US9334447B2 - Flushing system for use in delayed coking systems - Google Patents
Flushing system for use in delayed coking systems Download PDFInfo
- Publication number
- US9334447B2 US9334447B2 US13/656,535 US201213656535A US9334447B2 US 9334447 B2 US9334447 B2 US 9334447B2 US 201213656535 A US201213656535 A US 201213656535A US 9334447 B2 US9334447 B2 US 9334447B2
- Authority
- US
- United States
- Prior art keywords
- valve
- water
- header
- steam
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000011010 flushing procedure Methods 0.000 title claims abstract description 62
- 238000004939 coking Methods 0.000 title claims description 27
- 230000003111 delayed effect Effects 0.000 title claims description 13
- 210000003660 reticulum Anatomy 0.000 claims abstract description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000000571 coke Substances 0.000 claims description 103
- 239000012530 fluid Substances 0.000 claims 3
- 239000008400 supply water Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 41
- 239000007788 liquid Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000005235 decoking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004227 thermal cracking Methods 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B43/00—Preventing or removing incrustations
- C10B43/02—Removing incrustations
- C10B43/08—Removing incrustations with liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B25/00—Doors or closures for coke ovens
- C10B25/02—Doors; Door frames
- C10B25/08—Closing and opening the doors
- C10B25/10—Closing and opening the doors for ovens with vertical chambers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B25/00—Doors or closures for coke ovens
- C10B25/20—Lids or closures for charging holes
- C10B25/22—Lids or closures for charging holes for ovens with vertical chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/02—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/02—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
- F16K3/0209—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor the valve having a particular passage, e.g. provided with a filter, throttle or safety device
Definitions
- Coke drums are usually in operation in pairs so that when one coke drum is being filled with the byproduct or residual material, the feed may be directed to an empty drum so that the filled drum may be cooled and the byproduct purged from the coke drum, a process known as decoking. This allows the refinery process to operate in a continuous manner, without undue interruption.
- the cooling water introduced into the hot drums prior to the removal of the bottom head becomes extremely hot and could leak from the loosened head and scald surrounding operators, the load of un-drained water and loose coke within the drum may exceed the limits of the support system and cause heavy equipment to fall, positioning the chute and necessary removal of the flanges or heads is done with operators who are in close proximity to the drums, potentially falling coke may injure workers as the heads are removed, and operating personnel may be exposed to finely divided coke particles, steam, hot water and noxious gases, when the drum is opened. Indeed several fatalities occur each year as a result of this manufacturing process. Once the coke is removed, the heads are replaced and the coke drum is prepared to repeat the cycle.
- the present invention provides a flushing system for use in flushing and draining the valve body of a de-header valve.
- the flushing system can also be applied to similar valves that are used for purposes other than de-heading a coke drum.
- the flushing system can be included within newly installed de-header valves, or may be added to existing de-header installations.
- the flushing system allows the valve body to be flushed while the de-header valve is being opened thereby removing any material that enters the valve body.
- a flushable de-header valve for a coke drum comprises a main body portion configured to attach to a coke drum; an upper bonnet configured to attach to the main body portion, the upper bonnet including a cavity; a lower bonnet configured to attach to the main body portion opposite the upper bonnet, the lower bonnet including a cavity; and a flushing system for flushing undesirable material that enters the cavities of the upper and lower bonnets while the de-header valve is being opened.
- the flushing system comprises a steam valve for controlling the flow of steam into the interior of the upper and lower bonnets; a water valve for controlling the flow of water into the interior of the upper and lower bonnets; a drain valve for controlling the flow of water from the interior of the upper and lower bonnets; and a processing device for controlling the position of the steam, water, and drain valves.
- FIG. 1 illustrates an exemplary coke drum with a top and bottom de-header valve on which the flushing system of the present invention could be used;
- FIGS. 2A-2B illustrate an exemplary de-header valve on which the flushing system of the present invention could be used
- FIG. 3 illustrates a flowchart of a flushing process for a de-header valve
- FIG. 4 illustrates an exemplary de-header valve having a flushing system
- FIG. 5 illustrates an exemplary schematic of a de-header valve having a flushing system.
