US9270378B2 - CML output driver - Google Patents
CML output driver Download PDFInfo
- Publication number
- US9270378B2 US9270378B2 US12/764,236 US76423610A US9270378B2 US 9270378 B2 US9270378 B2 US 9270378B2 US 76423610 A US76423610 A US 76423610A US 9270378 B2 US9270378 B2 US 9270378B2
- Authority
- US
- United States
- Prior art keywords
- output
- vin
- differential
- driver
- transistors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/502—LED transmitters
Definitions
- the invention relates to an output driver and, more particularly, an output driver for an light emitting diode (LED).
- LED light emitting diode
- Electro-optical data converters are used for converting electrical data signals into optical signals.
- Differential non-return to zero (NRZ) formats are used at data rates of about 10 Gbps and beyond.
- Signal shaping techniques have to be applied for compensating deficiencies and inherent non-idealities of transmission media, as for example frequency dependent losses. In order to reduce power consumption, power supply levels are reduced.
- Electro-optical data converters may include a driver and a light emitting semiconductor device as for example a VCSEL (Vertical Cavity Surface Emitting Laser) diode.
- VCSELs are often used as light emitting semiconductor devices.
- a VCSEL's circular beam is easily coupled with a fiber. This is mainly due to the characteristic of VCSEL diodes as a surface emission rather than edge emission device and they are known for their excellent power efficiency and durability. Accordingly, VCSEL diodes are widely used in low cost optical transmission systems. However, in high data rate transmission systems, the VCSEL diodes show some drawbacks.
- the VCSEL diodes represent a significantly high capacitance and the asymmetric turn on and turn off behavior often results in asymmetric optical eye plots.
- it is desired to maximize the horizontal and vertical opening of the optical eye plot i.e. to make the optical eye plot more symmetric.
- Existing VCSEL drivers therefore introduce output current peaking for steeper optical edges and a threshold adjustment capability in order to correct the eyes crossing point. Both enhancements increase the eye opening, but they fail to render the optical output eye more symmetric.
- a symmetric optical output eye represents the optimal solution for maximization of vertical and horizontal eye opening thereby minimizing the bit error rate.
- this solution does not allow a flexible adjustment to accommodate different data rates, different VCSEL diode parameters and to compensate the influence of the transmission media and the optical sub assembly.
- FIG. 1 shows a circuit diagram of driver circuit for driving a VSCEL diode.
- An input stage comprises a differential pair of bipolar diodes Q 1 and Q 2 . They are configured to receive differential input signal VIN with their base inputs INp, INn.
- the input stage further comprises resistor loads RL 1 , RL 2 coupled to respective collectors of transistors Q 1 , Q 2 .
- resistor loads RL 1 , RL 2 coupled to respective collectors of transistors Q 1 , Q 2 .
- there is current source coupled to the emitters of both transistors Q 1 , Q 2 defining a tail current I 1 through the differential pair.
- the collectors of transistors Q 1 , Q 2 of the input differential pair provide an output signal VIN 2 which is fed to an output stage which also comprises a differential pair of bipolar transistors Q 3 , Q 4 .
- the output stage also comprises resistor loads RL 3 , RL 4 and a current source I 2 .
- the output voltage VOUT at the collectors (output nodes OUTn, OUTp) of the differential pair Q 3 , Q 4 may then be used to drive the light VCSEL.
- the output current IOUT is the difference of the currents I 3 and I 4 through transistors Q 3 and Q 4 .
- the output current IOUT can be defined as:
- IOUT I ⁇ ⁇ 2 ⁇ tanh ⁇ ( VIN ⁇ ⁇ 2 2 ⁇ VT ) ( 1 )
- the output voltage can then be determined as:
- VOUT is a non-linear function of VIN 2 .
- FIG. 2 shows another prior art driving stage.
- This driving stage differs from the one in FIG. 1 in that an additional differential pair Q 5 , Q 6 is coupled in parallel to the differential pair Q 3 , Q 4 .
- the differential pair Q 3 , Q 4 also receives VIN 2 as input voltage from the input stage.
- the result is an overshoot current generated at every edge of signal VIN 2 .
- the output voltage VOUT also shows the overshoot.
- the overshoot height and width may be controlled by filter elements RE 5 , RE 6 and CE as well as the magnitude of current I 3 . Therefore, the circuit of FIG.
- VOUT 2 can be regarded as a pre-emphasis output driver, which may be used for compensating losses of transmission lines.
- this superimposed output driver operates in limiting mode (i.e. VIN 2 >2 VT)
- This ripple converts into a common mode voltage ripple at the output nodes caused by the finite input impedances of the current sources I 2 and I 3 , which are indicated with ZI 2 , ZI 3 .
- the common-mode ripple causes increased EMI which may adversely affect system requirements.
- the capacitive loading of the output terminals is increased as two differential pairs of transistors are coupled to the input stage. This aspect decreased the achievable bandwidth and therefore the maximum data rate.
- the apparatus comprises an input stage which is configured to receive a first input signal with a first differential pair of bipolar transistors and a second input signal with a second differential pair of bipolar transistors.
- the input stage is further configured to provide a pre-driver output signal being a superposition of the first input signal and the second input signal.
- the apparatus may also comprise an output stage.
- the output stage may also be configured to drive the light emitting semiconductor device in response to the pre-driver output signal.
- the output stage may feed an output current to the light emitting semiconductor device in response to the pre-driver output signal.
- the output stage may comprise a third differential pair of bipolar transistors adapted to receive the pre-driver output signal of the input stage.
- the input stage may be configured to pre-distort the pre-driver output signal so as to compensate a distortion of the output stage. This aspect provides that an output signal of the output stage for driving the light emitting semiconductor device is a linear function of the pre-driver output signal. This reduces signal distortion of the driving signal for the light emitting semiconductor device.
- the first and the second differential pair of bipolar transistors of the input stage may be coupled to degeneration resistors. This provides that the pre-driver output signal is a linear function of the first input signal and the second input signal, except the pre-distortion applied for compensating the distortion of the output stage. The pre-driver should then be adapted to pre-distort the input signal in a manner which is the inverse function of the distortion of the output stage.
- the first and the second differential pair of bipolar transistors of the input stage may therefore be coupled to a transistor load.
- the transistor load may be bipolar transistors.
- the load may be a diode load.
- the diode load may then be a transistor diode load, i.e. for example bipolar transistors in diode coupled configuration.
- the load may also be transistors in a common base structure.
- the load transistors may then be coupled with their bases to a common reference voltage level.
- the first and second differential pair may share the same load.
- the diode load or transistor (diode or common base) load can then serve to provide an appropriate pre-distortion.
- These aspects of the invention provide a trans-linear driver topology.
- the degeneration resistors coupled to the differential pairs of the input stage serve to establish a linear relationship between the output current of the input stage and the first and the second input voltages.
- the transistor load e.g. diode coupled or in common base structure coupled to the differential pairs, provides that the input voltage for the output stage is pre-distorted. Pre-distorting provides an overall linear relationship between the input signals to the input stage and the output signals (output voltage and/or output currents) of the output stage.
- the apparatus according to these aspects of the invention has less distortion and higher versatility than prior art devices.
- the first input voltage and the second input voltage may advantageously be generated in a specific buffer stage for compensating negative line properties or non-ideal characteristics of the light emitting semiconductor device.
- the apparatus may then further comprise a delay buffer for delaying a driving signal for the light emitting semiconductor device.
- the delay buffer may be configured to generate the first input signal as a delayed version of the driving signal.
- the buffer stage may also comprise a pulse generation stage which is coupled in parallel to the delay buffer and adapted to selectively produce positive and negative pulses. Theses pulses may advantageously start concurrently with respective positive and negative edges of the first input signal.
- the pulses may then be used as the second input signal.
- the first input signal and the second input signal may then be fed to the first and second differential pair of the input stage.
- an apparatus is capable of generating over- and undershoot having a completely independent adjustment of peak width and height for both, the over- and the undershoot.
- the apparatus may therefore include a wave shaping circuitry which may comprise two major building blocks, the over- and undershoot generating stage (pulse generation stage) and a delay buffer connected in parallel to the pulse generation stage.
- the delay buffer is adapted to apply basically the same signal delay to the input signal as the pulse generation stage, such that the pulses produced by the pulse generation stage occur concurrently with the edges of the of the input signal.
- the main purpose of the delay buffer consists in delaying the input signal, such that a predetermined phase relationship between the output signal of the delay buffer (first input signal) and the output signal of the pulse generation circuit (second input signal) is established.
- the delay buffer can also be used to adjust the level of the input signal.
- the driving signal may have a substantially rectangular alternating waveform.
- the output of both stages are superimposed, which may consist in a summing operation of the two output signals (e.g. voltages or currents) to represent the final output signal.
- the pulse generation stage may be adapted to produce short peaks with a controlled width and a controlled height at every edge of the input signal and falls back to zero in-between the peaks.
- This embodiment may preferably be used for driving VCSEL. However, it may also be advantageously applied to other kinds of semiconductor light emitting devices.
- a technology for implementing the present invention may be a bipolar or BICMOS technology.
- the apparatus may comprise a low impedance driving stage coupled between the input stage and the output stage for buffering the pre-driver output signal of the input stage.
- the output stage is then decoupled from the input stage, which provides an improved performance.
- the buffer or low impedance driving stage may comprise bipolar transistors coupled as emitter followers so as to serve as the low impedance driving stage and a level shifter.
- the distortion of the second input voltage may then further be reduced by the gain of the bipolar transistors.
- the level shift can provide more voltage headroom at the output terminals of the output stage. This allows lower supply voltage levels to be used for the apparatus.
- a pre-driver output signal of a differential pair of bipolar transistors of an input stage may be pre-distorted so as to compensate a distortion of an output stage.
- the pre-distorted pre-driver output signal may then be applied (or fed) to the output stage for driving the light emitting semiconductor device.
- Pre-distortion may be provided by using a diode load, in particular a transistor diode load for a differential pair of bipolar transistors in the input stage.
- the output stage may then also include a differential pair of bipolar transistors. Degeneration resistors may also be used in the input stage.
- FIG. 1 shows a simplified circuit diagram of a prior art driver
- FIG. 2 shows another simplified circuit diagram of a prior driver
- FIG. 3 shows a basic block diagram of an embodiment of the invention
- FIG. 4 shows the block diagram of FIG. 3 in more detail
- FIG. 5 shows a simplified circuit diagram of an embodiment of the invention
- FIG. 6 shows a simplified circuit diagram of another embodiment of the invention.
- FIG. 7 shows a simplified circuit diagram of still another embodiment of the invention.
- FIG. 3 shows a simplified and basic block diagram of an embodiment of the invention.
- the integrated circuit (IC) 1 may be one or more integrated semiconductor circuits configured in accordance with aspects of the invention.
- the buffer BUF 2 receives a driving signal LD for driving a light emitting semiconductor device D.
- the light emitting semiconductor device may be any other light emitting semiconductor device, as for example a VCSEL (Vertical Cavity Surface Emitting Laser).
- the buffer receives the driver signal LD and produces two output signals VIN 1 and VIN 2 which are fed to current mode logic output stage CMLOS 3 .
- Some embodiments of the current mode logic output stage CMLOS 3 are explained below with reference to FIGS. 5 , 6 and 7 .
- some signals, as for example VIN 1 , VIN 2 are shown as single-ended signals and others as fully differential signals VOUT in the embodiments of the invention, either single-ended or fully differential signals may be used.
- FIG. 4 shows a block diagram of an embodiment of buffer 2 shown in FIG. 3 .
- a delay buffer DBUF 4 is coupled in parallel to a pulse generation stage PGS 5 .
- the basic functionality of the shown architecture can be derived from the waveforms indicated at the input node LD and the respective outputs VIN 1 , VIN 2 (fully differential signals) of the delay buffer DBUF 4 and the pulse generation stage PGS 5 , as well as at the output VOUT of current mode logic output stage CMLOS 3 .
- the input signal at the input node LD is fed to the delay buffer DBUF 4 and the pulse generation stage PGS 5 .
- the delay buffer DBUF 4 basically applies a delay to the input signal that compensates the delay the input signal undergoes in the pulse generation stage PGS 5 .
- the pulse generation stage PGS produces positive and negative pulses concurrently with the rising and falling edges of the output signal VIN 1 of the delay buffer DBUF 4 .
- the output signal VIN 1 of the delay buffer DBUF 4 is indicated as a doted line in the waveform diagram at the output VIN 2 of the pulse generation stage PGS.
- the delayed input signal VIN 1 received at the output of the delay buffer DBUF 4 and the pulse signal VIN 2 generated by the pulse generation stage PGS are fed to current mode logic output stage CMLOS 3 .
- the current mode logic output stage CMLOS 3 performs a superposition of the two input signals VIN 1 and VIN 2 .
- This superposition may be a summing such that the combined output signal VOUT shows the desired over- and undershoot pulses at the rising and falling edges of the delayed input signal VIN 1 .
- the height and the width of the over- and undershoot pulses VIN 2 can be arbitrarily defined within the pulse generation stage PGS.
- FIG. 5 shows a simplified circuit diagram of an embodiment of a current mode logic output stage CMLOS 3 .
- the current mode logic output stage CMLOS 3 comprises an input stage 6 and an output stage 7 .
- the input stage may also be referred to as pre-driver.
- the input stage 6 includes two differential pairs of bipolar transistors: a first differential pair of bipolar transistors Q 1 , Q 2 and second pair of bipolar transistors Q 3 , Q 4 .
- the emitters of the transistors Q 1 , and Q 2 of the first differential pair are coupled to degeneration resistors RE 1 , and RE 2 , respectively.
- the other sides of degeneration resistors RE 1 , RE 2 are coupled together and to tail current source I 1 .
- tail current source I 1 is indicated as ZI 1
- the collectors of transistors Q 1 , Q 2 of the first differential pair are coupled to diode loads.
- the diode loads are implemented with diode coupled bipolar transistors Q 7 and Q 8 .
- a common base structure may be used, where the bases of transistors Q 7 , Q 8 are coupled to a common reference voltage.
- the emitters of transistors Q 7 , Q 8 are coupled to the collectors of the transistors Q 1 , Q 2 of the first differential pair.
- the first differential pair receives a first input voltage VIN 1 .
- the first differential pair has two output nodes OUT 1 n , and OUT 1 p which have a voltage difference VIN 3 .
- the input stage 6 also includes a second differential pair of bipolar transistors Q 3 , and Q 4 .
- the emitters of the transistors Q 3 , and Q 4 of the second differential pair are coupled to degeneration resistors RE 3 , and RE 4 , respectively.
- the other sides of degeneration resistors RE 3 , RE 4 are coupled together and to tail current source I 2 .
- the finite impedance of tail current source I 2 is indicated as ZI 2 .
- the collectors of transistors Q 3 , Q 4 of the second differential pair are coupled to diode loads.
- the second differential pair Q 3 , Q 4 is coupled to the same loads as the first differential pair Q 1 , Q 2 ,
- the first differential pair Q 1 , Q 2 and the second differential pair Q 3 , Q 4 share the same load.
- This load is a diode load, in particular a load which is implemented with two diode coupled bipolar transistors.
- the load may also be implemented with a common-base structure. The load transistors may then be coupled with their bases to a common reference voltage.
- the output stage 7 includes a third differential pair of bipolar transistors Q 5 , Q 6 .
- the emitters of the bipolar transistors Q 5 , Q 6 of the third differential stage are directly and commonly coupled to tail current source I 3 .
- the finite impedance of this current source is indicated as ZI 3 .
- the loads of output stage 7 are two load resistors RL 3 and RL 4 in this embodiment which are coupled to the collectors of bipolar transistors Q 5 , Q 6 of the output stage 7 .
- the output stage 7 may especially used for driving currents through light emitting semiconductor devices.
- the output stage may be used for driving VCSELs.
- the load may then be a VCSEL instead of the shown resistor (s).
- the output nodes OUTp, OUTn are the output nodes of the third differential pair Q 5 , Q 6 .
- the voltage difference between the output nodes OUTn, OUTp of the third differential stage is the output voltage VOUT, which may be used for driving a light emitting semiconductor device as for example a VCSEL.
- the driver topology shown in FIG. 5 overcomes deficiencies of prior art driver topologies. It uses a trans-linear operation mode and is configured to provide versatile output waveform shaping.
- the degeneration resistors RE 1 , RE 2 at the emitters of the first differential pair Q 1 , Q 2 provide linear relationship between the output current IOUT 1 of the first differential pair and the first input voltage VIN 1 as long as the first input voltage VIN 1 is smaller than the maximum voltage drop across either of the degeneration resistors RE 1 , RE 2 :
- the second differential pair Q 3 , Q 4 in parallel to the first differential pair is also emitter-degenerated through emitter resistors RE 3 , RE 4 . This provides that also the output current IOUT 2 of the second differential pair linearly depends on the second input voltage VIN 2 :
- IOUT,PRE,AVG the average input stage current IOUT,PRE,AVG is
- the output current IOUT in the output stage is a non-linear function of the input voltage VIN 3 of the output stage:
- VBE VT ⁇ In ⁇ ( IOUT , PRE , AVG IS ) ( 9 ) which can be used in the previous equation. This results in
- VBE + ⁇ ⁇ ⁇ V VT ⁇ In ⁇ ( IOUT , PRE , AVG + ⁇ ⁇ ⁇ I IS ) ( 10 )
- VBE - ⁇ ⁇ ⁇ V VT ⁇ In ⁇ ( IOUT , PRE , AVG - ⁇ ⁇ ⁇ I IS ) ( 11 )
- ⁇ I is the output current change corresponding to ⁇ V.
- the inverse function of the hyperbolic function is:
- the last equation shows that IOUT is linearly controlled through the superimposed current IOUT,PRE,AVG.
- the input stage provides a pre-distortion being the inverse function of the distortion of the output stage. This can be implemented with a load in the input stage being of the same type as the input devices of the output stage. Therefore, versatile signal shaping of the output signal is available by merely applying arbitrary driving signals LD to the apparatus.
- the embodiments of the invention provide that overlay input voltages VIN 1 , VIN 2 will always drive the output driver in linear mode.
- Transistors Q 5 , Q 6 of the third differential pair in the output stage 7 are never completely turned off or reversely biased. This minimizes signal distortion and common mode ripple.
- the capacitive load for the input stage 6 is smaller than for prior art drivers. Therefore, the driver according to the invention supports larger bandwidths and higher data rates.
- FIG. 6 shows a simplified circuit diagram of an embodiment of the invention.
- the current mode logic output stage CMLOS 3 shown in FIG. 6 is basically similar to the circuitry shown in FIG. 5 .
- Buffers F 1 , F 2 generally provide that the output stage is decoupled from the input stage.
- High ohmic inputs of the buffers F 1 , F 2 reduce distortion, whereas low ohmic outputs of buffers improve driving characteristics for the output stage 7 . This can improve driving performance.
- FIG. 7 shows an embodiment of current mode logic output stage CMLOS 3 , where the low impedance buffers F 1 , F 2 of FIG. 6 are implemented with two emitter followers.
- the emitter followers are implemented with bipolar transistors Q 9 , Q 10 .
- Current sources I 4 , I 5 are coupled to the emitters of transistors Q 9 , Q 10 .
- the finite input impedance of the current sources I 4 , I 5 are represented by impedances ZI 4 and ZI 5 .
- the collectors of transistors Q 9 , Q 10 are coupled to supply voltage level.
- the output voltage VIN 3 is now fed to the bases of transistors Q 9 , Q 10 .
- the emitter of transistor Q 10 is coupled to the base of transistor Q 6 of the third differential pair of the output stage.
- the emitter of transistor Q 9 is coupled to the base of transistor Q 5 of the third differential pair of the output stage.
- the emitter followers Q 9 , Q 10 perform an impedance transformation with respect to base currents IB 5 , IB 6 of transistors Q 5 , Q 6 of the output stage.
- VIN 2 Distortion of the wave-shaped voltage VIN 2 due to load currents IB 5 , IB 6 is reduced by the current gain ⁇ .
- VIN 3 is converted into a voltage VINI 4 of identical shape by the emitter followers Q 9 , Q 10 .
- VIN 4 drives the output stage 7 . Therefore, the output currents IQ 5 , IQ 6 , IOUT can be increased without increasing the level of wave-shape distortion.
- a bias level shift between the pre-driver (input stage 6 ) and the output stage 7 is performed. This provides that the output stage 7 has a lower bias voltage level (at the bases of Q 5 , Q 6 ) and can therefore be supplied with a lower supply voltage level for the same voltage headroom.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
Abstract
Description
where VT is the temperature voltage VT=k T/e with T being the absolute temperature and e the elementary charge. The output voltage can then be determined as:
with VIn1<<RE*I1 and RE=RE1=RE2. The second differential pair Q3, Q4 in parallel to the first differential pair is also emitter-degenerated through emitter resistors RE3, RE4. This provides that also the output current IOUT2 of the second differential pair linearly depends on the second input voltage VIN2:
with VIN2<<RE*I2 and RE=RE3=RE4. The resulting input stage current (or pre-driver) current IOUT,PRE is then:
IOUT,PRE=IOUT1+IOUT2. (5)
And the average input stage current IOUT,PRE,AVG is
with RL=RL3=RL4. VIN3 obeys the following relationship:
VIN3=(VBE+ΔV)−(VBE−ΔV) (8)
with VBE7=VBE8=VBE and ΔV being the input voltage change. There is further the relationship:
which can be used in the previous equation. This results in
where ΔI is the output current change corresponding to ΔV. This provides that
The inverse function of the hyperbolic function is:
with x=ΔI/IOUT,PRE,AVG. This provides that the output voltage is a linear function of the first input voltage VIN1 and the second input voltage VIN2, since IOUT1 and IOUT2 are linear functions of the input voltages VIN1 and VIN2:
IB8=IB6/β (16)
IB9−IB5/β (17)
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009018696 | 2009-04-23 | ||
DE102009018696.4A DE102009018696B4 (en) | 2009-04-23 | 2009-04-23 | Electronic device and method for driving a semiconductor light-emitting device |
DE102009018696.4 | 2009-04-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100295615A1 US20100295615A1 (en) | 2010-11-25 |
US9270378B2 true US9270378B2 (en) | 2016-02-23 |
Family
ID=42779696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/764,236 Active 2031-06-27 US9270378B2 (en) | 2009-04-23 | 2010-04-21 | CML output driver |
Country Status (2)
Country | Link |
---|---|
US (1) | US9270378B2 (en) |
DE (1) | DE102009018696B4 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009018696B4 (en) * | 2009-04-23 | 2015-08-13 | Texas Instruments Deutschland Gmbh | Electronic device and method for driving a semiconductor light-emitting device |
JP5954118B2 (en) * | 2012-10-30 | 2016-07-20 | 富士通株式会社 | Light emitting element driving circuit and light emitting device |
JP6036210B2 (en) * | 2012-11-19 | 2016-11-30 | 富士通株式会社 | Emphasis signal generation circuit |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4808853A (en) * | 1987-11-25 | 1989-02-28 | Triquint Semiconductor, Inc. | Tristate output circuit with selectable output impedance |
US4918336A (en) * | 1987-05-19 | 1990-04-17 | Gazelle Microcircuits, Inc. | Capacitor coupled push pull logic circuit |
US5034687A (en) * | 1989-10-16 | 1991-07-23 | Vlsi Technology, Inc. | Signature indicating circuit |
DE4138661C1 (en) | 1991-11-25 | 1993-06-03 | Siemens Ag, 8000 Muenchen, De | |
US5483194A (en) * | 1993-11-02 | 1996-01-09 | Alcatel Mobile Communication France | Differential current mode amplifier device |
US5589791A (en) * | 1995-06-09 | 1996-12-31 | Analog Devices, Inc. | Variable gain mixer having improved linearity and lower switching noise |
GB2308032A (en) | 1995-12-08 | 1997-06-11 | Nec Corp | Differential circuit and multiplier using a V-I and an I-V converter and a triple-tail cell to improve linearity |
WO2002033858A2 (en) | 2000-10-17 | 2002-04-25 | Isis Innovation Limited | Improvements in or relating to optical wireless communications |
US6388502B2 (en) * | 2000-07-27 | 2002-05-14 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit |
US6532245B1 (en) * | 1999-10-28 | 2003-03-11 | International Business Machines Corporation | Vertical cavity surface emitting laser (VCSEL) driver with low duty cycle distortion and digital modulation adjustment |
US6597209B2 (en) | 1998-11-02 | 2003-07-22 | Fujikura Ltd. | Semiconductor laser driving circuit |
US6618406B1 (en) * | 1998-06-29 | 2003-09-09 | Kabushiki Kaisha Toshiba | Optical semiconductor diode driver circuit and optical tranceiver module |
US6778569B2 (en) * | 2001-11-15 | 2004-08-17 | Agere Systems Inc. | Optical source driver with improved input stage |
US6792019B2 (en) * | 2002-02-28 | 2004-09-14 | Texas Instruments Incorporated | Driver with tail currents in discrete subranges |
US6850104B2 (en) * | 2003-03-10 | 2005-02-01 | Texas Instruments Incorporated | Master-slave latch with transparent mode |
US6879608B1 (en) * | 2003-03-31 | 2005-04-12 | Applied Micro Circuits Corporation | High compliance laser driver |
DE102005057756A1 (en) | 2004-12-07 | 2006-06-29 | Silicon Touch Technology, Inc. | Acceleration circuit, which can increase the on / off speed of a LED |
US7136317B1 (en) | 2005-08-10 | 2006-11-14 | International Business Machines Corporation | DRAM with self-resetting data path for reduced power consumption |
US20070159248A1 (en) * | 2005-12-28 | 2007-07-12 | Nec Electronics Corporation | Differential amplifier, data driver and display device |
US7256625B2 (en) * | 2003-10-28 | 2007-08-14 | Via Technologies, Inc. | Combined output driver |
US20080253414A1 (en) * | 2007-03-22 | 2008-10-16 | Texas Instruments Deutschland Gmbh | Vcsel driver |
US20090268767A1 (en) * | 2008-04-25 | 2009-10-29 | Jds Uniphase Corporation | Dc coupled driver with active termination |
US7639043B2 (en) * | 2007-10-05 | 2009-12-29 | Winbond Electronics Corp. | LVDS receiver circuit |
US7679395B1 (en) * | 2008-09-15 | 2010-03-16 | Integrated Device Technology, Inc. | Low-loss impedance-matched source-follower for repeating or switching signals on a high speed link |
US20100295615A1 (en) * | 2009-04-23 | 2010-11-25 | Texas Instruments Deutschland Gmbh | Cml output driver |
US20100295617A1 (en) * | 2009-04-23 | 2010-11-25 | Texas Instruments Deutschland Gmbh | Apparatus and method for driving an led |
US8228962B2 (en) * | 2009-01-23 | 2012-07-24 | Iptronics A/S | Low power drive circuit |
US20120213237A1 (en) * | 2011-02-21 | 2012-08-23 | Tyco Electronics Corporation | driver for supplying modulated current to a laser |
US20120306387A1 (en) * | 2011-05-31 | 2012-12-06 | Microsemi Corporation | Led driver arrangement with multiple current mirrors |
-
2009
- 2009-04-23 DE DE102009018696.4A patent/DE102009018696B4/en active Active
-
2010
- 2010-04-21 US US12/764,236 patent/US9270378B2/en active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4918336A (en) * | 1987-05-19 | 1990-04-17 | Gazelle Microcircuits, Inc. | Capacitor coupled push pull logic circuit |
US4808853A (en) * | 1987-11-25 | 1989-02-28 | Triquint Semiconductor, Inc. | Tristate output circuit with selectable output impedance |
US5034687A (en) * | 1989-10-16 | 1991-07-23 | Vlsi Technology, Inc. | Signature indicating circuit |
DE4138661C1 (en) | 1991-11-25 | 1993-06-03 | Siemens Ag, 8000 Muenchen, De | |
US5483194A (en) * | 1993-11-02 | 1996-01-09 | Alcatel Mobile Communication France | Differential current mode amplifier device |
US5589791A (en) * | 1995-06-09 | 1996-12-31 | Analog Devices, Inc. | Variable gain mixer having improved linearity and lower switching noise |
GB2308032A (en) | 1995-12-08 | 1997-06-11 | Nec Corp | Differential circuit and multiplier using a V-I and an I-V converter and a triple-tail cell to improve linearity |
US6618406B1 (en) * | 1998-06-29 | 2003-09-09 | Kabushiki Kaisha Toshiba | Optical semiconductor diode driver circuit and optical tranceiver module |
US6597209B2 (en) | 1998-11-02 | 2003-07-22 | Fujikura Ltd. | Semiconductor laser driving circuit |
US6532245B1 (en) * | 1999-10-28 | 2003-03-11 | International Business Machines Corporation | Vertical cavity surface emitting laser (VCSEL) driver with low duty cycle distortion and digital modulation adjustment |
US6388502B2 (en) * | 2000-07-27 | 2002-05-14 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit |
WO2002033858A2 (en) | 2000-10-17 | 2002-04-25 | Isis Innovation Limited | Improvements in or relating to optical wireless communications |
US6778569B2 (en) * | 2001-11-15 | 2004-08-17 | Agere Systems Inc. | Optical source driver with improved input stage |
US6792019B2 (en) * | 2002-02-28 | 2004-09-14 | Texas Instruments Incorporated | Driver with tail currents in discrete subranges |
US6850104B2 (en) * | 2003-03-10 | 2005-02-01 | Texas Instruments Incorporated | Master-slave latch with transparent mode |
US6879608B1 (en) * | 2003-03-31 | 2005-04-12 | Applied Micro Circuits Corporation | High compliance laser driver |
US7256625B2 (en) * | 2003-10-28 | 2007-08-14 | Via Technologies, Inc. | Combined output driver |
DE102005057756A1 (en) | 2004-12-07 | 2006-06-29 | Silicon Touch Technology, Inc. | Acceleration circuit, which can increase the on / off speed of a LED |
US7136317B1 (en) | 2005-08-10 | 2006-11-14 | International Business Machines Corporation | DRAM with self-resetting data path for reduced power consumption |
US20070159248A1 (en) * | 2005-12-28 | 2007-07-12 | Nec Electronics Corporation | Differential amplifier, data driver and display device |
US20080253414A1 (en) * | 2007-03-22 | 2008-10-16 | Texas Instruments Deutschland Gmbh | Vcsel driver |
US7639043B2 (en) * | 2007-10-05 | 2009-12-29 | Winbond Electronics Corp. | LVDS receiver circuit |
US8009709B2 (en) * | 2008-04-25 | 2011-08-30 | Jds Uniphase Corporation | DC coupled driver with active termination |
US20090268767A1 (en) * | 2008-04-25 | 2009-10-29 | Jds Uniphase Corporation | Dc coupled driver with active termination |
US7679395B1 (en) * | 2008-09-15 | 2010-03-16 | Integrated Device Technology, Inc. | Low-loss impedance-matched source-follower for repeating or switching signals on a high speed link |
US8228962B2 (en) * | 2009-01-23 | 2012-07-24 | Iptronics A/S | Low power drive circuit |
US20100295617A1 (en) * | 2009-04-23 | 2010-11-25 | Texas Instruments Deutschland Gmbh | Apparatus and method for driving an led |
US20100295615A1 (en) * | 2009-04-23 | 2010-11-25 | Texas Instruments Deutschland Gmbh | Cml output driver |
US8125273B2 (en) * | 2009-04-23 | 2012-02-28 | Texas Instruments Deutschland Gmbh | Apparatus and method for driving an LED |
US20120213237A1 (en) * | 2011-02-21 | 2012-08-23 | Tyco Electronics Corporation | driver for supplying modulated current to a laser |
US20120306387A1 (en) * | 2011-05-31 | 2012-12-06 | Microsemi Corporation | Led driver arrangement with multiple current mirrors |
Non-Patent Citations (4)
Title |
---|
"A 20 Gb/s VCSEL Driver With Pre-Emphasis and Regulated Output Impedance in 0.13um CMOS," IEEE ISSCC, Feb. 2005, pp. 222-223 (Daniel Kurcharski, Young Kwark, Daniel Kuchta, Drew Guckenberger, Kevin Kornegay, Michael Tan, Chao-Kun lin and Ashish Tandon). |
DE Patent Application No. 10 2007 013 820.4, filed Mar. 22, 2007. |
DE Search Report, dated Jan. 27, 2010. |
U.S. Appl. No. 12/054,183, filed Mar. 24, 2008. |
Also Published As
Publication number | Publication date |
---|---|
DE102009018696A1 (en) | 2010-10-28 |
DE102009018696B4 (en) | 2015-08-13 |
US20100295615A1 (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7321242B2 (en) | Integrated circuit with breakdown voltage multiplier | |
JP5337886B2 (en) | DC coupled laser driving circuit and semiconductor laser element driving method | |
JP6413265B2 (en) | Optical modulator drive circuit | |
US8718488B2 (en) | Driver and optical transmission apparatus | |
Momeni et al. | A 10-Gb/s inductorless transimpedance amplifier | |
US10642076B2 (en) | Drive circuit | |
US10720996B2 (en) | Frequency characteristic adjustment circuit, optical transmission module using the same, and optical transceiver | |
JP5762943B2 (en) | Optical transceiver circuit and receiving circuit | |
US20110268454A1 (en) | Ld driver with an improved falling edge of driving signal and optical transmitter providing the same | |
US9350343B2 (en) | Multiplex circuit and drive unit using the same | |
US9270378B2 (en) | CML output driver | |
EP1803222A2 (en) | Low voltage, high-speed output-stage for laser or modulator driving | |
US20100295617A1 (en) | Apparatus and method for driving an led | |
JP2012104582A (en) | Laser diode drive circuit | |
JP2011124711A (en) | Optical receiver | |
JP2015076581A (en) | Optical transmission circuit, optical transmission device, and optical transmission system | |
US20080253414A1 (en) | Vcsel driver | |
US9143241B2 (en) | Emphasis signal generating circuit | |
US20090243718A1 (en) | High-speed modulator driver circuit with enhanced drive capability | |
WO2009131215A1 (en) | Driver circuit | |
JP2010109512A (en) | Driver circuit and driver ic | |
JP2020122872A (en) | Optical modulator drive circuit | |
US9991878B2 (en) | Cross-point shifting techniques | |
CN113302849B (en) | System and method for reducing optical laser output distortion | |
US20150381115A1 (en) | Emphasis circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TEXAS INSTRUMENTS DEUTSCHLAND GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUENTEFERING, DIRK;BOCK, ANDREAS;REEL/FRAME:028746/0444 Effective date: 20100714 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXAS INSTRUMENTS DEUTSCHLAND GMBH;REEL/FRAME:055314/0255 Effective date: 20210215 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |