US9270876B2 - Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times - Google Patents
Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times Download PDFInfo
- Publication number
- US9270876B2 US9270876B2 US14/147,579 US201414147579A US9270876B2 US 9270876 B2 US9270876 B2 US 9270876B2 US 201414147579 A US201414147579 A US 201414147579A US 9270876 B2 US9270876 B2 US 9270876B2
- Authority
- US
- United States
- Prior art keywords
- image
- optical
- optical chain
- lens
- scene area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 623
- 238000000034 method Methods 0.000 title claims abstract description 135
- 238000012545 processing Methods 0.000 claims description 83
- 230000008569 process Effects 0.000 claims description 23
- 230000008901 benefit Effects 0.000 abstract description 19
- 230000000875 corresponding effect Effects 0.000 description 109
- 239000003086 colorant Substances 0.000 description 21
- 230000006870 function Effects 0.000 description 15
- 230000033001 locomotion Effects 0.000 description 14
- 239000002131 composite material Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 238000012935 Averaging Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 8
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- H04N5/2258—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/008—Systems specially adapted to form image relays or chained systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0896—Catadioptric systems with variable magnification or multiple imaging planes, including multispectral systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/741—Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/75—Circuitry for compensating brightness variation in the scene by influencing optical camera components
-
- H04N5/2251—
-
- H04N5/2253—
-
- H04N5/2254—
-
- H04N5/2257—
-
- H04N5/2353—
-
- H04N5/2355—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/265—Mixing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
Definitions
- the present application relates to image capture and generation methods and apparatus and, more particularly, to methods and apparatus related to camera apparatus including multiple optical chains or which processes the output of multiple optical chains.
- High quality digital cameras have to a large extent replaced film cameras. However, like film cameras, with digital cameras much attention has been placed by the camera industry on the size and quality of lenses which are used on the camera. Individuals seeking to take quality photographs are often encouraged to invest in large bulky and often costly lenses for a variety of reasons. Among the reasons for using large aperture lenses is their ability to capture a large amount of light in a given time period as compared to smaller aperture lenses. Telephoto lenses tend to be large not only because of their large apertures but also because of their long focal lengths. Generally, the longer the focal length, the larger the lens. A long focal length gives the photographer the ability to take pictures from far away.
- the amount of light which can be captured is often important to the final image quality.
- Having a large aperture lens allows a large amount of light to be captured allowing for shorter exposure times than would be required to capture the same amount of light using a small lens.
- the use of short exposure times can reduce blurriness especially with regard to images with motion.
- the ability to capture large amounts of light can also facilitate the taking of quality images even in low light conditions.
- using a large aperture lens makes it possible to have artistic effects such as small depth of field for portrait photography.
- large lenses In addition to weight and size drawbacks, large lenses also have the disadvantage of being costly. This is because of, among other things, the difficulty in manufacturing large high quality optics and packaging them in a manner in which they will maintain proper alignment over a period of time which may reflect the many years of use a camera lenses is expected to provide.
- the focal length (hence size) of the lens depends on the size (area) of the image sensor.
- small sensors e.g., 5 ⁇ 7 mm 2 sensors
- relatively high pixel count e.g. 8 megapixels. This has enabled the embedding of relatively high resolution cameras in small devices such as cell phones.
- the small sensor size compared to larger cameras such as changeable lens single-lens reflex (SRL) cameras) enables small focal length lenses which are much smaller and lighter than larger focal length lenses required for cameras with larger sensors.
- Cell phone mounted cameras and other pocket sized digital cameras sometimes rely on a fixed focal length lens which is also sometimes referred to as a focus-free lens. With such lenses the focus is set at the time of manufacture, and remains fixed. Rather than having a method of determining the correct focusing distance and setting the lens to that focal point, a small aperture fixed-focus lens relies on a large depth of field which is sufficient to produce acceptably sharp images. Many cameras, including those found on most cell phones, with focus free lenses also have relatively small apertures which provide a relatively large depth of field. There are also some high end cell phones that use auto focus cameras.
- a megapixel (MP or Mpx) is one million pixels. The term is often used to indicate the number of pixels in an image or to express the number of image sensor elements of a digital camera where each sensor element normally corresponds to one pixel. Multi-color pixels normally include one pixel value for each of the red, green, and blue pixel components.
- the photosensitive electronics used as the light sensing device is often either a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) image sensor, comprising a large number of single sensor elements, each of which records a measured intensity level.
- CCD charge coupled device
- CMOS complementary metal oxide semiconductor
- the sensor array is covered with a patterned color filter mosaic having red, green, and blue regions in an arrangement.
- a Bayer filter mosaic is one well known a color filter array (CFA) for arranging RGB color filters on a square grid of photo sensors. Its particular arrangement of color filters is used in many digital image sensors.
- CFA color filter array
- each sensor element can record the intensity of a single primary color of light.
- the camera then will normally interpolate the color information of neighboring sensor elements, through a process sometimes called demosaicing, to create the final image.
- the sensor elements in a sensor array using a color filter are often called “pixels”, even though they only record 1 channel (only red, or green, or blue) of the final color image due to the filter used over the sensor element.
- a filter arrangement over a sensor array can be used to allow different sensor elements to capture different colors of light thus allowing a single sensor to capture a color image
- the need to carefully align the filter area with individual pixel size sensor elements complicates the manufacture of sensor arrays as compared to arrays which do not require the use of a multi-color filter array.
- the fact that multiple colors of light need to pass through the camera lenses to reach the sensor so that the sensor can measure multiple different colors of light means that the lens can not be optimized for a single color of light and that some chromatic aberration is likely to result.
- Chromatic aberration is a type of distortion in which there is a failure of a lens to focus all colors to the same convergence point.
- lenses have a different refractive index for different wavelengths of light sometimes referred to as the dispersion of the lens. While small focal length lenses paired with relatively high resolution sensors have achieved widespread commercial success in cell phones and pocket cameras, they often leave their owners longing for better picture quality, e.g., picture quality that can only be achieved with a larger pixel area and a larger lens opening to collect more light.
- Smaller sensors require smaller focal length lenses (hence smaller lenses) to frame the same scene from the same point. Availability of high pixel count small sensors means that a smaller lens can be used. However, there are a few disadvantages to using smaller sensors and lenses. First, the small pixel size limits the dynamic range of the sensor as only a small amount of light can saturate the sensor. Second, small lenses collect less total light which can result in grainy pictures. Third, small lenses have small maximum apertures which make artistic effects like small depth of field for portrait pictures not possible.
- the dynamic range of a photo sensor is somewhat limited.
- the amount of light a photo sensor is exposed to is often a function of the light intensity corresponding to ambient conditions.
- details in dark areas of an area being photographed may be difficult to detect due to lack of sufficient light from such areas, e.g., underexposure with regard to such areas.
- bright areas may appear overexposed due to the larger amount of light received from such portions of an image.
- Methods and apparatus which use multiple optical chains to capture multiple images of an area at the same time are described.
- the multiple captured images may, and in some embodiments are then combined to form a combined image.
- the combined image in various embodiments is normally of higher quality than would be achieved using just a single one of the optical chains.
- multiple optical chains in parallel provides many of the benefits associated with use of a large lens and/or large high quality sensor, through the use of multiple optical chains which can normally be implemented using smaller and/or lower cost components than commonly used with a high quality large lens single optical chain camera implementation.
- an optical chain includes a combination of elements including one or more lenses and a sensor.
- the outer lenses of the optical chains in various embodiments have a known relationship, i.e., spacing, between them. This allows for pixels of an image captured by one optical chain to be easily matched to and combined with pixels corresponding to the same scene area captured by one or more of the other optical chains and then processed to generate a combined image from the various images captured by the sensors of the individual optical chains.
- the number of pixel values in the combined image in one such embodiment will be equal to or less than the number of pixel values in the individual images, captured by different optical chains, corresponding to the same scene area from which the combined image is generated. For example, if three 8 megapixel sensors are used in parallel to capture 3 images which are then used to generate a combined image, the combined image will, in some but not necessarily all embodiments, be of 8 megapixels or less.
- the combined image is constrained to having the same or fewer pixels than the highest resolution image used as part of the combining process to generate the combined image.
- the number of pixels in the resulting image may be greater than that of an individual sensor since different sensors provide values which contribute to different scene areas.
- the number of pixels in the image is not limited by the number of pixels in the sensor used by an individual optical chain module.
- the methods and apparatus of the invention allow, in some embodiments, different, e.g., relatively low cost, optical chains to be used in parallel to provide many of the benefits of a large lens, e.g., a large light capture area, without the need for a large single large lens and many of the disadvantages associated with a single large lens not only in terms of cost, weight, size and/or other issues.
- short focal length lenses with each lens having a sensor behind are used to capture a plurality of images corresponding to the same scene image area at the same time followed by combining/processing of the images to form one or more images with equal or lower pixel counts than either of the individual captured images.
- User control of focus and depth of field in the combined image can, and in some embodiments is, controlled via post image capture processing. While the focus of the individual optical chain modules may be controlled in response to user input at the time of image capture, because multiple images are captured using separate optical chains and a known physical separation between the lenses, the focus point of the combined image generated from images captured in parallel by the multiple optical chains can, and in various embodiments is, controlled by user input used to control how the images are combined after they are captured to produce the combined image.
- Various methods and apparatus of the present invention provide some or all of the benefits of using relatively large and/or long lens assemblies without the need for large lens and/or long lens assemblies, through the use of multiple optical chain modules in combination.
- While the methods and apparatus support the capture and generation of individual images at point in time, they can also be used to capture video. Thus, while some embodiments are directed to camera devices which capture still images, other embodiments are directed to camera device which do capture video and/or still images using multiple optical chains operating in parallel.
- a handheld camera can provide improved still image and/or video generation results than might be achieved without the use of the methods described herein.
- optical chain modules use relatively short focal length lenses, e.g., of the type commonly used in cell phones, which require relatively little depth (thickness) within a camera as compared to larger lens cameras. This allows for a camera device implemented in accordance with some embodiments to be relatively thin and still provide at least some of the benefits normally provided by much thicker lenses which thus require a greater overall camera thickness than is required by various embodiments described herein.
- An optical chain in various embodiments, includes a first lens and an image sensor. Additional lenses and/or one or more optical filters may be included between the first lens of an optical chain module and the image sensor depending on the particular embodiment. In some cases there may be one or more optical filters before the first lens.
- optical chain modules are well suited for use in devices such as cell phones and/or portable camera devices intended to have a thin form factor, e.g., thin enough to place in a pocket or purse.
- a thin form factor e.g., thin enough to place in a pocket or purse.
- the image sensor of an individual optical chain module is a portion of a CCD or other optical sensor dedicated to the individual optical chain module with different portions of the same sensor serving as the image sensors of different optical chain modules.
- images of a scene area are captured by different optical chain modules and then subsequently combined either by the processor included in the camera device which captured the images or by another device, e.g., a personal or other computer which processes the images captured by the multiple optical chains after offloading from the camera device which captured the images.
- the combined image has, in some embodiments a dynamic range that is larger than the dynamic range of an individual image used to generate the combined image.
- this beneficial result is achieved by combining images which are captured by optical chain modules operating in parallel with different exposure times.
- the pixel values generated by the different optical chain modules are normalized based on the exposure time used by the individual optical chains and combined, e.g., with one combined pixel value being generated from multiple pixel values captured by different optical chains but corresponding to the same scene area.
- FIG. 1A is an exemplary block diagram of an exemplary apparatus, e.g., camera device, implemented in accordance with one embodiment of the present invention.
- FIG. 1B illustrates a frontal view of an apparatus implemented in accordance with an exemplary embodiment of the present invention which incorporates multiple optical chain modules in accordance with the present invention with lenses which are viewable from the front of the camera.
- FIG. 1C which is a side view of the exemplary apparatus of FIG. 1B , illustrates further details of the exemplary apparatus.
- FIG. 1D illustrates a plurality of optical chain modules that can be used in an exemplary device implemented in accordance with the invention.
- FIG. 2 illustrates a camera device implemented in accordance with one embodiment of the present invention.
- FIG. 3A shows an exemplary lens configuration which may be used for the set of outer lenses of the camera device shown in FIGS. 1A-1C .
- FIG. 3B illustrates an exemplary filter arrangement which is used in the camera of FIGS. 1A-1C in some embodiments.
- FIG. 3C shows an exemplary inner lens configuration which may, and in some embodiments is, used for a set of inner lenses of the camera device shown in FIGS. 1A-1C .
- FIG. 4 illustrates an exemplary camera device in which the sets of outer lenses, filters, and inner lenses are mounted on corresponding platters.
- FIG. 5A illustrates various filter and lens platters that may be used in the camera device shown in FIG. 4 depending on the particular embodiment.
- FIG. 5B illustrates the filter platter arrangement shown in FIG. 5A when viewed from the side and when viewed from the front.
- FIG. 6 which comprises the combination of FIGS. 6A , 6 B, and 6 C, shows an exemplary combination of lenses and filters used in one exemplary embodiment in which a single color filter is used in at least some of the different optical chain modules.
- FIG. 7 which comprises the combination of FIGS. 7A , 7 B, and 7 C, shows an exemplary combination of lenses and filters used in one exemplary embodiment in which exposures of different duration are used for different optical chain modules and a single color filter is used in at least some of the different optical chain modules.
- FIG. 8 illustrates an optical chain arrangement used in one panoramic camera embodiment in which multiple optical chains and different lens angles are used to capture images that are well suited for combining into a panoramic image.
- FIG. 9 illustrates an exemplary method of producing at least one image of a first scene area by operating a plurality of optical chain modules in accordance with one embodiment of the present invention.
- FIG. 10 illustrates an exemplary method of producing at least one image of a first scene area with an enhanced sensor dynamic range by operating two or more optical chain modules in accordance with one embodiment of the present invention.
- FIG. 11 illustrates an exemplary method of producing at least one image of a first scene area with enhanced sensor dynamic range by operating two or more optical chain modules in accordance with one embodiment of the present invention.
- FIG. 12 illustrates an exemplary method of producing at least one image of a first scene area by operating two or more optical chain modules using color filters in accordance with one embodiment of the present invention.
- FIG. 13 illustrates an exemplary assembly of modules, which may, and in some embodiments is, part of an apparatus which implements one or more methods of the invention, for performing various image and data processing functions in accordance with one or more exemplary embodiments of the invention.
- FIG. 14 illustrates a computer system which can be used for post processing of images captured using a camera device.
- FIG. 15 illustrates a frontal view of an apparatus implemented in accordance with one embodiment of the present invention which incorporates multiple optical chain modules, e.g., one for each of red, green and blue and one for all three colors.
- FIG. 16 illustrates a frontal view of the outer lens assembly of an apparatus implemented in accordance with one embodiment of the present invention where the apparatus incorporates multiple optical chain modules and outer lenses configured with little or no gaps between the lenses.
- FIG. 17 illustrates a frontal view of the outer lenses of a lens assembly implemented in accordance with one embodiment of the present invention where the apparatus incorporates multiple optical chain modules with lenses configured with little or no gaps between the lenses but non-uniform spacing between the optical centers of at least some of the lenses.
- FIG. 18 illustrates a camera device including a plurality of optical chain modules which includes mirrors or another device for changing the angle of light entering the optical chain module and thereby allowing at least a portion of the optical chain module to extend in a direction, e.g., a perpendicular direction, which is not a straight front to back direction with respect to the camera device.
- a direction e.g., a perpendicular direction
- FIG. 19 illustrates another camera device including a plurality of optical chain modules which includes mirrors or another device for changing the angle of light entering the optical chain module and thereby allowing at least a portion of the optical chain module to extend in a direction, e.g., a perpendicular direction, which is not a straight front to back direction with respect to the camera device.
- a direction e.g., a perpendicular direction
- FIG. 20 is a drawing of an assembly of modules, which may be included in an exemplary apparatus, e.g., a camera device, in accordance with an exemplary embodiment.
- FIG. 21 is a drawing of an assembly of modules, which may be included in an exemplary apparatus, e.g., a camera device, in accordance with an exemplary embodiment.
- FIG. 22 is a drawing of an assembly of modules, which may be included in an exemplary apparatus, e.g., a camera device, in accordance with an exemplary embodiment.
- FIG. 23 is a drawing of an assembly of modules, which may be included in an exemplary apparatus, e.g., a camera device, in accordance with an exemplary embodiment.
- FIG. 24A is a first part of FIG. 24 which shows a method of generating a combined image from pixel values generated by multiple optical chain modules operating in parallel.
- FIG. 24B is a second part of FIG. 24 which shows a method of generating a combined image from pixel values generated by multiple optical chain modules operating in parallel.
- FIG. 24 is the combination of FIG. 24A and FIG. 24B and shows shows a method of generating a combined image from pixel values generated by multiple optical chain modules operating in parallel.
- FIG. 25 illustrates a chart illustrating pixel values being arranged into sets corresponding to different pixel areas in accordance with the method shown in FIG. 24 .
- FIG. 26 illustrates a chart of captured pixel values with pixel values which will be excluded from use due to there correspondence to a saturation level being indicated through the use of an X.
- FIG. 27 illustrates normalized pixel values which may be generated from the values shown in FIG. 26 in accordance with the method of FIG. 24 .
- FIG. 28 shows combined image pixel values generated from the input pixel values of FIG. 25 using the method of FIG. 24 along with the computation used to produce the illustrated pixel values.
- FIG. 1A illustrates an exemplary apparatus 100 , sometimes referred to hereinafter as a camera device, implemented in accordance with one exemplary embodiment of the present invention.
- the camera device 100 in some embodiments, is a portable device, e.g., a cell phone or tablet including a camera assembly. In other embodiments, it is fixed device such as a wall mounted camera.
- FIG. 1A illustrates the camera device 100 in block diagram form showing the connections between various elements of the apparatus 100 .
- the exemplary camera device 100 includes a display device 102 , an input device 106 , memory 108 , a processor 110 , a transceiver interface 114 , e.g., a cellular interface, a WIFI interface, or a USB interface, an I/O interface 112 , and a bus 116 which are mounted in a housing represented by the rectangular box touched by the line leading to reference number 100 .
- the input device 106 may be, and in some embodiments is, e.g., keypad, touch screen, or similar device that may be used for inputting information, data and/or instructions.
- the display device 102 may be, and in some embodiments is, a touch screen, used to display images, video, information regarding the configuration of the camera device, and/or status of data processing being performed on the camera device.
- the display device 102 serves as an additional input device and/or as an alternative to the separate input device, e.g., buttons, 106 .
- the I/O interface 112 couples the display 102 and input device 106 to the bus 116 and interfaces between the display 102 , input device 106 and the other elements of the camera which can communicate and interact via the bus 116 .
- the bus 116 is coupled to the memory 108 , processor 110 , an optional autofocus controller 132 , a transceiver interface 114 , and a plurality of optical chain modules 130 , e.g., N optical chain modules.
- N is an integer greater than 2, e.g., 3, 4, 7 or a larger value depending on the particular embodiment.
- Images captured by individual optical chain modules in the plurality of optical chain modules 130 can be stored in memory 108 , e.g., as part of the data/information 120 and processed by the processor 110 , e.g., to generate one or more composite images.
- Transceiver interface 114 couples the internal components of the camera device 100 to an external network, e.g., the Internet, and/or one or more other devices e.g., memory or stand alone computer. Via interface 114 the camera device 100 can and does output data, e.g., captured images, generated composite images, and/or generated video. The output may be to a network or to another external device for processing, storage and/or to be shared.
- the captured image data, generated composite images and/or video can be provided as input data to another device for further processing and/or sent for storage, e.g., in external memory, an external device or in a network.
- the transceiver interface 114 of the camera device 100 may be, and in some instances is, coupled to a computer so that image data may be processed on the external computer.
- the external computer has a higher computational processing capability than the camera device 100 which allows for more computationally complex image processing of the image data outputted to occur on the external computer.
- the transceiver interface 114 also allows data, information and instructions to be supplied to the camera device 100 from one or more networks and/or other external devices such as a computer or memory for storage and/or processing on the camera device 100 .
- background images may be supplied to the camera device to be combined by the camera processor 110 with one or more images captured by the camera device 100 .
- Instructions and/or data updates can be loaded onto the camera via interface 114 and stored in memory 108 .
- the camera device 100 may include, and in some embodiments does include, an autofocus controller 132 and/or autofocus drive assembly 134 .
- the autofocus controller 132 is present in at least some autofocus embodiments but would be omitted in fixed focus embodiments.
- the autofocus controller 132 controls adjustment of at least one lens position in the optical chain modules used to achieve a desired, e.g., user indicated, focus.
- the autofocus controller 132 may drive the autofocus drive of various optical chain modules to focus on the same target.
- lenses for multiple optical chain modules are mounted on a single platter which may be moved allowing all the lenses on the platter to be moved by adjusting the position of the lens platter.
- the autofocus drive assembly 134 is included as an element that is external to the individual optical chain modules with the drive assembly 134 driving the platter including the lenses for multiple optical chains under control of the autofocus controller 132 .
- the optical chain modules will in many embodiments be focused together to focus on an object at a particular distance from the camera device 100 , it is possible for different optical chain modules to be focused to different distances and in some embodiments different focus points are intentionally used for different optical chains to increase the post processing options which are available.
- the processor 110 controls operation of the camera device 100 to control the elements of the camera device 100 to implement the steps of the methods described herein.
- the processor may be a dedicated processor that is preconfigured to implement the methods. However, in many embodiments the processor 110 operates under direction of software modules and/or routines stored in the memory 108 which include instructions that, when executed, cause the processor to control the camera device 100 to implement one, more or all of the methods described herein.
- Memory 108 includes an assembly of modules 118 wherein one or more modules include one or more software routines, e.g., machine executable instructions, for implementing the image capture and/or image data processing methods of the present invention. Individual steps and/or lines of code in the modules of 118 when executed by the processor 110 control the processor 110 to perform steps of the method of the invention.
- the data processing modules 118 When executed by processor 110 , the data processing modules 118 cause at least some data to be processed by the processor 110 in accordance with the method of the present invention.
- the resulting data and information (e.g., captured images of a scene, combined images of a scene, etc.) are stored in data memory 120 for future use, additional processing, and/or output, e.g., to display device 102 for display or to another device for transmission, processing and/or display.
- the memory 108 includes different types of memory for example, Random Access Memory (RAM) in which the assembly of modules 118 and data/information 120 may be, and in some embodiments are stored for future use.
- RAM Random Access Memory
- ROM Read only Memory
- Non-volatile memory such as flash memory for storage of data, information and instructions may also be used to implement memory 108 .
- Memory cards may be added to the device to provide additional memory for storing data (e.g., images and video) and/or instructions such as programming. Accordingly, memory 108 may be implemented using any of a wide variety of non-transitory computer or machine readable mediums which serve as storage devices.
- FIGS. 1B and 1C show the camera device 100 from front and side perspectives, respectively.
- Dashed line 101 of FIG. 1B indicates a cross section line corresponding to the FIG. 1C view.
- FIG. 1B shows the front of the camera device 100 .
- Rays of light 131 which is light toward the front of the camera assembly, shown in FIG. 1C may enter the lenses located in the front of the camera housing.
- the camera device 100 appears as a relatively flat device with the outer rectangle representing the camera housing and the square towards the center of the camera representing the portion of the front camera body in which the plurality of optical chain modules 130 is mounted.
- FIG. 1C which shows a side perspective of camera device 100 , illustrates three of the seven optical chain modules (OCM 1 121 , OCM 7 145 , OCM 4 133 ) of the set of optical chain modules 130 , display 102 and processor 110 .
- OCM 1 121 includes an outer lens L1 103 , a filter 123 , an inner lens L2 125 , and a sensor 127 .
- OCM 1 121 further includes autofocus drive (AFD) 129 for controlling the position of lens L2 125 , and exposure control device (ECD) 131 for controlling sensor 127 .
- the AFD 129 includes a motor or other drive mechanism which can move the lens (or sensor) to which it is connected.
- OCM 7 145 includes an outer lens L1 115 , a filter 147 , an inner lens L2 149 , and a sensor 151 .
- OCM 7 145 further includes AFD 153 for controlling the position of lens L2 149 and ECD 155 for controlling sensor 151 .
- OCM 4 133 includes an outer lens L1 109 , a filter 135 , an inner lens L2 137 , and a sensor 139 .
- the AFD 153 includes a motor or other drive mechanism which can move the lens (or sensor) to which it is connected. While the AFD 153 is shown coupled, e.g., connected, to the lens L2 149 and thus can move the position of the lens L2 as part of a focus operation, in other embodiments the AFD 149 is coupled to the sensor 151 and moves the position of the sensor 151 , e.g., to change the distance between the sensor 151 and the lens 149 as part of a focus operation.
- OCM 4 133 further includes AFD 141 for controlling the position of lens L2 137 and ECD 143 for controlling sensor 139 .
- the AFD 141 includes a motor or other drive mechanism which can move the lens (or sensor) to which it is connected. While the AFD 141 is shown coupled, e.g., connected, to the lens L2 137 and thus can move the position of the lens L2 as part of a focus operation, in other embodiments the AFD 141 is coupled to the sensor 139 and moves the position of the sensor 139 , e.g., to change the distance between the sensor 139 and the lens 137 as part of a focus operation.
- FIG. 1C While only three of the OCMs are shown in FIG. 1C it should be appreciated that the other OCMS of the camera device 100 may, and in some embodiments do, have the same or similar structure.
- FIG. 1C and the optical chain modules (OCMs), also sometimes referred to as optical camera modules, illustrated therein are illustrative of the general structure of OCMs used in various embodiments. However, as will be discussed in detail below, numerous modifications and particular configurations are possible. Many of the particular configurations will be discussed below with use of reference to the optical camera modules shown in FIG. 1C . While reference to elements of FIG. 1C may be made, it is to be understood that the OCMs in a particular embodiment will be configured as described with regard to the particular embodiment.
- the filter may be of a particular color.
- the filter in embodiments where the filter is expressly omitted and described as being omitted or an element which allows all light to pass, while reference may be made to the OCMs of FIG. 1C , it should be appreciated that the filter will be omitted in an embodiment where it is indicated to be omitted or of such a nature that it passes a broad spectrum of light to pass if the embodiment is indicated to have a broadband filter.
- the elements of the different OCMs may, but need not be, mounted on a common support device, e.g., disc or platter, allowing a set of filters, lenses or sensors of the different optical chains to be moved as a set. While in the OCMs of FIG.
- each of the OCMS 121 , 145 , 133 , shown in FIG. 1C will have their own optical axis which corresponds to the path light entering the particular OCM will follow as it passes from the lens 103 , 115 , or 109 at the front of the optical chain and passes through the OCM to the corresponding sensor 127 , 151 , 139 .
- processor 110 is not shown being coupled to the AFD, ECD and sensors 127 , 151 , 139 it is to be appreciated that such connections exist and are omitted from FIG. 1C to facilitate the illustration of the configuration of the exemplary OCMs.
- lens, filters and/or mirrors can vary depending on the particular embodiment and the arrangement shown in FIG. 1C is intended to be exemplary and to facilitate an understanding of the invention rather than limiting in nature.
- the front of the plurality of optical chain modules 130 is visible in FIG. 1B with the outermost lens of each optical chain module appearing as a circle represented using a solid line (OCM 1 L1 103 , OCM 2 L1 105 , OCM 3 L1 107 , OCM 4 L1 109 , OCM 5 L1 111 , OCM 6 L1 113 , OCM 7 L1 115 ).
- OCM 1 L1 103 OCM 2 L1 105
- OCM 3 L1 107 OCM 4 L1 109
- OCM 5 L1 111 OCM 6 L1 113
- OCM 7 L1 115 OCM 7 L1
- the plurality of optical chain modules 130 include seven optical chain modules, OCM 1 121 , OCM 2 157 , OCM 3 159 , OCM 4 133 , OCM 5 171 , OCM 6 173 , OCM 7 145 , which include lenses (OCM 1 L1 103 , OCM 2 L1 105 , OCM 3 L1 107 , OCM 4 L1 109 , OCM 5 L1 111 , OCM 6 L1 113 , OCM 7 L1 115 ), respectively, represented by the solid circles shown in FIG. 1B .
- the lenses of the optical chain modules are arranged to form a pattern which is generally circular in the FIG. 1B example when viewed as a unit from the front.
- the overall pattern is generally or roughly circular, different distances to the center of the general circle and/or different distances from one lens to another is intentionally used to facilitate generation of a depth map and block processing of images which may include periodic structures such as repeating patterns without the need to identify edges of the repeating pattern. Such repeating patterns may be found in a grill or a screen.
- the individual outer lenses in combination, occupy an area that might otherwise have been occupied by a single large lens.
- the overall total light capture area corresponding to the multiple lenses of the plurality of chain modules OCM 1 to OCM 7, also sometimes referred to as optical camera modules approximates that of a lens having a much larger opening but without requiring a single lens having the thickness which would normally be necessitated by the curvature of a single lens occupying the area which the lenses shown in FIG. 1B occupy.
- optical chain modules OCM 1 to OCM 7 While gaps are shown between the lens openings of the optical chain modules OCM 1 to OCM 7, it should be appreciated that the lenses may be made, and in some embodiments are, made so that they closely fit together minimizing gaps between the lenses represented by the circles formed by solid lines. While seven optical chain modules are shown in FIG. 1B , it should be appreciated that other numbers of optical chain modules are possible.
- the use of seven optical chain modules provides a wide degree of flexibility in terms of the types of filter combinations and exposure times that can be used for different colors while still providing an optical camera module that can be used to provide an image for purposes of user preview of the image area and selection of a desired focal distance, e.g., by selecting an object in the preview image which is to be the object where the camera modules are to be focused.
- At least some of the different optical chain modules include filters corresponding to a single color thereby allowing capture of a single color at the full resolution of the image sensor, e.g., the sensor does not include a Bayer filter.
- two optical chain modules are dedicated to capturing red light
- two optical chain modules are dedicated to capturing green light
- two optical chain modules are dedicated to capturing blue light.
- the center optical chain module may include a RGB filter or opening which passes all colors with different portions of the sensor of the center optical chain module being covered by different color filters, e.g., a Bayer pattern with the optical chain module being used to capture all three colors making it easy to generate color preview images without having to process the output of multiple optical chain modules to generate a preview image.
- a RGB filter or opening which passes all colors with different portions of the sensor of the center optical chain module being covered by different color filters, e.g., a Bayer pattern with the optical chain module being used to capture all three colors making it easy to generate color preview images without having to process the output of multiple optical chain modules to generate a preview image.
- FIG. 1A-1C The use of multiple optical chains such as shown in the FIG. 1A-1C embodiment has several advantages over the use of a single optical chain.
- Using multiple optical chains allows for noise averaging. For example, given the small sensor size there is a random probability that one optical chain may detect a different number, e.g., one or more, photons than another optical chain. This may represent noise as opposed to actual human perceivable variations in the image being sensed.
- the random noise may be averaged resulting in a more accurate and pleasing representation of an image or scene than if the output of a single optical chain was used.
- a greater dynamic range in terms of light intensity can be covered by having different optical chains use different exposure times and then combining the result to form the composite image, e.g., by weighting the pixel values output by the sensors of different optical chains as a function of exposure time when combing the sensed pixel values to generate a composite pixel value for use in a composite image.
- the dynamic range, in terms of light sensitivity is limited with the sensors becoming easily saturated under bright conditions.
- Pixel sensors of the optical chains that become saturated as indicated by a pixel value indicative of sensor saturation can be ignored, and the pixel value from the other, e.g., less exposed, optical chain can be used without contribution from the saturated pixel sensor of the other optical chain.
- Weighting and combining of non-saturated pixel values as a function of exposure time is used in some embodiments. By combining the output of sensors with different exposure times a greater dynamic range can be covered than would be possible using a single sensor and exposure time.
- FIG. 1C is a cross section perspective of the camera device 100 shown in FIGS. 1A and 1B .
- Dashed line 101 in FIG. 1B shows the location within the camera device to which the cross section of FIG. 1C corresponds. From the side cross section, the components of the first, seventh and fourth optical chains are visible.
- the camera device 100 can be implemented as a relatively thin device, e.g., a device less than 2, 3 or 4 centimeters in thickness in at least some embodiments. Thicker devices are also possible, for example devices with telephoto lenses and are within the scope of the invention, but the thinner versions are particularly well suited for cell phones and/or tablet implementations.
- the display device 102 may be placed behind the plurality of optical chain modules 130 with the processor 110 , memory and other components being positioned, at least in some embodiments, above or below the display and/or optical chain modules 130 .
- each of the optical chains OCM 1 121 , OCM 7 145 , OCM 4 133 may, and in some embodiments do, include an outer lens L1, an optional filter F, and a second optional lens L2 which proceed a sensor S which captures and measures the intensity of light which passes through the lens L1, filter F and second lens L2 to reach the sensor S.
- the filter may be a color filter or one of a variety of other types of light filters.
- each optical chain module includes an auto focus drive (AFD) also sometimes referred to as an auto focus device which can alter the position of the second lens L2, e.g., move it forward or back, as part of a focus operation.
- An exposure control device (ECD) which controls the light exposure time of the sensor to which the ECD corresponds, is also included in each of the OCMs shown in the FIG. 1C embodiment.
- the AFD of each optical chain module operates under the control of the autofocus controller 132 which is responsive to user input which identifies the focus distance, e.g., by the user highlighting an object in a preview image to which the focus is to be set.
- the autofocus controller while shown as a separate element of the device 100 can be implemented as a module stored in memory and executed by processor 110 .
- the camera device 100 shown in FIG. 1C is relatively thin with a thickness that is much less, e.g., 1 ⁇ 5th, 1/10th, 1/20th or even less than the overall side to side length or even top to bottom length of the camera device visible in FIG. 1B .
- FIG. 1D illustrates a plurality of optical chain modules 160 that can be used in an exemplary device implemented in accordance with the invention.
- the optical chain modules (OCMs) shown in FIG. 1D are illustrative of the general structure of OCMs used in various embodiments. However, as will be discussed in detail below, numerous modifications and particular configurations are possible. Many of the particular configurations will be discussed below with use of reference to the optical camera modules shown in FIG. 1D to support the particular exemplary embodiments. While reference to elements of FIG. 1D may and will be made with regard to particular embodiments, it is to be understood that the OCMs in a particular embodiment will be configured as described with regard to the particular embodiment.
- one or of the OCMS may use filters of a particular color or may even omit the filter 164 , 164 ′. 164 ′′ or 164 ′′.
- the filter is expressly omitted and described as being omitted or an element which allows all light to pass, while reference may be made to the OCMs of FIG. 1D , it should be appreciated that the filter will be omitted in such an embodiment where it is expressly indicated to be omitted or of such a nature that it passes a broad spectrum of light to pass if the embodiment is indicated to have a broadband filter.
- the elements of the different OCMs may, but need not be, mounted on a common support device, e.g., disc or platter, allowing a set of filters, lenses or sensors of the different optical chains to be moved as a set.
- a common support device e.g., disc or platter
- mirrors are not shown, as will be discussed below, in at least some embodiments one or more mirrors are added to the OCMs to all light to be directed, e.g., to increase the length of the optical path or make for a more convenient internal component configuration.
- OCMS 164 , 164 ′, 164 ′′. 164 ′ shown in FIG.
- 1C will have their own optical axis which corresponds to the path light entering the particular OCM will follow as it passes from the lens 162 , 162 ′. 162 ′′, 162 ′ at the front of the optical chain and passes through the OCM to the corresponding sensor 168 , 168 ′, 168 ′′, 168 ′.
- the plurality of optical chain modules 160 includes N exemplary optical chain modules as illustrated in FIG. 1D where N may be any number but usually a number greater than one, and in many cases greater than 2, 6 or even a larger number.
- the plurality of optical chain modules 160 includes a first optical chain module (OCM) 161 , a second optical chain module 161 ′, a third optical chain module 161 ′′, . . . , and Nth optical chain module 161 ′.
- OCM optical chain module
- Each optical chain module illustrated in FIG. 1D includes many or all of the same elements shown in each optical chain illustrated in FIG. 1C such as, e.g., optical chain module 121 .
- the first exemplary OCM 161 includes an outer lens 162 , a filter 164 , an inner lens 166 , a sensor 168 , an auto focus drive (AFD) 169 and an exposure control device (ECD) 170 .
- Each of the other optical chain modules include similar elements as described above with regard to the first OCM 160 , with the like elements in each of the other optical chain modules being identified using a prime (′), double prime (′′), or triple prime (′′′).
- the exemplary second OCM 161 ′ includes an outer lens 162 ′, a filter 164 ′, an inner lens 166 ′, a sensor 168 ′, an auto focus drive (AFD) 169 ′ and an exposure control device (ECD) 170 ′
- the exemplary third OCM 161 ′′ includes an outer lens 162 ′′, a filter 164 ′′, an inner lens 166 ′′, a sensor 168 ′′, an auto focus drive (AFD) 169 ′′ and an exposure control device (ECD) 170 ′′ and so on.
- the Nth OCM 161 ′ includes an outer lens 162 ′, a filter 164 ′′′, an inner lens 166 ′′′, a sensor 168 ′, an auto focus drive (AFD) 169 ′ and an exposure control device (ECD) 170 ′.
- the operation and functionality of each of the OCMs and their elements is the same as or similar the functionality of optical chain modules discussed earlier with respect to FIG. 1C and thus will not be repeated.
- AFD 169 , 169 ′, 169 ′′ or 169 ′′′ are shown in each optical chain module with the AFD connected to a lens being shown using solid lines and an alternative AFD shown using dashed lines being connected to the sensor 168 , 168 ′, 168 ′′ or 168 ′′′.
- the AFD shown with dashed lines adjusts the position of the sensor 168 . 168 ′, 168 ′′ or 168 ′′′ to which it is connected as part of an autofocus operation, e.g., moving the sensor forward or backward to alter distance between the sensor and a lens.
- the AFD shown in solid lines is used in systems where a lens rather than a sensor is moved as part of an AFD operation.
- the AFD controls the position of a lens and/or sensor in which case the AFD module is connected to both a lens support mechanism or lens and the sensor.
- the plurality of optical chain modules 160 of FIG. 1D can be used as, e.g., the plurality of optical modules 130 of the exemplary device 100 or any other device implemented in accordance with the invention.
- the number and particular configuration of optical chains in the step of optical chains 160 maybe as per various embodiments which will be described in the following detailed description. Accordingly, while a particular embodiment may be described in one more subsequent portions of this application, it is to be understood that the optical chains 160 may be used in such embodiments with the particular configuration of filters, lens, and element supports being as described with respect to the particular exemplary embodiment being discussed.
- FIG. 2 illustrates a camera device 200 implemented in accordance with the invention.
- the FIG. 2 camera device 200 includes many or all of the same elements shown in the device 100 of FIGS. 1A-1C .
- Exemplary camera device 200 includes a plurality of optical chain modules (OCM 1 205 , OCM 2 207 , . . . , OCM N 209 , a processor 211 , memory 213 and a display 215 , coupled together.
- OCM 1 205 includes outer lens L1 251 , filter 253 , inner lens L2 255 , sensor 1 257 , AFD 259 and ECD 261 .
- processor 211 of camera device 200 of FIG. 2 is the same as processor 110 of device 100 of FIG. 1A
- memory 213 of device 200 of FIG. 2 is the same as memory 108 of device 100 of FIG. 1A
- display 215 of device 200 of FIG. 2 is the same as display 102 of device 100 of FIG. 1A .
- OCM 2 207 includes outer lens L1 263 , filter 265 , inner lens L2 267 , sensor 2 269 , AFD 271 and ECD 273 .
- OCM N 209 includes outer lens L1 275 , filter 277 , inner lens L2 279 , sensor N 281 , AFD 283 and ECD 285 .
- optical chain modules (optical chain module 1 205 , optical chain module 2 207 , . . . , optical chain module N 209 ) are shown as independent assemblies with the autofocus drive of each module being a separate AFD element (AFD 259 , AFD 271 , AFD 283 ), respectively.
- FIG. 2 the structural relationship between the various lenses and filters which precede the sensor in each optical chain module can be seen more clearly. While three elements, e.g. two lenses (see columns 201 and 203 corresponding to L1 and L2, respectively) and the filter (corresponding to column 202 ) are shown in FIG. 2 before each sensor, it should be appreciated that a much larger combination of lenses and/or filters may precede the sensor of one or more optical chain modules with anywhere from 2-10 elements being common and an even larger number of elements being used in some embodiments, e.g., high end embodiments and/or embodiments supporting a large number of filter and/or lens options.
- three elements e.g. two lenses (see columns 201 and 203 corresponding to L1 and L2, respectively) and the filter (corresponding to column 202 ) are shown in FIG. 2 before each sensor, it should be appreciated that a much larger combination of lenses and/or filters may precede the sensor of one or more optical chain modules with anywhere from 2-10 elements being common and an even larger number of elements being used in some embodiments,
- optical chain modules are mounted in the camera device to extend from the front of the camera device towards the back, e.g., with multiple optical chain modules being arranged in parallel.
- Filters and/or lenses corresponding to different optical chain modules may, and in some embodiments are, arranged in planes extending perpendicular to the front to back direction of the camera device from the bottom of the camera device towards the top of the camera device. While such a mounting arrangement is used in some embodiments, other arrangements where the optical chain modules are arranged at different angles to one another and/or the camera body are possible.
- the lenses/filters are arranged in planes or columns in the vertical dimension of the camera device 200 to which reference numbers 201 , 202 , 203 correspond.
- the fact that the lenses/filters are aligned along vertical planes allows for a manufacturing and structural simplification that is used in some embodiments. That is, in some embodiments, the lenses and/or filters corresponding to a plane 201 , 202 , 203 are formed or mounted on a platter or plate.
- the term platter will be used for discussion purposes but is not intended to be limiting.
- the platter may take the form of a disc but non-round platters are also contemplated and are well suited for some embodiments.
- the lenses and platter may be molded out of the same material in a single molding operation greatly reducing costs as compared to the need to manufacture and mount separate lenses.
- platter based embodiments allow for relatively simple synchronized focus operations in that a platter may be moved front or back to focus multiple OCMs at the same time.
- platters may be moved or rotated, e.g., along a central or non-central axis, to change lenses and or filters corresponding to multiple optical chain modules in a single operation.
- a single platter may include a combination of lenses and/or filters allowing, e.g., a lens to be replaced with a filter, a filter to be replaced with a lens, a filter or lens to be replaced with an unobstructed opening.
- the platter based approach to lens, filter and/or holes allows for a wide range of possible combinations and changes to be made by simple movement of one or more platters.
- multiple elements may be combined and mounted together on a platter.
- multiple lenses, filters and/or lens-filter combinations can be assembled and mounted to a platter, e.g., one assembly per optical chain module.
- the assemblies mounted on the platter for different optical chains may be moved together, e.g., by rotating the platter, moving the platter horizontally or vertically or by moving the platter using some combination of one or more such movements.
- platters have been described as being moved to change elements in an optical chain, they can, and in some embodiments are, moved for image stabilization purposes.
- a platter having one or more lenses mounted thereon can be moved as part of an image stabilization operation, e.g., to compensate for camera motion.
- sensors of multiple optical chains can be mounted on a platter.
- sensors without color filters may be replaced with sensors with color filters, e.g., Bayer pattern filters.
- sensors can be swapped or changed while leaving one or more components of one or more optical chains in place.
- the elements e.g., filters/lenses closer to the sensor of the optical chain module, are smaller in size than the outer most lenses shown in column 201 .
- the shrinking size of the lenses/filters space becomes available between the lenses/filters within the corresponding platter.
- FIGS. 3A through 3C provide perspective views of the different planes 201 , 202 , 203 shown in FIG. 2 .
- the outer lenses L1 OCM 1 L1 251 , OCM 2 L1 263 , OCM 3 L1 264 , OCM 4 L1 266 , OCM 5 L1 268 , OCM 6 L1 270 , OCM 7 L1 272 ) occupy much of the outer circular area corresponding to the front of the camera modules as previously shown in FIG. 1B .
- FIG. 1B the outer lenses L1 (OCM 1 L1 251 , OCM 2 L1 263 , OCM 3 L1 264 , OCM 4 L1 266 , OCM 5 L1 268 , OCM 6 L1 270 , OCM 7 L1 272 ) occupy much of the outer circular area corresponding to the front of the camera modules as previously shown in FIG. 1B .
- FIG. 1B the outer lenses L1
- the filters (OCM 1 F 253 , OCM 2 F 265 , OCM 3 F 274 , OCM 4 F 276 , OCM 5 F 278 , OCM 6 F 280 , OCM 7 F 282 ) corresponding to plane 202 occupy less space than the lenses shown in FIG. 3A while the inner lenses L2 (OCM 1 L2 255 , OCM 2 L2 267 , OCM 3 L2 284 , OCM 4 L2 286 , OCM 5 L2 288 , OCM 6 L2 290 , OCM 7 L2 292 ) shown in FIG. 3C occupy even less space.
- outer lens L1 275 , filter F 277 , and inner lens L2 279 of FIG. 2 are the same as OCM 7 L1 272 of FIG. 3A , OCM 7 F 282 of FIG. 3B and OCM 7 L2 292 of FIG. 3C , respectively.
- the decreasing size of the inner components allow multiple lenses and/or filters to be incorporated into a platter corresponding to one or more of the inner planes.
- an alternative filter F′ or hole could be mounted/drilled below or next two each filter F of a platter corresponding to plan 202 and that by shifting the position or platter vertically, horizontally or a combination of horizontally and vertically, the filter F can be easily and simply replaced with another filter or hole.
- the lenses L2 may be replaced by alternative lenses L2′ by shifting a platter of lenses corresponding to plane 203 .
- the platter may also be rotated to support changes. The rotation may be an off center rotation and/or may be performed in combination with one or more other platter position changes.
- a camera device 60 which includes platters of lenses and/or filters ( 61 , 62 , 63 ) is shown in FIG. 4 .
- Camera device 60 includes a plurality of optical chain modules (optical chain module 1 69 , optical chain module 2 70 , . . . , optical chain module N 71 ), processor 72 , memory 73 , and display 74 coupled together via bus 75 .
- processor 72 , memory 73 , display 74 , and autofocus controller 76 of device 60 of FIG. 4 are the same as processor 110 , memory 108 , display 102 , and autofocus controller 132 of device 100 of FIG. 1A .
- Element 61 represents a platter of outer lenses L1 with 3 of the lenses ( 77 , 81 , 86 ) being shown as in the FIG. 1C example. Additional lenses may be, and often are, included on the platter 61 in addition to the ones shown. For example, in a seven optical chain module embodiment such as shown in FIG. 1 , platter 61 would include seven outer lenses. Note that the thickness of the platter 61 need not exceed the maximum thicknesses of the lenses and from a side perspective is much thinner than if a single lens having a similar curvature to that of the individual lenses L1, but with the single lens being larger, occupied the same area as all the 7 lenses on the platter 61 .
- Platter 62 includes the filters F, which include the three filters ( 77 , 82 , 87 ) while platter 63 includes the inner lenses L2, which include the three lenses ( 78 , 83 , 88 ).
- the camera device 60 is the same as or similar to the camera device of FIG. 1C and FIG. 2 but with the lenses and filters being mounted on platters which may be moved between the front and back of the camera to support autofocus or horizontally and/or vertically to support lens/filter changes.
- Auto focus drive 66 is used to move platter 63 forward or backward as part of a focus operation, e.g., under control of the autofocus controller 76 which may be, and often is, included in the camera device 60 .
- a filter shift drive (FSD) 65 is included in embodiments where shifting of the platter 62 is supported as part of a filter change operation.
- the FSD 65 is responsive to the processor 72 which operates in response to user selection of a particular mode of operation and/or an automatically selected mode of operation and can move the platter 62 vertically, horizontally or in some combination of vertical and horizontal motion to implement a filter change operation.
- the FSD 62 may be implemented with a motor and mechanical linkage to the platter 62 .
- the platter 62 may also be rotated to support changes. The rotation may be an off center rotation and/or may be performed in combination with one or more other platter position changes.
- a lens shift drive (LSD) 67 is included in embodiments where shifting of the platter 63 is supported as part of a filter change operation.
- the LSD 67 is responsive to the processor 72 which operates in response to user selection of a particular mode of operation and/or an automatically selected mode of operation and can move the platter 63 vertically, horizontally or in some combination of vertical and horizontal motion to implement a lens change operation.
- the LSD 67 may be implemented with a motor and mechanical linkage to the platter 63 .
- the platter 63 may also be rotated to support changes. The rotation may be an off center rotation and/or may be performed in combination with one or more other platter position changes.
- FIG. 5A illustrates various exemplary platters that can, and in some embodiments are, used as the filter platter and/or inner lens platter in the camera device 60 of FIG. 4 .
- N is three (3) but other values of N are possible depending on the embodiment.
- FIG. 5B shows the exemplary lens platter 62 ′ of FIG. 5A when viewed from the side, drawing 6299 , and from the front, drawing 6298 .
- Platter 62 represents a platter with a single set of filters F1,1 6202 corresponding to OCM1, F1,2 6204 corresponding to OCM 2 and F1,3 6206 corresponding to OCM 3.
- Platter 62 ′ represents an alternative platter that can, and in some embodiments is, used in place of platter 62 .
- NF is use to represent a hole or No Filter (NF) area of the platter 62 ′.
- the filters F1 F1,1 6202 , F1,2 6204 , F1, 3 6206
- the filters F1 can be replaced by holes (NF 6208 , NF 6210 , NF 6212 ), respectively, thereby removing the color or other types of filters previously included in the optical chain modules.
- Platter 62 ′′ of FIG. 5A represents a platter which includes alternative filters F1′ (F1′, 1 6214 , F1′, 2 6216 , F1′3 6206 ) which can be switched for the filters F1 (F1, 1 6202 , F1,2 6204 , F1,3 6206 ), respectively, by moving the platter 62 ′′ vertically.
- platter 62 ′′ is used to show how filters can be switched for other filters by simple movement of a platter while platter 62 ′ shows how filters can be removed from the optical paths included in a plurality of optical chain modules by shifting of the platter on which a set of filters are mounted.
- the filters F1 (F1,1 6202 , F1,2 6204 , F1, 3 6206 , F1,4 6220 , F1, 5 6224 , F1, 6 6228 , F1, 7 6232 ) can be replaced by holes (NF 6208 , NF 6210 , NF 6212 , NF 6222 , NF 6226 , NF 6230 , NF 6234 ), respectively, thereby removing the color or other types of filters previously included in the optical chain modules.
- Lens platter 63 shows a platter of inner lenses L2 (L2,1 6302 , L2,2 6304 , L2,3 6306 ) corresponding to first, second and third optical camera modules.
- Lens platter 63 ′ is an alternative platter which shows how alternative lenses L2′ (L2′,1 6308 , L2′,2 6310 , L2′,3 6312 ) can be included on a lens platter and easily swapped for the lenses L2 (L2,1 6302 , L2,2 6304 , L2,3 6306 ), respectively, by simple movement of the platter 63 ′ vertically or horizontally.
- Lens platter 63 ′′ is used to show that a lens platter may include holes ( 6314 , 6316 , 6318 ) as an alternative to alternative lenses. Any of lens platters 63 , 63 ′ or 63 ′′ could be used in the camera device 60 shown in FIG. 4 . While two lens sets are included in platter 63 ′, multiple lens and/or hole combinations, e.g., 2, 3 or more, may be included in a single platter. Similarly a large number of alternative filter, hole alternatives may be supported in a single filter platter. A platter can also have combinations of lenses, filters and holes and filters could be swapped for lenses or holes.
- a single camera device including a number of optical chain modules may support a large number of alternative modes of operation.
- the exposure control of various optical chain modules may be varied along with the filters and/or lenses used at any given point in time allowing for a wide degree of flexibility and control over the images captured at any given point in time.
- FIGS. 6A , 6 B and 6 C correspond to one particular filter lens combination used in some embodiments.
- FIG. 6A shows the use of 7 optical chain modules at plane 201 (the outer lens plane corresponding to lenses L1) as viewed from the front of the camera device.
- FIG. 6A shows optical chain module L1 lenses (OCM 1 L1 6402 , OCM 2 L1 6404 , OCM 3 L1 6406 , OCM 4 L1 6408 , OCM 5 L1 6410 , OCM 6 L1 6412 , OCM 7 L1 6414 ).
- FIG. 6C shows the inner lens plane 203 .
- FIG. 6C shows optical chain module L2 lenses (OCM 1 L2 6602 , OCM 2 L2 6604 , OCM 3 L2 6606 , OCM 4 L2 6608 , OCM 5 L2 6610 , OCM 6 L2 6612 , OCM 7 L2 6614 ).
- the configuration shown in FIGS. 6A and 6C is the same or similar to that previously discussed with reference to the FIG. 3 embodiment.
- FIG. 6B shows a particular color filter arrangement used in some embodiments.
- the filter arrangement shown in FIG. 6B may be used at filter plane 202 .
- the filter arrangement shown in FIG. 6B may be used in the set of optical chain modules 130 before the sensors, e.g., between the set of L1 and L2 lenses. However, this position is not required for some embodiments and the user of inner lenses L2 is also not required for some embodiments.
- the filter configuration 6002 of FIG. 6B includes single color filters in each of a plurality of optical chain modules, e.g., the six outer optical chain modules (OCM1 to OCM6). Multiple optical chain modules are dedicated to each of the three colors, red (R), green (G) and blue (B).
- the optical chain modules (OCM1, OCM4) with the red filter (RF), (OCM 1 RF 6502 , OCM 4 RF 6508 ) pass and sense red light.
- the optical chain modules (OCM 2, OCM 5) with the green filter (GF), OCM 2 GF 6504 , OCM 5 GF 6510 pass and sense green light.
- optical chain modules with the blue filter (BF), OCM 3 BF 6506 , OCM 6 BF 6512 , pass and sense blue light.
- OCM 3 BF 6506 the blue filter
- OCM 6 BF 6512 pass and sense blue light.
- there is a single color filter per lens for the outer lenses e.g., a single color filter corresponding to each of OCM 1-OCM 6.
- there are multiple OCMs per single color e.g., 2 OCMs for each of Red, Green, and Blue.
- the optical chains can be optimized for the spectral range corresponding to the particular color to which the chain corresponds.
- post capture color compensation can be simplified since each of the six outer optical modules capture a single known color.
- noise can be averaged between the sensor corresponding to the same color and/or different exposure times can be used for the different OCMs corresponding to an individual color extending the dynamic range of the sensors to cover a range wider than could be captured by a single sensor.
- different exposure times may be used for different colors to take into consideration particular color biased lighting conditions and/or facilitate the implementation of particular color effects that may be desired.
- each color R, G, B being captured at a resolution 1 ⁇ 3 that of the pixel resolution of the image sensor being used in an optical chain module.
- RGB Multicolor Filter OCM 7 RGBF 6514 , corresponding to OCM 7.
- OCM 7 filter 6514 is a RGB filter, e.g., a Bayer filter.
- an opening which allows all colors to pass is used in place of OCM 7 RGB filter 6514 , but the sensor area corresponding to OCM 7 includes R, G, and B filters corresponding to different sensor area portions.
- OCM 7 is used for preview.
- the sensors for OCM 1 through OCM 6 have no filters.
- a composite image is generated and displayed as a preview image
- an image captured by a single sensor is displayed as the preview image on the display of the camera device.
- the multi-colored filter incorporated into the sensor, e.g., Bayer filter, of OCM 7 allows a color image to be captured by a single lens and used as the preview image.
- the image may be of lower quality than that which can be generated by creating a composite of the multiple OCMs given the small display size the difference in image quality between the preview image generated from OCM 7 and that of a composite image may not be sufficient to justify the processing, power, and/or time required to generate a composite image for preview purpose. Accordingly, the FIG. 6B filter arrangement provides a great deal of flexibility while being able to support a wide variety of exposure and other image capture related features.
- FIG. 7A shows optical chain module L1 lenses (OCM 1 L1 7402 , OCM 2 L1 7404 , OCM 3 L1 7406 , OCM 4 L1 7408 , OCM 5 L1 7410 , OCM 6 L1 7412 , OCM 7 L1 7414 ), which may be located a plane 201 .
- OCM 1 L1 7402 optical chain module L1 lenses
- OCM 2 L1 7404 OCM 3 L1 7406
- OCM 4 L1 7408 OCM 5 L1 7410
- OCM 6 L1 7412 OCM 7 L1 7414
- FIG. 6C shows optical chain module L2 lenses (OCM 1 L2 7602 , OCM 2 L2 7604 , OCM 3 L2 7606 , OCM 4 L2 7608 , OCM 5 L2 7610 , OCM 6 L2 7612 , OCM 7 L2 7614 ), which may be located at plane 203 .
- the filter arrangement shown in drawing 7002 of FIG. 7B is also the same or similar to that shown in FIG. 6B but in the FIG. 7B example exposure time is also included. While the exposure is controlled by use of the exposure control device in some embodiments the concept can be understood from FIG. 7B .
- FIG. 7B In FIG.
- Element 7502 indicates that OCM 1 uses a red filter and is controlled for a medium exposure.
- Element 7504 indicates that OCM 2 uses a green filter and is controlled for a short exposure.
- Element 7506 indicates that OCM 3 uses a blue filter and is controlled for a short exposure.
- Element 7508 indicates that OCM 4 uses a red filter and is controlled for a long exposure.
- Element 7510 indicates that OCM 5 uses a green filter and is controlled for a long exposure.
- Element 7512 indicates that OCM 6 uses a blue filter and is controlled for a long exposure.
- Element 7514 indicates that OCM 7 uses a RGB filter, e.g., a Bayer filter, and is controlled for medium exposure.
- OCM 1 through OCM 6 there is a single color filter per OCM, and multiple OCMs per color.
- the center OCM, OCM 7, is used for preview.
- filters corresponding to OCM 1 through OCM 7, are included at plane 202 .
- the filters corresponding to OCM 1 through OCM 6 are included at plane 202 ; there is an opening at plane 2 corresponding to OCM 7, which allows all the colors to pass; and the sensor area corresponding to OCM 7 includes R, G, and B filters corresponding to different sensor area portions, e.g., the sensor for OCM 7 includes an RGB Bayer filter.
- the sensors for OCM 1 through OCM 6 have no filters.
- the preview image is generated using the medium exposure optical chain module while the two different optical chain modules corresponding to a given color use different exposures.
- the short exposure time can be used to reliably capture information corresponding to light (e.g., bright) portions of an image while the long exposure optical chain module can be used to capture information corresponding to the darker portions of an image.
- the sensed pixel values from the two optical chains can be processed to exclude values generated by saturated sensors and to combine pixel values corresponding to the same image area in a manner weighted according to the exposure duration for pixel value within the acceptable operating range of the optical chain module's sensors.
- FIG. 8 illustrates an optical chain arrangement used in one panoramic camera device 8000 in which multiple optical chains and different lens angles are used to capture images that are well suited for combining into a panoramic image.
- A1 represents a first non-zero angle
- S represents a straight or 0 degree angle
- A2 represents a second non-zero angle.
- A1 causes the corresponding camera chain module to capture images to the right of the camera
- S causes the corresponding camera chain module to capture images straight ahead of the camera
- A2 causes the corresponding camera chain module to capture images to the left the camera, from the perspective of the user behind the camera.
- the optical chain modules capture some image portion which is also captured by the adjacent optical chain module.
- the OCMs in columns 803 , 805 and 807 capture different scenes which, while overlapping, can be stitched together to provide an ultra wide angle panoramic image.
- the OCMs in each of rows 811 , 813 , 815 , 817 , 819 , 821 , 823 capture different versions of the same scene.
- the panoramic camera device 8000 includes multiple optical chain modules corresponding to each of the left, right and center views. Twenty one optical chain modules (seven sets of three) are shown allowing for two optical chain modules per color (R, G, B) plus a seventh multi-color (R, G, B) optical chain module which can be used to support a preview mode of operation.
- the multi-color optical chain module may include a sensor with a multicolor filter, e.g., a Bayer pattern filter, allowing the single sensor to capture the multiple colors using different portions of the sensor. While the panoramic configuration shown in FIG. 8 is different from that of the non-panoramic camera embodiments previously discussed the exposure control and separate color capture benefits remain the same as those discussed with regard to the other embodiments.
- FIG. 8 illustrates a particular panoramic embodiment
- a prism or angled lens is inserted into one or more optical chain modules, e.g., by rotation, vertical movement, horizontal movement and/or a combination of vertical and horizontal movement of a platter upon which the prism or lens is mounted.
- the prisms or changes in lens angles change the scene area perceived by one or more optical chain modules allowing the different optical chain modules to capture different views of a scene which can, and in some embodiments are, used to generate a panoramic image, e.g., picture.
- camera modules used to capture images corresponding to the same scene which are then combined to generate a combined image can also be used at a different time to capture images corresponding to different views and/or scenes which can then be subsequently combined to form a panoramic image, e.g., photograph.
- ultra wide angle panoramic images can be generated using multiple optical chain modules of the type previously discussed thereby providing panoramic cameras many of the benefits of large lens without the need for the camera depth, weight and other disadvantages associated with large lenses.
- the multi-optical chain module embodiments of the present invention are well suited for stereoscopic image generation and for generating image depth maps. Accordingly the camera devices of the present invention support a wide range of applications and modes of operation and provide significant amounts of image data which can be used to support a wide range of post capture image processing operations.
- Method 300 of FIG. 9 illustrates one exemplary method of producing at least one image of a first scene area in accordance with the present invention.
- the processing steps of the method 300 of FIG. 9 will now be explained in view of the camera device 100 of FIG. 1A .
- the method 300 of FIG. 9 starts at start step 302 with the start of the steps of the method being implemented, e.g., on processor 110 . Operation proceeds from start step 302 to step 304 .
- step 304 user input is received to control the capture of at least one image of the first scene area.
- the user input is received via input device 106 which may be, and in some embodiments is, a button or touch sensitive screen.
- the user input may, and in some embodiments does, indicate a portion of the first scene area that is to be focused, e.g., in an image to be captured or a combined image to be generated from two or more captured images. From step 304 processing proceeds to step 308 .
- a plurality of three or more optical chain modules are operated in parallel to capture images of the first scene area, said images including at least a first image of said first scene area, a second image of said first scene area, and a third image of said first scene area.
- OCMs optical chain modules
- each one of the first, second and third optical chain modules captures a corresponding one of the first, second and third image respectively.
- operating a plurality of three or more optical chain modules in parallel to capture images of the first scene area, said images including at least a first image of said first scene area, a second image of said first scene area, and a third image of said first scene area includes sub-processing steps 310 , 312 , and 314 .
- a first optical chain module is operated to capture a first image 316 of the first scene area.
- the image data and other data such as camera device configuration information associated with the first image is stored in the data/information 120 portion of memory 108 for later processing, output or display.
- processing of sub-steps 312 and 314 also occur.
- a second optical chain module is operated to capture a second image 318 of the first scene area.
- the image data and other data such as camera device configuration information associated with the second image is stored in the data/information 120 portion of memory 108 for later processing, output or display.
- a third optical chain module is operated to capture a third image 320 of the first scene area.
- the image data and other data such as camera device configuration information associated with the third image is stored in the data/information 120 portion of memory 108 for later processing, output or display. Processing then proceeds from step 308 to step 322 .
- each optical chain module of the plurality of optical chain modules includes a lens and the lenses of the plurality of the optical chain modules are arranged along a circle.
- the first optical chain module includes a first lens
- the second optical chain module includes a second lens
- the third optical chain module includes a third lens.
- the first, second and third lenses are arranged uniformly along a circle, e.g. on the vertices of an equilateral triangle.
- the camera device 100 includes a fourth optical chain module including a fourth lens, said fourth lens being positioned in the center of the circle.
- Each of the first, second, third and fourth lens may be, and in some embodiments of the present invention are, the outer lens of each of their respective optical chain modules and are all positioned in the same plane. More generally, in some embodiments of the present invention, there are a plurality of N optical chain modules each including a lens. N ⁇ 1 lenses of the plurality of optical chain modules are arranged along a circle with Nth lens being positioned in the center of the circle.
- FIG. 1B illustrates and example of a camera device 100 with seven optical chain modules which include 7 outer lenses shown as circles, i.e., OCM1, OCM2, OCM3, OCM4, OCM5, OCM6, and OCM7.
- the outer lens of optical chain modules OCM 1, OCM2, OCM3, OCM4, OCM5, and OCM6 are arranged along a circle and the outer lens of optical chain module OCM7 is positioned in the center of the circle.
- the first optical chain module includes in addition to the first lens an image sensor referred to as a first image sensor.
- the second optical chain module includes an image sensor referred to as a second image sensor.
- the third optical chain includes an image sensor referred to as a third image sensor.
- the plurality of lenses of the plurality of optical chain modules are mounted in a cell phone housing with the plurality of lenses oriented in the same direction and in the same plane of the housing.
- the first, second and third lenses of the first, second, and third optical chain modules respectively are mounted in a cell phone housing and are oriented in the same direction and in the same plane of the housing.
- step 322 said first, second, and third images are processed by processor 110 to generate a first combined image 326 of said first scene area.
- step 322 may, and in some embodiments does, include sub-step 324 wherein pixel positions on at least one of said first, second, and third images is shifted prior to generating said first combined image to align the portion of the first scene to be focused.
- Processing then proceeds to step 328 where the generated combined image is stored in data/information 120 of memory 108 , e.g., for potential later display, output from the camera device, and/or additional processing and/or displayed on display 102 of camera device 100 .
- processing step 322 and/or sub-step 324 are performed on an external device such as a computer.
- the first, second and third images are outputted from the camera device 100 via transceiver 114 to the external computer for processing to generate the first combined image 326 .
- the first combined image may then be stored in memory associated with the external device and/or displayed on a display associated with the external computer.
- the first combined image of the first scene area includes the same or fewer pixel values than either of said first, second or third images.
- step 328 processing proceeds to step 304 where processing continues and the method is repeated.
- the size of the diameter of the first, second and third lens of the first, second, and third optical chain modules respectively are the same and the sensors of the first, second and third optical chain modules have the same number of pixels.
- one or more optical chain modules may, and in some embodiments do, have lenses with different diameter sizes and/or sensors with different numbers of pixels.
- the first, second and third lenses of the first, second and third optical chain modules respectively are less than 2 cm in diameter and each of the first, second and third image sensors of the first, second and third optical chain modules support at least 8 Mpixels.
- the first and second lenses are each less than 2 cm in diameter and each of the first and second image sensors support at least 5 Mpixels. However in many embodiments the image sensors support 8 Mpixels or even more and in some embodiments the lenses are larger than 2 cm.
- Various combinations of lens and sensors may be used with a variety of lens sizes being used for different optical chains in some embodiments.
- different optical chains may use lenses with different shapes, e.g., while the lens may be a spherical lens the perimeter of the lens may be cut into one of a variety of shapes.
- lenses of different optical chain modules are shaped and arranged to minimize gaps between lenses.
- Such an approach can have the advantage of resulting in a smoother blur with regard to portions of captured images which are out of focus when combining images captured by different optical chain modules and result in an overall image which more closely approximates what might be expected had a single large lens been used to capture the scene shown in the combined image.
- the diameter size and arrangement of the lenses of the plurality of optical modules may and do vary.
- the number of pixels supported by the sensors of each of the plurality of optical modules may also vary for example depending on the desired resolution of the optical chain module.
- different shifts are used for different portions of the scene to create a single composite image.
- the generated combined image is a panoramic image.
- the optical chain modules are independently focused to the same focal distance. In some embodiments, the optical chain modules are focused together. In some such embodiments, the optical chain modules are focused together by moving a platter on which lenses corresponding to different optical chains are mounted.
- Method 400 of FIG. 10 illustrates an embodiment of a method of producing at least one image of a first scene area in accordance with the present invention.
- the method 400 achieves enhanced sensor dynamic range by combining images captured through the operation of two or more optical chain modules using different exposure times.
- the processing steps of the method 400 of FIG. 10 will now be explained in view of the camera device 100 of FIG. 1A .
- the plurality of optical chain module 130 of camera device 100 of FIG. 1A includes two optical chain modules and in some embodiments an optional third optical chain module which will be referred to as a first, second and third optical chain module respectively.
- the method 400 of FIG. 10 starts at start step 402 with the start of the steps of the method being implemented, e.g., on processor 110 . Operation proceeds from start step 402 to step 404 .
- step 404 one of a plurality of optical chain modules of the camera device is operated to capture an image which will be referred to herein as a fourth image of the first scene.
- one of said first, second or optional third optical chain modules may be, and in some embodiments is, operated to capture the fourth image. This fourth image is captured prior to capturing the first, second or third images which will be discussed in connection with step 410 below.
- step 406 the fourth image is displayed on the display 102 of the camera device 100 .
- the fourth image is also stored in data/information 120 of memory 108 . Processing then proceeds from step 406 to step 408 .
- step 408 user input is received to control the capture of an image of the first scene area.
- the user input is received via input device 106 which may be, and in some embodiments is, a button or touch sensitive screen.
- input device 106 which may be, and in some embodiments is, a button or touch sensitive screen.
- the user may touch a portion of the touch sensitive screen on which the fourth image is shown to focus the camera on a portion of the scene for which an image is to be captured.
- processing proceeds to step 410 where the plurality of optical chain modules 130 are operated in parallel to capture images of the first scene area.
- Step 410 includes sub-steps 412 , 414 , and optional sub-step 416 .
- a first optical chain module is operated to capture a first image 418 of the first scene area using a first exposure time.
- a second optical chain module is operated to capture a second image 420 of the first scene area using a second exposure time, at least said first and said second exposure times being of different duration but overlapping in time.
- an optional sub-step 416 is performed wherein a third optical chain module is operated to capture a third image 422 of the first scene area using a third exposure time.
- the third exposure time is different than the first and second exposure times.
- Additional optical chain modules may be, and in some embodiments are, used to capture additional images of the first scene area with the additional optical chain modules using the same or different exposure times as the first, second or third exposure times so as to obtain additional image data for the first scene area.
- Sub-steps 412 , 414 , and optional sub-step 416 are performed in parallel so that multiple images of the first scene are captured in parallel with different exposure times.
- the first, second and optional third captured images may be, and in some embodiments are, stored in data/information 120 of memory section 108 to be available for later use such as for example in later steps of the method for generating a combined image of the first scene area, or for display or outputting of images.
- step 404 the operation of one of the first, second and third optical chain modules to capture the fourth image of the first scene area uses a fourth exposure time different from said first, second and third exposure times.
- step 404 occurs prior to the step 410 as the fourth image is displayed on the display 102 so the user can utilize the displayed image to target the scene area to be captured by the first, second and optional third images.
- step 424 the captured images, that is the first and second images, are processed to generate a first combined image of the first scene area 430 .
- step 428 optional sub-step 428 is performed wherein the third image in addition to the first and second image is also processed to generate the first combined image of the scene area 430 .
- step 424 is accomplished using sub-step 426 wherein said processing of said first and second images and optionally said third image to generate a first combined image of the first scene area includes combining weighted pixel values of said first image, second image, and optional third image.
- the weighting of the pixel values may, and in some embodiments is a function of exposure times.
- a pixel value of the combined image is generated by weighting and summing a pixel value from each of the first, second and third images, where the pixel value from the first image is weighted according to the first exposure time used to capture the first image, the pixel value from the second image is weighted according the second exposure time used to capture the second image and the pixel value from the third image is weighted according to the third exposure time used to capture the third image.
- step 432 the generated first combined image of the first scene area is stored in data/information 120 of memory 108 and/or displayed on the display 102 , e.g., touch sensitive display of the camera device 100 .
- step 432 Operation proceeds from step 432 to step 404 where processing continues and the method is repeated.
- step 424 is performed on an external device such as a computer that is coupled to the camera device 100 via the transceiver interface 114 .
- the first, second and optional third images are transmitted to the external device via the transceiver interface 114 where the step 424 is performed.
- Step 432 is then typically performed by the external device with the combined image 430 being stored in memory associated with the external device and/or displayed on a display associated with the external device.
- Method 400 may be, and in some embodiments is, implemented on a variety of devices including for example, a camera or a mobile device such as a mobile cellular telephone or a tablet.
- the optical chain modules include single color filters.
- the first optical chain module includes a red filter
- the second optical chain module includes a green filter
- the third optical chain module includes a blue filter.
- at least two optical chain modules are provided for each color for which a single color filter is used.
- the plurality of optical chains modules include two optical chain modules with a red filter, two optical chain modules with a green filter and two optical chain modules with a blue filter.
- different optical chain modules having single color filters corresponding to the same color have different exposure times.
- the combined image is generated using captured images of the first scene area from: (i) an optical chain module including a first color filter and a using first exposure time, (ii) an optical chain including a second color filter and using a first exposure time, (iii) an optical chain including a third color filter and using a first exposure time, (iv) an optical chain module including a first color filter and a using second exposure time, (ii) an optical chain including a second color filter and using a second exposure time, (iii) an optical chain including a third color filter and using a second exposure time.
- the first color is red; the second color is green; and the third color is blue; the first exposure time is a short exposure time and the second exposure time is a long exposure time.
- At least some optical chain modules do not include any color filters.
- Method 500 of FIG. 11 illustrates an embodiment of a method of producing at least one image of a first scene area in accordance with the present invention.
- the method 500 achieves enhanced sensor dynamic range by combining images captured through the operation of two or more optical chain modules using different exposure times.
- the processing steps of the method 500 of FIG. 11 will now be explained in view of the camera device 100 of FIG. 1A .
- the plurality of optical chain module 130 of camera device 100 of FIG. 1A includes two optical chain modules and in some embodiments an optional third optical chain module which will be referred to as a first, second and third optical chain module respectively.
- Method 500 is similar to method 400 but implements the capture of the fourth image and display of the fourth image after the first, second and third images have been captured. In this way the user of the device is able to see on the display the first scene area that was captured in the first, second and optional third image and which will be processed to generate a combined image.
- the method 500 of FIG. 11 starts at start step 502 with the start of the steps of the method being implemented, e.g., on processor 110 . Operation proceeds from start step 502 to step 504 .
- step 504 user input is received to control the capture of the image of the first scene area.
- the user input is received via input device 106 which may be, and in some embodiments is, a button or touch sensitive screen.
- step 506 processing proceeds to step 506 where the plurality of optical chain modules 130 are operated in parallel to capture images of the first scene area.
- Step 506 includes sub-steps 510 , 512 , and optional sub-step 514 .
- a first optical chain module is operated to capture a first image 516 of the first scene area using a first exposure time.
- a second optical chain module is operated to capture a second image 518 of the first scene area using a second exposure time, at least said first and said second exposure times being of different duration but overlapping in time.
- an optional sub-step 514 is performed wherein a third optical chain module is operated to capture a third image 520 of the first scene area using a third exposure time.
- the third exposure time is different than the first and second exposure times.
- Additional optical chain modules may be, and in some embodiments are, used to capture additional images of the first scene area with the additional optical chain modules using the same or different exposure times as the first, second or third exposure times so as to obtain additional image data for the first scene area and thereby enhancing the effective sensor dynamic range of the camera device.
- Sub-steps 510 , 512 , and optional sub-step 514 are performed in parallel so that multiple images of the first scene are captured in parallel with different exposure times.
- the first, second and optional third captured images may be, and in some embodiments are, stored in data/information 120 of memory section 108 to be available for later use such as for example in later steps of the method for generating a combined image of the first scene area, or for display or outputting of the images. Operation proceeds from step 506 to steps 522 and 528 .
- one of said first, second and optional third optical chain modules is operated to capture a fourth image 524 of the first scene area after capturing one of said first, second and third images. While in this particular embodiment the fourth image is captured after the first, second and third images, in some embodiments one of the first, second and third images is used as the fourth image. In some embodiments a fourth exposure time different from said first, second and third exposure times is used to capture the fourth image 524 .
- the fourth image may be, and in some embodiments is stored in data/information 120 of memory 108 for potential later use, output or display. Processing proceeds from step 522 to step 526 .
- step 526 the fourth image of the first scene area is displayed on display 102 of the camera device, e.g., a touch sensitive screen so that a user of the camera device can see an image of the first scene area that was captured by the first, second and optional third images. Processing proceeds from step 526 to step 504 where processing associated with the method continues as the method is repeated.
- step 528 the first and second images are processed to generate a first combined image of the first scene area 534 .
- optional sub-step 532 is performed wherein the third image in addition to the first and second images is also processed to generate the first combined image of the scene area 534 .
- step 528 is accomplished using sub-step 530 wherein said processing of said first and second images and optionally said third image to generate a first combined image of the first scene area includes combining weighted pixel values of said first image, second image, and optional third image.
- the weighting of the pixel values may, and in some embodiments is a function of exposure times.
- a pixel value of the combined image is generated by weighting and summing a pixel value from each of the first, second and third images, where the pixel value from the first image is weighted according to the first exposure time used to capture the first image, the pixel value from the second image is weighted according the second exposure time used to capture the second image and the pixel value from the third image is weighted according to the third exposure time used to capture the third image.
- step 536 the generated first combined image of the first scene area is stored in data/information 120 of memory 108 and/or displayed on the display 102 , e.g., the touch sensitive display of the camera device 100 .
- step 536 Operation proceeds from step 536 to step 504 where processing continues and the method is repeated.
- step 528 is performed on an external device such as a computer that is coupled to the camera device 100 via the transceiver interface 114 .
- the first, second and optional third images are transmitted to the external device via the transceiver interface 114 where the step 528 is performed.
- Step 536 is then typically performed by the external device with the combined image 534 being stored in memory associated with the external device and/or displayed on a display associated with the external device.
- Method 500 may be, and in some embodiments, is implemented on a variety of devices including for example, a camera or a mobile device such as a mobile cellular telephone or a tablet.
- an external computer to perform some or a part of the processing of the first, second and optional third images allows for the use of computational more complex algorithms as the external computer may be, and in some embodiments does have, a computationally more powerful processing capability than the camera device 100 .
- the optical chain modules include single color filters.
- the first optical chain module includes a red filter
- the second optical chain module includes a green filter
- the third optical chain module includes a blue filter.
- at least two optical chain modules are provided for each color for which a single color filter is used.
- the plurality of optical chains modules include two optical chain modules with a red filter, two optical chain modules with a green filter and two optical chain modules with a blue filter.
- different optical chain modules having single color filters corresponding to the same color have different exposure times.
- the combined image is generated using captured images of the first scene area from: (i) an optical chain module including a first color filter and a using first exposure time, (ii) an optical chain including a second color filter and using a first exposure time, (iii) an optical chain including a third color filter and using a first exposure time, (iv) an optical chain module including a first color filter and a using second exposure time, (ii) an optical chain including a second color filter and using a second exposure time, (iii) an optical chain including a third color filter and using a second exposure time.
- the first color is red; the second color is green; and the third color is blue; the first exposure time is a short exposure time and the second exposure time is a long exposure time.
- optical chain modules do not include any color filters.
- optical chain modules OCM 171 and OCM 173 do not include color filters.
- OCM 171 and OCM 173 each include a color filter.
- Method 600 of FIG. 12 illustrates an embodiment of a method of producing at least one color image of a first scene area in accordance with the present invention.
- the method 600 uses color filters in connection with combining two or more images of a first scene area to obtain a color image of the first scene area.
- the processing steps of the method 600 of FIG. 12 will now be explained in view of the camera device 100 of FIG. 1A .
- the plurality of optical chain module 130 of camera device 100 of FIG. 1A includes two optical chain modules and in some embodiments an optional third and/or fourth optical chain module which will be referred to as a first, second, third and fourth optical chain module respectively.
- the method 600 of FIG. 12 starts at start step 602 with the start of the steps of the method being implemented, e.g., on processor 110 . Operation proceeds from start step 602 to step 604 .
- a fourth optical chain module of the camera device is operated to capture an image, e.g., a image referred to herein as a fourth image of a first scene area using a multi-color filter. This fourth image is captured prior to capturing the first, second or third images which will be discussed in connection with step 610 below.
- Processing then proceeds to optional step 606 where the fourth image is displayed on the display 102 of the camera device 100 .
- the fourth image is displayed on the display of the camera device 100 .
- a user can aim the camera device and target the first scene area for which the user wants to capture an image.
- the fourth image is also stored in data/information 120 of memory 108 . Processing then proceeds from step 606 to step 608 .
- step 608 user input is received to control the capture of an image of the first scene area.
- the user input is received via input device 106 which may be, and in some embodiments is, a button or touch sensitive screen.
- input device 106 may be, and in some embodiments is, a button or touch sensitive screen.
- the user may touch a portion of the touch sensitive screen on which the fourth image is shown to focus the camera on a portion of the scene for which an image is to be captured.
- processing proceeds to step 610 where the plurality of optical chain modules 130 are operated in parallel to capture images of the first scene area.
- Step 610 includes sub-steps 612 , 614 , and optional sub-step 616 .
- a first optical chain module is operated to capture a first image 618 of the first scene area using a first color filter.
- a second optical chain module is operated to capture a second image 620 of the first scene area using a second color filter, said first and said second color filters corresponding to a first color and a second color respectively. Said first and said second colors being different colors.
- said first and second color filters are single color filters which correspond to said first and second colors, respectively.
- an optional sub-step 616 is performed wherein a third optical chain module is operated to capture a third image 622 of the first scene area using a third color filter.
- the third color filter corresponds to a color that is different from said first and second colors.
- the third color filter is a single color filter which corresponds to said third color.
- Additional optical chain modules may be, and in some embodiments are, used to capture additional images of the first scene area with the additional optical chain modules using the same or different color filters as the first, second or third color filters so as to obtain additional image data for the first scene area.
- Sub-steps 612 , 614 , and optional sub-step 616 are performed in parallel so that multiple images of the first scene area are captured in parallel with different color filters.
- the first, second and optional third captured images may be, and in some embodiments are, stored in data/information 120 of memory section 108 to be available for later use such as for example in later steps of the method for generating a combined image of the first scene area, or for display or outputting of images.
- the first optical chain module includes a first lens and a first image sensor and the second optical module includes a second lens and a second image sensor and the optional third optical chain module includes a third lens and a third image sensor.
- said first and said second image sensors are of the same resolution.
- said optional third image sensor of said third optical chain module has the same resolution as the first and second image sensors.
- the fourth optical chain module includes a fourth lens and a fourth image sensor.
- the fourth image sensor is of the same resolution as the first and second image sensor.
- the first, second and third lenses of the first, second and third optical chain modules are arranged in a circle, and the fourth lens of the fourth optical chain is arranged in the center of the circle.
- step 624 the captured images, that is the first and second images, are processed to generate a first combined image of the first scene area 630 .
- the optional third image was captured optional sub-step 628 is performed wherein the third image in addition to the first and second images is also processed to generate the first combined image of the scene area 630 .
- the fourth image of the first scene area is also processed with the first, second and third images to generate the first combined image of the first scene area.
- step 632 the generated first combined image of the first scene area is stored in data/information 120 of memory 108 and/or displayed on the display 102 , e.g., a touch sensitive display of the camera device 100 .
- step 632 Operation proceeds from step 632 to step 604 where processing continues and the method is repeated.
- step 624 is performed on an external device such as a computer that is coupled to the camera device 100 via the transceiver interface 114 .
- the first, second and optional third images are transmitted to the external device via the transceiver interface 114 where the step 624 is performed.
- Step 632 is then typically performed by the external device with the combined image 630 being stored in memory associated with the external device and/or displayed on a display associated with the external device.
- Method 600 may be, and in some embodiments, is implemented on a variety of devices including for example, a camera or a mobile device such as a mobile cellular telephone or a tablet.
- each image is presented as it is captured on the display or in the case of a combined image when said image has been generated.
- each of the captured images e.g., the first, second, third, and fourth images may be, and is, displayed on the display 102 of the camera device 100 as it is captured along with one or more combined images that are formed by processing and/or combining the first, second, third and/or fourth images.
- each of the images may be, is shown, in a separate portion of the display with the size of the image being adjusted so that each image displayed is shown in its entirety.
- a caption is automatically placed under each image as it displayed on the screen.
- the caption includes the number of the image or an indication that it is a combined image, e.g., image 1, image 2, image 3, image 4, combined image from image 1, 2, 3, and 4.
- each image is presented as it is captured on the display or in the case of a combined image when said image has been generated.
- the images may be arranged in a variety of ways on the display 102 after capture and the aforementioned embodiments are only meant to be exemplary in nature.
- the image generated by combining the images captured from two or more of the optical chain modules is displayed for targeting purposes so that the user may provide input to control the capture of the image of the scene area and/or the object in the scene upon which the combined image should be focused.
- the FIG. 13 assembly of modules 1300 may, and in some embodiments is, used to process data for example first, second, third and fourth images and associated data, and storing and displaying images.
- Assembly of modules 1300 may be included in an exemplary apparatus, e.g., a camera device, e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , and/or camera device 1905 of FIG. 19 , in accordance with an exemplary embodiment.
- a camera device e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , and/or camera device 1905 of FIG
- assembly of modules 1300 is included in memory in an exemplary camera device, e.g., memory 108 of camera device 100 of FIG. 1A , memory 213 of camera device 200 of FIG. 2 , memory 73 of camera device 60 of FIG. 4 , memory of camera device 1500 of FIG. 15 , memory of camera device 1605 of FIG. 16 , memory in camera device 1705 of FIG. 17 , memory in camera device 1801 of FIG. 18 , and/or memory of camera device 1901 of FIG. 19 .
- assembly of modules 1300 may be included as part of assembly of modules 118 of memory 108 of camera device 100 of FIG. 1 .
- assembly of modules 1300 is implemented in hardware. In some embodiments, assembly of modules 1300 is implemented as software. In some embodiments, assembly of modules 1300 is implemented as a combination of hardware and software.
- all or part of assembly of modules 1300 may be included as part of a processor, e.g., as part of processor 110 of camera device 100 of FIG. 1A .
- the assembly of modules 1300 includes a image processing module 1302 , a display module 1304 , and a storage module 1306 .
- the modules implemented one or more of the previously discussed image processing steps and may include a variety of sub-modules, e.g., an individual circuit, for performing an individual step of method or methods being implemented.
- Image processing module 1302 is configured to: (1) process said first, second and third images to generate a first combined image of a first scene area, (2) receive user input indicating a portion of the first scene area to be focused in the first combined image; and/or (3) shift pixel positions on at least one of said first second and third images prior to generating said first combined image to align the portion of the first scene area to be focused, as part of processing said first, second, and third images to generate a first combined image; and (4) weight and sum a combination of pixel values of the first and second images corresponding to the same portion of the first scene area as a function of the first and second exposure times respectively and summing the weighted pixel values.
- image processing module 1302 is further configured to process said third image to generate said first combined image of said first scene area from the third image in addition to said first and second images.
- Display module 1304 is configured to display said fourth image on said display and configured to display said combined image on said display.
- Storage module 306 is configured to store or more or said first image, said second image, said third image, said fourth image and said combined image in memory.
- FIG. 14 illustrates a computer system which can be used for post processing of images captured using a camera device.
- the computer system 1400 includes a display 1402 , Input/Output (I/O) interface 1412 , receiver 1404 , input device 1406 , transceiver interface 1414 , processor 1410 and memory 1408 .
- Memory 1408 includes a first portion 1424 including data/information 1420 and an assembly of modules 1418 , and a second portion 1426 including storage 1422 .
- the memory 1408 is coupled to the processor 1410 , I/O interface 1412 and transceiver interface 1414 via bus 1416 through which the elements of the computer system 1400 can exchange data and can communicate with other devices via the I/O interface 1412 and/or interface 1414 which can couple the system 1400 to a network and/or camera apparatus.
- image data can be loaded on to the computer system 1400 and subject to processing, e.g., post capture processing.
- the images may be stored in the storage portion 1422 of memory 1408 for processing.
- Data/information 1420 includes, e.g., intermediate processing data and information and criteria used for processing e.g., weighting information, exposure time information, etc.
- the assembly of modules 1418 includes one or more modules or routines which, when executed by the processor 1410 , control the computer system to implement one or more of the image processing operations described in the present application.
- the output of multiple optical receiver chains can be, and in some embodiments is, combined to generate one or more images.
- the resulting images are stored in the storage portion of the memory 1408 prior to being output via the network interface 1414 , though another interface, or displayed on the display 1402 .
- a user can view image data corresponding to one or more individual optical chain modules as well as the result, e.g., image, generated by combining the images captured by one or optical chain modules.
- FIG. 15 illustrates a frontal view of an apparatus 1500 implemented in accordance with one embodiment of the present invention which incorporates multiple optical chain modules.
- Camera device 1500 includes four optical chains OCM 1 1502 , OCM 2 1504 , OCM 3 1506 and OCM 4 1508 .
- OCM 2 1504 including a green filter element 1520
- OCM 3 1506 including a blue filter element 1522 .
- Optical chain module 4 1508 passes all three colors and includes a sensor with a multi-color filter element 1524 , e.g., a Bayer filter.
- the optical chain modules ( 1502 , 1504 , 1506 , 1508 ) may be the same as or similar to those previously described in FIGS. 1-3 .
- FIG. 16 illustrates a frontal view of the outer lenses of an apparatus 1605 , e.g., a camera device, implemented in accordance with one embodiment of the present invention which incorporates multiple optical chain modules and which is designed to have little or no gaps between the outer most lenses of the different optical chain modules.
- the outer most lenses may be the aperture stop lenses in the FIG. 16 embodiment.
- Apparatus 1605 of FIG. 16 includes 7 optical chain modules OCM1, OCM2, OCM3, OCM4, OCMS, OCM6 and OCM7 with the outer lens plane corresponding to lenses L1 as viewed from the front of the camera device being shown in FIG. 16 .
- the 7 optical chain modules are, e.g., optical chain modules (OCM 1 161 , OCM 2 161 ′, OCM 3 161 ′′, . . . , OCM 7 161 ′′′, of FIG. 1D with the outer lens (OCM 1 L1 162 , OCM 2 L1 162 ′, OCM 3 L1 162 ′′, . . . , OCM 7 L1 162 ′′′) being outer lenses (OCM 1 L1 1607 , OCM 2 L1 1609 , OCM 3 L1 1611 , . . . , OCM 7 L1 1619 ) of FIG. 16 , respectively.
- the outer lens L1 of the optical chain module 7 1619 being formed in the shape of a hexagon, i.e., a six sided polygon.
- the outer lenses L1 of optical chain modules 1, 2, 3, 4, 5 and 6 ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) being of same shape and size and when combined with lens L1 of optical module 7 ( 1619 ) forming a circle.
- the optical center of each lens L1 of optical chain modules (OCM 1 L1 1607 , OCM 2 L1 1609 , OCM 3 L1 1611 , OCM 4 L1 1613 , OCM 5 L1 1615 , OCM 6 L1 1617 ) shown as a dark solid dot ( 1612 , 1623 , 1625 , 1627 , 1629 , 1631 ) on the dashed circle 1651 .
- the optical center of lens L1 1619 of optical chain module 7 shown as a dot 1633 in the center of the hexagon and also in center of the dashed line 1651 .
- a block separator or other light block may be used between the lenses to stop light leakage between the different lenses.
- the dots ( 1621 , 1623 , 1625 , 1627 , 1629 , 1631 , 1633 ) in FIG. 16 represent the optical center of the individual lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ), respectively.
- each outermost lens is a round convex lens with its parameter cut to the shape shown in FIG. 16 so that the lenses fight closely together.
- the little or no gap between the front lenses e.g., the total area of the gap between the lenses occupies less than 5% of the total area of the front area of the lens assembly, e.g., circle shown in FIG. 16 , occupied by the lenses when assembled together.
- the lack of or small size of the gaps facilitates generating combined images with a desirable bokehs or blurs in the combined image with regard to image portions which are out of focus, e.g., in some cases without the need for extensive and potentially complex processing to generate the combined image.
- circle 1603 represents a circular aperture for the camera device 1605 .
- the aperture for the camera device 1605 is a polygon shaped aperture.
- the plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1615 , 1617 , 1619 ) are configured to partition the aperture 1603 into a plurality of light capture areas ( 1641 , 1643 , 1645 , 1647 , 1649 , 1651 , 1653 ), occupying substantially the entire area of the first aperture.
- OCM 1 L1 162 of FIG. 1D is OCM L1 1607 of FIG. 16
- OCM 2 L1 162 ′ of FIG. 1D is OCM 2 L1 1609 of FIG. 16
- OCM 3 L1 162 ′′ of FIG. 1D is OCM 3 L1 1611 of FIG. 16
- OCM N L1 162 ′′′ of FIG. 1D is OCM 7 L1 1619 of FIG. 16 .
- first aperture of camera device 1605 is one of a circular or polygon shaped aperture.
- the first aperture of camera device 1605 corresponds to circle 1603 .
- the first aperture corresponds to a polygon, e.g., a polygon approximately the same size as circle 1603 .
- the polygon fits inside circle 1603 .
- the polygon is a regular polygon.
- the lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) in said plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ) which are arranged along the perimeter of said first aperture 1603 have optical centers ( 1621 , 1623 , 1625 , 1627 , 1629 , 1631 ) which are arranged along a circle 1651 .
- the lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) in said plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ) which are arranged along the perimeter of said first aperture 1603 have optical centers ( 1621 , 1623 , 1625 , 1627 , 1629 , 1631 ) which form the vertices (corners) of a regular polygon 1655 .
- the plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ) includes at least one inner lens 1619 in addition to said lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) arranged along the perimeter of said first aperture 1603 .
- the plurality of lenses includes a total of six lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) along the perimeter of said first aperture 1603 and a single lens ( 1619 ) in the center of said six lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 ) arranged along the perimeter of said first aperture 1603 .
- the non-circular aperture of each of said plurality of lenses is an aperture stop in a corresponding optical chain.
- Each lens in said plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ) is part of a corresponding optical chain, each individual optical chain includes a separate sensor for capturing an image corresponding to said individual optical chain.
- Apparatus 1605 e.g., a camera device, further includes a module, e.g., module 1302 of FIG. 13 , for combining images captured by separate optical chains into a single combined image.
- the combining images e.g., performed by module 1302 , includes a shift and add based on the position of lenses in said plurality of lenses ( 1607 , 1609 , 1611 , 1613 , 1615 , 1617 , 1619 ).
- Camera device 1605 further includes additional elements shown in FIG. 1A including a processor, a memory and a display.
- FIG. 17 illustrates a frontal view of the outer lenses of an apparatus 1705 implemented in accordance with one embodiment of the present invention which incorporates multiple optical chain modules and outer lenses, e.g., the aperture stop lens for each of the corresponding optical chains, arranged to have non-uniform spacing between the optical centers of the lenses.
- the FIG. 17 embodiment is similar to the FIG. 16 embodiment but with non-uniform spacing of the optical centers of lenses along the outer parameter of the lens assembly.
- the non-uniform spacing facilitates depth of field determinations particularly when performing block processing and the entire field of view may not be under consideration when processing a block or sub-portion of the captured field of view.
- the optical chain modules shown in FIGS. 16 and 17 are the same or similar to those previously described with reference to FIG.
- the dots ( 1721 , 1723 , 1725 , 1727 , 1729 , 1731 , 1733 ) in FIG. 17 represent the optical center of the individual lenses ( 1707 , 1709 , 1711 , 1713 , 1715 , 1717 , 1719 ), respectively.
- FIG. 18 illustrates another exemplary camera device 1801 including a plurality of first through fifth optical chain modules ( 1890 , 1891 , 1892 , 1893 , 1894 ) each of which includes an outer lens ( 1813 , 1815 , 1817 , 1819 , 1821 ), respectively, represented as a circle on the outer lens platter 1803 .
- Each outer lens ( 1813 , 1815 , 1817 , 1819 , 1821 ) has an optical axis ( 1805 , 1806 , 1807 , 1808 , 1809 ), respectively.
- the optical axis ( 1805 , 1806 , 1807 , 1808 , 1809 ) is represented by an X, indicating that the axis goes down into the lens ( 1813 , 1815 , 1817 , 1819 , 1821 ).
- the optical axis ( 1805 , 1806 , 1807 , 1808 , 1809 ), are parallel to each other.
- arrows made of dashed lines represent the path of light for the corresponding optical chain module after light which entered the outer lens along the optical axis of the outer lens is redirected by the mirror or other light redirection device.
- the arrows represents the direction and general light path towards the sensor of the optical chain to which the arrow corresponds.
- the image deflection element, e.g., a mirror, of the optical chain changes the direction of the optical rays passing along the optical axis of the outer lens by substantially 90 degrees to direct the optical rays passing along the optical axis onto the sensor.
- the image deflection element 1823 e.g., a mirror, of the optical chain 1890 changes the direction of the optical rays passing along the optical axis 1805 of the outer lens 1813 by substantially 90 degrees to direct the optical rays passing along the optical axis onto the sensor 1853 .
- each of the optical chain modules ( 1890 , 1891 , 1892 , 1893 , 1894 ) includes, in addition to an outer lens ( 1813 , 1815 , 1817 , 1819 , 1821 ), a mirror or other device, e.g., prism, ( 1823 , 1825 , 1827 , 1829 , 1831 ), respectively, for changing the angle of light received via the corresponding outer lens ( 1813 , 1815 , 1817 , 1819 , 1821 ), respectively.
- a mirror or other device e.g., prism
- each optical chain module ( 1890 , 1891 , 1892 , 1893 , 1894 ), includes a filter ( 1833 , 1835 , 1837 , 1839 , 1841 ), respectively, and an inner lens ( 1843 , 1845 , 1847 , 1849 , 1851 ), respectively.
- each optical chain module ( 1890 , 1891 , 1892 , 1893 , 1894 ) includes a sensor ( 1853 , 1855 , 1857 , 1859 , 1861 ), respectively.
- the first optical chain module (OCM 1 1890 ) include outer lens L1 1813 , mirror 1823 , filter 1833 , inner lens L2 1843 and sensor 1853 .
- Filters 1833 , 1835 , 1837 , 1839 , and 1841 are mounted on a movable cylinder 1875 represented as a circle shown using small dashed lines.
- the cylinder 1875 may be rotated and/or moved forward or backward allowing lenses and/or filters on the cylinder to be easily replaced with other lenses, filter, or holes mounted on the cylinder 1875 . While in the FIG.
- an exit hole is provided to allow light to exit cylinder 1875 after passing through one of the filters 1833 , 1835 , 1837 , 1839 , or 1841 it should be appreciated that rather than an exit hole another lens or filter may be mounted on the cylinder 1875 allowing two opportunities for the light to be filtered and/or passed through a lens as is passes through the cylinder 1875 .
- a second filter or lens which is not shown in FIG. 18 for simplicity is included at the exit point for the light as it passes through cylinder 1804 .
- Inner lenses are mounted on cylinder 1885 which is actually closer to the outside sidewalls of the camera device 1801 than the filters mounted on cylinder 1875 .
- lenses mounted on a moveable platter positioned between the outer lens platter 1803 and mirrors which may, and in some embodiments are, also mounted on a platter are used to support autofocus.
- the lens platter between the outer lens platter and mirror platter is moved in or out to perform focus operations for each of the optical chain modules in parallel.
- different sets of lens are mounted on the drum 1885 or 1875 with different lens sets being mounted with a different offset distance from the surface of the drum.
- the FIG. 18 embodiment by changing the direction of light through the use of mirrors, prisms and/or other devices allows for the length of the individual optical chains to be longer than the camera device is thick. That is, the side to side length of the camera device 1801 can be used in combination with a portion of the front to back length to create optical chains having a length longer than the depth of the camera device 1801 .
- the longer optical chain length allows for more lenses and/or filters to be used as compared to what may be possible with shorter optical chain lengths.
- the change in the direction of light allows for the use of cylinders for mounting lenses, filters and/or holes which can be easily interchanged by a simple rotation or axial, e.g., front to back movement, of the cylinder on which the lenses, filters and/or holes corresponding to multiple optical chains are mounted.
- sensors may be fixed and/or mounted on a movable cylinder 1899 .
- sensors may be easily switched, changes between sensors or sets of sensor can be easily made by rotating the cylinder on which the sensors are mounted.
- a single mirror is shown in FIG. 18 in each optical chain module, additional mirrors may be used to further extend the length of the optical path by reflecting in yet another direction within the housing of the camera device 1801 .
- FIG. 18 embodiment allows for a combination of lens, filter, and/or hole mounting platters arranged parallel with the platter extending left to right within the camera device and cylinders arranged so that the top and bottom of the cylinder extend in the front to back direction with respect to the camera body, e.g., with the front of the camera being shown in FIG. 18 .
- Cylinders may be mounted inside of one another providing a large number of opportunities to mount lens, filters and/or holes along the optical paths of each optical chain module and allowing for a large number of possible filter/lens/sensor combinations to be supported, e.g., by allowing for different combinations of cylinder positions for different modes of operation.
- sensors mounted on a cylinder can be achieved by rotating a cylinder
- sensors may be changed by rotating or otherwise moving a platter on which the sensors are mounted.
- the outer lenses ( 1813 , 1815 , 1817 , 1819 , 1821 , of the optical chain modules ( 1890 , 1891 , 1892 , 1893 , 1894 ), respectively, are mounted near the center of the front of the camera device 1801 as shown, e.g., forming a generally circular pattern of outer lenses 1813 , 1815 , 1817 , 1819 , 1821 .
- the optical axes ( 1805 , 1806 , 1807 , 1808 , 1809 ) of lenses ( 1813 , 1815 , 1817 , 1819 , 1821 ) said optical chain modules ( 1890 , 1891 , 1892 , 1893 , 1894 ) are parallel to each other but at least two mirrors ( 1823 , 1825 ) corresponding to different optical chains ( 1890 , 1891 ) are not parallel.
- the light rays of at least two different optical chains ( 1890 , 1891 ) cross prior to reaching the sensor ( 1853 , 1855 ) to which the rays of said at least two different optical chain modules ( 1890 , 1891 ) correspond.
- each optical chain module ( 1890 , 1891 , 1892 , 1893 , 1894 ) includes an image deflection element which includes at least one mirror positioned at 45 degree to said optical axis ( 1890 , 1891 , 1892 , 1893 , 1894 ) of said lens of the optical chain module.
- the image deflection element 1823 is a mirror positioned at 45 degree to the optical axis 1805 of lens 1813 .
- an image deflection element e.g., image deflection element 1823 includes a prism.
- an image deflection element includes multiple mirrors.
- an image deflection element includes a combination including at least one mirror and at least one prism.
- FIG. 19 is similar to the FIG. 18 embodiment in that it illustrates another camera device 1901 including a plurality of optical chain modules which include mirrors or another device for changing the angle of light entering the optical chain module and thereby allowing at least a portion of the optical chain module to extend in a direction, e.g., a perpendicular direction, which is not a straight front to back direction with respect to the camera device.
- FIG. 19 illustrates another exemplary camera device 1901 including a plurality of first through fifth optical chain modules ( 1990 , 1991 , 1992 , 1993 , 1994 ) each of which includes an outer lens ( 1913 , 1915 , 1917 , 1919 , 1921 ), respectively, represented as a circle on the outer lens platter 1903 .
- FIG. 19 differs from the FIG.
- FIG. 19 shows outer and inner cylinders, also some times referred to as drums, 1975 , 1985 , upon which filters, lenses and holes can and in various embodiments are mounted as discussed with regard to the FIG. 18 embodiment.
- cylinders 1975 and 1985 server the same or similar purpose served by cylinders 1875 , 1885 , respectively.
- the FIG. 19 embodiment includes filters and lenses mounted on the inner and outer cylinders in the same or similar manner as filters and lenses are mounted on the cylinders 1875 , 1885 shown in FIG. 18 .
- element 1961 is used to refer to the sensor for the optical chain module 1994 which includes outer lens 1921 , mirror/light redirection device 1931 , filter 1941 and inner lens 1951 .
- the cylinder 1975 is used to mount the filters while cylinder 1985 is used to mount the inner lenses.
- Each outer lens ( 1913 , 1915 , 1917 , 1919 , 1921 ) has an optical axis ( 1905 , 1906 , 1907 , 1908 , 1909 ), respectively.
- the optical axis ( 1905 , 1906 , 1907 , 1908 , 1909 ) is represented by an X, indicating that the axis goes down into the lens ( 1913 , 1915 , 1917 , 1919 , 1921 ).
- the optical axis ( 1905 , 1906 , 1907 , 1908 , 1909 ), are parallel to each other.
- the camera devices 1801 and 1901 may, and in some embodiments do, include a processor, display and/or other components of the camera device shown in FIG. 1A but such elements are not explicitly shown in the FIGS. 18 and 19 embodiments to avoid complicating the figures and being repetitive.
- modules 1300 shown in FIG. 13 illustrates an exemplary assembly of modules, e.g., software or hardware modules, that may be and are used for performing various functions of a image processing system or apparatus used to process images in accordance with embodiments of the present invention.
- modules identified in FIG. 13 are implemented as software modules they may be, and in some embodiments of the present invention are, stored in memory 108 of FIG. 1A in the section of memory identified as assembly of modules 118 .
- These modules may be implemented instead as hardware modules, e.g., circuits.
- the input sensors can be located in a plane, e.g., at the back of the camera device and/or at the front of the camera device.
- the sensors of multiple optical chains are mounted on a flat printed circuit board or backplane device.
- the printed circuit board, e.g. backplane can be mounted or coupled to horizontal or vertical actuators which can be moved in response to detected camera motion, e.g., as part of a shake compensation process which will be discussed further below.
- pairs of light diverting devices e.g., mirrors
- pairs of light diverting devices are used to direct the light so that at least a portion of each optical chain extends perpendicular or generally perpendicular to the input and/or sensor plane.
- Such embodiments allow for relatively long optical paths which take advantage of the width of the camera by using mirrors or other light diverting devices to alter the path of light passing through an optical chain so that at least a portion of the light path extends in a direction perpendicular or generally perpendicular to the front of the camera device.
- the use of mirrors or other light diverting devices allows the sensors to be located on a plane at the rear or front of the camera device as will now be discussed in detail.
- lenses and filters have been described as separate elements, lenses and filters may be combined and used.
- a color lens may, and in some embodiments is, used to both filter light and alter the lights path.
- image processing is used to simulate a wide variety of user selectable lens bokehs or blurs in the combined image with regard to image portions which are out of focus.
- the image quality is not limited to that of an individual one of the lenses and a variety of bokehs can be achieved depending on the particular bokeh desired for the combined image being generated.
- multiple combined images with different simulated bokehs are generated using post image capture processing with the user being provided the opportunity to save one or more of the generated combined images for subsequent viewing and/or printing.
- a physical result e.g., a printed version of one or more combined images is produced.
- images representing real world objects and/or scenes which were captured by one or more of the optical chain modules of the camera device used to take the picture are preserved in digital form on a computer readable medium, e.g., RAM or other memory device and/or stored in the form of a printed image on paper or on another printable medium.
- a computer readable medium e.g., RAM or other memory device
- the camera device and optical chain modules of the present invention can be used to capture video as well.
- a video sequence is captured and the user can select an object in the video sequence, e.g., shown in a frame of a sequence, as a focus area, and then the camera device capture one or more images using the optical chain modules.
- the images may, and in some embodiments are, combined to generate one or more images, e.g., frames.
- a sequence of combined images, e.g., frames may and in some embodiments is generated, e.g., with some or all individual frames corresponding to multiple images captured at the same time but with different frames corresponding to images captured at different times.
- While different optical chain modules are controlled to use different exposure times in some embodiments to capture different amounts of light with the captured images being subsequently combined to produce an image with a greater dynamic range than might be achieved using a single exposure time, the same or similar effects can and in some embodiments is achieved through the use of different filters on different optical chains which have the same exposure time.
- the sensors of different optical chain modules will sense different amounts of light due to the different filters which allowing different amounts of light to pass.
- the exposure time of the optical chains is kept the same by at least some filters corresponding to different optical chain modules corresponding to the same color allow different amounts of light to pass.
- neutral filters of different darkness levels are used in front of sensors which are not color filtered.
- the switching to a mode in which filters of different darkness levels is achieved by a simple rotation or movement of a filter platter which moves the desired filters into place in one or more optical chain modules.
- the camera devices of the present invention supports multiple modes of operation with switching between panoramic mode in which different areas are captured, e.g., using multiple lenses per area, and a normal mode in which multiple lens pointed same direction are used to capture the same scene. Different exposure modes and filter modes may also be supported and switched between, e.g., based on user input.
- FIG. 20 is a drawing of an assembly of modules 2000 in accordance with an exemplary embodiment.
- Assembly of modules 2000 may be included in an exemplary apparatus, e.g., a camera device, e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- a camera device e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- assembly of modules 2000 is included in memory in an exemplary camera device, e.g., memory 108 of camera device 100 of FIG. 1A , memory 213 of camera device 200 of FIG. 2 , or memory 73 of camera device 60 of FIG. 4 , memory in camera device 1500 of FIG. 15 , memory in camera device 1605 of FIG. 16 , memory in camera device 1705 of FIG. 17 , memory in camera device 1801 of FIG. 18 and/or memory camera device 1901 of FIG. 19 .
- assembly of modules 2000 may be included as part of assembly of modules 118 of memory 108 of camera device 100 of FIG. 1 .
- assembly of modules 2000 is included in an exemplary device, e.g., an exemplary camera device, which implements a method in accordance with flowchart 900 of FIG. 9 .
- Assembly of modules 2000 includes a module 2004 configured to receive user input to control capture of at least one image of a first scene, and a module 2008 configured to operate a plurality of three or more optical chain modules in parallel to capture images of a first scene area, said images including at least of a first image of said first scene area, a second image of the first scene area, and a third image of the first scene area.
- Module 2004 includes a module 2006 configured to receive user input indicating a portion of the first scene area to be focused.
- Assembly of modules 2008 includes a module 2010 configured to operate a first optical chain module to capture a first image of the first scene area, a module 2018 configured to operate a second optical chain module to capture a second image of the first scene area, and a module 2014 configured to operate a third optical chain module to capture a third image of the first scene area.
- Assembly of modules 2000 further includes a module 2016 configured to store the captured first image of the first scene area, a module 2018 configured to store the captured second image of the first scene area, and a module 2020 configured to store the captured third image of the first scene area.
- Assembly of modules 2000 further includes a module 2022 configured to process the first, second, and third images to generate a first combined image of the first scene area to be focused.
- Module 2022 includes a module 2024 configured to shift pixel portions of at least one of the first, second, and third images to align the portion of the first scene area to be focused.
- Assembly of modules 2000 further includes a module 2028 configured to store in memory the combined image and a module 2029 configured to display the combined image on a display.
- FIG. 21 is a drawing of an assembly of modules 2100 in accordance with an exemplary embodiment.
- Assembly of modules 2100 may be included in an exemplary apparatus, e.g., a camera device, e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- a camera device e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- assembly of modules 2100 is included in memory in an exemplary camera device, e.g., memory 108 of camera device 100 of FIG. 1A , memory 213 of camera device 200 of FIG. 2 , or memory 73 of camera device 60 of FIG. 4 , memory in camera device 1500 of FIG. 15 , memory in camera device 1605 of FIG. 16 , memory in camera device 1705 of FIG. 17 , memory in camera device 1801 of FIG. 18 , memory in camera device 1901 of FIG. 19 .
- assembly of modules 2100 may be included as part of assembly of modules 118 of memory 108 of camera device 100 of FIG. 1 .
- assembly of modules 2100 is included in an exemplary device, e.g., an exemplary camera device, which implements a method in accordance with flowchart 1000 of FIG. 10 .
- Assembly of module 2100 includes a module 2104 configured to operate one of a plurality of optical chain modules to capture an image, e.g., a fourth image, of a first scene area, a module 2105 configured to display the fourth image on a display, a module 2107 configured to store the fourth image of the first scene area, a module 2108 configured to receive user input to control capture of an image of the first scene area.
- Assembly of modules 2100 further includes a module 2110 configured to operate the plurality of optical chain modules in parallel to capture images of the first scene area.
- Module 2110 includes a module 2112 configured to operate a first optical chain module to capture a first image of the first scene area using a first exposure time, a module 2114 configured to operate a second optical chain module to capture a second image of the first scene area using a second exposure time, and a module 2116 configured to operate a third optical chain module to capture a third image of the first scene area using a third exposure time.
- Assembly of modules 2100 further includes a module 2118 configured to store the captured first image of the first scene area, a module 2120 configured to store the captured second image of the first scene area, and a module 2122 configured to store the captured third image of the first scene area.
- Assembly of modules 2100 further includes a module 2124 configured to process the images to generates a first combined image of the first scene area.
- Module 2124 includes a module 2126 configured to weight and sum a combination of pixel values of the images as a function of exposure time including, e.g., weighting pixel values of the first and second images corresponding to the same portion of the first scene area as a function of the first and second exposure times, respectively, and summing the weighted pixel values, and a module 2128 configured to optionally process the third image in addition to the first and second images to generate the first combined image.
- Assembly of modules 2100 further includes a module 2132 configured to store in memory the combined image and a module 2133 configured to display the combined image on a display.
- FIG. 22 is a drawing of an assembly of modules 2200 in accordance with an exemplary embodiment.
- Assembly of modules 2200 may be included in an exemplary apparatus, e.g., a camera device, e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- a camera device e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- assembly of modules 2200 is included in memory in an exemplary camera device, e.g., memory 108 of camera device 100 of FIG. 1A , memory 213 of camera device 200 of FIG. 2 , memory 73 of camera device 60 of FIG. 4 , memory of camera device 1500 of FIG. 15 , memory of camera device 1605 of FIG. 16 , memory of camera device 1705 of FIG. 17 , memory of camera device 1801 of FIG. 18 , and/or memory of camera device 1901 of FIG. 19 .
- assembly of modules 2100 may be included as part of assembly of modules 118 of memory 108 of camera device 100 of FIG. 1 .
- assembly of modules 2200 is included in an exemplary device, e.g., an exemplary camera device, which implements a method in accordance with flowchart 1100 of FIG. 11 .
- Assembly of module 2200 includes a module 2204 configured to receive user input to control capture of an image of the first scene area, and a module 2206 configured to operate the plurality of optical chain modules in parallel to capture images of the first scene area.
- Module 2206 includes a module 2210 configured to operate a first optical chain module to capture a first image of the first scene area using a first exposure time, a module 2212 configured to operate a second optical chain module to capture a second image of the first scene area using a second exposure time, and a module 2214 configured to operate a third optical chain module to capture a third image of the first scene area using a third exposure time.
- Assembly of modules 2200 further includes a module 2216 configured to store the captured first image of the first scene area, a module 2218 configured to store the captured second image of the first scene area, and a module 2220 configured to store the captured third image of the first scene area.
- Assembly of modules 2200 further includes a module 2222 configured to operate one of the first second or third optical chain modules to capture an image, e.g., a fourth image of a first scene area, a module 2224 configured to store the captured image, e.g., the captured fourth image, of the first scene area, and a module 2226 configured to display the fourth image of the first scene area on a display.
- Assembly of modules 2200 further includes a module 2228 configured to process the first and second images to generate a first combined image of the first scene area.
- Module 2228 includes a module 2130 configured to weight and sum a combination of pixel values of the images as a function of exposure time including, e.g., weighting pixel values of the first and second images corresponding to the same portion of the first scene area as a function of the first and second exposure times, respectively, and summing the weighted pixel values, and a module 2232 configured to optionally process the third image in addition to the first and second images to generate the first combined image.
- Assembly of modules 2200 further includes a module 2236 configured to store in memory the combined image and a module 2237 configured to display the combined image on a display.
- FIG. 23 is a drawing of an assembly of modules 2300 in accordance with an exemplary embodiment.
- Assembly of modules 2300 may be included in an exemplary apparatus, e.g., a camera device, e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- a camera device e.g., camera device 100 of FIG. 1A , camera device 200 of FIG. 2 , camera device 60 of FIG. 4 , camera device 1500 of FIG. 15 , camera device 1605 of FIG. 16 , camera device 1705 of FIG. 17 , camera device 1801 of FIG. 18 , and/or camera device 1901 of FIG. 19 , in accordance with an exemplary embodiment.
- assembly of modules 2300 is included in memory in an exemplary camera device, e.g., memory 108 of camera device 100 of FIG. 1A , memory 213 of camera device 200 of FIG. 2 , memory 73 of camera device 60 of FIG. 4 , memory of camera device 1500 of FIG. 15 , memory of camera device 1605 of FIG. 16 , memory of camera device 1705 of FIG. 17 , memory of camera device 1801 of FIG. 18 , and/or memory of camera device 1901 of FIG. 19 .
- assembly of modules 2100 may be included as part of assembly of modules 118 of memory 108 of camera device 100 of FIG. 1 .
- assembly of modules 2300 is included in an exemplary device, e.g., an exemplary camera device, which implements a method in accordance with flowchart 1200 of FIG. 12 .
- Assembly of module 2300 includes a module 2304 configured to operate a fourth optical chain module to capture an image, e.g., a fourth image, of a first scene area, using a multi-color filter, a module 2306 configured to display the fourth image on a display, a module 2308 configured to receive user input to control capture of an image of the first scene area, and a module 2310 configured to operate the plurality of optical chain modules in parallel to capture images of the first scene area.
- a module 2304 configured to operate a fourth optical chain module to capture an image, e.g., a fourth image, of a first scene area, using a multi-color filter
- a module 2306 configured to display the fourth image on a display
- a module 2308 configured to receive user input to control capture of an image of the first scene area
- a module 2310 configured to operate the plurality of optical chain modules in parallel to capture images of the first scene area.
- Module 2310 includes a module 2312 configured to operate a first optical chain module to capture a first image of the first scene area using a first color filter, a module 2314 configured to operate a second optical china module to capture a second image of the first scene area using a second color filter, and a module 2316 configured to capture a third image of the first scene area using a third color filter.
- Assembly of modules 2300 further includes a module 2318 configured to store the captured image of the first scene area, a module 2320 configured to store the captured second image of the first scene area, and a module 2322 configured to store the captured third image of the first scene area.
- Assembly of modules 2300 further includes a module 2324 configured to process the first and second images to generate a first combined image of the first scene area.
- Module 2324 includes a module 2328 configured to process the third image in addition to the first and second images to generate the first combined image.
- Assembly of modules 2300 further includes a module 2332 configured to store in memory the combined image and a module 2333 configured to display the combined image on a display.
- an exemplary camera device e.g., camera device 100 of FIG. 1 , includes one or more of all of assembly of modules 1300 , assembly of modules 2000 , assembly of modules 2100 , assembly of modules 2200 , and assembly of modules 2300 .
- An assembly of modules may be implemented in hardware, software, or a combination of hardware and software, e.g., depending upon the particular embodiment.
- FIG. 24 which comprise the combination of FIGS. 24A and 24B , illustrates an exemplary method 2400 for generating pixel values of a combined image from pixel values generated by a plurality of optical chain modules operating in parallel.
- the method 2400 begins with the processor implementing the method, e.g., the processor 110 of the camera device 100 , or processor 1410 of the post-processing system 1400 , beginning the process of generating a combined image.
- step 2404 pixel values corresponding to the same scene, e.g., pixel values generated by optical chain modules operating in parallel, generated by multiple optical camera modules, e.g., optical chain modules 161 , 161 ′ and 161 ′′, are received.
- the receipt may be the result of the processor 110 or 1410 reading the values from memory or receiving them directly from the OCMs which generated the values.
- the pixel values are grouped according to type. For example, some OCMs may provide R (red) pixel values, some blue (B) pixel values others (G) green pixel values while still others may provide unfiltered pixel value indicative of luminance (L) resulting from multiple colors of light reaching the sensor 168 , 168 ′ or 161 ′′′ of the optical chain module which generated the pixel values to be processed.
- the processor is aware of the exposure time used by the optical chain module to generate the pixel value.
- This information may be know to the processor if it controlled the exposure time, or from information stored with the pixel values and supplied to the processor along with the pixel values and information indicating the type of pixel values being supplied as well as, in some cases, other useful information such as the configuration and location (lens spacing) of OCMs which were the source of pixel values.
- processing of the different types of pixel values may proceed with pixel values of a given type from different OCMs being processed and combined to generate pixel values of the combined image.
- Steps 2408 through 2422 are performed for each type of pixel value to be processed, e.g., with R, G, B values being processed separately.
- Luminance values (unfiltered) values such values are treated as a separate set of pixel values for processing purposes and may be used for generating a grayscale image or in combination with color information at rendering time when an image is to be displayed.
- the processor has access to information about the lens spacing and/or configuration as well as the focus distance used by the individual optical chain modules supplying the sets of pixel values for combining.
- the processor has access to spatial information which allows the processor to align pixels of an image captured by one OCM 161 , 161 ′ or 161 ′′ with that of another OCM which provides pixel values to be combined.
- the pixels can be combined based on the individual pixel size scene area to which they correspond.
- images captured by different OCMs can be correlated based on content. The comparison of content allows pixels of images captured by one OCM to be aligned for combining purposes with pixels captured by another OCM.
- pixel values from different OCMs can be combined on a per pixel area basis, e.g., with each OCM contributing, in some embodiments, at most one pixel value to be used in generating a corresponding pixel value of the combined image.
- FIG. 25 illustrates a chart 2500 of the type which may be generated by step 2408 with pixel values being arranged into sets corresponding to different pixel areas, with each row beginning with a different pixel location identifier (P1, P2, P3, or P4) representing a set of pixel values corresponding to the same image area but captured by different optical chain modules.
- P1, P2, P3, or P4 representing a set of pixel values corresponding to the same image area but captured by different optical chain modules.
- step 2408 Operation proceeds from step 2408 to step 2410 in which the processor implementing the method accesses exposure time information corresponding different optical chains (OCM1 161 , OCM 2 161 ′, OCM 3 161 ′′) which contributed to pixel values in the set being processed.
- step 2412 the processor proceeds to identify pixel values which correspond to sensor saturation. Such values indicate that the maximum detection (e.g., light capture capability) was reached and that while the input was at least as strong as indicated by the measured value it might be higher than the measured value.
- step 2414 pixel values which are deemed unreliable because of a saturation occurrence are identified and excluded from further consideration.
- pixel values indicating that sensor saturation level was reached by an OCM with an exposure time longer than the shortest exposure time used by one of the OCMs providing pixel values which are being combined are excluded from further consideration. This is because the pixel values from the OCM with the shorter exposure time may provide more reliable information than the saturated values which are being excluded.
- FIG. 26 uses X's to indicate pixel values which will be excluded in one embodiment as a result of performing step 2414 on a set of data such as the one shown in FIG. 25 . Operation proceeds from step 2414 to step 2418 via connecting node A 2416 .
- a pixel value normalization operation is performed taking into consideration the exposure times used by the different optical chain modules.
- the amount of light energy detected is normally a function of the exposure time with the amount of energy increasing proportionally to exposure time assuming that the image does not change for the duration of the exposure.
- pixel values to be combined are normalized based on exposure times with, e.g., pixel values corresponding to different OCMs being weighted based on the exposure time used by the OCM supplying the pixel values.
- the weighting is based on the exposure time of the OCM from which the pixel value was obtained and the shortest exposure time used by an OCM to which some of the pixel values being combined correspond.
- the pixel values can be combined in steps 2420 on a per pixel location basis, e.g., through averaging or some other statistical method of combining values.
- FIG. 28 shows the results of averaging the pixel values of FIG. 27 .
- the result of the combining operation is one pixel value for each of the pixel values corresponding to an image area obtained from the different OCMS. For example, if three OCMs captured an image and provided pixel values corresponding to the same scene area, three or fewer pixel values may be combined to generate a single pixel value of the final combined image.
- step 2424 in which are check is made to determine if there are sets of pixel values of another type remaining to be processed. For example, if step 2422 produced a set of R combined pixel values, operation may proceed to step 2404 so that G or B pixel values may be processed to generate corresponding pixel values for the combined image. If in step 2424 it is determined that additional sets of pixel values of a different type remain to be processed, operation proceeds to step 2404 via connecting node B 2436 so that processing may proceed.
- step 2428 if in step 2428 it is determined that there are no additional sets of pixel values corresponding to the image being generated to be processed, operation proceeds to step 2427 wherein the combined image is stored, e.g., in memory 108 or 1426 , prior to the set of data representing the combined image being output in step 2428 .
- Outputting of the combined image may involve supplying the generated sets of R, G, B and/or luminance pixel values to a display device for rendering and presentation on the display and/or may involve transmitting the pixel values representing the combined image over a communications channel, e.g., a network connection or broadcast channel, to supply one or more device with access to the network connection or channel with the combined image generated from the pixel values captured by multiple optical chain modules, e.g., modules 161 , 161 ′, 161 ′′.
- a communications channel e.g., a network connection or broadcast channel
- the exemplary combining process shown and explained with reference to FIG. 24 can be applied and used in cases where OCMs all use the same exposure time in which case all the pixel values from the OCMs which can be correlated to the same image area can be combined to generate a pixel value of the combined image without concern or need for normalization of pixel values assuming that the sensors used are the same in each of the OCMs.
- Averaging of pixel values from different sensors having the same exposure time provides benefits with respect to averaging that help reduce the effect that thermal noise or random differences in photon strikes may have on the pixel value measured by different optical chains for the same area of an image. In essence using multiple OCMs reduces the effect of noise and other random effects on the overall image quality.
- FIG. 25 illustrates an exemplary chart 2500 including a set of pixel values, e.g., luminance pixel values, generated by multiple optical chains, e.g., a first optical chain (OCM 1), a second optical chain (OCM 2) and a third optical chain (OCM 3) operating in parallel.
- the optical chains OCM 1, OCM 2, OCM 3 for purposes of the FIG. 25 example are of the same type, e.g., unfiltered (luminance detection) optical chains. However, they could be red, green or blue filtered optical chain pixel values with all the pixel values corresponding to the same color.
- the sensors of the optical chains generate pixel values in the range of 0 to 255 with 0 indicating detection of no energy (e.g., a black image region) and 255 indicating the detection of the maximum amount of energy (e.g., a bright image region) the sensor can detect and that the sensors have the same or similar dynamic range, e.g., they have the ability to each measure the same amount of energy before saturating.
- a pixel value of 255 indicates saturation of a sensor, e.g., due to the sensor corresponding to a bright area of the image.
- the FIG. 25 chart is exemplary of the grouping produced in step 2408 of the method shown in FIG. 24 .
- small sensors are often subject to saturation problems do to their small size, e.g., they have a small bucket for storing energy corresponding to received photons.
- thermal or other noise can also be an issue particularly in low light conditions.
- thermal noise can be improved by averaging pixel values captured by multiple optical chains.
- the first OCM uses an exposure time of 1/90th of a second
- the second OCM uses an exposure time of 1/60th of a second
- the third optical chain uses an exposure time of 1/30th of a second.
- each of the exposures start at the same time.
- the first 1/90th of a second all three of the optical chains operate in parallel to capture light
- the second and third optical chains operate to capture light and during the third 1/90th of a second only the third optical chain operates to capture light.
- the first optical chain given its low exposure time, is particularly useful in determining pixel values corresponding to very bright areas where the other sensors are likely to saturate due to their longer exposure times.
- the second optical chain is useful in covering a wide range of luminance intensities but is not as good as the third optical chain which has a longer exposure time for capturing pixel values corresponding to image areas which are low light, e.g., dark image areas.
- the third optical chain is useful in providing information corresponding to low light scene areas but is likely to saturate with respect to pixels corresponding to high light image areas. It should be appreciated that use of the third optical chain with the long exposure time provides benefits in terms of low light image regions while the first optical chain provides benefits with respect to capturing pixel values in very bright image regions.
- an (S) is used under the pixel value to indicate that the value indicates saturation of the sensor.
- the first column lists pixels, e.g., pixels P1, P2, P3, P4, each pixel corresponding to a different scene image area of a scene size corresponding to the sensor area of one pixel. While only four pixels are included in the FIG. 25 example it is to be understood that an image will include, in many cases, millions of such pixels, each captured by a different portion of a sensor.
- the value captured by an optical chain module corresponding to the pixel area of the scene is shown. For example in row 1, with regard to pixel area P1, the first OCM 1 measured a pixel value of 100, OCM 2 measured a pixel value of 154 and OCM3 measured a pixel value of 255.
- FIG. 26 is a chart 2600 illustrating the set of captured pixel values after exclusion of pixel values corresponding to saturated pixel values measured by optical chain modules (OCM 2 and OCM 3) having longer exposure times than the optical chain module (OCM1) with the shortest exposure time which contributed to the set of pixel values shown in FIG. 25 .
- OCM 2 and OCM 3 optical chain modules
- OCM1 optical chain module
- X is used to show saturated pixel values which are excluded, in accordance with step 2414 , from further use in generating the combined image.
- FIG. 27 is a chart 2700 illustrating the normalized pixel values generated by processing the values shown in FIG. 26 with the excluded values being omitted.
- the pixel values shown in column 3 corresponding to the second optical chain module (OCM2) are (2 ⁇ 3) the value of the original value reflecting that they were generated using 1.5 times the shortest exposure time and that the values in the last column of the chart 2700 are 1 ⁇ 3 the original values reflecting that they were generated using an exposure time three times the shortest exposure time.
- the values in the first column corresponding to OCM 1 are left unchanged since they correspond to the shortest exposure time and already reflect the maximum energy per minimum image capture time ( 1/90th of a second) used by the optical modules in generating the combined images.
- FIG. 28 is a chart showing the resulting pixel values for pixels P1 though P4 of the combined image and the computation used to generate the pixel values.
- the normalized pixel values used to generate the combined pixel value for an image area corresponding to the area of a pixel may be based on one, some or all of the outputs of multiple optical chains. This allows, in the case of low light conditions averaging which reduces the effects of noise and the random nature of photon strikes in generated the pixel value as compared to the case where the output of a single sensor may be used to generate the combined pixel value.
- a pixel value from the optical chain module or optical chain modules with the longest exposure time may be used. While the combined pixel value corresponding to a bright area may be generated from fewer sensors than that of low light areas, the higher energy level is less prone to the effects of noise and random photon strikes often requiring multiple photons to be sensed to produce the high pixel value. Accordingly, the method shown in FIG. 24 provides benefits with respect to noise reduction where they are needed most, e.g., in the case of low light areas of an image.
- the method shown in FIG. 24 effectively increases the useful dynamic range of the camera device including the multiple optical chains beyond that which could be achieved if all the sensors were exposed using the same exposure time where all the sensors would saturate at or about the same light exposure level given that they would be subject to the same exposure time.
- FIG. 24 allows for images to be generated using R, G and B pixel values which each of the R, G and B pixel values being combined independently in some embodiments to generate corresponding sets of R, G and B pixel values of a combined color image.
- Various embodiments may be implemented using software, hardware and/or a combination of software and hardware.
- Various embodiments are directed to apparatus, e.g., a camera device, an image processing device or a system.
- Various embodiments are also directed to methods, e.g., a method of generating combined pixel values from sets of input pixel values corresponding to an image area where each set of pixel values may be provided by a different optical chain module.
- Various embodiments are also directed to machine, e.g., computer, readable medium, e.g., ROM, RAM, CDs, hard discs, etc., which include machine readable instructions for controlling a machine, e.g., camera device, processor or image processing system, to implement one or more steps of one or more of the methods described in the present application.
- machine e.g., computer, readable medium, e.g., ROM, RAM, CDs, hard discs, etc.
- machine e.g., camera device, processor or image processing system
- apparatus described herein are implemented using one or more modules to perform the steps corresponding to one or more methods.
- various features are implemented using modules.
- modules may be implemented using software, hardware or a combination of software and hardware.
- Optical chain modules as should be appreciated include as least some hardware elements such as an image sensor and are therefore normally not implementable purely in software while other modules may be implemented fully in software.
- the modules are implemented in hardware, the modules are implemented as circuits, e.g., of a processor and/or as a combination of hardware elements such as lenses, filters and an image sensor.
- methods and/or method steps can, and in some embodiments are, implemented using computer executable instructions, such as software, included in a computer readable medium, e.g., a non-transitory computer readable medium, such as a memory device, e.g., RAM, floppy disk, etc. which when executed control a machine, e.g., general purpose computer or processor, with or without additional hardware, to implement all or portions of the above described methods.
- a computer readable medium e.g., a non-transitory computer readable medium, such as a memory device, e.g., RAM, floppy disk, etc.
- a machine e.g., general purpose computer or processor
- various embodiments are directed to a computer readable medium including computer executable instructions for causing a machine, e.g., processor or computer system, to perform one or more of the steps of the above-described method(s).
- Some embodiments are directed to a processor configured to implement one or more of the various functions, steps, acts and/or operations of one or more methods described above. Accordingly, some embodiments are directed to a processor, e.g., CPU, configured to implement some or all of the steps of the methods described herein.
- the processor may be for use in, e.g., a camera device, an image processing device or other type of system.
- the image processing device is a portable device including a camera, e.g., a cell phone including a camera with a processor that implements the method.
- modules are implemented using software, in other embodiments modules are implemented in hardware, in still other embodiments the modules are implemented using a combination of hardware and/or software.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Studio Devices (AREA)
- Cameras In General (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/147,579 US9270876B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361749314P | 2013-01-05 | 2013-01-05 | |
US201361749317P | 2013-01-05 | 2013-01-05 | |
US201361749316P | 2013-01-05 | 2013-01-05 | |
US201361749315P | 2013-01-05 | 2013-01-05 | |
US201361749382P | 2013-01-06 | 2013-01-06 | |
US14/147,579 US9270876B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140192225A1 US20140192225A1 (en) | 2014-07-10 |
US9270876B2 true US9270876B2 (en) | 2016-02-23 |
Family
ID=51060685
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/147,583 Active US9568713B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in parallel to support separate color-capture |
US14/147,585 Active US9282228B2 (en) | 2013-01-05 | 2014-01-05 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
US14/147,581 Active US9671595B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in paralell |
US14/147,579 Active US9270876B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in parallel with multiple different exposure times |
US14/147,584 Active US9547160B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for capturing and/or processing images |
US15/007,885 Active US9690079B2 (en) | 2013-01-05 | 2016-01-27 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
US15/634,849 Active US10101566B2 (en) | 2013-01-05 | 2017-06-27 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/147,583 Active US9568713B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in parallel to support separate color-capture |
US14/147,585 Active US9282228B2 (en) | 2013-01-05 | 2014-01-05 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
US14/147,581 Active US9671595B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for using multiple optical chains in paralell |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/147,584 Active US9547160B2 (en) | 2013-01-05 | 2014-01-05 | Methods and apparatus for capturing and/or processing images |
US15/007,885 Active US9690079B2 (en) | 2013-01-05 | 2016-01-27 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
US15/634,849 Active US10101566B2 (en) | 2013-01-05 | 2017-06-27 | Camera methods and apparatus using optical chain modules which alter the direction of received light |
Country Status (2)
Country | Link |
---|---|
US (7) | US9568713B2 (en) |
WO (1) | WO2014107634A2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9955082B2 (en) | 2013-10-18 | 2018-04-24 | Light Labs Inc. | Methods and apparatus for capturing images using optical chains and/or for using captured images |
US9967535B2 (en) | 2015-04-17 | 2018-05-08 | Light Labs Inc. | Methods and apparatus for reducing noise in images |
US9998638B2 (en) | 2014-12-17 | 2018-06-12 | Light Labs Inc. | Methods and apparatus for implementing and using camera devices |
US10003738B2 (en) | 2015-12-18 | 2018-06-19 | Light Labs Inc. | Methods and apparatus for detecting and/or indicating a blocked sensor or camera module |
US10009530B2 (en) | 2013-10-18 | 2018-06-26 | Light Labs Inc. | Methods and apparatus for synchronized image capture using camera modules with different focal lengths |
US10051182B2 (en) | 2015-10-05 | 2018-08-14 | Light Labs Inc. | Methods and apparatus for compensating for motion and/or changing light conditions during image capture |
US10091447B2 (en) | 2015-04-17 | 2018-10-02 | Light Labs Inc. | Methods and apparatus for synchronizing readout of multiple image sensors |
US10129483B2 (en) | 2015-06-23 | 2018-11-13 | Light Labs Inc. | Methods and apparatus for implementing zoom using one or more moveable camera modules |
US10205862B2 (en) | 2013-10-18 | 2019-02-12 | Light Labs Inc. | Methods and apparatus relating to a camera including multiple optical chains |
US10225445B2 (en) | 2015-12-18 | 2019-03-05 | Light Labs Inc. | Methods and apparatus for providing a camera lens or viewing point indicator |
US10365480B2 (en) | 2015-08-27 | 2019-07-30 | Light Labs Inc. | Methods and apparatus for implementing and/or using camera devices with one or more light redirection devices |
US10491806B2 (en) | 2015-08-03 | 2019-11-26 | Light Labs Inc. | Camera device control related methods and apparatus |
US10516834B2 (en) | 2015-10-06 | 2019-12-24 | Light Labs Inc. | Methods and apparatus for facilitating selective blurring of one or more image portions |
US10670858B2 (en) | 2017-05-21 | 2020-06-02 | Light Labs Inc. | Methods and apparatus for maintaining and accurately determining the position of a moveable element |
US10931866B2 (en) | 2014-01-05 | 2021-02-23 | Light Labs Inc. | Methods and apparatus for receiving and storing in a camera a user controllable setting that is used to control composite image generation performed after image capture |
Families Citing this family (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8866920B2 (en) | 2008-05-20 | 2014-10-21 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
KR101588877B1 (en) | 2008-05-20 | 2016-01-26 | 펠리칸 이매징 코포레이션 | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
US8514491B2 (en) | 2009-11-20 | 2013-08-20 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
WO2011143501A1 (en) | 2010-05-12 | 2011-11-17 | Pelican Imaging Corporation | Architectures for imager arrays and array cameras |
US9485495B2 (en) | 2010-08-09 | 2016-11-01 | Qualcomm Incorporated | Autofocus for stereo images |
US8878950B2 (en) | 2010-12-14 | 2014-11-04 | Pelican Imaging Corporation | Systems and methods for synthesizing high resolution images using super-resolution processes |
EP2708019B1 (en) | 2011-05-11 | 2019-10-16 | FotoNation Limited | Systems and methods for transmitting and receiving array camera image data |
US20130265459A1 (en) | 2011-06-28 | 2013-10-10 | Pelican Imaging Corporation | Optical arrangements for use with an array camera |
WO2013043761A1 (en) | 2011-09-19 | 2013-03-28 | Pelican Imaging Corporation | Determining depth from multiple views of a scene that include aliasing using hypothesized fusion |
US9438889B2 (en) | 2011-09-21 | 2016-09-06 | Qualcomm Incorporated | System and method for improving methods of manufacturing stereoscopic image sensors |
WO2013049699A1 (en) | 2011-09-28 | 2013-04-04 | Pelican Imaging Corporation | Systems and methods for encoding and decoding light field image files |
WO2013126578A1 (en) | 2012-02-21 | 2013-08-29 | Pelican Imaging Corporation | Systems and methods for the manipulation of captured light field image data |
US9210392B2 (en) | 2012-05-01 | 2015-12-08 | Pelican Imaging Coporation | Camera modules patterned with pi filter groups |
WO2014005123A1 (en) | 2012-06-28 | 2014-01-03 | Pelican Imaging Corporation | Systems and methods for detecting defective camera arrays, optic arrays, and sensors |
US20140002674A1 (en) | 2012-06-30 | 2014-01-02 | Pelican Imaging Corporation | Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors |
EP3869797B1 (en) | 2012-08-21 | 2023-07-19 | Adeia Imaging LLC | Method for depth detection in images captured using array cameras |
WO2014032020A2 (en) | 2012-08-23 | 2014-02-27 | Pelican Imaging Corporation | Feature based high resolution motion estimation from low resolution images captured using an array source |
WO2014043641A1 (en) | 2012-09-14 | 2014-03-20 | Pelican Imaging Corporation | Systems and methods for correcting user identified artifacts in light field images |
US20140092281A1 (en) | 2012-09-28 | 2014-04-03 | Pelican Imaging Corporation | Generating Images from Light Fields Utilizing Virtual Viewpoints |
US9398264B2 (en) | 2012-10-19 | 2016-07-19 | Qualcomm Incorporated | Multi-camera system using folded optics |
US9143711B2 (en) | 2012-11-13 | 2015-09-22 | Pelican Imaging Corporation | Systems and methods for array camera focal plane control |
WO2014083489A1 (en) | 2012-11-28 | 2014-06-05 | Corephotonics Ltd. | High-resolution thin multi-aperture imaging systems |
US9568713B2 (en) | 2013-01-05 | 2017-02-14 | Light Labs Inc. | Methods and apparatus for using multiple optical chains in parallel to support separate color-capture |
US9497380B1 (en) | 2013-02-15 | 2016-11-15 | Red.Com, Inc. | Dense field imaging |
WO2014130849A1 (en) | 2013-02-21 | 2014-08-28 | Pelican Imaging Corporation | Generating compressed light field representation data |
US9374512B2 (en) | 2013-02-24 | 2016-06-21 | Pelican Imaging Corporation | Thin form factor computational array cameras and modular array cameras |
US9638883B1 (en) | 2013-03-04 | 2017-05-02 | Fotonation Cayman Limited | Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process |
WO2014138695A1 (en) | 2013-03-08 | 2014-09-12 | Pelican Imaging Corporation | Systems and methods for measuring scene information while capturing images using array cameras |
US8866912B2 (en) | 2013-03-10 | 2014-10-21 | Pelican Imaging Corporation | System and methods for calibration of an array camera using a single captured image |
US9106784B2 (en) | 2013-03-13 | 2015-08-11 | Pelican Imaging Corporation | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US9519972B2 (en) | 2013-03-13 | 2016-12-13 | Kip Peli P1 Lp | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
WO2014164550A2 (en) | 2013-03-13 | 2014-10-09 | Pelican Imaging Corporation | System and methods for calibration of an array camera |
WO2014164909A1 (en) | 2013-03-13 | 2014-10-09 | Pelican Imaging Corporation | Array camera architecture implementing quantum film sensors |
US9578259B2 (en) | 2013-03-14 | 2017-02-21 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
WO2014153098A1 (en) | 2013-03-14 | 2014-09-25 | Pelican Imaging Corporation | Photmetric normalization in array cameras |
US9633442B2 (en) | 2013-03-15 | 2017-04-25 | Fotonation Cayman Limited | Array cameras including an array camera module augmented with a separate camera |
EP2973476A4 (en) | 2013-03-15 | 2017-01-18 | Pelican Imaging Corporation | Systems and methods for stereo imaging with camera arrays |
US9445003B1 (en) | 2013-03-15 | 2016-09-13 | Pelican Imaging Corporation | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
WO2014150856A1 (en) | 2013-03-15 | 2014-09-25 | Pelican Imaging Corporation | Array camera implementing quantum dot color filters |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
CN108234851B (en) | 2013-06-13 | 2019-08-16 | 核心光电有限公司 | Based on Dual-Aperture zoom digital camera |
CN108388005A (en) | 2013-07-04 | 2018-08-10 | 核心光电有限公司 | Small-sized focal length lens external member |
CN109120823B (en) | 2013-08-01 | 2020-07-14 | 核心光电有限公司 | Thin multi-aperture imaging system with auto-focus and method of use thereof |
US10178373B2 (en) | 2013-08-16 | 2019-01-08 | Qualcomm Incorporated | Stereo yaw correction using autofocus feedback |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
US9467627B2 (en) | 2013-10-26 | 2016-10-11 | The Lightco Inc. | Methods and apparatus for use with multiple optical chains |
US9736365B2 (en) | 2013-10-26 | 2017-08-15 | Light Labs Inc. | Zoom related methods and apparatus |
US9426365B2 (en) | 2013-11-01 | 2016-08-23 | The Lightco Inc. | Image stabilization related methods and apparatus |
US9264592B2 (en) * | 2013-11-07 | 2016-02-16 | Pelican Imaging Corporation | Array camera modules incorporating independently aligned lens stacks |
US10119808B2 (en) | 2013-11-18 | 2018-11-06 | Fotonation Limited | Systems and methods for estimating depth from projected texture using camera arrays |
US9426361B2 (en) | 2013-11-26 | 2016-08-23 | Pelican Imaging Corporation | Array camera configurations incorporating multiple constituent array cameras |
US9554031B2 (en) | 2013-12-31 | 2017-01-24 | Light Labs Inc. | Camera focusing related methods and apparatus |
US9462170B2 (en) | 2014-02-21 | 2016-10-04 | The Lightco Inc. | Lighting methods and apparatus |
US9979878B2 (en) | 2014-02-21 | 2018-05-22 | Light Labs Inc. | Intuitive camera user interface methods and apparatus |
US10110826B2 (en) * | 2014-02-25 | 2018-10-23 | Sony Corporation | Imaging with adjustment of angle of view |
WO2015134996A1 (en) | 2014-03-07 | 2015-09-11 | Pelican Imaging Corporation | System and methods for depth regularization and semiautomatic interactive matting using rgb-d images |
US9383550B2 (en) | 2014-04-04 | 2016-07-05 | Qualcomm Incorporated | Auto-focus in low-profile folded optics multi-camera system |
US9374516B2 (en) | 2014-04-04 | 2016-06-21 | Qualcomm Incorporated | Auto-focus in low-profile folded optics multi-camera system |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
US10013764B2 (en) | 2014-06-19 | 2018-07-03 | Qualcomm Incorporated | Local adaptive histogram equalization |
US9549107B2 (en) * | 2014-06-20 | 2017-01-17 | Qualcomm Incorporated | Autofocus for folded optic array cameras |
US9294672B2 (en) | 2014-06-20 | 2016-03-22 | Qualcomm Incorporated | Multi-camera system using folded optics free from parallax and tilt artifacts |
US9819863B2 (en) | 2014-06-20 | 2017-11-14 | Qualcomm Incorporated | Wide field of view array camera for hemispheric and spherical imaging |
US9386222B2 (en) | 2014-06-20 | 2016-07-05 | Qualcomm Incorporated | Multi-camera system using folded optics free from parallax artifacts |
US9541740B2 (en) | 2014-06-20 | 2017-01-10 | Qualcomm Incorporated | Folded optic array camera using refractive prisms |
EP3164831A4 (en) | 2014-07-04 | 2018-02-14 | Light Labs Inc. | Methods and apparatus relating to detection and/or indicating a dirty lens condition |
US10110794B2 (en) | 2014-07-09 | 2018-10-23 | Light Labs Inc. | Camera device including multiple optical chains and related methods |
US9392188B2 (en) | 2014-08-10 | 2016-07-12 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
TW201632949A (en) * | 2014-08-29 | 2016-09-16 | 伊奧克里公司 | Image diversion to capture images on a portable electronic device |
CN107077743B (en) | 2014-09-29 | 2021-03-23 | 快图有限公司 | System and method for dynamic calibration of an array camera |
US9912864B2 (en) * | 2014-10-17 | 2018-03-06 | Light Labs Inc. | Methods and apparatus for using a camera device to support multiple modes of operation |
US9832381B2 (en) | 2014-10-31 | 2017-11-28 | Qualcomm Incorporated | Optical image stabilization for thin cameras |
US10577912B2 (en) * | 2014-11-12 | 2020-03-03 | Helmerich & Payne Technologies, Llc | System and method for measuring characteristics of cuttings and fluid front location during drilling operations with computer vision |
US9544503B2 (en) | 2014-12-30 | 2017-01-10 | Light Labs Inc. | Exposure control methods and apparatus |
CN112433331B (en) | 2015-01-03 | 2022-07-08 | 核心光电有限公司 | Miniature telephoto lens module and camera using the same |
US9729785B2 (en) * | 2015-01-19 | 2017-08-08 | Microsoft Technology Licensing, Llc | Profiles identifying camera capabilities that are usable concurrently |
US10015384B2 (en) | 2015-04-02 | 2018-07-03 | Corephotonics Ltd. | Dual voice coil motor structure in a dual-optical module camera |
US9824427B2 (en) | 2015-04-15 | 2017-11-21 | Light Labs Inc. | Methods and apparatus for generating a sharp image |
CN112394467B (en) | 2015-04-16 | 2023-06-09 | 核心光电有限公司 | Auto-focus and optical image stabilization in compact folded cameras |
US10075651B2 (en) | 2015-04-17 | 2018-09-11 | Light Labs Inc. | Methods and apparatus for capturing images using multiple camera modules in an efficient manner |
US9857584B2 (en) | 2015-04-17 | 2018-01-02 | Light Labs Inc. | Camera device methods, apparatus and components |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
WO2016172641A1 (en) | 2015-04-22 | 2016-10-27 | The Lightco Inc. | Filter mounting methods and apparatus and related camera apparatus |
WO2016175664A2 (en) * | 2015-04-27 | 2016-11-03 | Memini, Inc. | Video recording device, systems and method |
KR102114595B1 (en) | 2015-05-28 | 2020-05-25 | 코어포토닉스 리미티드 | Bi-directional stiffness for optical image stabilization and auto-focus in a dual-aperture digital camera |
US10523854B2 (en) | 2015-06-25 | 2019-12-31 | Intel Corporation | Array imaging system having discrete camera modules and method for manufacturing the same |
JP2017034453A (en) * | 2015-07-31 | 2017-02-09 | 富士通テン株式会社 | Image processing apparatus, image display system, and image processing method |
CN112672024B (en) | 2015-08-13 | 2022-08-02 | 核心光电有限公司 | Dual aperture zoom camera with video support and switching/non-switching dynamic control |
WO2017037688A1 (en) | 2015-09-06 | 2017-03-09 | Corephotonics Ltd. | Auto focus and optical image stabilization with roll compensation in a compact folded camera |
US9769419B2 (en) * | 2015-09-30 | 2017-09-19 | Cisco Technology, Inc. | Camera system for video conference endpoints |
KR20230100749A (en) | 2015-12-29 | 2023-07-05 | 코어포토닉스 리미티드 | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
EP3414890B1 (en) * | 2016-02-12 | 2023-08-09 | Contrast, Inc. | Devices and methods for high dynamic range video |
US10257394B2 (en) | 2016-02-12 | 2019-04-09 | Contrast, Inc. | Combined HDR/LDR video streaming |
US10264196B2 (en) | 2016-02-12 | 2019-04-16 | Contrast, Inc. | Systems and methods for HDR video capture with a mobile device |
US10306218B2 (en) | 2016-03-22 | 2019-05-28 | Light Labs Inc. | Camera calibration apparatus and methods |
US20170289529A1 (en) * | 2016-03-29 | 2017-10-05 | Google Inc. | Anaglyph head mounted display |
EP3758356B1 (en) | 2016-05-30 | 2021-10-20 | Corephotonics Ltd. | Actuator |
KR102646151B1 (en) | 2016-06-19 | 2024-03-08 | 코어포토닉스 리미티드 | Frame synchronization in a dual-aperture camera system |
US9948832B2 (en) | 2016-06-22 | 2018-04-17 | Light Labs Inc. | Methods and apparatus for synchronized image capture in a device including optical chains with different orientations |
US20170374249A1 (en) * | 2016-06-23 | 2017-12-28 | Microsoft Technology Licensing, Llc | Imaging device with reflective optical element |
KR20240051317A (en) | 2016-07-07 | 2024-04-19 | 코어포토닉스 리미티드 | Linear ball guided voice coil motor for folded optic |
WO2018007951A1 (en) | 2016-07-07 | 2018-01-11 | Corephotonics Ltd. | Dual-camera system with improved video smooth transition by image blending |
WO2018031441A1 (en) | 2016-08-09 | 2018-02-15 | Contrast, Inc. | Real-time hdr video for vehicle control |
US11531209B2 (en) | 2016-12-28 | 2022-12-20 | Corephotonics Ltd. | Folded camera structure with an extended light-folding-element scanning range |
CN113805405B (en) | 2017-01-12 | 2023-05-23 | 核心光电有限公司 | Compact folding camera and method of assembling the same |
US10904514B2 (en) | 2017-02-09 | 2021-01-26 | Facebook Technologies, Llc | Polarization illumination using acousto-optic structured light in 3D depth sensing |
US11347016B2 (en) | 2017-02-23 | 2022-05-31 | Corephotonics Ltd. | Folded camera lens designs |
US10645286B2 (en) | 2017-03-15 | 2020-05-05 | Corephotonics Ltd. | Camera with panoramic scanning range |
US9927049B1 (en) | 2017-04-10 | 2018-03-27 | The Boeing Company | Tube hangers and systems for very early smoke detection |
TWI636316B (en) * | 2017-05-05 | 2018-09-21 | 致伸科技股份有限公司 | Communication device and optical device thereof |
US10122943B1 (en) * | 2017-05-05 | 2018-11-06 | Motorola Mobility Llc | High dynamic range sensor resolution using multiple image sensors |
US10142543B1 (en) * | 2017-05-12 | 2018-11-27 | Mediatek Inc. | Power reduction in a multi-sensor camera device by on-demand sensors activation |
US10212356B1 (en) | 2017-05-31 | 2019-02-19 | Snap Inc. | Parallel high dynamic exposure range sensor |
US10613413B1 (en) | 2017-05-31 | 2020-04-07 | Facebook Technologies, Llc | Ultra-wide field-of-view scanning devices for depth sensing |
US10181200B1 (en) | 2017-06-28 | 2019-01-15 | Facebook Technologies, Llc | Circularly polarized illumination and detection for depth sensing |
WO2019014057A1 (en) | 2017-07-10 | 2019-01-17 | Contrast, Inc. | Stereoscopic camera |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
JP6933059B2 (en) * | 2017-08-30 | 2021-09-08 | 株式会社リコー | Imaging equipment, information processing system, program, image processing method |
US10904512B2 (en) | 2017-09-06 | 2021-01-26 | Corephotonics Ltd. | Combined stereoscopic and phase detection depth mapping in a dual aperture camera |
US10574973B2 (en) | 2017-09-06 | 2020-02-25 | Facebook Technologies, Llc | Non-mechanical beam steering for depth sensing |
CN109600542B (en) | 2017-09-28 | 2021-12-21 | 超威半导体公司 | Optical device for computing |
US10951834B2 (en) | 2017-10-03 | 2021-03-16 | Corephotonics Ltd. | Synthetically enlarged camera aperture |
EP4250695A3 (en) | 2017-11-23 | 2023-11-22 | Corephotonics Ltd. | Compact folded camera structure |
KR102128223B1 (en) | 2018-02-05 | 2020-06-30 | 코어포토닉스 리미티드 | Reduced height penalty for folded camera |
US11640047B2 (en) | 2018-02-12 | 2023-05-02 | Corephotonics Ltd. | Folded camera with optical image stabilization |
US20190260940A1 (en) * | 2018-02-22 | 2019-08-22 | Perspective Components, Inc. | Dynamic camera object tracking |
US10694168B2 (en) | 2018-04-22 | 2020-06-23 | Corephotonics Ltd. | System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems |
KR102299752B1 (en) | 2018-04-23 | 2021-09-08 | 코어포토닉스 리미티드 | Optical path folding element with extended two-degree-of-freedom rotation range |
US10951888B2 (en) | 2018-06-04 | 2021-03-16 | Contrast, Inc. | Compressed high dynamic range video |
CN111316346B (en) | 2018-08-04 | 2022-11-29 | 核心光电有限公司 | Switchable continuous display information system above camera |
WO2020039302A1 (en) | 2018-08-22 | 2020-02-27 | Corephotonics Ltd. | Two-state zoom folded camera |
US10924667B2 (en) | 2018-10-04 | 2021-02-16 | Samsung Electronics Co., Ltd. | Image sensor and image sensing method |
US11375092B2 (en) | 2018-10-04 | 2022-06-28 | Samsung Electronics Co., Ltd. | Image sensor and image sensing method |
EP3873083A4 (en) | 2018-11-02 | 2021-12-01 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Depth image processing method, depth image processing apparatus and electronic apparatus |
CN109348088B (en) * | 2018-11-22 | 2021-05-11 | Oppo广东移动通信有限公司 | Image noise reduction method and device, electronic equipment and computer readable storage medium |
KR102242437B1 (en) | 2019-01-07 | 2021-04-20 | 코어포토닉스 리미티드 | Rotating mechanism with sliding joint |
US10892287B2 (en) * | 2019-01-18 | 2021-01-12 | Cista System Corp. | Image sensor with image receiver and automatic image switching |
KR102268094B1 (en) | 2019-03-09 | 2021-06-22 | 코어포토닉스 리미티드 | System and method for dynamic stereoscopic calibration |
KR102515482B1 (en) | 2019-07-31 | 2023-03-29 | 코어포토닉스 리미티드 | System and method for creating background blur in camera panning or motion |
US11774709B2 (en) | 2019-08-30 | 2023-10-03 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system and portable electronic device |
WO2021055585A1 (en) | 2019-09-17 | 2021-03-25 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
MX2022004162A (en) | 2019-10-07 | 2022-07-12 | Boston Polarimetrics Inc | Systems and methods for augmentation of sensor systems and imaging systems with polarization. |
US11659135B2 (en) * | 2019-10-30 | 2023-05-23 | Corephotonics Ltd. | Slow or fast motion video using depth information |
KR20230116068A (en) | 2019-11-30 | 2023-08-03 | 보스턴 폴라리메트릭스, 인크. | System and method for segmenting transparent objects using polarization signals |
US11949976B2 (en) | 2019-12-09 | 2024-04-02 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
KR102708591B1 (en) | 2019-12-09 | 2024-09-20 | 코어포토닉스 리미티드 | System and method for obtaining smart panoramic images |
US11394955B2 (en) * | 2020-01-17 | 2022-07-19 | Aptiv Technologies Limited | Optics device for testing cameras useful on vehicles |
CN115552486A (en) | 2020-01-29 | 2022-12-30 | 因思创新有限责任公司 | System and method for characterizing an object pose detection and measurement system |
WO2021154459A1 (en) | 2020-01-30 | 2021-08-05 | Boston Polarimetrics, Inc. | Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images |
KR20220053023A (en) | 2020-02-22 | 2022-04-28 | 코어포토닉스 리미티드 | Split screen function for macro shooting |
KR20220003550A (en) | 2020-04-26 | 2022-01-10 | 코어포토닉스 리미티드 | Temperature Control for Hall Bar Sensor Calibration |
WO2021234515A1 (en) | 2020-05-17 | 2021-11-25 | Corephotonics Ltd. | Image stitching in the presence of a full field of view reference image |
US11953700B2 (en) | 2020-05-27 | 2024-04-09 | Intrinsic Innovation Llc | Multi-aperture polarization optical systems using beam splitters |
WO2021245488A1 (en) | 2020-05-30 | 2021-12-09 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
EP4045960A4 (en) | 2020-07-15 | 2022-12-14 | Corephotonics Ltd. | Point of view aberrations correction in a scanning folded camera |
US11637977B2 (en) | 2020-07-15 | 2023-04-25 | Corephotonics Ltd. | Image sensors and sensing methods to obtain time-of-flight and phase detection information |
KR20240115258A (en) | 2020-07-31 | 2024-07-25 | 코어포토닉스 리미티드 | Hall sensor - magnet geometry for large stroke linear position sensing |
CN114424104B (en) | 2020-08-12 | 2023-06-30 | 核心光电有限公司 | Optical anti-shake in a scanning fold camera |
EP4002833B1 (en) * | 2020-11-17 | 2023-02-15 | Axis AB | Method and electronic device for increased dynamic range of an image |
KR102629883B1 (en) | 2020-12-26 | 2024-01-25 | 코어포토닉스 리미티드 | Video support in a multi-aperture mobile camera with a scanning zoom camera |
CN114697520A (en) * | 2020-12-29 | 2022-07-01 | 摩托罗拉移动有限责任公司 | Generating a calibration image by combining a captured recalibration image with a previously captured calibration image |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
EP4127808A4 (en) | 2021-03-11 | 2024-05-15 | Corephotonics Ltd. | Systems for pop-out camera |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
KR20240025049A (en) | 2021-06-08 | 2024-02-26 | 코어포토닉스 리미티드 | Systems and cameras for tilting a focal plane of a super-macro image |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
WO2023137012A1 (en) * | 2022-01-11 | 2023-07-20 | ams Sensors USA Inc. | Imaging system |
Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078479A (en) | 1990-04-20 | 1992-01-07 | Centre Suisse D'electronique Et De Microtechnique Sa | Light modulation device with matrix addressing |
JPH1091765A (en) | 1996-09-10 | 1998-04-10 | Canon Inc | Device for synthesizing picture and method therefor |
US5781331A (en) | 1997-01-24 | 1998-07-14 | Roxburgh Ltd. | Optical microshutter array |
KR0153873B1 (en) | 1995-04-20 | 1998-12-01 | 김주용 | Parallax correction device of camera having compact-zoom |
US5889553A (en) | 1993-11-17 | 1999-03-30 | Canon Kabushiki Kaisha | Image pickup apparatus capable of high resolution imaging |
US5982951A (en) | 1996-05-28 | 1999-11-09 | Canon Kabushiki Kaisha | Apparatus and method for combining a plurality of images |
US6081670A (en) | 1999-03-05 | 2000-06-27 | Lifetouch National School Studies Inc. | Depth-of-field indicator for a camera |
JP2001061109A (en) | 1999-08-20 | 2001-03-06 | Japan Science & Technology Corp | Image input device |
US20030185551A1 (en) | 2002-03-28 | 2003-10-02 | Chen Wen Ching | Simple focusable lens combination of a camera |
JP2004289214A (en) | 2003-03-19 | 2004-10-14 | Minolta Co Ltd | Imaging apparatus |
US20040227839A1 (en) | 2003-05-13 | 2004-11-18 | Stavely Donald J. | Systems and methods for determining focus from light collected by the periphery of a lens |
JP2006106230A (en) | 2004-10-04 | 2006-04-20 | Nikon Corp | Camera |
US20060187338A1 (en) | 2005-02-18 | 2006-08-24 | May Michael J | Camera phone using multiple lenses and image sensors to provide an extended zoom range |
US20060221218A1 (en) | 2005-04-05 | 2006-10-05 | Doron Adler | Image sensor with improved color filter |
US20060238886A1 (en) | 2005-04-25 | 2006-10-26 | Taro Kushida | Zoom lens and image pickup apparatus |
US20070050139A1 (en) | 2005-04-27 | 2007-03-01 | Sidman Adam D | Handheld platform stabilization system employing distributed rotation sensors |
JP2007164258A (en) | 2005-12-09 | 2007-06-28 | Kurabo Ind Ltd | Image synthesizing device and method |
US20070177047A1 (en) | 2006-01-31 | 2007-08-02 | Hisashi Goto | Taking apparatus |
JP2007201915A (en) | 2006-01-27 | 2007-08-09 | Yamaha Corp | Planar camera unit |
US20070182528A1 (en) | 2000-05-08 | 2007-08-09 | Automotive Technologies International, Inc. | Vehicular Component Control Methods Based on Blind Spot Monitoring |
US7315423B2 (en) | 2005-03-25 | 2008-01-01 | Fujinon Corporation | Zoom lens including four lens groups |
US20080030592A1 (en) | 2006-08-01 | 2008-02-07 | Eastman Kodak Company | Producing digital image with different resolution portions |
KR20080022260A (en) | 2006-09-06 | 2008-03-11 | 엘지전자 주식회사 | Optical device with zoom lens |
US20080074755A1 (en) | 2006-09-07 | 2008-03-27 | Smith George E | Lens array imaging with cross-talk inhibiting optical stop structure |
US20080211941A1 (en) * | 2007-03-01 | 2008-09-04 | Deever Aaron T | Digital camera using multiple image sensors to provide improved temporal sampling |
US20080219654A1 (en) | 2007-03-09 | 2008-09-11 | Border John N | Camera using multiple lenses and image sensors to provide improved focusing capability |
US20080251697A1 (en) | 2005-01-25 | 2008-10-16 | Samsung Electronics Co., Ltd. | Image sensor and method of fabrication |
JP2008268937A (en) | 2007-03-29 | 2008-11-06 | Kyocera Corp | Imaging device and imaging method |
US20080278610A1 (en) | 2007-05-11 | 2008-11-13 | Micron Technology, Inc. | Configurable pixel array system and method |
US20090086032A1 (en) | 2007-09-28 | 2009-04-02 | Altek Corporation | System for detecting and compensating camera movement and a method thereof |
US7551358B2 (en) | 2006-07-05 | 2009-06-23 | Samsung Electro-Mechanics Co., Ltd. | Camera module having an array lens |
US20090225203A1 (en) | 2008-02-28 | 2009-09-10 | Funai Electric Co., Ltd. | Compound-eye imaging device |
US20090278950A1 (en) | 2008-05-09 | 2009-11-12 | Micron Technology, Inc. | Lens cleaning warning system and method |
US20100013906A1 (en) | 2008-07-17 | 2010-01-21 | Border John N | Zoom by multiple image capture |
JP2010049263A (en) | 2009-09-14 | 2010-03-04 | Olympus Corp | Electronic imaging apparatus |
US20100053414A1 (en) | 2008-01-11 | 2010-03-04 | Satoshi Tamaki | Compound eye camera module |
US20100097443A1 (en) | 2008-10-16 | 2010-04-22 | Peter Lablans | Controller in a Camera for Creating a Panoramic Image |
US20100225755A1 (en) | 2006-01-20 | 2010-09-09 | Matsushita Electric Industrial Co., Ltd. | Compound eye camera module and method of producing the same |
US20100238327A1 (en) | 2009-03-19 | 2010-09-23 | Griffith John D | Dual Sensor Camera |
US7810511B2 (en) | 2006-05-15 | 2010-10-12 | Sony Ericsson Mobile Communications Ab | Lens cleaner |
US20100265346A1 (en) | 2007-12-13 | 2010-10-21 | Keigo Iizuka | Camera system and method for amalgamating images to create an omni-focused image |
JP2010256397A (en) | 2009-04-21 | 2010-11-11 | Kyocera Mita Corp | Optical scanning apparatus and image forming apparatus with the same |
US20100283842A1 (en) * | 2007-04-19 | 2010-11-11 | Dvp Technologies Ltd. | Imaging system and method for use in monitoring a field of regard |
US20100296802A1 (en) | 2009-05-21 | 2010-11-25 | John Andrew Davies | Self-zooming camera |
US20110051243A1 (en) | 2009-08-28 | 2011-03-03 | Su Yu-Hsiu | Prism type lens structure |
US20110069189A1 (en) * | 2008-05-20 | 2011-03-24 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US20110080655A1 (en) | 2009-10-06 | 2011-04-07 | Masao Mori | Imaging lens and imaging apparatus |
US20110128393A1 (en) | 2009-12-01 | 2011-06-02 | Nokia Corporation | Digital imaging |
US20110157451A1 (en) | 2009-12-31 | 2011-06-30 | Hon Hai Precision Industry Co., Ltd. | Imaging device |
US20110157430A1 (en) | 2009-12-28 | 2011-06-30 | Takeshi Hosoya | Image pickup apparatus having optical path reflecting zoom lens |
US20110187878A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd. | Synchronization of projected illumination with rolling shutter of image sensor |
US20110222167A1 (en) | 2010-03-12 | 2011-09-15 | Samsung Electronics Co., Ltd. | Compact zoom lens |
US20110280565A1 (en) | 2010-05-14 | 2011-11-17 | Chapman Leonard T | Dual loop camera stabilization systems and methods |
US20110285895A1 (en) | 2010-05-21 | 2011-11-24 | Chung Shan Institute Of Science And Technology | Image Sensing Device and Processing System |
US20120002096A1 (en) | 2010-07-05 | 2012-01-05 | Samsung Electronics Co., Ltd. | Imaging device including a plurality of imaging units |
US20120162464A1 (en) | 2010-12-27 | 2012-06-28 | Samsung Electronics Co., Ltd. | Digital image photographing apparatus and method of controlling the same |
US20120249815A1 (en) | 2011-03-29 | 2012-10-04 | Mircrosoft Corporation | Folded imaging path camera |
US20120257077A1 (en) * | 2011-04-07 | 2012-10-11 | Olympus Corporation | Image pickup apparatus, image pickup method and recording device recording image processing program |
US20120257013A1 (en) | 2011-04-08 | 2012-10-11 | Sony Corporation | Analysis of 3d video |
US20120268642A1 (en) | 2011-04-21 | 2012-10-25 | Olympus Imaging Corporation | Driving apparatus and imaging apparatus using the same |
US8320051B2 (en) | 2009-10-13 | 2012-11-27 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US20130027353A1 (en) | 2011-07-28 | 2013-01-31 | Jinwook Hyun | Touch-type portable terminal |
US20130050564A1 (en) | 2010-09-16 | 2013-02-28 | James E. Adams, Jr. | Producing focused videos from single captured video |
US20130076928A1 (en) | 2004-08-25 | 2013-03-28 | Protarius Filo Ag, L.L.C. | Large dynamic range cameras |
US20130086765A1 (en) | 2011-10-05 | 2013-04-11 | Hwan Ming Enterprise Co., Ltd | Automatic clean device for a surveillance camera |
KR20130038076A (en) | 2011-10-07 | 2013-04-17 | 엘지전자 주식회사 | Mobile terminal and out-focusing image generating method thereof |
US20130093842A1 (en) | 2011-10-12 | 2013-04-18 | Canon Kabushiki Kaisha | Image-capturing device |
US20130155194A1 (en) | 2011-12-15 | 2013-06-20 | Thomson Licensing | Anagylphic stereoscopic image capture device |
US20130153772A1 (en) | 2011-12-20 | 2013-06-20 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module and devices comprising the same |
US20130223759A1 (en) | 2012-02-28 | 2013-08-29 | Canon Kabushiki Kaisha | Image processing method and device, and program |
EP2642757A2 (en) | 2012-03-19 | 2013-09-25 | Aptina Imaging Corporation | Imaging systems with clear filter pixels |
US20130258044A1 (en) | 2012-03-30 | 2013-10-03 | Zetta Research And Development Llc - Forc Series | Multi-lens camera |
US8553106B2 (en) | 2009-05-04 | 2013-10-08 | Digitaloptics Corporation | Dual lens digital zoom |
US20140111650A1 (en) | 2012-10-19 | 2014-04-24 | Qualcomm Incorporated | Multi-camera system using folded optics |
US20140192214A1 (en) | 2013-01-05 | 2014-07-10 | Tinz Optics, Inc. | Methods and apparatus for using multiple optical chains in paralell |
US20150234149A1 (en) | 2014-02-19 | 2015-08-20 | Melvyn H. Kreitzer | Zoom lens optical system |
US20150253647A1 (en) | 2014-03-07 | 2015-09-10 | Apple Inc. | Folded camera lens systems |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4890133A (en) | 1987-03-26 | 1989-12-26 | Asahi Kogaku Kogyo K.K. | Autofocus camera |
JP2762677B2 (en) | 1990-04-24 | 1998-06-04 | ソニー株式会社 | Optical device |
JP3198656B2 (en) | 1992-08-31 | 2001-08-13 | ソニー株式会社 | Video signal synthesizing apparatus and method |
US5583602A (en) | 1994-04-07 | 1996-12-10 | Kyocera Corporation | Autofocus single-lens reflex camera |
US6141034A (en) | 1995-12-15 | 2000-10-31 | Immersive Media Co. | Immersive imaging method and apparatus |
US6028600A (en) | 1997-06-02 | 2000-02-22 | Sony Corporation | Rotary menu wheel interface |
US5975710A (en) | 1997-06-06 | 1999-11-02 | Luster; Spencer D. | Optical image field splitting system |
US7006132B2 (en) * | 1998-02-25 | 2006-02-28 | California Institute Of Technology | Aperture coded camera for three dimensional imaging |
US6011661A (en) | 1998-04-07 | 2000-01-04 | Weng; Leo | Optical holder for an optical apparatus |
US6640185B2 (en) | 2001-07-21 | 2003-10-28 | Alpine Electronics, Inc. | Display method and apparatus for navigation system |
JP2003037757A (en) | 2001-07-25 | 2003-02-07 | Fuji Photo Film Co Ltd | Imaging unit |
TWI238348B (en) | 2002-05-13 | 2005-08-21 | Kyocera Corp | Portable information terminal, display control device, display control method, and recording media |
US8199222B2 (en) | 2007-03-05 | 2012-06-12 | DigitalOptics Corporation Europe Limited | Low-light video frame enhancement |
JP2005128437A (en) | 2003-10-27 | 2005-05-19 | Fuji Photo Film Co Ltd | Photographing device |
US6979902B2 (en) | 2004-03-10 | 2005-12-27 | Micron Technology, Inc. | Chip size image sensor camera module |
US7280735B2 (en) | 2004-06-07 | 2007-10-09 | Andre Sean Thibault | Combined optical fiber wheel, beamsplitter, switch, and logic gate |
US7465107B2 (en) | 2004-09-21 | 2008-12-16 | Canon Kabushiki Kaisha | Photographing apparatus and control method therefor |
KR101058011B1 (en) | 2004-10-01 | 2011-08-19 | 삼성전자주식회사 | How to Operate Digital Camera Using Touch Screen |
US9967424B2 (en) | 2005-06-02 | 2018-05-08 | Invention Science Fund I, Llc | Data storage usage protocol |
JP5038296B2 (en) | 2005-05-17 | 2012-10-03 | クアルコム,インコーポレイテッド | Orientation sensitivity signal output |
JP4215038B2 (en) | 2005-09-16 | 2009-01-28 | セイコーエプソン株式会社 | Image processing apparatus, image processing method, and program |
WO2007060794A1 (en) | 2005-11-22 | 2007-05-31 | Matsushita Electric Industrial Co., Ltd. | Imaging device, portable terminal, imaging method, and program |
TWI299427B (en) | 2005-12-02 | 2008-08-01 | Premier Image Technology Corp | Digital camera |
EP1826723B1 (en) | 2006-02-28 | 2015-03-25 | Microsoft Corporation | Object-level image editing |
JP4479679B2 (en) | 2006-03-14 | 2010-06-09 | セイコーエプソン株式会社 | Captured image display system, image receiving apparatus and control method thereof |
JP2008096584A (en) | 2006-10-10 | 2008-04-24 | Nikon Corp | Camera |
US8072482B2 (en) | 2006-11-09 | 2011-12-06 | Innovative Signal Anlysis | Imaging system having a rotatable image-directing device |
JP4280779B2 (en) | 2007-01-31 | 2009-06-17 | キヤノン株式会社 | Imaging device |
US7639935B2 (en) | 2007-03-28 | 2009-12-29 | Sony Ericsson Mobile Communications Ab | Zoom control |
US20080247745A1 (en) | 2007-04-04 | 2008-10-09 | Nilsson Rene | Camera assembly with zoom imaging and method |
US8494306B2 (en) | 2007-12-13 | 2013-07-23 | Samsung Electronics Co., Ltd. | Method and an apparatus for creating a combined image |
JP2009163369A (en) | 2007-12-28 | 2009-07-23 | Canon Inc | Image processor and control device for image processor |
US8355070B2 (en) | 2008-05-23 | 2013-01-15 | Seiko Epson Corporation | Development processing device, development processing method, and storage medium of computer program for development process for developing undeveloped image data |
JP4702401B2 (en) | 2008-06-02 | 2011-06-15 | カシオ計算機株式会社 | Camera, camera control program, and camera control method |
KR100950917B1 (en) | 2008-08-06 | 2010-04-01 | 삼성전기주식회사 | Camera module and method for manufacturing the same |
TWI419551B (en) | 2008-08-22 | 2013-12-11 | Solid-state panoramic image capture apparatus | |
JP5047243B2 (en) | 2008-09-26 | 2012-10-10 | シャープ株式会社 | Optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device |
US8223206B2 (en) | 2008-10-15 | 2012-07-17 | Flir Systems, Inc. | Infrared camera filter wheel systems and methods |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
KR20110022279A (en) | 2009-08-27 | 2011-03-07 | 삼성전기주식회사 | Camera module |
US8416262B2 (en) | 2009-09-16 | 2013-04-09 | Research In Motion Limited | Methods and devices for displaying an overlay on a device display screen |
US8515185B2 (en) | 2009-11-25 | 2013-08-20 | Google Inc. | On-screen guideline-based selective text recognition |
US8570402B2 (en) | 2010-02-05 | 2013-10-29 | Canon Kabushiki Kaisha | Imaging apparatus for obtaining a user-intended image when orientation of the imaging apparatus changes in applying a special effect that changes the image quality in a set direction |
KR101634248B1 (en) | 2010-03-11 | 2016-06-28 | 삼성전자주식회사 | A digital photographing apparatus, a method for controlling the same, and a computer-readable storage medium |
US20110242342A1 (en) | 2010-04-05 | 2011-10-06 | Qualcomm Incorporated | Combining data from multiple image sensors |
WO2011127201A1 (en) | 2010-04-06 | 2011-10-13 | Youbiq Llc | Camera control |
US9599715B2 (en) | 2010-08-03 | 2017-03-21 | Faro Technologies, Inc. | Scanner display |
US8665341B2 (en) | 2010-08-27 | 2014-03-04 | Adobe Systems Incorporated | Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data |
US8896655B2 (en) | 2010-08-31 | 2014-11-25 | Cisco Technology, Inc. | System and method for providing depth adaptive video conferencing |
US8417058B2 (en) | 2010-09-15 | 2013-04-09 | Microsoft Corporation | Array of scanning sensors |
WO2012043211A1 (en) | 2010-10-01 | 2012-04-05 | 富士フイルム株式会社 | Imaging device |
US20120155848A1 (en) | 2010-12-16 | 2012-06-21 | Motorola-Mobility, Inc. | Method and System for Providing Viewfinder Operation in Mobile Device |
US20120188391A1 (en) | 2011-01-25 | 2012-07-26 | Scott Smith | Array camera having lenses with independent fields of view |
US8465216B2 (en) | 2011-02-11 | 2013-06-18 | Jeff Justice | Camera mounting assembly |
US8704944B1 (en) | 2011-02-25 | 2014-04-22 | Girling Kelly Design Group, LLC | Handheld modular digital photography system |
JP5926492B2 (en) | 2011-03-23 | 2016-05-25 | キヤノン株式会社 | Lens apparatus and imaging apparatus having the same |
US8639296B2 (en) | 2011-06-07 | 2014-01-28 | Lg Electronics Inc. | Mobile device and an image display method thereof |
JP2013055499A (en) | 2011-09-02 | 2013-03-21 | Sony Corp | Solid state imaging device and camera system |
US20130064531A1 (en) | 2011-09-13 | 2013-03-14 | Bruce Harold Pillman | Zoom flash with no moving parts |
KR101301432B1 (en) | 2011-10-17 | 2013-08-28 | 삼성전기주식회사 | Camera Module |
US10001622B2 (en) | 2011-10-25 | 2018-06-19 | Sanford Burnham Medical Research Institute | Multifunction autofocus system and method for automated microscopy |
JP5942444B2 (en) | 2012-01-30 | 2016-06-29 | リコーイメージング株式会社 | Digital camera |
JP5936183B2 (en) | 2012-02-07 | 2016-06-15 | オリンパス株式会社 | Photography equipment |
US9835564B2 (en) | 2012-06-08 | 2017-12-05 | SeeScan, Inc. | Multi-camera pipe inspection apparatus, systems and methods |
EP3869797B1 (en) | 2012-08-21 | 2023-07-19 | Adeia Imaging LLC | Method for depth detection in images captured using array cameras |
JP6040838B2 (en) | 2012-08-29 | 2016-12-07 | 株式会社Jvcケンウッド | Depth estimation apparatus, depth estimation method, depth estimation program, image processing apparatus, image processing method, and image processing program |
US8520022B1 (en) | 2012-10-24 | 2013-08-27 | Google Inc. | Method and system for improving screen readability in daylight with runtime color adjustment |
US8762895B2 (en) | 2012-10-28 | 2014-06-24 | Google Inc. | Camera zoom indicator in mobile devices |
KR102045957B1 (en) | 2013-01-18 | 2019-11-18 | 삼성전자 주식회사 | Method and apparatus for photographing of a portable terminal |
US9509919B2 (en) | 2014-11-17 | 2016-11-29 | Duelight Llc | System and method for generating a digital image |
JP6230239B2 (en) | 2013-02-14 | 2017-11-15 | キヤノン株式会社 | Image processing apparatus, imaging apparatus, image processing method, image processing program, and storage medium |
US9519972B2 (en) | 2013-03-13 | 2016-12-13 | Kip Peli P1 Lp | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US9253375B2 (en) | 2013-04-02 | 2016-02-02 | Google Inc. | Camera obstruction detection |
US9135893B2 (en) | 2013-05-28 | 2015-09-15 | Infineon Technologies Ag | Display device |
JP6245885B2 (en) | 2013-08-02 | 2017-12-13 | キヤノン株式会社 | Imaging apparatus and control method thereof |
JP2015035658A (en) | 2013-08-07 | 2015-02-19 | キヤノン株式会社 | Image processing apparatus, image processing method, and imaging apparatus |
KR20150019710A (en) | 2013-08-14 | 2015-02-25 | 삼성전자주식회사 | Photographing apparatus and method |
TWI521255B (en) | 2013-11-29 | 2016-02-11 | 光寶科技股份有限公司 | Automatic focusing method, and automatic focusing device, image capturing device using the same |
JP6194777B2 (en) | 2013-11-29 | 2017-09-13 | 富士通株式会社 | Operation determination method, operation determination apparatus, and operation determination program |
US9196027B2 (en) | 2014-03-31 | 2015-11-24 | International Business Machines Corporation | Automatic focus stacking of captured images |
-
2014
- 2014-01-05 US US14/147,583 patent/US9568713B2/en active Active
- 2014-01-05 US US14/147,585 patent/US9282228B2/en active Active
- 2014-01-05 US US14/147,581 patent/US9671595B2/en active Active
- 2014-01-05 US US14/147,579 patent/US9270876B2/en active Active
- 2014-01-05 US US14/147,584 patent/US9547160B2/en active Active
- 2014-01-05 WO PCT/US2014/010267 patent/WO2014107634A2/en active Application Filing
-
2016
- 2016-01-27 US US15/007,885 patent/US9690079B2/en active Active
-
2017
- 2017-06-27 US US15/634,849 patent/US10101566B2/en active Active
Patent Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078479A (en) | 1990-04-20 | 1992-01-07 | Centre Suisse D'electronique Et De Microtechnique Sa | Light modulation device with matrix addressing |
US5889553A (en) | 1993-11-17 | 1999-03-30 | Canon Kabushiki Kaisha | Image pickup apparatus capable of high resolution imaging |
KR0153873B1 (en) | 1995-04-20 | 1998-12-01 | 김주용 | Parallax correction device of camera having compact-zoom |
US5982951A (en) | 1996-05-28 | 1999-11-09 | Canon Kabushiki Kaisha | Apparatus and method for combining a plurality of images |
JPH1091765A (en) | 1996-09-10 | 1998-04-10 | Canon Inc | Device for synthesizing picture and method therefor |
US5781331A (en) | 1997-01-24 | 1998-07-14 | Roxburgh Ltd. | Optical microshutter array |
US6081670A (en) | 1999-03-05 | 2000-06-27 | Lifetouch National School Studies Inc. | Depth-of-field indicator for a camera |
JP2001061109A (en) | 1999-08-20 | 2001-03-06 | Japan Science & Technology Corp | Image input device |
US7009652B1 (en) | 1999-08-20 | 2006-03-07 | Minolta Co. Ltd | Image input apparatus |
US20070182528A1 (en) | 2000-05-08 | 2007-08-09 | Automotive Technologies International, Inc. | Vehicular Component Control Methods Based on Blind Spot Monitoring |
US20030185551A1 (en) | 2002-03-28 | 2003-10-02 | Chen Wen Ching | Simple focusable lens combination of a camera |
JP2004289214A (en) | 2003-03-19 | 2004-10-14 | Minolta Co Ltd | Imaging apparatus |
US20040227839A1 (en) | 2003-05-13 | 2004-11-18 | Stavely Donald J. | Systems and methods for determining focus from light collected by the periphery of a lens |
US20130076928A1 (en) | 2004-08-25 | 2013-03-28 | Protarius Filo Ag, L.L.C. | Large dynamic range cameras |
JP2006106230A (en) | 2004-10-04 | 2006-04-20 | Nikon Corp | Camera |
US20080251697A1 (en) | 2005-01-25 | 2008-10-16 | Samsung Electronics Co., Ltd. | Image sensor and method of fabrication |
US20060187338A1 (en) | 2005-02-18 | 2006-08-24 | May Michael J | Camera phone using multiple lenses and image sensors to provide an extended zoom range |
US7315423B2 (en) | 2005-03-25 | 2008-01-01 | Fujinon Corporation | Zoom lens including four lens groups |
US20060221218A1 (en) | 2005-04-05 | 2006-10-05 | Doron Adler | Image sensor with improved color filter |
US20060238886A1 (en) | 2005-04-25 | 2006-10-26 | Taro Kushida | Zoom lens and image pickup apparatus |
US20070050139A1 (en) | 2005-04-27 | 2007-03-01 | Sidman Adam D | Handheld platform stabilization system employing distributed rotation sensors |
JP2007164258A (en) | 2005-12-09 | 2007-06-28 | Kurabo Ind Ltd | Image synthesizing device and method |
US20100225755A1 (en) | 2006-01-20 | 2010-09-09 | Matsushita Electric Industrial Co., Ltd. | Compound eye camera module and method of producing the same |
US8194169B2 (en) | 2006-01-20 | 2012-06-05 | Panasonic Corporation | Compound eye camera module and method of producing the same |
JP2007201915A (en) | 2006-01-27 | 2007-08-09 | Yamaha Corp | Planar camera unit |
US20070177047A1 (en) | 2006-01-31 | 2007-08-02 | Hisashi Goto | Taking apparatus |
US7810511B2 (en) | 2006-05-15 | 2010-10-12 | Sony Ericsson Mobile Communications Ab | Lens cleaner |
US7551358B2 (en) | 2006-07-05 | 2009-06-23 | Samsung Electro-Mechanics Co., Ltd. | Camera module having an array lens |
US20080030592A1 (en) | 2006-08-01 | 2008-02-07 | Eastman Kodak Company | Producing digital image with different resolution portions |
KR20080022260A (en) | 2006-09-06 | 2008-03-11 | 엘지전자 주식회사 | Optical device with zoom lens |
US20080074755A1 (en) | 2006-09-07 | 2008-03-27 | Smith George E | Lens array imaging with cross-talk inhibiting optical stop structure |
US20080211941A1 (en) * | 2007-03-01 | 2008-09-04 | Deever Aaron T | Digital camera using multiple image sensors to provide improved temporal sampling |
US20080219654A1 (en) | 2007-03-09 | 2008-09-11 | Border John N | Camera using multiple lenses and image sensors to provide improved focusing capability |
JP2008268937A (en) | 2007-03-29 | 2008-11-06 | Kyocera Corp | Imaging device and imaging method |
US8482637B2 (en) | 2007-03-29 | 2013-07-09 | Kyocera Corporation | Imaging device and imaging method having zoom optical system including a light wavefront modulation element |
US20100283842A1 (en) * | 2007-04-19 | 2010-11-11 | Dvp Technologies Ltd. | Imaging system and method for use in monitoring a field of regard |
US20080278610A1 (en) | 2007-05-11 | 2008-11-13 | Micron Technology, Inc. | Configurable pixel array system and method |
US20090086032A1 (en) | 2007-09-28 | 2009-04-02 | Altek Corporation | System for detecting and compensating camera movement and a method thereof |
US20100265346A1 (en) | 2007-12-13 | 2010-10-21 | Keigo Iizuka | Camera system and method for amalgamating images to create an omni-focused image |
US20100053414A1 (en) | 2008-01-11 | 2010-03-04 | Satoshi Tamaki | Compound eye camera module |
US20090225203A1 (en) | 2008-02-28 | 2009-09-10 | Funai Electric Co., Ltd. | Compound-eye imaging device |
US8237841B2 (en) | 2008-02-28 | 2012-08-07 | Funai Electric Co., Ltd. | Compound-eye imaging device |
US20090278950A1 (en) | 2008-05-09 | 2009-11-12 | Micron Technology, Inc. | Lens cleaning warning system and method |
US20110069189A1 (en) * | 2008-05-20 | 2011-03-24 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US20100013906A1 (en) | 2008-07-17 | 2010-01-21 | Border John N | Zoom by multiple image capture |
US20100097443A1 (en) | 2008-10-16 | 2010-04-22 | Peter Lablans | Controller in a Camera for Creating a Panoramic Image |
US20100238327A1 (en) | 2009-03-19 | 2010-09-23 | Griffith John D | Dual Sensor Camera |
JP2010256397A (en) | 2009-04-21 | 2010-11-11 | Kyocera Mita Corp | Optical scanning apparatus and image forming apparatus with the same |
US8553106B2 (en) | 2009-05-04 | 2013-10-08 | Digitaloptics Corporation | Dual lens digital zoom |
US20100296802A1 (en) | 2009-05-21 | 2010-11-25 | John Andrew Davies | Self-zooming camera |
US20110051243A1 (en) | 2009-08-28 | 2011-03-03 | Su Yu-Hsiu | Prism type lens structure |
JP2010049263A (en) | 2009-09-14 | 2010-03-04 | Olympus Corp | Electronic imaging apparatus |
US20110080655A1 (en) | 2009-10-06 | 2011-04-07 | Masao Mori | Imaging lens and imaging apparatus |
US8320051B2 (en) | 2009-10-13 | 2012-11-27 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US20110128393A1 (en) | 2009-12-01 | 2011-06-02 | Nokia Corporation | Digital imaging |
US20110157430A1 (en) | 2009-12-28 | 2011-06-30 | Takeshi Hosoya | Image pickup apparatus having optical path reflecting zoom lens |
US20110157451A1 (en) | 2009-12-31 | 2011-06-30 | Hon Hai Precision Industry Co., Ltd. | Imaging device |
US20110187878A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd. | Synchronization of projected illumination with rolling shutter of image sensor |
US20110222167A1 (en) | 2010-03-12 | 2011-09-15 | Samsung Electronics Co., Ltd. | Compact zoom lens |
US20110280565A1 (en) | 2010-05-14 | 2011-11-17 | Chapman Leonard T | Dual loop camera stabilization systems and methods |
US20110285895A1 (en) | 2010-05-21 | 2011-11-24 | Chung Shan Institute Of Science And Technology | Image Sensing Device and Processing System |
US20120002096A1 (en) | 2010-07-05 | 2012-01-05 | Samsung Electronics Co., Ltd. | Imaging device including a plurality of imaging units |
US20130050564A1 (en) | 2010-09-16 | 2013-02-28 | James E. Adams, Jr. | Producing focused videos from single captured video |
US20120162464A1 (en) | 2010-12-27 | 2012-06-28 | Samsung Electronics Co., Ltd. | Digital image photographing apparatus and method of controlling the same |
US20120249815A1 (en) | 2011-03-29 | 2012-10-04 | Mircrosoft Corporation | Folded imaging path camera |
US20120257077A1 (en) * | 2011-04-07 | 2012-10-11 | Olympus Corporation | Image pickup apparatus, image pickup method and recording device recording image processing program |
US20120257013A1 (en) | 2011-04-08 | 2012-10-11 | Sony Corporation | Analysis of 3d video |
US20120268642A1 (en) | 2011-04-21 | 2012-10-25 | Olympus Imaging Corporation | Driving apparatus and imaging apparatus using the same |
US20130027353A1 (en) | 2011-07-28 | 2013-01-31 | Jinwook Hyun | Touch-type portable terminal |
US20130086765A1 (en) | 2011-10-05 | 2013-04-11 | Hwan Ming Enterprise Co., Ltd | Automatic clean device for a surveillance camera |
KR20130038076A (en) | 2011-10-07 | 2013-04-17 | 엘지전자 주식회사 | Mobile terminal and out-focusing image generating method thereof |
US8780258B2 (en) | 2011-10-07 | 2014-07-15 | Lg Electronics Inc. | Mobile terminal and method for generating an out-of-focus image |
US20130093842A1 (en) | 2011-10-12 | 2013-04-18 | Canon Kabushiki Kaisha | Image-capturing device |
US20130155194A1 (en) | 2011-12-15 | 2013-06-20 | Thomson Licensing | Anagylphic stereoscopic image capture device |
US20130153772A1 (en) | 2011-12-20 | 2013-06-20 | Heptagon Micro Optics Pte. Ltd. | Opto-electronic module and devices comprising the same |
US20130223759A1 (en) | 2012-02-28 | 2013-08-29 | Canon Kabushiki Kaisha | Image processing method and device, and program |
EP2642757A2 (en) | 2012-03-19 | 2013-09-25 | Aptina Imaging Corporation | Imaging systems with clear filter pixels |
US20130258044A1 (en) | 2012-03-30 | 2013-10-03 | Zetta Research And Development Llc - Forc Series | Multi-lens camera |
US20140111650A1 (en) | 2012-10-19 | 2014-04-24 | Qualcomm Incorporated | Multi-camera system using folded optics |
US20140192214A1 (en) | 2013-01-05 | 2014-07-10 | Tinz Optics, Inc. | Methods and apparatus for using multiple optical chains in paralell |
US20140192253A1 (en) | 2013-01-05 | 2014-07-10 | Tinz Optics, Inc. | Methods and apparatus for capturing and/or processing images |
US20140192224A1 (en) | 2013-01-05 | 2014-07-10 | Tinz Optics, Inc. | Methods and apparatus for using multiple optical chains in parallel to support separate color-capture |
US20140192240A1 (en) | 2013-01-05 | 2014-07-10 | Tinz Optics, Inc. | Camera methods and apparatus using optical chain modules which alter the direction of received light |
US20150234149A1 (en) | 2014-02-19 | 2015-08-20 | Melvyn H. Kreitzer | Zoom lens optical system |
US20150253647A1 (en) | 2014-03-07 | 2015-09-10 | Apple Inc. | Folded camera lens systems |
Non-Patent Citations (11)
Title |
---|
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/061248, pp. 1-11, dated Jan. 13, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/061254, pp. 1-29, dated Jan. 8, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/061257, pp. 1-12, dated Jan. 14, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/061258, pp. 1-14, dated Jan. 13, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/062306, pp. 1-12, dated Jan. 26, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/063601, pp. 1-12, dated Jan. 27, 2015. |
International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2014/072907, pp. 1-11, dated Mar. 27, 2015. |
International Search Report from International Application No. PCT/US14/10267, pp. 1-5, dated Jul. 8, 2014. |
Robertson, M et al "Dynamic Range Improvement Through Multiple Exposures". 1999. [online] [retrieved on Apr. 16, 2014]:<URL:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=817091&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs-all.jsp%3Farnumber%3D817091>, pp. 1-6. |
Segan,S. "Hands on with the 41-Megapixel Nokia PureView 808", Feb. 27, 2012, PC Mag, [online], [retrieved on Apr. 16, 2014]. Retrieved from the Internet: , URL:http://www.pcmag.com/article2/0,2817,2400773,00.asp>, pp. 1-9. |
Written Opinion of the International Searching Authority from International Application No. PCT/US14/10267, pp. 1-29, dated Jul. 8, 2014. |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10274706B2 (en) | 2013-10-18 | 2019-04-30 | Light Labs Inc. | Image capture control methods and apparatus |
US10009530B2 (en) | 2013-10-18 | 2018-06-26 | Light Labs Inc. | Methods and apparatus for synchronized image capture using camera modules with different focal lengths |
US10038860B2 (en) | 2013-10-18 | 2018-07-31 | Light Labs Inc. | Methods and apparatus for controlling sensors to capture images in a synchronized manner |
US10048472B2 (en) | 2013-10-18 | 2018-08-14 | Light Labs Inc. | Methods and apparatus for implementing and/or using a camera device |
US10509208B2 (en) * | 2013-10-18 | 2019-12-17 | Light Labs Inc. | Methods and apparatus for implementing and/or using a camera device |
US10120159B2 (en) | 2013-10-18 | 2018-11-06 | Light Labs Inc. | Methods and apparatus for supporting zoom operations |
US9955082B2 (en) | 2013-10-18 | 2018-04-24 | Light Labs Inc. | Methods and apparatus for capturing images using optical chains and/or for using captured images |
US10205862B2 (en) | 2013-10-18 | 2019-02-12 | Light Labs Inc. | Methods and apparatus relating to a camera including multiple optical chains |
US10931866B2 (en) | 2014-01-05 | 2021-02-23 | Light Labs Inc. | Methods and apparatus for receiving and storing in a camera a user controllable setting that is used to control composite image generation performed after image capture |
US9998638B2 (en) | 2014-12-17 | 2018-06-12 | Light Labs Inc. | Methods and apparatus for implementing and using camera devices |
US9967535B2 (en) | 2015-04-17 | 2018-05-08 | Light Labs Inc. | Methods and apparatus for reducing noise in images |
US10091447B2 (en) | 2015-04-17 | 2018-10-02 | Light Labs Inc. | Methods and apparatus for synchronizing readout of multiple image sensors |
US10129483B2 (en) | 2015-06-23 | 2018-11-13 | Light Labs Inc. | Methods and apparatus for implementing zoom using one or more moveable camera modules |
US10491806B2 (en) | 2015-08-03 | 2019-11-26 | Light Labs Inc. | Camera device control related methods and apparatus |
US10365480B2 (en) | 2015-08-27 | 2019-07-30 | Light Labs Inc. | Methods and apparatus for implementing and/or using camera devices with one or more light redirection devices |
US10051182B2 (en) | 2015-10-05 | 2018-08-14 | Light Labs Inc. | Methods and apparatus for compensating for motion and/or changing light conditions during image capture |
US10516834B2 (en) | 2015-10-06 | 2019-12-24 | Light Labs Inc. | Methods and apparatus for facilitating selective blurring of one or more image portions |
US10225445B2 (en) | 2015-12-18 | 2019-03-05 | Light Labs Inc. | Methods and apparatus for providing a camera lens or viewing point indicator |
US10003738B2 (en) | 2015-12-18 | 2018-06-19 | Light Labs Inc. | Methods and apparatus for detecting and/or indicating a blocked sensor or camera module |
US10670858B2 (en) | 2017-05-21 | 2020-06-02 | Light Labs Inc. | Methods and apparatus for maintaining and accurately determining the position of a moveable element |
Also Published As
Publication number | Publication date |
---|---|
US20140192214A1 (en) | 2014-07-10 |
US10101566B2 (en) | 2018-10-16 |
US20180024330A1 (en) | 2018-01-25 |
US9547160B2 (en) | 2017-01-17 |
US20140192225A1 (en) | 2014-07-10 |
US20140192240A1 (en) | 2014-07-10 |
US9568713B2 (en) | 2017-02-14 |
US20140192253A1 (en) | 2014-07-10 |
US20140192224A1 (en) | 2014-07-10 |
US9690079B2 (en) | 2017-06-27 |
WO2014107634A2 (en) | 2014-07-10 |
US20160139375A1 (en) | 2016-05-19 |
WO2014107634A3 (en) | 2014-09-12 |
US9282228B2 (en) | 2016-03-08 |
US9671595B2 (en) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10101566B2 (en) | Camera methods and apparatus using optical chain modules which alter the direction of received light | |
US11716538B2 (en) | Methods and apparatus for use with multiple optical chains | |
US10205862B2 (en) | Methods and apparatus relating to a camera including multiple optical chains | |
US9736365B2 (en) | Zoom related methods and apparatus | |
US9948858B2 (en) | Image stabilization related methods and apparatus | |
JP2016541151A (en) | Method and apparatus for implementing and / or using a camera device | |
CN103597811B (en) | Take the image-capturing element of Three-dimensional movable image and planar moving image and be equipped with its image capturing device | |
US20160381280A1 (en) | Imaging apparatus and imaging method | |
JP7378935B2 (en) | Image processing device | |
WO2015061769A1 (en) | Methods and apparatus for use with multiple optical chains | |
WO2015066571A1 (en) | Methods and apparatus relating to image stabilization | |
JP2019201269A (en) | Imaging apparatus | |
JP2019134203A (en) | Imaging apparatus and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TINZ OPTICS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAROIA, RAJIV;REEL/FRAME:032179/0402 Effective date: 20140204 |
|
AS | Assignment |
Owner name: TINZ OPTICS, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME FROM TINZ OPTICS TO TINZ OPTICS, INC. PREVIOUSLY RECORDED ON REEL 032179 FRAME 0402. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF OWNERSHIP;ASSIGNOR:LAROIA, RAJIV;REEL/FRAME:033685/0375 Effective date: 20140214 |
|
AS | Assignment |
Owner name: THE LIGHTCO INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:TINZ OPTICS, INC.;REEL/FRAME:033697/0302 Effective date: 20140428 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: LIGHT LABS INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:THE LIGHTCO INC.;REEL/FRAME:040478/0975 Effective date: 20160915 |
|
AS | Assignment |
Owner name: LIGHT LABS INC., CALIFORNIA Free format text: CHANGE OF ADDRESS;ASSIGNOR:LIGHT LABS INC.;REEL/FRAME:048524/0940 Effective date: 20190102 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: LGT (ABC), LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIGHT LABS INC.;REEL/FRAME:061770/0945 Effective date: 20220513 Owner name: BLUE RIVER TECHNOLOGY INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LGT (ABC), LLC;REEL/FRAME:061770/0923 Effective date: 20220513 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |