US9597013B2 - Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction - Google Patents
Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction Download PDFInfo
- Publication number
- US9597013B2 US9597013B2 US14/073,337 US201314073337A US9597013B2 US 9597013 B2 US9597013 B2 US 9597013B2 US 201314073337 A US201314073337 A US 201314073337A US 9597013 B2 US9597013 B2 US 9597013B2
- Authority
- US
- United States
- Prior art keywords
- signal
- patient
- flow
- ventilator
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000003434 inspiratory effect Effects 0.000 title description 25
- 230000003993 interaction Effects 0.000 title description 9
- 230000000241 respiratory effect Effects 0.000 claims abstract description 17
- 238000012544 monitoring process Methods 0.000 claims abstract description 11
- 206010011224 Cough Diseases 0.000 claims description 9
- 230000001269 cardiogenic effect Effects 0.000 claims description 9
- 230000010355 oscillation Effects 0.000 claims description 9
- 230000028327 secretion Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000001960 triggered effect Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 230000029058 respiratory gaseous exchange Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 210000003205 muscle Anatomy 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 7
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 208000008784 apnea Diseases 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000009747 swallowing Effects 0.000 description 4
- 206010061818 Disease progression Diseases 0.000 description 3
- 208000000782 Intrinsic Positive-Pressure Respiration Diseases 0.000 description 3
- 230000009798 acute exacerbation Effects 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 238000001647 drug administration Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 210000002345 respiratory system Anatomy 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000003519 ventilatory effect Effects 0.000 description 3
- 208000037656 Respiratory Sounds Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005713 exacerbation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000005399 mechanical ventilation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 206010061688 Barotrauma Diseases 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000167880 Hirundinidae Species 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010030111 Oedema mucosal Diseases 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 208000012696 congenital leptin deficiency Diseases 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229940124446 critical care medicine Drugs 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000001022 morbid obesity Diseases 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/087—Measuring breath flow
- A61B5/0871—Peak expiratory flowmeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4205—Evaluating swallowing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0051—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
- A61M16/022—Control means therefor
- A61M16/024—Control means therefor including calculation means, e.g. using a processor
- A61M16/026—Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0036—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
Definitions
- the invention relates to a method for the determination, and ultimately correction, of patient-ventilator asynchrony, e.g., asynchrony between ventilators that are assistive and are inclusive of patient triggered breaths, including but not limited to PSV, AC, AMV, and bilevel PS, and patients that can protect their airway and show some attempt to spontaneously breathe, including predominantly COPD, restrictive, mixed pathology and in general patients that require ventilatory assistance.
- patient-ventilator asynchrony e.g., asynchrony between ventilators that are assistive and are inclusive of patient triggered breaths, including but not limited to PSV, AC, AMV, and bilevel PS, and patients that can protect their airway and show some attempt to spontaneously breathe, including predominantly COPD, restrictive, mixed pathology and in general patients that require ventilatory assistance.
- CMV Controlled Mechanical Ventilation
- assisted ventilation vary by mode, e.g., parameter control (flow/volume/pressure), and amount of introduced assistance to the spontaneous breath, and include but are not limited to: assist control ventilation (AMV), synchronized intermittent mandatory ventilation (SIMV), and Pressure-Support Ventilation (PSV).
- AMV assist control ventilation
- SIMV synchronized intermittent mandatory ventilation
- PSV Pressure-Support Ventilation
- Therapeutic efficacy is reliant upon synchrony between variable pressure/flow delivery and the patient's spontaneous respiratory cycle.
- the trigger mechanism the ability of the ventilator to recognize when the patient initiates inspiratory effort (the trigger mechanism), and this is commonly achieved when the patient reaches either a positive flow threshold or minimal pressure threshold. In the case where patients fail to achieve this trigger threshold, patient-ventilator synchrony breaks down and may counteract any intended benefits otherwise seen using a ventilator.
- a major cause of this asynchrony is expiratory flow limitation, dynamic hyperinflation of the lungs and concomitant intrinsic PEEP. Dynamic hyperinflation can result from either gas trapping behind closed airways, mismatching of mechanical vs. neural expiration, or a combination of the above. This has been well studied in COPD and to a lesser degree in other pathologies, however it has been observed in a variety of patients. The mechanisms follow: 1) Obstruction to the airway in COPD is caused by pathological effects such as airway secretions, bronchospasm, and mucosal edema. In all cases airflow resistance increases, and forces muscle recruitment to aid expiration resulting in dynamic compression of the airways.
- the dynamic increase in EELV has several repercussions that inhibit inspiration in the spontaneously breathing patient:
- the dynamic increase in lung volume can also reduce the pressure generating capacity of the inspiratory muscles by shifting inspiratory muscle fibers from optimal length to shorter operational length and altering geometrical arrangements between diaphragm and chest wall.
- the increase in volume may also result in the operation of the lung to be shifted higher into the non-linear, less compliant region of its volume-pressure curve at end-expiration. Due to the relative increased stiffness of the lung here, greater muscular effort to expand the lung and motivate inspiration is required.
- the inspiratory muscles suffer fatigue and weakness that eventually lead to an inability to move air in and out of the lungs. Consequently, the patient achieves marginal flow or pressure change when efforts are made to inspire, and these inspiratory attempts may fail to achieve the trigger threshold and therefore go completely undetected by the ventilator.
- FIG. 1 shows an example of a ventilator operating ideally in PSV mode (flow-triggered). Two full respiratory cycles are displayed. Flow and Pressure at the Airway Opening (PAO) are the signals available to the ventilator, and Pleural Pressure (PPL) is an external reference that indicates the onset of inspiratory patient effort by a negative deflection [1]. Approximately 300 ms after this event, the patient has achieved the requisite flow to trigger the ventilator [2] and IPAP is subsequently delivered [3].
- PEO Airway Opening
- PPL Pleural Pressure
- FIG. 2 illustrates the result of patient efforts that are undetected by the ventilator.
- Four inspiratory patient efforts are observed in the data series PPL, only the first of which has been supported by the ventilator as per the previous description [1].
- the ensuing inspiratory efforts [2] have each brought about a respective rise in flow, however on each occasion the trigger threshold [3] was unachieved and consequently the ventilator has remained in EPAP.
- Varon et al. (Varon J, et al. Prevalence of patient ventilator asynchrony in critically ill patients [abstract]. Chest. 106:141S, 1994) identifies an “Asynchrony Index” as a percentage of monitored breaths that fail to trigger, however no further description of the means to obtaining this is provided.
- the authors note that the index varies with applied PEEP, that triggering asynchrony can be eliminated by reducing pressure support or tidal volume delivery in PSV and AC modes, respectively, and that the arousal state of patients proportionally affects the index, i.e., lower index during sleep than awake.
- the ventilator would trigger in synchrony with electrical impulses originating in the central nervous system. While this may be virtually and ethically impossible to achieve in humans, detecting patient inspiratory efforts as close in time to this event is the ultimate goal to achieving synchronous patient-ventilator synchrony.
- None of the above methods aims to address the major cause of ineffective efforts, namely the presence of dynamic hyperinflation and intrinsic PEEP in the patient's lungs.
- a more meaningful solution is one that eliminates the effect of PEEPi and alleviates the regression of respiratory function at the outset. Commonly this is achieved with some success by adding external PEEP via the ventilator to offset PEEPi, such that at end-expiration, equilibrium exists between pressure at the mouth and that in the alveoli. Ultimately, it improves patient-ventilator interaction by reducing the magnitude of negative deflection in pleural pressure (brought about by inspiratory muscle effort) required to trigger the ventilator. PEEP also increases the functional residual capacity and respiratory compliance (at low volume) by recruiting previously collapsed, unventilated perfused airspaces, improving overall perfusion and PaO 2 .
- the first step toward addressing the first problem is deriving an appropriate ratio of PEEP to PEEPi to prevent further dynamic hyperinflation. It has been determined that added PEEP has little effect on the rate of lung emptying and therefore the level of dynamic hyperinflation, until it exceeds a critical value, P crit . It remains to be seen with further investigation, however, what the precise relationship is, if any, between measured PEEPi and P crit . As such, there is clinical argument as to what proportion P crit be of PEEPi in order to be effective but not detrimental (varies between 75% and 90%) and whether this should be relative to the dynamic or static value for PEEPi. Furthermore, a reliable and simple means for measuring PEEPi as a result of dynamic hyperinflation under dynamic conditions is yet to be developed. Thus, the clearest solution is contingent upon greater practical understanding and assessment of the problem than is current.
- U.S. Pat. No. 6,588,422 describes a method and apparatus for counterbalancing PEEPi during ventilatory support of patients with respiratory failure.
- the invention attempts to deliver adjustable PEEP to the patient that offsets PEEPi dynamically. It addresses the problem of measuring PEEPi in real-time and non-invasively by analogy with measuring the degree of dynamic airway compression. Two main approaches are discussed for achieving this measurement: 1) by assignment to the ratio of inspiratory conductance and expiratory conductance using forced oscillation technique (FOT), and 2) examination of the shape of the expiratory airflow versus time curve.
- FOT forced oscillation technique
- One aspect of the invention relates to an algorithm for the detection of missed triggers, and therefore unrecognized patient effort, during patient-ventilator (assisted) interaction.
- One function of the algorithm is to record when a significant perturbation on the flow signal occurs (indicative of patient effort) outside of the delivered inspiratory assistance (pressure support or volume controlled).
- the output of this algorithm is a time-referenced index of these events, which may serve as a statistical metric of patient-ventilator synchrony and therefore therapeutic success.
- Another aspect, and perhaps the ultimate goal, is to minimize patient-ventilator asynchrony and reduce the work of breathing can be achieved accordingly by taking actions to minimize the index (either manually or servo-regulated)—by either altering ventilator parameters (increasing PEEP, decreasing Pressure Support, or reducing tidal volume delivery), and/or environmental factors (state of patient, drug administration).
- Yet another aspect of the invention is to serve as a metric for the indexing of occurrences inspiratory patient efforts in patient-assistive ventilator interaction that have been undetected by the ventilator.
- Another aspect of the invention is to provide an indication of true patient respiratory rate as the sum of ventilator delivered breaths and ineffective efforts detected.
- Still another aspect of the invention is to minimize the occurrences of ineffective inspiratory patient efforts via servo-regulation of the ventilator, achieved by one or more of the following:
- Statistics from the metric can serve to: 1) Trigger an alarm indicating patient instability, 2) Act as a guide for appropriate patient management procedure, e.g., manual PEEP titration and/or 3) Log and track disease progression long term.
- a further aspect of the invention is directed to a method for detecting and indexing inspiratory effort of COPD patients on assistive ventilators that have gone undetected and unsupported by the ventilators.
- Another aspect of the invention is directed to a method servo-regulation of external PEEP delivery via the ventilator, using statistical reference to the metric, e.g. after a series of ineffective triggers, boost applied PEEP to minimize the index.
- Still another aspect of the invention is directed to a method of sensitizing the ventilator flow trigger based on its impartiality to flow polarity.
- the algorithm can provide as an indicator to variable flow trigger thresholds, as required to minimize the index.
- Further aspects of the invention may be directed to one or more of the following: a method for guidance of pharmacological administration; a metric of reference for manual adjustment of the applied PEEP by the clinician; an indicator of disease progression, to predict and alert of impending exacerbation; and/or a method of triggering an alarm for the clinician to adjust settings or manage a patient.
- a method of detecting an ineffective effort of a patient being mechanically ventilated by a ventilator comprising the steps of (i) monitoring a respiratory flow of air of the patient after said ventilator has cycled; (ii) creating a signal indicative of said flow; (iii) removing artefact from said signal; (iv) monitoring said signal for perturbations; and (v) determining that an ineffective effort has occurred when said perturbation is significant.
- a system for detecting an ineffective effort of a patient being mechanically ventilated by a ventilator comprising (i) means for monitoring a respiratory flow of air of the patient after said ventilator has cycled; (ii) means for creating a signal indicative of said flow; (iii) means for removing artefact from said signal; (iv) means for monitoring said signal for perturbations; and (v) means for determining that an ineffective effort has occurred when said perturbation is significant.
- a system for detecting an ineffective effort of a patient being mechanically ventilated by a ventilator comprising a flow sensor to monitor a respiratory flow of air of the patient after said ventilator has cycled and to generate a signal indicative of said flow; and a processor to remove artefact from said signal, to monitor said signal for perturbations, and to determine that an ineffective effort has occurred when said perturbation is significant.
- perturbations in the flow signal that occur after the ventilator has cycled are classified according to a classification system.
- the classification system distinguishes ineffective efforts from other events such as coughs, swallows and signals of cardiogenic origin.
- monitoring ineffective efforts is used to measure compliance.
- the onset of exacerbations of the patient's condition is detected using a measure of ineffective efforts.
- PEEP Positive End Expiratory Pressure
- pressure support is adjusted in accordance with a measure of ineffective efforts.
- tidal volume and/or flow delivery is adjusted in accordance with a measure of ineffective efforts.
- a ventilator system for a patient, comprising a blower to produce a source of pressurized breathable gas; and a patient interface (e.g., mask, cannulae, prongs, puffs, etc.) to deliver the breathable gas to the patient's airways.
- the ventilator system includes a processor (e.g., a general purpose computer or the like), program, algorithm, hardware and/or software configured to carry out any of the methods described herein.
- the ventilator is at least partially controlled based on a measure of breathing effort of the patient as determined by the processor.
- FIG. 1 is a graph illustrating an example of synchronous patient-ventilator interaction in PSV mode
- FIG. 2 is a graph illustrating asynchronous patient-ventilator interaction
- FIG. 3 is a graph illustrating the feature set of a single ineffective effort pattern
- FIG. 4 is a schematic flow chart summarizing a high-level approach for monitoring of asynchrony according to embodiments of the present invention
- FIG. 5 is a schematic flow chart for monitoring of asynchrony according to one embodiment of the present invention.
- FIGS. 6 a -6 c are schematic flow charts for the identification of the expiratory phase of respiration
- FIG. 7 is a schematic flow chart for monitoring of asynchrony according to one embodiment of the present invention.
- FIG. 8 is a graph illustrating operational results achieved using an embodiment of the present invention.
- One aspect of the invention is directed to a method for improving patient-ventilator synchrony, and eliminates the need for external sensors, measuring intrinsic PEEP (or by analogy), or modifying/complicating the triggering sensitivity algorithm internal to the ventilator. Rather, it identifies unsupported patient effort exhibited as a specific feature in the flow or pressure signal, indexes their occurrences, and optionally uses the output as an error function that is forced to minimize over time by adjusting various ventilator/environmental parameters. These adjustments are either manual or servo-regulated, and may involve PEEP and/or tidal volume delivery (to counterbalance PEEP and reduce dynamic hyperinflation), as well as trigger sensitivity.
- an algorithm for detecting missed triggers corresponding to patient effort without the benefit of a direct effort sensor. Only patient flow and airway pressure signals are processed to determine this.
- FIG. 3 Several features on the flow signal can be identified as characteristic of an individual ineffective effort, shown in FIG. 3 . Together in sequence they form a feature set.
- the flow profile accelerates towards zero. This trend may be exponential for normal subjects, or approaching a linear decay for expiratory flow limited subjects.
- an ineffective effort occurs on the expiratory curve there may or may not be a short, rapid (relative to the expiratory baseline) deceleration in negative flow corresponding to the onset in muscle effort, but always a local maximum [1] and a short, fairly rapid declivity [2] back to the baseline of the expiratory flow profile punctuated with a local minimum [3].
- One aspect of the invention relates to the identification of expiration on the flow signal, as well as significant and unique perturbations on this portion of the signal pertaining to ineffective efforts. This involves identification of at least the local maximum, and furthermore the declivity in succession.
- an aspect of the invention encapsulates a general classifier of perturbations on the flow signal during expiration relating them to their physiological cause, including swallowing, coughing and cardiogenic oscillation, such that ineffective efforts can be uniquely distinguished with greater confidence.
- FIG. 4 for a high-level flow chart description.
- One embodiment of the invention that detects ineffective efforts as significant local maxima occurring during expiration may be implemented as follows. A flow chart of the process is included in FIG. 5 .
- Preliminary signals processing comprises the following steps:
- Two signals are recorded from a ventilated patient using a logging device including a data-acquisition system and memory, which may be the ventilator itself. These signals are airflow (Q) and airway pressure at the mouth (P).
- An indicator of expiratory phase This can be achieved using any number of means for example classifying respiratory phase based on the polarity of the flow ( FIG. 6( a ) ) or alternatively based on determining the state of therapy delivery using the trigger and cycle events ( FIG. 6( b ) ), or testing the pressure signal against a phase transition threshold ( FIG. 6( c ) ) (e.g. ((IPAP or maximum pressure) ⁇ (EPAP or minimum pressure))*50%, depending upon type of assistance).
- the resultant control signal, C exp may be TRUE during expiration.
- Another embodiment of the invention detects ineffective efforts as a feature set occurring during expiration and comprising a significant local maximum and successive declivity, that also has parameters unique to its physiological cause. It may be implemented as follows.
- Preliminary signals processing comprises the following steps:
- An indicator of expiratory phase is determined. This can be achieved using any number of means for example classifying respiratory phase based on the polarity of the flow ( FIG. 6( a ) ) or alternatively based on determining the state of therapy delivery using the trigger and cycle events ( FIG. 6( b ) ), or testing the pressure signal against a phase transition threshold ( FIG. 6( c ) ) (e.g. ((IPAP or maximum pressure) ⁇ (EPAP or minimum pressure))*50%, depending upon type of assistance).
- the resultant control signal, C exp may be TRUE during expiration.
- the combined perturbation feature set detection and pattern classifier is described by the following and shown in the flow chart of FIG. 5 .
- Features referred to have been described and are illustrated in FIG. 3 .
- the expiratory phase control signal is checked for TRUE to indicate whether to process the flow for perturbation detection [1];
- the max detected state variable is asserted and T IE reset.
- the value of flow at the local maximum is stored as the variable Q a [5].
- Q a is tested for near-zero value to identify a possible swallow event [6].
- a swallow occurring in mid-expiration may be a perturbation with a similar feature set as an ineffective effort. It may be distinguished however as a temporary occlusion of the airway and hence period of apnea or zero flow.
- the expected duration of swallowing apnea is considered to be at least 500 ms. If this test proves true the state variable potential swallow is asserted and the swallow apnea timer T SA is incremented by the sample time.
- incoming flow samples are processed in this set of loops, that firstly identify a local maximum and start an ineffective effort timer, and secondly identify the potential for a swallow to be occurring and if so, start a swallow apnea timer. Both timers are incremented each iteration by an amount equal to the sample time.
- the swallow apnea timer is checked if greater than the minimum expected swallow period, 500 ms [9], and if so, the feature detection process is reset including all state variables and timers.
- the total duration of the declivity and thus the decay in patient effort is given by the timer value T IE .
- T IE the timer value
- the amplitude of the declivity is used to classify the feature set in terms of its physiological cause.
- Secretions in the patient may be observed on a high-resolution flow signal as high frequency crackle shortly after the onset of expiration. Down-sampling or noise filtering the signal may eliminate the presence of this crackle, without eliminating the higher frequency components of the ineffective effort. In accordance with the filtering techniques in the present embodiments, secretions have little or no effect.
- a cough is a sudden, spasmodic contraction of the thoracic cavity, resulting in violent release of air from the lungs.
- the flow achieved can be greater than 200 L/min, extending well beyond the peak expiratory flow.
- CGO In obstructive patients with high resistance and low lung compliance, CGO are not well propagated, if at all, to the mouth. Their presence may be damped by down-sampling or noise-filtering, or suppressed using techniques such as adaptive filtering using a cardiac-gated signal such as an ECG or pulse plethysmograph.
- a wait period is imposed after the detection of an ineffective effort and before the detection of a new local maximum that corresponds to a successive ineffective effort [16]. This is based on the expectation that the minimum neural time, and hence effort, for attempted inspiration is 500 ms.
- FIG. 8 The output of an embodiment of the invention is shown in FIG. 8 .
- Two unsupported inspiratory efforts matched with significant perturbations in the flow signal are evident, [1] and [2], and these have been recognized and logged by the algorithm shortly afterwards in time.
- Another aspect of the invention relates to using an index of ineffective efforts to estimate true patient respiratory rate. In one form this is done by summing the number of ineffective efforts detected as described above together with the number of ventilator delivered breaths in a time period.
- Another aspect of the invention relates to improving patient-ventilator asynchrony.
- a cumulative sum of the algorithm output over periodic intervals or for a set number of respiratory cycles can be used as an indicator of therapeutic efficacy.
- the metric can facilitate an alarm for the clinician to take responsive action (drug administration or PEEP/Pressure Support/tidal volume delivery adjustment), and also measure the effectiveness of that action with reference to the index statistic prior to it.
- a pressure signal is monitored at the entrance to the patient's airways.
- One form of feature set applicable for a pressure signal is inversely related to the feature set described above in relation to flow. For example, instead of a declivity being detected, the pressure signal is monitored for a sharp increase following a local minimum.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
-
- 1) Servo-regulation of external PEEP delivery via the ventilator, using statistical reference to the metric, e.g., after a series of ineffective triggers, incrementally boost applied PEEP to minimize the index.
- 2) Servo-regulation of tidal volume delivery via the ventilator, using statistical reference to the metric, e.g., after a series of ineffective triggers, incrementally decrease tidal volume delivery to minimize the index.
- 3) Servo-regulation of pressure support delivery via the ventilator using statistical reference to the metric, e.g., after a series of ineffective triggers, incrementally reduce pressure support to minimize the index.
- 4) In flow-triggered ventilators, use of the algorithm to directly trigger IPAP, based on its impartiality to flow polarity, e.g., after a series of ineffective triggers, re-sensitize the trigger to minimize the index.
-
- occur during expiration after the ventilator cycles and before it next triggers, i.e. in the absence of successful inspiratory assistance;
- are not necessarily characterized by positive-directional flow, but rather by retarded negative flow.
- are ‘significant’ in that they are distinguishable from noise or other low amplitude phenomena such as secretions, or cardiogenic oscillation, etc.
- are ‘unique’ in that they may be distinguishable from significant perturbations caused by other physiological phenomena such as swallowing or cough.
-
- 2) The flow and airway pressure signals are passed through a smoothing/noise filter to minimize noise. One such example is a Butterworth low pass filter with low order to minimize phase lag and a cut-off frequency of 1 Hz.
- 3) An unintentional leak compensation algorithm is applied to the flow signal such as that described in U.S. Pat. No. 6,152,129 (Berthon-Jones).
- 4) The first derivative (Q′) of the flow signal is calculated.
- 5) The second derivative (Q″) of the flow signal is calculated.
The resultant control signal, CQ″, is TRUE when less than −α.
-
- 1) Two signals are recorded from a ventilated patient using a logging device including a data-acquisition system and memory, which may be the ventilator itself. These signals are airflow (Q) and airway pressure at the mouth (P).
- 2) The flow and airway pressure signals are passed through a smoothing/noise filter to minimize noise. One such example is a Butterworth low pass filter with low order to minimize phase lag and a cut-off frequency of 1 Hz.
- 3) An unintentional leak compensation algorithm is applied to the flow signal such as that described in U.S. Pat. No. 6,152,129 (Berthon-Jones).
- 4) The first derivative (Q′) of the flow signal is calculated.
- 5) The second derivative (Q″) of the flow signal is calculated.
-
- 1. max detected—indicates whether a local maximum has occurred
- 2. TIE—elapsed time since onset of most recent local maximum i.e. onset of patient effort decay
- 3. potential_swallow—indicates whether the patient may be swallowing
- 4. TSA—elapsed time since the onset of a potential swallow
- 5. dec_detected—indicates whether a significant declivity has yet been detected.
if(Q i >Q i-1),then PEF=Q i
where i indicates the sample sequence. In the case that PEF exceeds a threshold of approximately 200 Lmin−1, a cough is considered to have occurred and PEF is assigned a null value.
Q′ i<0 and Q′ i-1>0, or Q′ i=0
and n is the number of samples in a long window or circular buffer that progressively shifts with incoming flow.
Q′i>0 and Q′ i-1<0
|Declivity|=Q a −Q b
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/073,337 US9597013B2 (en) | 2004-10-20 | 2013-11-06 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61995704P | 2004-10-20 | 2004-10-20 | |
PCT/AU2005/001627 WO2006079152A1 (en) | 2004-10-20 | 2005-10-20 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
US66473007A | 2007-04-05 | 2007-04-05 | |
US14/073,337 US9597013B2 (en) | 2004-10-20 | 2013-11-06 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2005/001627 Division WO2006079152A1 (en) | 2004-10-20 | 2005-10-20 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
US11/664,730 Division US8603006B2 (en) | 2004-10-20 | 2005-10-20 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140066725A1 US20140066725A1 (en) | 2014-03-06 |
US9597013B2 true US9597013B2 (en) | 2017-03-21 |
Family
ID=36739954
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/664,730 Active 2031-04-18 US8603006B2 (en) | 2004-10-20 | 2005-10-20 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
US14/073,337 Active 2027-06-18 US9597013B2 (en) | 2004-10-20 | 2013-11-06 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/664,730 Active 2031-04-18 US8603006B2 (en) | 2004-10-20 | 2005-10-20 | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction |
Country Status (5)
Country | Link |
---|---|
US (2) | US8603006B2 (en) |
EP (1) | EP1807139B1 (en) |
JP (2) | JP4960246B2 (en) |
CN (2) | CN101043913B (en) |
WO (1) | WO2006079152A1 (en) |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4960246B2 (en) | 2004-10-20 | 2012-06-27 | レスメド・リミテッド | A system for detecting inactive expiratory effort in patient-ventilator interactions |
US9050005B2 (en) | 2005-08-25 | 2015-06-09 | Synapse Biomedical, Inc. | Method and apparatus for transgastric neurostimulation |
EP1996284A2 (en) | 2006-03-09 | 2008-12-03 | Synapse Biomedical, Inc. | Ventilatory assist system and method to improve respiratory function |
WO2008098001A2 (en) | 2007-02-05 | 2008-08-14 | Synapse Biomedical, Inc. | Removable intramuscular electrode |
US20080236581A1 (en) * | 2007-03-29 | 2008-10-02 | Borje Rantala | Method in a patient ventilating system |
EP3928819A1 (en) * | 2007-05-11 | 2021-12-29 | ResMed Pty Ltd | Automated control for detection of flow limitation |
WO2008144578A1 (en) | 2007-05-17 | 2008-11-27 | Synapse Biomedical, Inc. | Devices and methods for assessing motor point electromyogram as a biomarker |
US8428726B2 (en) | 2007-10-30 | 2013-04-23 | Synapse Biomedical, Inc. | Device and method of neuromodulation to effect a functionally restorative adaption of the neuromuscular system |
US8478412B2 (en) | 2007-10-30 | 2013-07-02 | Synapse Biomedical, Inc. | Method of improving sleep disordered breathing |
US8251876B2 (en) | 2008-04-22 | 2012-08-28 | Hill-Rom Services, Inc. | Breathing exercise apparatus |
CN102056538B (en) | 2008-06-06 | 2014-10-15 | 柯惠有限合伙公司 | Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system |
US8551006B2 (en) | 2008-09-17 | 2013-10-08 | Covidien Lp | Method for determining hemodynamic effects |
CA2736540C (en) | 2008-09-25 | 2015-11-24 | Nellcor Puritan Bennett Llc | Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators |
US8302602B2 (en) | 2008-09-30 | 2012-11-06 | Nellcor Puritan Bennett Llc | Breathing assistance system with multiple pressure sensors |
US10137266B2 (en) * | 2009-02-25 | 2018-11-27 | Koninklijke Philips N.V. | Patient-ventilator dyssynchrony detection |
WO2010121313A1 (en) * | 2009-04-22 | 2010-10-28 | Resmed Ltd | Detection of asynchrony |
AU2010201032B2 (en) * | 2009-04-29 | 2014-11-20 | Resmed Limited | Methods and Apparatus for Detecting and Treating Respiratory Insufficiency |
EP2440274B1 (en) * | 2009-06-09 | 2021-11-24 | Respinova Ltd. | Device for applying therapeutic protocols to organs of the cardiopulmonary system |
US8789529B2 (en) | 2009-08-20 | 2014-07-29 | Covidien Lp | Method for ventilation |
US20110108034A1 (en) * | 2009-11-06 | 2011-05-12 | General Electric Company | Method and system for controlling a ventilator |
US20110271960A1 (en) * | 2010-05-07 | 2011-11-10 | Nellcor Puritan Bennett Llc | Ventilator-Initiated Prompt Regarding Auto-PEEP Detection During Volume Ventilation Of Triggering Patient |
US8607791B2 (en) * | 2010-06-30 | 2013-12-17 | Covidien Lp | Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation |
EP4112110A1 (en) * | 2010-08-27 | 2023-01-04 | ResMed Pty Ltd | Adaptive cycling for respiratory treatment apparatus |
CN102397609A (en) * | 2010-09-07 | 2012-04-04 | 北京航天长峰股份有限公司 | Ventilation method for ensuring volume and limiting pressure of anesthesia machine and breathing machine |
WO2012085820A1 (en) * | 2010-12-22 | 2012-06-28 | Koninklijke Philips Electronics N.V. | Patient monitoring and exception notification |
JP6185390B2 (en) * | 2011-01-31 | 2017-08-23 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Automated breath curve analysis and interpretation |
US8714154B2 (en) | 2011-03-30 | 2014-05-06 | Covidien Lp | Systems and methods for automatic adjustment of ventilator settings |
US9089657B2 (en) | 2011-10-31 | 2015-07-28 | Covidien Lp | Methods and systems for gating user initiated increases in oxygen concentration during ventilation |
US9364624B2 (en) | 2011-12-07 | 2016-06-14 | Covidien Lp | Methods and systems for adaptive base flow |
US9498589B2 (en) | 2011-12-31 | 2016-11-22 | Covidien Lp | Methods and systems for adaptive base flow and leak compensation |
EP3739250B1 (en) | 2012-01-26 | 2023-03-29 | MED-EL Elektromedizinische Geräte GmbH | Neural monitoring systems for treating pharyngeal disorders |
US9022031B2 (en) | 2012-01-31 | 2015-05-05 | Covidien Lp | Using estimated carinal pressure for feedback control of carinal pressure during ventilation |
US9180271B2 (en) | 2012-03-05 | 2015-11-10 | Hill-Rom Services Pte. Ltd. | Respiratory therapy device having standard and oscillatory PEP with nebulizer |
US8844526B2 (en) | 2012-03-30 | 2014-09-30 | Covidien Lp | Methods and systems for triggering with unknown base flow |
US9993604B2 (en) | 2012-04-27 | 2018-06-12 | Covidien Lp | Methods and systems for an optimized proportional assist ventilation |
US10362967B2 (en) | 2012-07-09 | 2019-07-30 | Covidien Lp | Systems and methods for missed breath detection and indication |
EP2874686B1 (en) * | 2012-07-18 | 2019-10-02 | Koninklijke Philips N.V. | System for improved compliance in respiratory therapy |
US9027552B2 (en) | 2012-07-31 | 2015-05-12 | Covidien Lp | Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation |
JP6316299B2 (en) * | 2012-09-28 | 2018-04-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | System and method for assessment of patient health |
US9375542B2 (en) | 2012-11-08 | 2016-06-28 | Covidien Lp | Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation |
US9492629B2 (en) | 2013-02-14 | 2016-11-15 | Covidien Lp | Methods and systems for ventilation with unknown exhalation flow and exhalation pressure |
US9358355B2 (en) | 2013-03-11 | 2016-06-07 | Covidien Lp | Methods and systems for managing a patient move |
US9981096B2 (en) | 2013-03-13 | 2018-05-29 | Covidien Lp | Methods and systems for triggering with unknown inspiratory flow |
EP4101489A1 (en) | 2013-10-30 | 2022-12-14 | ResMed Pty Ltd | Control for pressure of a patient interface |
CN105916440B (en) * | 2013-12-18 | 2020-05-19 | 圣米高医院 | Method and system for verifying inspiratory muscle activity of a patient, and mechanical ventilation system using the same |
CN106029141B (en) * | 2014-01-09 | 2018-11-09 | 皇家飞利浦有限公司 | Patient-ventilator asynchronism detection |
US10799662B2 (en) | 2014-07-02 | 2020-10-13 | ResMed Pty Ltd | Custom patient interface and methods for making same |
US9808591B2 (en) | 2014-08-15 | 2017-11-07 | Covidien Lp | Methods and systems for breath delivery synchronization |
US9950129B2 (en) | 2014-10-27 | 2018-04-24 | Covidien Lp | Ventilation triggering using change-point detection |
DE102014119374B8 (en) * | 2014-12-22 | 2017-09-28 | Thora Tech Gmbh | ventilation system |
US9925346B2 (en) | 2015-01-20 | 2018-03-27 | Covidien Lp | Systems and methods for ventilation with unknown exhalation flow |
US10315002B2 (en) | 2015-03-24 | 2019-06-11 | Ventec Life Systems, Inc. | Ventilator with integrated oxygen production |
US11247015B2 (en) | 2015-03-24 | 2022-02-15 | Ventec Life Systems, Inc. | Ventilator with integrated oxygen production |
CN111603643B (en) | 2015-04-02 | 2023-05-23 | 希尔-罗姆服务私人有限公司 | Pressure control of breathing apparatus |
US10912489B2 (en) | 2015-05-28 | 2021-02-09 | Fisher & Paykel Healthcare Limited | Gas therapy system |
EP3334485B1 (en) | 2015-08-14 | 2024-03-06 | ResMed Pty Ltd | Monitoring respiratory pressure therapy |
CN107949411B (en) * | 2015-08-26 | 2021-05-28 | 皇家飞利浦有限公司 | Mechanical inspiration-expiration |
EP3364855B1 (en) * | 2015-10-19 | 2023-12-20 | Koninklijke Philips N.V. | Anomaly detection device and method for respiratory mechanics parameter estimation |
WO2017079860A1 (en) * | 2015-11-10 | 2017-05-18 | 石洪 | Method for respirator pressure control |
US10773049B2 (en) | 2016-06-21 | 2020-09-15 | Ventec Life Systems, Inc. | Cough-assist systems with humidifier bypass |
CN106267493B (en) * | 2016-08-26 | 2019-04-19 | 苏州凯迪泰医学科技有限公司 | Medical breathing machine and its method of continuous measuring and calculating resistance of respiratory tract and compliance |
CN106540363B (en) * | 2016-11-03 | 2019-06-14 | 湖南明康中锦医疗科技发展有限公司 | The method and ventilator of identification of breathing conversion |
DE102016013140A1 (en) * | 2016-11-07 | 2018-05-09 | Drägerwerk AG & Co. KGaA | A respiratory apparatus and method of operation for a ventilator with a determination of coughing attacks |
WO2018089837A1 (en) | 2016-11-11 | 2018-05-17 | The Regents Of The University Of California | Resuscitation and ventilation asynchrony monitor |
US11666718B2 (en) * | 2017-03-31 | 2023-06-06 | Teijin Pharma Limited | Respiratory information acquisition device and respiratory information acquisition method |
CN111182945B (en) * | 2017-08-04 | 2022-05-06 | 皇家飞利浦有限公司 | Mask and control method |
EP3446755A1 (en) * | 2017-08-24 | 2019-02-27 | Koninklijke Philips N.V. | A mask and control method |
JP7313341B2 (en) | 2017-09-28 | 2023-07-24 | コーニンクレッカ フィリップス エヌ ヴェ | Systems and methods for detecting stroke in patients during pressure support therapy |
EP3706845B1 (en) * | 2017-11-09 | 2023-10-18 | Autonomous Healthcare, Inc. | Clinical decision support system for patient-ventilator asynchrony detection and management |
EP3525857B1 (en) | 2017-11-14 | 2020-01-29 | Covidien LP | Systems for drive pressure spontaneous ventilation |
EP3709881A1 (en) | 2017-11-17 | 2020-09-23 | Koninklijke Philips N.V. | Cough detection in a respiratory support system |
US20190231202A1 (en) * | 2018-01-31 | 2019-08-01 | Loewenstein Medical Technology S.A. | System for recording the breathing efforts of a patient |
CN111683708B (en) * | 2018-02-06 | 2023-09-22 | 马奎特紧急护理公司 | Ventilator apparatus |
JP2021524795A (en) | 2018-05-13 | 2021-09-16 | サミール・サレハ・アフマド | Portable medical ventilator system using a portable oxygen concentrator |
US11478594B2 (en) * | 2018-05-14 | 2022-10-25 | Covidien Lp | Systems and methods for respiratory effort detection utilizing signal distortion |
US11517691B2 (en) | 2018-09-07 | 2022-12-06 | Covidien Lp | Methods and systems for high pressure controlled ventilation |
CN109222978A (en) * | 2018-09-22 | 2019-01-18 | 广州和普乐健康科技有限公司 | A kind of respiratory effort detection method |
US11752287B2 (en) | 2018-10-03 | 2023-09-12 | Covidien Lp | Systems and methods for automatic cycling or cycling detection |
CN109431509A (en) * | 2018-11-01 | 2019-03-08 | 思澜科技(成都)有限公司 | A kind of method and apparatus for assessing subject's flow limitation |
CN109621118B (en) * | 2018-12-25 | 2024-04-19 | 湖南明康中锦医疗科技发展有限公司 | Self-adaptive adjusting method and device for respiratory support equipment |
US11471683B2 (en) | 2019-01-29 | 2022-10-18 | Synapse Biomedical, Inc. | Systems and methods for treating sleep apnea using neuromodulation |
CN111543999A (en) * | 2019-02-11 | 2020-08-18 | 律维施泰因医学技术股份有限公司 | System for sensing respiratory effort of a patient |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
DE102020004319A1 (en) | 2019-07-26 | 2021-01-28 | Löwenstein Medical Technology S.A. | Breath analyzer, ventilator and breath analysis method |
DE102019120307A1 (en) * | 2019-07-26 | 2021-01-28 | Forschungszentrum Borstel, Leibniz Lungenzentrum | Device for supporting ventilation of a living being and computer program |
CN114554952A (en) * | 2019-10-18 | 2022-05-27 | 提姆佩尔医疗有限责任公司 | System and method for determining respiratory effort of a patient |
CN111563451B (en) * | 2020-05-06 | 2023-09-12 | 浙江工业大学 | Mechanical ventilation ineffective inhalation effort identification method based on multi-scale wavelet characteristics |
US12073945B2 (en) * | 2020-06-30 | 2024-08-27 | Cerner Innovation, Inc. | Patient ventilator asynchrony detection |
CN113808078B (en) * | 2021-08-09 | 2024-03-22 | 浙江工业大学 | Method for identifying ineffective inhalation effort based on electrical impedance tomography |
CN114209940B (en) * | 2021-12-30 | 2024-01-02 | 江苏鱼跃医疗设备股份有限公司 | Breathing phase control method of breathing machine based on dynamic threshold |
CN115317739A (en) * | 2022-08-15 | 2022-11-11 | 濡新(北京)科技发展有限公司 | Expectoration starts opportunity and judges device and expectoration machine |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107831A (en) | 1989-06-19 | 1992-04-28 | Bear Medical Systems, Inc. | Ventilator control system using sensed inspiratory flow rate |
US5551419A (en) * | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
EP0956877A1 (en) | 1998-04-23 | 1999-11-17 | Siemens-Elema AB | Method for determining at least one parameter and a breathing apparatus |
US6015388A (en) | 1997-03-17 | 2000-01-18 | Nims, Inc. | Method for analyzing breath waveforms as to their neuromuscular respiratory implications |
US6152129A (en) | 1996-08-14 | 2000-11-28 | Resmed Limited | Determination of leak and respiratory airflow |
US6162183A (en) * | 1999-02-02 | 2000-12-19 | J&J Engineering | Respiration feedback monitor system |
US6305374B1 (en) | 1989-09-22 | 2001-10-23 | Respironics, Inc. | Breathing gas delivery method and apparatus |
US6588422B1 (en) | 1999-01-15 | 2003-07-08 | Resmed Ltd. | Method and apparatus to counterbalance intrinsic positive end expiratory pressure |
US6626175B2 (en) | 2000-10-06 | 2003-09-30 | Respironics, Inc. | Medical ventilator triggering and cycling method and mechanism |
WO2004002561A2 (en) | 2002-06-27 | 2004-01-08 | Yrt Limited | Method and device for monitoring and improving patient-ventilator interaction |
US6758216B1 (en) | 1999-09-15 | 2004-07-06 | Resmed Limited | Ventilatory assistance using an external effort sensor |
WO2004080516A1 (en) | 2003-03-14 | 2004-09-23 | Yrt Limited | Improved synchrony between end of ventilator cycles and end of patient efforts during assisted ventilation |
US20050119586A1 (en) * | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
US20080110461A1 (en) | 2004-10-20 | 2008-05-15 | Resmed Limited | Method and Apparatus For Detecting Ineffective Inspiratory Efforts and Improving Patient-Ventilator Interaction |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000152994A (en) * | 1998-11-20 | 2000-06-06 | Sky Net:Kk | Artificial respirator |
SE9904382D0 (en) * | 1999-12-02 | 1999-12-02 | Siemens Elema Ab | High Frequency Oscillation Patient Fan System |
JP3721912B2 (en) * | 2000-01-11 | 2005-11-30 | スズキ株式会社 | High frequency ventilator |
CN2558394Y (en) * | 2002-07-10 | 2003-07-02 | 南方医院 | Pneuamtic mechanical respiratory and pressure transfusion integrated device |
JP2004047634A (en) | 2002-07-10 | 2004-02-12 | Tokyo Electron Ltd | Method and apparatus for depositing film |
JP4602643B2 (en) * | 2003-02-28 | 2010-12-22 | 帝人株式会社 | Respiratory gas supply device |
JP3860803B2 (en) * | 2003-06-03 | 2006-12-20 | エア・ウォーター防災株式会社 | Control device for gas supply servomechanism for ventilator |
-
2005
- 2005-10-20 JP JP2007537070A patent/JP4960246B2/en active Active
- 2005-10-20 CN CN200580036162XA patent/CN101043913B/en not_active Expired - Fee Related
- 2005-10-20 WO PCT/AU2005/001627 patent/WO2006079152A1/en active Application Filing
- 2005-10-20 EP EP05856179.6A patent/EP1807139B1/en active Active
- 2005-10-20 US US11/664,730 patent/US8603006B2/en active Active
- 2005-10-20 CN CN201110442894.6A patent/CN102512736B/en not_active Expired - Fee Related
-
2011
- 2011-09-28 JP JP2011212389A patent/JP5662289B2/en not_active Expired - Fee Related
-
2013
- 2013-11-06 US US14/073,337 patent/US9597013B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107831A (en) | 1989-06-19 | 1992-04-28 | Bear Medical Systems, Inc. | Ventilator control system using sensed inspiratory flow rate |
US6305374B1 (en) | 1989-09-22 | 2001-10-23 | Respironics, Inc. | Breathing gas delivery method and apparatus |
US5551419A (en) * | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US6152129A (en) | 1996-08-14 | 2000-11-28 | Resmed Limited | Determination of leak and respiratory airflow |
US6015388A (en) | 1997-03-17 | 2000-01-18 | Nims, Inc. | Method for analyzing breath waveforms as to their neuromuscular respiratory implications |
US6240920B1 (en) | 1998-04-23 | 2001-06-05 | Siemens Elema Ab | Method for determining a parameter related to spontaneous breathing efforts by a subject, and breathing-assist apparatus operating in accordance with the method |
EP0956877A1 (en) | 1998-04-23 | 1999-11-17 | Siemens-Elema AB | Method for determining at least one parameter and a breathing apparatus |
JP2000000307A (en) | 1998-04-23 | 2000-01-07 | Siemens Elema Ab | Method for detecting at least one parameter and respirator |
US6588422B1 (en) | 1999-01-15 | 2003-07-08 | Resmed Ltd. | Method and apparatus to counterbalance intrinsic positive end expiratory pressure |
US6162183A (en) * | 1999-02-02 | 2000-12-19 | J&J Engineering | Respiration feedback monitor system |
US6758216B1 (en) | 1999-09-15 | 2004-07-06 | Resmed Limited | Ventilatory assistance using an external effort sensor |
US6626175B2 (en) | 2000-10-06 | 2003-09-30 | Respironics, Inc. | Medical ventilator triggering and cycling method and mechanism |
WO2004002561A2 (en) | 2002-06-27 | 2004-01-08 | Yrt Limited | Method and device for monitoring and improving patient-ventilator interaction |
US20040050387A1 (en) | 2002-06-27 | 2004-03-18 | Magdy Younes | Method and device for monitoring and improving patient-ventilator interaction |
WO2004080516A1 (en) | 2003-03-14 | 2004-09-23 | Yrt Limited | Improved synchrony between end of ventilator cycles and end of patient efforts during assisted ventilation |
US20060278223A1 (en) * | 2003-03-14 | 2006-12-14 | Magdy Younes | Synchrony between end of ventilator cycles and end of a patient efforts during assisted ventilation |
US20050119586A1 (en) * | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
US20080110461A1 (en) | 2004-10-20 | 2008-05-15 | Resmed Limited | Method and Apparatus For Detecting Ineffective Inspiratory Efforts and Improving Patient-Ventilator Interaction |
Non-Patent Citations (14)
Title |
---|
Birch et al. "An Analogue Instrument for the Measurement of Respiratory Impedance Using the Forced Oscillation Technique" Phys. Meas. 22:323-339, 2001. |
Hetzel et al, Asthma, 1992, Occas Pap R Coll Gen Pract, 58: Abstract. * |
Imanaka et al, Autotriggering caused by cardiogenic oscillation during flow-triggered mechanical ventilation, 2000, Crit Care Med, 28(2): Abstract. * |
International Search Report for PCT/AU2005/001627 mailed Dec. 15, 2005. |
Japanese Office Action Mailed Feb. 8, 2011 for corresponding JP Appln. No. 2007-537070 and English translation, 13 pages. |
Notice of Reasons for Rejection, Chinese Patent Application No. 2011-212389, four pages, mailed Jan. 7, 2014. |
Paydarfar et al, Respiratory phase resetting and airflow changes induced by swallowing in humans, 1995, Journal of Physiology, 483(1): 273-288. * |
Schuessler et al, An adaptive filter for the reduction of cardiogenic oscillations on esophageal pressure signals, 1995, Engineering in Medicine and Biology Society, 2: Abstract. * |
Schuessler et al. "An Adaptive Filter to Reduce Cardiogenic Oscillations on Esophageal Pressure Signals" Ann. of Biomed. Eng. 26:260-267, 1998. |
Stagmaier-Stracca et al. "Cough Detection Using Fuzzy Classification" SAC 1995 Proceedings for the 1995 ACM Symposium on Applied Computing. Association for Computing Machinery, New York, NY, pp. 440-444, 1995. |
Suarez et al, Peak flow and peak cough flow in the evaluation of expiratory muscle weakness and bulbar impairment in patients with neuromuscular disease, 2002, Am J Phys Med Rehabil, 81(7): 506-11. * |
Supplementary European Search Report for corresponding European Application No. 05856179, mailed May 25, 2010, 6 pages. |
Tobin et al. "Patient-Ventilator Interaction", Am. J. of Resp. and Critical Care Med., 163:1059-1063, 2001. |
Varon et al., Prevalence of patient ventilator asynchrony in critically ill patients [abstract], Chest. 106:141S, 1994. |
Also Published As
Publication number | Publication date |
---|---|
US20140066725A1 (en) | 2014-03-06 |
JP5662289B2 (en) | 2015-01-28 |
US8603006B2 (en) | 2013-12-10 |
JP2008516702A (en) | 2008-05-22 |
EP1807139B1 (en) | 2019-11-27 |
CN102512736B (en) | 2015-09-02 |
JP2012005882A (en) | 2012-01-12 |
JP4960246B2 (en) | 2012-06-27 |
WO2006079152A1 (en) | 2006-08-03 |
EP1807139A4 (en) | 2010-06-23 |
US20080110461A1 (en) | 2008-05-15 |
CN102512736A (en) | 2012-06-27 |
CN101043913A (en) | 2007-09-26 |
EP1807139A1 (en) | 2007-07-18 |
CN101043913B (en) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9597013B2 (en) | Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction | |
Aittokallio et al. | Analysis of inspiratory flow shapes in patients with partial upper-airway obstruction during sleep | |
US6920877B2 (en) | Auto CPAP system profile information | |
US6532957B2 (en) | Assisted ventilation to match patient respiratory need | |
US8360060B2 (en) | Distinguishing between closed and open airway apneas and treating patients accordingly | |
AU2010217315B2 (en) | Automatic pressure titration | |
US8573207B2 (en) | Method and system to detect respiratory asynchrony | |
Smith et al. | A laboratory comparison of four positive pressure ventilators used in the home | |
CN115942967A (en) | System for adaptive cough detection and adaptive mechanical insufflation-exsufflation (MI E) therapy | |
Correia et al. | Noninvasive Ventilation in Upper Airways: Pressure, Airflow, and Volume Waveform Monitoring | |
CA2123608C (en) | Auto cpap system | |
Navajas Navarro et al. | Forced oscillation assessment of respiratory mechanics in ventilated patients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: RESMED PTY LTD, AUSTRALIA Free format text: CHANGE OF NAME;ASSIGNOR:RESMED LIMITED;REEL/FRAME:050005/0461 Effective date: 20190301 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |