US9087029B2 - Qualifying circuit board materials - Google Patents

Qualifying circuit board materials Download PDF

Info

Publication number
US9087029B2
US9087029B2 US13/457,045 US201213457045A US9087029B2 US 9087029 B2 US9087029 B2 US 9087029B2 US 201213457045 A US201213457045 A US 201213457045A US 9087029 B2 US9087029 B2 US 9087029B2
Authority
US
United States
Prior art keywords
loop
signal
test
degraded
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/457,045
Other versions
US20120215478A1 (en
Inventor
Vinh B. Lu
Bhyrav M. Mutnury
Terence Rodrigues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo International Ltd
Original Assignee
Lenovo Enterprise Solutions Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo Enterprise Solutions Singapore Pte Ltd filed Critical Lenovo Enterprise Solutions Singapore Pte Ltd
Priority to US13/457,045 priority Critical patent/US9087029B2/en
Publication of US20120215478A1 publication Critical patent/US20120215478A1/en
Assigned to LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD. reassignment LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Application granted granted Critical
Publication of US9087029B2 publication Critical patent/US9087029B2/en
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT CONTAINING TYPO ERRORS PREVIOUSLY RECORDED AT REEL: 037101 FRAME: 0969. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE LTD.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/24Marginal checking or other specified testing methods not covered by G06F11/26, e.g. race tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the present disclosure relates to the field of computers, and specifically to hardware components of computers. Still more particularly, the present disclosure relates to materials used to fabricate hardware components of computers.
  • One embodiment of the present disclosure presents a system that utilizes a test structure for testing signal degradation as a signal passes through a first loop and a second loop, which are connected to form a closed test loop.
  • a signal generator for generating a signal, is coupled to the first loop and the second loop.
  • a signal propagation switching logic is coupled to the first loop and to the second loop for alternatingly flipping the signal between the first and second loops, such that the signal moves uninterrupted through the closed test loop.
  • a probe logic detects any degradation of the signal as the signal travels along the closed test loop.
  • One embodiment of the present invention is a system that comprises a processor and a test structure coupled to the processor.
  • the test structure comprises: a first loop of conducting material, wherein the first loop has a first end and a second end; a second loop of the conducting material, wherein the second loop has a third end and a fourth end; a closed test loop made up of the second end connected to the third end and the first end connected to the fourth end; a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a signal; a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the signal between the first and second loops to permit the signal to move uninterrupted through the closed test loop; and a probe logic for detecting a degraded test signal that is caused by a degradation of the signal as the signal travels along the closed test loop, wherein the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second
  • One embodiment of the present invention is a test structure comprising: a first loop of conducting material, wherein the first loop has a first end and a second end; a second loop of the conducting material, wherein the second loop has a third end and a fourth end; a closed test loop of the conducting material made up of the second end connected to the third end and the first end connected to the fourth end, wherein the first loop and the second are separated by an insulation material; a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a test signal; a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the test signal between the first and second loops to permit the test signal to move uninterrupted through the closed test loop; and a probe logic for detecting a degradation of the test signal as the test signal travels along the closed test loop, wherein the signal generator initiates the test signal at the first end of the first loop, wherein the probe logic detects a degraded test signal at the second end of
  • FIG. 1 depicts an exemplary computer that may be used in implementing the present disclosure
  • FIG. 2A-FIG . 2 B illustrate an exemplary embodiment of a novel test structure as described in the present disclosure
  • FIG. 3A-FIG . 3 B depict additional detail of a first and second loop being connected to form a closed test loop used in the test structure illustrated in FIG. 2A-FIG . 2 B;
  • FIG. 4 is a high level flow chart of one or more exemplary steps performed by hardware logic to test the electrical properties of a material.
  • the present disclosure may be embodied as a system, method or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, the present disclosure may take the form of a computer program product embodied in one or more computer-readable medium(s) having computer-readable program code embodied thereon.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • FIG. 1 there is depicted a block diagram of an exemplary computer 102 , which may be utilized by the present disclosure. Note that some or all of the exemplary architecture, including both depicted hardware and software, shown for and within computer 102 may be utilized by software deploying server 150 .
  • Computer 102 includes a processor unit 104 that is coupled to a system bus 106 .
  • Processor unit 104 may utilize one or more processors, each of which has one or more processor cores.
  • a video adapter 108 which drives/supports a display 110 , is also coupled to system bus 106 .
  • System bus 106 is coupled via a bus bridge 112 to an input/output (I/O) bus 114 .
  • An I/O interface 116 is coupled to I/O bus 114 .
  • I/O interface 116 affords communication with various I/O devices, including a keyboard 118 , a mouse 120 , a media tray 122 (which may include storage devices such as CD-ROM drives, multi-media interfaces, etc.), a printer 124 , and a test structure 126 . While the format of the ports connected to I/O interface 116 may be any known to those skilled in the art of computer architecture, in a preferred embodiment some or all of these ports are universal serial bus (USB) ports.
  • USB universal serial bus
  • Network 128 may be an external network such as the Internet, or an internal network such as an Ethernet or a virtual private network (VPN).
  • VPN virtual private network
  • a hard drive interface 132 is also coupled to system bus 106 .
  • Hard drive interface 132 interfaces with a hard drive 134 .
  • hard drive 134 populates a system memory 136 , which is also coupled to system bus 106 .
  • System memory is defined as a lowest level of volatile memory in computer 102 . This volatile memory includes additional higher levels of volatile memory (not shown), including, but not limited to, cache memory, registers and buffers. Data that populates system memory 136 includes computer 102 's operating system (OS) 138 and application programs 144 .
  • OS operating system
  • OS 138 includes a shell 140 , for providing transparent user access to resources such as application programs 144 .
  • shell 140 is a program that provides an interpreter and an interface between the user and the operating system. More specifically, shell 140 executes commands that are entered into a command line user interface or from a file.
  • shell 140 also called a command processor, is generally the highest level of the operating system software hierarchy and serves as a command interpreter. The shell provides a system prompt, interprets commands entered by keyboard, mouse, or other user input media, and sends the interpreted command(s) to the appropriate lower levels of the operating system (e.g., a kernel 142 ) for processing.
  • a kernel 142 the appropriate lower levels of the operating system for processing.
  • shell 140 is a text-based, line-oriented user interface, the present disclosure will equally well support other user interface modes, such as graphical, voice, gestural, etc.
  • OS 138 also includes kernel 142 , which includes lower levels of functionality for OS 138 , including providing essential services required by other parts of OS 138 and application programs 144 , including memory management, process and task management, disk management, and mouse and keyboard management.
  • kernel 142 includes lower levels of functionality for OS 138 , including providing essential services required by other parts of OS 138 and application programs 144 , including memory management, process and task management, disk management, and mouse and keyboard management.
  • Application programs 144 include a renderer, shown in exemplary manner as a browser 146 .
  • Browser 146 includes program modules and instructions enabling a world wide web (WWW) client (i.e., computer 102 ) to send and receive network messages to the Internet using hypertext transfer protocol (HTTP) messaging, thus enabling communication with software deploying server 150 and other described computer systems.
  • WWW world wide web
  • HTTP hypertext transfer protocol
  • Application programs 144 in computer 102 's system memory also include a material testing program (MTP) 148 .
  • MTP 148 includes code for implementing the processes described herein, including those described in FIGS. 2-4 .
  • computer 102 is able to download MTP 148 from software deploying server 150 , including in an on-demand basis, such that the code from MTP 148 is not downloaded until runtime or otherwise immediately needed by computer 102 .
  • software deploying server 150 performs all of the functions associated with the present disclosure (including execution of MTP 148 ), thus freeing computer 102 from having to use its own internal computing resources to execute MTP 148 .
  • computer 102 may include alternate memory storage devices such as magnetic cassettes, digital versatile disks (DVDs), Bernoulli cartridges, and the like. These and other variations are intended to be within the spirit and scope of the present disclosure.
  • Test structure 126 includes a first loop 202 and a second loop 204 , which when connected in a manner described herein in FIG. 3A-FIG . 3 B, make up a closed test loop 206 .
  • First loop 202 and second loop 204 which are initially open loops, are joined in area 208 without contacting each other.
  • Each of the loops has two ends.
  • the two ends of the first loop 202 are named first end 308 and second end 302
  • the two ends of second loop 204 are named third end 304 and fourth end 306 . As shown in FIG.
  • second end 302 is connected to third end 304 , thus connecting first loop 202 to second loop 204 .
  • fourth end 306 (from second loop 204 ) is connected to first end 308 (from first loop 202 ), thus closing the closed test loop 206 .
  • this insulating material is a dielectric insulation material 310 , such as that used in the construction of printed circuit boards (PCBs).
  • a signal generator 210 is coupled to one or both of the first and second loops 202 / 204 .
  • Signal generator 210 is capable of putting a signal (e.g., a test signal such as a known voltage) onto one or both of the loops 202 / 204 .
  • a pair of diodes 212 a - b (shown in FIG. 2B ) are put in series with their respective loops 202 / 204 .
  • a probe logic 214 is coupled to each of the loops 202 / 204 , as is a signal propagation switching logic (SPSL) 216 .
  • SPSL signal propagation switching logic
  • the probe logic 214 detects a degradation of the signal, generated by the signal generator 210 , as the signal travels along the closed test loop 206 .
  • SPSL 216 alternatingly flips the signal between the first and second loops, such that the signal moves uninterrupted through the unending closed test loop 206 .
  • signal generator 210 puts a 500 mV signal on or near node N′ of loop 202 .
  • node P′ of loop 204 is at 0, such that the voltage is able to propagate (after an initial ramp-up) along loop 202 to node P.
  • the voltage at N′ is still at 500 mV, but it has decayed during propagation to node P to 450 mV.
  • the voltages of nodes P′ and N′ switch, such that node P′ is now at 450 mV, and node N′ is at 0.
  • the 450 mV at node P′ is launched, and decays down to 400 mV at node N.
  • N′ and P′ are switched, such that N′ is now at 400 mV and P′ is at 0.
  • the 400 mV at node N′ is launched, and decays down to 350 mV at node P.
  • N′ and P′ are switched, such that P′ is at 350 mV and N′ is at 0. The process continues (with voltage signals being launched at the odd numbered Ts, and N′ and P′ switching (flipping) at the even numbered Ts) until all nodes have 0 volts, or the testing cycle ends (time runs out, parameters reached, etc.).
  • probe logic 214 passes the decayed voltage (e.g., the 450 mV at node P at time T 1 in Table I) to SPSL 216 , which then puts this voltage onto the flipped node (e.g., node P′ at time T 2 in Table I) for launching.
  • SPSL 216 “knows” (i.e., has data stored in a register) how long it will take a signal to propagate around loop 202 or loop 204 .
  • SPSL will automatically switch the non-receiving node to 0 (e.g., node P′ at time T 4 ) while switching the receiving node (e.g., node N′ at time T 4 ) to the degraded signal (e.g., 400 mV at time T 4 ).
  • the signal propagates around the closed test loop 206 in a continuous manner.
  • FIG. 4 a high level flow chart of exemplary steps performed by hardware logic to test the electrical properties of a material is presented.
  • initiator block 402 which may be prompted by the coupling of a test structure to a processor, wherein the test structure comprises the components described herein in exemplary fashion for test structure 126
  • the signal generator initiates a test signal at the first end of the first loop (block 404 ).
  • the probe logic detects a degraded test signal at the second end of the first loop (block 406 ).
  • the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero (block 408 ).
  • the probe logic then detects a further degraded test signal at the fourth end of the second loop (block 410 ).
  • the signal propagation switching logic flips the further degraded test signal to the first end of the first loop while flipping the second end of the first loop to zero (block 412 ). If the testing cycle is not completed (query block 414 ), the results of the signal degradation are stored and/or displayed on a monitor or printout (block 416 ), and the processes shown in blocks 404 - 412 are repeated in a reiterative manner until the testing cycle is complete (query block 414 ), and the process ends (terminator block 416 ). Thus, the signal degradation detected indicates how much signal degradation is caused by the conductor and/or the insulation around the conductor.
  • closed test loop 206 is depicted as being made up of two loops ( 202 , 204 ), in one embodiment, closed test loop 206 is made up of more than two loops, resulting in an even smaller radius for closed test loop 206 , which makes for an even smaller test structure 126 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A test structure for testing electrical properties of a material comprises a first loop and a second loop, which are connected to form a closed test loop. A signal generator, for generating a test signal, is coupled to the first loop and the second loop. A signal propagation switching logic is coupled to the first loop and to the second loop for alternatingly flipping the test signal between the first and second loops, such that the test signal moves uninterrupted through the closed test loop. A probe logic detects any degradation of the test signal as the test signal travels along the closed test loop.

Description

The present application is a continuation of U.S. patent application Ser. No. 12/632,499, filed on Dec. 7, 2009, and titled “Qualifying Circuit Board Materials,” which is incorporated herein by reference.
BACKGROUND
The present disclosure relates to the field of computers, and specifically to hardware components of computers. Still more particularly, the present disclosure relates to materials used to fabricate hardware components of computers.
SUMMARY
One embodiment of the present disclosure presents a system that utilizes a test structure for testing signal degradation as a signal passes through a first loop and a second loop, which are connected to form a closed test loop. A signal generator, for generating a signal, is coupled to the first loop and the second loop. A signal propagation switching logic is coupled to the first loop and to the second loop for alternatingly flipping the signal between the first and second loops, such that the signal moves uninterrupted through the closed test loop. A probe logic detects any degradation of the signal as the signal travels along the closed test loop.
One embodiment of the present invention is a system that comprises a processor and a test structure coupled to the processor. The test structure comprises: a first loop of conducting material, wherein the first loop has a first end and a second end; a second loop of the conducting material, wherein the second loop has a third end and a fourth end; a closed test loop made up of the second end connected to the third end and the first end connected to the fourth end; a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a signal; a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the signal between the first and second loops to permit the signal to move uninterrupted through the closed test loop; and a probe logic for detecting a degraded test signal that is caused by a degradation of the signal as the signal travels along the closed test loop, wherein the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero, and wherein the signal propagation switching logic repeatedly flips the degraded test signal between the first loop and the second loop to create a further degraded test signal.
One embodiment of the present invention is a test structure comprising: a first loop of conducting material, wherein the first loop has a first end and a second end; a second loop of the conducting material, wherein the second loop has a third end and a fourth end; a closed test loop of the conducting material made up of the second end connected to the third end and the first end connected to the fourth end, wherein the first loop and the second are separated by an insulation material; a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a test signal; a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the test signal between the first and second loops to permit the test signal to move uninterrupted through the closed test loop; and a probe logic for detecting a degradation of the test signal as the test signal travels along the closed test loop, wherein the signal generator initiates the test signal at the first end of the first loop, wherein the probe logic detects a degraded test signal at the second end of the first loop, wherein the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero, wherein the probe logic detects a further degraded test signal at the fourth end of the second loop, wherein the signal propagation switching logic flips the further degraded test signal to the first end of the first loop while flipping the second end of the first loop to zero, and wherein the detecting and flipping is repeated until a testing cycle is completed, wherein the degraded and further degraded test signals result from signal leakage from the conducting material into the insulating material.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 depicts an exemplary computer that may be used in implementing the present disclosure;
FIG. 2A-FIG. 2B illustrate an exemplary embodiment of a novel test structure as described in the present disclosure;
FIG. 3A-FIG. 3B depict additional detail of a first and second loop being connected to form a closed test loop used in the test structure illustrated in FIG. 2A-FIG. 2B; and
FIG. 4 is a high level flow chart of one or more exemplary steps performed by hardware logic to test the electrical properties of a material.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, the present disclosure may be embodied as a system, method or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, the present disclosure may take the form of a computer program product embodied in one or more computer-readable medium(s) having computer-readable program code embodied thereon.
Any combination of one or more computer-readable medium(s) may be utilized. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. A computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
With reference now to the figures, and in particular to FIG. 1, there is depicted a block diagram of an exemplary computer 102, which may be utilized by the present disclosure. Note that some or all of the exemplary architecture, including both depicted hardware and software, shown for and within computer 102 may be utilized by software deploying server 150.
Computer 102 includes a processor unit 104 that is coupled to a system bus 106. Processor unit 104 may utilize one or more processors, each of which has one or more processor cores. A video adapter 108, which drives/supports a display 110, is also coupled to system bus 106. System bus 106 is coupled via a bus bridge 112 to an input/output (I/O) bus 114. An I/O interface 116 is coupled to I/O bus 114. I/O interface 116 affords communication with various I/O devices, including a keyboard 118, a mouse 120, a media tray 122 (which may include storage devices such as CD-ROM drives, multi-media interfaces, etc.), a printer 124, and a test structure 126. While the format of the ports connected to I/O interface 116 may be any known to those skilled in the art of computer architecture, in a preferred embodiment some or all of these ports are universal serial bus (USB) ports.
As depicted, computer 102 is able to communicate with a software deploying server 150, and alternatively test structure 126 via network 128 using a network interface 130. Network 128 may be an external network such as the Internet, or an internal network such as an Ethernet or a virtual private network (VPN).
A hard drive interface 132 is also coupled to system bus 106. Hard drive interface 132 interfaces with a hard drive 134. In a preferred embodiment, hard drive 134 populates a system memory 136, which is also coupled to system bus 106. System memory is defined as a lowest level of volatile memory in computer 102. This volatile memory includes additional higher levels of volatile memory (not shown), including, but not limited to, cache memory, registers and buffers. Data that populates system memory 136 includes computer 102's operating system (OS) 138 and application programs 144.
OS 138 includes a shell 140, for providing transparent user access to resources such as application programs 144. Generally, shell 140 is a program that provides an interpreter and an interface between the user and the operating system. More specifically, shell 140 executes commands that are entered into a command line user interface or from a file. Thus, shell 140, also called a command processor, is generally the highest level of the operating system software hierarchy and serves as a command interpreter. The shell provides a system prompt, interprets commands entered by keyboard, mouse, or other user input media, and sends the interpreted command(s) to the appropriate lower levels of the operating system (e.g., a kernel 142) for processing. Note that while shell 140 is a text-based, line-oriented user interface, the present disclosure will equally well support other user interface modes, such as graphical, voice, gestural, etc.
As depicted, OS 138 also includes kernel 142, which includes lower levels of functionality for OS 138, including providing essential services required by other parts of OS 138 and application programs 144, including memory management, process and task management, disk management, and mouse and keyboard management.
Application programs 144 include a renderer, shown in exemplary manner as a browser 146. Browser 146 includes program modules and instructions enabling a world wide web (WWW) client (i.e., computer 102) to send and receive network messages to the Internet using hypertext transfer protocol (HTTP) messaging, thus enabling communication with software deploying server 150 and other described computer systems.
Application programs 144 in computer 102's system memory (as well as software deploying server 150's system memory) also include a material testing program (MTP) 148. MTP 148 includes code for implementing the processes described herein, including those described in FIGS. 2-4. In one embodiment, computer 102 is able to download MTP 148 from software deploying server 150, including in an on-demand basis, such that the code from MTP 148 is not downloaded until runtime or otherwise immediately needed by computer 102. Note further that, in one embodiment of the present disclosure, software deploying server 150 performs all of the functions associated with the present disclosure (including execution of MTP 148), thus freeing computer 102 from having to use its own internal computing resources to execute MTP 148.
The hardware elements depicted in computer 102 are not intended to be exhaustive, but rather are representative to highlight essential components required by the present disclosure. For instance, computer 102 may include alternate memory storage devices such as magnetic cassettes, digital versatile disks (DVDs), Bernoulli cartridges, and the like. These and other variations are intended to be within the spirit and scope of the present disclosure.
With reference now to FIG. 2A, additional detail of the test structure 126 shown in FIG. 1 is presented. Test structure 126 includes a first loop 202 and a second loop 204, which when connected in a manner described herein in FIG. 3A-FIG. 3B, make up a closed test loop 206. First loop 202 and second loop 204, which are initially open loops, are joined in area 208 without contacting each other. Each of the loops has two ends. For purposes of descriptive clarity, assume that the two ends of the first loop 202 are named first end 308 and second end 302, while the two ends of second loop 204 are named third end 304 and fourth end 306. As shown in FIG. 3A, second end 302 is connected to third end 304, thus connecting first loop 202 to second loop 204. As shown in FIG. 3B, fourth end 306 (from second loop 204) is connected to first end 308 (from first loop 202), thus closing the closed test loop 206. Note that the two loops are separated by an insulating material, which may be a gas, liquid, solid, etc. In one embodiment, however, this insulating material is a dielectric insulation material 310, such as that used in the construction of printed circuit boards (PCBs).
Returning now to FIG. 2A, a signal generator 210 is coupled to one or both of the first and second loops 202/204. Signal generator 210 is capable of putting a signal (e.g., a test signal such as a known voltage) onto one or both of the loops 202/204. In order to make the signal propagation unidirectional, a pair of diodes 212 a-b (shown in FIG. 2B) are put in series with their respective loops 202/204. A probe logic 214 is coupled to each of the loops 202/204, as is a signal propagation switching logic (SPSL) 216. As described in further detail herein, the probe logic 214 detects a degradation of the signal, generated by the signal generator 210, as the signal travels along the closed test loop 206. To keep this signal moving through the closed test loop 206, SPSL 216 alternatingly flips the signal between the first and second loops, such that the signal moves uninterrupted through the unending closed test loop 206.
To understand this signal/node flipping, consider Table I, in which the signal is an initial voltage of 500 mV.
TABLE I
Time Node N′ (mV) Node P (mV) Node P′ (mV) Node N (mV)
T0 500 0 0 0
T1 500 450 0 0
T2 0 0 450 0
T3 0 0 450 400
T4 400 0 0 0
T5 400 350 0 0
T6 0 0 350 0
T7 0 0 350 300
T8 300 0 0 0
T9 300 250 0 0
T10 0 0 250 0
T11 0 0 250 200
T12 200 0 0 0
T13 200 150 0 0
T14 0 0 150 0
T15 0 0 150 100
T16 100 0 0 0
T17 100 50 0 0
T18 0 0 50 0
T19 0 0 50 0
T20 0 0 0 0
At time T0, signal generator 210 puts a 500 mV signal on or near node N′ of loop 202. At the same time T0, node P′ of loop 204 is at 0, such that the voltage is able to propagate (after an initial ramp-up) along loop 202 to node P. At time T1, the voltage at N′ is still at 500 mV, but it has decayed during propagation to node P to 450 mV. At time T2, the voltages of nodes P′ and N′ switch, such that node P′ is now at 450 mV, and node N′ is at 0. At time T3, the 450 mV at node P′ is launched, and decays down to 400 mV at node N. At time T4, N′ and P′ are switched, such that N′ is now at 400 mV and P′ is at 0. At time T5, the 400 mV at node N′ is launched, and decays down to 350 mV at node P. At time T6, N′ and P′ are switched, such that P′ is at 350 mV and N′ is at 0. The process continues (with voltage signals being launched at the odd numbered Ts, and N′ and P′ switching (flipping) at the even numbered Ts) until all nodes have 0 volts, or the testing cycle ends (time runs out, parameters reached, etc.).
There are several ways in which the node switching described herein (of N′ and P′, for example) can occur. In one embodiment, probe logic 214 passes the decayed voltage (e.g., the 450 mV at node P at time T1 in Table I) to SPSL 216, which then puts this voltage onto the flipped node (e.g., node P′ at time T2 in Table I) for launching. In another embodiment, SPSL 216 “knows” (i.e., has data stored in a register) how long it will take a signal to propagate around loop 202 or loop 204. After the initial launching of a voltage or other electrical signal onto node N′, SPSL will automatically switch the non-receiving node to 0 (e.g., node P′ at time T4) while switching the receiving node (e.g., node N′ at time T4) to the degraded signal (e.g., 400 mV at time T4). In either embodiment, the signal propagates around the closed test loop 206 in a continuous manner.
With reference now to FIG. 4, a high level flow chart of exemplary steps performed by hardware logic to test the electrical properties of a material is presented. After initiator block 402, which may be prompted by the coupling of a test structure to a processor, wherein the test structure comprises the components described herein in exemplary fashion for test structure 126, the signal generator initiates a test signal at the first end of the first loop (block 404). The probe logic then detects a degraded test signal at the second end of the first loop (block 406). The signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero (block 408). The probe logic then detects a further degraded test signal at the fourth end of the second loop (block 410). The signal propagation switching logic flips the further degraded test signal to the first end of the first loop while flipping the second end of the first loop to zero (block 412). If the testing cycle is not completed (query block 414), the results of the signal degradation are stored and/or displayed on a monitor or printout (block 416), and the processes shown in blocks 404-412 are repeated in a reiterative manner until the testing cycle is complete (query block 414), and the process ends (terminator block 416). Thus, the signal degradation detected indicates how much signal degradation is caused by the conductor and/or the insulation around the conductor.
Note that while closed test loop 206 is depicted as being made up of two loops (202, 204), in one embodiment, closed test loop 206 is made up of more than two loops, resulting in an even smaller radius for closed test loop 206, which makes for an even smaller test structure 126.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims herein are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of various embodiments of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
Having thus described embodiments of the disclosure of the present application in detail and by reference to illustrative embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims.

Claims (13)

What is claimed is:
1. A system comprising:
a processor; and
a test structure coupled to the processor, wherein the test structure comprises:
a first loop having a first end and a second end;
a second loop having a third end and a fourth end;
a closed test loop made up of the second end connected to the third end and the first end connected to the fourth end;
a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a signal;
a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the signal between the first and second loops to permit the signal to move uninterrupted through the closed test loop; and
a probe logic for detecting a degradation of the signal as the signal travels along the closed test loop.
2. The system of claim 1, wherein the signal is a voltage, wherein the first and second loops are electrical conductors that are separated by an insulation material, and wherein the degradation is caused by a voltage leakage into the insulation material.
3. The system of claim 2, wherein the insulation material is a dielectric insulator used to fabricate printed circuit boards.
4. The system of claim 1, wherein the test structure further comprises:
a first diode in the first loop; and
a second diode in the second loop, wherein the first and second diodes are oriented to keep the signal traveling in a same direction through the closed test loop.
5. The system of claim 1, wherein the test structure comprises more than two loops that are connected to form the closed test loop.
6. A system comprising:
a processor; and
a test structure coupled to the processor, wherein the test structure comprises:
a first loop of conducting material, wherein the first loop has a first end and a second end;
a second loop of the conducting material, wherein the second loop has a third end and a fourth end;
a closed test loop made up of the second end connected to the third end and the first end connected to the fourth end;
a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a signal;
a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the signal between the first and second loops to permit the signal to move uninterrupted through
the closed test loop; and
a probe logic for detecting a degraded test signal that is caused by a degradation of the signal as the signal travels along the closed test loop, wherein
the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero, and wherein the signal propagation switching logic repeatedly flips the degraded test signal between the first loop and the second loop to create a further degraded test signal.
7. The system of claim 6, wherein the signal is a voltage, wherein the first and second loops are electrical conductors that are separated by an insulation material, and wherein the degradation is caused by a voltage leakage into the insulation material.
8. The system of claim 7, wherein the insulation material is a dielectric insulator used to fabricate printed circuit boards.
9. The system of claim 6, wherein the test structure further comprises:
a first diode in the first loop; and
a second diode in the second loop, wherein the first and second diodes are oriented to keep the signal traveling in a same direction through the closed test loop.
10. The system of claim 6, wherein the test structure comprises more than two loops that are connected to form the closed test loop.
11. The system of claim 6, further comprising:
a display for displaying the degraded and further degraded test signals.
12. A test structure comprising:
a first loop of conducting material, wherein the first loop has a first end and a second end;
a second loop of the conducting material, wherein the second loop has a third end and a fourth end;
a closed test loop of the conducting material made up of the second end connected to the third end and the first end connected to the fourth end, wherein the first loop and the second are separated by an insulation material;
a signal generator coupled to the first loop and the second loop, wherein the signal generator generates a test signal;
a signal propagation switching logic coupled to the first loop and to the second loop, wherein the signal propagation switching logic alternatingly flips the test signal between the first and second loops to permit the test signal to move uninterrupted through the closed test loop; and
a probe logic for detecting a degradation of the test signal as the test signal travels along the closed test loop, wherein the signal generator initiates the test signal at the first end of the first loop, wherein the probe logic detects a degraded test signal at the second end of the first loop, wherein the signal propagation switching logic flips the degraded test signal to the third end of the second loop while flipping the fourth end of the second loop to zero, wherein the probe logic detects a further degraded test signal at the fourth end of the second loop, wherein the signal propagation switching logic flips the further degraded test signal to the first end of the first loop while flipping the second end of the first loop to zero, and wherein the detecting and flipping is repeated until a testing cycle is completed, wherein the degraded and further degraded test signals result from signal leakage from the conducting material into the insulating material.
13. The test structure of claim 12, wherein the test signal is a voltage, and wherein the degraded and further degraded test signals are a voltage drop of the test signal as the test signal travels through the closed test loop.
US13/457,045 2009-12-07 2012-04-26 Qualifying circuit board materials Active 2031-06-05 US9087029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/457,045 US9087029B2 (en) 2009-12-07 2012-04-26 Qualifying circuit board materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/632,499 US8242784B2 (en) 2009-12-07 2009-12-07 Qualifying circuit board materials
US13/457,045 US9087029B2 (en) 2009-12-07 2012-04-26 Qualifying circuit board materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/632,499 Continuation US8242784B2 (en) 2009-12-07 2009-12-07 Qualifying circuit board materials

Publications (2)

Publication Number Publication Date
US20120215478A1 US20120215478A1 (en) 2012-08-23
US9087029B2 true US9087029B2 (en) 2015-07-21

Family

ID=44081398

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/632,499 Active 2030-11-04 US8242784B2 (en) 2009-12-07 2009-12-07 Qualifying circuit board materials
US13/457,045 Active 2031-06-05 US9087029B2 (en) 2009-12-07 2012-04-26 Qualifying circuit board materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/632,499 Active 2030-11-04 US8242784B2 (en) 2009-12-07 2009-12-07 Qualifying circuit board materials

Country Status (1)

Country Link
US (2) US8242784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242784B2 (en) * 2009-12-07 2012-08-14 International Business Machines Corporation Qualifying circuit board materials
CN105159282A (en) * 2015-09-01 2015-12-16 国家电网公司 Process level simulation system and closed-loop testing method of intelligent transformer substation measuring and control device

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246237A (en) * 1962-06-06 1966-04-12 Era Patents Ltd Apparatus for detecting discharges in insulation and for discriminating between suchdischarges and any discharges occurring in termination means carried by such insulation
US3646361A (en) * 1970-10-16 1972-02-29 Hughes Aircraft Co High-speed sample and hold signal level comparator
US4012646A (en) 1975-06-30 1977-03-15 International Business Machines Corporation Powering scheme for josephson logic circuits which eliminates disturb signals
US4523198A (en) 1983-07-07 1985-06-11 The United States Of America As Represented By The Secretary Of The Air Force Radio frequency lens antenna
EP0411863A2 (en) * 1989-07-31 1991-02-06 Mitsui Petrochemical Industries, Ltd. Apparatus for monitoring degradation of insulation of electrical installation
JPH11145628A (en) 1997-11-05 1999-05-28 Toshiba Corp Printed wiring board
US5990674A (en) * 1996-07-08 1999-11-23 E.O. Schweitzer Manfacturing Co., Inc. Clamping mechanism for mounting circuit condition monitoring devices on cables of various diameters
US6121778A (en) 1997-06-10 2000-09-19 Bcf Designs Limited Method and apparatus for testing frequency-dependent electrical circuits
US6326793B1 (en) 1997-06-10 2001-12-04 Bcf Designs Limited Method and apparatus for testing frequency-dependent electrical circuits
US6326797B2 (en) 1998-03-04 2001-12-04 International Business Machines Corporation Apparatus and method for evaluating printed circuit board assembly manufacturing processes
US6445264B1 (en) 2000-06-09 2002-09-03 The United States Of America As Represented By The Secretary Of The Navy Mobius resonator and filter
US6452502B1 (en) 1998-10-15 2002-09-17 Intel Corporation Method and apparatus for early detection of reliability degradation of electronic devices
US20020131916A1 (en) 2001-03-19 2002-09-19 Nelson David Emil Non-thermal plasma reactor and method-structural conductor
US20020175275A1 (en) * 2001-05-10 2002-11-28 Norihide Yamada Apparatus and method for measuring optical signals by optical sampling
US20020175688A1 (en) * 2001-04-02 2002-11-28 Agilent Technologies, Inc. Method and an apparatus for measuring the ratio of the amplification factor of a signal level normalizer
US20030001587A1 (en) 2001-06-29 2003-01-02 Intel Corporation Test structure apparatus and method
US6560724B1 (en) 1999-09-29 2003-05-06 Unisys Corporation Random message verification technique
US6724268B2 (en) 2001-12-21 2004-04-20 Denso Corporation Variable delay circuit, and differential voltage-controlled ring oscillator using the same, and PLL using the oscillator
US6727712B2 (en) 2001-08-10 2004-04-27 James Sabey Apparatus and methods for testing circuit boards
US6924637B2 (en) 2003-04-02 2005-08-02 Micron Technology, Inc. Integrated circuit characterization printed circuit board, test equipment including same, method of fabrication thereof and method of characterizing an integrated circuit device
US6977507B1 (en) 2002-06-07 2005-12-20 Marvell International Ltd. Cable tester with indicator
US20060155843A1 (en) 2004-12-30 2006-07-13 Glass Richard J Information transportation scheme from high functionality probe to logic analyzer
US20060267599A1 (en) 2005-05-18 2006-11-30 Pooranakaran Pooranampillai S Measuring capacitance
US7209065B2 (en) 2004-07-27 2007-04-24 Multigig, Inc. Rotary flash ADC
US20070222473A1 (en) 2006-03-23 2007-09-27 Nec Corporation Multilayer printed wiring board and method of measuring characteristic impedance
US20070236458A1 (en) * 2006-03-29 2007-10-11 Dell Products L.P. Method and apparatus for coupling a display to an information handling system
US20070279151A1 (en) 2001-12-04 2007-12-06 Formfactor, Inc. Adjustable Delay Transmission Line
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US7310000B2 (en) 2001-09-28 2007-12-18 Inapac Technology, Inc. Integrated circuit testing module including command driver
US7333346B2 (en) 2003-08-27 2008-02-19 Denso Corporation Circuit board having test coupon and method for evaluating the circuit board
US20080068030A1 (en) 2006-01-20 2008-03-20 Snyder Warren S Successive approximate capacitance measurement circuit
US20080164885A1 (en) 2007-01-10 2008-07-10 Dell Products, Lp Non-destructive test structure for printed circuit board characterization and method for same
US20080258780A1 (en) 2006-03-21 2008-10-23 Multigig, Inc. Frequency divider
US20090037131A1 (en) 2003-10-15 2009-02-05 Christopher Hess Method and configuration for connecting test structures or line arrays for monitoring integrated circuit manufacturing
US7521941B2 (en) 2005-06-03 2009-04-21 Synaptics, Inc. Methods and systems for detecting a capacitance using switched charge transfer techniques
US20090108863A1 (en) 2007-10-25 2009-04-30 Christopher Gonzalez Method and circuit for detecting and compensating for a degradation of a semiconductor device
US7594489B1 (en) * 2007-01-19 2009-09-29 Marshall Electric Corp. High voltage extender
US7756197B1 (en) 2003-11-26 2010-07-13 Pmc-Sierra, Inc. Built in self test (BIST) for high-speed serial transceivers
US20100271057A1 (en) 2007-02-27 2010-10-28 Cannon Ethan H Method for Qcrit Measurement in Bulk CMOS Using a Switched Capacitor Circuit
US8242784B2 (en) * 2009-12-07 2012-08-14 International Business Machines Corporation Qualifying circuit board materials

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246237A (en) * 1962-06-06 1966-04-12 Era Patents Ltd Apparatus for detecting discharges in insulation and for discriminating between suchdischarges and any discharges occurring in termination means carried by such insulation
US3646361A (en) * 1970-10-16 1972-02-29 Hughes Aircraft Co High-speed sample and hold signal level comparator
US4012646A (en) 1975-06-30 1977-03-15 International Business Machines Corporation Powering scheme for josephson logic circuits which eliminates disturb signals
US4523198A (en) 1983-07-07 1985-06-11 The United States Of America As Represented By The Secretary Of The Air Force Radio frequency lens antenna
EP0411863A2 (en) * 1989-07-31 1991-02-06 Mitsui Petrochemical Industries, Ltd. Apparatus for monitoring degradation of insulation of electrical installation
US5990674A (en) * 1996-07-08 1999-11-23 E.O. Schweitzer Manfacturing Co., Inc. Clamping mechanism for mounting circuit condition monitoring devices on cables of various diameters
US6121778A (en) 1997-06-10 2000-09-19 Bcf Designs Limited Method and apparatus for testing frequency-dependent electrical circuits
US6326793B1 (en) 1997-06-10 2001-12-04 Bcf Designs Limited Method and apparatus for testing frequency-dependent electrical circuits
JPH11145628A (en) 1997-11-05 1999-05-28 Toshiba Corp Printed wiring board
US6326797B2 (en) 1998-03-04 2001-12-04 International Business Machines Corporation Apparatus and method for evaluating printed circuit board assembly manufacturing processes
US6452502B1 (en) 1998-10-15 2002-09-17 Intel Corporation Method and apparatus for early detection of reliability degradation of electronic devices
US6560724B1 (en) 1999-09-29 2003-05-06 Unisys Corporation Random message verification technique
US6445264B1 (en) 2000-06-09 2002-09-03 The United States Of America As Represented By The Secretary Of The Navy Mobius resonator and filter
US20020131916A1 (en) 2001-03-19 2002-09-19 Nelson David Emil Non-thermal plasma reactor and method-structural conductor
US20020175688A1 (en) * 2001-04-02 2002-11-28 Agilent Technologies, Inc. Method and an apparatus for measuring the ratio of the amplification factor of a signal level normalizer
US20020175275A1 (en) * 2001-05-10 2002-11-28 Norihide Yamada Apparatus and method for measuring optical signals by optical sampling
US20030001587A1 (en) 2001-06-29 2003-01-02 Intel Corporation Test structure apparatus and method
US6727712B2 (en) 2001-08-10 2004-04-27 James Sabey Apparatus and methods for testing circuit boards
US7310000B2 (en) 2001-09-28 2007-12-18 Inapac Technology, Inc. Integrated circuit testing module including command driver
US20070279151A1 (en) 2001-12-04 2007-12-06 Formfactor, Inc. Adjustable Delay Transmission Line
US6724268B2 (en) 2001-12-21 2004-04-20 Denso Corporation Variable delay circuit, and differential voltage-controlled ring oscillator using the same, and PLL using the oscillator
US6977507B1 (en) 2002-06-07 2005-12-20 Marvell International Ltd. Cable tester with indicator
US6924637B2 (en) 2003-04-02 2005-08-02 Micron Technology, Inc. Integrated circuit characterization printed circuit board, test equipment including same, method of fabrication thereof and method of characterizing an integrated circuit device
US7333346B2 (en) 2003-08-27 2008-02-19 Denso Corporation Circuit board having test coupon and method for evaluating the circuit board
US20090037131A1 (en) 2003-10-15 2009-02-05 Christopher Hess Method and configuration for connecting test structures or line arrays for monitoring integrated circuit manufacturing
US7756197B1 (en) 2003-11-26 2010-07-13 Pmc-Sierra, Inc. Built in self test (BIST) for high-speed serial transceivers
US7209065B2 (en) 2004-07-27 2007-04-24 Multigig, Inc. Rotary flash ADC
US20060155843A1 (en) 2004-12-30 2006-07-13 Glass Richard J Information transportation scheme from high functionality probe to logic analyzer
US20060267599A1 (en) 2005-05-18 2006-11-30 Pooranakaran Pooranampillai S Measuring capacitance
US7173438B2 (en) 2005-05-18 2007-02-06 Seagate Technology Llc Measuring capacitance
US7521941B2 (en) 2005-06-03 2009-04-21 Synaptics, Inc. Methods and systems for detecting a capacitance using switched charge transfer techniques
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US20080068030A1 (en) 2006-01-20 2008-03-20 Snyder Warren S Successive approximate capacitance measurement circuit
US7884621B2 (en) 2006-01-20 2011-02-08 Cypress Semiconductor Corporation Successive approximate capacitance measurement circuit
US20080258780A1 (en) 2006-03-21 2008-10-23 Multigig, Inc. Frequency divider
US20070222473A1 (en) 2006-03-23 2007-09-27 Nec Corporation Multilayer printed wiring board and method of measuring characteristic impedance
US20070236458A1 (en) * 2006-03-29 2007-10-11 Dell Products L.P. Method and apparatus for coupling a display to an information handling system
US20080164885A1 (en) 2007-01-10 2008-07-10 Dell Products, Lp Non-destructive test structure for printed circuit board characterization and method for same
US7594489B1 (en) * 2007-01-19 2009-09-29 Marshall Electric Corp. High voltage extender
US20100271057A1 (en) 2007-02-27 2010-10-28 Cannon Ethan H Method for Qcrit Measurement in Bulk CMOS Using a Switched Capacitor Circuit
US20090108863A1 (en) 2007-10-25 2009-04-30 Christopher Gonzalez Method and circuit for detecting and compensating for a degradation of a semiconductor device
US8242784B2 (en) * 2009-12-07 2012-08-14 International Business Machines Corporation Qualifying circuit board materials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. Muller et al., "Technology Benchmarking of High Resolution Structures on LTCC for Microwave Circuits," Elect. Sys. Int. Tech. Conf., vol. 1, Sep. 5-7, 2006, pp. 111-117.
U.S. Appl. No. 12/632,499-Non-Final Office Action Mailed Jan. 18, 2012.
U.S. Appl. No. 12/632,499-Notice of Allowance Mailed Mar. 30, 2012.
U.S. Appl. No. 12/632,499-Specification Filed Dec. 7, 2009.
W. Oskay, "A Single Sided Circuit Board," Feb. 4, 2009, www.evilmadscientist.com/article.php/mobiuscircuit.

Also Published As

Publication number Publication date
US20110133761A1 (en) 2011-06-09
US20120215478A1 (en) 2012-08-23
US8242784B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
US10817265B2 (en) Chatbot development and deployment platform
US10754885B2 (en) System and method for visually searching and debugging conversational agents of electronic devices
CN106648945A (en) Interface data testing method and device and electronic equipment
WO2022116841A1 (en) Text translation method, apparatus and device, and storage medium
CN107329899A (en) A kind of application compatibility method of testing and device
US10203371B2 (en) Methods and systems for generating functional test patterns for manufacture test
CN113742153A (en) Equipment testing method and device, readable medium and electronic equipment
US11048618B2 (en) Environment modification for software application testing
US20240320431A1 (en) Text generation method and apparatus, and electronic device and computer-readable medium
US9626281B2 (en) Call stack display with program flow indication
US9665377B2 (en) Processing apparatus and method of synchronizing a first processing unit and a second processing unit
US9087029B2 (en) Qualifying circuit board materials
US8724483B2 (en) Loopback configuration for bi-directional interfaces
KR20220122756A (en) Processor and implementation method, electronic device, and recording medium
CN112926285A (en) Chip verification method, platform, device, equipment and storage medium
US8984196B2 (en) Accessing peripheral devices
US9916229B2 (en) Decomposing application topology data into transaction tracking data
CN104536884A (en) Code testing method and device
US11227089B2 (en) System and method for implementing functional logics of verification IP using state design pattern based FSMs
US10360329B2 (en) Multi-cycle signal identification for static timing analysis
US10360137B2 (en) Adaptive testing using dynamically determined system resources of a computer system
CN116089251A (en) Interface test method, device, storage medium, and program product
CN107220205A (en) Information cuing method and electronic equipment
CN106371992B (en) Browser error detection method and error detector element
CN116467178B (en) Database detection method, apparatus, electronic device and computer readable medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:034194/0111

Effective date: 20140926

Owner name: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:034194/0111

Effective date: 20140926

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.;REEL/FRAME:037101/0969

Effective date: 20151112

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT CONTAINING TYPO ERRORS PREVIOUSLY RECORDED AT REEL: 037101 FRAME: 0969. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.;REEL/FRAME:037689/0190

Effective date: 20151211

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE LTD.;REEL/FRAME:050300/0878

Effective date: 20151001

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8