US9117769B2 - Plasma etching method - Google Patents
Plasma etching method Download PDFInfo
- Publication number
- US9117769B2 US9117769B2 US14/480,109 US201414480109A US9117769B2 US 9117769 B2 US9117769 B2 US 9117769B2 US 201414480109 A US201414480109 A US 201414480109A US 9117769 B2 US9117769 B2 US 9117769B2
- Authority
- US
- United States
- Prior art keywords
- gas
- plasma etching
- amorphous carbon
- film
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001020 plasma etching Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 46
- 238000012545 processing Methods 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims 2
- 238000005530 etching Methods 0.000 abstract description 55
- 239000004065 semiconductor Substances 0.000 description 23
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
- H01L21/31122—Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
Definitions
- the present invention relates to a plasma etching method for performing a plasma etching on an amorphous carbon layer.
- O 2 gas is employed as an etching gas when a carbon-based organic film, e.g., an amorphous carbon layer, is etched by using an inorganic film as a mask (see, e.g., Japanese Patent Application Publication No. 2004-214465).
- hole patterns or line patterns are formed by etching an amorphous carbon layer with a plasma of O 2 gas, such etching is performed in both vertical and horizontal directions, thereby making errors such as bowings in etched shapes or enlarging hole diameters or line widths beyond the designed values. If such errors are made in a specific film, errors are also made in a target film to be etched when the etching is performed on the target film by using the specific film as a mask.
- the present invention provides a plasma etching method capable of satisfactorily etching an amorphous carbon layer without enlarging etched portions thereof.
- the method includes performing the plasma etching on the amorphous carbon layer by using O 2 gas as a processing gas and the O 2 gas to flow in the processing chamber such that a residence time of the O 2 gas becomes 3.05 msec or less.
- the residence time is from 1.02 msec to 3.05 msec, and more preferably from 1.52 msec to 3.05 msec.
- a computer-readable storage medium storing a computer-readable program for controlling a plasma etching apparatus to execute the plasma etching method.
- FIG. 1 is a schematic cross sectional view showing a plasma etching apparatus capable of performing a plasma etching method in accordance with an embodiment of the present invention
- FIG. 2 schematically shows an example of a structure of a semiconductor wafer to which the plasma etching method in accordance with the embodiment of the present invention is applied;
- FIG. 3 schematically shows a structure of a semiconductor wafer used for an experiment that was carried out to confirm an effect of the present embodiment
- FIG. 4 is a table showing ⁇ CD, 3 ⁇ , and ⁇ /Ave. when an amorphous carbon layer is etched by changing an initial hole diameter and a residence time;
- FIG. 5 shows scanning electron microscope pictures of etching holes when an amorphous carbon is etched by setting an initial hole diameter as 120 nm while changing a residence time;
- FIG. 6 shows scanning electron microscope pictures of etching holes when an amorphous carbon is etched by setting an initial hole diameter as 180 nm while changing a residence time
- FIG. 7 is a table showing indexes of shapes and sizes of holes when an amorphous carbon is etched by setting an initial hole diameter to 120 and 180 nm while changing a residence time.
- FIG. 1 is a schematic cross sectional view showing an example of a plasma etching apparatus for performing a plasma etching method in accordance with an embodiment of the present invention.
- the plasma etching apparatus is a capacitively coupled parallel plate type etching apparatus and includes a substantially cylindrical chamber (processing vessel) 10 made of, e.g., aluminum whose surface is anodically oxidized.
- the chamber 10 is frame-grounded.
- a substantially cylindrical susceptor support 14 is provided via an insulating plate 12 made of, e.g., ceramic or the like. Further, a susceptor 16 made of, e.g., aluminum is provided on the susceptor support 14 .
- the susceptor 16 serves as a lower electrode, and a target substrate, e.g., a semiconductor wafer W, to be processed is mounted on the susceptor 16 .
- a target substrate e.g., a semiconductor wafer W
- an electrostatic chuck 18 for attracting and holding the semiconductor wafer W by an electrostatic force is provided.
- the electrostatic chuck 18 includes a pair of insulating layers or sheets and an electrode interposed therebetween, the electrode being made of an electrically conductive film.
- a DC power supply 22 is electrically connected to the electrode 20 .
- the semiconductor wafer W is attracted to and held on the electrostatic chuck 18 by the electrostatic force, e.g., a Coulomb force generated by a DC voltage supplied from the DC power supply 22 .
- An electrically conductive focus ring (calibration ring) 24 is arranged on an upper peripheral portion of the susceptor 16 to surround the electrostatic chuck 18 (the semiconductor wafer W).
- the focus ring 24 is made of, e.g., silicon or the like, to thereby improve an in-plane uniformity of etching.
- a coolant path 28 is arranged in the susceptor support 14 , e.g., in a circumferential direction.
- a coolant e.g., cooling water
- a coolant e.g., cooling water
- a heat transfer gas e.g., He gas
- He gas is supplied via, e.g., a He gas supply line 32 to a gap between a top surface of the electrostatic chuck 18 and a backside surface of the semiconductor wafer W.
- An upper electrode 34 is provided above the susceptor 16 serving as the upper electrode to face the susceptor 16 in parallel.
- a space between the upper and the lower electrode 34 and 16 serves as a plasma generation space.
- the upper electrode 34 has a facing surface which faces the semiconductor wafer W on the susceptor (lower electrode) 16 and is brought into contact with the plasma generation space.
- the upper electrode 34 is held at an upper portion of the chamber 10 by an insulating shield member 42 and includes an electrode plate 36 having a plurality of gas injection holes 37 , the electrode plate 36 having the facing surface that faces the susceptor 16 ; and an electrode support 38 having a water-cooling structure for releasably holding the electrode plate 36 , the electrode support 38 being made of a conductive material, e.g., aluminum.
- the electrode plate 36 is preferably made of a low-resistance conductor or semiconductor material having low joule heat. Further, in order to reinforce a resist film, the electrode plate 36 is preferably made of a silicon-containing material. In this respect, the electrode plate 36 is preferably made of, e.g., silicon or silicon carbide (SiC).
- a gas diffusion space 40 is provided inside the electrode support 38 , and a plurality of gas flow holes 41 is downwardly extended from the gas diffusion space 40 through the electrode support 38 .
- the gas through holes communicate with the respective gas injection holes 37 .
- a gas inlet port 62 is formed in the electrode support to introduce a processing gas into the gas diffusion space 40 .
- a gas supply line 64 is connected to the gas inlet port 62 , and a processing gas supply source 66 is connected to the gas supply line 64 to supply O 2 gas as an etching gas.
- a mass flow controller (MFC) or a flow control system (FCS)
- FCS flow control system
- the O 2 gas is supplied from the processing gas supply source 66 to the gas diffusion space 40 through the gas supply line 64 .
- the supplied O 2 gas is injected in the form of shower into the plasma generation space through the gas flow holes 41 and the gas injection holes 37 .
- the upper electrode 34 serves as a shower head through which a processing gas is supplied. Further, the upper electrode 34 is grounded.
- a DC power supply may be connected to the upper electrode 34 .
- a cylindrical grounding conductor 10 a is provided to extend from a sidewall of the chamber 10 more upwardly than the height of the upper electrode 34 .
- a first high frequency power supply 48 is electrically connected, via a first matcher 46 , to the susceptor 16 serving as the lower electrode.
- the first high frequency power supply 48 outputs a high frequency power of a frequency in the range between 27 and 100 MHz, e.g., about MHz.
- the first matcher 46 serves to adjust a load impedance to an inner (or output) impedance of the first high frequency power supply 48 such that the load impedance and the output impedance become seemingly identical to each other when a plasma is generated in the chamber 10 .
- a second high frequency power supply 90 is electrically connected, via a second matcher 88 , to the susceptor 16 serving as the lower electrode.
- a high frequency bias power is applied to the semiconductor wafer W by supplying a high frequency power from the second high frequency power supply 90 to the susceptor (lower electrode) 16 , so that ions are attracted to the semiconductor wafer W.
- the second high frequency power supply 90 outputs a high frequency power of a frequency in the range between 400 kHz and 20 MHz, e.g., about 13 MHz.
- the second matcher 88 serves to adjust a load impedance to an inner (or output) impedance of the second high frequency power supply 90 such that, when a plasma is generated in the chamber 10 , the inner impedance and the load impedance including an impedance corresponding to the generated plasma become seemingly identical to each other.
- a gas exhaust port 80 is provided at a bottom portion of the chamber 10 , and a gas exhaust unit 84 is connected to the gas exhaust port 80 via a gas exhaust line 82 .
- the exhaust unit 84 includes a vacuum pump such as a turbo molecular pump to depressurize the inside of the chamber 10 to a desired vacuum level.
- a loading/unloading port 85 Provided on a sidewall of the chamber 10 is a loading/unloading port 85 through which the semiconductor wafer W is loaded and unloaded.
- the loading/unloading port 85 can be opened and closed by a gate valve 86 .
- a deposition shield 11 is detachably provided along the sidewall of the chamber 10 .
- the deposition shield 11 serves as a wall of the chamber 10 .
- the deposition shield 11 is further provided on an outer periphery of an inner wall member 26 .
- an exhaust plate 83 is provided between the deposition shields 11 at the wall of the chamber 10 and at the inner wall member 26 side.
- An aluminum member coated with ceramic such as Y 2 O 3 may adequately be employed as the deposition shield 11 and the exhaust plate 83 .
- Various elements such as a power supply system, a gas supply system, and a driving system, i.e., the first and the second high frequency power 48 and 90 , the matchers 46 and the like, in the plasma etching apparatus are connected to a control unit (general control device) 100 including a microprocessor (computer) to be controlled thereby.
- a user interface 101 is also connected to the control unit 100 .
- the user interface 101 includes a keyboard through which a command is inputted to manage the plasma etching apparatus and a display unit for visually displaying an operation status of the plasma etching apparatus.
- a storage unit 102 for storing a control program for performing various operations in the plasma etching apparatus under the control of the control unit 100 and a program, i.e., a processing recipe, for performing the processes of the components of the plasma etching apparatus in accordance with the processing conditions.
- the processing recipe is stored in a storage medium (not shown) of the storage unit 102 .
- the storage medium may be a hard disk drive or a semiconductor memory, or a portable unit such as a CDROM, a DVD, and a flash memory.
- the recipe may adequately be transmitted from another device through, e.g., a dedicated line.
- control unit 100 calls a corresponding processing recipe from the storage unit 102 and executes it, so that a desired operation in the plasma etching apparatus is performed under the control of the control unit 100 .
- the semiconductor wafer W having a structure shown in FIG. 2 is taken as an example of a target substrate to be processed.
- the semiconductor wafer W includes a final etching target film 201 ; an amorphous carbon layer (ACL) 202 serving as an etching mask of the final etching target film 201 ; an inorganic hard mask layer 203 , made of SiON or the like, serving as an etching mask of the amorphous carbon layer 202 ; an organic bottom anti-reflection coating (BARC) film 204 ; and a photoresist film 205 having a predetermined pattern, which is are sequentially formed in that order.
- ACL amorphous carbon layer
- BARC organic bottom anti-reflection coating
- Such a multi-layered resist structure having the layers 202 to 205 provided above the final etching target film 201 is employed to etch the final etching target film 201 , and the amorphous carbon layer 202 serving as a mask for etching the final etching target film 201 becomes a target film to be etched in the multi-layered resist structure.
- the BARC film 204 and the hard mask layer 203 are first etched by using the photoresist film 205 as a mask. Then, the amorphous carbon layer 202 serving as a target film in the present embodiment is etched by using the hard mask layer 203 . As described above, the etched amorphous carbon layer 202 serves as a mask for etching the final etching target film 201 .
- the etched amorphous carbon layer 202 has a thickness ranging from about 100 to 1000 nm.
- a SiO 2 film may be employed as the final etching target film 201 .
- a SiN film, a SiO 2 film, an SOG film, or the like as well as a SiON film may be employed.
- the hard mask layer 203 has a thickness ranging from about 10 to 100 nm.
- a SiON film or an organic film having a thickness ranging from about 20 to 100 nm may be employed.
- an ARF resist film having thickness ranging from about 100 to 400 nm is employed as the photoresist film 205 .
- the gate valve 86 is opened, and the semiconductor wafer W is loaded into the chamber 10 through the loading/unloading port 85 to be mounted on the susceptor 16 , the semiconductor wafer W having a structure in which the BARC film 204 and the hard mask layer 203 have been etched from the structure shown in FIG. 2 .
- the chamber 10 is exhausted by the gas exhaust unit 84 , and a processing gas is supplied at a predetermined flow rate from the processing gas supply source 66 to the gas diffusion space 40 .
- the pressure inside the chamber 10 is set to a predetermined level, e.g., 30 mTorr (4 Pa) or less, while supplying the processing gas to the chamber 10 through the gas flow holes 41 and the gas injection holes 37 .
- a plasma etching is performed on the amorphous carbon layer 202 by supplying O 2 gas as the processing gas while supplying to the susceptor 16 serving as the lower electrode a plasma-generating high frequency power having a relatively high frequency ranging from 27 to 100 MHz, e.g., 40 MHz from the first high frequency power supply 48 ; and a high frequency bias power, i.e., an ion-attraction high frequency power, having a frequency ranging from 400 kHz to 20 MHz, e.g., 13 MHz, that is lower than that of the plasma-generating high frequency power, from the second high frequency power supply 90 .
- a self bias power from the first high frequency power supply 48 satisfactorily serves as the high frequency bias power, it becomes unnecessary to supply the high frequency bias power from the second high frequency power supply 90 .
- a DC voltage is supplied from the DC power supply 22 to the electrode 20 of the electrostatic chuck 18 so that the wafer W is attracted to and held on the electrostatic chuck 18 .
- the O 2 gas injected through the gas injection holes 37 formed in the electrode plate 36 of the upper electrode 34 is converted into a plasma by the glow discharge generated between the upper electrode 34 and the susceptor (lower electrode) 16 by the high frequency power.
- the plasma etching is performed on the amorphous carbon layer 202 .
- the plasma etching is performed on the amorphous carbon layer 202 by employing the inorganic hard mask layer 203 as a mask and using O 2 gas only, the plasma etching is performed in both vertical and horizontal directions, thereby making errors such as bowings in etched shapes or enlarging hole diameters or line widths beyond designed values. It is considered that such horizontal directional etching is performed by O radicals.
- the O radicals are produced by dissociation of the O 2 gas in the plasma. Accordingly, if it is possible to suppress the dissociation of the O 2 gas into the O radicals, it is possible to suppress the horizontal directional etching.
- a residence time of O 2 i.e., a time during which the O 2 gas resides in the chamber 10 .
- the residence time of the O 2 gas becomes longer, the chance that the O 2 gas is dissociated into the O radicals is increased and, thus, more O radicals are produced.
- the residence time of the O 2 gas becomes shorter, the chance that the O 2 gas is dissociated into the O radicals is decreased and, thus, less O radicals are produced.
- a residence time RT [sec] is computed by the following Eq. 1.
- RT [Sec] 9.42 ⁇ 10 7 ⁇ ( Pr ⁇ Ts )/( Ps ⁇ Tr ) ⁇ ( R W 2 ⁇ d )/ F Eq. 1,
- Pr, Tr, Ps, Ts, Rw, d, and F indicate the pressure [Pa] inside the chamber, the temperature [K] of a gas inside the chamber, the standard pressure [Pa], the standard temperature [K], the radius [m] of a wafer, the distance [m] between the upper and the lower electrode, and the gas flow rate [sccm], respectively.
- the temperature Tr inside the chamber is equal to the standard temperature Ts (60° C.), and the radius Rw of the wafer is 0.15 m.
- the distance d between the upper and the lower electrode is set in the range between 0.001 and 0.3 m, for example, to 0.03 m (30 mm).
- the pressure Pr inside the chamber is set in the range of 30 mTorr (4 Pa) or less. Accordingly, what is variable in the Eq. 1 is the gas flow rate F and, thus, it is required to increase the gas flow rate F to shorten the residence time.
- the flow rate of the O 2 gas is significantly increased to minimize the amount of the O radicals, to thereby shorten the residence time to 3.05 msec or less.
- the residence time is from 1.02 msec to 3.05 msec, and more preferably from 1.52 msec to 3.05 msec.
- the amount of the O radicals are reduced, thereby suppressing the horizontal directional etching, so that errors such as bowings in etched shapes and the increase of hole diameters or line widths beyond designed values can be suppressed.
- the amorphous carbon layer 202 can be etched to have a satisfactory shape and high dimensional accuracy. Accordingly, by using the amorphous carbon layer 202 as a mask, the final etching target film 201 can also be etched to have a satisfactory shape and high dimensional accuracy.
- the greatest diameter of the bowing portion has conventionally been used.
- CD critical dimension
- a variation value is measured by using a technique for measuring a line width roughness (LWR). Specifically, diameters or widths at a plurality of, e.g., 100, locations between a top and a bottom portion of the cross section of a hole or a line (groove) are measured to calculate 3 ⁇ ( ⁇ indicates standard deviation) as the variation value. Then, 3 ⁇ is used as the index of the etched shape. It is determined that, as 3 ⁇ becomes smaller, the etched shape is more satisfactory. Accordingly, it is possible to accurately ascertain errors such as bowings in etched shapes. Since, however, 3 ⁇ is affected a little by the diameter of a hole, a value obtained from variable coefficient ⁇ /Ave. (Ave. indicates an average of hole diameters or line widths) may be used as a more accurate index of the etched shape.
