG. 27( b ) how to attach the second optical fiber is shown in FIG. 27( b ) .
- the position b ( 2108 ) of the attachment point of the optical fiber that is being attached second is displayed in real time, and the optical fiber is attached so that the position b ( 2108 ) is adjusted to the position B ( 2105 ).
- the first optical fiber plug and the second optical fiber plug are connected by the holder 108 . Therefore, while holding the first optical fiber attached already by hand so that it is not moved from the position A ( 2109 ), attachment is performed by shifting the holder 108 so that the position b ( 2108 ) of the optical fiber attached second corresponds to the previous position B ( 2105 ).
- between the position b ( 2108 ) and the position B ( 2105 ) can be displayed, the arrow 2117 showing a direction of the vector B-b equivalent to an operating direction to correct an orientation of the gap can be displayed, and a beep sound can be generated at a volume proportional to a gap size
- FIG. 27( c ) how to attach the third optical fiber is shown in FIG. 27( c ) .
- the position c ( 2110 ) of the attachment point of the optical fiber that is being attached third is displayed in real time, and the optical fiber is attached so that the position c ( 2110 ) is adjusted to the position C ( 2106 ).
- the first optical fiber plug, the second optical fiber plug, and the third optical fiber plug are connected by the holder. Therefore, while holding the first and second optical fibers attached already by hand so that they are not moved from the position A ( 2109 ) and the position B ( 2111 ), the third optical fiber is attached.
- can be displayed, the arrow 2120 can be displayed, and a beep sound can be generated.
- positions of the optical fiber being attached and the previous optical fiber can be displayed in real time.
- FIG. 28 shows the current positions of the three optical fibers as the position a ( 2207 ), the position b ( 2208 ), and the position c ( 2209 ) in real time by measuring the positions simultaneously with the three mobile position sensors 118 .
- the optical fibers can be attached simultaneously without shifting the positions when the respective current positions are adjusted to the positions of the attached optical fibers in which a living body optical measurement was performed before.
- can be displayed simultaneously as shifts in the respective positions in order to help attach the three optical fibers.
- the arrows 2210 , 2211 , and 2212 that show the vectors A-a, B-b, and C-c can be displayed.
- )/3 as an average of the shifts in the attachment positions of the three optical fibers and the vector 2221 can also be displayed.
- )/3 can also be generated.
- Positions of the optical fibers are superimposed and displayed on a morphological image of an object measured by an MRI apparatus etc. in real time in the fourth embodiment. However, positions of the optical fibers are superimposed and displayed on a pseudo morphological image (wire frame image) of an object in real time in the fifth embodiment.
- FIG. 29 is a flow chart showing a process of the fifth embodiment.
- Steps 1201 , 1205 , 1208 , 1209 , 1502 to 1505 , and 1507 in the process of FIG. 29 are similar to those in FIG. 21 of the second embodiment, what is different from the second embodiment is to calculate position coordinates on a morphological image of an object in the tip positions of the optical fibers 106 and 109 currently being attached by these steps.
- These are similar to the third and fourth embodiments.
- Step 1907 of the fourth embodiment the positions of the reference points on the object 107 measured previously are loaded from the storage unit 115 to calculate a transmission parameter by which the reference points are projected on a pseudo morphological image read in Step 1503 (Step 2309 ).
- the signal processing unit 113 loads the tip positions of the optical fibers 106 and 109 measured previously from the storage unit 115 , projects the positions on a pseudo morphological image, and then calculates the position coordinates (Steps 2309 to 2311 ). What is different from the fourth embodiment is to perform projection on a pseudo morphological image in the fifth embodiment while projection is performed on a morphological image in the fourth embodiment.
- Step 2312 The tip positions calculated in Step 1507 of the optical fibers 106 and 109 that are being attached currently and the previous positions of the optical fibers 106 and 109 are superimposed and displayed on a pseudo morphological image.
- the tip positions of the optical fibers that are being attached currently and the previous ones can be superimposed and displayed on a pseudo morphological image of an object in real time.
- FIG. 30 an image where the tip position 1803 of the optical fiber that is being attached currently and the tip position 2004 of the optical fiber for which a living body optical measurement was performed previously are superimposed on the pseudo morphological image 2401 of an object in real time is shown in FIG. 30 .