- the present invention provides a flushing system for use in flushing and draining the valve body of a de-header valve.
- the flushing system can also be applied to similar valves that are used for purposes other than de-heading a coke drum.
- the flushing system can be included within newly installed de-header valves, or may be added to existing de-header installations.
- the flushing system allows the valve body to be flushed while the de-header valve is being opened thereby removing any material that enters the valve body.
- a flushable de-header valve for a coke drum comprises a main body portion configured to attach to a coke drum; an upper bonnet configured to attach to the main body portion, the upper bonnet including a cavity; a lower bonnet configured to attach to the main body portion opposite the upper bonnet, the lower bonnet including a cavity; and a flushing system for flushing undesirable material that enters the cavities of the upper and lower bonnets while the de-header valve is being opened.
- the flushing system comprises a steam valve for controlling the flow of steam into the interior of the upper and lower bonnets; a water valve for controlling the flow of water into the interior of the upper and lower bonnets; a drain valve for controlling the flow of water from the interior of the upper and lower bonnets; and a processing device for controlling the position of the steam, water, and drain valves.
- coke drums In the typical delayed coking process, high boiling petroleum residues are fed to one or more coke drums where they are thermally cracked into light products and a solid residue-petroleum coke.
- the coke drums are typically large cylindrical vessels having a top head and a conical bottom portion fitted with a bottom head.
- the fundamental goal of coking is the thermal cracking of very high boiling point petroleum residues into lighter fuel fractions.
- Coke is a byproduct of the process. Delayed coking is an endothermic reaction with a furnace supplying the necessary heat to complete the coking reaction in a drum.
- the process is extremely temperature-sensitive with the varying temperatures producing varying types of coke. For example, if the temperature is too low, the coking reaction does not proceed far enough and pitch or soft coke formation occurs. If the temperature is too high, the coke formed generally is very hard and difficult to remove from the drum with hydraulic decoking equipment. Higher temperatures also increase the risk of coking in the furnace tubes or the transfer line.
- delayed coking is a thermal cracking process used in petroleum refineries to upgrade and convert petroleum residuum (or resid) into liquid and gas product streams leaving behind a solid concentrated carbon material, or coke. A fired heater is used in the process to reach thermal cracking temperatures, which range upwards of 1,000° F.
- coking of the feed material is thereby “delayed” until it reaches large coking drums downstream of the heater.
- coke drums there are two coke drums so that when one is being filled, the other may be purged of the manufactured coke.
- These coke drums are large structures that are approximately 25-30 meters in height and from 4 to 9 meters in diameter. They are equipped with a top blind flange closure or orifice that is typically about 1.5 meters in diameter, and a bottom blind flange orifice that is typically about 2 meters in diameter.
- a delayed coker feed originates from the crude oil supplied to the refinery and travels through a series of process members and finally empties into one of the coke drums used to manufacture coke.
- a basic refinery flow diagram is presented as FIG. 1 , with two coke drums shown.
- the delayed coking process is a batch-continuous process, which means that the process is ongoing or continuous as the feed stream coming from the furnace alternates filling between the two or more coke drums.
- one drum is on-line filling up with coke, the other is being stripped, cooled, decoked, and prepared to receive another batch. This is a timely process, with each batch in the batch-continuous process taking approximately 12-20 hours to complete.
- hot oil or resid as it is commonly referred to, from the tube furnace is fed into one of the coke drums in the system.
- the oil is extremely hot and produces hot vapors that condense on the colder walls of the coke drum.
- a large amount of liquid runs down the sides of the drum into a boiling turbulent pool at the bottom.
- the hot resid and the condensing vapors cause the coke drum walls to heat. This naturally in turn, causes the resid to produce less and less of the condensing vapors, which ultimately causes the liquid at the bottom of the coke drum to start to heat up to coking temperatures.