- LWR line width roughness
- 3 ⁇ is equal to or smaller than 50 nm and ⁇ /Ave. is equal to or smaller than 0.1.
- the diameter or width of a hole or a line (groove) to be formed by the etching is equal to or greater than 100 nm and an aspect ratio is equal to or smaller than 7. In this way, it is possible to stably obtain a more satisfactory etched shape with 30 that is equal to or smaller than 50 nm and ⁇ /Ave. that is equal to or smaller than 0.1.
- the flow rate of the O 2 gas is preferably set in the range between 500 and 3000 sccm (mL/min).
- a dilution gas including a rare gas such as Ar gas or He gas may additionally be supplied as necessary.
- the amorphous carbon layer 202 is singly etched by using the plasma etching apparatus shown in FIG. 1 .
- the organic BARC film 204 and the hard mask layer 203 such as the SiON film may be etched.
- a DC voltage is applied to the upper electrode of the plasma etching apparatus shown in FIG. 1 , and the BARC film 204 and the SiON film 203 are etched together under, e.g., shrinking or normal conditions of a following experiment before the amorphous carbon layer 202 is etched.
- semiconductor wafer having a structure shown in FIG. 3 was employed.
- semiconductor wafer includes a SiN film 302 having a thickness of 100 nm serving as an etching stop film, an undoped silica glass (USG) film 303 having a thickness of 3000 nm serving as an etching target film, an amorphous carbon layer (ACL) 304 having a thickness of 900 nm, a SiON film 305 having a thickness of 60 nm serving as a hard mask layer, a BARC film 306 having a thickness of 78 nm and made of an organic material, and a photoresist film 307 having a thickness of 150 nm and made of an ARF resist, the photoresist film 307 having hole patterns of a predetermined diameter formed by photolithography, which were sequentially formed in that order on a Si substrate 301 .
- the hole diameters of the photoresist film 307 were set to four kinds, i.e., 100, 120, 160 and 180 nm, and CD shrink was controlled in accordance with etching conditions of the BARC 306 .
- initial hole diameters were set to four kinds, i.e., 50, 100, 120 and 180 nm.
- the BARC film 306 and the SiON film 305 were etched by using the photoresist films 307 having hole diameters 100 and 160 nm under the following shrinking conditions for generating CD shrink, so that the hole diameters of the SiON film 305 were respectively shrunk to 50 and 100 nm to form the initial hole diameters of 50 and 100 nm.
- the BARC film 306 and the SiON film 305 were etched by using the photoresist films 307 having hole diameters 120 and 180 nm under the following normal conditions for generating no CD shrink to form the initial hole diameters to 120 and 180 nm.
- the amorphous carbon layer 304 was etched under the following conditions.
- the hole diameter of 50 nm corresponds to the aspect ratio of beyond 13.
- the hole diameters of 100, 120 and 180 nm corresponds to the aspect ratios of about 7, 6 and 4, respectively.
- the flow rate of the O 2 gas was changed to 130, 450, 900 and 1350 sccm (mL/min) and the residence time was changed to 10.55, 3.05, 1.52 and 1.02 msec.
- a first sample was created by partially etching the amorphous carbon layer 304 and a second sample was created by over-etching the amorphous carbon layer 304 by 30 percentages.
- the distance between the upper and the lower electrode of the plasma etching apparatus was set to 30 mm, and the temperature of a gas inside the chamber during the etching was set to about 60° C.
- ⁇ CD was calculated by subtracting top CD from the greatest diameter due to bowing (bowing CD).
- hole diameters at 100 locations between the top portion and the bottom portion of a hole were measured by an image analysis of a computer to calculate 3 ⁇ ( ⁇ indicates standard deviation) as a variation value, and variable coefficient ⁇ /Ave. was also calculated.
- FIG. 4 is a table showing ⁇ CD, 3 ⁇ and ⁇ /Ave. for each condition after the 30% over-etching was performed. As shown in FIG. 4 , it has been confirmed that ⁇ CD, 3 ⁇ and ⁇ /Ave. became smaller as the residence time Rt was shortened by increasing the flow rate of the O 2 gas. The effect of improving ⁇ CD, 3 ⁇ and ⁇ /Ave. was confirmed when the residence time Rt was 3.05 msec or less. When, however, the flow rate of the O 2 gas was 1350 sccm (mL/min), ⁇ CD, 3 ⁇ and ⁇ /Ave. were slightly increased.
- the satisfactory effect of improving the etched shape such as bowing was obtained in the case of the initial hole diameter of 100 nm or more; and the aspect ratio of a hole was preferably equal to or smaller than 7. Especially, in the case of the initial hole diameter of 120 and 180 nm, a distinguishably satisfactory effect was obtained.
- FIGS. 5 and 6 show scanning electron microscope (SEM) pictures of the etched holes when the initial hole diameters were set to 120 and 180 nm, respectively.
- FIG. 7 shows detailed figures of the etched holes. From the first sample (Partial) of the initial hole diameters of 120 and 180 nm, it has been seen that the maximum CD was rapidly decreased by shortening the residence time Rt to 3.05 msec or less, thereby improving the bowing. Further, the average of 100 hole diameters was decreased, and both 3 ⁇ and ⁇ /Ave. were decreased by half as the residence time Rt was shortened from 10.55 to 3.05 msec.
- the plasma etching is performed on the amorphous carbon layer by using the O 2 gas as the processing gas and allowing the O 2 gas to flow in the processing chamber such that the residence time of the O 2 gas becomes 0.37 msec or less, the amount of the O radicals become smaller. Accordingly, it is possible to suppress the horizontal directional etching and errors such as bowings in etched shapes or increase of hole diameters or line widths.
- the embodiment of the present invention has been described.
- the present invention is not limited to the above embodiment, and various modifications can be made.
- the plasma etching method is carried out by the plasma etching apparatus in which two high frequency power having different frequencies are supplied to the lower electrode.
- the present invention is not limited thereto.
- the plasma etching method may be carried out by a plasma etching apparatus in which a single plasma-generating high frequency power is supplied to the lower electrode, a high frequency power is supplied to the upper electrode, or a plasma-generating power and a bias high frequency power are supplied to the upper and the lower electrode, respectively.
- the etching of the amorphous carbon layer used as a mask has been described.
- the present invention is not limited thereto.
- the present invention may be applied to any object such as a cylinder, the object itself being used as a practical part.
- the target substrate to be processed may be various kinds of substrates such as flat panel displays (FPD) without being limited to the semiconductor wafer.
- FPD flat panel displays
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
RT[Sec]=9.42×107{(Pr·Ts)/(Ps·Tr)}(R W 2 ·d)/F Eq. 1,
-
- Pressure inside the chamber: 150 mTorr (20 Pa)
- Power of the first high frequency power source (40 MHz): 750 W
- Power of the second high frequency power source (13 MHz): 300 W
- DC voltage applied to the upper electrode: −300 V
- Processing gas
- CHF3 (Flow rate: 200 sccm (mL/min)
- CF3I (Flow rate: 50 sccm (mL/min)
- Time: 2 min.
-
- Pressure inside the chamber: 75 mTorr (10 Pa)
- Power of the first high frequency power source (40 MHz): 750 W
- Power of the second high frequency power source (13 MHz): 0 W
- DC voltage applied to the upper electrode: −300 V
- Processing gas
- CF4 (Flow rate: 250 sccm (mL/min)
- O2 (Flow rate: 8 sccm (mL/min)
- Time: 1 min. and 48 sec.
-
- Pressure inside the chamber: 2.66 Pa
- Power of the first high frequency power source (40 MHz): 800 W
- Power of the second high frequency power source (13 MHz): 0 W
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/480,109 US9117769B2 (en) | 2009-08-27 | 2014-09-08 | Plasma etching method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-196431 | 2009-08-27 | ||
JP2009196431A JP2011049360A (en) | 2009-08-27 | 2009-08-27 | Plasma etching method |
US24259409P | 2009-09-15 | 2009-09-15 | |
US12/861,270 US20110049098A1 (en) | 2009-08-27 | 2010-08-23 | Plasma etching method |
US14/480,109 US9117769B2 (en) | 2009-08-27 | 2014-09-08 | Plasma etching method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/861,270 Continuation-In-Part US20110049098A1 (en) | 2009-08-27 | 2010-08-23 | Plasma etching method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140377960A1 US20140377960A1 (en) | 2014-12-25 |
US9117769B2 true US9117769B2 (en) | 2015-08-25 |
Family
ID=52111270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/480,109 Active US9117769B2 (en) | 2009-08-27 | 2014-09-08 | Plasma etching method |
Country Status (1)
Country | Link |
---|---|
US (1) | US9117769B2 (en) |
Families Citing this family (316)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
JP6544902B2 (en) * | 2014-09-18 | 2019-07-17 | 東京エレクトロン株式会社 | Plasma processing system |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
KR102592471B1 (en) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming metal interconnection and method of fabricating semiconductor device using the same |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (en) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (en) * | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) * | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
JP7214724B2 (en) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | Storage device for storing wafer cassettes used in batch furnaces |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
CN111630203A (en) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | Method for depositing gap filling layer by plasma auxiliary deposition |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
JP7124098B2 (en) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
KR20190129718A (en) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (en) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR20200091543A (en) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
KR20200102357A (en) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for plug fill deposition in 3-d nand applications |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
CN112309843A (en) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | Selective deposition method for achieving high dopant doping |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (en) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
TW202125596A (en) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
JP2021172884A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
TW202219628A (en) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017403A (en) | 1989-04-13 | 1991-05-21 | Massachusetts Institute Of Technology | Process for forming planarized films |
US5242539A (en) | 1991-04-04 | 1993-09-07 | Hitachi, Ltd. | Plasma treatment method and apparatus |
US5362356A (en) | 1990-12-20 | 1994-11-08 | Lsi Logic Corporation | Plasma etching process control |
US5378316A (en) | 1991-04-03 | 1995-01-03 | Eastman Kodak Company | High durability mask for dry etch processing of GaAs |
US5605637A (en) | 1994-12-15 | 1997-02-25 | Applied Materials Inc. | Adjustable dc bias control in a plasma reactor |
US6482744B1 (en) | 2000-08-16 | 2002-11-19 | Promos Technologies, Inc. | Two step plasma etch using variable electrode spacing |
JP2003163205A (en) | 2001-11-28 | 2003-06-06 | Sony Corp | Oxidation film etching method |
US6635185B2 (en) | 1997-12-31 | 2003-10-21 | Alliedsignal Inc. | Method of etching and cleaning using fluorinated carbonyl compounds |
JP2004214465A (en) | 2003-01-07 | 2004-07-29 | Renesas Technology Corp | Manufacturing method of semiconductor device |
US6913868B2 (en) * | 2003-01-21 | 2005-07-05 | Applied Materials, Inc. | Conductive bi-layer e-beam resist with amorphous carbon |
US6951709B2 (en) * | 2002-05-03 | 2005-10-04 | Micron Technology, Inc. | Method of fabricating a semiconductor multilevel interconnect structure |
US7079740B2 (en) * | 2004-03-12 | 2006-07-18 | Applied Materials, Inc. | Use of amorphous carbon film as a hardmask in the fabrication of optical waveguides |
US20070020936A1 (en) | 2005-07-19 | 2007-01-25 | Micron Technology, Inc. | Methods of etching features into substrates |
JP2007180358A (en) | 2005-12-28 | 2007-07-12 | Tokyo Electron Ltd | Plasma etching method and computer-readable recording medium |
US20080003798A1 (en) | 2006-06-30 | 2008-01-03 | Hynix Semiconductor Inc. | Method for fabricating contact plug in semiconductor device |
JP2008047810A (en) | 2006-08-21 | 2008-02-28 | Elpida Memory Inc | Manufacturing method of semiconductor device |
US20110049098A1 (en) | 2009-08-27 | 2011-03-03 | Tokyo Electron Limited | Plasma etching method |
-
2014
- 2014-09-08 US US14/480,109 patent/US9117769B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017403A (en) | 1989-04-13 | 1991-05-21 | Massachusetts Institute Of Technology | Process for forming planarized films |
US5362356A (en) | 1990-12-20 | 1994-11-08 | Lsi Logic Corporation | Plasma etching process control |
US5378316A (en) | 1991-04-03 | 1995-01-03 | Eastman Kodak Company | High durability mask for dry etch processing of GaAs |
US5242539A (en) | 1991-04-04 | 1993-09-07 | Hitachi, Ltd. | Plasma treatment method and apparatus |
US5605637A (en) | 1994-12-15 | 1997-02-25 | Applied Materials Inc. | Adjustable dc bias control in a plasma reactor |
US6635185B2 (en) | 1997-12-31 | 2003-10-21 | Alliedsignal Inc. | Method of etching and cleaning using fluorinated carbonyl compounds |
US6482744B1 (en) | 2000-08-16 | 2002-11-19 | Promos Technologies, Inc. | Two step plasma etch using variable electrode spacing |
JP2003163205A (en) | 2001-11-28 | 2003-06-06 | Sony Corp | Oxidation film etching method |
US6951709B2 (en) * | 2002-05-03 | 2005-10-04 | Micron Technology, Inc. | Method of fabricating a semiconductor multilevel interconnect structure |
JP2004214465A (en) | 2003-01-07 | 2004-07-29 | Renesas Technology Corp | Manufacturing method of semiconductor device |
US6913868B2 (en) * | 2003-01-21 | 2005-07-05 | Applied Materials, Inc. | Conductive bi-layer e-beam resist with amorphous carbon |
US7079740B2 (en) * | 2004-03-12 | 2006-07-18 | Applied Materials, Inc. | Use of amorphous carbon film as a hardmask in the fabrication of optical waveguides |
US20070020936A1 (en) | 2005-07-19 | 2007-01-25 | Micron Technology, Inc. | Methods of etching features into substrates |
JP2007180358A (en) | 2005-12-28 | 2007-07-12 | Tokyo Electron Ltd | Plasma etching method and computer-readable recording medium |
US20080003798A1 (en) | 2006-06-30 | 2008-01-03 | Hynix Semiconductor Inc. | Method for fabricating contact plug in semiconductor device |
JP2008047810A (en) | 2006-08-21 | 2008-02-28 | Elpida Memory Inc | Manufacturing method of semiconductor device |
US20110049098A1 (en) | 2009-08-27 | 2011-03-03 | Tokyo Electron Limited | Plasma etching method |
JP2011049360A (en) | 2009-08-27 | 2011-03-10 | Tokyo Electron Ltd | Plasma etching method |
Non-Patent Citations (4)
Title |
---|
Bhattacharya, Deep Reactive Ion Etching (DRIE), Mar. 16, 2014, UMD, ten pages total. |
Goodyear et al, High resolution inductively coupled plasma etching of 30 nm lines and spaces in tungsten and silicon, 2000, J. Vac. Sci. Technol., B 18 (6) Nov./Dec., p. 3471-3475. |
Mack, Lithography, Mar. 4, 2006, lithoguru.com, p. 1-17. |
Reis et al (Deep Reactive Ion Etching), Mar. 16, 2004, Reis. |
Also Published As
Publication number | Publication date |
---|---|
US20140377960A1 (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9117769B2 (en) | Plasma etching method | |
US20110049098A1 (en) | Plasma etching method | |
US9177823B2 (en) | Plasma etching method and plasma etching apparatus | |
US8361275B2 (en) | Etching apparatus | |
US20210134604A1 (en) | Etching method | |
KR100801768B1 (en) | Etching method and apparatus | |
US20090203218A1 (en) | Plasma etching method and computer-readable storage medium | |
US9324569B2 (en) | Plasma etching method and plasma etching apparatus | |
US8216485B2 (en) | Plasma etching method, plasma etching apparatus, control program and computer-readable storage medium | |
US20120244709A1 (en) | Plasma etching method and storage medium | |
JP6050944B2 (en) | Plasma etching method and plasma processing apparatus | |
US7794617B2 (en) | Plasma etching method, plasma processing apparatus, control program and computer readable storage medium | |
KR20080006457A (en) | Plasma etching method and computer-readable storage medium | |
KR20070089618A (en) | Plasma etching method and computer-readable storage medium | |
US20090203219A1 (en) | Plasma etching method, plasma etching apparatus and computer-readable storage medium | |
US20060292876A1 (en) | Plasma etching method and apparatus, control program and computer-readable storage medium | |
US7842190B2 (en) | Plasma etching method | |
US10283368B2 (en) | Plasma etching method and plasma etching apparatus | |
TWI822918B (en) | Plasma processing method and plasma processing apparatus | |
KR20120001773A (en) | Plasma etching method | |
JP6226668B2 (en) | Plasma processing method | |
US8975190B2 (en) | Plasma processing method | |
US20070197040A1 (en) | Plasma etching method, plasma etching apparatus, control program and computer-readable storage medium | |
JP2017084938A (en) | Method of processing object to be processed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKYO ELECTRON LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOIWA, KOUSUKE;REEL/FRAME:033863/0247 Effective date: 20140925 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |