US9271320B2 - Method for performing communication between devices in a wireless access system, and device for same - Google Patents
Method for performing communication between devices in a wireless access system, and device for same Download PDFInfo
- Publication number
- US9271320B2 US9271320B2 US14/125,541 US201214125541A US9271320B2 US 9271320 B2 US9271320 B2 US 9271320B2 US 201214125541 A US201214125541 A US 201214125541A US 9271320 B2 US9271320 B2 US 9271320B2
- Authority
- US
- United States
- Prior art keywords
- communication
- information
- devices
- transmission
- measurement signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000004891 communication Methods 0.000 title claims abstract description 203
- 230000006854 communication Effects 0.000 title claims abstract description 203
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000005259 measurement Methods 0.000 claims description 62
- 230000008859 change Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 description 126
- 230000004044 response Effects 0.000 description 20
- 230000015654 memory Effects 0.000 description 7
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 6
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013468 resource allocation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 241000760358 Enodes Species 0.000 description 1
- 229920006934 PMI Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H04W76/023—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/005—Discovery of network devices, e.g. terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
Definitions
- the present invention relates to a wireless access system, and more particularly, to a method for performing communication between devices in a wireless access system supporting device-to-device (D2D) communication and a device for the same.
- D2D device-to-device
- a UE in a cell accesses a base station (BS) to receive control information for transmitting/receiving data to/from the BS and then transmits/receives the data to perform communication. That is, since the UE transmits/receives data through the BS, the UE transmits data thereof to the BS in order to transmit the data to another cellular UE such that the BS delivers the data received from the UE to the other UE. Since the UE can transmit data to another UE only through the BS in this manner, the BS schedules channels and resources for data transmission and reception and transmits channel and resource scheduling information to each UE.
- BS base station
- each UE To perform communication between UEs through the BS, each UE requires channel and resource allocation for data transmission/reception to/from the BS.
- D2D communication directly transmits/receives a signal to/from a UE that wants to transmit data without a BS or a relay.
- An object of the present invention devised to solve the problem lies in a method for performing communication between devices in a wireless access system, preferably a wireless access system supporting D2D communication and a device for the same.
- Another object of the present invention is to provide a method for efficiently searching for or selecting a device for performing D2D communication and a device for the same.
- the object of the present invention can be achieved by providing a method for performing communication between devices in a wireless access system supporting device-to-device communication (D2D), the method including: a first device transmitting, to a base station (BS), information indicating whether or not the first device supports D2D communication; the first device receiving, from the BS, group information on grouping of devices supporting D2D communication using mobility information and position information on the devices; the first device selecting a second device attempting to perform D2D communication using the group information; and the first device performing D2D communication with the selected second device.
- D2D device-to-device communication
- a device for performing communication between devices in a wireless access system supporting D2D including: a radio frequency (RF) unit for transmitting/receiving a radio signal; and a processor configured to transmit, to a BS, information indicating whether or not the device supports D2D communication, to receive, from the BS, group information on grouping of devices supporting D2D communication using mobility information and position information on the devices, to select a second device attempting to perform D2D communication using the group information and to perform D2D communication with the selected second device.
- RF radio frequency
- the first device may transmit the indication information during a network access process.
- the first device may transmit the indication information before mode change to an idle mode or a sleep mode.
- the first device may transmit an Internet protocol (IP) addresses allocated thereto along with the indication information.
- IP Internet protocol
- the first device may transmit, to the second device, a measurement signal for measuring a channel state between the first device and the second device, receive, from the second device, channel state information obtained by measuring the channel state using the measurement signal and determine whether to perform D2D communication with the second device on the basis of the channel state information.
- the first device may retransmit the measurement signal to the second device when the first device does not receive the channel state information from the second device within a predetermined time or receives a message requesting retransmission of the measurement signal from the second device.
- the first device may reselect a device attempting to perform D2D communication using the group information when the first device repeats retransmission of the measurement signal a predetermined number of times or more.
- the first device may transmit a message requesting update of the group information to the BS when the first device repeats retransmission of the measurement signal a predetermined number of times or more.
- FIG. 1 illustrates a method of signaling, to a BS, whether or not a device supports D2D communication according to an embodiment of the present invention
- FIG. 2 illustrates a method of signaling, to a BS, whether or not a device supports D2D communication according to an embodiment of the present invention
- FIG. 3 illustrates allocation of an IP address to a device according to an embodiment of the present invention
- FIG. 4 illustrates a method for performing D2D communication according to an embodiment of the present invention
- FIG. 5 illustrates a method for performing D2D communication according to an embodiment of the present invention
- FIG. 6 illustrates a method for performing D2D communication according to an embodiment of the present invention
- FIG. 7 illustrates a method for performing D2D communication according to an embodiment of the present invention
- FIG. 8 illustrates a method for performing D2D communication according to an embodiment of the present invention
- FIG. 9 illustrates a method for performing D2D communication according to an embodiment of the present invention.
- FIG. 10 is a block diagram of a wireless communication device according to an embodiment of the present invention.
- the BS is a terminal node of a network, which communicates directly with a UE.
- a specific operation described as performed by the BS may be performed by an upper node of the BS. Namely, it is apparent that, in a network comprised of a plurality of network nodes including a BS, various operations performed for communication with a UE may be performed by the BS, or network nodes other than the BS.
- BS may be replaced with the term ‘fixed station’, ‘Node B’, ‘evolved Node B (eNode B or eNB)’, ‘access point (AP)’, etc.
- UE may be replaced with the term ‘terminal’, ‘mobile station (MS)’, ‘mobile subscriber station (MSS)’, ‘subscriber station (SS)’, etc.
- the embodiments of the present invention can be supported by standard documents disclosed for at least one of wireless access systems, Institute of Electrical and Electronics Engineers (IEEE) 802, 3 rd Generation Partnership Project (3GPP), 3GPP Long Term Evolution (3GPP LTE), LTE-Advanced (LTE-A), and 3GPP2. Steps or parts that are not described to clarify the technical features of the present invention can be supported by those documents. Further, all terms as set forth herein can be explained by the standard documents.
- IEEE Institute of Electrical and Electronics Engineers
- 3GPP 3 rd Generation Partnership Project
- 3GPP LTE 3GPP Long Term Evolution
- LTE-A LTE-Advanced
- 3GPP2 3 rd Generation Partnership Project 2
- Steps or parts that are not described to clarify the technical features of the present invention can be supported by those documents. Further, all terms as set forth herein can be explained by the standard documents.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier-frequency division multiple access
- CDMA may be implemented as a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented as a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented as a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20.
- Evolved-UTRA etc.
- UTRA is a part of Universal Mobile Telecommunication System (UMTS).
- 3GPP LTE is a part of Evolved UMTS (E-UMTS) using E-UTRA.
- 3GPP LTE employs OFDMA for downlink and SC-FDMA for uplink.
- LTE-A is evolved from 3GPP LTE.
- D2D communication refers to a method of performing direct communication between UEs without a BS when a channel state between two or more UEs is good or UEs are closely located.
- D2D communication according to the present invention is distinguished from Bluetooth, infrared communication, etc., which exchanges data between UEs without intervention of a BS, since predetermined control information for D2D communication is provided by the BS although UEs exchange data through direct communication.
- client cooperative communication In client cooperative communication, UE B assisting other UEs receives data that UE A wants to transmit to a BS and transmits the received data to the BS or receives data that the BS wants to transmit to UE A and delivers the received data to UE A.
- unidirectional or bidirectional communication is performed between UEs within a system bandwidth.
- client cooperative communication can be regarded as an example of D2D communication.
- Client cooperative communication is applicable to uplink transmission through cooperation between UEs and also applicable to downlink transmission through cooperation between a BS and a UE, cooperation between BSs or cooperation between antennas of a distributed antenna system (DAS).
- DAS distributed antenna system
- UE A exchanges data and/or control information with the BS through UE B, in general.
- UE A may directly exchange data and/or control information with the BS as necessary. That is, UE A can directly exchange data with the BS in consideration of channel state between the BS and UE A and channel state between UE A and UE B.
- the data and/control information directly exchanged between UE A and the BS may be identical to or different from data and/or control information exchanged between UE A and the BS through UE B.
- a wireless communication system may simultaneously support D2D communication and client cooperative communication or only one thereof
- messages requesting direct communication and client cooperative communication may be identical to or different from each other.
- D2D communication or client cooperative communication can be used interchangeably with D2D communication/M2M (MS-to-MS) communication or P2P (Peer-to-peer) communication.
- D2D communication D2D communication or client cooperative communication is referred to as ‘D2D communication’ in the following description.
- D2D device refers to a UE supporting D2D communication.
- a BS can receive an indicator indicating the type of each device or whether or not D2D communication is supported from each device to check the state of each device.
- T_DD transmission D2D device
- R_DD reception D2D device
- D2D devices or devices supporting D2D transmission can be grouped to perform D2D transmission between D2D devices in the group or perform D2D transmission to a D2D device belonging to a neighboring group.
- FIG. 1 illustrates a method for indicating whether or not a device supports D2D communication to a BS.
- the device when the device is powered on or newly enters a cell, the device performs initial cell search involving synchronization with a BS and receives a downlink channel from the BS (S 101 ) to acquire system information (S 103 ). Then, the device performs initial ranging in such a manner that the device transmits an initial ranging code to the BS (S 105 ) and receives a ranging acknowledgement (RNG-ACK) signal or CDMA allocation signal from the BS as a response to the initial ranging code (S 107 ).
- RNG-ACK ranging acknowledgement
- the device can transmit indication information representing whether or not the device supports D2D communication to the BS after initial ranging during a network access process.
- the device can transmit the indication information representing whether or not the device supports D2D communication to the BS using a ranging request signal RNG_REQ in step S 109 .
- the device can transmit the indication information to the BS using a registration request signal REG_REQ used for system access.
- Whether or not the device supports D2D communication can be indicated using a 1-bit or 2-bit D2D indicator D2D_Com_ind in the ranging request signal or registration request signal. For example, when whether or not the device supports D2D communication is indicated using the 1 -bit D2D indicator D2D_Com_ind, D2D_Com_ind is set to 1 if the device supports D2D communication and set to 0 if not.
- the BS Upon reception of the D2D indicator D2D_Com-ind from the device through the ranging request signal or registration request signal, the BS allocates a D2D communication identifier D2D_CID to the device through a ranging response signal RNG_RSP or a registration response signal REG_RSP when D2D_Com_ind is 1. that is, the device supports D2D communication (S 111 and S 115 ). Upon reception of the D2D communication identifier, the D2D device stores the D2D communication identifier all the time irrespective of transmission mode.
- the D2D communication identifier D2D_CID allocated by the BS to the D2D device may be returned or reallocated by the BS in the following cases.
- the BS can determine whether or not the device supports D2D communication using the signal received from the device and store information about devices supporting D2D communication in the form of a table or bitmap.
- the information (table or bitmap) about the D2D devices, stored by the BS, can be periodically updated.
- the table or bitmap is configured using D2D communication identifiers of the devices and may additionally include station identifiers (STIDs).
- the BS can transmit, to the corresponding D2D device, a temporary station identifier (TSTID) allocated to the D2D device along with the ranging response signal delivered to the D2D device in step S 111 or the registration response signal delivered to the D2D device in step S 115 .
- TSTID temporary station identifier
- the BS may not allocate a new ID, that is, the D2D communication identifier D2D_CID to the D2D device.
- the BS can generate and store a list (in the form of a table or bitmap) of D2D devices using information (TSTIDs, temporary cell-radio network temporary identifiers (TC-RNTIs), STIDs, cell-radio network temporary identifiers (C-RNTIs), media access control addresses (NAC-address), etc.) on D2D devices that have transmitted D2D CID to the BS.
- TSTIDs temporary cell-radio network temporary identifiers
- STIDs cell-radio network temporary identifiers
- C-RNTIs cell-radio network temporary identifiers
- NAC-address media access control addresses
- the BS can update the list using IDs or MAC-addresses allocated to D2D devices.
- the BS uses the identifier or MAC-address allocated to the D2D device in this manner, the BS need not newly assign a D2D communication identifier to the D2D device through the ranging response signal in step S 111 or registration response signal in step S 115 and thus system overhead can be reduced.
- the BS can confirm location information on D2D devices using feedback information or location based signals (LBSs) from the D2D devices during data transmission between the BS and the D2D devices using information on the D2D devices stored in the table or bitmap.
- the feedback information received from the D2D devices can include channel quality information, pathloss information, geometry information, signal-to-interference plus noise ratio (SINR), interference level, modulation and coding scheme (MCS), information regarding multiple input multiple output (MIMO), precoding matrix indicator (PMI), channel gain, etc.
- the BS Upon acquisition of the location information on the D2D devices using the feedback information or LBSs from the D2D devices, the BS group D2D devices in the cell using the location information. A method of grouping D2D devices will be described below in detail.
- the indication information representing whether or not the device in the cell supports D2D communication can indicate whether or not the device supports D2D communication through signaling after the device accesses or links to the BS.
- the D2D device can signal D2D indication to the BS before entering an idle mode or sleep mode (S 203 ).
- the D2D device connected to the network changes from a mode in which the D2D device performs transmission to the BS, that is, a connected mode to the idle mode or sleep mode
- the D2D device can inform the BS that the D2D device can perform D2D communication by indicating the type thereof using a control signal or by transmitting a D2D support indicator D2D_Com_sup_ind indicating whether D2D communication is supported or not to the BS before mode change or end of the connected mode.
- the BS Upon reception of the control signal including the D2D support indicator, the BS allocates the D2D communication identifier D2D CID to the D2D device for D2D communication (S 205 ).
- the BS can transmit a trigger indicator with respect to transmission of the location or positioning information of the D2D device and information on a location or positioning information transmission period along with the D2D communication identifier.
- the BS Upon reception of the location update information from the D2D device, the BS generates and stores a list of D2D devices in the form of a table or bitmap using the received information and D2D communication identifier allocated to the D2D device (S 211 ).
- the BS may not allocate the D2D communication identifier D2D CID to the D2D device that has transmitted the control signal and may generate and store a list (in the form of a table or bitmap) of D2D devices performing D2D communication using information (STIDs, C-RNTIs, MAC-addresses, IP (Internet protocol) addresses, etc.) of the D2D devices. That is, a D2D list is generated using information about devices that have transmitted the D2D support indicator such that D2D devices can perform D2D communication using information included in the list, thereby reducing overhead of signaling to the D2D devices.
- a D2D list is generated using information about devices that have transmitted the D2D support indicator such that D2D devices can perform D2D communication using information included in the list, thereby reducing overhead of signaling to the D2D devices.
- FIG. 3 illustrates allocation of an IP address to a device according to an embodiment of the present invention.
- the BS transmits indication information about the D2D devices to a higher layer (gateway or core network).
- the higher layer e.g. dynamic host configuration protocol (DHCP) included in a higher network
- DHCP dynamic host configuration protocol
- the BS delivers the allocated IP addresses to the devices.
- the IP addresses allocated to the devices may be cellular IP addresses or mobile IP addresses in consideration of mobility of the devices.
- the IP addresses are rarely returned or allocated according to device mode since they have a longer lift time than the identifier allocated by the BS, and thus the IP addresses can be allocated to the devices and used for a long time.
- the devices can transmit the allocated IP addresses to the BS when delivering the D2D communication indicator D2D_Com_ind or D2D support indicator D2D_Com_sup_ind in the above-described first and second embodiments.
- the BS Upon reception of the IP addresses along with the D2D communication indicator or D2D support indicator from the devices, the BS can generate a list (in the form of a table or bitmap) of D2D devices based on the received IP addresses and store the list. In addition, the BS can transmit the generated list for D2D communication to the devices through unicast or multicast signaling.
- the list of IP addresses of D2D devices, generated by the BS, can be shared with other BSs through a backbone or X2 interface.
- D2D devices and a BS can perform D2D communication using one of the following methods or a combination of two or more methods.
- FIG. 4 illustrates a method for performing D2D communication according to an embodiment of the present invention.
- the BS which has stored the list of information on D2D devices through the above-described methods according to the first, second and third embodiments, generates D2D groups using the information on the D2D devices (S 401 ).
- the BS can use mobility information and location information transmitted from the D2D devices.
- the BS can detect the positions of the D2D devices using feedback information from the D2D devices, for example, channel quality, power, pathlosses, geometry information, SINRs, interference levels, MCSs, MIMO information, PMIs, channel gains, etc. during data transmission between the BS and the D2D devices.
- the BS can detect the locations of the D2D devices using LBS information.
- the mobility information transmitted from the D2D devices can be classified according to a predetermined ratio (e.g. slot, medium, fast) and may include moving speed information of the D2D devices.
- the BS can determine D2D device grouping according to mobility and pathloss levels of the D2D devices.
- the pathloss levels for D2D device grouping can be determined by classifying pathlosses of the D2D devices according to a predetermined ratio or through quantization of each pathloss.
- the predetermined ratio or a quantization level with respect to pathlosses for grouping can be a fixed value or variable value.
- the BS can perform more definite grouping using position information transmitted along with the above-described information from the devices. For example, when grouping is performed only using pathlosses, devices having pathlosses may be located opposite to each other or spaced apart from each other on the basis of the BS. In this case, the devices may have difficulty performing D2D communication due to transmit power, interference, etc. caused by the distance therebetween even though the devices belong to the same group. To overcome this problem, the BS can group D2D devices, which are primarily classified through pathlosses using the location or positioning information thereof, using geometry information. That is, devices may belong to different groups according to positions thereof even if the devices have similar pathlosses. According to the above-described method, D2D communication reliability of D2D devices in the same group can be improved.
- a maximum group size can be predetermined such that the size of each group does not exceed the predetermined maximum size.
- the D2D devices can be grouped into multiple groups.
- the information on D2D groups can be included in the D2D communication identifier D2D CID transmitted to the D2D devices in step S 111 , S 115 or S 205 .
- the D2D communication identifier can be set by allocating a D2D group identifier to the first symbol of two hexadecimal symbols and allocating a D2D device identifier in the D2D group to the second symbol in such that manner that 0-th D2D group is allocated to 00 to 0F and first D2D group is allocated to 10 to 1F.
- D2D group information may not include information indicating the D2D group identifier in step S 403 .
- the BS Upon generation of the D2D groups, the BS transmits the D2D group information D2D_Group_info to D2D devices in the cells (S 403 ).
- the D2D group information can be transmitted to each D2D device as a broadcast, multicast or unicast signal.
- the D2D group information transmitted from the BS includes the following information.
- the BS can transmit information on a group to which a corresponding D2D device belongs to the D2D device and also transmit information Neighbor_group_info on a neighboring group of the D2D device to the D2D device.
- the information on the neighbor group can be configured similarly to the D2D group information.
- the D2D group information may be transmitted to each D2D device by the BS through the unicast signal after the BS receives a D2D communication triggering signal, indication signal or request signal from the corresponding D2D device.
- the D2D device (device 1 ) that has received the D2D group information from the BS can be aware of the information on the D2D devices in the cell and information on neighboring D2D devices.
- the transmission device (device 1 ) that attempts to perform D2D communication selects a reception device (device 2 ) using this information (S 405 ) and transmits a D2D transmission request message to the BS (S 407 ).
- the D2D device in the cell can be aware of the information on the D2D group corresponding thereto using the received D2D group information and discover information on D2D devices belonging to another group or a neighboring group without additional signal transmission/reception between D2D devices.
- the D2D transmission request message transmitted from the transmission D2D device (Tx D2D device, device 1 ) to the BS includes the following information.
- the group identifier indicates the transmission D2D device when the transmission D2D device and the reception D2D device belong to different groups and can be set to null or zero when both belong to the same group.
- D2D_CID Device identifier
- D2D_CID D2D communication identifier
- the BS Upon reception of the D2D transmission request message from the D2D device, the BS delivers a D2D transmission response message to the transmission D2D device (device 1 ) that has transmitted the D2D transmission request message and the reception D2D device (device 2 ) to which D2D transmission will be performed (S 409 ).
- the D2D transmission response message transmitted from the BS to the transmission D2D device (device 1 ) and the reception D2D device (device 2 ) includes the following information.
- the resource allocation information represents information on subframes or resource blocks allocated for D2D transmission between the transmission D2D device (device 1 ) and the reception D2D device (device 2 ).
- D2D_CID D2D communication identifiers
- the threshold represents information that can be a reference point for change to a D2D transmission mode and can include SINR, channel quality information (CQI), interference level, channel quality, etc.
- the transmission D2D device Upon reception of the D2D transmission response message, the transmission D2D device (device 1 ) transmits a channel measurement signal to the reception D2D device (device 2 ) using resources allocated thereto by the BS to measure a channel state between the transmission D2D device and the reception D2D device (S 411 ).
- a pilot signal a sounding reference signal (SRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DM-RS) or a pseudo random sequence can be used as the channel measurement signal.
- the reception D2D device Upon reception of the D2D transmission response message from the BS in step S 409 , the reception D2D device (device 2 ) monitors resources allocated thereto by the BS in order to receive the channel measurement signal transmitted from the transmission D2D device (device 1 ). The reception D2D device measures the channel state between the two devices using the channel measurement signal upon reception of the channel measurement signal from the transmission D2D device (device 1 ) through monitoring of the allocated resources (S 413 ).
- the reception D2D device (device 2 ) can set a power level for the link between the two devices through the power of the channel measurement signal received from the transmission D2D device (device 1 ) using the transmit power control information on the signal transmitted from the transmission D2D device (device 1 ), which is received from the BS in step S 409 . That is, a minimum transmit power value satisfying the receive power of the reception D2D device (device 2 ) can be set for D2D communication between the two devices (device 1 and device 2 ).
- the reception D2D device Upon measurement of the channel state between the transmission D2D device (device 1 ) and the reception D2D device (device 2 ), the reception D2D device transmits channel state measurement information (e.g. SINR, CQI, CSI, interference level, etc.) and power information to the transmission D2D device (device 1 ) (s 415 ).
- the power information can correspond to information on the power of the channel measurement signal received from the transmission D2D device (device 1 ) in step S 411 or the minimum transmit power value set by the reception D2D device (device 2 ) in step S 413 .
- the transmission D2D device (device 1 ) Upon reception of the channel state measurement information and power information from the reception D2D device (device 2 ), the transmission D2D device (device 1 ) can detect the channel state between the two devices and control transmit power for D2D transmission. The transmission D2D device (device 1 ) transmits D2D data to the reception D2D device (device 2 ) using the information included in the D2D transmission response message received from the BS in step S 409 .
- D2D transmission between the transmission D2D device (device 1 ) and the reception D2D device (device 2 ) can be initiated by determining whether or not the current mode is changed to the D2D communication mode by the reception D2D device (device 2 ).
- FIG. 5 illustrates a method for performing D2D communication according to an embodiment of the present invention. Steps S 501 to S 513 correspond to steps S 401 to S 413 illustrated in FIG. 4 and thus description thereof is omitted.
- the reception D2D device (device 2 ) determines whether or not to perform D2D communication by comparing the channel state measurement information (e.g. SINR, CQI, CSI, interference level, etc.) with the threshold for determining D2D communication, received from the BS in step S 509 (S 515 ).
- the channel state measurement information e.g. SINR, CQI, CSI, interference level, etc.
- the reception D2D device compares the SINR as the channel state measurement information with the threshold
- the reception D2D device performs D2D communication if the SINR exceeds the threshold and does not perform D2D communication if the SINR is lower than the threshold.
- the reception D2D device (device 2 ) determines that D2D communication is performed in step S 515 , the reception D2D device (device 2 ) transmits the channel state measurement information (e.g. SINR, CQI, CSI, interference level, etc.) and power information to the transmission D2D device (device 1 ) (S 517 ).
- the reception D2D device (device 2 ) can add D2D transmission acknowledgement (initiation indicator) information to the channel state measurement information and power information and transmit the same to explicitly signal determination of D2D communication to the transmission D2D device (device 1 ).
- the reception D2D device (device 2 ) may implicitly signal determination of D2D communication to the transmission D2D device (device 1 ) by transmitting the channel state information and power information.
- the reception D2D device (device 2 ) transmits the D2D transmission acknowledgement (initiation indicator) information along with the channel state measurement information and power information.
- the power information can correspond to information on the power of the channel measurement signal received from the transmission D2D device (device 1 ) in step S 511 or the minimum transmit power value set by the reception D2D device (device 2 ) in step S 513 .
- the reception D2D device (device 2 ) determines that D2D communication is not performed in step S 515 , the reception D2D device (device 2 ) can transmit a message (e.g. NACK message) including information representing that D2D communication is not performed to the transmission D2D device (device 1 ).
- a message e.g. NACK message
- the transmission D2D device Upon reception of the channel state measurement information, power information and D2D transmission acknowledgement (initiation indicator) information from the reception D2D device (device 2 ), the transmission D2D device (device 1 ) transmits D2D data to the reception D2D device (device 2 ) using the information included in the D2D transmission response message received from the BS in step S 509 (step S 519 ).
- D2D transmission between the transmission D2D device (device 1 ) and the reception D2D device (device 2 ) can be initiated by determining whether or not the current mode is changed to the D2D communication mode by the transmission D2D device (device 1 ).
- FIG. 6 illustrates a method for performing D2D communication according to an embodiment of the present invention. Steps S 601 to S 615 correspond to steps S 401 to S 415 illustrated in FIG. 4 and thus description thereof is omitted.
- the transmission D2D device (device 1 ) determines whether or not to perform D2D communication by comparing the received information with the threshold for determining D2D communication, received from the BS in step S 609 (S 617 ).
- the transmission D2D device (device 1 ) compares the SINR as the channel state measurement information with the threshold, the transmission D2D device (device 1 ) performs D2D communication if the SINR exceeds the threshold and may not perform D2D communication if the SINR is lower than the threshold.
- the transmission D2D device (device 1 ) determines that D2D communication is performed in step S 617 , the transmission D2D device (device 1 ) transmits a message indicating D2D communication to the reception D2D device (device 2 ) (S 619 ).
- the D2D communication indication message can include D2D communication initiation information, transmit power, time offset information, etc.
- the transmission D2D device (device 1 ) determines that D2D communication is not performed in step S 617 , the transmission D2D device (device 1 ) can transmit a message (e.g. NACK message) including information representing that D2D communication is not performed to the reception D2D device (device 2 ).
- a message e.g. NACK message
- the transmission D2D device Upon transmission of the D2D communication indication message, the transmission D2D device (device 1 ) transmits D2D data to the reception D2D device (device 2 ) using the information included in the D2D transmission response message received from the BS in step S 409 (S 621 ).
- the transmission D2D device (device 1 ) may not initiate D2D communication with the reception D2D device (device 2 ). In this case, the transmission D2D device (device 1 ) can initiate D2D communication with another D2D device.
- FIG. 7 illustrates a method for performing D2D communication according to an embodiment of the present invention. Steps S 701 to S 709 correspond to steps S 401 to S 409 illustrated in FIG. 4 and thus description thereof is omitted.
- the transmission D2D device (device 1 ) which has received the D2D transmission response message, transmits the channel measurement signal to the reception D2D device (device 2 ) using the resources allocated thereto by the BS in order to measure the channel state between the two devices (S 711 ).
- the transmission D2D device (device 1 ) does not receive a response signal to the channel measurement signal from the reception D2D device (device 2 )
- the transmission D2D device (device 1 ) retransmits the channel measurement signal to the reception D2D device (device 2 ).
- the transmission D2D device (device 1 ) retransmits the channel measurement signal for link measurement to the reception D2D device (device 2 ) when the transmission D2D device (device 1 ) does not receive a response signal including the channel state measurement information (e.g. SINR, CQI, CSI, interference level, etc.) or power information from the reception D2D device (device 2 ) for a predetermined time.
- the channel state measurement information e.g. SINR, CQI, CSI, interference level, etc.
- the number (e.g. 2 or 3) of retransmissions of the channel measurement signal of the transmission D2D device (device 1 ) can be predetermined In this case, the transmission D2D device (device 1 ) retransmits the channel measurement signal by the predetermined number of retransmissions.
- the transmission D2D device (device 1 ) If the transmission D2D device (device 1 ) does not receive a feedback signal or the channel state measurement information from the reception D2D device even through retransmission or does not receive the feedback signal or channel state measurement information from the reception D2D device until a predetermined timer expires, the transmission D2D device (device 1 ) reselects another reception D2D device with which D2D communication will be performed using the D2D group information received in step S 703 and transmits the D2D transmission request message to the BS (S 715 ). Then, the steps following S 709 are repeated.
- the transmission D2D device (device 1 ) can initiate D2D communication with another D2D device.
- FIG. 8 illustrates a method for performing D2D communication according to an embodiment of the present invention. Steps S 801 to S 809 correspond to steps S 401 to S 409 illustrated in FIG. 4 and thus description thereof is omitted.
- the reception D2D device upon reception of the D2D transmission response message from the BS, the reception D2D device (device 2 ) monitors resources allocated thereto by the BS in order to receive the channel measurement signal transmitted from the transmission D2D device (device 1 ).
- the reception D2D device transmits a message (or NACK signal) requesting/indicating retransmission of the channel measurement signal to the transmission D2D device (device 1 ) (S 811 ).
- the reception D2D device (device 2 ) can deliver transmit power boosting information along with the retransmission request message to the transmission D2D device (device 1 ) since the reception D2D device (device 2 ) can be aware of the transmit power of the transmission D2D device (device 1 ) through the D2D transmission response message received from the BS in step S 809 .
- the transmission D2D device (device 1 ) Upon reception of the retransmission request message (or NACK signal) from the reception D2D device (device 2 ), the transmission D2D device (device 1 ) retransmits the channel measurement signal to the reception D2D device (device 2 ) using the received power boosting information. If the reception D2D device (device 2 ) cannot receive the channel measurement signal even through this procedure, the transmission D2D device (device 1 ) performs a predetermined number of retransmissions of the channel measurement signal. The number of retransmissions of the channel measurement signal of the transmission D2D device (device 1 ) can be predetermined.
- the transmission D2D device (device 1 ) retransmits the channel measurement signal by the predetermined number of retransmissions.
- the transmission D2D device (device 1 ) receives the retransmission request message (or NACK signal) from the reception D2D device (device 2 ) even upon the predetermined number of retransmissions, the transmission D2D device (device 1 ) transmits a message (or D2D group update request message) requesting the D2D group information to the BS (S 813 ).
- the transmission D2D device (device 1 ) can explicitly inform the BS that D2D communication with the reception D2D device (device 2 ) has failed by transmitting a D2D failure message to the BS.
- the transmission D2D device (device 1 ) may implicitly inform the BS that D2D communication has failed by transmitting the D2D group information request message to the BS.
- FIG. 8 it is assumed that the transmission D2D device (device 1 ) transmits only the D2D group information request message to the BS.
- the BS Upon reception of the D2D group information request message from the transmission D2D device (device 1 ), the BS updates the list of D2D devices or group information on the D2D devices (S 815 ). That is, the BS can update the list of the D2D devices using indication information representing whether or not D2D communication is supported, received from the D2D devices. In addition, the BS regroups D2D devices using mobility information, geometry information or positioning information of devices supporting D2D communication.
- the BS transmits the updated D2D group information to the transmission D2D device (device 1 ) (S 817 ).
- the BS may retransmit the D2D group information generated in step S 801 .
- step S 815 can be omitted. Subsequently, the steps following S 805 are repeated.
- the transmission D2D device (device 1 ) When the transmission D2D device (device 1 ) receives the retransmission request message (or NACK signal) from the reception D2D device (device 2 ) even upon the predetermined number of retransmissions or transmission of the channel measurement signal for a predetermined time, the transmission D2D device (device 1 ) can re-request the BS to provide a channel or resources through which signals are transmitted/received between the two D2D devices.
- the BS transmits allocation resource information, channel measurement signal (pilot signal or reference signal) information, transmit power information, etc.
- the transmission D2D device (device 1 ) Upon reception of the information from the BS, the transmission D2D device (device 1 ) checks the channel state using the received information and performs D2D communication. When the reception D2D device (device 2 ) does not receive the channel measurement signal transmitted from the transmission D2D device (device 1 ), the reception D2D device can transmit a channel or resource request signal to the BS, as described above, to repeat the steps following S 809 or the steps following S 813 .
- the list of D2D devices or information on D2D device groups can be generated at the request of a D2D device that performs D2D communication or attempts to perform D2D communication.
- FIG. 9 illustrates a method for performing D2D communication according to an embodiment of the present invention.
- the transmission D2D device (device 1 ) that attempts to perform D2D communication transmits a D2D group information request message to the BS in order to initiate D2D communication (S 901 ).
- the BS Upon reception of the D2D group information request message from the transmission D2D device (device 1 ), the BS generates D2D group information about the transmission D2D device (device 1 ) (S 903 ).
- the BS that stores information (device type, whether or not D2D communication is supported, etc.) about D2D devices in the cell can group D2D devices adjacent to the transmission D2D device (device 1 ) or group D2D devices capable of performing D2D communication upon reception of the D2D group information request message from the transmission D2D device (device 1 ). That is, the BS can generate only a group corresponding to a device that transmits a D2D communication request message according to the message rather than generating groups of all D2D devices present in the cell.
- the BS Upon generation of the D2D group information about the transmission D2D device (device 1 ) that has transmitted the D2D group information request message, the BS transmits the D2D group information to the transmission D2D device (device 1 ) (S 905 ).
- Steps S 907 to S 919 correspond to step S 405 to S 417 illustrated in FIG. 4 and thus description thereof is omitted.
- the present embodiment can be combined with the embodiment illustrated in FIG. 8 .
- D2D communication can be determined using the threshold received by the transmission D2D device (device 1 ) or the reception D2D device (device 2 ) from the BS and the transmission D2D device (device 1 ) can initiate D2D communication with another D2D device when the transmission D2D device (device 1 ) does not receive a response message from the reception D2D device (device 2 ) upon a predetermined number of retransmission or for a predetermined time or receives the retransmission request message from the reception D2D device (device 2 ).
- FIG. 10 is a block diagram of a wireless communication system according to an embodiment of the present invention.
- the wireless communication system includes a BS 100 and a plurality of D2D devices 110 located in the coverage of the BS 100 .
- the BS includes a processor 101 , a memory 102 and a radio frequency (RF) unit 102 .
- the processor 101 may be configured to implement the procedures and/or methods proposed by the present invention. Radio interface protocol layers can be implemented by the processor 101 .
- the memory 102 is connected to the processor 101 and stores information related to operations of the processor 101 .
- the RF unit 103 is connected to the processor 101 and transmits and/or receives an RF signal.
- the D2D device 110 includes a processor 111 , a memory 112 and an RF unit 113 .
- the processor 111 may be configured to implement the procedures and/or methods proposed by the present invention. Radio interface protocol layers can be implemented by the processor 111 .
- the memory 112 is connected to the processor 111 and stores information related to operations of the processor 111 .
- the RF unit 113 is connected to the processor 111 and transmits and/or receives an RF signal.
- the memories 102 and 112 may be located inside or outside the processors 101 and 111 and connected to the processors 101 and 111 through known various means.
- the BS 100 and/or D2D device 110 may include a single antenna or multiple antennas.
- the embodiments of the present invention may be achieved by various means, for example, hardware, firmware, software, or a combination thereof
- the methods according to the embodiments of the present invention may be achieved by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, etc.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- processors controllers, microcontrollers, microprocessors, etc.
- the embodiments of the present invention may be implemented in the form of a module, a procedure, a function, etc.
- software code may be stored in a memory unit and executed by a processor.
- the memory unit is located at the interior or exterior of the processor and may transmit and receive data to and from the processor via various known means.
- Data transmission/reception methods in a wireless access system according to the present invention are applicable to 3GPP LTE/LTE-A or IEEE 802 and various other wireless access systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/125,541 US9271320B2 (en) | 2011-06-21 | 2012-06-08 | Method for performing communication between devices in a wireless access system, and device for same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161499667P | 2011-06-21 | 2011-06-21 | |
US14/125,541 US9271320B2 (en) | 2011-06-21 | 2012-06-08 | Method for performing communication between devices in a wireless access system, and device for same |
PCT/KR2012/004528 WO2012177002A2 (ko) | 2011-06-21 | 2012-06-08 | 무선 접속 시스템에서 장치 간 통신 수행 방법 및 이를 위한 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140127991A1 US20140127991A1 (en) | 2014-05-08 |
US9271320B2 true US9271320B2 (en) | 2016-02-23 |
Family
ID=47423050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/125,541 Expired - Fee Related US9271320B2 (en) | 2011-06-21 | 2012-06-08 | Method for performing communication between devices in a wireless access system, and device for same |
Country Status (2)
Country | Link |
---|---|
US (1) | US9271320B2 (ko) |
WO (1) | WO2012177002A2 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160205665A1 (en) * | 2013-08-27 | 2016-07-14 | Kyocera Corporation | Communication control method and user terminal |
US20170118784A1 (en) * | 2014-07-14 | 2017-04-27 | Fujitsu Limited | Wireless communication system |
US10154531B2 (en) * | 2014-04-25 | 2018-12-11 | Huawei Technologies Co., Ltd. | D2D link discovery method |
US20210067280A1 (en) * | 2019-02-15 | 2021-03-04 | At&T Intellectual Property I, L.P. | Configurable hybrid automatic repeat request feedback types for sidelink communication for 5g or other next generation network |
US11271725B2 (en) | 2017-03-16 | 2022-03-08 | Samsung Electronics Co., Ltd. | Electronic device and transaction performing method using same |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101627395B1 (ko) * | 2012-04-16 | 2016-06-03 | 한국전자통신연구원 | 인지 무선 통신을 위한 백업 채널을 관리하는 방법 및 장치 |
EP2866366B1 (en) * | 2012-04-26 | 2021-11-17 | Electronics and Telecommunications Research Institute | Device to device communication method using partial device control |
US9154267B2 (en) * | 2012-07-02 | 2015-10-06 | Intel Corporation | Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication |
JP5922845B2 (ja) * | 2012-07-18 | 2016-05-24 | 京セラ株式会社 | セルラ通信システムにおける装置間通信の干渉管理 |
JP6025995B2 (ja) * | 2012-09-28 | 2016-11-16 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 無線通信システムにおける短距離通信 |
JP6294834B2 (ja) * | 2012-12-28 | 2018-03-14 | 株式会社Nttドコモ | ユーザ装置、基地局、干渉低減方法、及び干渉低減制御情報通知方法 |
WO2014107091A1 (ko) * | 2013-01-07 | 2014-07-10 | 엘지전자 주식회사 | 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치 |
US9125168B2 (en) * | 2013-01-23 | 2015-09-01 | Intel Corporation | Polled time-of-flight response |
US9967727B2 (en) * | 2013-02-22 | 2018-05-08 | Intel IP Corporation | Systems and methods for access network selection and traffic routing |
CN104066112A (zh) * | 2013-03-21 | 2014-09-24 | 中兴通讯股份有限公司 | 一种终端间直接通信的方法及系统 |
KR20140125499A (ko) * | 2013-04-19 | 2014-10-29 | 한국전자통신연구원 | 클라우드 기지국 시스템에서 단말간 직접 통신 방법 및 장치 |
WO2014175149A1 (en) * | 2013-04-24 | 2014-10-30 | Nec Corporation | Method for use in device-to-device communication, wireless communication system, and architecture |
EP2996364B1 (en) * | 2013-05-05 | 2018-04-25 | LG Electronics Inc. | Method and apparatus for proximity service discovery to provide proximity service |
JP2016515788A (ja) * | 2013-05-10 | 2016-05-30 | ゼットティーイー (ユーエスエー) インコーポレイテッド | デバイス・ツー・デバイス通信のための干渉管理方法およびシステム |
KR102020350B1 (ko) * | 2013-07-19 | 2019-09-10 | 삼성전자 주식회사 | 무선이동통신시스템에서 d2d 통신을 지원/사용하는 단말기의 이동성을 지원하는 방안 |
JP5973967B2 (ja) * | 2013-07-19 | 2016-08-23 | 株式会社Nttドコモ | ユーザ装置、基地局、発見信号受信方法、及び発見信号送信方法 |
WO2015018010A1 (zh) * | 2013-08-07 | 2015-02-12 | 上海贝尔股份有限公司 | 在蜂窝网络中实现基于设备到设备的组播通信的方法 |
US9499995B2 (en) | 2013-08-08 | 2016-11-22 | Intel IP Corporation | Coverage extension level for coverage limited device |
US9762306B2 (en) | 2013-08-08 | 2017-09-12 | Intel IP Corporation | Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system |
US9564958B2 (en) | 2013-08-08 | 2017-02-07 | Intel IP Corporation | Power saving mode optimizations and related procedures |
US9681354B2 (en) | 2013-08-08 | 2017-06-13 | Intel IP Corporation | Signaling radio bearer optimizations and other techniques for supporting small data transmissions |
US9326122B2 (en) | 2013-08-08 | 2016-04-26 | Intel IP Corporation | User equipment and method for packet based device-to-device (D2D) discovery in an LTE network |
BR112015033063B1 (pt) * | 2013-08-08 | 2023-10-03 | Apple Inc | Equipamento de usuário, método para operações de descoberta de dispositivo para dispositivo (d2d) com base em pacote e mídia de armazenamento legível por computador não transitória |
US20150089382A1 (en) * | 2013-09-26 | 2015-03-26 | Wu-chi Feng | Application context migration framework and protocol |
US9629191B2 (en) * | 2013-11-12 | 2017-04-18 | Blackberry Limited | Systems and methods for initiating device-to-device communication in wireless networks |
US9661657B2 (en) | 2013-11-27 | 2017-05-23 | Intel Corporation | TCP traffic adaptation in wireless systems |
EP3099126B1 (en) * | 2014-01-26 | 2019-08-21 | LG Electronics Inc. | Resource allocation method and device for device-to-device direct communication in wireless communication system |
CN104812075A (zh) * | 2014-01-27 | 2015-07-29 | 中兴通讯股份有限公司 | 设备发现信号的发送方法、装置及系统 |
EP3107230B1 (en) * | 2014-02-13 | 2020-06-24 | LG Electronics Inc. | Method for transmitting/receiving synchronization signal for d2d communication in wireless communication system, and apparatus therefor |
US9723630B2 (en) * | 2014-03-21 | 2017-08-01 | Samsung Electronics Co., Ltd. | Contention-based resource allocation method and apparatus for low power D2D communication |
EP3139683B1 (en) | 2014-04-29 | 2019-11-20 | LG Electronics Inc. | Method and device by which device-to-device user equipment transmits data in wireless communication system |
US9571441B2 (en) * | 2014-05-19 | 2017-02-14 | Microsoft Technology Licensing, Llc | Peer-based device set actions |
US9609592B2 (en) * | 2014-05-23 | 2017-03-28 | Sony Mobile Communications Inc. | Operating user equipments in a wireless communication network |
WO2015199490A1 (ko) * | 2014-06-27 | 2015-12-30 | 엘지전자 주식회사 | 기기간 통신을 지원하는 무선 접속 시스템에서 효율적인 릴레이 전송 방법 및 장치 |
WO2016089294A1 (en) * | 2014-12-02 | 2016-06-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Wake-up for d2d communication |
CN105872943A (zh) * | 2015-01-23 | 2016-08-17 | 普天信息技术有限公司 | D2d业务通知方法及装置 |
KR102432712B1 (ko) * | 2015-11-30 | 2022-08-16 | 삼성전자주식회사 | 무선 통신 시스템에서 릴레이 링크 설정을 위한 방법 및 장치 |
CN110999499B (zh) * | 2016-02-26 | 2023-08-22 | 苹果公司 | 第五代(5g)新无线(nr)事物网络中的用户设备(ue)和副链路通信方法 |
WO2017146784A1 (en) * | 2016-02-26 | 2017-08-31 | Intel Corporation | Random-access and scheduling-request in new radio-things sidelink |
DE112016007007T5 (de) | 2016-06-22 | 2019-03-07 | Intel Corporation | Kommunikationsvorrichtung und verfahren für vollduplex-disposition |
CN109995443B (zh) * | 2017-12-29 | 2022-03-11 | 华为技术有限公司 | 一种通信方法、装置和系统 |
WO2020142532A1 (en) | 2019-01-02 | 2020-07-09 | Google Llc | Multiple active-coordination-set aggregation for mobility management |
CN113330806B (zh) | 2019-02-21 | 2024-08-23 | 谷歌有限责任公司 | 用于使用非授权频带的无线网络的用户设备协调集合 |
WO2020186097A1 (en) | 2019-03-12 | 2020-09-17 | Google Llc | User-equipment coordination set beam sweeping |
US10893572B2 (en) | 2019-05-22 | 2021-01-12 | Google Llc | User-equipment-coordination set for disengaged mode |
CN112567880B (zh) * | 2019-07-25 | 2024-08-09 | 谷歌有限责任公司 | 用户设备协调集重新分组 |
US11350439B2 (en) | 2019-08-13 | 2022-05-31 | Google Llc | User-equipment-coordination-set control aggregation |
EP4005101B1 (en) | 2019-09-19 | 2023-12-20 | Google LLC | Enhanced beam searching for active coordination sets |
EP3997798B1 (en) | 2019-09-19 | 2024-05-22 | Google LLC | User-equipment-coordination-set selective participation |
US20230397182A1 (en) * | 2022-06-03 | 2023-12-07 | Qualcomm Incorporated | Network coding with user equipment cooperation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070085969A (ko) | 2004-12-09 | 2007-08-27 | 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드 | 통신 단말장치, 제어국 및 멀티캐리어 통신 방법 |
KR20080004572A (ko) | 2005-04-04 | 2008-01-09 | 퀄컴 인코포레이티드 | 애드 혹 위치 기반 멀티캐스트 그룹을 형성하는 시스템 및방법 |
KR20090039573A (ko) | 2007-10-18 | 2009-04-22 | 삼성전자주식회사 | 사용자 협력을 이용한 공간 분할 다중 접속 통신 시스템 및그 방법 |
WO2011028490A2 (en) | 2009-08-24 | 2011-03-10 | Intel Corporation | Device, system and method of power-saving for wireless communication |
KR20110037002A (ko) | 2009-10-05 | 2011-04-13 | 삼성전자주식회사 | 무선 통신 시스템에서 m2m 통신을 수행하는 단말의 지역 기반 접근 제어 방법 |
US20110098043A1 (en) * | 2009-10-23 | 2011-04-28 | Nokia Corporation | Systems, methods, and apparatuses for facilitating device-to-device connection establishment |
US20120178439A1 (en) * | 2011-01-07 | 2012-07-12 | Apple Inc. | Radio resource management in a mobile device |
US20120322484A1 (en) * | 2010-02-11 | 2012-12-20 | Ling Yu | Controlling Communication Devices |
US8977276B2 (en) * | 2010-07-15 | 2015-03-10 | Nokia Corporation | Method and apparatus for device initiated offloading to unlicensed bands |
-
2012
- 2012-06-08 US US14/125,541 patent/US9271320B2/en not_active Expired - Fee Related
- 2012-06-08 WO PCT/KR2012/004528 patent/WO2012177002A2/ko active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070085969A (ko) | 2004-12-09 | 2007-08-27 | 마쓰시다 일렉트릭 인더스트리얼 컴패니 리미티드 | 통신 단말장치, 제어국 및 멀티캐리어 통신 방법 |
KR20080004572A (ko) | 2005-04-04 | 2008-01-09 | 퀄컴 인코포레이티드 | 애드 혹 위치 기반 멀티캐스트 그룹을 형성하는 시스템 및방법 |
KR20090039573A (ko) | 2007-10-18 | 2009-04-22 | 삼성전자주식회사 | 사용자 협력을 이용한 공간 분할 다중 접속 통신 시스템 및그 방법 |
WO2011028490A2 (en) | 2009-08-24 | 2011-03-10 | Intel Corporation | Device, system and method of power-saving for wireless communication |
KR20110037002A (ko) | 2009-10-05 | 2011-04-13 | 삼성전자주식회사 | 무선 통신 시스템에서 m2m 통신을 수행하는 단말의 지역 기반 접근 제어 방법 |
US20110098043A1 (en) * | 2009-10-23 | 2011-04-28 | Nokia Corporation | Systems, methods, and apparatuses for facilitating device-to-device connection establishment |
US20120322484A1 (en) * | 2010-02-11 | 2012-12-20 | Ling Yu | Controlling Communication Devices |
US8977276B2 (en) * | 2010-07-15 | 2015-03-10 | Nokia Corporation | Method and apparatus for device initiated offloading to unlicensed bands |
US20120178439A1 (en) * | 2011-01-07 | 2012-07-12 | Apple Inc. | Radio resource management in a mobile device |
Non-Patent Citations (1)
Title |
---|
PCT International Application No. PCT/KR2012/004528, Written Opinion of the International Searching Authority dated Jan. 3, 2013, 18 pages. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160205665A1 (en) * | 2013-08-27 | 2016-07-14 | Kyocera Corporation | Communication control method and user terminal |
US9538501B2 (en) * | 2013-08-27 | 2017-01-03 | Kyocera Corporation | Communication control method and user terminal |
US10154531B2 (en) * | 2014-04-25 | 2018-12-11 | Huawei Technologies Co., Ltd. | D2D link discovery method |
US20170118784A1 (en) * | 2014-07-14 | 2017-04-27 | Fujitsu Limited | Wireless communication system |
US11271725B2 (en) | 2017-03-16 | 2022-03-08 | Samsung Electronics Co., Ltd. | Electronic device and transaction performing method using same |
US20210067280A1 (en) * | 2019-02-15 | 2021-03-04 | At&T Intellectual Property I, L.P. | Configurable hybrid automatic repeat request feedback types for sidelink communication for 5g or other next generation network |
Also Published As
Publication number | Publication date |
---|---|
WO2012177002A2 (ko) | 2012-12-27 |
WO2012177002A3 (ko) | 2013-04-04 |
US20140127991A1 (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9271320B2 (en) | Method for performing communication between devices in a wireless access system, and device for same | |
US9467930B2 (en) | Method and apparatus for performing device-to-device communication in wireless access system | |
US11310783B2 (en) | Methods and apparatus for device-to-device communications system | |
US11438101B2 (en) | Method and apparatus for feedback transmission or reception in wireless communication system | |
US11677512B2 (en) | Sidelink HARQ | |
US9265078B2 (en) | Method for performing device-to-device communication in wireless access system and apparatus therefor | |
US9515800B2 (en) | Method for transmitting and receiving feedback information on D2D transmission data in wireless communication system for supporting D2D communication and apparatus therefor | |
US9277539B2 (en) | Method for performing inter-cell device-to-device (D2D) communication in wireless communication system and device therefor | |
US9955408B2 (en) | Network-assisted multi-cell device discovery protocol for device-to-device communications | |
US9433025B2 (en) | D2D communication method according to D2D service type as well as D2D application type, and apparatus for same | |
EP2910063B1 (en) | System and method for ad-hoc/network assisted device discovery protocol for device to device communications | |
CN110248418B (zh) | 用于分配网络资源的系统和方法 | |
US9398560B2 (en) | Method for performing paging in wireless communication system supporting direct communication between terminals, and D2D terminal for the method | |
US9936529B2 (en) | Method for performing or supporting D2D communication in wireless communication system and apparatus therefor | |
US9462622B2 (en) | Method for requesting device-to-device communication in wireless access system and apparatus for same | |
CN108541394B (zh) | 无线网络的寻呼机制 | |
US20150105113A1 (en) | Method for d2d terminal transmitting and receiving data in wireless communication system supporting device-to-device communication | |
JP2018527845A (ja) | 無線通信システムにおいてv2x端末のメッセージ送受信方法及び装置 | |
KR102064869B1 (ko) | 무선 네트워크에서의 시스템 정보 브로드캐스팅 | |
CN107005829B (zh) | D2d发现 | |
US20230388770A1 (en) | Technique for discovery in proximity services comprising different discovery models | |
US20230403626A1 (en) | Method and apparatus for relay communication | |
KR20130082447A (ko) | 무선통신 시스템에서 단말간 협력통신을 수행 또는 지원하기 위한 장치 및 그 방법 | |
US10091741B2 (en) | Power control method and device, and parameter transmission method | |
EP3874640B1 (en) | Energy detection indicator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, DONGGUK;JANG, JIWOONG;CHO, HANGYU;SIGNING DATES FROM 20131125 TO 20131126;REEL/FRAME:031762/0660 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200223 |