US9126711B2 - Article-transport container - Google Patents

Article-transport container Download PDF

Info

Publication number
US9126711B2
US9126711B2 US13/743,821 US201313743821A US9126711B2 US 9126711 B2 US9126711 B2 US 9126711B2 US 201313743821 A US201313743821 A US 201313743821A US 9126711 B2 US9126711 B2 US 9126711B2
Authority
US
United States
Prior art keywords
layer
floor
corner
tri
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/743,821
Other versions
US20130186948A1 (en
Inventor
Ignacio Padilla Hermosillo
Michael B McLeod
Ramon Ulises Cota Soto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Paper Co
Original Assignee
Tin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tin Inc filed Critical Tin Inc
Priority to US13/743,821 priority Critical patent/US9126711B2/en
Assigned to TIN INC. reassignment TIN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERMOSILLO, IGNACIO PADILLA
Assigned to TIN INC. reassignment TIN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCLEOD, MICHAEL B.
Assigned to TIN INC. reassignment TIN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COTA SOTO, RAMON ULISES
Publication of US20130186948A1 publication Critical patent/US20130186948A1/en
Application granted granted Critical
Publication of US9126711B2 publication Critical patent/US9126711B2/en
Assigned to TIN LLC reassignment TIN LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TIN INC.
Assigned to INTERNATIONAL PAPER COMPANY reassignment INTERNATIONAL PAPER COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TIN LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/001Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable
    • B65D5/0015Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable the container being formed by folding up portions connected to a central panel
    • B65D5/0045Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable the container being formed by folding up portions connected to a central panel having both integral corner posts and ledges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/001Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable
    • B65D5/0015Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable the container being formed by folding up portions connected to a central panel
    • B65D5/003Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper stackable the container being formed by folding up portions connected to a central panel having ledges formed by extensions of the side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/20Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding-up portions connected to a central panel from all sides to form a container body, e.g. of tray-like form
    • B65D5/2014Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding-up portions connected to a central panel from all sides to form a container body, e.g. of tray-like form the central panel having a non rectangular shape
    • B65D5/2033Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding-up portions connected to a central panel from all sides to form a container body, e.g. of tray-like form the central panel having a non rectangular shape polygonal having more than four sides, e.g. hexagonal, octogonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4295Ventilating arrangements, e.g. openings, space elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/44Integral, inserted or attached portions forming internal or external fittings
    • B65D5/441Reinforcements
    • B65D5/443Integral reinforcements, e.g. folds, flaps

Definitions

  • the present invention relates containers and/or trays and, and particularly to containers and/or trays and made of paperboard. More particularly, the present disclosure relates to a sturdy container or tray made of corrugated material and configured to contain food or other items.
  • Containers made of paperboard, i.e., corrugated cardboard, are commonly used in the produce industry to pack, store and ship fresh produce. These containers typically have a bottom, opposite side walls, opposite end walls, and an open or partially open top, and when filled with fresh produce are placed on a pallet for shipping and handling. These containers have an inside minor flap which is divided, and shared with an outside full depth flap, to provide four additional corners in the same amount of material as other shipping containers. To enable the containers to be stacked on one another in stable relationship, they must have sufficient structural strength and rigidity to withstand the stacking forces. Thus, the side and/or end walls of the containers are usually constructed with multiple thicknesses, and/or additional reinforcing structure also may be provided, and the flutes of the corrugated material are typically arranged to extend vertically.
  • the present octagonal flush end container/tray is developed to address shallow tray design and yet could still benefit from eight corners cross laminated design.
  • the container/tray has an inner minor flap feature that incorporates a mitered-bridging portion to have enough material to affect a seal and result in a strong container/tray.
  • the top flap and outer flaps move inward so that the exterior wrap around corner mated with the mitered portion, rather than the flat end of the container/tray. This results in an oversized slot in the shape of a rhombus rather than rectangular.
  • the present octagonal flush end container/tray did not have the overlapping corner flaps on the end, so that some of the material lying in the area in between (shaped slot) might be used in the construction of the container/tray rather than being discarded as scrap. Utilization of this material reduces its waste at the box plant and provides the customer with more of the material they are purchasing in the area of the blank. In addition to the improved blank utilization, it was found that adding some of the material back to the large slotted area improves stacking strength since this material is sandwiched between the inner anchor flap bridging section and the canopy auxiliary flap.
  • Compression test comparing two octagonal containers/trays found that the octagonal container/tray with the sandwiching flap bridging section and outer auxiliary flap has at least between 8 to 12 percent higher stacking strength than the octagonal container/tray without the aforementioned configuration.
  • An article-transport container or tray is adapted to transport food or other articles from one site to another.
  • the container includes a floor, a left-side closure, a right-side closure, a front end wall coupled to the floor and to the two closures, and a rear end wall coupled to the floor and to the two closures. These walls and closures cooperate to form an interior article-receiving region.
  • the container further includes a first tri-layer corner formed between the front end wall and the right-side closure.
  • the first tri-layer corner includes an inner layer coupled to the front end wall, a medial layer formed from a first portion of the right-side closure, and an outer layer formed from a second portion of the right-side closure.
  • the medial layer is positioned to lie between the inner and outer layers and is configured to provide means for interconnecting the outer layer and the inner layer to cause stacking strength of the container to be improved while minimizing scrap produced during blank forming so that costs associated with producing the container are minimized.
  • the medial layer includes corrugation.
  • the corrugation is arranged to extend horizontally parallel to the floor of the container.
  • FIG. 1 is a perspective view of an erected article-transport container with four tri-layer corners in accordance with a first embodiment of the present disclosure showing that the article-transport container includes (on the lower left) a front end wall coupled to a left side closure (on the left side) including a horizontal left canopy and a right side closure (on the right side) including a horizontal right canopy and a rear end wall coupled to the left and right side closures;
  • FIG. 2 is a sectional view taken along line 2 - 2 of FIGS. 1 and 9 showing that a first tri-layer corner included in the article-transport container includes an outer layer in which the corrugation is oriented vertically, a spaced-apart inner layer in which the corrugation is oriented vertically, and a medial layer positioned to lie between the inner and outer layers and having corrugation that is oriented horizontally;
  • FIG. 3 is a plan view of a blank of corrugated material used to form the container of FIG. 1 and showing that the blank includes an octagon-shaped floor, a left side closure coupled to the floor (at the left of the page), a rear end strip (at the top of the page), a right side closure (at the right of the page) comprising, from left to right, a right inner strip including, from top to bottom, a second wall anchor flap, a right side wall coupled to the floor, and a first wall anchor flap that forms the medial layer of the first tri-layer corner and a right outer strip including, from top to bottom, a second auxiliary canopy anchor flap, a second primary canopy anchor flap, a right canopy coupled to the right side wall, a first primary canopy anchor flap, and a first auxiliary canopy anchor flap forming the outer layer of the first tri-layer corner, and a front end strip (at the bottom of the page) including, from left to right, a second front anchor flap, a front end wall coupled to the floor, and a
  • FIGS. 4-9 are a series of views showing a method of forming the article transport container of FIG. 1 using the blank of FIG. 3 ;
  • FIG. 4 is a perspective view of the blank of FIG. 3 being folded to form the container showing that the rear end strip is folded about a rear-end fold line and at the same time folding both first and second rear anchor flaps included in the rear end strip about associated anchor-flap fold lines toward the octagon-shaped floor so that the left and right side closures can be folded upwardly as suggested in FIG. 5 ;
  • FIG. 5 is a view similar to FIG. 4 showing continued forming of the container by folding the left side closure about the left-side fold line so that a portion of the second rear anchor flap is between a left side wall included in the left side panel and an interior region of the container and by folding the right side closure about a right-side fold line so that a portion of the first rear anchor flap is between the right side wall and the interior region of the container;
  • FIG. 6 is an enlarged partial view of the first tri-layer corner of the container of FIG. 5 showing continued forming of the container by folding the right side wall about the right side fold line so that the right side wall mates with the right corner tab of the front end strip and suggesting that the first wall anchor flap included in the inner strip mates with the right corner bridge of the front end strip as suggested in FIG. 7 ;
  • FIG. 7 is a view similar to FIG. 6 showing continued forming of the container by folding the first primary and auxiliary canopy anchor flaps about a first primary flap fold line toward the floor to cause the first primary canopy anchor flap to mate with the front end wall as suggested in FIG. 8 ;
  • FIG. 8 is a view similar to FIG. 7 showing continued forming of the container by folding the first auxiliary canopy anchor flap about a first auxiliary flap fold line toward the right wall anchor flap to mate with the right wall anchor flap as suggested in FIG. 9 ;
  • FIG. 9 is a view similar to FIG. 8 showing completed forming of the container and formation of the first tri-layer corner as a result;
  • FIGS. 10-12 show how the blank of FIG. 3 can be varied to produce a container characterized by each tri-layer corner having a medial layer that extends fully between the right side wall and the front end wall when the container is formed;
  • FIG. 10 shows a portion of a blank in accordance with a second embodiment of the present disclosure
  • FIG. 11 is a view similar to FIG. 9 following folding of a first auxiliary canopy anchor flap towards a first right wall anchor flap trapping the first right wall anchor flap between the first auxiliary canopy anchor flap and a right corner bridge causing a first tri-layer corner to be established;
  • FIG. 12 is a section view taken along line 12 - 12 of FIG. 11 showing that the front-right tri-layer corner included in the article-transport container includes an outer layer formed by the first auxiliary canopy anchor flap, a spaced-apart inner layer formed by the right corner bridge, and a medial layer formed by the first right wall anchor flap and showing that the first right wall anchor flap is arranged to lie between the inner and outer layers and to extend fully between the right side wall and the front end wall.
  • FIG. 1 An erected article-transport container 10 in accordance with the present disclosure is shown in FIG. 1 .
  • Article-transport container 10 includes four tri-layer corners 21 , 22 , 23 , 24 in accordance with a first embodiment of the present disclosure and first tri-layered corner 21 is shown in FIG. 2 .
  • Article-transport container 10 includes, in series starting in the front left, a front end wall 12 coupled to a floor 14 included in container 10 , a left side closure 16 coupled to floor 14 and including a left canopy 70 L overlying floor 14 , a rear end wall 18 coupled to floor 14 , and a right side closure 20 coupled to floor 14 and including a right canopy 70 overlying floor 14 .
  • Front end wall 12 , left side closure 16 , rear end wall 18 , right side closure 20 , floor 14 , and tri-layer corners 21 , 22 , 23 , 24 cooperate to define an interior region 26 therebetween that is adapted to receive articles (not shown) therein.
  • Another embodiment of a tri-layer corner 221 A is shown in FIGS. 10-12 .
  • Tri-layer corners 21 , 22 , 23 , 24 cooperate to provide means for increasing stack strength of container 10 while simplifying blank forming and minimizing scrap produced during blank forming.
  • first tri-layer corner 21 includes an outer layer 211 , a medial layer 212 , and an inner layer 213 as shown in FIG. 2 .
  • Medial layer 212 is positioned to lie between outer layer 211 and inner layer 213 and is configured to provide means for interconnecting outer layer 211 and inner layer 213 to cause stack strength of container 10 to be improved while minimizing scrap produced during blank forming so that costs associated with producing container 10 are minimized.
  • Container 10 is made from a blank 28 after blank 28 is formed in a blank-forming process.
  • blank 28 includes floor 14 , left side closure 16 appended to floor 14 along a left-side fold line 30 , right side closure 20 appended to floor 14 along a right-side fold line 32 , rear end wall 18 appended to floor 14 along a rear-end fold line 34 , and front end wall 12 appended to floor 14 along a front-end fold line 36 .
  • Right side closure 20 , left side closure 16 , rear end wall 18 , front end wall 12 , and tri-layer corners 21 , 22 , 23 , 24 cooperate to form a border coupled to floor 14 and arranged to cooperate with floor 14 to define interior region 26 of container 10 .
  • Rear end wall 18 cooperates with left side closure 16 and right side closure 20 to establish a rear end 38 of container 10 as shown in FIG. 1 .
  • Front end wall 12 cooperates with left side closure 16 and right side closure 20 to establish a front end 40 of container 10 as shown in FIG. 1 . It is within the scope of the present disclosure to make blank 28 from a variety of materials including corrugated paperboard, folding carton, and solid fiber and other materials such as plastic sheeting and corrugated plastic.
  • Article-transport container 10 is established as result of passing blank 28 through a container-forming process shown, for example, in FIGS. 4-9 .
  • blank 28 includes floor 14 , a front end strip 42 coupled to floor 14 along front-end fold line 36 , left side closure 16 coupled to floor 14 along left-side fold line 30 , a rear end strip 44 coupled to floor 14 along rear-end fold line 34 , and right side closure 20 coupled to floor 14 along right-side fold line 32 as shown in FIG. 4 .
  • Front end strip 42 illustratively includes front end wall 12 , a first front anchor flap 46 coupled to front end wall 12 about a first front anchor-flap fold line 48 , and a second front anchor flap 50 coupled to front end wall 12 about a second front anchor-flap fold line 52 as shown in FIG. 3 .
  • First front anchor flap 46 is positioned to lie in spaced-apart relation to second front anchor flap 50 to locate front end wall 12 therebetween. As shown in FIGS. 2 and 6 , a portion of first front anchor flap 46 is used to establish inner layer 213 of first tri-layer corner 21 . Similarly, a portion of second front anchor flap 50 is used to establish inner layer 223 of second tri-layer corner 22 .
  • First front anchor flap 46 includes a front right corner bridge 90 that is coupled to front end wall 12 about a first front anchor-flap fold line 48 and a front right anchor tab 94 that is coupled to front right corner bridge 90 about a first front anchor-tab fold line 96 as shown in FIG. 3 .
  • Inner layer 213 of first tri-layer corner 21 is established during an initial stage of container forming as suggested in FIGS. 4-9 .
  • front end strip 42 is folded about front-end fold line 36 toward floor 14 .
  • front right corner bridge 90 is folded inwardly toward floor 14 about first front anchor-flap fold line 48 and front right anchor tab 94 is folded inwardly toward floor 14 about first front anchor-tab fold line 96 .
  • front end strip 42 is arranged to extend upwardly away from floor 14 and front right anchor tab 94 is arranged to extend along right-side fold line 32 .
  • Front right corner bridge 90 is arranged to extend between and interconnect front right anchor tab 94 and front end wall 12 .
  • Right side closure 20 illustratively includes a right inner strip 54 coupled to floor 14 about right-side fold line 32 and a right outer anchor strip 56 coupled to right inner strip 54 about a right anchor-strip fold line 58 as shown in FIG. 3 .
  • Right inner strip 54 includes, for example, a right side wall 60 , a first right wall anchor flap 62 coupled to right side wall 60 about a first right wall flap fold line 64 , and a second right wall anchor flap 66 coupled to right side wall 60 about a second right wall flap fold line 68 as shown in FIG. 3 .
  • First right wall anchor flap 62 is used to establish medial layer 212 of first tri-layer corner 21 .
  • Medial layer 212 of first tri-layer corner 21 is established during a subsequent stage of container forming as suggested in FIGS. 4-9 .
  • right side closure 20 is folded about right-side fold line 32 toward floor 14 so that right side wall 60 and first and second right wall anchor flap 62 , 66 extend upwardly away from floor 14 as shown in FIG. 5 .
  • first and second right wall anchor flaps 62 , 66 are folded inwardly toward floor 14 about associated right wall flap fold lines 64 , 68 .
  • first right wall anchor flap 62 is arranged to extend away from right side wall 60 toward front end wall 12 and is coupled to front right corner bridge 90 and form medial layer 212 as shown in FIGS. 2 and 7 .
  • Right outer anchor strip 56 includes a right canopy 70 , a first right primary canopy anchor flap 72 , a first right auxiliary canopy anchor flap 74 , a second right primary canopy anchor flap 76 , and a second right auxiliary canopy anchor flap 78 as shown in FIG. 3 .
  • Right canopy 70 is coupled to right side wall 60 about right anchor-strip fold line 58 .
  • First right primary canopy anchor flap 72 is coupled to right canopy 70 by a first right primary flap fold line 80 .
  • First right auxiliary canopy anchor flap 74 is coupled to first right primary canopy anchor flap 72 by a first right auxiliary flap fold line 84 as shown in FIG. 3 .
  • Second right primary canopy anchor flap 76 is coupled to right canopy 70 by a second right primary flap fold line 86 .
  • Second right auxiliary canopy anchor flap 78 is coupled to second right primary canopy anchor flap 76 by a first right auxiliary flap fold line 88 as shown in FIG. 3 .
  • Outer layer 211 of first tri-layer corner 21 is established during a last stage of container forming as suggested in FIGS. 8 and 9 .
  • right outer anchor strip 56 is folded about right anchor-strip fold line toward floor 14 so that right canopy 70 is arranged to lie in spaced-apart parallel relation above floor 14 as shown in FIG. 2 .
  • first right primary and auxiliary canopy anchor flaps 72 , 74 are folded downwardly about first right primary flap fold line 80 so that first right primary canopy anchor flap 72 extends downwardly and mates with front end wall 12 as suggested in FIG. 7 and shown in FIG. 8 .
  • first tri-layer corner 21 is established as a result of folding first right auxiliary canopy anchor flap 74 about first right auxiliary flap fold line 84 toward first right wall anchor flap 62 as suggested in FIG. 8 and shown in FIG. 9 .
  • First tri-layer corner 21 is established as a result of coupling first right wall anchor flap 62 to front right corner bridge 90 and by coupling first right auxiliary canopy anchor flap 74 to first right wall anchor flap 62 as shown in FIGS. 6-9 .
  • first right wall anchor flap 62 is coupled to front right corner bridge 90 by adhesive 98 as shown in FIG. 6 .
  • First right auxiliary canopy anchor flap 74 is coupled to first right wall anchor flap 62 by adhesive 100 as shown in FIGS. 7 and 8 . While adhesive 98 , 100 is shown as an example, any other suitable alternative may be used.
  • the corrugation of blank 28 is positioned to run in a transverse direction TD as shown in insert A in FIGS. 1 , 3 , and 4 .
  • inner and outer layers 211 , 213 of tri-layer corners 21 , 22 , 23 , 24 have corrugation which runs vertically as shown in FIG. 6 after container 10 has been formed.
  • Medial layer 212 has corrugation which runs horizontally as shown in FIG. 6 after container 10 has been formed.
  • the medial layers of tri-layer corners 21 , 22 , 23 , 24 increases stacking strength of container 10 as compared to those containers lacking medial layer 212 .
  • Stacking strength may be measured using standard industry test methods. As an example, stacking strength was evaluated using the TSL-8.2-WI-005 test method and procedure reference T804 of the Technical Association of the Pulp and Paper Industry (TAPPI).
  • floor 14 has an octagon shape that includes in series, a first mitered edge 102 , a front end edge 104 , a second mitered edge 106 , a left edge 108 , a third mitered edge 110 , a rear end edge 112 , a fourth mitered edge 114 , and a right edge 116 .
  • left and right edges 108 , 116 have lengths greater than lengths of front and rear end edges 104 , 112 .
  • Front and rear end edges 104 , 112 have lengths greater than first, second, third, and fourth mitered edges 102 , 106 , 110 , 114 .
  • Edges 102 , 104 , 106 , 108 , 110 , 112 , 114 cooperate to define a floor perimeter 92 as shown in FIG. 3 .
  • First tri-layer corner 21 is arranged to extend between front end wall 12 and right side wall 60 and lie at an angle 118 relative to front end wall 12 as shown in FIG. 2 .
  • Angle 118 is defined to be between first mitered edge 102 of floor 14 and front end edge 104 of floor 14 .
  • angle 118 is illustratively an acute angle.
  • Inner layer 213 of tri-layer corner 21 is positioned to lie inside floor perimeter 92 and is arranged to extend between front end edge 104 and right edge 116 and between floor 14 and right canopy 70 .
  • Medial layer 212 is positioned to lie outside floor perimeter 92 is and is arranged to extend along first mitered edge 102 so that medial layer 212 lies at angle 118 .
  • Outer layer 211 is positioned to lie outside floor perimeter 92 and is arranged to lie in spaced-apart relation to first mitered edge 102 to cause medial layer 212 to lie there between.
  • Blank 28 is formed during an illustrative blank forming process, for example in a manufacturing facility. During the blank forming process, a corrugated sheet is processed to establish blank 28 and scrap which separated from blank 28 .
  • first right wall anchor flap 62 is formed to have a proximal end 62 P and a distal end 62 D which is spaced-apart from proximal end 62 P.
  • First right wall anchor flap 62 is appended to right side wall 60 along first right wall flap fold line 64 by proximal end 62 P. As shown in FIG.
  • first right wall anchor flap 62 extends away from first right wall flap fold line 64 toward first front anchor flap 46 and first right auxiliary canopy anchor flap 74 such that distal end 62 D is spaced apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 .
  • scrap is separated from blank 28 which causes two triangle-shaped apertures 120 A, 120 B and an interconnecting rectangle-shaped aperture 120 C to be formed therein.
  • the scrap piece being monolithic, it simplifies removal and separation from blank 28 .
  • distal end 62 D being spaced apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is that rectangle-shaped aperture 120 C is formed by removing scrap.
  • Container forming is simplified as a result of distal end 62 D of first right wall anchor flap 62 being spaced-apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is that friction between distal end 62 D of and first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is eliminated. Because friction has been eliminated, the likelihood of forming improperly formed containers is minimized.
  • First crush area 121 is configured to provide means for minimizing friction developed between front right anchor tab 94 and first right auxiliary canopy anchor flap 74 during container forming as front right anchor tab 94 of front end strip 42 is folded upwardly about front-end fold line 36 .
  • Second, third, and fourth crush areas 122 , 123 , 124 are also formed.
  • First, second, third, and fourth crush areas 122 , 123 , 124 are substantially similar to first crush area 121 , and thus, only first crush area 121 will be discussed in detail.
  • First crush area 121 is established along a cut line 125 formed between front right anchor tab 94 and first right auxiliary canopy anchor flap 74 as shown in FIG. 3 .
  • a rate of container forming may be increased as a result of minimizing friction which decreases the likelihood of improperly forming containers. These improperly formed containers are also called as cripples. Blank 28 and resulting container 10 minimize waste because the number of improperly formed containers is minimized.
  • Second tri-layer corner 22 is formed during container forming by folding front end strip 42 and left side closure 16 so that second tri-layer corner 22 is established as a result as suggested in FIGS. 4 and 5 .
  • a portion of second front anchor flap 50 establishes an inner layer 223 of second tri-layer corner 22 .
  • Second front anchor flap 50 includes a front left corner bridge 90 L that is coupled to front end wall 12 about a second front anchor-flap fold line 52 and a front left anchor tab 94 L that is coupled to front left corner bridge 90 L about a second front anchor-tab fold line 96 L as shown in FIG. 3
  • Inner layer 223 of second tri-layer corner 22 is established during an initial stage of container forming as suggested in FIGS. 4 and 5 .
  • front end strip 42 is folded about front-end fold line 36 toward floor 14 .
  • front left corner bridge 90 L is folded inwardly toward floor 14 about second front anchor-flap fold line 52 and front right anchor tab 94 L is folded inwardly toward floor 14 about second front anchor-tab fold line 96 L.
  • front end strip 42 is arranged to extend upwardly away from floor 14 and front left anchor tab 94 L is arranged to extend along left-side fold line 30 .
  • Front left corner bridge 90 L is arranged to extend between and interconnect front left anchor tab 94 L and front end wall 12 .
  • Left side closure 16 illustratively includes a left inner strip 54 L coupled to floor 14 about left-side fold line 30 and a left outer anchor strip 56 L coupled to left inner strip 54 L about a left anchor-strip fold line 58 L as shown in FIG. 3 .
  • Left inner strip 54 L includes, for example, a left side wall 60 L, a first left wall anchor flap 62 L coupled to left side wall 60 L about a first left wall flap fold line 64 L, and a second left wall anchor flap 66 L coupled to left side wall 60 L about a second left wall flap fold line 68 L as shown in FIG. 3 .
  • First left wall anchor flap 62 L establishes medial layer 222 of second tri-layer corner 22 .
  • Medial layer 222 of second tri-layer corner 22 is established during the subsequent stage of container forming.
  • left side closure 16 is folded about left-side fold line 30 toward floor 14 so that left side wall 60 L and first and second left wall anchor flaps 62 L, 66 L extend upwardly away from floor 14 as shown in FIG. 5 .
  • first and second left wall anchor flaps 62 L, 66 L are folded inwardly toward floor 14 about associated left wall flap fold lines 64 L, 68 L.
  • first left wall anchor flap 62 L is arranged to extend away from left side wall 60 L toward front end wall 12 and is coupled to front left corner bridge 90 L and form medial layer 222 .
  • Left outer anchor strip 56 L includes a left canopy 70 L, a first left primary canopy anchor flap 72 L, a first left auxiliary canopy anchor flap 74 L, a second left primary canopy anchor flap 76 L, and a second left auxiliary canopy anchor flap 78 L as shown in FIG. 3 .
  • Left canopy 70 L is coupled to left side wall 60 L about left anchor-strip fold line 58 L.
  • First left primary canopy anchor flap 72 L is coupled to left canopy 70 L by a first left primary flap fold line 80 L.
  • First left auxiliary canopy anchor flap 74 L is coupled to first left primary canopy anchor flap 72 L by a first left auxiliary flap fold line 84 L as shown in FIG. 3 .
  • Second left primary canopy anchor flap 76 L is coupled to left canopy 70 L by a second left primary flap fold line 86 L.
  • Second left auxiliary canopy anchor flap 78 L is coupled to second left primary canopy anchor flap 76 L by a first left auxiliary flap fold line 88 L as shown in FIG. 3 .
  • Outer layer 221 of second tri-layer corner 22 is established during the last stage of container forming.
  • left outer anchor strip 56 L is folded about left anchor-strip fold line 58 L toward floor 14 so that left canopy 70 L is arranged to lie in spaced-apart parallel relation to floor 14 .
  • first left primary and auxiliary canopy anchor flaps 72 L, 74 L are folded downwardly about first left primary flap fold line 80 L so that first left primary canopy anchor flap 72 L extends downwardly and mates with front end wall 12 .
  • second tri-layer corner 22 is established as a result of folding first left auxiliary canopy anchor flap 74 L about first left auxiliary flap fold line 84 L toward first left wall anchor flap 62 L.
  • Second tri-layer corner 22 is established as a result of coupling first left wall anchor flap 62 L to front left corner bridge 90 L and by coupling first left auxiliary canopy anchor flap 74 L to first left wall anchor flap 62 L.
  • first left wall anchor flap 62 L is coupled to front left corner bridge 90 L by adhesive and first left auxiliary canopy anchor flap 74 L is coupled to front left corner bridge 90 L by adhesive.
  • Third tri-layer corner 23 is formed during container forming by folding front end strip 42 and left side closure 16 so that third tri-layer corner 23 is established as a result as suggested in FIGS. 4 and 5 .
  • a portion of rear end strip 44 establishes an inner layer 233 of third tri-layer corner 23 .
  • Rear end strip 44 illustratively includes rear end wall 18 , a first rear anchor flap 46 R coupled to rear end wall 18 about a first rear anchor-flap fold line 48 R, and a second rear anchor flap 50 R coupled to rear end wall 18 about a second rear anchor-flap fold line 52 R as shown in FIG. 3 .
  • First rear anchor flap 46 R is positioned to lie in spaced-apart relation to second rear anchor flap 50 R to locate rear end wall 18 therebetween.
  • a portion of first rear anchor flap 46 R is used to establish inner layer 233 of third tri-layer corner 23 .
  • second rear anchor flap 50 R is used to establish inner layer 243 of fourth tri-layer corner 24 .
  • First rear anchor flap 46 R includes a rear left corner bridge 126 that is coupled to rear end wall 18 about a first rear anchor-flap fold line 48 R and a rear left anchor tab 130 that is coupled to rear left corner bridge 126 about a first rear anchor-tab fold line 132 as shown in FIG. 3 .
  • Inner layer 233 of third tri-layer corner 23 is established during the initial stage of container forming as suggested in FIGS. 4 and 5 .
  • rear end strip 44 is folded about rear-end fold line 34 toward floor 14 .
  • rear left corner bridge 126 is folded inwardly toward floor 14 about first rear anchor-flap fold line 48 R and rear left anchor tab 130 is folded inwardly toward floor 14 about first rear anchor-tab fold line 132 .
  • rear end strip 44 is arranged to extend upwardly away from floor 14 and rear left anchor tab 130 is arranged to extend along left-side fold line 30 .
  • Rear left corner bridge 126 is arranged to extend between and interconnect rear left anchor tab 130 and rear end wall 18 .
  • left side closure 16 is folded about left-side fold line 30 toward floor 14 so that left side wall 60 L and first and second left wall anchor flap 62 L, 66 L extend upwardly away from floor 14 as shown in FIG. 5 .
  • first and second left wall anchor flaps 62 L, 66 L are folded inwardly toward floor 14 about associated left wall flap fold lines 64 L, 68 L.
  • second left wall anchor flap 66 L is arranged to extend away from left side wall 60 L toward rear end wall 18 and is coupled to rear left corner bridge 126 to form medial layer 232 .
  • left outer anchor strip 56 L is folded about left anchor-strip fold line 58 L toward floor 14 so that left canopy 70 L is arranged to lie in spaced-apart parallel relation to floor 14 as shown in FIG. 2 .
  • second left primary and auxiliary canopy anchor flaps 76 L, 78 L are folded downwardly about second left primary flap fold line 86 L so that second left primary canopy anchor flap 76 L extends downwardly and mates with rear end wall 18 .
  • third tri-layer corner 23 is established as a result of folding second left auxiliary canopy anchor flap 78 L about second left auxiliary flap fold line 88 L toward second left wall anchor flap 62 L.
  • Third tri-layer corner 23 is established as a result of coupling second left wall anchor flap 66 L to rear left corner bridge 126 and by coupling second left auxiliary canopy anchor flap 78 L to rear left corner bridge 126 .
  • second left wall anchor flap 66 L is coupled to rear left corner bridge 126 by adhesive and second left auxiliary canopy anchor flap 78 L is coupled to rear left corner bridge 126 by adhesive.
  • Fourth tri-layer corner 24 is formed during container forming by folding rear end strip 44 and right side closure 20 so that fourth tri-layer corner 24 is established as a result as suggested in FIGS. 4 and 5 .
  • a portion of second rear anchor flap 50 R establishes inner layer 243 of fourth tri-layer corner 24 .
  • Second rear anchor flap 50 R includes a rear right corner bridge 134 that is coupled to rear end wall 18 about a second rear anchor-flap fold line 52 R and a rear right anchor tab 138 that is coupled to rear right corner bridge 134 about a second rear anchor-tab fold line 140 as shown in FIG. 3 .
  • Inner layer 243 of fourth tri-layer corner 24 is established during the initial stage of container forming as suggested in FIGS. 4 and 5 .
  • rear end strip 44 is folded about rear-end fold line 34 toward floor 14 .
  • rear right corner bridge 134 is folded inwardly toward floor 14 about second rear anchor-flap fold line 52 R and rear right anchor tab 138 is folded inwardly toward floor 14 about second rear anchor-tab fold line 140 .
  • rear end strip 44 is arranged to extend upwardly away from floor 14 and rear right anchor tab 138 is arranged to extend along right-side fold line 32 .
  • Rear right corner bridge 134 is arranged to extend between and interconnect rear right anchor tab 138 and rear end wall 18 .
  • right side closure 20 is folded about right-side fold line 32 toward floor 14 so that right side wall 60 and first and second right wall anchor flap 62 , 66 extend upwardly away from floor 14 as shown in FIG. 5 .
  • first and second right wall anchor flaps 62 , 66 are folded inwardly toward floor 14 about associated right wall flap fold lines 64 , 68 .
  • second right wall anchor flap 68 is arranged to extend away from right side wall 60 toward rear end wall 18 and is coupled to rear right corner bridge 134 and form medial layer 242 .
  • right outer anchor strip 56 is folded about right anchor-strip fold line 58 toward floor 14 so that right canopy 70 is arranged to lie in spaced-apart parallel relation to floor 14 as shown in FIG. 2 .
  • second right primary and auxiliary canopy anchor flaps 76 , 78 are folded downwardly about second right primary flap fold line 86 so that second right primary canopy anchor flap 76 extends downwardly and mates with rear end wall 18 .
  • fourth tri-layer corner 24 is established as a result of folding second right auxiliary canopy anchor flap 78 about second right auxiliary flap fold line 88 toward second right wall anchor flap 66 .
  • Fourth tri-layer corner 24 is established as a result of coupling second right wall anchor flap 66 to rear right corner bridge 134 and by coupling second right auxiliary canopy anchor flap 78 to rear right corner bridge 134 .
  • second right wall anchor flap 66 is coupled to rear right corner bridge 134 by adhesive and second right auxiliary canopy anchor flap 78 is coupled to rear right corner bridge 134 by adhesive.
  • FIG. 10 A portion of a blank 218 of corrugated material in accordance with a second embodiment of the present disclosure is shown in FIG. 10 and can be assembled as suggested in FIG. 10 to produce a first tri-layer corner 221 A of a container 210 as shown in FIG. 12 .
  • blank 218 is similar to blank 28 of FIG. 3 .
  • Blank 218 includes floor 14 , a right side closure 220 appended to floor 14 along right-side fold line 32 , and a front end strip 42 appended to floor 14 along front-end fold line 36 as shown in FIG. 10 .
  • Right side closure 220 and front end strip 42 are configured to be folded in a manner similar to that shown in FIGS. 4-9 to produce first tri-layer corner 221 A.
  • first tri-layer corner 221 A includes outer layer 211 , a medial layer 2212 , and inner layer 213 as shown in FIGS. 11 and 12 .
  • Inner layer 213 is provided by front right corner bridge 90 of front end strip 42 and is established during initial folding of blank 218 .
  • Medial layer 2212 is provided by a first right wall anchor flap 262 included in right side closure 220 and is established during the subsequent folding of blank 218 .
  • Outer layer 211 is provided by first right auxiliary canopy anchor flap 74 and is established during the final folding of blank 218 .
  • Right side closure 220 illustratively includes a right inner strip 254 coupled to floor 14 about right-side fold line 32 and right outer anchor strip 56 coupled to right inner strip 254 about right anchor-strip fold line 58 as shown in FIG. 10 .
  • Right inner strip 254 includes, for example, right side wall 60 , a first right wall anchor flap 262 coupled to right side wall 60 about first right wall flap fold line 64 , and a second right wall anchor flap (not shown) coupled to right side wall 60 about second right wall flap fold line (not shown).
  • First right wall anchor flap 262 establishes medial layer 2212 of first tri-layer corner 221 A. Medial layer 2212 of first tri-layer corner 221 A is established during the subsequent stage of container 210 in a manner similar to that of container 10 suggested in FIGS. 4-9 .
  • Blank 218 is formed during an illustrative blank forming process in which a corrugated sheet is processed to establish blank 218 and scrap which is separated from blank 218 .
  • first right wall anchor flap 262 is formed to have a proximal end 262 P and a distal end 262 D which is spaced-apart from proximal end 262 P.
  • First right wall anchor flap 262 is appended to right side wall 60 along first right wall flap fold line 64 by proximal end 262 P. As shown in FIG.
  • first right wall anchor flap 262 extends away from first right wall flap fold line 64 toward first front anchor flap 46 and first right auxiliary canopy anchor flap 74 such that distal end 262 D abuts first front anchor flap 46 and first right auxiliary canopy anchor flap 74 .
  • Distal end 262 D is separated from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 by a cut line 142 as shown in FIG. 10 .
  • a first right-wall anchor-flap crush area 144 which is established during blank forming to provide means for minimizing friction developed between first right wall anchor flap 262 and first front anchor flap 46 and first right auxiliary canopy anchor flap 74 during container forming so that the likelihood of creating improperly formed containers is minimized.
  • the corrugation of blank 218 is positioned to run in a transverse direction TD as shown in insert 2 A in FIG. 10 .
  • inner and outer layers 211 , 213 of tri-layer corner 221 A has corrugation which runs vertically as shown in FIG. 12 after container 210 has been formed.
  • Medial layer 2212 has corrugation which runs horizontally as shown in FIG. 10 after container 10 has been formed.
  • it was found surprisingly that the medial layer 2212 of tri-layer corner 221 A increases stacking strength of container 210 about 7%.
  • Stacking strength may be measured using standard industry test methods. As an example, stacking strength was evaluated using the TSL-8.2-WI-005 test method and procedure reference T804 of the Technical Association of the Pulp and Paper Industry (TAPPI).
  • the right canopy and the left canopy may be configured so as to establish a lid after the container has been formed.
  • the right canopy has a width about equal to one half a width of the floor and the left canopy has a width about equal to one half the width of the floor.
  • the right canopy is folded inwardly toward the floor about the right anchor-strip fold line so that the right canopy lies above the floor and extends away from the right side wall toward the left sidewall.
  • the left canopy is also folded inwardly toward the floor about the left anchor-strip fold line so that the left canopy lies above the floor and extends away from the left side wall toward the right side wall.
  • the interior region is defined by the floor, the right side closure, the left side closure, the front end wall, the rear end wall, the four tri-layer corners, and the lid established upon completion of forming the container.
  • a container further includes a front canopy and a rear canopy.
  • the front canopy is coupled to the front end wall about a front-canopy fold line.
  • the rear canopy is coupled to the rear end wall about a rear-canopy fold line.
  • the front canopy lies in a plane positioned to lie between the right canopy and the floor.
  • the rear canopy lies in a plane that is positioned to lie between the left canopy and the floor. The rear canopy, front canopy, left canopy, and right canopy cooperate to establish a framed top of the container.

Abstract

An article-transport container comprises a floor having a respective left-side and right-side closures that are foldably joined thereto. A front end wall is foldably joined to the floor and to the respective left-side and right-side closures. A rear end wall is foldably joined to the floor and to the respective left-side and right-side closures and at least one tri-layers corner cooperate with the respective left-side and right-side closures to define an interior region adapted to receive articles therein. The least one tri-layer corner includes respective outer and inner layers and a medical layer which is sandwiched between the respective outer and inner layers and a medical layer which is sandwiched between the respective outer and inner layers to enhance stacking strength of the container while minimizing scarps produced during construction of the container.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. provisional patent application Ser. No. 61/590,227, filed on 24 Jan. 2012, which is hereby incorporated hereinto by reference as if fully restated herein.
FIELD OF THE INVENTION
The present invention relates containers and/or trays and, and particularly to containers and/or trays and made of paperboard. More particularly, the present disclosure relates to a sturdy container or tray made of corrugated material and configured to contain food or other items.
BACKGROUND OF THE INVENTION
Containers made of paperboard, i.e., corrugated cardboard, are commonly used in the produce industry to pack, store and ship fresh produce. These containers typically have a bottom, opposite side walls, opposite end walls, and an open or partially open top, and when filled with fresh produce are placed on a pallet for shipping and handling. These containers have an inside minor flap which is divided, and shared with an outside full depth flap, to provide four additional corners in the same amount of material as other shipping containers. To enable the containers to be stacked on one another in stable relationship, they must have sufficient structural strength and rigidity to withstand the stacking forces. Thus, the side and/or end walls of the containers are usually constructed with multiple thicknesses, and/or additional reinforcing structure also may be provided, and the flutes of the corrugated material are typically arranged to extend vertically.
There is need for a paperboard container that is stackable, structurally rigid, and easy to set-up, reliably remains in set-up condition, and requires a minimum amount of material in its construction.
SUMMARY OF THE INVENTION
The present octagonal flush end container/tray is developed to address shallow tray design and yet could still benefit from eight corners cross laminated design. The container/tray has an inner minor flap feature that incorporates a mitered-bridging portion to have enough material to affect a seal and result in a strong container/tray. In the present invention, the top flap and outer flaps move inward so that the exterior wrap around corner mated with the mitered portion, rather than the flat end of the container/tray. This results in an oversized slot in the shape of a rhombus rather than rectangular. The present octagonal flush end container/tray did not have the overlapping corner flaps on the end, so that some of the material lying in the area in between (shaped slot) might be used in the construction of the container/tray rather than being discarded as scrap. Utilization of this material reduces its waste at the box plant and provides the customer with more of the material they are purchasing in the area of the blank. In addition to the improved blank utilization, it was found that adding some of the material back to the large slotted area improves stacking strength since this material is sandwiched between the inner anchor flap bridging section and the canopy auxiliary flap. Compression test comparing two octagonal containers/trays found that the octagonal container/tray with the sandwiching flap bridging section and outer auxiliary flap has at least between 8 to 12 percent higher stacking strength than the octagonal container/tray without the aforementioned configuration.
An article-transport container or tray is adapted to transport food or other articles from one site to another. The container includes a floor, a left-side closure, a right-side closure, a front end wall coupled to the floor and to the two closures, and a rear end wall coupled to the floor and to the two closures. These walls and closures cooperate to form an interior article-receiving region.
In illustrative embodiments, the container further includes a first tri-layer corner formed between the front end wall and the right-side closure. The first tri-layer corner includes an inner layer coupled to the front end wall, a medial layer formed from a first portion of the right-side closure, and an outer layer formed from a second portion of the right-side closure. The medial layer is positioned to lie between the inner and outer layers and is configured to provide means for interconnecting the outer layer and the inner layer to cause stacking strength of the container to be improved while minimizing scrap produced during blank forming so that costs associated with producing the container are minimized.
In illustrative embodiments, the medial layer includes corrugation. The corrugation is arranged to extend horizontally parallel to the floor of the container.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
BRIEF DESCRIPTION OF THE DRAWINGS
The detailed description particularly refers to the accompanying figures in which:
FIG. 1 is a perspective view of an erected article-transport container with four tri-layer corners in accordance with a first embodiment of the present disclosure showing that the article-transport container includes (on the lower left) a front end wall coupled to a left side closure (on the left side) including a horizontal left canopy and a right side closure (on the right side) including a horizontal right canopy and a rear end wall coupled to the left and right side closures;
FIG. 2 is a sectional view taken along line 2-2 of FIGS. 1 and 9 showing that a first tri-layer corner included in the article-transport container includes an outer layer in which the corrugation is oriented vertically, a spaced-apart inner layer in which the corrugation is oriented vertically, and a medial layer positioned to lie between the inner and outer layers and having corrugation that is oriented horizontally;
FIG. 3 is a plan view of a blank of corrugated material used to form the container of FIG. 1 and showing that the blank includes an octagon-shaped floor, a left side closure coupled to the floor (at the left of the page), a rear end strip (at the top of the page), a right side closure (at the right of the page) comprising, from left to right, a right inner strip including, from top to bottom, a second wall anchor flap, a right side wall coupled to the floor, and a first wall anchor flap that forms the medial layer of the first tri-layer corner and a right outer strip including, from top to bottom, a second auxiliary canopy anchor flap, a second primary canopy anchor flap, a right canopy coupled to the right side wall, a first primary canopy anchor flap, and a first auxiliary canopy anchor flap forming the outer layer of the first tri-layer corner, and a front end strip (at the bottom of the page) including, from left to right, a second front anchor flap, a front end wall coupled to the floor, and a first front anchor flap including a right corner bridge that forms the inner layer of the first tri-layer corner and a right corner tab;
FIGS. 4-9 are a series of views showing a method of forming the article transport container of FIG. 1 using the blank of FIG. 3;
FIG. 4 is a perspective view of the blank of FIG. 3 being folded to form the container showing that the rear end strip is folded about a rear-end fold line and at the same time folding both first and second rear anchor flaps included in the rear end strip about associated anchor-flap fold lines toward the octagon-shaped floor so that the left and right side closures can be folded upwardly as suggested in FIG. 5;
FIG. 5 is a view similar to FIG. 4 showing continued forming of the container by folding the left side closure about the left-side fold line so that a portion of the second rear anchor flap is between a left side wall included in the left side panel and an interior region of the container and by folding the right side closure about a right-side fold line so that a portion of the first rear anchor flap is between the right side wall and the interior region of the container;
FIG. 6 is an enlarged partial view of the first tri-layer corner of the container of FIG. 5 showing continued forming of the container by folding the right side wall about the right side fold line so that the right side wall mates with the right corner tab of the front end strip and suggesting that the first wall anchor flap included in the inner strip mates with the right corner bridge of the front end strip as suggested in FIG. 7;
FIG. 7 is a view similar to FIG. 6 showing continued forming of the container by folding the first primary and auxiliary canopy anchor flaps about a first primary flap fold line toward the floor to cause the first primary canopy anchor flap to mate with the front end wall as suggested in FIG. 8;
FIG. 8 is a view similar to FIG. 7 showing continued forming of the container by folding the first auxiliary canopy anchor flap about a first auxiliary flap fold line toward the right wall anchor flap to mate with the right wall anchor flap as suggested in FIG. 9;
FIG. 9 is a view similar to FIG. 8 showing completed forming of the container and formation of the first tri-layer corner as a result;
FIGS. 10-12 show how the blank of FIG. 3 can be varied to produce a container characterized by each tri-layer corner having a medial layer that extends fully between the right side wall and the front end wall when the container is formed;
FIG. 10 shows a portion of a blank in accordance with a second embodiment of the present disclosure;
FIG. 11 is a view similar to FIG. 9 following folding of a first auxiliary canopy anchor flap towards a first right wall anchor flap trapping the first right wall anchor flap between the first auxiliary canopy anchor flap and a right corner bridge causing a first tri-layer corner to be established; and
FIG. 12 is a section view taken along line 12-12 of FIG. 11 showing that the front-right tri-layer corner included in the article-transport container includes an outer layer formed by the first auxiliary canopy anchor flap, a spaced-apart inner layer formed by the right corner bridge, and a medial layer formed by the first right wall anchor flap and showing that the first right wall anchor flap is arranged to lie between the inner and outer layers and to extend fully between the right side wall and the front end wall.
DETAILED DESCRIPTION OF THE INVENTION
An erected article-transport container 10 in accordance with the present disclosure is shown in FIG. 1. Article-transport container 10 includes four tri-layer corners 21, 22, 23, 24 in accordance with a first embodiment of the present disclosure and first tri-layered corner 21 is shown in FIG. 2. Article-transport container 10 includes, in series starting in the front left, a front end wall 12 coupled to a floor 14 included in container 10, a left side closure 16 coupled to floor 14 and including a left canopy 70 L overlying floor 14, a rear end wall 18 coupled to floor 14, and a right side closure 20 coupled to floor 14 and including a right canopy 70 overlying floor 14. Front end wall 12, left side closure 16, rear end wall 18, right side closure 20, floor 14, and tri-layer corners 21, 22, 23, 24 cooperate to define an interior region 26 therebetween that is adapted to receive articles (not shown) therein. Another embodiment of a tri-layer corner 221A is shown in FIGS. 10-12.
Tri-layer corners 21, 22, 23, 24 cooperate to provide means for increasing stack strength of container 10 while simplifying blank forming and minimizing scrap produced during blank forming. As an example, first tri-layer corner 21 includes an outer layer 211, a medial layer 212, and an inner layer 213 as shown in FIG. 2. Medial layer 212 is positioned to lie between outer layer 211 and inner layer 213 and is configured to provide means for interconnecting outer layer 211 and inner layer 213 to cause stack strength of container 10 to be improved while minimizing scrap produced during blank forming so that costs associated with producing container 10 are minimized.
Container 10 is made from a blank 28 after blank 28 is formed in a blank-forming process. As shown in FIG. 3, blank 28 includes floor 14, left side closure 16 appended to floor 14 along a left-side fold line 30, right side closure 20 appended to floor 14 along a right-side fold line 32, rear end wall 18 appended to floor 14 along a rear-end fold line 34, and front end wall 12 appended to floor 14 along a front-end fold line 36. Right side closure 20, left side closure 16, rear end wall 18, front end wall 12, and tri-layer corners 21, 22, 23, 24 cooperate to form a border coupled to floor 14 and arranged to cooperate with floor 14 to define interior region 26 of container 10.
Rear end wall 18 cooperates with left side closure 16 and right side closure 20 to establish a rear end 38 of container 10 as shown in FIG. 1. Front end wall 12 cooperates with left side closure 16 and right side closure 20 to establish a front end 40 of container 10 as shown in FIG. 1. It is within the scope of the present disclosure to make blank 28 from a variety of materials including corrugated paperboard, folding carton, and solid fiber and other materials such as plastic sheeting and corrugated plastic.
Article-transport container 10 is established as result of passing blank 28 through a container-forming process shown, for example, in FIGS. 4-9. As shown in FIG. 3, blank 28 includes floor 14, a front end strip 42 coupled to floor 14 along front-end fold line 36, left side closure 16 coupled to floor 14 along left-side fold line 30, a rear end strip 44 coupled to floor 14 along rear-end fold line 34, and right side closure 20 coupled to floor 14 along right-side fold line 32 as shown in FIG. 4.
Front end strip 42 illustratively includes front end wall 12, a first front anchor flap 46 coupled to front end wall 12 about a first front anchor-flap fold line 48, and a second front anchor flap 50 coupled to front end wall 12 about a second front anchor-flap fold line 52 as shown in FIG. 3. First front anchor flap 46 is positioned to lie in spaced-apart relation to second front anchor flap 50 to locate front end wall 12 therebetween. As shown in FIGS. 2 and 6, a portion of first front anchor flap 46 is used to establish inner layer 213 of first tri-layer corner 21. Similarly, a portion of second front anchor flap 50 is used to establish inner layer 223 of second tri-layer corner 22.
First front anchor flap 46 includes a front right corner bridge 90 that is coupled to front end wall 12 about a first front anchor-flap fold line 48 and a front right anchor tab 94 that is coupled to front right corner bridge 90 about a first front anchor-tab fold line 96 as shown in FIG. 3. Inner layer 213 of first tri-layer corner 21 is established during an initial stage of container forming as suggested in FIGS. 4-9.
During the initial stage of container formation, front end strip 42 is folded about front-end fold line 36 toward floor 14. At the same time, front right corner bridge 90 is folded inwardly toward floor 14 about first front anchor-flap fold line 48 and front right anchor tab 94 is folded inwardly toward floor 14 about first front anchor-tab fold line 96. As a result, front end strip 42 is arranged to extend upwardly away from floor 14 and front right anchor tab 94 is arranged to extend along right-side fold line 32. Front right corner bridge 90 is arranged to extend between and interconnect front right anchor tab 94 and front end wall 12.
Right side closure 20 illustratively includes a right inner strip 54 coupled to floor 14 about right-side fold line 32 and a right outer anchor strip 56 coupled to right inner strip 54 about a right anchor-strip fold line 58 as shown in FIG. 3. Right inner strip 54 includes, for example, a right side wall 60, a first right wall anchor flap 62 coupled to right side wall 60 about a first right wall flap fold line 64, and a second right wall anchor flap 66 coupled to right side wall 60 about a second right wall flap fold line 68 as shown in FIG. 3. First right wall anchor flap 62 is used to establish medial layer 212 of first tri-layer corner 21. Medial layer 212 of first tri-layer corner 21 is established during a subsequent stage of container forming as suggested in FIGS. 4-9.
During the subsequent stage of container forming, right side closure 20 is folded about right-side fold line 32 toward floor 14 so that right side wall 60 and first and second right wall anchor flap 62, 66 extend upwardly away from floor 14 as shown in FIG. 5. At the same time, first and second right wall anchor flaps 62, 66 are folded inwardly toward floor 14 about associated right wall flap fold lines 64, 68. As an example, first right wall anchor flap 62 is arranged to extend away from right side wall 60 toward front end wall 12 and is coupled to front right corner bridge 90 and form medial layer 212 as shown in FIGS. 2 and 7.
Right outer anchor strip 56 includes a right canopy 70, a first right primary canopy anchor flap 72, a first right auxiliary canopy anchor flap 74, a second right primary canopy anchor flap 76, and a second right auxiliary canopy anchor flap 78 as shown in FIG. 3. Right canopy 70 is coupled to right side wall 60 about right anchor-strip fold line 58. First right primary canopy anchor flap 72 is coupled to right canopy 70 by a first right primary flap fold line 80. First right auxiliary canopy anchor flap 74 is coupled to first right primary canopy anchor flap 72 by a first right auxiliary flap fold line 84 as shown in FIG. 3. Second right primary canopy anchor flap 76 is coupled to right canopy 70 by a second right primary flap fold line 86. Second right auxiliary canopy anchor flap 78 is coupled to second right primary canopy anchor flap 76 by a first right auxiliary flap fold line 88 as shown in FIG. 3. Outer layer 211 of first tri-layer corner 21 is established during a last stage of container forming as suggested in FIGS. 8 and 9.
During the last stage of container forming, right outer anchor strip 56 is folded about right anchor-strip fold line toward floor 14 so that right canopy 70 is arranged to lie in spaced-apart parallel relation above floor 14 as shown in FIG. 2. At the same time, first right primary and auxiliary canopy anchor flaps 72, 74 are folded downwardly about first right primary flap fold line 80 so that first right primary canopy anchor flap 72 extends downwardly and mates with front end wall 12 as suggested in FIG. 7 and shown in FIG. 8. Finally, first tri-layer corner 21 is established as a result of folding first right auxiliary canopy anchor flap 74 about first right auxiliary flap fold line 84 toward first right wall anchor flap 62 as suggested in FIG. 8 and shown in FIG. 9.
First tri-layer corner 21 is established as a result of coupling first right wall anchor flap 62 to front right corner bridge 90 and by coupling first right auxiliary canopy anchor flap 74 to first right wall anchor flap 62 as shown in FIGS. 6-9. As an example, first right wall anchor flap 62 is coupled to front right corner bridge 90 by adhesive 98 as shown in FIG. 6. First right auxiliary canopy anchor flap 74 is coupled to first right wall anchor flap 62 by adhesive 100 as shown in FIGS. 7 and 8. While adhesive 98, 100 is shown as an example, any other suitable alternative may be used.
In an illustrative embodiment, the corrugation of blank 28 is positioned to run in a transverse direction TD as shown in insert A in FIGS. 1, 3, and 4. As a result, inner and outer layers 211, 213 of tri-layer corners 21, 22, 23, 24 have corrugation which runs vertically as shown in FIG. 6 after container 10 has been formed. Medial layer 212 has corrugation which runs horizontally as shown in FIG. 6 after container 10 has been formed. In one illustrative example, it was found surprisingly that the medial layers of tri-layer corners 21, 22, 23, 24 increases stacking strength of container 10 as compared to those containers lacking medial layer 212. Stacking strength may be measured using standard industry test methods. As an example, stacking strength was evaluated using the TSL-8.2-WI-005 test method and procedure reference T804 of the Technical Association of the Pulp and Paper Industry (TAPPI).
As illustrated in FIG. 3, floor 14 has an octagon shape that includes in series, a first mitered edge 102, a front end edge 104, a second mitered edge 106, a left edge 108, a third mitered edge 110, a rear end edge 112, a fourth mitered edge 114, and a right edge 116. As an illustrative example, left and right edges 108, 116 have lengths greater than lengths of front and rear end edges 104, 112. Front and rear end edges 104, 112 have lengths greater than first, second, third, and fourth mitered edges 102, 106, 110, 114. Edges 102, 104, 106, 108, 110, 112, 114 cooperate to define a floor perimeter 92 as shown in FIG. 3.
First tri-layer corner 21 is arranged to extend between front end wall 12 and right side wall 60 and lie at an angle 118 relative to front end wall 12 as shown in FIG. 2. Angle 118 is defined to be between first mitered edge 102 of floor 14 and front end edge 104 of floor 14. As shown in FIG. 2, angle 118 is illustratively an acute angle. Inner layer 213 of tri-layer corner 21 is positioned to lie inside floor perimeter 92 and is arranged to extend between front end edge 104 and right edge 116 and between floor 14 and right canopy 70. Medial layer 212 is positioned to lie outside floor perimeter 92 is and is arranged to extend along first mitered edge 102 so that medial layer 212 lies at angle 118. Outer layer 211 is positioned to lie outside floor perimeter 92 and is arranged to lie in spaced-apart relation to first mitered edge 102 to cause medial layer 212 to lie there between.
Blank 28 is formed during an illustrative blank forming process, for example in a manufacturing facility. During the blank forming process, a corrugated sheet is processed to establish blank 28 and scrap which separated from blank 28. During blank forming, first right wall anchor flap 62 is formed to have a proximal end 62P and a distal end 62D which is spaced-apart from proximal end 62P. First right wall anchor flap 62 is appended to right side wall 60 along first right wall flap fold line 64 by proximal end 62P. As shown in FIG. 3, first right wall anchor flap 62 extends away from first right wall flap fold line 64 toward first front anchor flap 46 and first right auxiliary canopy anchor flap 74 such that distal end 62D is spaced apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74.
During the blank forming process which may be performed in a manufacturing facility, scrap is separated from blank 28 which causes two triangle-shaped apertures 120A, 120B and an interconnecting rectangle-shaped aperture 120C to be formed therein. As a result of the scrap piece being monolithic, it simplifies removal and separation from blank 28. Another result of distal end 62D being spaced apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is that rectangle-shaped aperture 120C is formed by removing scrap. Container forming is simplified as a result of distal end 62D of first right wall anchor flap 62 being spaced-apart from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is that friction between distal end 62D of and first front anchor flap 46 and first right auxiliary canopy anchor flap 74 is eliminated. Because friction has been eliminated, the likelihood of forming improperly formed containers is minimized.
Also during blank forming, a first crush area 121 is formed in blank 28. First crush area 121 is configured to provide means for minimizing friction developed between front right anchor tab 94 and first right auxiliary canopy anchor flap 74 during container forming as front right anchor tab 94 of front end strip 42 is folded upwardly about front-end fold line 36. Second, third, and fourth crush areas 122, 123, 124 are also formed.
First, second, third, and fourth crush areas 122, 123, 124 are substantially similar to first crush area 121, and thus, only first crush area 121 will be discussed in detail. First crush area 121 is established along a cut line 125 formed between front right anchor tab 94 and first right auxiliary canopy anchor flap 74 as shown in FIG. 3. A rate of container forming may be increased as a result of minimizing friction which decreases the likelihood of improperly forming containers. These improperly formed containers are also called as cripples. Blank 28 and resulting container 10 minimize waste because the number of improperly formed containers is minimized.
Second tri-layer corner 22 is formed during container forming by folding front end strip 42 and left side closure 16 so that second tri-layer corner 22 is established as a result as suggested in FIGS. 4 and 5. A portion of second front anchor flap 50 establishes an inner layer 223 of second tri-layer corner 22.
Second front anchor flap 50 includes a front left corner bridge 90L that is coupled to front end wall 12 about a second front anchor-flap fold line 52 and a front left anchor tab 94L that is coupled to front left corner bridge 90L about a second front anchor-tab fold line 96L as shown in FIG. 3 Inner layer 223 of second tri-layer corner 22 is established during an initial stage of container forming as suggested in FIGS. 4 and 5.
During the initial stage of container formation, front end strip 42 is folded about front-end fold line 36 toward floor 14. At the same time, front left corner bridge 90L is folded inwardly toward floor 14 about second front anchor-flap fold line 52 and front right anchor tab 94L is folded inwardly toward floor 14 about second front anchor-tab fold line 96L. As a result, front end strip 42 is arranged to extend upwardly away from floor 14 and front left anchor tab 94L is arranged to extend along left-side fold line 30. Front left corner bridge 90L is arranged to extend between and interconnect front left anchor tab 94L and front end wall 12.
Left side closure 16 illustratively includes a left inner strip 54L coupled to floor 14 about left-side fold line 30 and a left outer anchor strip 56L coupled to left inner strip 54L about a left anchor-strip fold line 58L as shown in FIG. 3. Left inner strip 54L includes, for example, a left side wall 60L, a first left wall anchor flap 62L coupled to left side wall 60L about a first left wall flap fold line 64L, and a second left wall anchor flap 66L coupled to left side wall 60L about a second left wall flap fold line 68L as shown in FIG. 3. First left wall anchor flap 62L establishes medial layer 222 of second tri-layer corner 22. Medial layer 222 of second tri-layer corner 22 is established during the subsequent stage of container forming.
During the subsequent stage of container forming, left side closure 16 is folded about left-side fold line 30 toward floor 14 so that left side wall 60L and first and second left wall anchor flaps 62L, 66L extend upwardly away from floor 14 as shown in FIG. 5. At the same time, first and second left wall anchor flaps 62L, 66L are folded inwardly toward floor 14 about associated left wall flap fold lines 64L, 68L. As an example, first left wall anchor flap 62L is arranged to extend away from left side wall 60L toward front end wall 12 and is coupled to front left corner bridge 90L and form medial layer 222.
Left outer anchor strip 56L includes a left canopy 70L, a first left primary canopy anchor flap 72L, a first left auxiliary canopy anchor flap 74L, a second left primary canopy anchor flap 76L, and a second left auxiliary canopy anchor flap 78L as shown in FIG. 3. Left canopy 70L is coupled to left side wall 60L about left anchor-strip fold line 58L. First left primary canopy anchor flap 72L is coupled to left canopy 70L by a first left primary flap fold line 80L. First left auxiliary canopy anchor flap 74L is coupled to first left primary canopy anchor flap 72L by a first left auxiliary flap fold line 84L as shown in FIG. 3. Second left primary canopy anchor flap 76L is coupled to left canopy 70L by a second left primary flap fold line 86L. Second left auxiliary canopy anchor flap 78L is coupled to second left primary canopy anchor flap 76L by a first left auxiliary flap fold line 88L as shown in FIG. 3. Outer layer 221 of second tri-layer corner 22 is established during the last stage of container forming.
During the last stage of container forming, left outer anchor strip 56L is folded about left anchor-strip fold line 58L toward floor 14 so that left canopy 70L is arranged to lie in spaced-apart parallel relation to floor 14. At the same time, first left primary and auxiliary canopy anchor flaps 72L, 74L are folded downwardly about first left primary flap fold line 80L so that first left primary canopy anchor flap 72L extends downwardly and mates with front end wall 12. Finally, second tri-layer corner 22 is established as a result of folding first left auxiliary canopy anchor flap 74L about first left auxiliary flap fold line 84L toward first left wall anchor flap 62L.
Second tri-layer corner 22 is established as a result of coupling first left wall anchor flap 62L to front left corner bridge 90L and by coupling first left auxiliary canopy anchor flap 74L to first left wall anchor flap 62L. As an example, first left wall anchor flap 62L is coupled to front left corner bridge 90L by adhesive and first left auxiliary canopy anchor flap 74L is coupled to front left corner bridge 90L by adhesive.
Third tri-layer corner 23 is formed during container forming by folding front end strip 42 and left side closure 16 so that third tri-layer corner 23 is established as a result as suggested in FIGS. 4 and 5. A portion of rear end strip 44 establishes an inner layer 233 of third tri-layer corner 23.
Rear end strip 44 illustratively includes rear end wall 18, a first rear anchor flap 46R coupled to rear end wall 18 about a first rear anchor-flap fold line 48R, and a second rear anchor flap 50R coupled to rear end wall 18 about a second rear anchor-flap fold line 52R as shown in FIG. 3. First rear anchor flap 46R is positioned to lie in spaced-apart relation to second rear anchor flap 50R to locate rear end wall 18 therebetween. A portion of first rear anchor flap 46R is used to establish inner layer 233 of third tri-layer corner 23. Similarly, a portion of second rear anchor flap 50R is used to establish inner layer 243 of fourth tri-layer corner 24.
First rear anchor flap 46R includes a rear left corner bridge 126 that is coupled to rear end wall 18 about a first rear anchor-flap fold line 48R and a rear left anchor tab 130 that is coupled to rear left corner bridge 126 about a first rear anchor-tab fold line 132 as shown in FIG. 3. Inner layer 233 of third tri-layer corner 23 is established during the initial stage of container forming as suggested in FIGS. 4 and 5.
During the initial stage of container formation, rear end strip 44 is folded about rear-end fold line 34 toward floor 14. At the same time, rear left corner bridge 126 is folded inwardly toward floor 14 about first rear anchor-flap fold line 48R and rear left anchor tab 130 is folded inwardly toward floor 14 about first rear anchor-tab fold line 132. As a result, rear end strip 44 is arranged to extend upwardly away from floor 14 and rear left anchor tab 130 is arranged to extend along left-side fold line 30. Rear left corner bridge 126 is arranged to extend between and interconnect rear left anchor tab 130 and rear end wall 18.
During the subsequent stage of container forming, left side closure 16 is folded about left-side fold line 30 toward floor 14 so that left side wall 60L and first and second left wall anchor flap 62L, 66L extend upwardly away from floor 14 as shown in FIG. 5. At the same time, first and second left wall anchor flaps 62L, 66L are folded inwardly toward floor 14 about associated left wall flap fold lines 64L, 68L. As an example, second left wall anchor flap 66L is arranged to extend away from left side wall 60L toward rear end wall 18 and is coupled to rear left corner bridge 126 to form medial layer 232.
During the last stage of container forming, left outer anchor strip 56L is folded about left anchor-strip fold line 58L toward floor 14 so that left canopy 70L is arranged to lie in spaced-apart parallel relation to floor 14 as shown in FIG. 2. At the same time, second left primary and auxiliary canopy anchor flaps 76L, 78L are folded downwardly about second left primary flap fold line 86L so that second left primary canopy anchor flap 76L extends downwardly and mates with rear end wall 18. Finally, third tri-layer corner 23 is established as a result of folding second left auxiliary canopy anchor flap 78L about second left auxiliary flap fold line 88L toward second left wall anchor flap 62L.
Third tri-layer corner 23 is established as a result of coupling second left wall anchor flap 66L to rear left corner bridge 126 and by coupling second left auxiliary canopy anchor flap 78L to rear left corner bridge 126. As an example, second left wall anchor flap 66L is coupled to rear left corner bridge 126 by adhesive and second left auxiliary canopy anchor flap 78L is coupled to rear left corner bridge 126 by adhesive.
Fourth tri-layer corner 24 is formed during container forming by folding rear end strip 44 and right side closure 20 so that fourth tri-layer corner 24 is established as a result as suggested in FIGS. 4 and 5. A portion of second rear anchor flap 50R establishes inner layer 243 of fourth tri-layer corner 24.
Second rear anchor flap 50R includes a rear right corner bridge 134 that is coupled to rear end wall 18 about a second rear anchor-flap fold line 52R and a rear right anchor tab 138 that is coupled to rear right corner bridge 134 about a second rear anchor-tab fold line 140 as shown in FIG. 3. Inner layer 243 of fourth tri-layer corner 24 is established during the initial stage of container forming as suggested in FIGS. 4 and 5.
During the initial stage of container forming, rear end strip 44 is folded about rear-end fold line 34 toward floor 14. At the same time, rear right corner bridge 134 is folded inwardly toward floor 14 about second rear anchor-flap fold line 52R and rear right anchor tab 138 is folded inwardly toward floor 14 about second rear anchor-tab fold line 140. As a result, rear end strip 44 is arranged to extend upwardly away from floor 14 and rear right anchor tab 138 is arranged to extend along right-side fold line 32. Rear right corner bridge 134 is arranged to extend between and interconnect rear right anchor tab 138 and rear end wall 18.
During the subsequent stage of container forming, right side closure 20 is folded about right-side fold line 32 toward floor 14 so that right side wall 60 and first and second right wall anchor flap 62, 66 extend upwardly away from floor 14 as shown in FIG. 5. At the same time, first and second right wall anchor flaps 62, 66 are folded inwardly toward floor 14 about associated right wall flap fold lines 64, 68. As an example, second right wall anchor flap 68 is arranged to extend away from right side wall 60 toward rear end wall 18 and is coupled to rear right corner bridge 134 and form medial layer 242.
During the last stage of container forming, right outer anchor strip 56 is folded about right anchor-strip fold line 58 toward floor 14 so that right canopy 70 is arranged to lie in spaced-apart parallel relation to floor 14 as shown in FIG. 2. At the same time, second right primary and auxiliary canopy anchor flaps 76, 78 are folded downwardly about second right primary flap fold line 86 so that second right primary canopy anchor flap 76 extends downwardly and mates with rear end wall 18. Finally, fourth tri-layer corner 24 is established as a result of folding second right auxiliary canopy anchor flap 78 about second right auxiliary flap fold line 88 toward second right wall anchor flap 66.
Fourth tri-layer corner 24 is established as a result of coupling second right wall anchor flap 66 to rear right corner bridge 134 and by coupling second right auxiliary canopy anchor flap 78 to rear right corner bridge 134. As an example, second right wall anchor flap 66 is coupled to rear right corner bridge 134 by adhesive and second right auxiliary canopy anchor flap 78 is coupled to rear right corner bridge 134 by adhesive.
A portion of a blank 218 of corrugated material in accordance with a second embodiment of the present disclosure is shown in FIG. 10 and can be assembled as suggested in FIG. 10 to produce a first tri-layer corner 221A of a container 210 as shown in FIG. 12. In most respects, blank 218 is similar to blank 28 of FIG. 3.
Blank 218 includes floor 14, a right side closure 220 appended to floor 14 along right-side fold line 32, and a front end strip 42 appended to floor 14 along front-end fold line 36 as shown in FIG. 10. Right side closure 220 and front end strip 42 are configured to be folded in a manner similar to that shown in FIGS. 4-9 to produce first tri-layer corner 221A.
As discussed previously, first tri-layer corner 221A includes outer layer 211, a medial layer 2212, and inner layer 213 as shown in FIGS. 11 and 12. Inner layer 213 is provided by front right corner bridge 90 of front end strip 42 and is established during initial folding of blank 218. Medial layer 2212 is provided by a first right wall anchor flap 262 included in right side closure 220 and is established during the subsequent folding of blank 218. Outer layer 211 is provided by first right auxiliary canopy anchor flap 74 and is established during the final folding of blank 218.
Right side closure 220 illustratively includes a right inner strip 254 coupled to floor 14 about right-side fold line 32 and right outer anchor strip 56 coupled to right inner strip 254 about right anchor-strip fold line 58 as shown in FIG. 10. Right inner strip 254 includes, for example, right side wall 60, a first right wall anchor flap 262 coupled to right side wall 60 about first right wall flap fold line 64, and a second right wall anchor flap (not shown) coupled to right side wall 60 about second right wall flap fold line (not shown). First right wall anchor flap 262 establishes medial layer 2212 of first tri-layer corner 221A. Medial layer 2212 of first tri-layer corner 221A is established during the subsequent stage of container 210 in a manner similar to that of container 10 suggested in FIGS. 4-9.
Blank 218 is formed during an illustrative blank forming process in which a corrugated sheet is processed to establish blank 218 and scrap which is separated from blank 218. During blank forming, first right wall anchor flap 262 is formed to have a proximal end 262P and a distal end 262D which is spaced-apart from proximal end 262P. First right wall anchor flap 262 is appended to right side wall 60 along first right wall flap fold line 64 by proximal end 262P. As shown in FIG. 10, first right wall anchor flap 262 extends away from first right wall flap fold line 64 toward first front anchor flap 46 and first right auxiliary canopy anchor flap 74 such that distal end 262D abuts first front anchor flap 46 and first right auxiliary canopy anchor flap 74. Distal end 262D is separated from first front anchor flap 46 and first right auxiliary canopy anchor flap 74 by a cut line 142 as shown in FIG. 10.
During blank forming, scrap is separated from blank 218 which causes two triangle-shaped apertures 120A, 120B to be formed therein. In comparison to blank 28, blank 218 lacks rectangle-shaped aperture 120C thus causing triangle-shaped apertures 120A, 120B to be separate from one another. As a result of distal end 262D of first right wall anchor flap 262 abutting first front anchor flap 46 and first right auxiliary canopy anchor flap 74, friction is developed during container forming as front end strip 42 is folded upwardly about front-end fold line 36. A first right-wall anchor-flap crush area 144 which is established during blank forming to provide means for minimizing friction developed between first right wall anchor flap 262 and first front anchor flap 46 and first right auxiliary canopy anchor flap 74 during container forming so that the likelihood of creating improperly formed containers is minimized.
In an illustrative embodiment, the corrugation of blank 218 is positioned to run in a transverse direction TD as shown in insert 2A in FIG. 10. As a result, inner and outer layers 211, 213 of tri-layer corner 221A has corrugation which runs vertically as shown in FIG. 12 after container 210 has been formed. Medial layer 2212 has corrugation which runs horizontally as shown in FIG. 10 after container 10 has been formed. In one illustrative example, it was found surprisingly that the medial layer 2212 of tri-layer corner 221A increases stacking strength of container 210 about 7%. Stacking strength may be measured using standard industry test methods. As an example, stacking strength was evaluated using the TSL-8.2-WI-005 test method and procedure reference T804 of the Technical Association of the Pulp and Paper Industry (TAPPI).
In another embodiment, the right canopy and the left canopy may be configured so as to establish a lid after the container has been formed. In an example, the right canopy has a width about equal to one half a width of the floor and the left canopy has a width about equal to one half the width of the floor. After the container has been erected, the right canopy is folded inwardly toward the floor about the right anchor-strip fold line so that the right canopy lies above the floor and extends away from the right side wall toward the left sidewall. The left canopy is also folded inwardly toward the floor about the left anchor-strip fold line so that the left canopy lies above the floor and extends away from the left side wall toward the right side wall. As a result, the interior region is defined by the floor, the right side closure, the left side closure, the front end wall, the rear end wall, the four tri-layer corners, and the lid established upon completion of forming the container.
In another embodiment, a container further includes a front canopy and a rear canopy. The front canopy is coupled to the front end wall about a front-canopy fold line. The rear canopy is coupled to the rear end wall about a rear-canopy fold line. After forming of the container, the front canopy lies in a plane positioned to lie between the right canopy and the floor. The rear canopy lies in a plane that is positioned to lie between the left canopy and the floor. The rear canopy, front canopy, left canopy, and right canopy cooperate to establish a framed top of the container.

Claims (11)

What is claimed is:
1. An article-transport container comprising:
a floor (14) having a respective left-side and right-side closures (16) and (20) foldably joined thereto, a front end wall (12) foldably joined to the floor and to the respective left-side and right-side closures, a rear end wall (18) foldably joined to the floor and to the respective left-side and right-side closures, and at least one tri-layers corner cooperate with the respective left-side and right-side closures to define an interior region adapted to receive articles therein wherein the at least one tri-layer corner includes respective outer and inner layers (211) and (213) and a medial layer (212) being sandwiched between the respective outer and inner layers to enhance stacking strength of the container while minimizing scraps produced during construction of the container and wherein the at least one tri-layer corner includes four tri-layer corners defined by a first tri-layer corner, a second tri-layer corner, a third tri-layer corner, and a fourth tri-layer corner, the first tri-layer corner is arranged to extend between the front end wall and a right side wall and lie at an acute angle relative to the front end wall wherein the acute angle is defined to be between a first mitered edge of the floor and a front end edge of the floor and wherein the inner layer (211) being coupled to the front end wall (12), the outer layer (211) being formed from a second portion of the right-side closure (20), and the medial layer (212) being formed from a first portion of the right-side closure (20) such that a first right wall anchor flap (62) that forms the medial layer, is arranged to extend away from a right side wall (60) toward the front end wall (12) and is coupled to a right corner bridge (90) that forms the inner layer and wherein the medial layer includes corrugation that is arranged to extend horizontally parallel to the floor of the container.
2. The container of claim 1 wherein the respective right side and left side closures includes a corresponding right canopy and a corresponding left canopy wherein each of which is overlying the floor.
3. The container of claim 1 wherein the inner layer is positioned to lie inside of the floor perimeter and is arranged to extend between a front end edge and a right edge and between the floor and the right canopy.
4. The container of claim 1 wherein the medial layer is positioned to lie outside the floor perimeter and is arranged to extend along the first mitered edge of the floor so that medial layer lies at an acute angle.
5. The container of claim 1 wherein the outer layer is positioned to lie outside of the floor perimeter and is arranged to lie in spaced-apart relation to the first mitered edge of the floor to cause the medial layer to position therebetween.
6. The container of claim 1 wherein the first tri-layer corner is formed by coupling the first right wall anchor flap to the front right corner bridge and by coupling a first right auxiliary canopy anchor flap to the first right wall anchor flap.
7. The container of claim 1 wherein the second tri-layer corner is formed by coupling a first left wall anchor flap to a front left corner bridge and by coupling a first left auxiliary canopy anchor flap to the first left wall anchor flap.
8. The container of claim 1 wherein the third tri-layer corner is formed by coupling a second left wall anchor flap to a rear left corner bridge and by coupling a second left auxiliary canopy anchor flap to the rear left corner bridge.
9. The container of claim 1 wherein fourth tri-layer corner is formed by coupling a second right wall anchor flap to a rear right corner bridge and by coupling a second right auxiliary canopy anchor flap to the rear right corner bridge.
10. An article-transport container comprising:
a floor (14) having a respective left-side and right-side closures (16) and (20) foldably joined thereto, a front end wall (12) foldably joined to the floor and to the respective left-side and right-side closures, a rear end wall (18) foldably joined to the floor and to the respective left-side and right-side closures, and four tri-layer corners defined by a first tri-layer corner (21), a second tri-layer corner (22), a third tri-layer corner (23), and a fourth tri-layer corner (24) cooperate with the respective left-side and right-side closures to define an interior region adapted to receive articles therein and wherein each of the first, second, third, and fourth tri- layer corners includes respective outer and inner layers and a medial layer being sandwiched between the respective outer and inner layers to enhance stacking strength of the container while minimizing scarps produced during construction of the container and the medial layer includes corrugation that is arranged to extend horizontally parallel to the floor of the container and wherein the first tri-layer corner (21) is formed by coupling a first right wall anchor flap (62) to a front right corner bridge (90) and by coupling a first right auxiliary canopy anchor flap (74) to the first right wall anchor flap (62) and wherein the inner layer is provided by the front right corner bridge of a front end strip during initial folding, the medial layer is provided by the first right wall anchor flap included in the right side closure during subsequent folding and the outer layer is provided by the first right auxiliary canopy anchor flap and is established during the final folding.
11. A blank (218) for making an article-transport container comprising:
a floor (14), a right side closure (220) being appended to the floor (14) along right-side fold line (32), and a front end strip (42) being appended to the floor (14) along front-end fold line (36), the right side closure (220) and the front end strip (42) are configured to be folded to produce a first tri-layer corner (221A), the first tri-layer corner (221A) includes an outer layer (211), a medial layer (2212), and an inner layer (213), the inner layer (213) being provided by a front right corner bridge (90) of the front end strip (42) and is established during initial folding of blank (218), medial layer (2212) being provided by a first right wall anchor flap (262) included in the right side closure (220) and is established during the subsequent folding of blank (218) and wherein the medial layer includes corrugation that is arranged to extend horizontally parallel to the floor of the container the and the outer layer (211) being provided by a first right auxiliary canopy anchor flap (74) and is established during the final folding of blank (218) and wherein a scrap is separated from the blank (218) which causes two triangle-shaped apertures (120A), (120B) to be formed therein without an interconnecting rectangle-shaped aperture (120C).
US13/743,821 2012-01-24 2013-01-17 Article-transport container Active 2033-02-01 US9126711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/743,821 US9126711B2 (en) 2012-01-24 2013-01-17 Article-transport container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261590227P 2012-01-24 2012-01-24
US13/743,821 US9126711B2 (en) 2012-01-24 2013-01-17 Article-transport container

Publications (2)

Publication Number Publication Date
US20130186948A1 US20130186948A1 (en) 2013-07-25
US9126711B2 true US9126711B2 (en) 2015-09-08

Family

ID=47666499

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/743,821 Active 2033-02-01 US9126711B2 (en) 2012-01-24 2013-01-17 Article-transport container

Country Status (10)

Country Link
US (1) US9126711B2 (en)
EP (1) EP2807083B1 (en)
AR (1) AR089636A1 (en)
BR (1) BR112014018100B1 (en)
CA (1) CA2861907C (en)
ES (1) ES2613304T3 (en)
MA (1) MA35876B1 (en)
MX (1) MX350458B (en)
PE (1) PE20142171A1 (en)
WO (1) WO2013112348A1 (en)

Cited By (7)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US20150174850A1 (en) * 2013-12-24 2015-06-25 Orbis Corporation Process for Forming Plastic Corrugated Container and Intermediary Blank
US10625916B2 (en) 2013-12-24 2020-04-21 Orbis Corporation Plastic corrugated container with soft score line
US10829265B2 (en) 2013-12-24 2020-11-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11072140B2 (en) 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11643242B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Air vent for welded portion in plastic corrugated material, and process for forming welded portion
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges

Families Citing this family (9)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072866A1 (en) * 2011-11-18 2013-05-23 Stephanus Petrus De Beer Stackable open topped box
AR089636A1 (en) 2012-01-24 2014-09-03 Tin Inc CONTAINER TO TRANSPORT ARTICLES
AR092668A1 (en) * 2012-09-26 2015-04-29 Tin Inc CONTAINER FOR PRODUCT TRANSPORTATION
US9938038B2 (en) * 2014-02-05 2018-04-10 Menasha Corporation Shipping and display containers and methods of making same
CN106132835A (en) * 2014-03-14 2016-11-16 č”åˆę Ŗ式会ē¤¾ Packing crates and box forming apparatus
USD772068S1 (en) * 2015-04-30 2016-11-22 SZ DJI Technology Co., Ltd Packaging
USD867875S1 (en) * 2017-05-10 2019-11-26 Mutty Greenfeld Box
CA3160873A1 (en) * 2019-12-05 2021-06-10 Westrock Shared Services, Llc Non-rectangular carton
JP7444020B2 (en) 2020-10-21 2024-03-06 ēŽ‹å­ćƒ›ćƒ¼ćƒ«ćƒ‡ć‚£ćƒ³ć‚°ć‚¹ę Ŗ式会ē¤¾ tray

Citations (57)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US667112A (en) 1900-06-05 1901-01-29 Alexander W Beers Folding or collapsible box.
US2147563A (en) * 1937-12-14 1939-02-14 O B Andrews Company Octagonal box
US2603404A (en) 1949-09-20 1952-07-15 Robert L Eldredge Carton
US2868430A (en) 1956-08-07 1959-01-13 Container Corp Stacking paperboard tray
US3118591A (en) 1960-04-30 1964-01-21 Sarl Allard & Fils Cardboard tray for fruit
GB971565A (en) * 1962-04-06 1964-09-30 Wovit Containers Ltd Improvements in and relating to trays and the like of corrugated paper or the like
US3268147A (en) 1963-06-11 1966-08-23 Burger Karl-Hans Crates for the carriage and storage of various goods
US3310219A (en) 1965-06-02 1967-03-21 Container Corp Heavy duty container with integral handle
US3545666A (en) 1968-10-14 1970-12-08 Container Corp Container having corner post for top to bottom stacking
US3704823A (en) 1969-12-08 1972-12-05 Georgia Pacific Corp Open-top stacking carton and blank therefor
US3810574A (en) 1972-10-16 1974-05-14 Container Corp Self-locking tray
US3871570A (en) 1973-04-02 1975-03-18 Hoerner Waldorf Corp Shipping tray
US4537344A (en) 1982-03-11 1985-08-27 International Paper Company Interlocking corner structure on tray for frozen fruits and vegetables
GB2157659A (en) * 1984-03-21 1985-10-30 Omegalodge Ltd Boxes and blanks therefor
US4613045A (en) 1985-08-29 1986-09-23 Weyerhaeuser Company Bulk shipping container
US4792084A (en) 1986-02-24 1988-12-20 Longview Fibre Company Paperboard container with angled corners
US4883221A (en) 1989-04-28 1989-11-28 Stone Container Corporation Carton tray apparatus
US4911355A (en) 1989-06-19 1990-03-27 James Bannister Foldable carton
GB2229426A (en) 1989-03-03 1990-09-26 Tarleton Box Company Limited Boxes
US5016814A (en) * 1990-09-19 1991-05-21 Fullerton James T Collapsible box with improved corner locks
US5052615A (en) 1989-05-25 1991-10-01 Restaurant Technology, Inc. Food carton and method
FR2669301A1 (en) 1990-11-21 1992-05-22 Emballages Ste Mediterraneenne Package for fruit and vegetables
US5163609A (en) 1991-06-27 1992-11-17 Weyerhaeuser Company Produce container
US5289970A (en) 1992-10-02 1994-03-01 Inland Container Corporation Paperboard container having reinforced corners
US5330094A (en) 1993-12-16 1994-07-19 Jefferson Smurfit Corporation Stackable display tray
US5395043A (en) 1992-02-20 1995-03-07 Otor A blank for making a box around a load
US5560539A (en) 1994-01-31 1996-10-01 The Mead Corporation Sealable carton
GB2300179A (en) * 1995-03-28 1996-10-30 Bpb Industries Plc Box
EP0790189A1 (en) * 1996-02-13 1997-08-20 BPB Plc Box having integral corner posts
US5752648A (en) 1996-06-19 1998-05-19 International Paper Web bottomed eight sided tray
US5913474A (en) * 1997-10-10 1999-06-22 Merryland Products, Inc. Foldable tote box
US5979746A (en) 1996-07-31 1999-11-09 Stone Container Corporation Tray apparatus with reinforced corner structure
US6286753B1 (en) * 1999-10-22 2001-09-11 Packaging Corporation Of America Displayable produce container and method for making the same
US6302323B1 (en) 1999-10-22 2001-10-16 Packaging Corporation Of America Displayable produce container and method for making the same
US6394742B1 (en) 1999-04-30 2002-05-28 The Mead Corporation Method for stacking boxes and removal of individual boxes from the stack
EP1215125A1 (en) * 2000-12-14 2002-06-19 Kappa Trimbach B.V. Collapsible box with corner reinforcement and blank therefor
US6481619B1 (en) * 1999-10-22 2002-11-19 Packaging Corporation Of America Produce container and method for making the same
US6513705B1 (en) 1999-05-07 2003-02-04 Pack ā€˜Nā€™ Stack Fold and glue stacking container with side access
US6598785B2 (en) 2001-07-25 2003-07-29 International Paper Company Container with improved stacking strength and resistance to lateral distortion
US20040149815A1 (en) 2002-06-14 2004-08-05 Holdsworth James K Stackable display container
US6899266B2 (en) 2001-11-02 2005-05-31 International Paper Company Stackable paperboard container
US20050145687A1 (en) 2001-11-02 2005-07-07 International Paper Company Stackable paperboard container
US20050236466A1 (en) 2004-04-26 2005-10-27 Mcleod Michael Integrated carton lid designs
US7017798B2 (en) 2003-03-07 2006-03-28 Tin Inc. Food-transport tray
US20060213958A1 (en) 2005-03-18 2006-09-28 Valenzuela Juan Z Container with hold-open flaps for ventilation
US20060231603A1 (en) 2002-11-01 2006-10-19 Smurfit-Stone Container Enterprises, Inc. Shipping containers with stacking support structures
EP1764311A1 (en) 2005-09-15 2007-03-21 R&F Folding Boxes Collapsible box-shaped container with reinforced corners and blank therefor
US7470226B1 (en) 2002-11-26 2008-12-30 R & L Manufacturing Apparatus and method for forming a container having an enhanced corner support structure
US20090145955A1 (en) 2007-12-07 2009-06-11 Tin Inc. Food-transport container with monoplanar multipart end panels
US20090280973A1 (en) 2008-05-07 2009-11-12 Graham Thomas D Machine and method for forming reinforced polygonal containers from blanks
US20100219232A1 (en) * 2008-05-07 2010-09-02 Kenneth Charles Smith Reinforced polygonal containers and blanks of sheet material for making the same
US7850064B2 (en) 2008-01-28 2010-12-14 Tin Inc. Food-transport container with monoplanar multipart end panels
US20130048704A1 (en) * 2011-08-30 2013-02-28 William H. Lewis Article-transport container
US8408452B2 (en) * 2007-08-30 2013-04-02 International Paper Company Container with modified corner
WO2013090612A1 (en) * 2011-12-14 2013-06-20 Rock-Tenn Shared Services, Llc Polygonal container having reinforced corner structures and blank for forming same
WO2013112348A1 (en) 2012-01-24 2013-08-01 Tin Inc. Article-transport container
US20140084047A1 (en) 2012-09-26 2014-03-27 Tin Inc. Article-transport container

Patent Citations (61)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US667112A (en) 1900-06-05 1901-01-29 Alexander W Beers Folding or collapsible box.
US2147563A (en) * 1937-12-14 1939-02-14 O B Andrews Company Octagonal box
US2603404A (en) 1949-09-20 1952-07-15 Robert L Eldredge Carton
US2868430A (en) 1956-08-07 1959-01-13 Container Corp Stacking paperboard tray
US3118591A (en) 1960-04-30 1964-01-21 Sarl Allard & Fils Cardboard tray for fruit
GB971565A (en) * 1962-04-06 1964-09-30 Wovit Containers Ltd Improvements in and relating to trays and the like of corrugated paper or the like
US3268147A (en) 1963-06-11 1966-08-23 Burger Karl-Hans Crates for the carriage and storage of various goods
US3310219A (en) 1965-06-02 1967-03-21 Container Corp Heavy duty container with integral handle
US3545666A (en) 1968-10-14 1970-12-08 Container Corp Container having corner post for top to bottom stacking
US3704823A (en) 1969-12-08 1972-12-05 Georgia Pacific Corp Open-top stacking carton and blank therefor
US3810574A (en) 1972-10-16 1974-05-14 Container Corp Self-locking tray
US3871570A (en) 1973-04-02 1975-03-18 Hoerner Waldorf Corp Shipping tray
US4537344A (en) 1982-03-11 1985-08-27 International Paper Company Interlocking corner structure on tray for frozen fruits and vegetables
GB2157659A (en) * 1984-03-21 1985-10-30 Omegalodge Ltd Boxes and blanks therefor
US4613045A (en) 1985-08-29 1986-09-23 Weyerhaeuser Company Bulk shipping container
US4792084A (en) 1986-02-24 1988-12-20 Longview Fibre Company Paperboard container with angled corners
GB2229426A (en) 1989-03-03 1990-09-26 Tarleton Box Company Limited Boxes
US4883221A (en) 1989-04-28 1989-11-28 Stone Container Corporation Carton tray apparatus
US5052615A (en) 1989-05-25 1991-10-01 Restaurant Technology, Inc. Food carton and method
US4911355A (en) 1989-06-19 1990-03-27 James Bannister Foldable carton
US5016814A (en) * 1990-09-19 1991-05-21 Fullerton James T Collapsible box with improved corner locks
FR2669301A1 (en) 1990-11-21 1992-05-22 Emballages Ste Mediterraneenne Package for fruit and vegetables
US5163609A (en) 1991-06-27 1992-11-17 Weyerhaeuser Company Produce container
US5395043A (en) 1992-02-20 1995-03-07 Otor A blank for making a box around a load
US5289970A (en) 1992-10-02 1994-03-01 Inland Container Corporation Paperboard container having reinforced corners
US5330094A (en) 1993-12-16 1994-07-19 Jefferson Smurfit Corporation Stackable display tray
US5560539A (en) 1994-01-31 1996-10-01 The Mead Corporation Sealable carton
GB2300179A (en) * 1995-03-28 1996-10-30 Bpb Industries Plc Box
EP0790189A1 (en) * 1996-02-13 1997-08-20 BPB Plc Box having integral corner posts
US5752648A (en) 1996-06-19 1998-05-19 International Paper Web bottomed eight sided tray
US5979746A (en) 1996-07-31 1999-11-09 Stone Container Corporation Tray apparatus with reinforced corner structure
US5913474A (en) * 1997-10-10 1999-06-22 Merryland Products, Inc. Foldable tote box
US6394742B1 (en) 1999-04-30 2002-05-28 The Mead Corporation Method for stacking boxes and removal of individual boxes from the stack
US6513705B1 (en) 1999-05-07 2003-02-04 Pack ā€˜Nā€™ Stack Fold and glue stacking container with side access
US6286753B1 (en) * 1999-10-22 2001-09-11 Packaging Corporation Of America Displayable produce container and method for making the same
US6302323B1 (en) 1999-10-22 2001-10-16 Packaging Corporation Of America Displayable produce container and method for making the same
US6481619B1 (en) * 1999-10-22 2002-11-19 Packaging Corporation Of America Produce container and method for making the same
EP1215125A1 (en) * 2000-12-14 2002-06-19 Kappa Trimbach B.V. Collapsible box with corner reinforcement and blank therefor
US6598785B2 (en) 2001-07-25 2003-07-29 International Paper Company Container with improved stacking strength and resistance to lateral distortion
US6899266B2 (en) 2001-11-02 2005-05-31 International Paper Company Stackable paperboard container
US20050145687A1 (en) 2001-11-02 2005-07-07 International Paper Company Stackable paperboard container
US20040149815A1 (en) 2002-06-14 2004-08-05 Holdsworth James K Stackable display container
US20060231603A1 (en) 2002-11-01 2006-10-19 Smurfit-Stone Container Enterprises, Inc. Shipping containers with stacking support structures
US7665654B2 (en) 2002-11-01 2010-02-23 Smurfit-Stone Container Enterprises, Inc. Shipping containers with stacking support structures
US7470226B1 (en) 2002-11-26 2008-12-30 R & L Manufacturing Apparatus and method for forming a container having an enhanced corner support structure
US7017798B2 (en) 2003-03-07 2006-03-28 Tin Inc. Food-transport tray
US20050236466A1 (en) 2004-04-26 2005-10-27 Mcleod Michael Integrated carton lid designs
US7484655B2 (en) 2004-04-26 2009-02-03 Smurfit-Stone Container Enterprises, Inc. Integrated carton lid designs
US20060213958A1 (en) 2005-03-18 2006-09-28 Valenzuela Juan Z Container with hold-open flaps for ventilation
EP1764311A1 (en) 2005-09-15 2007-03-21 R&F Folding Boxes Collapsible box-shaped container with reinforced corners and blank therefor
US8408452B2 (en) * 2007-08-30 2013-04-02 International Paper Company Container with modified corner
US8091770B2 (en) 2007-12-07 2012-01-10 Tin Inc. Food-transport container with monoplanar multipart end panels
US20090145955A1 (en) 2007-12-07 2009-06-11 Tin Inc. Food-transport container with monoplanar multipart end panels
US8251276B2 (en) 2007-12-07 2012-08-28 Tin Inc. Octagon-shaped food-transport container
US7850064B2 (en) 2008-01-28 2010-12-14 Tin Inc. Food-transport container with monoplanar multipart end panels
US20090280973A1 (en) 2008-05-07 2009-11-12 Graham Thomas D Machine and method for forming reinforced polygonal containers from blanks
US20100219232A1 (en) * 2008-05-07 2010-09-02 Kenneth Charles Smith Reinforced polygonal containers and blanks of sheet material for making the same
US20130048704A1 (en) * 2011-08-30 2013-02-28 William H. Lewis Article-transport container
WO2013090612A1 (en) * 2011-12-14 2013-06-20 Rock-Tenn Shared Services, Llc Polygonal container having reinforced corner structures and blank for forming same
WO2013112348A1 (en) 2012-01-24 2013-08-01 Tin Inc. Article-transport container
US20140084047A1 (en) 2012-09-26 2014-03-27 Tin Inc. Article-transport container

Cited By (14)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US10829265B2 (en) 2013-12-24 2020-11-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US10829264B2 (en) 2013-12-24 2020-11-10 Orbis Corporation Process for forming plastic corrugated container with ultrasonically formed score lines
US10961038B2 (en) 2013-12-24 2021-03-30 Orbis Corporation Plastic corrugated container with soft score line
US20210139188A1 (en) * 2013-12-24 2021-05-13 Orbis Corporation Process for forming plastic corrugated container with ultrasonically formed score lines
US11072455B2 (en) * 2013-12-24 2021-07-27 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11319132B2 (en) 2013-12-24 2022-05-03 Orbis Corporation Plastic corrugated container with soft score line
US20150174850A1 (en) * 2013-12-24 2015-06-25 Orbis Corporation Process for Forming Plastic Corrugated Container and Intermediary Blank
US11643241B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11643242B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Air vent for welded portion in plastic corrugated material, and process for forming welded portion
US10625916B2 (en) 2013-12-24 2020-04-21 Orbis Corporation Plastic corrugated container with soft score line
US11760530B2 (en) * 2013-12-24 2023-09-19 Orbis Corporation Process for forming plastic corrugated container with ultrasonically formed score lines
US11072140B2 (en) 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes

Also Published As

Publication number Publication date
US20130186948A1 (en) 2013-07-25
BR112014018100B1 (en) 2021-06-29
BR112014018100A2 (en) 2017-06-27
MX350458B (en) 2017-09-05
AR089636A1 (en) 2014-09-03
EP2807083A1 (en) 2014-12-03
CA2861907A1 (en) 2013-08-01
ES2613304T3 (en) 2017-05-23
PE20142171A1 (en) 2015-01-09
EP2807083B1 (en) 2016-10-26
MX2014008968A (en) 2014-10-14
CA2861907C (en) 2016-08-09
MA35876B1 (en) 2014-12-01
WO2013112348A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US9126711B2 (en) Article-transport container
US8800850B2 (en) Article-transport container
US10414538B2 (en) Carton and blank therefor
US5649663A (en) Produce container improvement
US8251276B2 (en) Octagon-shaped food-transport container
US9180996B2 (en) Corrugated cardboard box with open-work flaps and set of blanks for obtaining same
US7806313B2 (en) Shipping and display container and associated container blank
US20090314827A1 (en) Stackable corrugated box
CA2797241C (en) Hammer-lock container
US10407207B2 (en) Shipping container convertible into a display configuration
US20200180814A1 (en) Stackable box
US10865010B2 (en) Carton and blank therefor
US7850064B2 (en) Food-transport container with monoplanar multipart end panels
EP2436614A1 (en) Collapsible container
JP3088549U (en) Paper tray case
US20070075123A1 (en) Octagon shaped tray and corresponding blank
EP3357834B1 (en) Box
US20210253295A1 (en) Fold flat tray and associated method of forming
AU2020256374A1 (en) Shipping and display container and blank for forming same
WO2013072866A1 (en) Stackable open topped box
IE20090487A1 (en) Improvements relating to containers

Legal Events

Date Code Title Description
AS Assignment

Owner name: TIN INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HERMOSILLO, IGNACIO PADILLA;REEL/FRAME:030399/0849

Effective date: 20130429

Owner name: TIN INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCLEOD, MICHAEL B.;REEL/FRAME:030399/0879

Effective date: 20130313

AS Assignment

Owner name: TIN INC., TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COTA SOTO, RAMON ULISES;REEL/FRAME:030622/0967

Effective date: 20130610

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TIN LLC, TENNESSEE

Free format text: CHANGE OF NAME;ASSIGNOR:TIN INC.;REEL/FRAME:041382/0048

Effective date: 20161231

AS Assignment

Owner name: INTERNATIONAL PAPER COMPANY, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TIN LLC;REEL/FRAME:047418/0538

Effective date: 20171215

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8