- an image of a living body optical measurement apparatus is superimposed on a head surface image and brain surface image as well as an X-ray CT image and MRI image, and it is desirable to superimpose both the images each other exactly at a high positional accuracy in order to perform diagnosis with the images.
- an attachment hole for an optical fiber of a probe holder is as large as approximately 1 to 2 cm, and because the probe holder is lifted up from the scalp by the hair, a contact position of the tip of the optical fiber and the scalp cannot be measured directly from a position of the attachment hole for the optical fiber of the probe holder. Also, individual differences are large in the size and the shape of the head of an object, and a distance from the probe holder and the scalp considerably depends on an amount of hair, the length, and how the hair grows. Therefore, it is also difficult to accurately presume a position of the tip of an optical fiber from a position of an attachment hole for an optical fiber of a probe holder.
- an operation in which the tips of optical fibers are fixed to the scalp so that light can be detected from another optical fiber by irradiating light from an optical fiber to the scalp is very sensitive and requires patience because the head hair prevents the optical fibers from contacting the scalp.
- a sheet-like probe holder is fixed to the head of an object with a belt etc., the tip of an optical fiber is contacted with the scalp while the head hair is being moved away with a thin stick, and then the optical fiber is fixed to the probe holder.
- the tip of an optical fiber is applied to the scalp too strongly, it is undesirable that an object feels pain, and if the tip of the optical fiber is up from the scalp conversely, noise enters into an optical signal, which cannot detect the optical signal. Therefore, it is required that the tip of the optical fiber contacts the scalp with an appropriate pressure. This operation is repeated for the number of the optical fibers (normally, 30 to 80 pieces). Additionally, if the tip position is shifted by 0.5 mm by a hand of an operator touching the optical fiber fixed once, measurement cannot be performed due to noise entering into an optical signal. Therefore, while close attention is being paid so as not to shift the tip position by touching the fixed optical fiber, the other optical fibers also need to be fixed. Additionally, cables are connected to the respective optical fibers, and even if the cables are pulled by touching it accidentally, the tip position of the optical fiber is shifted. Therefore, it is also required that the cables are not touched.
- a tip position of an optical fiber is measured using a mobile position sensor in order to superimpose an image of a living body optical measurement apparatus on an X-ray CT image etc. as follows.
- an optical fiber fixed by paying close attention as described above is detached from a hole of a probe holder, a mobile position sensor is inserted in a position where there was the tip of the optical fiber before, the tip is contacted with the scalp to detect the position, and then the optical fiber is fixed to the original position again while head hair is being moved away with a stick.
- the procedure must be performed so as not to touch an adjacent optical fiber and a cable. These operations are repeated for all the optical fibers (normally, 30 to 80 pieces) in order.
- 101 light irradiation unit, 102 : light measuring unit, 103 : signal processing unit, 104 : semiconductor laser, 105 : optical module, 106 : optical fiber, 107 : object, 108 : holder, 109 : optical fiber, 110 : photoelectric conversion element, 111 : lock-in amplifier module, 112 : A/D converter, 113 : signal processing unit, 114 : display device, 115 : storage unit, 116 : input/output unit, 117 : three-dimensional position measuring unit, 118 : mobile position sensor, 119 : magnetic field generating module, 120 : magnetic field generating region, 202 : belt (jaw band) 204 : optical fiber plug, 306 : optical fiber tip, 2502 : left-side body portion, 2503 : right-side body portion, 2504 : opening portion, 2505 : nut, 2506 : button hole, 2507 : window, 2508 : slot, 2510 : notch, 2511 :
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Neurosurgery (AREA)
- Human Computer Interaction (AREA)
- Psychology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Pulmonology (AREA)
Abstract
Description
(x2,y2,z2)=(x1,y1,z1)+L×(dx,dy,dz) (1)
Hence, the tip position (x2 y2 z2) of the
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-077278 | 2012-03-29 | ||
JP2012077278 | 2012-03-29 | ||
PCT/JP2013/058673 WO2013146725A1 (en) | 2012-03-29 | 2013-03-26 | Biological light measurement device, biological light measurement method, and engagement member for mobile position sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150038811A1 US20150038811A1 (en) | 2015-02-05 |
US9883825B2 true US9883825B2 (en) | 2018-02-06 |
Family
ID=49259976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/382,514 Active 2034-04-18 US9883825B2 (en) | 2012-03-29 | 2013-03-26 | Living body optical measurement apparatus, living body optical measurement method, and engagement member for mobile position sensor |
Country Status (5)
Country | Link |
---|---|
US (1) | US9883825B2 (en) |
EP (1) | EP2832304A4 (en) |
JP (1) | JP5943362B2 (en) |
CN (1) | CN104159523B (en) |
WO (1) | WO2013146725A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102249824B1 (en) * | 2014-02-24 | 2021-05-10 | 삼성전자주식회사 | Apparatus and Method for sensing body imformation thereof |
US10791981B2 (en) * | 2016-06-06 | 2020-10-06 | S Square Detect Medical Devices | Neuro attack prevention system, method, and apparatus |
WO2020236371A1 (en) | 2019-05-21 | 2020-11-26 | Hi Llc | Photodetector architectures for efficient fast-gating |
EP3980849A1 (en) | 2019-06-06 | 2022-04-13 | Hi LLC | Photodetector systems with low-power time-to-digital converter architectures |
US12029558B2 (en) | 2020-02-21 | 2024-07-09 | Hi Llc | Time domain-based optical measurement systems and methods configured to measure absolute properties of tissue |
US11950879B2 (en) | 2020-02-21 | 2024-04-09 | Hi Llc | Estimation of source-detector separation in an optical measurement system |
WO2021167893A1 (en) * | 2020-02-21 | 2021-08-26 | Hi Llc | Integrated detector assemblies for a wearable module of an optical measurement system |
WO2021167892A1 (en) | 2020-02-21 | 2021-08-26 | Hi Llc | Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system |
WO2021167890A1 (en) | 2020-02-21 | 2021-08-26 | Hi Llc | Wearable module assemblies for an optical measurement system |
US11883181B2 (en) | 2020-02-21 | 2024-01-30 | Hi Llc | Multimodal wearable measurement systems and methods |
WO2021167891A1 (en) * | 2020-02-21 | 2021-08-26 | Hi Llc | Integrated light source assembly with laser coupling for a wearable optical measurement system |
US11969259B2 (en) | 2020-02-21 | 2024-04-30 | Hi Llc | Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members |
US11857348B2 (en) | 2020-03-20 | 2024-01-02 | Hi Llc | Techniques for determining a timing uncertainty of a component of an optical measurement system |
WO2021188496A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Photodetector calibration of an optical measurement system |
US11877825B2 (en) | 2020-03-20 | 2024-01-23 | Hi Llc | Device enumeration in an optical measurement system |
US11864867B2 (en) | 2020-03-20 | 2024-01-09 | Hi Llc | Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse |
WO2021188488A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Bias voltage generation in an optical measurement system |
US12059262B2 (en) | 2020-03-20 | 2024-08-13 | Hi Llc | Maintaining consistent photodetector sensitivity in an optical measurement system |
US11187575B2 (en) | 2020-03-20 | 2021-11-30 | Hi Llc | High density optical measurement systems with minimal number of light sources |
US11607132B2 (en) | 2020-03-20 | 2023-03-21 | Hi Llc | Temporal resolution control for temporal point spread function generation in an optical measurement system |
WO2021188485A1 (en) | 2020-03-20 | 2021-09-23 | Hi Llc | Maintaining consistent photodetector sensitivity in an optical measurement system |
US11645483B2 (en) | 2020-03-20 | 2023-05-09 | Hi Llc | Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system |
US11245404B2 (en) | 2020-03-20 | 2022-02-08 | Hi Llc | Phase lock loop circuit based signal generation in an optical measurement system |
US11941857B2 (en) | 2020-05-26 | 2024-03-26 | Hi Llc | Systems and methods for data representation in an optical measurement system |
CN112057057B (en) * | 2020-08-11 | 2022-04-26 | 上海掌门科技有限公司 | Method and apparatus for adjusting pulse measurement device and measuring pulse signal |
US11789533B2 (en) | 2020-09-22 | 2023-10-17 | Hi Llc | Synchronization between brain interface system and extended reality system |
JP7503338B2 (en) | 2020-12-28 | 2024-06-20 | 国立研究開発法人産業技術総合研究所 | Brain function measuring device and brain function measuring method |
WO2022150155A1 (en) | 2021-01-06 | 2022-07-14 | Hi Llc | Devices, systems, and methods using wearable time domain-based activity tracker |
WO2022182526A1 (en) | 2021-02-26 | 2022-09-01 | Hi Llc | Brain activity tracking during electronic gaming |
US11543885B2 (en) | 2021-05-26 | 2023-01-03 | Hi Llc | Graphical emotion symbol determination based on brain measurement data for use during an electronic messaging session |
US12078531B2 (en) | 2021-07-28 | 2024-09-03 | Hi Llc | Devices, systems, and methods for calibrating an optical measurement device |
GB202204719D0 (en) | 2022-03-31 | 2022-05-18 | Gowerlabs Ltd | Light guide module and apparatus for measuring changes in chromophore concentration |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6542763B1 (en) | 1999-10-28 | 2003-04-01 | Hitachi, Ltd. | Optical measurement equipment and recording medium and optical measurement method |
JP2004357899A (en) | 2003-06-04 | 2004-12-24 | Hitachi Medical Corp | Measuring device |
EP1652470A1 (en) | 2004-10-26 | 2006-05-03 | Hitachi, Ltd. | Optical measuring instrument for living body |
US7190826B2 (en) | 2003-09-16 | 2007-03-13 | Electrical Geodesics, Inc. | Measuring the location of objects arranged on a surface, using multi-camera photogrammetry |
WO2009134674A1 (en) | 2008-04-28 | 2009-11-05 | The Trustees Of Dartmouth College | System, optode and cap for near-infrared diffuse-optical functional neuroimaging |
JP2009261588A (en) | 2008-04-24 | 2009-11-12 | Shimadzu Corp | Optical bioinstrumentation apparatus and holder arrangement support system |
JP2011050504A (en) | 2009-08-31 | 2011-03-17 | Topcon Corp | Measuring device, measuring method, and program |
WO2011046072A1 (en) | 2009-10-14 | 2011-04-21 | 株式会社 日立メディコ | Biophotometer and reference image display method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3579686B2 (en) * | 1995-08-07 | 2004-10-20 | アークレイ株式会社 | Measuring position reproducing method, measuring position reproducing device, and optical measuring device using the same |
JP4266453B2 (en) | 1999-09-14 | 2009-05-20 | 株式会社日立メディコ | Biological light measurement device |
JP2002355246A (en) * | 2001-05-30 | 2002-12-10 | Hitachi Medical Corp | Accessory for biological light measurement and biological light meter |
JP2003088528A (en) * | 2001-09-18 | 2003-03-25 | Hitachi Medical Corp | Biological light measuring device |
JP4683146B2 (en) | 2009-08-26 | 2011-05-11 | 横浜ゴム株式会社 | Tire vulcanization mold manufacturing method and tire vulcanization mold |
-
2013
- 2013-03-26 JP JP2014507887A patent/JP5943362B2/en active Active
- 2013-03-26 WO PCT/JP2013/058673 patent/WO2013146725A1/en active Application Filing
- 2013-03-26 US US14/382,514 patent/US9883825B2/en active Active
- 2013-03-26 EP EP13767849.6A patent/EP2832304A4/en not_active Withdrawn
- 2013-03-26 CN CN201380011660.3A patent/CN104159523B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6542763B1 (en) | 1999-10-28 | 2003-04-01 | Hitachi, Ltd. | Optical measurement equipment and recording medium and optical measurement method |
JP2004357899A (en) | 2003-06-04 | 2004-12-24 | Hitachi Medical Corp | Measuring device |
US7190826B2 (en) | 2003-09-16 | 2007-03-13 | Electrical Geodesics, Inc. | Measuring the location of objects arranged on a surface, using multi-camera photogrammetry |
EP1652470A1 (en) | 2004-10-26 | 2006-05-03 | Hitachi, Ltd. | Optical measuring instrument for living body |
JP2009261588A (en) | 2008-04-24 | 2009-11-12 | Shimadzu Corp | Optical bioinstrumentation apparatus and holder arrangement support system |
WO2009134674A1 (en) | 2008-04-28 | 2009-11-05 | The Trustees Of Dartmouth College | System, optode and cap for near-infrared diffuse-optical functional neuroimaging |
JP2011050504A (en) | 2009-08-31 | 2011-03-17 | Topcon Corp | Measuring device, measuring method, and program |
WO2011046072A1 (en) | 2009-10-14 | 2011-04-21 | 株式会社 日立メディコ | Biophotometer and reference image display method |
US20120203088A1 (en) | 2009-10-14 | 2012-08-09 | Hitachi Medical Corporation | Biological optical measurement instrument and reference image display method |
Non-Patent Citations (2)
Title |
---|
International Search Report issued in International Application No. PCT/JP2013/058673 dated May 21, 2013. |
Oct. 13, 2015 Extended Search Report issued in European Patent Application No. 13767849.6. |
Also Published As
Publication number | Publication date |
---|---|
EP2832304A1 (en) | 2015-02-04 |
EP2832304A4 (en) | 2015-11-11 |
CN104159523B (en) | 2016-02-17 |
US20150038811A1 (en) | 2015-02-05 |
CN104159523A (en) | 2014-11-19 |
JP5943362B2 (en) | 2016-07-05 |
WO2013146725A1 (en) | 2013-10-03 |
JPWO2013146725A1 (en) | 2015-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9883825B2 (en) | Living body optical measurement apparatus, living body optical measurement method, and engagement member for mobile position sensor | |
JP4474145B2 (en) | Optical measuring device | |
JP4097522B2 (en) | Biological light measurement device | |
US10682081B2 (en) | Acquiring and processing non-contact functional near-infrared spectroscopy data | |
JP7335157B2 (en) | LEARNING DATA GENERATION DEVICE, OPERATION METHOD OF LEARNING DATA GENERATION DEVICE, LEARNING DATA GENERATION PROGRAM, AND MEDICAL IMAGE RECOGNITION DEVICE | |
US10638975B2 (en) | Biological light measurement device | |
EP2489305B1 (en) | Biophotometer | |
JP5686739B2 (en) | Inspection device with magnetic position detector, magnetic field measurement tool, magnetic field detection program | |
JP2003144437A (en) | Organism light measuring device | |
JP2010104586A (en) | Optical measuring apparatus for living body and method of estimating measurement noise | |
US20050261578A1 (en) | Living body measurement system by light, image display methodology and program | |
KR101190351B1 (en) | Near infrared spectroscopy detection unit, apparatus having the same unit and method for controlling the same apparatus | |
US10568506B2 (en) | Optical fiber-based spectroreflectometric system | |
JP2017038878A (en) | Optical bioinstrumentation device | |
JP2006000182A (en) | Optical biological information measuring apparatus | |
US10258237B2 (en) | Photobiomedical measurement apparatus | |
JP2020524564A (en) | Medical examination equipment | |
JP5853777B2 (en) | Optical biological measurement device | |
JP2012050598A (en) | Imaging and displaying method and apparatus | |
JP5347312B2 (en) | Light measuring device | |
JP2015077331A (en) | Holder positioning support device and brain function measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI MEDICAL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASAKA, HIROKAZU;ISHIZUKA, TAKASHI;REEL/FRAME:033653/0298 Effective date: 20140703 |
|
AS | Assignment |
Owner name: HITACHI, LTD., JAPAN Free format text: MERGER;ASSIGNOR:HITACHI MEDICAL CORPORATION;REEL/FRAME:039843/0364 Effective date: 20160401 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: FUJIFILM HEALTHCARE CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HITACHI, LTD.;REEL/FRAME:058026/0559 Effective date: 20211013 |
|
AS | Assignment |
Owner name: FUJIFILM HEALTHCARE CORPORATION, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE PROPERTY AND APPLICATION NUMBERS PREVIOUSLY RECORDED AT REEL: 058026 FRAME: 0559. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:HITACHI LTD.;REEL/FRAME:058917/0853 Effective date: 20211013 |