- the decoking process is the process used to remove the coke from the drum upon completion of the coking process. Due to the shape of the coke drum, coke accumulates in the area near and attaches to the heads during the manufacturing process. To decoke the drum, the heads must first be removed. Typically, once full, the drum is vented to atmospheric pressure and the top head (typically a 4 -foot diameter flange) is unbolted and removed to enable placement of a hydraulic coke cutting apparatus.
- the bottom head (typically a 7 -foot-diameter flange) is unbolted and removed. This process is commonly known as “de-heading” and can be a very dangerous procedure because of the size of the flanges, the high temperatures within the drum, potential falling coke, and other reasons as mentioned above.
- the coke is removed from the drum by drilling a pilot hole from top to bottom of the coke bed using high pressure water jets. Following this, the main body of coke left in the coke drum is cut into fragments which fall out the bottom and into a collection bin, such as a bin on a rail cart, etc. The coke is then dewatered, crushed and sent to coke storage or loading facilities.
- the present invention is intended to cover both top and bottom de-heading systems, or rather the de-heading system of the present invention may be applicable and utilized on both the top and bottom openings of a coke drum, the following detailed description and preferred embodiments will be discussed in reference to a bottom de-heading system only.
- a coke drum bottom de-heading system may also be designed and used as a coke drum top de-heading system and the following discussion pertaining to the bottom de-heading system is not meant to be limiting to such.
- the present invention describes a method and system for flushing a de-header valve during the coking process.
- the present invention is especially adapted to be used in the coking process, the following discussion will relate specifically to this manufacturing area. It is foreseeable, however, that the present invention may be adapted to be an integral part of other manufacturing processes producing various elements other than coke, and such processes should thus be considered within the scope of this application.
- FIG. 1 illustrates a coke drum 100 having a top de-header valve 101 and a bottom de-header valve 102 .
- Top and bottom de-header valves 101 , 102 can comprise sliding blind valves as further described below. These valves are closed to form a pressure tight seal during the coking process. After coke has been formed within coke drum 100 , top and bottom de-header valves 101 , 102 can be opened to allow the removal of the coke.
- FIGS. 2A and 2B illustrate an exemplary de-header valve 200 that could be used as either top de-header valve 101 or bottom de-header valve 102 .
- the remainder of the specification will generally relate to a bottom de-header valve used on a coke drum (e.g. bottom de-header valve 102 ).
- bottom de-header valve 102 used on a coke drum
- the described features of the invention could be applied to a de-header valve on the top or bottom of a coke drum, or to another similar type of valve used on a drum.
- De-header valve 200 includes a main body portion comprising flanges 40 and 44 by which the valve can be mounted to a coke drum or other container.
- the main body also includes an opening 46 with FIGS. 2A and 2B showing the valve in the closed and open positions respectively.
- De-header valve 200 also includes upper bonnet 30 having a cavity 32 and lower bonnet 34 having a cavity 36 . Cavities 32 and 36 allow de-header valve 200 to be opened and closed by sliding blind 4 , which includes an opening corresponding to opening 46 , between seats 58 , 60 .
- Upper seat 58 and lower seat 60 can be comprised of a dynamic, live loaded seat and a static seat, with the preferred configuration comprising a dynamic live loaded upper seat 58 , and a static lower seat 60 .
- An alternative embodiment may comprise a dynamic, live loaded lower seat and a static upper seat.
- the static seat is a one piece seat that is securely fastened to de-header valve 200 and is preferably non-adjustable.
- both the upper and lower seats could be dynamic and/or adjustable, or that both the upper and lower seats could be static.
- coke drum 100 is pressurized during the coking process, it is desirable to pressurize cavities 32 and 36 within upper and lower bonnets 30 and 34 to minimize the amount of material that passes from inside the pressurized coke drum 100 to the cavities (e.g. due to any pressure differential).
- the pressurizing of cavities 32 and 36 is often accomplished using a steam pressurizing system (not shown). In short, pressurized steam is injected into cavities 32 and 36 which are sufficiently sealed to allow for pressure build up to approximate the pressure present within coke drum 100 .
- a de-header valve can include a flushing system that may be used to flush this undesirable material that may have entered the bonnets while the coke drum is being opened.
- FIG. 4 illustrates an exemplary embodiment of a de-header valve 400 that includes a flushing system. As shown, water is fed to the upper bonnet 401 and lower bonnet 402 using a pipe 410 .
- Pipe 410 includes a valve 420 for controlling the flow of water into pipe 410 .
- pipe 410 is connected to pipe 411 via pipe 412 .
- Pipe 412 feeds water directly into pipe 411 to assist in flushing pipe 411 of the water and undesirable material that drains from the bonnets.
- pipe 412 assists in flushing the solid debris from pipe 411 .
- the solid debris in the water may settle within pipe 411 rather than being flushed into the pit.
- Pipe 412 allows water to be directly injected into pipe 411 to increase the velocity at which the water exits into the pit thereby facilitating the complete removal of solid debris from pipe 411 .
- Pipe 411 also includes a valve 421 .
- valve 421 can be a three way valve having a closed position for sealing pipe 411 , a first open position for opening pipe 411 to allow pipe 411 to drain into the coke pit, and a second open position for opening pipe 411 to allow steam condensate in pipe 411 to drain into a steam trap.
- de-header valve 400 can include a third valve (labeled 423 in FIG. 5 ) for controlling steam flow into upper bonnet 401 and lower bonnet 402 .
- This steam valve can be used to pressurize the bonnets during the coking process to minimize the difference between the internal pressure within the coke drum and the pressure within the bonnets.
- these three valves can be operated in a specific sequence to successfully flush the bonnets of undesirable material.
- steam valve 423 is opened to pressurize the bonnets.
- steam valve 423 is generally kept open to pressurize the valve, and valve 421 is placed in the second open position to allow steam condensate to flow into the steam trap.
- the flushing process can be commenced just prior to the opening sequence of de-header valve 400 .
- the first step in the flushing process is to shut steam valve 423 thereby allowing the pressure within the bonnets to decline.
- This first step can be performed just prior to opening de-header valve 400 .
- the second step in the flushing process is to open valve 421 to the first open position to allow pipe 411 to drain into the pit.
- this second step can be performed after the pressure within the bonnets has been relieved, but just prior to opening de-header valve 400 .
- the third step in the flushing process is to open valve 420 to allow water to flow into pipe 410 and through the bonnets thereby flushing the bonnets of undesirable material.
- This third step can be performed after it has been confirmed that valve 421 has been opened to the first position.
- Valve 420 can remain open for the necessary duration to ensure that the bonnets are adequately flushed.
- this duration can be the time while the valve is being opened (i.e. when the blind is not fully closed or fully open).
- this duration can be as little as three minutes (if it takes three minutes to open the valve) or up to 45 minutes if the valve is throttled.
- a flow rate of 100-200 gpm through each bonnet can be used during this duration.
- other flow rates and flush durations could also be used.
- valve 420 could be closed and valve 421 returned to the second open position thereby completing the flushing process.
- the flushing process can include further steps to maximize the flushing of the undesirable material.
- the flushing process can include an optional step of opening steam valve 423 after valve 420 has been closed but while valve 421 remains in the first open position.
- the steam pressure that builds once steam valve 423 is opened can help push any remaining water or material from pipe 411 into the pit.
- Each of the three valves 420 , 421 , 423 can be electrically actuated (e.g., via processing device 450 ) and provide feedback regarding their position. In this way, each valve can be operated remotely with the assurance that each valve is in the correct position at each step.
- the flushing system may also include a flow transducer (shown as 440 in FIG. 5 ) to regulate the flow of water through valve 410 to ensure that adequate water flow is provided during the flushing process.
- pipes 410 and 411 can connect to the bonnets at a distance of at least 15 feet from the centerline of the coke drum to which de-header valve 400 is to be attached. By placing the pipes at this distance, the pipes are in a reduced hazard area.
- pipe 410 can have a 2 inch diameter, pipe 411 can have a 3 inch diameter, and pipe 412 can have a 1 ⁇ 2 inch diameter. Of course, other diameters can be used for any of the pipes. Also, in some embodiments, pipe 410 can include a pressure relief valve 430 .
- flushing system has been described with reference to de-header valve 400 , the flushing system could also be used on de-header valves having other configurations, or on other types of valves that include bonnets.
- FIG. 5 illustrates a schematic 500 of a de-header valve having a flushing system.
- the components of the flushing system are labeled with similar numbers as in FIG. 4 .
- FIG. 3 illustrates a flow chart of the steps that are performed during the flushing process as described above.
- the steps of “switching valve 421 to drain to steam trap position” and “close de-header valve” could be reversed from what is shown in FIG. 3 .
- opening the steam valve prior to switching valve 421 to drain to the steam trap is preferred in many implementations because it ensures that any water or debris left in the de-header valve or pipe 411 after valve 420 is closed can be flushed to the pit by the steam buildup.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Coke Industry (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/656,535 US9334447B2 (en) | 2012-10-19 | 2012-10-19 | Flushing system for use in delayed coking systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/656,535 US9334447B2 (en) | 2012-10-19 | 2012-10-19 | Flushing system for use in delayed coking systems |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140110243A1 US20140110243A1 (en) | 2014-04-24 |
US9334447B2 true US9334447B2 (en) | 2016-05-10 |
Family
ID=50484339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/656,535 Active 2034-10-07 US9334447B2 (en) | 2012-10-19 | 2012-10-19 | Flushing system for use in delayed coking systems |
Country Status (1)
Country | Link |
---|---|
US (1) | US9334447B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9816626B1 (en) | 2014-07-15 | 2017-11-14 | Davis & Davis Company | Method and device for adapting an actuator to a valve |
US10829692B2 (en) * | 2017-05-10 | 2020-11-10 | Luoyang Jianguang Special Equipment Co., Ltd | Automatic dehydration, extraction and transportation apparatus for petroleum coke |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358343A (en) * | 1979-07-20 | 1982-11-09 | Hartung, Kuhn & Co. Maschinenfabrik Gmbh | Method for quenching coke |
US4970969A (en) * | 1990-03-21 | 1990-11-20 | Armature Coil Equipment, Inc. | Smokeless pyrolysis furnace with micro-ramped temperature controlled by water-spray |
US6660131B2 (en) * | 2001-03-12 | 2003-12-09 | Curtiss-Wright Flow Control Corporation | Coke drum bottom de-heading system |
US6964727B2 (en) * | 2001-03-12 | 2005-11-15 | Curtiss-Wright Flow Control Corporation | Coke drum bottom de-heading system |
US7666280B2 (en) * | 2003-09-18 | 2010-02-23 | Z&J Technologies Gmbh | Coking drum |
US7931044B2 (en) * | 2006-03-09 | 2011-04-26 | Curtiss-Wright Flow Control Corporation | Valve body and condensate holding tank flushing systems and methods |
-
2012
- 2012-10-19 US US13/656,535 patent/US9334447B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358343A (en) * | 1979-07-20 | 1982-11-09 | Hartung, Kuhn & Co. Maschinenfabrik Gmbh | Method for quenching coke |
US4970969A (en) * | 1990-03-21 | 1990-11-20 | Armature Coil Equipment, Inc. | Smokeless pyrolysis furnace with micro-ramped temperature controlled by water-spray |
US6660131B2 (en) * | 2001-03-12 | 2003-12-09 | Curtiss-Wright Flow Control Corporation | Coke drum bottom de-heading system |
US6964727B2 (en) * | 2001-03-12 | 2005-11-15 | Curtiss-Wright Flow Control Corporation | Coke drum bottom de-heading system |
US7666280B2 (en) * | 2003-09-18 | 2010-02-23 | Z&J Technologies Gmbh | Coking drum |
US7931044B2 (en) * | 2006-03-09 | 2011-04-26 | Curtiss-Wright Flow Control Corporation | Valve body and condensate holding tank flushing systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20140110243A1 (en) | 2014-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7399384B2 (en) | Coke drum bottom throttling valve and system | |
US8679299B2 (en) | Coke drum bottom de-heading system | |
US6565714B2 (en) | Coke drum bottom de-heading system | |
US6660131B2 (en) | Coke drum bottom de-heading system | |
US20110272617A1 (en) | Seat and Valve Systems for Use in Delayed Coker System | |
US8936701B2 (en) | Coke drum bottom de-heading system | |
US7632381B2 (en) | Systems for providing continuous containment of delayed coker unit operations | |
US9334447B2 (en) | Flushing system for use in delayed coking systems | |
EP1929190B1 (en) | Delayed coker isolation valve systems | |
US7931044B2 (en) | Valve body and condensate holding tank flushing systems and methods | |
RU174495U1 (en) | LIQUID PHASE THERMAL CRACKING REACTOR | |
US10913899B2 (en) | Bottom de-heading device and inlet for coke drum | |
US20240326001A1 (en) | Hydrocracking System, Method For Reducing Pressure And Pressure Reducing Assembly | |
EP4118166B1 (en) | Systems and methods for decoking a coker furnace during a delayed coking process | |
US7357848B2 (en) | Deheader valve installation system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CURTISS-WRIGHT FLOW CONTROL CORPORATION, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAH, RUBEN F.;REEL/FRAME:030460/0402 Effective date: 20130419 |
|
AS | Assignment |
Owner name: DELTAVALVE, LLC, UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CURTISS-WRIGHT FLOW CONTROL CORPORATION;REEL/FRAME:035787/0094 Effective date: 20150528 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SUNTRUST BANK, GEORGIA Free format text: SECURITY INTEREST;ASSIGNORS:CIRCOR INTERNATIONAL, INC.;CIRCOR AEROSPACE, INC.;CIRCOR INSTRUMENTATION TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:042447/0135 Effective date: 20170511 |
|
AS | Assignment |
Owner name: SPENCE ENGINEERING COMPANY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: TAPCOENPRO, LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: CIRCOR INTERNATIONAL, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: CIRCOR INSTRUMENTATION TECHNOLOGIES, INC., SOUTH C Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: CIRCOR AEROSPACE, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: DELTAVALVE, LLC, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK;REEL/FRAME:044826/0784 Effective date: 20171211 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: SECURITY AGREEMENT;ASSIGNORS:CIRCOR AEROSPACE, INC.;CIRCOR INSTRUMENTATION TECHNOLOGIES, INC.;DELTAVALVE, LLC;AND OTHERS;REEL/FRAME:045163/0731 Effective date: 20171211 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TRUIST BANK, GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNORS:CIRCOR INTERNATIONAL, INC.;CIRCOR AEROSPACE, INC.;CIRCOR PRECISION METERING, LLC;AND OTHERS;REEL/FRAME:058552/0318 Effective date: 20211220 Owner name: CIRCOR INTERNATIONAL, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 Owner name: COLFAX FLUID HANDLING RELIABILITY SERVICES COMPANY, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 Owner name: TAPCOENPRO, LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 Owner name: DELTAVALVE, LLC, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 Owner name: CIRCOR INSTRUMENTATION TECHNOLOGIES, INC., SOUTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 Owner name: CIRCOR AEROSPACE, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:058552/0245 Effective date: 20211220 |
|
AS | Assignment |
Owner name: CIRCOR INTERNATIONAL, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: CIRCOR PUMPS NORTH AMERICA, LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: TAPCOENPRO, LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: DELTAVALVE, LLC, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: CIRCOR PRECISION METERING, LL, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: CIRCOR AEROSPACE, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRUIST BANK, AS COLLATERAL AGENT;REEL/FRAME:065300/0645 Effective date: 20231018 Owner name: ARES CAPITAL CORPORATION, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:CIRCOR AEROSPACE, INC.;CIRCOR INTERNATIONAL, INC.;CIRCOR PUMPS NORTH AMERICA, LLC;AND OTHERS;REEL/FRAME:065300/0544 Effective date: 20231018 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |